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ABSTRACT 

Children in sub-Saharan Africa are more likely to have survived the critical first 1000 days of 

life carrying along unresolved micronutrient deficiencies into the school-age. Iron-deficiency 

is the most prevalent micronutrient problem affecting school-age children in sub-Saharan 

Africa and yet the most difficult to resolve. It is necessary to ensure an adequate iron intake 

through the diet of school-age children and school-based feeding intervention may be a way 

to improve iron intake of schoolchildren. Such a feeding intervention would be more 

sustainable if it relies on locally produced food(s) with the potential to support food 

sovereignty. In this context, this thesis investigated whether foods based on cowpeas, an 

indigenous legume crop originating from Africa, can be used in a school feeding setting to 

improve iron status of school-age children in Ghana.  

The investigations in this thesis comprised cross-sectional dietary and iron status assessment 

of schoolchildren (n=383), cowpea acceptability among schoolchildren (n=120 mother-child 

pairs), chemical analysis of cowpea landraces (n=14), an in vivo iron bioavailability among 

young women (n=16) and a randomized cowpea intervention trial (n=241) conducted mainly 

in Tolon-Kumbungu district of Ghana.  

The results indicated that iron-deficiency and iron-deficiency anaemia affect 8 and 7 out of 

every 10 schoolchildren respectively. It also showed that the probability of adequate dietary 

iron intake is 0.32 but much larger (~0.90) if schoolchildren benefitted from a school feeding 

programme. Mothers/caregivers intended to give cowpeas to their schoolchildren 2–3 times 

per week. The positive attitudes of mothers towards cowpea predicted their intention to give 

them to their schoolchildren but they were worried about the cost, long cooking time and the 

discomfort their children may suffer after consuming cowpeas. The chemical analysis showed 

that cowpeas contain appreciable amounts of iron (4.9–8.2 mg/ 100 g
 
d.w) and zinc (2.7–4.1 

mg/100 g
 
d.w) but also high amounts of inhibitory phytate (477–1110 mg/100 g

 
d.w) and 



 

 

 

polyphenol (327–1055 mg/100 g
 
d.w). Polyphenol concentration in particular was higher 

(P<0.05) in coloured compared to white landraces. Iron bioavailability from red and white 

cowpeas were 1.4 and 1.7%, respectively, in NaFeEDTA-fortified meals and 0.89 and 1.2%, 

respectively, in FeSO4-fortified meals. Compared with FeSO4, fortification with NaFeEDTA 

increased the amount of iron absorbed from white and red cowpea meals by 0.05 and 0.08 mg 

(P < 0.05) respectively. Irrespective of the fortificant used, there was no significant difference 

in the amount of iron absorbed from the 2 varieties of cowpea. Finally the results from the 

intervention trial showed that fortification of whole cowpea flour with NaFeEDTA resulted in 

improvement of haemoglobin (P<0.05), serum ferritin (P<0.001) and body iron stores 

(P<0.001), and reduction in transferrin receptor concentration (P<0.001). Fortification also 

resulted in 30% and 47% reduction in the prevalence of iron-deficiency (ID) and iron-

deficiency anaemia (IDA) (P<0.05), respectively. 

Overall, this thesis has shown that in a malarious region with high iron-deficiency like 

(northern) Ghana, iron status of schoolchildren can be improved through the consumption of 

cowpeas within a school feeding programme. The improvement in iron status is however 

unlikely to result from the usual/conventional consumption of cowpeas but through 

fortification of whole cowpea flour with a highly bioavailable iron compound. This thesis has 

also shown that the most suitable iron compound for such whole cowpea flour fortification is 

NaFeEDTA irrespective of whether the cowpea has high or low concentration of polyphenols. 
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INTRODUCTION 

The first 1000 days of life, from conception through the second year of life, are considered 

critical for survival of children 
(1)

. However, survival does not guarantee optimal nutritional 

status. In sub-Saharan Africa children are more likely to have survived this critical stage 

carrying along unresolved micronutrient deficiencies into the school-age 
(2)

. In addition, the 

growth spurts during the school-age period also impose high nutrient requirements 
(3, 4)

 which 

tend not to be met by dietary intakes. Also, among older school girls, the onset of 

menstruation further increases iron requirement. Iron, iodine 
(5)

 and vitamin A deficiencies are 

therefore public health problems affecting school-age children in sub-Saharan Africa 
(6, 7)

 of 

which iron-deficiency (ID) is the most prevalent and yet the most difficult to resolve 
(8)

. As 

low intake of bioavailable micronutrients is considered as the main cause of the deficiencies, 

it is necessary to ensure an adequate micronutrient intake through the diet. However, if in 

school, the dietary intake of school-age children is less closely supervised by parents and this 

may affect micronutrient intake. Most interventions at household and community levels are 

preferentially targeted at infants, young children and pregnant women 
(2)

. School-based 

feeding interventions may therefore be a way to improve micronutrient intake of school-aged 

children 
(9)

. Such a feeding intervention would be more sustainable if it embeds local food(s) 

with the potential to support food sovereignty. In this context, this thesis investigates whether 

foods based on cowpeas, an indigenous legume crop originating from Africa 
(10)

, can be used 

in a school feeding setting to improve iron status of school-aged children in Ghana. 

Prevalence and consequences of iron-deficiency 

Iron is an important component of proteins such as haemoglobin and myoglobin where it is 

required for the transport of oxygen, and of tissue enzymes where it is involved in energy 

production and immune function 
(11, 12)

.  Iron is mainly ingested through food; either as haem 

iron (from animal sources) or non-haem iron (largely from plant sources) 
(13)

. In the absence 
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of active excretion of iron from the body, iron status is maintained by regulating dietary iron 

absorption in the proximal small intestine 
(13)

. Iron deficiency will occur if dietary iron intake 

is low and/or if bioavailability of the dietary iron is poor beyond the body’s ability to 

upregulate iron absorption to meet needs 
(14)

. In its severe form ID causes anaemia 
(8)

. 

Estimates suggest that ID may be responsible for one-half of anaemia prevalence 
(15)

. In 

countries with a low human development index, about 40% of school-age children are 

anaemic 
(16)

. In the absence of nationally representative data, estimates from two individual 

studies suggest that anaemia prevalence among schoolchildren in Ghana may range from 38% 

to 70% 
(17, 18)

.   The consequences of anaemia due to ID among school-age children include 

reduced physical work capacity, increased susceptibility to infectious diseases and impaired 

cognitive performance 
(2, 19)

. In randomized controlled studies iron repletion has been shown 

to benefit cognition among schoolchildren 
(20)

, decrease fatigue among women 
(21)

 and 

decrease morbidity among school-age children 
(22)

.  

Iron-deficiency anaemia in sub-Saharan Africa is a public health problem among 

schoolchildren and a school-based feeding intervention can contribute to iron repletion.    

Bioavailability of dietary iron and its measurement 

Bioavailability of dietary iron is the percentage of ingested iron that becomes available for 

metabolic functions 
(23)

. It is partly influenced by an individual’s iron status 
(24) and dietary 

factors. Iron bioavailability is upregulated when iron status is low 
(24)

. Dietary factors are 

related to the source of dietary iron (haem or non-haem), enhancers (e.g. ascorbic acid) and 

inhibitors (e.g. phytic acid and polyphenols) of absorption present in the diet 
(6)

. The 

bioavailability of non-haem iron, largely present in plant-based diets, is generally low (<10%) 

(25)
 and may imply that large quantities of staples need to be consumed in order to meet iron 

requirements. Haem iron bioavailability ranges between 3 – 7 times that of non-haem iron and 

does not depend on the composition of the food 
(26)

, but the main source of haem iron (animal 
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source foods) is rarely part of the usual diets in sub-Saharan Africa 
(27, 28)

. Similarly the intake 

of dietary enhancers of iron absorption is low, whereas the intakes of dietary iron absorption 

inhibitors, mainly phytates and polyphenols, are rather high 
(27)

.  

Habitual intake of diets rich in iron inhibiting compounds coupled with low intake of animal 

source foods may contribute to iron-deficiency. 

Phytic acid 

Phytate (the salt of phytic acid) is a major storage form of phosphorous in the kernels of 

cereals, legumes and nuts. In cereals it is mainly located in the aleurone layer, pericarp and 

germ 
(29)

 while in legumes it can be found in the cotyledon 
(30)

. Phytic acid (myo-

inositolkishexaphosphate, IP6) is the most abundant derivative of myo-inositol and thus exerts 

significant influence on iron absorption. Other less abundant derivatives are tetraphosphates 

and pentaphosphates 
(30)

. Phytic acid is negatively charged under physiologic conditions 
(31)

 

and thus has affinity for cations such as iron. It is able to form insoluble complexes with iron 

thereby decreasing its absorption. In a single meal, Hurrell et al. 
(32)

 showed that even a small 

amount of phytic acid inhibits iron absorption. More so phytic acid inhibition is dose 

dependent 
(33, 34)

. Phytic acid-to-iron molar ratio is an important determinant of iron 

absorption. Hurrell 
(35)

 suggests that phytic acid-to-iron molar ratio of <0.4:1 is preferable for 

iron absorption. The high concentration of phytic acid in whole cereal flour has been blamed 

for the poor efficacy of fortified whole cereal flours 
(36)

. Ascorbic acid has been shown to 

overcome the inhibitory effect of phytic acid in maize bran 
(34)

. Evidence is growing that 

NaFeEDTA is also able to overcome the inhibitory effect of phytic acid 
(37-39)

. The EDTA 

moiety in NaFeEDTA chelates iron at a low pH and to some extent protects it from binding 

with ligands such as phytic acid in the stomach and subsequently releases iron for uptake in 

the duodenum and jejunum 
(40)

.   
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Polyphenols 

Polyphenols are found in plants as a wide range of aromatic compounds with at least one 

hydroxyl moiety. They do not influence primary functions such as photosynthesis, 

reproduction or growth but play an important role in protecting the plant against pathogens 
(41)

 

and ultraviolet radiation 
(42)

. They are found in a wide range of crops including those widely 

consumed in sub-Saharan Africa such as cowpeas and sorghum 
(43, 44)

. The structure of certain 

polyphenols makes them form complexes with iron and influence its absorption from food. 

Polyphenols with catechol or galloyl groups are potent inhibitors of iron absorption and are 

able to complex iron at high pH 
(45, 46)

. The inhibitory action of polyphenols has been shown 

to be dose dependent 
(45-47)

. However polyphenols in various foods and beverages seem to 

exert different influences on iron absorption. Hurrell et al. 
(46)

 showed that black tea 

polyphenols were more inhibitory than those of herbal tea, cocoa and wine. In common beans, 

it has been shown that coloured varieties have higher concentration of polyphenols than white 

varieties 
(43, 48)

. Luckily the inhibitory effect of polyphenols can be reduced by other 

components of food when consumed in concomitance. Siegenberg et al. 
(34)

 showed that 50 

mg ascorbic acid can restore iron absorption from a meal containing >100 mg tannic acid. 

EDTA, also a known enhancer of iron absorption, however seems unable to overcome the 

inhibitory effect of tea polyphenols on iron 
(40, 49)

. Given the wide range of polyphenols and 

their varying ability to inhibit iron absorption, it is unknown whether EDTA is also unable to 

overcome iron inhibition of polyphenols in other foods.  

It remains to be shown whether EDTA can overcome the co-inhibitory effect of cowpea 

polyphenols and phytic acid.  

Measuring iron bioavailability 

The bioavailability of the native non-haem iron in food can be measured quantitatively using 

an intrinsic or extrinsic technique 
(50)

. In the intrinsic technique, the tagged iron is absorbed 
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into the seed or grain biosynthetically (stem injection or hydroponic culture) whereas in the 

extrinsic technique the tag is added to food at the point of consumption 
(50, 51)

. The extrinsic 

tag technique has found wider use because it is easier to apply and compares favourably with 

the intrinsic tag technique 
(51)

. Dietary non-haem iron present in a single meal joins a common 

pool, from which all non-haem iron show uniform bioavailability 
(52)

. The extrinsic tag 

technique, validated across a range of foods, relies on this common pool in order to estimate 

the bioavailability of non-haem iron 
(53)

. The labelling material could be a radioisotope or a 

stable isotope of iron; minute quantity of radioisotope is required compared to stable isotopes. 

The success of the technique relies on uniform mixing of the food with the isotopic tag at the 

site of absorption and both the tag and dietary non-haem iron should be sufficiently soluble to 

exchange well with the pool 
(52)

. For this reason soluble iron compounds such as ferrous 

sulphate are used to carry the iron tag. Two weeks after ingestion, the tagged iron 

incorporates into the red blood cell and can be measured as the bioavailability of the single 

meal’s native iron based on estimation of blood volume 
(54)

.  

This extrinsic tag technique offers the opportunity to test for promising fortificants and/or 

likely fortification vehicles; an important exploratory step in designing iron fortification.  

Indicators of iron status 

Serum ferritin (SF) concentration is the most useful measure of iron status 
(55)

. Low 

concentrations of serum ferritin always indicate depletion of storage iron and concentrations 

<15 µg/L are predictive for low iron storage 
(56)

. Because serum ferritin is also an acute phase 

protein, it is elevated in the presence of inflammation therefore high SF concentration with 

inflammation may mask insufficient iron stores 
(57)

. It is recommended that markers of 

inflammation such as C-reactive protein (CRP) and α1-acid glycoprotein (AGP) are measured 

alongside SF in order to isolate the influence of inflammation on iron status or adjust SF 

levels for inflammation 
(58, 59)

. In settings where infection and infestations are high serum 
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ferritin is not a reliable measure of iron status. In such instances soluble transferrin receptor 

(sTfR) is a good alternative because its levels are not influenced by infection 
(58)

 and can 

therefore distinguish iron deficiency anaemia from anaemia of chronic disease 
(60, 61)

. The TfR 

is a protein on the surface of cells and it regulates the uptake of transferrin into cells. The 

concentration of its soluble form in serum is a sensitive marker of tissue iron requirement 
(62)

. 

Even though sTfR is not influenced by inflammation, its concentration may be increased by 

malaria among young children 
(63, 64)

 affecting its specificity. It is suggested that malaria may 

not influence sTfR among older children in endemic areas 
(65)

 likely because the age-acquired 

immunity may decrease parasite density and reduce haemolysis 
(66)

.  

At the community level in sub-Saharan Africa, SF and sTfR are not routinely applicable as 

measures of iron status because of infrastructural and cost implications 
(58)

. As such 

haemoglobin concentration is often used as proxy measure of iron status in population level 

surveys, but this has the tendency to overestimate anaemia due to ID in settings where 

anaemia may also be caused by malaria, helminths, haemoglobinopathies or other 

micronutrient deficiencies 
(16)

. The recommendation is that in settings like sub-Saharan Africa 

iron status should be measured using combination of these indicators rather than a single 

measure 
(58)

. The high infection and infestation burden among children in sub-Saharan Africa 

make accurate measurement of iron status both difficult and expensive. 

The search for sustainable strategies to control iron-deficiency 

Supplementation is recommended when diet alone is unable to restore iron status within a 

short time span 
(67)

. As such pharmacologic doses of iron are used. Studies have shown that 

iron supplementation is both able to prevent and treat iron-deficiency 
(68)

. This makes 

supplementation suitable for use in developing countries. However, cost implications are very 

high and successful implementation requires behaviour modification to improve adherence 
(8)

. 
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As our understanding of the host-pathogen competition for iron deepens, there are growing 

concerns over the safety of iron supplements in areas with endemic malaria, especially among 

pre-school children. Supplementation iron is likely to increase malaria morbidity and increase 

the risk of hospitalization especially among young children who are iron-replete 
(69)

. WHO 

therefore advises against blanket iron supplementation in malaria endemic areas like Ghana 

and recommends screening for iron status and improved malaria surveillance 
(70)

. The 

recommendation makes population-wide iron supplementation for vulnerable children in 

malaria endemic areas less feasible owing to logistic barriers 
(71)

.   

Currently food-based approaches represent the most desirable and sustainable way of 

preventing iron-deficiency. They are designed to increase iron intake through the diet. The 

food-based approaches include dietary diversification, biofortification and fortification.  

Diets in developing countries are quite monotonous 
(27)

 because populations are largely 

agrarian and subsist on their own food production.  Dietary diversification is therefore an 

important strategy for developing countries.  It aims at improving iron intake through the 

promotion of production and utilization (throughout the year) of iron-rich traditional foods 

that are already utilized or underutilized 
(72)

. Dietary diversification does not only improve 

iron intake but also intakes of other important micronutrients 
(72)

. Evidence suggest that 

dietary diversity could be effective in preventing iron deficiency but some of the effective 

interventions involve animal source of iron and protein such as meat which are generally 

expensive for the rural poor 
(73)

. Meat is thought to improve non-haem iron absorption 

through what is referred to as “meat factor”; iron binding peptides which protect iron from 

complex formation with phytic acid and polyphenols 
(74)

. Promoting plant-based foods to 

improve iron status should be done carefully as some studies indicated that although high in 

iron, consumption was not effective in improving iron status probably due to low 

bioavailability of the iron 
(75)

. 



                                                                                                                                                         
Chapter 1 

18 

 

Biofortification is the process of increasing the concentration and/or bioavailability of 

essential elements in the edible part of the plant by traditional plant breeding or genetic 

engineering 
(76)

. Biofortified crops have the potential to supply iron to rural poor farming 

households since they subsist on their own crop production 
(77)

. The interest in biofortification 

is growing steadily. Even though the initial capital investment in research is high, it promises 

to be a safe, cheap and more sustainable strategy in the long term 
(78)

. The first step in 

conventional biofortification for iron is to determine whether sufficient genetic variation 

exists to identify breeding parents. The variation in the native iron content in the landraces of 

some staple crops like cowpeas may suggest the possibility to selectively breed for higher iron 

content 
(78)

. Presently a variety of common beans with high iron contents are ready for release 

(79)
. Location-specific acceptability of such biofortified crops however needs to be addressed 

to guarantee success in dissemination and consumption.  

Where the risk of iron-deficiency is high, universal iron fortification may be recommended 

(6)
. At the population level, fortification of processed staples with iron is practical, sustainable, 

and cost effective in the long term though technically challenging 
(6, 80)

. Fortifying foods with 

iron is technically more difficult because iron reacts with food substances to give undesirable 

colour and taste changes 
(6, 81)

. Iron fortification is considered safer than supplementation but 

it is yet to show success in Africa partly for the following reasons: (i) difficulty in finding 

centrally processed foods that reach large sections of the vulnerable population; (ii) iron 

compounds with low bioavailability are often used; (iii) fortification levels usually inadequate 

to improve iron status 
(25)

. Malaria has also been linked to the lack of success of fortification 

in Africa. Cercamondi et al. 
(44)

 have suggested that the protracted course of asymptomatic 

malaria in endemic areas could decrease fortification iron absorption by about 40% and may 

blunt the efficacy of fortification programmes. Staple cereal flours are often the target 

vehicles for fortification because large sections of populations consume them in sufficient 
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amounts on regular basis 
(6)

. However commonly recommended iron fortificants such as 

elemental iron, ferrous sulphate and ferrous fumarate are not well absorbed  in whole cereal 

flours because of high phytic acid concentration 
(81)

. Evidence is growing that NaFeEDTA is 

the most suitable compound for whole cereal or high extraction flour fortification 
(37, 39)

 and 

has been endorsed for use by WHO and partner organizations 
(82)

. Compared to ferrous 

sulphate which usually serves as a reference fortificant, iron absorption from NaFeEDTA is 

2–4 times higher in phytic acid containing cereal flours 
(40)

. NaFeEDTA is slowly water-

soluble and may cause less undesirable colour changes compared to ferrous sulphate 
(81)

 and is 

stable during processing and storage 
(83)

 . The EDTA compound binds to iron in acidic 

medium of the stomach and to some extent prevents it from binding with iron inhibition 

compounds such as phytic acid 
(40)

.  

Much is known about the fortification of whole cereal flours and which fortificant is 

desirable, but little is known about the fortification of whole legume flour such as cowpea 

flour (rich in both phytic acid and polyphenols).  

The TELFUN Project: Food sovereignty and the Ghana School Feeding Programme 

TELFUN (Tailoring Food Sciences to Endogenous Patterns of Local Food Supply for Future 

Nutrition) is an interdisciplinary multi-centre research programme funded by the 

Interdisciplinary Research and Education Fund (INREF) of Wageningen University, The 

Netherlands. The four-year tenure project started in 2007 with twelve PhD students from three 

parts of the world: four each from West Africa (Ghana/Benin), Asia (India) and South 

America (Ecuador). In each of the sites the researchers were drawn from four scientific 

disciplines: plant breeding, food technology, human nutrition and social science, working as 

an interdisciplinary team.  
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The TELFUN research programme is interested in answering the question: how do 

technological practises, developed from within food networks, enhance food-sovereignty and 

the nutritional status of people? This question comprises two related concepts: “food 

sovereignty” and “local food networks”. Food sovereignty has been described as the state 

where “all community residents obtain a safe, culturally acceptable, nutritionally adequate 

diet through a sustainable food system that maximizes community self-reliance and social 

justice” 
(84)

. The Food Sovereignty concept aims at empowering smallholder farmers to 

remain productive even as they are faced with competition from imports as a result of global 

open market. Food Sovereignty is composed of four main intricately related components; 

right to safe, nutritious  and culturally acceptable food, access to productive resources, agro-

ecologically sound production and access to market 
(85)

. Local food networks involve a 

collection of key actors who work within a locality to preserve the functional, ecological, 

cultural and political meanings of local foods 
(86)

. The programme posits that the classic agro-

industrial and the Green Revolution models of food production have succeeded in 

disconnecting the production-processing-utilization continuum in local food networks. This 

disconnection has been worsened by globalised and liberalised markets. Consequently the 

actors involved in preserving local food networks are getting marginalized.  

For TELFUN, understanding and improving traditional legume networks within their centres 

of origin together with the key actors within each network have the potential to establish the 

reconnection that is necessary to improve food sovereignty 
(87)

. As such, the specific legumes 

chosen as platforms to promote food sovereignty in Ghana/Benin, India and Ecuador 

respectively were: cowpea (Vigna unguiculata (L.) Walp), mungbean (Vigna radiata (L.) 

Wilczek) and lupine (Lupinus mutabilis Sweet). These legumes have major nutritional 

importance in developing countries because they have high protein contents of good 

biological value 
(3, 88)

 and provide significant quantities of vitamins and minerals like iron 
(89)

.  
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Targeting interventions to populations at high risk is important for more efficient delivery of 

limited national resources. The nutrition component of the Ghana/Benin TELFUN 

programme was investigated within the Ghana school feeding programme. Because of 

increasing enrolment in schools and existing infrastructure, the school is an important 

platform to implement targeted cost-effective nutrition interventions. Such interventions may 

keep more children in school and increase the number of years spent in school thus improving 

educational alongside nutritional outcomes 
(90)

. The United Nations Hunger Taskforce 

(UNHTF) and the Comprehensive Africa Agricultural Development Programme (CAADP) of 

the New Partnership for Africa’s Development (NEPAD) have both highlighted the important 

role of school feeding programmes in reducing hunger and increasing local food production 

(91, 92)
. They believe that linking the school to local food production is an important strategy 

towards achieving the millennium development goals on reducing hunger and improving 

education.    

The Ghana School Feeding Programme (GSFP) is aimed at reducing poverty among rural 

farming households through the provision of one warm and nutritious meal to school children 

across the country especially in needy rural communities 
(93)

. The envisaged mechanism is 

that, the need to feed schoolchildren will trigger local farmers to produce more food and in 

return make more income since the feeding programme would have created a ready market. 

As such, the GSFP is believed to be fulfilling the schoolchildren’s right to safe and nutritious 

food and also help to develop and sustain local markets thus supporting food sovereignty.    

Cowpea in the lives of the rural poor  

Cowpea (Vigna unguiculata (L.) Walp) is a popular food legume originating from Africa 

(Figure 1.1) 
(10)

. West and Central Africa hold the largest share of worldwide cowpea 

production 
(89)

. Cowpea is a drought tolerant crop that matures on as little as 300 mm of rain 
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making it suitable for the arid and semi-arid conditions and also reduce farmers’ exposure to 

yield risk 
(94, 95)

. Cowpea crop is shade tolerant and fixes nitrogen into the soil for that matter 

the rural poor farmers intercrop it with or grow it in rotation with maize, sorghum or millet 
(94)

. 

Because cowpeas mature early, they serve to bridge a hunger gap from periods when grain 

reserves from the previous harvest are depleted and farmers have yet to harvest the current 

year’s crops 
(95)

. 

 

                 A       B  

Figure 1.1. Cowpea plant with pod (A) and unpigmented cowpea seeds (B)   

 

Cowpeas are a good source of energy, proteins, vitamins, dietary fibre and minerals such as 

iron and zinc 
(3, 89, 96)

. Cowpea is a cheaper source of high quality protein compared to animal 

proteins and it is often referred to as the “poor man’s meat” 
(97)

. The high lysine content of 

cowpeas makes them an excellent enhancer of protein quality when combined with cereal 

grain proteins 
(89)

. Cowpeas are an excellent source of thiamine, niacin and also contain 

reasonable amounts of other water soluble vitamins. By virtue of their unique chemical 

composition, cowpeas offer a great potential in meeting the nutritional requirements of poor 

populations. They are prepared for consumption in grain, split and ground forms 
(89)

. The 

ground cowpea is less susceptible to post-harvest pest damage and can be used in different 

dishes. The fresh leaves of cowpea are also used for soup or mixed with other grains 
(98)

.  

Beyond the agronomic, economic and nutritional significance of cowpeas in the lives of the 

rural poor, they are also useful in traditional medicine. Although not scientifically proven, the 
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white coated cowpeas are believed to have anti-inflammatory properties and when applied 

topically could relieve breast engorgement among women 
(99)

. Despite the unique nutrient 

profile, including appreciable levels of iron, cowpeas have been reported to contain high 

levels of phytate and polyphenols which inhibit iron absorption 
(43, 100)

. 

Being a well-accepted and embedded local food, cowpea has the potential to contribute to 

food sovereignty and improve nutritional status of schoolchildren when used in a school 

feeding programme. 

Rationale of this thesis 

The rapid growth among school-age children imposes high nutrient requirements which tend 

not to be met by dietary intakes thereby causing micronutrient deficiencies. Iron-deficiency is 

a public health problem among schoolchildren in Ghana. Among older school girls, soon to be 

mothers, the onset of menstruation further increases iron requirement thus making iron a 

critical nutrient. Iron-deficiency affects educability of children and has long term negative 

impact on productivity and economic development. Repletion of iron among school-age 

children and women has been shown to benefit cognition, fatigue and morbidity.  

The fastest iron repletion strategy may be to give regular iron supplements to schoolchildren 

but this approach is deemed unsustainable and unsafe for rural children in malaria endemic 

areas. Biofortification is a viable option but is currently still in the developmental phase. 

School feeding programmes may provide the platform to diversify the consumption of iron-

rich foods but these may have to come as fortified products. Currently there is no mandatory 

fortification policy in Ghana and therefore the few fortified products do not reach the rural 

poor and thus may highlight the need to target fortification to reach vulnerable groups. In 

West Africa, it is difficult to find appropriate vehicles for such fortification. Cowpea may 

have the potential as a vehicle but little is known about fortification of whole cowpea flour. 
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Cowpea is a local well-accepted food legume and has popular flour-based recipes in Ghana. 

Cowpea is an attractive vehicle especially because of its potential in contributing to food 

sovereignty. In this thesis the potential of cowpea as a vehicle to contribute to solving the 

iron-deficiency problem among schoolchildren in Ghana is investigated within the context of 

food sovereignty.       

 Aim and outline of the thesis 

The main aim of this research is to improve iron status of schoolchildren in Ghana through the 

consumption of cowpeas within a school feeding programme. 

To achieve this aim, five related objectives were formulated as follows: 

1. To assess the adequacy of nutrient intake, iron status and nutritional status of 

schoolchildren participating in a school feeding programme; 

2. To assess the iron and zinc content of available cowpea landraces in northern Ghana;  

3. To determine factors that predict the intention of mothers to give cowpeas to their 

school-aged children; 

4. To assess the bioavailability of native iron in cowpeas while testing the relative 

performance of FeSO4 and NaFeEDTA as fortificants for whole cowpea flour; 

5. To measure the efficacy of fortified whole cowpea flour in improving iron status of 

Ghanaian schoolchildren.  

The outline of this thesis follows the temporal arrangement of the objectives (linkages shown 

in Figure 1.2). First, the status quo with respect to nutrient and iron intake among 

schoolchildren in the research area was assessed (chapter 2). Also, the outcome of the 

analysis of cowpea landraces and the factors that influence mothers to give them to 

schoolchildren are presented in chapter 3. Based on the understanding of the status quo 

(objectives 1–3) objective 4 was formulated to investigate whether the bioavailability of iron 

in cowpea is influenced by its colour and which fortificant may be suitable for cowpea flour 
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fortification. The results are presented in chapter 4. The conclusion and recommendation of 

chapter 4 were tested in a feeding trial in which schoolchildren consumed fortified whole 

cowpea flour meal for seven months. The results are presented in chapter 5. A synthesis of 

the main findings of this thesis, internal and external validity as well as public health 

implications of the findings is presented in chapter 6. 

 

 

Figure 1.2. Framework of the temporal linkages in studying the efficacy of fortified whole 

cowpea to reduce iron-deficiency among schoolchildren. 

 

Study area 

The entry point for selection of study site in the research project described in this thesis 

relates to cowpeas and school feeding – both focal interests for the TELFUN programme in 

Ghana as described in chapter 1. Tolon-Kumbungu district was selected because it was among 

the 3 leading producers of cowpeas in the region and also the pilot district for the 

Government-sponsored school feeding programme in Northern Region of Ghana. The district 

is located to the west of the regional capital, Tamale, between latitudes 9
0
 15

1
 and 10

0
 02

1
 

Efficacy of fortified cowpea  

Effect of  NaFeEDTA-fortified white cowpea on iron status of schoolchildren 

Cowpea iron bioavailability and the potential for fortification 

Iron absorption from white compared to red 
cowpeas 

FeSO4 fortified compared with NaFeEDTA 
fortified cowpea flour 

Status quo: background investigation 

Nutrient intake and iron status of schoolchildren 
Iron and zinc content of cowpea landraces and 
cowpea acceptability 
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North and longitudes 0
0
 53

1
 and 1

0
 25

1
 West (Figure 1.3). As of January 2009 the estimated 

population was 249, 691 
(101)

.  

 

 

                                                                         

Figure 1.3. Map of northern Ghana, West Africa, showing Tolon-Kumbungu district in the 

middle with dark boundaries.    

 

The research area is located within the Guinea Savannah agro-ecological zone and has two 

distinct seasons; rainy season (April–September) and a dry season (December–March) 

characterized by relatively high day temperatures (35–40 
0
C). Annual rainfall ranges between 

900–1100 mm. The people of this area are largely rain-fed subsistence farmers and 

predominantly Dagombas by tribe and Muslims by religion. Malaria is hyperendemic with 

Ghana 

Africa 

http://www.sodahead.com/entertainment/brandi-glanville-accuses-leann-rimes-of-eating-disorder-nastiest-celebrity-love-triangle/question-3374799/
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little seasonal variation in this area and is the main cause of morbidity among children. Staple 

diets are generally monotonous and based on cereals and legumes such as maize, millet, 

sorghum, rice, cowpeas and groundnuts. 

The cowpea iron bioavailability study in chapter 4 was conducted in Wageningen, The 

Netherlands, largely because the resource (human and financial) requirements for such a study 

were not available in the research area and establishing them was beyond the capacity of the 

project.  
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ABSTRACT 

Without gains in nutritional outcomes it is unlikely that school feeding programmes (SFPs) 

could improve cognition and academic performance of schoolchildren despite the 

improvements in school enrolment. We compared the adequacy of nutrient intake, iron status 

and nutritional status of SFP participants and non-SFP participants in a cross-sectional survey 

involving 383 schoolchildren (5–13-year-old). Quantitative 24-hour recall and weighed food 

record, repeated in 20% subsample, were used to estimate energy and nutrient intake. 

Haemoglobin concentration (Hb), serum ferritin (SF) and transferrin receptor (sTfR), and 

anthropometric measurements were used to reflect iron and nutritional status respectively. 

Energy and nutrient intakes, and their adequacies (P<0.001) as well as iron status (Hb, 

P<0.001; sTfR, P<0.05) were significantly better among SFP than non-SFP. SFP was 

associated with about 10 percentage points lower anaemia prevalence (P=0.06). However the 

prevalence of iron-deficiency and iron-deficiency anaemia were not different. Whereas BMI-

for-age Z-scores were significantly higher among non-SFP (P=0.008), the prevalence of 

stunting was significantly lower among SFP participants (P<0.04).  We conclude that school 

feeding contributed to energy and nutrient intake and their adequacies which probably 

improved iron status and reduced stunting prevalence. The results also suggest an important 

role of targeted flour fortification in achieving micronutrient adequacies within SFPs. 
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INTRODUCTION 

Chronic malnutrition is highly prevalent in sub-Saharan Africa especially among rural poor 

households 
(1)

 and it is exacerbated by morbidity and inadequate dietary intake 
(2)

. Infants and 

young children are most affected by the physical and mental deficits. These deficits are 

carried over into the school-age period where they greatly retard cognitive function, 

educability and future productivity 
(1)

.  Most interventions at the household and community 

levels are, however, preferentially targeted at the first 1,000 days of life 
(1, 3)

. “The school” 

may serve as an avenue for targeted interventions such as school feeding programmes (SFPs). 

However in settings where school enrolment and attendance are low, targeting interventions 

at school children may still be problematic.   

In Africa and other developing continents, SFPs have therefore been instituted primarily as 

food-for-education (FFE) in resource-poor settings but also as means of improving nutritional 

status through improved energy and nutrient intake 
(4)

. Following the formulation of the 

United Nations Millennium Development Goals (MDGs), SFPs have received renewed 

interest for their potential contribution to achieving MDGs 1 and 2.  

In line with the recommendations of the United Nations Hunger Taskforce (UNHTF), the 

paradigm in school feeding programmes shifted towards linking local food production to 

consumption at school with the aim of improving access to market for poor rural farmers and 

also improve the local economy of beneficiary communities 
(5)

. The shift in paradigm 

received support from African Governments through the Comprehensive Africa Agricultural 

Development Programme (CAADP) of the New Partnership for Africa’s Development 

(NEPAD) thereby putting school feeding programmes on the political agenda of Africa 
(6)

. 

Since 2005, the Government of Ghana has piloted and up-scaled the Ghana School Feeding 

Programme (GSFP) through which schoolchildren are provided one nutritious meal per 
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school-day to encourage educational participation (enrolment, attendance and retention) and 

also improve nutrient intake and nutritional status 
(7)

.  

However, comprehensive reviews of empirical research 
(3, 4, 8)

 and programme evaluation 

reports 
(9-11)

 have shown that whereas SFPs have shown positive impact on educational 

participation, their impact on nutritional outcomes have been rather unclear 
(3, 4, 8-11)

. More so, 

in the Lancet series on Maternal and Child Undernutrition, school feeding programmes 

targeting children older than 2 years have been described as interventions that are unlikely to 

improve nutritional status 
(12)

.  

Without evidence of positive impact on nutritional outcomes it is unlikely for SFPs to 

improve cognition and academic performance despite the demonstrable improvements in 

educational participation. Our aim therefore was to assess the adequacy of nutrient intake, 

iron status and nutritional status of schoolchildren participating in a school feeding 

programme in northern Ghana relative to non-participating children.    

 

SUBJECTS AND METHODS 

Study design 

This was a cross-sectional study involving the quantitative measurement of energy and 

nutrient intakes, and iron - and nutritional status of schoolchildren in school feeding and non-

school feeding schools. The study was conducted over a period of one month (1
st
 week 

November – 2
nd 

week December 2008). Ethical clearance was given by the Institutional 

Review Board of Noguchi Memorial Institute for Medical Research, University of Ghana 

(NMIMR-IRB 022/08-09). We also sought permission from the district administration, 

district education office, head teachers and local authorities in each community. After 

information sessions, parents/caregivers who volunteered to participate gave informed written 

consent. 
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Study area 

This research was conducted in 4 of the 132 primary schools in Tolon-Kumbungu district 

(TKDA, 2012) of Northern Region, Ghana. The 4 rural primary schools (from four 

communities) were approximately 50 km away from the main city in the region, Tamale. Two 

of the schools (Tibung and Kpalgung primary) were the pilot schools for the Government-

supported school feeding programme (SFP) in the Tolon-Kumbungu district which started in 

October 2005. The two other schools (Wayamba and Jegbo primary), who qualified to benefit 

from SFP but were not yet enrolled, were selected as control schools based on similarity with 

the pilot schools in the following characteristics: number of children enrolled in school, 

school infrastructure, size of community, absence of market, water and sanitation facilities, 

and proximity to each other (within 5 km radius). The research area is within the Guinea 

Savannah vegetation zone, having a typical unimodal rainy season (April – September) and 

one dry season (December – March) characterized by relatively high temperatures (35 – 

40
o
C). People in this area are mostly subsistence farmers 

(13)
. Malaria is hyperendemic with 

little seasonal variation in this area 
(14)

 and is the main cause of morbidity among children 
(13)

. 

Malaria transmission peaks towards the end of the rainy season (October and November) 
(15)

.  

Subjects and sampling  

Subjects   

Schoolchildren (5 – 13-year-old) in classes 1 – 3 from the four schools in Tolon-Kumbungu 

district were included if they were enrolled in school for at least one academic year at the time 

of survey. Mothers or alternate caregivers were interviewed to obtain the dietary intake of the 

children because they prepared and served meals in the households.  

Sample size and Sampling procedure  

Due to paucity of literature on usual nutrient intake among schoolchildren in the study area, 

anaemia prevalence (proxy for iron status) among schoolchildren was used for sample size 
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determination. A sample size of 200 per group was needed to estimate a 10% difference in 

anaemia prevalence between school feeding and non-school feeding schools with 95% 

confidence and a power of 90% taking into account 10% attrition.   

A total of 383 school children were recruited for the study; 196 from the school feeding group 

and 187 from the non-school feeding group. In each of the four schools, children were 

randomly selected from a sampling frame of pupils in lower primary (classes 1 – 3). The 

sampling frame was constructed separately for each school by pooling together the registers 

of lower primary. If two or more children were selected from one household, one of them was 

randomly selected by lottery to participate in the study. 

Data collection and measurements   

Household questionnaire 

A semi-structured survey instrument was used to collect information on the socio-

demographic characteristics of children and their households. Parents/caregivers were asked 

to indicate whether the schoolchild was ill within the two weeks preceding the survey. The 

instrument also included the standardized and validated 
(16)

 FANTA (Food and Nutrition 

Technical Assistance) Household Hunger Scale (HHS). The HHS is a 3-item by 3 frequencies 

of occurrence scale and was used for the assessment of the food supply situation of 

participating households 
(17)

. The survey instrument was translated into the local language 

(Dagbani) and pretested by trained research assistants before use in this survey. The standard 

reference period of 30 days was used for the HHS assessment 
(17)

. 

24-h recall method 

A quantitative 24-hour recall (24-hR), repeated in 20% subsample, was collected by six 

trained research assistants (first degree nutrition graduates), who spoke the local language and 

had knowledge of the research area. A minimum of two days were allowed between repeated 
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recalls to avoid dependency of intake on two consecutive days, especially caused by the 

consumption of leftover foods 
(18)

. Weekend days were excluded. Days of the week and 

interviewers were randomly allocated to children to account for differences between days and 

interviewers; and interviewers were not allowed to interview the same household twice. All 

24-hR were completed within the same post-harvest season. 

A standard multiple pass procedure was used for all 24-hR 
(18)

. First, mothers/caregivers were 

asked to mention all foods and beverages the children consumed during the preceding 24-

hours (wakeup-to-wakeup) including anything consumed outside home. After probing for 

likely forgotten foods with the help of the  index child 
(19)

, they were then asked to give 

detailed description of foods and beverages consumed, including ingredients and cooking 

methods for mixed dishes, place and time of consumption. The amount of each food, 

beverage and ingredients of mixed dishes was weighed or, when not available, estimated in 

household measures or their monetary equivalent. Weight of foods and ingredients of mixed 

dish were measured using a digital kitchen scale (Soehnle Plateau, model 65086); precise to 2 

g with a maximum capacity of 10 kg. Conversion factors from household measures and 

monetary values to weight were determined afterwards. The total volume of all foods and 

mixed dishes cooked, volume consumed by child and leftover from child’s food were 

determined to derive the proportion of total prepared food consumed by the child.  

Communal eating was a common practice in this area therefore the number of children who 

shared meals with the index child was obtained and used as a divisor to obtain an estimated 

quantity of food consumed by the index child. In such situations, equal sharing of food was 

assumed. The weight of the various ingredients consumed by the child was obtained by 

multiplying the weight of ingredients used in cooking the food by the proportion of total 

prepared food consumed by index child.  
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Weighed school lunch 

For the children from the two schools participating in the school feeding programme, lunch 

was consumed at school. Therefore, weighed food records (WFR) were taken from Monday 

to Friday to assess the food and nutrient intake from the school lunch. For the 20% of the 

children who had a repeated 24-hR, a second weighed food record was taken on a non-

consecutive day. WFRs were taken on days preceding the scheduled 24-hR for each child. All 

raw ingredients used in preparing the school lunch for a particular day were weighed using a 

digital kitchen scale (HD-801 model, Zhejiang, China); precise to 1 g and a maximum 

capacity of 3 kg. Bulk food ingredients were weighed with a platform scale (Camry FD-250, 

Guangdong, China); precise to 500 g and a maximum capacity of 250 kg. The weight of the 

total food cooked, the quantity served to each child and the leftover for each child (when 

applicable) was determined to derive the proportion consumed by the child from the total 

dish. For SFP all other meals not consumed in school were considered as home-consumption 

but for non-SFP all meals were considered home-consumption. 

Anthropometric measurements   

Weight and height measurements were done following standard procedures 
(20, 21)

. Weight of 

children was measured precise to 0.1 kg with an electronic scale (UNIscale; Seca GmbH, 

Hamburg, Germany). A known weight (20 kg) was used to calibrate the scale on each 

measurement day. A microtoise (Bodymeter 208; Seca GmbH, Hamburg, Germany) was used 

to measure the height of children precise to 0.1 cm. For both weight and height, an average of 

two measurements was taken. Ages of children were determined using the date of birth (from 

a verifiable document) and the date of measurement. In the absence of verifiable documents, 

parents/caregivers estimated age based on another child’s records or event on the traditional 

calendar.  
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Blood samples collection 

From each child, 6 ml of venous blood was drawn through venepuncture. One-third (2 ml) of 

the whole blood was put into EDTA coated vacutainers (Becton-Dickinson diagnostics, 

Belgium) and were used for the determination of haemoglobin concentration on the same day. 

The remaining 4ml of blood was stored in a plain tube without anticoagulant at ambient 

temperature. Serum was separated at room temperature at 500 x g for 10 min (Hettich GmbH, 

Germany) and stored at -80
0
C (Thermo Fisher Scientific, Asheville, USA). Serum samples 

were transported on dry ice to Germany via The Netherlands for analysis of serum ferritin 

(SF), soluble transferrin receptor (sTfR) and C-reactive protein (CRP).  

 Data Analysis 

Household hunger score 

Following the standard coding, each of the 3 items in the HHS was coded 0, 1 or 2 

corresponding to hunger frequencies of “never”, “rarely or sometimes” and “often”. This 

yielded total scores ranging from 0 – 6 based on which households were categorised into 3 

standard groups: 1=little/no household hunger (HHS ≤ 1); 2=moderate household hunger 

(HHS 2 – 3); 3=severe household hunger if HHS was 4 – 6 
(17)

.  

Food composition and nutrient intake calculation 

Calculation of the nutrient intake was based on a food composition database primarily created 

using nutrient values from the West African Food Composition Table (WAFCT) 
(22)

. In case 

of missing foods (21 out 138 foods), the following food composition tables were used in the 

order mentioned: Mali food composition table 
(23)

, the United States Department of 

Agriculture National Nutrient database for standard reference 
(24)

 and the Ghana food 

composition table 
(25)

. When foods were taken from the Ghana food composition table, 

missing nutrients (vitamins and some minerals) were updated with close substitutes from the 

WAFCT. Phytate values were taken from the  International Minilist (IML) 
(26)

. For Corn Soya 
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Blend (CSB plus) consumed in SFP, nutrient content was obtained from WFP 
(27)

. Where 

appropriate, yield 
(22)

 and nutrient retention factors 
(24, 28)

 were applied to account for nutrient 

losses during cooking before computing nutrient intakes. The Atwater general factors for 

carbohydrate, protein and fat and the recommended metabolizable energy for dietary fibre in 

ordinary diet (8.4 kJ/g) were used in calculating energy 
(29)

. Total vitamin A (RAE) was 

calculated as the sum of retinol and 1/12 β-carotene 
(22)

. The food consumption data was 

analysed using the VBS Food Calculation System, version 4 (BaS Nutrition Software, The 

Netherlands). Using the National Research Council’s method the observed intakes from the 

24-hR were adjusted for day-to-day variation to get the estimated usual intake for the children 

(30)
. Individual foods were categorised into 13 food groups 

(22)
. Thirty-one (8%) children with 

implausible dietary intake (energy intake > 20,920 kJ) were not included in the dietary 

analysis.  

Energy and nutrient adequacies 

Estimated energy requirements (EER) was calculated separately for each child by multiplying 

the EER·kg bodyweight 
-1

·day 
-1

 by the child’s weight assuming a moderate PAL 
(31)

. 

Similarly, gender and age specific safe level of protein intake·kg bodyweight 
-1

·day 
-1

 were 

multiplied by weight of children to obtain safe level of protein intake for each child
(32)

. To 

assess the prevalence of adequate or inadequate intake, each child’s adjusted energy and 

protein intakes were compared to their respective calculated requirements.  

The probabilities of adequacy (PA) for vitamins A, C, B12 and folate, zinc and calcium were 

calculated using their respective estimated average requirements (EARs) and distributions 
(33-

35)
. Because the distribution of iron requirement is skewed we used probability of adequacy 

values derived by Institute of Medicine 
(33)

 but adjusted for 5% bioavailability to reflect the 

inhibitory nature of the predominantly cereal-based diet in rural northern Ghana. Similarly, 

the EAR for zinc was adjusted for low (15%) bioavailability 
(36)

. Mean probability of 
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adequacy (MPA), a summary measure of micronutrient adequacy, was computed from PAs of 

all seven micronutrients reported in this paper. 

Anthropometry  

Anthropometric Z-scores were calculated using WHO AnthroPlus (version 1.0.3). 

Anthropometric indices (weight-for-age, height-for-age and BMI-for-age Z-scores) were 

transformed into anthropometric indicators using a cut-off value of <-2 SD 
(20, 21)

.   

Biochemical analysis  

The cyanmethaemoglobin method (using colorimeter) was used to measure haemoglobin 

concentration of schoolchildren 
(37)

. Measurements of serum parameters (ferritin, sTfR and 

CRP) were done in an accredited laboratory (Labor Centrum Nordhorn, Nordhorn, Germany). 

Ferritin was measured using ElectroChemiLuminescence Immunoassay on a Roche E170 

clinical analyser (Roche diagnostics) with an intra and inter assay variation of 2-5%. Soluble 

transferrin receptors were measured with Ramco-ELISA kit (Ramco Laboratories Inc.) with 

an intra and inter assay variation ranging from 5-8%. Turbidimetry was used to measure CRP 

on a Beckman Coulter Synchron clinical analyser (Beckman Coulter, Miami, FL, USA) with 

combined intra and inter assay variation ranging from 1.6 – 3.5%.  

Anaemia was defined as Hb <115 g/l for children <12 years and <120 g/l for children ≥12 

years. Iron deficiency (ID) was defined as SF <15 µg/l and/or sTfR >8.5 mg/l (Ramco 

Laboratories Inc.) and iron-deficiency anaemia (IDA) as concurrent anaemia with ID. 

Inflammation was defined as CRP >10 mg/l. Body iron was calculated using Cook’s formula 

(38)
. 

Statistical Analysis 

Data entry was done using Epi Info for windows version 3.2.1 (CDC). Data cleaning and 

analysis was done in SPSS version 18.0 (Armonk, NY, USA) and SAS version 9.2 (SAS 
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Institute, Cary, NC, USA). The distribution of data were checked by visual examination of Q-

Q plots and normal-curve-fitted histograms, and also tested for normality with Kolmogorov-

Smirnov test. Nutrient and iron status variables that were not normally distributed were log-

transformed and the transformed variables were used in subsequent analysis. ANOVA was 

used to generate within-person day-to-day variance component that was used to adjust energy 

and nutrient intake.  

ANCOVA was used to test differences in mean adjusted nutrient intake, haemoglobin 

concentration as well as serum iron parameters between the two groups while controlling for 

age, household size, household hunger score, and nutritional status (BAZ). Descriptive 

statistics were computed for background and household characteristics of children, and Chi-

squared test was used to test differences in proportions of household and parent characteristics 

between the two groups. Differences in prevalence of recent illness, anaemia, inflammation, 

ID, IDA and inadequate nutrient intakes between the two groups were checked using Cox-

regression with robust variance (covsandwich) and constant time to event 
(39, 40)

. Where 

appropriate, child and household characteristics were included in the regression model as 

covariates. In all analysis, a P-value of < 0.05 was the default value for an outcome to be 

considered statistically significant.   

 

RESULTS 

Background characteristics of schoolchildren 

Characteristic of the survey area, more than 55% of the children in both groups of school 

were boys. The average age of the children in both groups was 8.5 (SD 2) years however, 

children in SFP were on average 8 months older than their counterparts in non-SFP (P<0.01). 

The proportion of children who were reported ill within the two weeks preceding the survey 

was not significantly different between groups (P>0.05). Household size was larger for SFP 
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group than non-SFP group (P<0.001). More than half of the children in both groups were 

from polygamous households. The proportion of households who reported moderate or severe 

hunger did not differ between the two groups (P>0.05). In both groups, majority of 

parents/caregivers were illiterate and engaged in farming as their main occupation (Table 1). 

Table 1. Background characteristics of children in school feeding and non-school feeding 

schools in northern Ghana 

 SFP  non-SFP P 

 Mean SD  Mean SD  

n 194  180  

Boys (%) 55.2  57.8 NS 

Age of child (years)
 

9.0  2.1  8.4  2.0 0.007 

Sick two weeks preceding survey (%) 26.9  32.8 NS 

Household size (n) 8.0   3.0  7.0   2.0 <0.001 

Household type (%)      NS 

     Monogamous 36.8  39.4  

     Polygamous 56.5  52.2  

     Other 6.7  8.4  

Household hunger category (%)      NS 

     Moderate  30.5  31.7  

     Severe 4.7  7.8  

Mother of index child      NS 

     Education (literate) (%) 5.6  3.4  

     Occupation (%)      NS 

         Farmer 65.6  57.8  

         Trader 22.6  23.8  

         Other 11.8  18.4  

Father of index child      NS 

     Education (literate) (%) 21.5  16.0  

     Occupation (%)      NS 

         Farmer 90.7  91.2  

         Trader 2.6  2.8  

         Other  6.7  6.0  

 

Food consumption pattern at home and school 

At home, the three main meals served to children in both groups consisted of maize porridge 

(koko) with or without sugar served as breakfast and tuo zaafi (TZ) – a thick/stiff maize 

porridge – served as lunch and dinner with varying vegetable soups. At the time of survey 

(post-harvest), the most dominant soup consumed by more than 50% of the children consisted 

of dried powdered okra with or without groundnut paste/groundnut flour. When available, 
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green leaves such as amaranth, hibiscus sabdariffa and baobab leaves (fresh and dried) were 

also used to prepare the soups accompanying the TZ. A key ingredient of the soup, among all 

households, was powdered amani (small dried whole fish (anchovies), eaten with bones).  

School lunch, for the SFP participants, was more varied and based on a menu. The menu was 

generally planned around three main food items; rice, cowpea and multiple micronutrient 

fortified corn-soy blend (CSB+ from WFP). Eggs, meat and fish were served at least once per 

week whiles oranges were served twice per week.  

Energy, nutrient intake and their adequacies among schoolchildren 

Median energy, macronutrients (except dietary fibre) and selected minerals and vitamins 

intakes were higher among children participating in the school feeding programme than non-

participating children (P<0.001) and remained higher after controlling for child and 

household covariates.  Whereas the contribution of fat to total energy intake was significantly 

higher among SFP (P<0.001), the contribution of carbohydrate to total energy intake was 

significantly higher among non-SFP (P<0.001). The proportion of total protein intake from 

animal sources, a measure of protein quality, was larger among SFP than non-SFP (5% v. 3%; 

P<0.001). However, the proportion of total iron intake from animal sources (meat, fish and 

poultry) was not different (P>0.05) between the two groups of schoolchildren (Table 2).  

The proportion of SFP children with energy intakes below the requirement is significantly 

smaller than the proportion among the non-SFP (4.7% v. 21.8%; P<0.001). For protein 

however, none of the children in both groups had intakes below the requirement. The 

probabilities of nutrient adequacy for iron, zinc, calcium, vitamins A and C, and folate were 

significantly higher (P<0.001) for SFP than non-SFP with a mean probability of adequacy of 

0.74 (SD 0.09) for SFP compared to 0.32 (SD 0.11) for non-SFP (Table 3).  
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Table 2. Energy, nutrient and phytate intakes of children in school feeding and non-school 

feeding schools in northern Ghana
1 

 

1 
Values are medians (IQR) . 

2 
Adjusted for within-person day-to-day variation based on a 20% subsample of 

repeated recalls. 
3 
Meat, fish, eggs and milk. 

4 
Meat and fish 

 

Table 3. Proportion of children in SFP and non-SFP below EAR for energy and protein, and 

the probabilities of adequacy for selected micronutrients
1 

1
 EAR, estimated average requirement. 

3 
Computed from the PA values of micronutrients.  

Variable SFP non-SFP P 

n 174 178  

Energy (kJ) 9493 (8669, 10652) 7590 (6895, 8289) <0.001 

Macronutrients    

     Protein (g) 68 (66, 71) 54 (46, 62) <0.001 

          % of energy 12 (11, 13) 12 (11, 13) 0.22 

          % from animal
3 

5 (2, 10) 3 (2, 5) <0.001 

     Fat (g) 49 (49, 49) 32 (32, 33) <0.001 

          % of energy 20 (18, 21) 16 (15, 17) <0.001 

     Carbohydrate (g)  365 (319, 422) 294 (270, 319) <0.001 

          % of energy 64 (61, 67) 64 (63, 66) <0.01 

     Dietary fibre (g) 43.1 (36.0, 51.3) 40.4 (36.0, 45.1) <0.01
 

Minerals    

     Iron (mg) 28.3 (28.2, 28.4) 23.4 (20.5, 26.1) <0.001 

          % from animal
4 

0.7 (0.4, 1.3) 0.6 (0.4, 1.2) 0.268 

     Zinc (mg) 13.1 (13.0, 13.1) 8.6 (7.7, 9.8) <0.001 

     Calcium (mg) 399 (398, 400) 287 (237, 322) <0.001 

Vitamins    

     Vitamin C (mg) 47.1 (47.1, 47.3) 8.6 (8.6, 8.7) <0.001 

     Vitamin A (μg 

RAE) 

493.0 (492.2, 494.8) 64.3 (40.9, 102.2) <0.001 

     Vitamin B-12 (μg) 1.0 (1.0, 1.0) 0.1 (0.1, 0.1) <0.001 

     Folate (μg) 245.8 (236.2, 255.8) 134.0 (114.8, 173.6) <0.001 

Phytate (mg) 3065 (2526, 3730) 3083 (2730, 3355) 0.95 

Variable SFP  non-SFP  

 Mean SD  Mean SD P 

n 174  178  

Prevalence of inadequate intake (%)       

     Energy 4.7  21.8 <0.001 

     Protein 0  0  

Probability of micronutrient 

adequacy 

      

     Iron 0.94     0.02      0.72       0.23     <0.001 

     Zinc 0.65  0.29  0.32   0.32 <0.001 

     Calcium 0.001  0.0  0.001  0.0 <0.001 

     Vitamin C 1.0  0.00  0.00   0.00 <0.001 

     Vitamin A 0.87  0.12  0.02   0.09 <0.001 

     Vitamin B-12 1.0  0.0  1.0   0.0 NA
2 

      Folate 0.70   0.31  0.19   0.35 <0.001 

Mean probability of adequacy
3 

0.74   0.09  0.32   0.11 <0.001 
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Figure 1. The top five foods contributing to energy (A), protein (B), iron (C), zinc (D), 

vitamin C (E) and phytate (F) intakes among school feeding and non-school feeding 

participants in northern Ghana. CSB, corn-soy blend; dawadawa, local condiment made from 

fermented African locust-bean (parkia biglobosa seeds); HS, hibiscus sabdariffa; s. potato, 

sweet potato; SFP, school feeding programme; non-SFP, non-school feeding programme 
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Home-consumption and the contribution of school lunch to energy and nutrient intake 

Based on home-consumption, energy, fat, carbohydrate, calcium, vitamin C and phytate 

intakes were not different between the two groups of children (P>0.05). Home intake was 

significantly higher among non-SFP for protein (P<0.05), iron (P<0.05), zinc (P<0.01) and 

vitamin A (P<0.01). For energy, macronutrients and selected minerals, 20 – 37% of daily 

intakes were supplied by the school lunch served to SFP participants. For vitamins A and C 

however, > 90% of the daily intakes were supplied by the school lunch (Table 4). School 

lunch provided approximately 418 kJ more than home lunch (2,351 (SD 209) v. 1929 (SD 

280) kJ; P<0.001) and about 2 g of protein more (18 (SD 1) g v. 16 (SD 3) g; P<0.001). The 

contribution of school lunch to EER for energy among SFP participants was significantly 

larger than the contribution of home lunch to EER for energy among the non-SFP participants 

(37 (SD 7) v. 31 (SD 8) %; P<0.001). However, the contribution of school lunch to daily 

protein requirement among SFP participants did not differ from the contribution of home 

lunch among non-SFP participants (88 (SD 17) v. 84 (SD 26) %; P=0.096). 

Relative contribution of individual foods and food groups to energy and nutrient intakes 

In Figure 1, the five topmost individual foods contributing to ≥ 70% of energy, selected 

nutrients and anti-nutrient related to iron absorption are shown. Except for vitamin C, maize 

was the main source of total energy and selected nutrient intakes. The relative contribution of 

maize to energy and selected nutrient intakes among the non-SFP group ranged from 43 – 

70% but ranged from 30 – 60% for SFP group. Among the SFP participants, cowpeas and 

corn-soy blend (CSB+, from the World Food Programme) were additional sources of energy 

and nutrient intakes. 

For both groups of children, the main food groups that contributed to dietary intake were 

cereals (maize, rice and sorghum), vegetables (dried okra and green leaves), nuts (groundnuts) 

and fish (amani). Food groups such as meat, eggs and fruits were rarely consumed by children 
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in the non-SFP (Figure 2). The SFP children received meat at school twice per week but the 

average quantity per serving was <10 g/day. The overall dietary variety (number of different 

food groups consumed) among the SFP participants was greater than among the non-SFP 

participants (8.5 (SD 0.9) v. 6.2 (SD 1.1); P< 0.001). 

Percentage

0 20 40 60 80 100

miscellaneous

cereals

vegetables

nuts

fish

fats & oils

legumes

roots and tubers

fruits

meat

eggs

beverages

milk

SFP

non-SFP

Figure 2. Proportion of school feeding and non-school feeding children in northern Ghana 

consuming foods from 13 food groups. SFP, school feeding programme; non-SFP, non-school 

feeding programme 

 

Eating moments among schoolchildren 

Almost all children in both groups ate at each of the three main eating moments per day; 

breakfast, lunch and dinner. Whereas larger proportion of SFP children consumed a meal 

before the main breakfast meal (36% v. 25%; P=0.018), the reverse was true for children who 

ate a meal before lunch (13% v. 40%; P<0.001). Before the main dinner meal, almost every 

SFP child consumed a meal compared to only 20% of non-SFP children. For the SFP 

participants, the meal before the main dinner meal could best be described as a second lunch 
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(Figure 3). On the average, SFP participants had more eating moments (meals) compared to 

non-SFP (4.5 v. 3.8; P<0.001). 

Percentage

0 20 40 60 80 100

before breakfast

breakfast

before lunch

lunch

before dinner

dinner

after dinner SFP non-SFP

Figure 3. Proportion of school feeding participants and non-school feeding participants in 

northern Ghana who ate meals across the seven daily eating moments. SFP, school feeding 

programme; non-SFP, non-school feeding programme 

 

 Iron and nutritional status of schoolchildren 

Mean haemoglobin concentration of the children was 100 (SD 16) g/l. SFP had 6 g/l higher 

haemoglobin concentration than non-SFP (P<0.001) even after controlling for household and 

child characteristics. Serum ferritin concentration did not differ between the two groups. 

Soluble transferrin receptor concentration was significantly lower among SFP compared to 

non-SFP (P=0.04). Calculated body iron store was not different between groups (P=0.08). 

There was no difference in the mean concentrations of C-reactive protein and the proportion 

of children with inflammation between the two groups. 
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Table 4. Difference between home-consumption between school feeding and non-school 

feeding participants and the contribution of school lunch to nutrient intake among school 

feeding participants 

 

 

RAE, retinol activity equivalent. 
3
 Including foods bought outside home and consumed by children  

 

 SFP non-SFP P 

n 174 178  

Energy (kJ)    

     Home-consumption
3
 7439 (5234, 9996) 7858 (5933, 10682) 0.064 

     School lunch 2397 (2033, 2858) -  

          % of total intake 24 -  

Protein (g)    

     Home-consumption 50 (36, 67) 53 (40, 75) 0.041 

     School lunch  19 (13, 24) -  

          % of total intake 28 -  

Fat (g)    

     Home-consumption 29 (19, 48) 33 (20, 52) 0.135 

     School lunch  18 (14, 22) -  

          % of total intake 38 -  

Carbohydrate (g)    

     Home-consumption 292 (205, 386) 309 (232, 409) 0.147 

     School lunch  81 (68, 93) -  

          % of total intake 22 -  

Iron (mg)    

     Home-consumption 20.4 (15.4, 29.3) 22.8 (17.4, 31.8) 0.011 

     School lunch  7.0 (3.2, 12.5) -  

          % of total intake 26 -  

Zinc (mg)    

     Home-consumption 8.2 (5.9, 11.2) 8.8 (6.6, 11.4) 0.005 

     School lunch  4.2 (2.4, 8.2) -  

          % of total intake 34 -  

Calcium (mg)    

     Home-consumption 230 (169, 336) 257 (190, 420) 0.110 

     School lunch  134 (74, 240) -  

          % of total intake 37 -  

Vitamin A (μg RAE)    

     Home-consumption 50.8 (24.6, 116.2) 64.0 (31.1, 122.3) 0.005 

     School lunch  556.6 (76.5, 1090.3) -  

          % of total intake 92 -  

Vitamin C (mg)    

     Home-consumption 1.8 (0.44, 10.7) 1.3 (0.8, 19.8) 0.143 

     School lunch  63.4 (2.6, 81.6) -  

          % of total intake 97 -  

Phytate (mg)    

     Home-consumption 2940 (1984, 4167) 3091 (2449, 4327) 0.064 

     School lunch  242 (201, 333) -  

          % of total intake 8 -  
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The prevalence of anaemia was marginally lower (P=0.06) in SFP whilst the prevalence of ID 

and IDA were not significantly different between the two groups.The SFP children were 

about 3 cm taller however the difference was not significant after controlling for age 

differences. Z-scores of weight-for-age and height-for-age were similar between the groups. 

BMI-for-age Z-score was significantly larger for the non-SFP group (P<0.05). After 

controlling for age difference between groups, the prevalence of stunting was significantly 

lower among SFP participants but prevalence did not differ for underweight and thinness 

(Table 5). 

 

DISCUSSION 

We compared the energy and nutrient intakes, iron and nutritional status of schoolchildren in 

school feeding and non-school feeding schools. Energy and nutrient intakes, and their 

adequacies as well as iron status were significantly higher among school feeding participants 

than non-participants. Also, the prevalence of stunting was significantly lower among SFP 

participants.   

The significantly higher intake of energy and nutrients among the school feeding participants 

is attributable to the complementary effect of school meals 
(41-43)

 and superior energy density 

of the school lunch. School lunch meals were served before 12.00 hours so children were 

probably hungry again by the time school closed at 14.00 hours and therefore were still able 

to eat a late lunch at home. The school lunch also improved diversity in the meals of 

participating children which has been shown to be related to increased quality and quantity of 

nutrient intakes 
(44-48)

. For both groups, all children met their safe level of intake for protein. 

However the biological value of the protein may be low given that only an average of 4% is 

animal source protein and cereal protein is limiting in growth supporting lysine. Even though 
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we did not adjust for protein quality 
(49, 50)

, the digestibility of the protein may also be 

compromised given the high concentration of dietary fibre in the meals of both groups 
(49)

.  

Table 5. Iron and nutritional status of children in school feeding and non-school feeding 

schools in northern Ghana
 

 SFP  non-SFP P
2 

 Mean SD  Mean SD  

n 194  180  

Iron Status markers       

     Hb (g/l)
 

103   15  97  18 <0.001 

     SF (µg/l) 
 

 

41.3
1
  

(22.3, 75.4) 

 35.9  

(19.3, 70.6) 

NS 

   SF, excluding elevated CRP
3
 (µg/l)

 
37.7  

(21.3, 69.8) 

 34.4  

(18.5, 67.3) 

NS 

     sTfR (mg/l)
 

11.4  

(8.7, 14.4) 

 12.6  

(9.3, 16.5) 

0.04 

     Body Iron
4
 (mg/kg body weight)

 
3.2   4.1  2.3  4.3 0.08 

Inflammation marker and classification       

     CRP (mg/l)
 

1.7  

(0.8, 2.8) 

 1.9  

(0.8, 3.6) 

NS 

     CRP >10 mg/l (%) 9.8  10.5 NS 

Iron Status Classification       

     Anaemia (%) 75.8  84.9 0.06 

     ID, SF <15 µg/l (%) 14.4  17.8 NS 

     ID, SF <15 µg/l  

         excluding elevated CRP
3
 (%) 

14.9  18.6 NS 

     ID, SF <15 µg/l and/or  

         sTfR >8.5 mg/l (%) 

77.8  80.7 NS 

     IDA
5
 (%)

 
62.7  69.4 NS 

Nutritional Status Indices        

     Weight (k)g
 

23.6   5.0  22.8   5.2 NS 

     Height (cm)
 

125.3  10.4  122.1   11.9 NS 

     Weight-for-age
6
 (Z-score) -0.95   1.1  -0.92  1.1 NS 

     Height-for-age (Z-score) -1.1  1.6  -1.1  1.5 NS 

     BMI-for-age (Z-score)
 

-0.93  0.84  -0.62   0.82 0.008 

Nutritional Status Indicators (%)       

     Underweight
6
  16.3  14.4 NS 

     Stunting   23.3   28.9 0.04 

     Thinness  11.9  5.6 NS 

1 
Values are geometric mean (IQR). 

2
 Adjusted for age difference between groups. 

3 
n = 175 (SFP) and 161 (non-

SFP). 
4 
To convert body iron from mg/kg to mmol/kg multiply by 0.0171 

(51)
. 

5 
Defined as anaemia and SF <15 

µg/l and/or sTfR >8.5 mg/l. 
6
 Anthroplus software allows weight-for-height calculation only for children 5 – 10 

years old, n = 136 (SFP) and 139 (non-SFP) 
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Few food items contributed to the improved micronutrient intake among the school feeding 

participants; orange for vitamin C, fortified corn-soy blend for iron, vitamins A and C, and 

palm oil for vitamin A. The multiple-micronutrient fortified corn-soy blend in particular 

appears to play a key role in increasing micronutrient intake and adequacy among the school 

feeding participants. This may thus suggest that adequate micronutrient intake may not be 

achieved by the mere provision of an extra meal through school lunch, but by deliberate 

supply of micronutrient dense foods 
(3, 52)

. However, the bioavailability of the relatively higher 

iron and zinc intake among SFP may be reduced given the high phytate content of the diet in 

general 
(53)

 and the meagre contribution of animal protein to total dietary intake 
(54)

. More so 

the oranges that were served (two times a week) with lunch, which could improve iron 

bioavailability when consumed together with the school lunch 
(55, 56)

, were rather sent home 

and often shared with younger siblings not in school. 

 Out-of-home food intake may have been omitted by mothers/caregivers and may lead to an 

underestimation of nutrient intake 
(19)

. However in this area almost all meals were prepared 

and consumed at home and mothers/caregivers were fully involved in serving meals. Also, the 

presence of children during the interviews helped mother/caregivers to recall likely forgotten 

foods. We therefore believe that underestimation of nutrient intake was unlikely to have 

happened.  

The high prevalence of anaemia among these children is not unexpected. The survey area is 

malaria endemic and malaria is among the leading causes of anaemia 
(14)

 in this area. Since 

this survey was conducted during the peak of malaria transmission (November-December), it 

is most likely that malaria has contributed to the high prevalence of anaemia among these 

children 
(57)

. Notwithstanding the apparent contribution of malaria to anaemia, the high 

prevalence of iron-deficiency anaemia among these children may indicate that a large 

proportion of the anaemia is due to iron-deficiency. The low ID observed based on SF alone 
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rather than when combined with sTfR highlights the difficulty of reliably measuring ID in 

settings where infections and infestations may be high. In the same area, Abizari et al. 
(57)

 in 

an intervention trial found that SF decreased, from baseline values similar to those observed 

in this study, in response to deworming and malaria treatment. However the low prevalence of 

elevated CRP (an acute-phase protein) among these children does not seem to suggest that SF 

values in this survey are possibly influenced by inflammation. Unlike CRP, AGP (α1-acid 

glycoprotein) rises and returns to baseline values slowly 
(58)

 and therefore it may be better to 

measure both CRP and AGP as composite marker of cross-sectional inflammation 
(57, 59, 60)

 but 

AGP was not measured in this survey.  

The higher haemoglobin concentration, better iron status (based on sTfR) and the relatively 

lower prevalence of anaemia among SFP participants may be associated with the overall 

better iron content of school lunch. Health related interventions associated with SFPs such as 

deworming could have also contributed to the relatively better haemoglobin and iron status 
(4)

, 

but neither group of schools reported receiving deworming treatments within six months 

preceding our study. In the same area it was shown in a randomized trial that school feeding 

coupled with deworming and malaria treatment significantly improved haemoglobin 

concentration, iron status and reduced anaemia prevalence 
(57)

.  

Contrary to our expectation the improved energy and nutrient intake among the SFP 

participants did not result into significant improvement in weight related indices. It is 

however possible that the improved energy and nutrient intake improved activity level of the 

children at the expense of weight gains 
(61)

. It is unclear whether the lower prevalence of 

stunting among SFP participants could be attributed to school lunch given that interventions 

beyond 2 years of age are deemed unlikely to improve stunting 
(62)

.  
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Based on the differences between the estimated energy requirements (EER) for the children 

and the adjusted energy intakes, majority in both groups of schoolchildren were in positive 

energy balance. However there was no evidence of the positive energy balance in the 

nutritional status of the schoolchildren. On the other hand, it is also possible that the 

schoolchildren were more physically active and thus required more energy than our estimates 

based on moderate physical activity level.  

The evidence of the impact of SFPs (e.g. Government-run SFPs) have been described as 

lacking rigor because of their non-experimental design 
(4)

. The absence of measures of 

nutrient intake, iron status and nutritional status for both groups at start of the SFP makes us 

unable to isolate the impact of school lunch albeit we controlled for differences in child and 

household characteristics in the analysis. We matched SFP communities with non-SFP 

communities that were otherwise also qualified to receive school feeding but were not 

enrolled at the time of our research. We examined our assumptions that intervention 

communities had similar starting status as their controls by comparing outcomes of interest 

between all four SFP-non-SFP pairs (2SFPs by 2non-SFPs) to see if differences were 

consistently in favour of school feeding. We observed consistent differences in favour of 

school feeding with respect to energy and nutrient intake but not with iron status and 

nutritional status suggesting that our assumption for similarity may not be strongly supported. 

It is possible however that the paired comparisons lacked power to detect consistent direction 

of effect because sample sizes were half of what our study was powered for. More so, 

unobservable differences between communities may have blunted the effects due to SFP 
(63)

.  

Therefore we conclude that school feeding contributed to energy and nutrient intake and their 

adequacies which probably improved iron status and stunting prevalence. The results also 

suggest an important role of targeted flour fortification in achieving micronutrient adequacies 

within school feeding programmes.  
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ABSTRACT 

Background: Cowpeas are important staple legumes among the rural poor in northern Ghana 

and have the potential to contribute to food sovereignty. Our objectives were to assess the iron 

and zinc content of cowpea landraces and identify factors that predict the intention of mothers 

to give cowpeas to their schoolchildren.  

Methods and Findings: We performed biochemical analysis on 14 landraces of cowpeas and 

assessed the opinion of 120 caregiver-child pairs on constructs based on the combined model 

of the Theory of Planned Behaviour and Health Belief Model. We used correlations and 

multiple regressions to measure simple associations between constructs and identify 

predictive constructs. Cowpea landraces contained iron and zinc in the range of 4.9 – 8.2 mg/ 

100 g
 
d.w and 2.7 – 4.1 mg/100 g

 
d.w respectively. The landraces also contained high 

amounts of phytate (477 – 1110 mg/100 g
 
d.w) and polyphenol (327 – 1055 mg/100 g

 
d.w). 

Intention of mothers was strongly associated (rs=0.72, P<0.001) with and predicted (β= 0.63, 

P<0.001) behaviour. The constructs barriers (β= –0.42, P=0.001) and attitudes towards 

behaviour (β= 0.25, P<0.028) significantly predicted intention albeit the predictive ability of 

the model was weak.  

Conclusions: We conclude that some cowpea landraces from northern Ghana have 

appreciable amounts of iron and zinc but probably with poor bioavailability. Attitudes 

towards giving cowpeas and perception of barriers are important predictors of mothers’ 

intention to give cowpeas to their schoolchildren. Finally our results suggest that increasing 

knowledge on nutritional benefits of cowpeas may increase health values mothers hold for 

their children in support of giving cowpeas to schoolchildren. 
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INTRODUCTION 

Iron-deficiency is of public health significance in developing countries 
(1)

 and likely to co-

exist with zinc deficiencies 
(2, 3)

. In northern Ghana, more than two-thirds of schoolchildren 

are likely to suffer from iron-deficiency 
(4)

. Long term consequences include decreased 

physical work capacity and future productivity 
(5, 6)

. An integration of approaches has been 

proposed as key to the reduction in prevalence of iron-deficiency 
(7, 8)

. Strategies to fight iron-

deficiency need to be culturally sensitive, acceptable and carefully linked with the food 

culture of communities. One of such strategies is the promotion of the consumption of local 

staple foods that are rich in iron. However local staples in settings like northern Ghana are 

largely cereals, roots and tubers, and legumes, which often do not contain high native iron. 

Therefore targeted breeding for higher concentration of native iron (biofortification) has been 

proposed as a sustainable intervention to increase dietary iron intake 
(9)

. Early in the steps 

towards such biofortification is the identification of varieties with high native iron and/or zinc 

to serve as breeding parents 
(10)

. 

Being one of the widely consumed staple foods in Ghana, cowpeas (Vigna unguiculata (L.) 

Walp) have received attention as a candidate crop for biofortification to improve its native 

iron as well as zinc concentration. Cowpeas are native to northern Ghana 
(11)

. They have high 

nutritional significance due to their good quality protein content and significant amounts of 

vitamins and minerals like iron and zinc 
(12, 13)

. Over the years cowpeas have grown from 

being regarded as “poor man’s meat” 
(14)

 to one that is consumed across socio-economic 

strata. Therefore cowpeas may have the potential to contribute to food sovereignty in a long 

term and if targeted at schoolchildren, in a school feeding programme, improved cowpeas 

may also contribute to better iron status.    

Even though cowpeas are already an intricate part of the food culture of northern Ghana 
(13)

, it 

is not known what factors influence mothers to give cowpeas to their schoolchildren. 
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Understanding the significant factors that predict cowpea consumption can provide important 

insight for the development of effective interventions leading to increased cowpea 

consumption not only within a school feeding programme but also at the household.  

To date, two popular psychosocial theories (Theory of Planned Behaviour (TPB) and Health 

Belief Model (HBM)) have found wide use in explaining influential variables in food-related 

behaviours. According to the TPB, behaviour is a conscious act proximally mediated by 

intention 
(15)

. The HBM on the other hand posits that a health behaviour results from a set of 

core beliefs 
(16)

. It has been proposed that a combination of these two complementary theories 

will help broaden our understanding of factors that influence dietary behaviour 
(17, 18)

.  

In this paper, as part of identifying cowpeas with potential for biofortification, we assessed 

the iron and zinc content of available cowpea landraces in northern Ghana. Secondly, using a 

combined model as proposed by Sun et al. 
(17)

, we aimed at identifying factors that influence 

the intention of mothers/caregivers to give cowpeas to their schoolchildren.    

 

MATERIALS AND METHODS 

Study Area 

This study was conducted in the Tolon-Kumbungu district of the Northern Region of Ghana. 

The region is well-suited for cowpea production and Tolon-Kumbungu district is among the 

three top production-processing-consuming sites for cowpea in the region 
(19)

. The research 

area is located within the Guinea Savannah agro-ecological zone and has two distinct seasons; 

rainy season (April – September) and a dry season (December – March) characterized by 

relatively high day temperatures (35 – 40 
0
C). The people of this area are largely subsistence 

farmers 
(20)

. Two communities, Kpaligung and Tibung, were purposively selected because 

they were participating in a larger nutrition study that sought to investigate the potential role 
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of cowpeas in improving iron status through school feeding. At the time, these two 

communities were the only ones piloting the Government-supported school feeding 

programme in the district.  

Study Design and Subjects 

Cowpea landrace study 

Key informant interviews with 3 farmers and 3 market women were conducted in March 2008 

to identify locally available landraces of cowpeas in the selected communities and the largest 

market in the main city, Tamale. Landraces were identified based on the local knowledge and 

experience of local farmers and market women. For each landrace, a sample of 200g was 

collected after cleaning and separating mixed landraces. Seeds with holes or weevil attack 

were removed by hand. All collected samples were kept in transparent polythene bags and 

labelled with their corresponding local names as given by the key informants. The samples 

were sent to Wageningen University, The Netherlands, and stored at -20 
0
C pending analysis.   

Cowpea acceptability study 

This was a cross-sectional study conducted in November 2008. In each school 60 

schoolchildren (6 – 12 years) in lower primary (classes 1 – 3) were randomly selected to 

participate, a sample size assumed to be adequate in research based on the TPB 
(21)

. The 

corresponding 120 caregivers of the selected children were interviewed. The study was 

approved by the Institutional Review Board of Noguchi Memorial Institute for Medical 

Research, University of Ghana (NMIMR-IRB 022/08-09). Each volunteer gave verbal 

informed consent prior to participation.  
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Table 1. Operational definition of constructs used to examine factors that predict intention of 

caregivers to give cowpeas to their schoolchildren 

Construct  Operational definition 

Knowledge  The caregiver’s knowledge about the relationship 

between cowpeas and health, and specifically to 

malnutrition and iron-deficiency anaemia 

Perceived susceptibility  The caregiver’s subjective perception of her schoolchild 

being malnourished and anaemic 

Perceived severity  The caregiver’s feelings concerning the seriousness of her 

schoolchild being malnourished and anaemic 

Health value   The importance caregiver places on the consequences of 

her schoolchild being malnourished and anaemic 

Health behaviour identity  The caregiver’s opinion of the expected consequence of 

giving cowpeas to the schoolchild 

Attitudes towards 

behaviour  

Favourable or unfavourable disposition of the caregiver 

towards giving cowpeas to the schoolchild 

Perceived barriers  The caregiver’s beliefs about costs or negative aspects of 

cowpea consumption by the schoolchild 

Cues to action  Triggers that stimulate the caregiver to give cowpeas to 

her school child. 

Subjective norms  The caregiver’s perceived social pressure to give or not to 

give the schoolchild cowpeas (who is important for the 

behaviour and is the opinion of that person important?) 

External control belief  The caregiver’s perceived presence of factors that may 

facilitate or impede giving cowpeas to the schoolchild 

Behavioural intention  The caregiver’s  readiness to give cowpeas to the 

schoolchild 

Behaviour  Giving cowpeas to the schoolchild 

 

Questionnaire Development 

An 89-item (grouped into 12 constructs, see Table 1) research questionnaire was developed 

along the recommendations of Francis et al 
(21)

 and based on the Theory of Planned Behaviour 
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(15)
 and the Health Belief Model 

(16)
. These two models were combined into the study model 

as described by Sun et al 
(17)

, Figure 1.  

 

Figure 1. A combined model of the Theory of Planned Behaviour and Health Belief Model 

with correlation coefficients between related constructs. Adapted from Sun et al. 
(17)

. *P<0.05; 

**P<0.01; *** P<0.001 (2-tailed). 

 

Relative to behaviour, constructs were grouped into internal and external factors. The internal 

factors were further grouped into: background and perception, belief and attitude, and 

intention. The construct subjective norm, left out of Sun et al.’s model, was added to the study 

model because in an African setting the values of extended family and community 

significantly influence behaviour of an individual 
(22)

. The items included in each construct 

were drawn from previous studies 
(17, 23)

 and literature review on cowpea attributes from West 

African countries (Nigeria, Ghana and Senegal) 
(24-29)

. The questionnaire also included 

questions concerning background information of the respondents and their schoolchildren. 

Background and perception 

Internal factors 

Attitudes towards 

behaviour 

Health behaviour 

identity  

Perceived 

barriers 

 

Health value 

Perceived 

severity 

Perceived 

susceptibility 

Knowledge 

Intention to 

give cowpeas 

to schoolchild 

Giving 

cowpeas to 

schoolchild 

Belief and attitude Intention Behaviour 

Cues to 

action 

Control 

beliefs 

Subjective 

norms 

0.23* 

0.14 

0.04 

0.49*** 

0.45*** 

 0.26** 

0.22* 

-0.06 

0.72*** 

0.12 0.11 -0.05 

External factors 

0.13 
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The items in the 12 constructs were verified in a focus group discussion and pre-tested in a 

site similar to the study site. Where applicable, constructs were modified to suite local 

knowledge and practice. The questionnaire was translated into the local language (Dagbani) 

and administered by well-trained research assistants who were familiar with the research area 

and spoke the local language. 

Scale measurements and analysis 

Individual items, phrased as statements, of each construct (except Intention and Behaviour) 

were rated on 5-point Likert 
(30)

 response options:  strongly disagree, disagree, neutral (neither 

disagree nor agree), agree and strongly agree; recoded as unipolar (+1 to +5) or bipolar (–2 to 

+2) depending on the nature of the question. The score for each construct was computed as 

the sum of individual item scores. The scores for the constructs “Attitudes towards 

behaviour” and “Subjective norms” were sums of products of paired items; attitudes × 

evaluation of attitudes, and normative beliefs × motivation to comply, respectively. To show 

negative, neutral or positive influences, item scores of attitudes and normative beliefs ranged 

from –2 to 2 and the scores of the evaluation of attitudes and motivation to comply ranged 

from +1 to +5. This resulted in a paired-item score range of –10 to 10. For intention and 

behaviour, scores were based on the number of times caregivers intended to or had given 

cowpeas to their schoolchildren in the succeeding or preceding month respectively. Intention 

was considered high if it was greater than the median intention score of the group (10 times 

per month) and low if it was equal to or lower than the median score.  

Cowpea chemical analysis 

Iron and zinc concentration of cowpeas were measured using inductively coupled plasma 

atomic emission spectrophotometer (ICP-AES, Varian Vista-Pro, Palo Alto, CA, USA) after 

microwave digestion with a mixture of hydrofluoric and nitric acids (HNO3-HF-H2O2). 

Analytical variation was ~6% for both iron and zinc. Phytic acid determination was done 
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using a modified Makower method 
(31)

 in which the inorganic phosphate liberated from the 

phytic acid degradation is measured according to the van Veldhoven’s method 
(32)

 and 

expressed as inositol hexaphosphate (IP6). A modified Folin-Ciocalteau method 
(33)

 was used 

to measure total polyphenol concentration of the cowpea seeds.  

Calculation of phytate-to-mineral molar ratios 

The respective phytate-to-iron and phytate-to-zinc molar ratios for each landrace were 

calculated as: phytate content of cowpea (mg)   660
–1
/ iron content of cowpea (mg)   56

–1
; 

phytate content of cowpea (mg)   660
–1
/  inc content of cowpea (mg)   65.4

–1 
respectively, 

where 660, 56 and 65.4 are the molecular weights of phytate, iron and zinc respectively 
(34, 35)

.  

Statistical analysis 

Data processing and analysis was done in SPSS software (version 18.0, Armonk, NY, USA). 

Descriptive statistics were used to examine background characteristics of study participants, 

constructs and cowpea landraces. Student’s t-test for independent samples was used to 

compare the difference in chemical composition between white and coloured landraces of 

cowpeas. Cronbach’s alpha was computed as measure of reliability for each construct. A 

construct was reliable if Cronbach’s alpha was >0.7 
(36)

. The corrected item-total correlation 

of all items in a construct was set at 0.30 
(36)

. When the item-total correlation was lower than 

0.30 the item was deleted from the construct. As such, a total of 7 items were deleted from 

two constructs; one item from cues to action and 6 items from attitudes towards behaviour.  

Spearman correlations were computed to determine association between related constructs. 

For constructs that influenced intention, the Mann-Whitney-U test was used to compare 

whether subjects with a high intention to consume cowpea scored significantly different on 

any of the constructs from subjects with a low intention. The Wilcoxon signed rank test was 

used to test the differences in the scores of behaviour and intention.  
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Four multiple linear regression models were used to determine the relative importance of the 

predicting constructs for the following outcomes: health behaviour identity, intention and 

behaviour. All models were controlled for background characteristics of caregivers. 

Significance value for all tests was set at 0.05 (2-tailed).  

Model 1: Health behaviour identity = f (Knowledge, Susceptibility, Severity and Value) 

Model 2: Intention = f (Barrier, Health behaviour identity, and Attitudes towards 

behaviour) 

Model 3: Intention = f (Subjective norms, Control beliefs, and Cues to action) 

Model 4: Behaviour = f (Barrier, Intention)  

 

RESULTS 

Iron, Zinc, Phytate and Polyphenol concentrations of cowpea landraces 

A total of 14 landraces were identified as common landraces from the two communities and 

the central market. Iron and zinc concentrations ranged from 4.9–8.2 mg/100 g
 
d.w and 2.7–

4.1 mg/100 g
 
d.w respectively. Phytate and polyphenol concentrations ranged from 477–1110 

mg/100 g
 
d.w and 327–1055 mg/100 g

 
d.w respectively (Table 2). With respect to colour of 

the cowpeas, there was no significant difference (P > 0.05) in iron, zinc and phytate 

concentrations between the white and coloured landraces. Molar ratios of phytate-to-iron also 

did not differ between white and coloured landraces (P > 0.05).  Coloured landraces however 

had significantly higher concentrations of polyphenols and significantly larger (P < 0.05) 

phytate-to-zinc molar ratios (Table 3).  

Background characteristics 

More than 50% of the children in school were male. Ages of the school children ranged from 

6 – 12 years with about one-third in the age groups 8 – 9 years and 10 – 11 years. Majority 

(61%) of households indicated that they had more than 10 people in their households. More 
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than 50% of the caregivers of the school children were older than 35 years, 61% of them were 

mothers and 62% were in polygamous marriage. Only 4% of the caregivers were literate and 

more than 70% of them were either engaged in farming or trading as their main economic 

activity (Table 4).  

Table 2. Iron, zinc, phytate and polyphenol composition of landraces of cowpeas locally 

available in northern Ghana 

Local name Colour Iron Zinc Phytate
1 

Polyphenols
2 

  mg/100g dry weight 

Dagban tuya white 6.8   3.4   477   445    

Apagaba ala1  white 8.2 3.9 519 481  

Komtuya white 5.8 4.1 679 335 

Black eye white 6.2 3.5 745 385  

Tuchicherigu black & white 5.5  3.0 888  327  

Apagaba ala2 white 5.7  2.7 487 368  

Gampabgi 1 brown 6.3  3.7 1110 744  

Sanzi sabinli brown 7.0  3.3 664  621  

Gampabgi 2 black 6.2 3.5 561  662 

Milo brown 6.5  3.1 610 NA 

Yaminu red 5.4  2.7  537 1055 

Sanzi zie red 7.7 4.1  895  942  

Brown eye white 5.8 3.7  605  NA 

Marfu tuya white 4.9 3.6  NA
3 

NA 
1 
Inositol hexaphosphate (IP6). 

2 
Gallic acid equivalent (GAE). 

3 
Not analysed due to insufficient sample 

 

Table 3. Comparisons of iron, zinc, phytate, polyphenol and phytate-to-mineral composition 

of white and coloured landraces of cowpeas locally available in northern Ghana 

Parameter Colour of cowpea P 

 White Coloured  

Iron 6.2 ± 1.1 (7)
1 

6.4 ± 0.8 (7) 0.738 

Zinc 3.6 ± 0.4 (7) 3.3 ± 0.5 (7) 0.398 

Phytate (PA) 570 ± 108 (7) 752 ± 215 (7) 0.077 

Polyphenols 403 ± 59 (5) 725 ± 257 (6) 0.023 

PA : Iron
2 

8.0 ± 2.1 (6) 10.1 ± 3.0 (7) 0.171 

PA : Zinc
2 

16.5 ± 2.9 (6) 22.3 ± 5.4 (7) 0.037 
1 
Values are mean ± SD (number of landraces). 

2
 Molar ratio 
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Knowledge, attitude and perceptions of caregivers about cowpeas and giving cowpeas to 

schoolchildren 

Ninety-two percent (92%) of caregivers had the intention to give cowpeas to their 

schoolchildren at least once per week within the referent month while 82% indicated that they 

had given cowpeas to their schoolchildren at least once per week within the referent month. 

Almost all the caregivers agreed that cowpeas contain iron (94%), can prevent iron-deficiency 

(97%) and support growth (97%) of their schoolchildren. They think of cowpeas as a food 

that is nutritious (98%), traditional (97%) and tasty (99%), and adds variety (97%) to the diet 

of their schoolchildren. More than half (57%) of the caregivers however think that cowpeas 

are not easily digested by their schoolchildren and leaves them feeling uneasy. Nevertheless 

97% of them said their schoolchildren like to eat cowpeas. Generally the caregivers agreed 

that availability on the market (73%), prices (85%), time required to cook cowpeas (71%), 

weevils (70%), high prices (80%) and preservation (81%) were barriers to giving cowpeas to 

their school children. In line with their health-related opinions about cowpeas, 70% of the 

caregivers indicated that “illness” serves as a cue for them to give cowpeas to their 

schoolchildren.  

Reliability of constructs and their correlations 

Reliability (Cronbach’s α) of the multiple item constructs ranged from (0.67 – 0.88). Except 

for the construct susceptibility, the reliability of all other constructs was ≥ 0.80. Two of the 

four constructs classified as “background and perception” were significantly correlated with 

health behaviour identity; knowledge (rs = 0.23, P = 0.013) and health value (rs = 0.49, P < 

0.001). Within the “belief and attitude” group of constructs, attitude towards behaviour (rs = 

0.45, P < 0.001) and perceived barriers (rs = 0.26, P = 0.004) showed significant correlations 

with health behaviour identity. Attitude towards behaviour correlated (rs = 0.22, P = 0.019) 

significantly with intention.  
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Table 4. Background characteristics of schoolchildren and their caregivers in northern Ghana 

Characteristic n (Percentage) 

n 120 

Sex of child, male  69 (57.5) 

Age of child, years  

     6 – 7  34 (28.3) 

     8 – 9  42 (35.0) 

     10 – 11  41 (34.2) 

     ≥ 12 3 (2.5) 

Household size  

     3 – 6  11 (9.2) 

     7 – 10  36 (30.0) 

     >10 73 (60.8) 

Age of caregiver, years  

     19 – 34  54 (45.0) 

     35 – 49  36 (30.0) 

     >49 30 (25.0) 

Relationship of caregiver to child  

     Mother 73 (60.8) 

     Stepmother 10 (8.3) 

     Grandmother 22 (18.3) 

     Other relation 15 (11.7) 

Marital status of caregiver  

     Married (monogamous) 32 (26.7) 

     Married (polygamous) 74 (61.7) 

     Widowed/divorced 14 (11.6) 

Education of caregiver  

     % illiterate 115 (95.8) 

Occupation of caregiver  

     Farming 38 (31.7) 

     Trading 53 (44.2) 

     Housewife  25 (20.8) 

     Other 4 (3.4) 

 

None of the three constructs classified as “external factors” significantly correlated with 

caregivers’ intention to give cowpeas to schoolchildren. Intention to give cowpeas to 

schoolchildren was positively and strongly correlated (rs = 0.72, P < 0.001) with the 

behaviour of giving cowpeas to schoolchildren (Table 5).  

Since attitudes towards behaviour correlated significantly with intention, we checked and 

found that scores were higher for the high intenders but did not significantly differ the scores 
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of low intenders (z = –0.64, P = 0.52).  All median scores of the items within attitudes 

towards behaviour were positive for both the low and high intenders. Paired comparisons 

between intention and behaviour showed that intention to give cowpeas was significantly 

higher than the behaviour of giving cowpeas (z = –3.177, P = 0.001). Of the 120 caregivers 

interviewed the intention-behaviour paired observations were: intention > behaviour, n = 62; 

intention < behaviour, n = 24; intention = behaviour, n = 34. 

Predicting health behaviour Identity, intention and behaviour 

The relative contribution of the predictor variables to the outcome variables for models 1 – 4 

are shown in Table 6.  Model 1 explained 36% of the variance in health behaviour identity 

and the constructs knowledge (β = 0.20, P = 0.030) and health values (β = 0.49, P < 0.001) 

significantly predicted health behaviour identity. Model 2 explained only 8% of the variance 

in intention and the constructs barriers (β = –0.42, P = 0.001) and attitudes towards 

behaviour (β = 0.25, P < 0.028) significantly predicted intention. In model 3, none of the 

external factors significantly explained intention. Model 4 accounted for 40% of the variance 

in behaviour and intention significantly predicted behaviour (β = 0.63, P < 0.001).  
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Table 5. Sample item statements, number of items, reliability and summary values of the constructs from the combined model of the Theory of 

Planned Behaviour and the Health Belief Model  

Construct Example of item statement Number 

of items 

Cronbach’s 

α 

Median score 

(IQR) 

Range of 

values 

Knowledge Cowpeas are a blood giving food 11 0.84 45 (44, 49) 11 – 55  

Susceptibility My schoolchild easily becomes sick 4 0.67 12 (10, 16) 4 – 20  

Severity Shortage of blood causes poor growth of my schoolchild 7 0.87 28 (24.3, 29) 7 – 35  

Health value The health of my schoolchild is very important to me 7 0.80 31 (29, 33) 7 – 35  

Health behaviour 

identity 

Giving cowpeas is one of the best things I can do for my 

schoolchild 

2 0.80 8 (8, 9) 2 – 10  

Barriers I worry about the availability of cowpeas on the market  16 0.85 38.5 (32.3, 45.8)  16 – 80  

Control beliefs I am the one who decides to give my school child 

cowpeas 

1 – 4 (4, 4.8) 1 – 5  

Cues to action  Important ceremonies like weddings or funerals make 

my schoolchild want to eat 

5 0.81 16 (14, 22) 5 – 25  

Attitudes towards 

behaviour 

(Cowpeas have a good taste) × (my schoolchild prefers 

foods that taste good) 

16 0.88 38 (32, 47) -160 – 160  

Subjective norms (My mother-in-law advices me to give cowpeas to my 

schoolchild) × (the opinion of my mother-in-law is 

important to me)  

14 0.83 -4.5 (-20, 15.5) -140 – 140  

Behavioural intention How many times do you intend to give cowpeas to your 

schoolchild in the coming month 

1  –   10 (5, 15) 0 – 30 

Behaviour How many times have you given cowpeas to your 

schoolchild last month 

1  – 8 (4, 12) 0 – 30  
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Table 6. Constructs predicting health behaviour identity associated with cowpeas, intention to 

give cowpeas and giving cowpeas to schoolchildren in northern Ghana
1 

Model description Standardized β P R
2
 Adjusted R

2
 

Model 1     

    Y = Identity   0.43 0.36 

    Predictors     

          Knowledge 0.20 0.030   

          Susceptibility 0.02 0.847   

          Severity -0.04 0.652   

          Values 0.49 <0.001   

Model 2     

    Y = Intention to consume cowpeas   0.17 0.08 

    Predictors     

          Identity 0.06 0.611   

          Barriers -0.42 0.001   

          Attitudes 0.25 0.028   

Model 3     

    Y = Intention to consume cowpeas   0.07 -0.03 

    Predictors     

          Control -0.09 0.334   

          Cues -0.001 0.994   

          Subjective norms -0.05 0.637   

Model 4     

    Y = Consumption of cowpeas   0.46 0.40 

    Predictors     

          Intention 0.63 <0.001   

          Barriers 0.07 0.469   
1
 All models were controlled for community, interviewer, caregiver and child characteristics 

 

DISCUSSION  

Cowpea landraces 

Our first objective was to identify the cowpea landrace (s) that would be most suitable to 

promote as source of bioavailable iron and zinc. We found that the locally available landraces 

contained appreciable amount of iron and zinc but also contained high concentrations of 

phytate and polyphenols. 

The range of values we observed for iron (4.9 – 8.2 mg/100 g
 
d.w) and zinc (2.7 – 4.1 mg/100 

g d.w) were somewhat lower than the 5.6 – 10.4 mg/100 g
 
d.w and 3.7 – 5.4 mg/100 g

 
d.w 
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respectively observed among cowpea landraces in Benin 
(37)

. Based on iron and zinc 

concentrations the results suggest that zanzi zee could be promoted as the most suitable 

landrace with the potential to improve iron intake. However, the phytate and polyphenol 

concentrations of the landraces were high but within range of values reported by Madode et 

al. 
(37)

. Iron and zinc absorption are partly influenced by phytate and polyphenol concentration 

(35, 38)
.   

A proxy measure of iron and zinc bioavailabilty is the molar ratio of iron-to-phytate and zinc-

to-phytate respectively 
(34, 35, 39, 40)

. Iron-to-phytate and zinc-to-phytate molar ratios of <1 and 

≤15 respectively are considered predictive of iron 
(40, 41)

 and zinc 
(34, 35)

 bioavailabilty. As 

such, all the landraces have low bioavailable iron. For zinc however, apagaba ala-1 and 

dagban tuya are likely to contain zinc with higher bioavalability. Abizari et al 
(42)

 found that 

iron bioavailability in cowpeas was <2% and their results suggested that rather than 

polyphenols, phytate-to-iron molar ratio may predict the low bioavailability.  

Cowpea acceptability 

The second objective was to identify factors that influenced mothers to give cowpeas to their 

schoolchildren. We found that intention of mothers was strongly associated with and 

predicted behaviour. Knowledge of mothers about cowpeas and the health values they hold 

for their children were together associated with intention through health behaviour identity 

and attitudes towards behaviour. Knowledge and health values also predicted health 

behaviour identity. Attitudes towards behaviour and perceived barriers were the two internal 

constructs that predicted intention significantly albeit the predictive ability of the intention 

models was weak.  

Other studies using the combined models of TPB and HBM 
(17, 23, 43)

 or the TPB alone 
(44, 45)

 

have also shown strong association between intention and behaviour. The studies that 
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measured behaviour and intention (cross-sectional or prospective) have also shown that 

intention is predictive of behaviour and may sometimes do so through an interaction with 

perceived barriers 
(23)

. This seems to suggest that giving cowpeas to schoolchildren in 

northern Ghana may be largely driven by conscious efforts of mothers. It has however been 

shown that the proximity between the measurement of intention and behaviour can influence 

their association 
(46)

; measured together (as in our case) can strengthen the association or, 

when behaviour is assessed after 5 weeks of measuring intention,  weaken the association 
(47, 

48)
. However, in a related study in the same communities, frequency of consumption of 

cowpea-based meals at the household level was on average 2 – 3 times per week (Abizari, 

unpublished results), similar to values recorded here as intention and behaviour. As such, 

proximity may have had minimal influence on our measurements of intention and behaviour. 

 We did not observe a significant role of external factors (subjective norms, control beliefs 

and cues to action) on caregivers’ intention to give cowpeas to their schoolchild 
(23, 49)

. This 

partly demonstrates that cowpeas are well accepted in the research area 
(13)

 and their 

consumption is  not influenced by the opinion of health workers, husbands, mothers in-law 

and significant others. In line with the observations of Sheeran et al. 
(50)

, the absence of 

external influential factors would suggest that intention to give cowpeas is more likely to be 

stable if mothers have favourable attitudes. We doubt however whether if we had much 

younger reference children (<2 years) the outcome would have been the same. From our 

experience in the area, health workers encourage mothers of such children to give cowpeas to 

their children (especially when they are undernourished) ostensibly to improve iron status and 

growth. This may partly explain why we observed in this study that “child’s illness” is an 

important cue to give schoolchildren cowpeas. In our predictive model for behaviour we also 

observed age of child was a significant explanatory factor. It means that if iron-deficiency is 
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presented in the context of illness, mothers would be more likely to accept a cowpea-based 

food promoted to contribute to reduce iron-deficiency. 

Similar to the role of intention in the TPB model 
(15)

, the health behaviour identity was 

expected to mediate between “background and perception constructs” and intention in the 

combined model used in our study 
(17)

. Our results confirm this mediating role of health 

behaviour identity 
(17, 23, 43)

. In our work it means that the knowledge of mothers about 

cowpeas in combination with the health values they hold for their children made them have 

positive health behaviour identity. The positive health behaviour identity in turn yielded 

positive attitudes towards giving cowpeas to schoolchildren which subsequently predicted the 

intention of mothers to give cowpeas. It implies that if we reinforce mothers’ knowledge that 

“cowpeas give blood” and “support the growth of schoolchildren” coupled with the positive 

health values mothers hold for their children, it should be possible to promote cowpeas as 

likely vehicles to contribute to reduce iron-deficiency. Such a promotion may not be 

completely successful without addressing the barriers to behavioural intention. For instance, 

price of cowpea on the market was one of the barriers mentioned by caregivers. In their work 

Mishili et al. 
(51)

 reported that cowpea prices on the market start rising a few months after 

harvest. The implication is that rural households who have run out of cowpea stock may find 

it expensive to buy. Our results support the findings of Ndubuaku et al. 
(27)

 that abdominal 

discomforts, presence of weevils and long cooking time are barriers to cowpea consumption. 

Internal reliability measures of our constructs were generally good and were within range of 

values observed by others 
(23, 43)

. However, there is no prior indication of the reliability of the 

predictive models with regards to giving or intention to give cowpeas. Two other studies 
(23, 

43)
 in Africa that utilized these predictive models have shown similar trend in low predictive 

abilities of the two models on intention. In our case the low predictive ability could be 
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attributed to the generic reference to cowpeas rather than a specific cowpea-based food. In a 

study on iron-fortified soy sauce the predictive ability of the intention model was higher (15). 

In summary what we have shown is that cowpea landraces from northern Ghana contain 

appreciable amounts of iron and zinc, but probably with a poor bioavailability. Attitudes 

towards giving cowpeas and perception of barriers are important predictors of mothers’ 

intention to give cowpeas to their schoolchildren.  We have also shown that health behaviour 

identity may mediate but not predict intention of mothers. Finally our results suggest that 

knowledge about cowpeas and health values mothers hold for their children are key areas to 

focus attention in order to promote giving cowpeas to school children.  
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ABSTRACT 

Limited data exists on iron absorption from NaFeEDTA and FeSO4 in legume-based flours.  

The current study compared iron absorption from NaFeEDTA and FeSO4 as fortificants 

within and between red and white varieties of cowpea with different concentrations of 

polyphenols (PP), but similar phytic acid (PA) to iron molar ratios. We performed a paired 

crossover study in young women (n = 16). Red (high PP) and white (low PP) cowpea test 

meals (Tubani) were each fortified with (
57

Fe) labelled NaFeEDTA or (
58

Fe) labelled FeSO4 

and were randomly administered. Iron absorption was measured as erythrocyte incorporation 

of stable iron isotopes. Per serving, the mean (± SD) PP concentration of the white and red 

cowpea-based meals was 74 ± 3.6 and 158 ± 1.8 mg, respectively, and the molar ratio of PA 

to iron was 3.0 and 3.3. Iron bioavailabilities from red and white cowpeas were 1.4% and 

1.7%, respectively, in NaFeEDTA fortified meals and 0.89% and 1.2%, respectively, in 

FeSO4 fortified meals. Compared with FeSO4, fortification with NaFeEDTA increased the 

amount of iron absorbed from either of the cowpea meals by 0.05 mg to 0.08 mg (P < 0.05). 

Irrespective of the fortificant used, there was no significant difference in the amount of iron 

absorbed from the two varieties of cowpea. The results suggest that NaFeEDTA is more 

bioavailable in legume-based flours compared to FeSO4. In cowpea-based flours, the major 

determinant of low iron absorption may be the high molar ratio of PA to iron, and not 

variations in PP concentration.  
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INTRODUCTION 

Iron deficiency is one of the most prevalent single nutrient deficiencies in the world 
(1)

 and is 

most prevalent among populations who consume monotonous diets of cereals and legumes 
(2, 

3)
. Next to cereals, legumes contribute substantially to nutrient intake among poor populations 

(4)
 and thus may have broad potential as vehicles for improving iron status. 

Cowpeas (Vigna unguiculata (L.) Walp), like many food legumes, are an important source of 

good quality plant protein 
(5)

, particularly in West and Central Africa, and contribute to 

household food security 
(6)

. Cowpeas also have a higher non-haem iron concentration 

compared to commonly consumed cereals such as rice and maize. However, human 

absorption studies in other legumes, especially the common beans (Phaseolus vulgaris), have 

shown low fractional iron absorption 
(7, 8)

, suggesting that varieties of common beans with 

higher concentration of iron may not lead to a higher absolute amount of iron absorbed. Thus, 

the usefulness of biofortification (targeted breeding for higher concentration of intrinsic iron) 

as a strategy to improve iron status has been questioned for some of the currently available 

breeds of common beans 
(8, 9)

.  

The potential usefulness of fortification of legume flours, such as cowpea flour, has been 

questioned because in many cultures cowpeas are eaten whole without milling 
(9)

. However, 

there are many recipes based on legume flours in Africa, including cowpea-cereal 

complementary blends. Fortification has been widely used to improve the iron concentration 

of cereal flours but the main difficulty is the inhibition of iron absorption by high phytic acid 

(PA) concentration in cereals 
(10)

. At the weakly acidic to neutral pH in the duodenum, PA has 

a strong tendency to chelate iron to form insoluble complexes 
(11)

.  Sodium iron ethylene 

diamine tetraacetate (NaFeEDTA), as a fortification compound, has shown higher iron 

bioavailability in presence of PA than electrolytic iron, ferrous fumarate and ferrous sulphate 

(12-14)
 and is thus recommended as suitable fortificant for PA rich flours. However, cowpeas 
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also contain polyphenols (PP), and some PP inhibit iron absorption 
(15)

.  Unlike PA rich 

flours, little is known about the efficacy of fortification of legume flours like cowpea (which 

is rich in both PA and PP) with NaFeEDTA.  The aim of the current study was therefore to 

compare iron absorption from NaFeEDTA and FeSO4 as iron fortification compounds within 

and between two varieties of cowpea with different concentrations of PP but similar PA to 

iron molar ratios.  

 

METHODS 

Participants 

The study was carried out at the Division of Human Nutrition, Wageningen University, The 

Netherlands, among sixteen apparently healthy young women. Participants were recruited 

from the student population of Wageningen University through advertisements. The inclusion 

criteria were: age 18-40 y; body weight < 65 kg; non-pregnant, non-lactating and not planning 

to become pregnant; free of chronic illnesses and not taking chronic medication except oral 

contraceptives; not taking supplemental iron; no intake of vitamin and mineral supplements in 

the last two 2 wk prior to the study, or willingness to discontinue; no blood donation in the 

last 6 mo preceding the study, and no participation in studies that administered enriched stable 

iron isotope labels. Eligible participants were invited for information sessions where the 

study, requirements for participation, and risks were explained after which an informed 

consent was obtained. A sample size of sixteen participants was estimated to be adequate to 

detect an intra-individual variation in log (iron absorption) of 0.3 
(16)

 and a 35% increase in 

iron bioavailability with a power of 0.8 and a significance level of 0.05. Ethical approval was 

obtained from the Medical Research Ethics Committee of Wageningen University, the 

Netherlands, and the Internal Review Board of Noguchi Memorial Institute for Medical 

Research, Ghana. 
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Study design 

A paired crossover study design was used to allow within-participants comparisons. Cowpea 

based test meals (Tubani) labelled with 
57

Fe or 
58

Fe were administered over two pairs of 

consecutive days. Therefore each participant consumed a total of four test meals (Table 1) in 

a randomized fashion. On d 0, participants were invited to the study location, a baseline blood 

sample (7 mL) was collected, and weight and height were measured following standard 

procedures 
(17)

. On d 1 and d 2, the test meals were administered. Fourteen days later, on d 15, 

a second blood sample was collected after which a third (d 16) and fourth (d 17) test meals 

were administered. Fourteen days later, on d 30 of the investigation, a final blood sample was 

collected.  

Table 1. Description of cowpea test meals consumed by participants
1
   

Test meal Description 

WC-EDTA White cowpea meal (low polyphenol) + 4 mg 
57

Fe as NaFeEDTA 

WC-FS White cowpea meal (low polyphenol) + 4 mg 
58

Fe as FeSO4 

RC-EDTA Red cowpea meal (high polyphenol) + 4 mg 
57

Fe as NaFeEDTA 

RC-FS Red cowpea meal (high polyphenol) + 4 mg 
58

Fe as FeSO4 

1 
RC-EDTA, red cowpea plus NaFeEDTA; RC-FS, red cowpea plus ferrous sulphate; WCEDTA, white cowpea 

plus NaFeEDTA; WC-FS, white cowpea plus ferrous sulphate 

All meal ingredients were purchased and cooked in bulk and used for the entire study. The  

test meal portions were kept frozen until use. Participants consumed the four test meals as 

breakfast after an overnight fast each time and were not allowed to eat or drink until 3 h post 

feeding. All test meals were served between 0700 and 0900 h under close supervision of 

investigators. Each portion was defrosted for 1.5 min in a microwave oven on the day of 

feeding. The isotopically labelled iron compounds were added quantitatively to the test meals 

~ 5 min prior to consumption.  Isotope labels were carefully spread on the surface of test 

meals. After consuming the entire portion of the test meal, the glass bowl used to serve the 

test meal was rinsed with Milli-Q water (Millipore SAS, Molsheim, France) for the 
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participants to drink. Test meals were served with a maximum of 300 mL of Milli-Q water 

(Millipore SAS, Molsheim, France).  

Test meals  

The test meal served to all participants was Tubani: a local Ghanaian dish made from cowpea 

(Vigna unguiculata (L.) Walp) flour. There were two different Tubani test meals: one Tubani 

test meal was made from cowpea known to have high concentration of polyphenols (red 

variety, “San i Zei”) and the other made from cowpea known to have low concentration of 

polyphenols (white variety, “Kom tuya”). The white variety was chosen because it is widely 

cultivated and most preferred for consumption, and the red variety was chosen because of its 

higher concentration of PP. Each portion (150 g) of test meal contained 66 g of whole cowpea 

flour, 13 mL of 5% (w/v) food grade sodium bicarbonate solution (serves as softener and 

rising agent) mixed into a paste in 71 mL of Milli-Q water (Millipore SAS, Molsheim, 

France). The resulting paste was wrapped in aluminium foil and steamed at 100
o
C

 
for 45 min. 

Each Tubani was served with a standard amount (31 ± 1 g) of sauce made up of groundnut oil, 

salt, fried onions, chili and “false sesame seeds” (Ceratotheca sesamoides). In each type of 

test meal 4 mg of 
57

Fe or 
58

Fe was added as either NaFeEDTA or FeSO4, respectively.  

Test meal analysis 

Iron concentration of cowpea seeds, cowpea flour and cowpea meal were measured using 

inductively coupled plasma atomic emission spectrophotometer (ICP-AES, Varian Vista-Pro, 

Palo Alto, CA, USA) after digestion with HNO3-HF-H2O2. Phytic acid determination was 

done using a modified Makower method 
(18)

 in which the released inorganic phosphate is 

measured according to the van Veldhoven’s method 
(19)

 and expressed as inositol 

hexaphosphate (IP6). A modified Folin-Ciocalteau method 
(20)

 was used to measure total 

polyphenol concentration of the cowpea meal and expressed as gallic acid equivalent (GAE).  
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Preparation of stable isotope labels 

Isotopically labelled 
58

FeSO4 was prepared from isotopically enriched elemental iron (
58

Fe, 

enrichment 99.6%, Chemgas Boulogne, France) by dissolution in diluted sulphuric acid. The 

solutions were stored in Teflon® containers and flushed with nitrogen to keep the Fe in the 

+II oxidation state. Isotopically labelled Na
57

FeEDTA (
57

Fe enrichment 97.6%, Chemgas 

Boulogne, France) was prepared according to the method described by Loots et al. 
(21)

.  

Blood analysis and iron isotope measurements 

Haemoglobin concentration in whole blood was measured on the day of blood collection 

using a Beckman-Coulter LH750 HmX haematology analyzer (Beckman Coulter, Miami, FL, 

USA). Serum ferritin (SF), soluble transferrin receptors (sTfR), C-reactive protein (CRP) and 

α1-acid glycoprotein (AGP) were measured simultaneously using an in-house sandwich 

ELISA technique 
(22)
. All measurements were done in duplicates and if CVs were ≥10% 

measurements were repeated. The CVs (inter-assay) for the various indicators were: SF, 

2.6%; sTfR, 2.4%; CRP, 7.2% and AGP, 2.9%. Certified quality control samples from the 

CDC/Atlanta and Bio-Rad Liquicheck (Bio-Rad, Munich, Germany) were used.  

Whole blood samples were mineralized and separated as described by Schoenberg and von 

Blanckenburg 
(23)

. Iron isotopic analyses were performed employing a high-resolution, 

multicollector-inductively coupled plasma-mass spectrometer (Thermo-Finnigan Neptune, 

University of Bonn, Germany; see 
(24)

 for details). Copper was added (1 µg/g) to the solution 

immediately prior to analysis to correct for mass bias 
(23, 25)

. Each isotopically enriched 

solution was measured in triplicate using standard sample bracketing 
(23, 25, 26)

. One third of the 

samples were re-measured as external duplicates for quality control. Analysis was done under 

chemical blank monitoring using 
57

Fe or 
58

Fe indicator solutions as an external quality 

control. 
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 Calculation of iron absorption 

Iron absorption measurement was based on erythrocyte incorporation of iron stable isotope 

labels 14 d after intake of the labelled test meals 
(27)

. Circulating iron was calculated on the 

basis of blood volume, which was estimated from the participant’s height and weight 
(28)

. 

Calculation of iron absorption was based on the shift in the isotopic ratios after a 14-d 

incorporation period as previously described 
(27)

 taking in to account that isotopic labels are 

not monoisotopic 
(29)

. An incorporation rate of 80% of the absorbed iron into red blood cells 

was assumed.  

Statistical analysis 

Data were analyzed in Excel (Microsoft Office 2007, Microsoft, Seattle, USA) and GraphPad 

Prism version 5.04 for Windows (GraphPad Software, San Diego, CA, USA) and SPSS 

(version 18.0, Armonk, NY, USA). Variables were checked for normality and if not normally 

distributed were log transformed before use in analysis. Student’s t test was used to compare 

iron, PA and PP concentration of the red and white cowpea meals. A general linear model 

(Two-Way ANOVA) for repeated measures was used to evaluate the main effects of variety 

and fortificant as well as their interaction (V x F). Correlations between ln(SF) and ln(% iron 

absorption) were checked using Pearson correlation. The level of statistical significance was 

set at P < 0.05 for all analysis. Summary values of iron status and iron absorption are reported 

as geometric means. Fractional iron absorption data for participants was standardized to an  

SF value of 15 µg/L with the method proposed by Cook et al.
(30)

.  
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RESULTS 

Participants 

None of the participants dropped out of the study or missed any of the test meals. The mean 

body mass index of participants was within the normal range, respectively. One participant 

was iron deficient based on serum ferritin concentration <15 µg/L. None of the participants 

was anaemic or had evidence of inflammation as indicated by elevated CRP or AGP (Table 

2). The 
56

Fe /
54

Fe isotope ratio in the samples obtained during the study was compared to the 

isotopic reference material (IRM) and was in the range of the values previously reported for 

healthy young women 
(31, 32)

. 

Table 2. Anthropometric, iron and inflammation status of participants at baseline
1 

Variable  Summary value 

Age, y 23.3 ± 3.6
 

BMI, kg/m
2 

21.0 ± 2.6 

Haemoglobin, g/L 134 ± 7 

Serum Ferritin, µg/L 30.0 (22.7, 42.5)
 

Serum Transferrin Receptor, mg/L 4.5 (4.0, 5.1) 

Body Iron
2
, mg/kg body weight 5.3 ± 1.8 

Serum C-reactive Protein, mg/L 0.41 (0.21, 1.15) 

Serum α1-acid glycoprotein, g/L 0.62 (0.48, 0.72) 

1 
Values are mean ± SD, geometric mean (IQR), n=16. 

2 
To convert body iron from mg/kg to mmol/kg multiply 

by 0.0171 
(33)

 

 

Test meals 

Test meals made from red cowpea had significantly higher (P < 0.05) concentrations of native 

iron, PA and PP, than test meals made from white variety. However both varieties of cowpea 

had similar molar ratios of phytic acid to iron (Table 3). Each participant consumed the entire 

test meal portion on each of the 4 d. 
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Iron absorption 

Geometric mean iron absorption from the four test meals ranged from 0.89% - 1.7% but when 

absorption was adjusted to SF of 15 µg/L, the geometric mean iron absorption ranged from 

1.8% - 3.4%. Irrespective of cowpea variety used for the test meals, fortification with 

NaFeEDTA resulted in significantly higher amount of iron absorbed than from FeSO4 (P 

<0.05); in the white cowpea meal fortification with NaFeEDTA resulted in 0.05 mg more iron 

absorbed compared to fortification with FeSO4 whereas in the red cowpea meal NaFeEDTA 

fortified meals resulted in 0.08 mg more iron absorbed compared to FeSO4 fortified meals. 

Conversely, irrespective of the fortificant used, there was no significant difference in the 

amount of iron absorbed between the two varieties of cowpea. The interaction between 

variety and iron fortificant was not significant (Table 4). Iron status (serum ferritin 

concentration) was inversely and significantly correlated with fractional iron absorption from 

all test meals: WC-EDTA (r= -0.61, P<0.05); WC-FS (r= -0.79, P<0.01); RC-EDTA (r= -

0.74, P<0.01); RC-FS (r= -0.67, P<0.01). 

 

DISCUSSION 

In a paired crossover design iron absorption from NaFeEDTA and FeSO4 as iron fortification 

compounds within and between two varieties of cowpea with different concentrations of 

polyphenols were compared. The results show that iron absorption from whole cowpea meal 

fortified with NaFeEDTA was significantly higher than when fortified with FeSO4. In 

addition, variety of cowpea used did not significantly influence iron absorption. 

Low fractional iron absorption 

Fractional iron absorption from whole cowpea meal was generally low (< 2%) regardless of 

type of fortificant or variety of cowpea. Previous iron absorption studies in humans have been 

mainly conducted with common beans (Phaseolus vulgaris) but are difficult to compare 
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because of differences in iron status of participants in different studies. Donangelo et al. 
(8)

 

observed low iron bioavailability of ~2%  from two varieties of common beans despite low 

iron status of participants. 
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Figure 1. Fractional iron absorption of young women from four cowpea test meals – adjusted 

to SF of 15 µg/L. Data points for each symbol represent participants. Horizontal bars indicate 

geometric means for each column, n = 16. P-values are from Two-Way ANOVA for repeated 

measures. V x F, interaction between cowpea variety and type of iron fortificant used. Test 

meals: RC-EDTA, red cowpea plus NaFeEDTA; RC-FS, red cowpea plus ferrous sulphate; 

WC-EDTA, white cowpea plus NaFeEDTA; WC-FS, white cowpea plus ferrous sulphate.  
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Table 3. Iron, phytic acid and polyphenols concentration of cowpea test meals served to young women
1 

Test meal Iron 

mg/serving 

Phytic Acid 

mg/serving 

Polyphenols
 

mg GAE/ 

Phytic Acid : Iron
 

per serving 

Extrinsic 

EDTA : Iron
 

 Native
 

Fortification  serving   

WC- EDTA
 

5.3 ± 1.1
* 

4 330 ±15.9
*
 74 ± 3.6

*
 3.0 : 1 1 : 1 

WC-FS 5.3 ± 1.1
 

4 330 ± 15.9
 

74 ± 3.6 3.0 : 1 - 

RC- EDTA 8.8 ± 0.8
 

4 494 ± 21.5
 

158 ± 1.8
 

3.3 : 1 1 : 1 

RC-FS 8.8 ± 0.8
 

4 494 ± 21.5
 

158 ± 1.8 3.3 : 1 - 

1
 Values are means ± SD, absolute amount or molar ratios. 

*
Different from red cowpea, P < 0.05. GAE, gallic acid equivalents; RC-EDTA, red cowpea plus NaFeEDTA; RC-

FS, red cowpea plus ferrous sulphate; WC-EDTA, white cowpea plus NaFeEDTA; WC-FS, white cowpea plus ferrous sulphate. 
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Table 4. Fractional iron absorption and total iron absorbed per cowpea test meal served to young women
1 

 Test meals Effect
2
 (P value)

 

 WC-EDTA (A) WC-FS (B) RC-EDTA (C) RC-FS (D) Variety Fortificant V x F
 

Fractional Iron absorption, %        

    Observed 1.7 (0.41, 6.4) 1.2 (0.67, 3.1)
 

1.4 (0.59, 3.7) 0.89 (0.27, 1.9)
 

0.11 0.006 0.90 

    Adjusted
3 

3.4 (1.1, 9.7) 2.4 (1.2, 4.9)
 

2.9 (1.4, 7.7) 1.8 (0.64, 4.2)
 

0.15 0.003 0.81 

Iron absorbed, mg 0.16 (0.05, 0.53) 0.11 (0.06, 0.19)
 

0.19 (0.08, 0.47) 0.11 (0.08, 0.22)
 

0.69 0.016 0.99 

Absorption ratios        

    EDTA : FS A:B = 1.4 - C:D = 1.6 - - - - 

    WC : RC - - C:A = 0.82 D:B = 0.74 - - - 

1 
Values are geometric mean (IQR) unless otherwise stated, n=16. EDTA, NaFeEDTA; FS, ferrous sulphate; RC, red cowpea; RC-EDTA, red cowpea plus NaFeEDTA; RC-

FS, red cowpea plus ferrous sulphate; V x F, interaction between cowpea variety and type of iron fortificant used; WC, white cowpea; WC-EDTA, white cowpea plus 

NaFeEDTA; WC-FS, white cowpea plus ferrous sulphate.  
2 
Two-Way ANOVA for repeated measures. 

3 
Adjusted to serum ferritin of 15 µg/L 

(30)
.  
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Among iron replete participants, Beiseigel et al. 
(7)

 and Petry et al. 
(34)

 observed < 2%  and 

between 2.4% – 2.6% fractional iron absorption, respectively from common beans. Iron 

absorption is inversely related to iron status 
(35)

, an observation also made in this study. After 

correcting absorption for low iron stores, iron bioavailability was significantly higher and 

ranged from 1.8 – 3.4% (P < 0.05) (Figure 1), but lower than the data reported among 

Rwandan women with low iron status, where Petry et al. 
(9)

 observed fractional iron 

absorption ranging between  3.4 – 4.7% from two varieties of common beans. 

In our specific case however, the fractional iron absorption could have been affected by the 

large amount of isotopic labels added to the test meals to reflect a hypothetical iron 

fortification level of 60 mg/kg cowpea flour. Studies have shown that increasing amounts of 

iron label decreases fractional absorption albeit larger absolute amounts of the label get 

absorbed 
(36)

. Another possible explanation for the low iron absorption in our study could be 

the use of sodium bicarbonate in the test meal (Tubani) recipe. Sodium bicarbonate could 

buffer the stomach acidity and promote chelation of ferric iron 
(37)

 to PA or PP. When 

administered 1 – h  after a meal, 6.17 g of sodium bicarbonate increased gastric pH of adult 

males from basal 1.8 to a range of 6.7 – 7.0 after 15 min of ingestion 
(38)

. In our study 0.65 g 

(13 mL of 5% (w/v)) of sodium bicarbonate was ingested per meal. Therefore, it is likely that 

the concentration of bicarbonate per meal was insufficient to offset stomach acidity and 

significantly decrease iron absorption.  

Difference in absorption between NaFeEDTA and FeSO4 

As expected, fractional iron absorption from Tubani fortified with NaFeEDTA was 

significantly higher than when fortified with FeSO4.  Despite both being water soluble 

fortificants 
(39)

, unlike FeSO4, the EDTA moiety in NaFeEDTA chelates iron at low pH and to 

some extent protects it from binding with ligands such as PA in the stomach and subsequently 
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releases iron for uptake in the duodenum and jejunum 
(40)

. Absorption of native iron is also 

improved by NaFeEDTA 
(40)

 and this makes it a more suitable fortificant for inhibitory cereals 

and legumes than FeSO4. 

Absorption ratios: NaFeEDTA vs. FeSO4  

In our study the ratio of fractional iron absorption between NaFeEDTA and FeSO4 (1.4 – 1.6) 

was somewhat lower than expected. A number of studies have demonstrated that in inhibitory 

meals, fractional iron absorption from NaFeEDTA could be 2 – 4 times higher than FeSO4 
(40, 

41)
 but these comparisons have largely been done in PA-only rich meals, not in meals like 

cowpeas that are rich in both PA and PP. However, the effect of the extra PP in cowpeas on 

the absorption ratio between NaFeEDTA and FeSO4 has not been previously reported. For 

FeSO4, the absorption ratio we observed between high and low PP cowpeas was similar to 

that observed by Petry et al. 
(9)

 in common beans with high and low PP concentration. 

No significant difference between low and high PP cowpea varieties  

Fractional iron absorption from red (high PP) cowpea was not significantly different from 

white (low PP) cowpea (P > 0.10). Another investigation involving two varieties of common 

beans reported no significant difference in iron absorption from FeSO4 between white and 

brown beans 
(7)

. Petry et al. in a double meal design observed a significant 27% lower iron 

absorption in red (high PP) compared to white (low PP) common bean variety and attributed 

the difference to the additional inhibition of PP 
(9)

. In our study, the difference in PP between 

the two cowpea varieties was 2-fold compared to the 7-fold in the study by Petry et al. 

Comparing PP concentration in foods is difficult due to the wide range of polyphenol 

measurement methods currently employed even when PP concentrations are expressed as 

Gallic Acid Equivalents. Nevertheless, PP (as measured by the Folin-Ciocalteu method) has 

been shown to be predictive of iron bioavailability in legumes 
(34)

 and phenolic containing 

beverages 
(42)

.  
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The lack of significant difference between varieties, despite significant difference in PP, could 

be due to the similar phytic acid to iron molar ratio (PA:Fe) in both cowpea varieties used in 

this study. In inhibitory foods, an important determinant of iron absorption is the PA:Fe of the 

food 
(43)

. For non-composite meals, PA:Fe greater than 1:1 is described as inhibitory  
(44)

. In 

our study both fortified white and red cowpea meals had similar PA:Fe of ~3:1, in contrast to 

~5:1 without fortification iron. However it remains to be shown whether in the absence of PP 

white and red varieties of cowpea with similar PA:Fe will show similar iron absorption. 

Our study involved a single non-composite meal and as such the design may have 

overemphasized the combined inhibitory effects of PA and PP on iron absorption 
(45)

.  

However, in cowpea consuming areas of West Africa (e.g. Ghana), traditional cowpea recipes 

for both children and adults hardly include iron absorption enhancers, and the test meals 

consumed in this study are representative of typical cowpea-based meals 
(46)

.  As shown by 

Petry et al 
(9)

, the effect of PP was statistically significant when beans with high and low PP 

concentration were given alone, but when the same beans were consumed as part of a multiple 

meal design fed over several days with rice and potatoes the effect of PP was no longer 

significant.  

In conclusion, the results of our study indicate that NaFeEDTA has better bioavailability than 

FeSO4 in legume-based flours, such as cowpea, and is thus likely to be a better fortificant for 

cowpea flour irrespective of the colour of the cowpeas. At similarly high molar ratios of PA 

to iron, the higher concentration of polyphenols in red cowpeas did not significantly reduce 

iron absorption from either fortificant. However, the low bioavailability of iron fortificants in 

legume-based flours may limit their ability to improve iron status in deficient populations, and 

this should be tested in an efficacy trial in a target population. This data also suggests that 

phytic acid concentration may be the main inhibitor of iron absorption in cowpea based 

meals. 
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ABSTRACT 

Cowpeas, like other legumes, contain high amounts of native iron but are rich in phytic acid 

and polyphenols inhibiting iron absorption. NaFeEDTA may overcome the combined 

inhibitory effect of phytic acid and polyphenols. Our objective was to test the efficacy of 

NaFeEDTA fortified cowpea meal in improving iron status of school children in a malaria 

endemic area. We conducted a double-blind controlled trial with 5 – 12-y-old school children 

from two rural communities in northern Ghana (n = 241).  Eligible children were randomly 

assigned to two treatment groups to receive either cowpea meal fortified with 10 mg Fe/meal 

as NaFeEDTA, or an identical but non-fortified cowpea meal. Meals were provided 3 d/wk 

for a period of about 7 mo under strict supervision. Mass deworming and malaria antigenemia 

screening and treatment were carried out at baseline and 3.5 mo into the trial. Consumption of 

cowpea flour fortified with NaFeEDTA resulted in significant improvement of Hb (P < 0.05), 

SF (P < 0.001) and body iron stores (P < 0.001) and reduction of TfR (P < 0.001) compared 

to non-fortified flour. Fortification resulted in 30% and 47% reduction in the prevalence of 

iron-deficiency (ID) and iron-deficiency anaemia (IDA) (P < 0.05), respectively. The results 

indicate that fortification of cowpea flour with NaFeEDTA overcomes the combined 

inhibitory effect of phytic acid and polyphenols and, when used for targeted school-based 

fortification of cowpea flour, is effective in reducing the prevalence of ID and IDA among 

school children in malaria endemic rural northern Ghana. 
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INTRODUCTION 

Recent estimates indicate that about 40% of school-aged children from countries with a low 

human development index suffer from anaemia 
(1)

, half of which is likely to be due to iron-

deficiency (ID) 
(2)

. Consequences of iron-deficiency anaemia (IDA) among school-age 

children include delayed psychomotor development and impaired cognitive performance 
(3)

. 

Low iron bioavailability rather than low dietary iron intake is considered an important 

contributing cause of IDA in sub-Saharan Africa and other developing regions 
(4)

 in addition 

to habitual consumption of inhibitory cereal and legume staples 
(5)

.   

Iron fortification of foods is one of the strategies that may contribute to reducing ID and IDA 

prevalence. It is practical, sustainable and cost effective in the long term at the population 

level 
(6, 7)

, and considered safer than supplementation but it has shown little success in Africa 

(8)
. Cereal flours (wheat and maize) are often the target vehicles for fortification 

(7)
, however 

fortified flours hardly reach rural African households. Therefore targeted interventions such 

as school feeding programs may be more successful in reaching vulnerable groups 
(7)

. School 

feeding programs may not only improve nutritional status but also improve the educability of 

pupils 
(9, 10)

.  

Legume-cereal blends are often promoted for use in school feeding programs e.g. corn-soy 

blend. In cowpea consuming West Africa, cowpea flour or blend may provide an alternative 

to corn-soy blend but this potential has not been explored. Cowpea (Vigna ungiuculata (L.) 

Walp) is a good source of energy and plant protein 
(11)

. Relative to other cereals and grain 

legumes, cowpeas are a good source of non-haem iron which if made bioavailable can 

contribute significantly to dietary iron intake in a targeted intervention. Non-haem iron in 

cowpea, similar to that in common beans, may have low bioavailability because of the high 

native phytic acid (PA) and polyphenols (PP) concentration, both inhibitors of iron absorption 
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(12, 13)
. Therefore an ideal fortification compound for cowpea would be one that can overcome 

the inhibition of PA and PP.  

Sodium iron ethylene diamine tetraacetate (NaFeEDTA) does overcome the inhibitory effect 

of phytic acid and also improves the bioavailability of native iron in food 
(14)

. When used to 

fortify foods rich in phytic acid, iron bioavailability from NaFeEDTA can be 2-3 times higher 

than ferrous sulphate 
(15)

. The aim of this study therefore is to investigate whether NaFeEDTA 

could overcome the combined inhibitory effect of PA and PP and improve iron status of 

school children.  

 

METHODS 

Study design and randomization 

This study was a randomized double-blind controlled trial.  The primary outcome of the study 

was iron status of the participants as determined by the serum concentration of soluble 

transferrin receptor (sTfR).  This choice was made because the study site is malaria endemic, 

and sTfR is a sensitive marker of iron status less affected by infection and inflammation 

compared serum ferritin (SF). Secondary endpoints include haemoglobin concentration, 

serum ferritin, and prevalence of iron-deficiency, iron-deficiency anaemia and anaemia. 

Eligible children were randomly assigned to two treatment groups using block randomization 

with block size of four. Randomization was performed by a member of the investigating team 

who was not present at screening and enrolment in Ghana. 

Study area 

This trial was carried out in two primary schools from two rural communities in Tolon-

Kumbungu district of northern Ghana between October 2010 and May 2011. The two 

communities have similar socio-demographic characteristics and school infrastructure, and 
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are ~50 km away from the main city in the region, Tamale, and ~10 km apart. The area has a 

typical tropical climate with two main seasons – a dry season (December – March) 

characterized by high temperatures and a rainy season (April – September). Malaria is 

hyperendemic in this area 
(16)

 and is the main cause of morbidity among children 
(17)

. Malaria 

transmission peaks towards the end of the rainy season (October and November) 
(18)

. People 

in this area are mostly subsistence farmers 
(19)

. A Government-supported school feeding 

program, the Ghana School Feeding Program (GSFP), has been introduced in selected schools 

in the district 
(20, 21)

 but the two schools in this study were not beneficiaries of the program.   

Study Population and sample size 

Children in the two rural primary schools participated. Inclusion criteria were: 5 – 12-y-old, 

regularly attending school, apparently healthy and not taking medication or supplemental iron 

at time of enrolment and having haemoglobin concentration >70 g/L. Children who met the 

inclusion criteria were enrolled by the study doctor who reviewed their medical questionnaire. 

Two children with severe anaemia (haemoglobin concentration <70 g/L) were referred to the 

clinic for treatment. A sample size of 240 (120 per group) was estimated to be sufficient to 

detect a difference in serum transferrin receptor of 2 mg/L 
(22)

, assuming an SD of 5 mg/L 

(A.R. Abizari 2010, unpublished) at a 5% significance level with 80% power assuming an 

attrition rate of 20%. 

Ethical approval for this trial was obtained from the Medical Research Ethics Committee of 

Wageningen University, the Netherlands and the Internal Review Board of Noguchi 

Memorial Institute for Medical Research, University of Ghana. Permission was obtained from 

the district administration, and chiefs and opinion leaders of respective communities. Thumb 

printed informed consent was obtained from a parent or caregiver. Our trial is registered at 

ClinicalTrials.gov, identifier number NCT01208363. 
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Treatment of participants 

Meal served to children 

The main meal served to children was Tubani: a local Ghanaian dish made from cowpea 

(Vigna unguiculata (L.) Walp) flour. The recipe of a portion was: 66 g whole cowpea flour, 

10 mL of 5% (w/v) bicarbonate of soda solution (serves as softener and rising agent) mixed 

into a paste in ~ 75 mL of water. The resulting paste was wrapped in broad leaves (similar to 

Maranta leuconeura) and steamed for 35 min. The cooked weight of a single portion was 

~150 g which was served with ~30 g of sauce made of 16 g groundnut oil, salt, fried onions, 

chili and 12 g of Bungu or “false sesame seeds” (Ceratotheca sesamoides). The total caloric 

content of the meal was ~ 430 kcal. A short run-in period of 3 d showed that the portion size 

was suitable and well accepted by the school children. 

Preparation of fortified cowpea flour 

Based on the data of a food consumption survey we conducted earlier in this area (results not 

shown here), we aimed at supplying between 40 – 70% of the RNI for children 5 – 12 y. 

Guided by an earlier acceptable daily intake (ADI) of 2.5
1
 mg EDTA/kg body weight set by 

the Joint FAO/WHO Expert Committee on Food Additives 
(23)

 and 24 kg as the average body 

weight of targeted children (A.R. Abizari, unpublished data), we defined a fortification level 

of 10 mg Fe/66 g of cowpea flour in the form of NaFeEDTA. Cowpeas were purchased in 

bulk (2,300 kg) at the Tamale central market. A group of local women winnowed and sieved 

out sand, stones and debris, and picked out spoilt cowpea seeds.  YEDENT AgroFood 

Processing Company, Ghana, milled and fortified the cowpea flour. To prevent spoilage, 

milling and fortification were done in two batches. Each batch of flour was used for ~ 3.5 mo.  

                                                           
1
 This value represents the ADI for calcium disodium EDTA set in 1974 by JECFA. Based on the 2007 JECFA 

recommendations the ADI used in calculating the fortification level in this thesis should have been 1.9 mg 

EDTA/kg body weight rather than 2.5 mg EDTA/kg body weight. Using the ADI of 1.9 mg EDTA/kg body 

weight, the allowable fortification level would have been 8.9 mg/day (0.37 *24). We used a fortification level of 

10 mg/serving for three non-consecutive days in a week. 
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Half (500 kg) of each batch of cowpea flour was fortified with a water soluble food-grade 

ferric sodium EDTA from AkzoNobel (Ferrazone) (AkzoNobel Chemicals Pte Ltd, Arnhem). 

The Ferrazone was sent to DSM (DSM Nutritional Products South Africa (Pty) Ltd, South 

Africa) for premix preparation to suit the requirements of the food processing company in 

Ghana. The iron-fortified and non-fortified cowpea flours were sealed in double-layered 40 kg 

polyethylene storage bags and were received as color-coded flour from the factory. The key to 

the code was withheld from both researchers and participants until data analysis was 

completed. The fortified and unfortified flours were not visibly different. We evaluated the 

acceptability of the fortified versus the unfortified Tubani among 16 children of similar age to 

the trial children using a simple pairwise preference ranking. The results showed that 10/16 of 

the children preferred the unfortified Tubani, while 6/16 preferred the fortified Tubani. We 

concluded that even though the fortified Tubani was less preferred it was acceptable in this 

population group.  

Preparation of Tubani and Feeding 

Tubani was prepared in the two schools by trained women experienced in Tubani preparation. 

In each school two parallel cooking units were set up to match colour-codes. Each cooking 

unit was under the supervision of a dedicated research assistant (graduate nutritionist) who 

ensured strict adherence to the recipe and protocol. Tubani was served to pupils during the 

1000 h break 3 d/wk (Mondays, Wednesdays and Fridays) for seven consecutive months 

(including school vacation time). It was possible to feed during vacation because all the 

children in each school were from same community, and the school was within walking 

distance for all participants. Feeding sessions were under the supervision of teachers and 

research assistants in parallel classrooms and lasted for about 45 min. Each child was served 

150 g of Tubani and ate ad libitum but could not share or take food out of the classroom.  

Leftovers for each child, if any, were weighed with an electronic kitchen scale (precise to 2 g) 
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(Soehnle, Nassau, Germany) and recorded in a daily feeding register. Each child had an 

identification (name and ID number) card. Total Tubani consumed over the trial period was 

calculated as total weight of Tubani served minus total weight of leftover. 

Deworming 

Prevalence of hookworm infection among children in Northern Ghana is estimated to range 

between 45 – 50% 
(24, 25)

. All children in the schools received treatment against intestinal 

parasites with a single dose of mebendazole 500 mg chewable tablets (Remedica Ltd. 

Cyprus). The first dose was given 4 d before screening and 2 wk before the start of feeding 

and a second dose given at 3.5 mo into the intervention 
(26)

.  

Malaria screening and treatment 

We used malaria rapid diagnostic cassettes (First Response; Premier Medical Corporation 

Limited, India) to screen for current or recent malaria at baseline, midway and at the end of 

intervention based on the presence of the Histidine-Rich Protein-2 (HRP2) in whole blood. 

HRP2 is specific to Plasmodium falciparum, a known cause of more than 80% of malaria 

cases in Ghana 
(18, 27)

. The cassette used has a sensitivity of 95% and a specificity of 99.5% 

(First Response; Premier Medical Corporation Limited, India). A 10% subsample of the blood 

samples was also checked for malaria by microscopy. We treated children who were positive 

to the malaria antigen with Arthesunate Amodiaquine 100 mg/270 mg (Winthrop; Maphar 

Laboratories, Morocco), in line with the guidelines of the Ghana Health Services adopted 

from WHO 
(28)

. Each child received one tablet a day for three consecutive days under 

supervision of research assistants and teachers.  
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Measurements  

Anthropometry 

Weight and height of children were measured at baseline and after the intervention according 

to standard procedures 
(29)

. Height was measured to the nearest 0.1 cm with a microtoise 

(Bodymeter 208; Seca GmbH, Germany). Weight was measured with an electronic scale 

(UNIscale; Seca GmbH, Germany) to the nearest 0.1 kg. At baseline and endpoint, both 

weight and height were measured twice for each child and the average of the two 

measurements was taken. The scales were calibrated with known weight each day 

measurements were taken. Age was calculated using verifiable records (birth certificate, 

health record, community birth register) or, estimated based on another child’s record or event 

on a traditional calendar (12 children). 

Chemical and biochemical measurements 

Iron concentration of Tubani, cowpea flour and cowpea seeds were measured using 

inductively coupled plasma atomic emission spectrophotometer (ICP-AES, Varian Vista-Pro, 

Palo Alto, CA, USA) after digestion with HNO3-HF-H2O2. Phytic acid determination was 

done using a modified Makower method 
(30)

 in combination with the van Veldhoven’s method 

(31)
 and expressed as inositol hexaphosphate (IP6). A modified Folin-Ciocalteau method 

(32)
 

was used to measure total polyphenol concentration of the Tubani.  

At baseline and after the intervention, 2 mL and 6 mL of whole blood was withdrawn into 

K2EDTA-coated and silica-coated serum separator vacutainers (Becton-Dickinson 

diagnostics, Belgium), respectively. Whole blood in K2EDTA vacutainers was stored in a 

cool box while in field and during transportation. Haematological analysis was done on the 

same day with a Pentra 60C+ automated analyzer (HORIBA ABX, Montpellier, France). 

ABX Minotrol 16 (HORIBA Medical, Benelux, Belgium) quality control samples were used. 
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Whole blood in silica-coated vacutainers was kept at ambient temperature while in field and 

during transportation.  Serum was separated using a centrifuge (Hettich GmbH, Germany) at 

500 x g for 5 min at room temperature. Separated serum was aliquoted, kept frozen at -80°C 

(Thermo Fisher Scientific, Asheville, USA) and subsequently transported on dry ice to 

Germany via the Netherlands for measurements of serum indicators. Both baseline and 

endpoint serum samples were analyzed together.   

Serum ferritin (SF), soluble transferrin receptors (sTfR), C-reactive protein (CRP) and α1-acid 

glycoprotein (AGP) were measured simultaneously using an in-house sandwich ELISA 

technique 
(33)
. All measurements were done in duplicates and if CVs were ≥ 10% 

measurements were repeated. The CVs (inter-assay) for the various indicators were: SF, 

2.6%; sTfR, 2.4%; CRP, 7.2% and AGP, 2.9%. Certified quality control samples from the 

CDC/Atlanta and Bio-Rad Liquicheck controls (Bio-Rad, Munich, Germany) were used. 

Anaemia was defined as haemoglobin concentration <115 g/L for children <12 y and <120 

g/L for children ≥12 y old; iron-deficiency as ferritin concentration <15 µg/L 
(8, 34)

; 

inflammation as CRP >10 mg/L and/or AGP >1.0 g/L 
(35)

; tissue iron-deficiency as serum 

transferrin receptor concentration >8.5 mg/L (Ramco equivalents) 
(36)

; iron-deficiency 

anaemia as concurrent anaemia and SF <15 µg/L and/or sTfR >8.5 mg/L. Body iron was 

calculated using Cook’s formula 
(37)

.  

Statistical analysis 

Data entry and processing was done in SPSS software (version 18.0, Armonk, NY, USA). 

Anthropometric Z-scores (height-for-age and BMI-for-age) were calculated using WHO 

AnthroPlus (version 1.0.3). Data distribution were checked by visual examination of Q-Q 

plots and histograms and tested for normality with Kolmogorov-Smirnov test. Variables not 

normally distributed were log-transformed and used in subsequent analysis. Analysis was by 
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intention to treat. Treatment effect was measured as group differences in outcome variables at 

the end of intervention 
(38)

. Effect sizes were evaluated for all continuous outcome variables 

(Haemoglobin, SF, sTfR and BI) using ANCOVA while controlling for baseline covariates 

(39)
. We present the results as crude and adjusted effect sizes. For log-transformed continuous 

variables (SF and sTfR), the β-estimates obtained from ANCOVA were exponentiated to 

obtain effect sizes in percentages which were in turn converted to their corresponding 

absolute values. Cox regression with adjusted variance (covsandwich) and constant time-to-

event 
(40, 41)

 was used to obtain prevalence ratios for binary outcomes like Anaemia, ID, IDA 

and malaria antigenemia in SAS (SAS Institute Inc., Cary, NC, USA).  

 

Table 1. Nutrient composition of cowpea-based meal served to children during intervention 

 

Tubani
1
                Sauce

2 
Total 

Energy, kcal 222 209 431 

Fat, g 1.3 16.0 17.3 

Protein, g 12.3 1.9 14.2 

Carbohydrate, g 40.2 4.6 44.8 

Fe, mg 11.4 ± 2.4
3 

2.2 ± 1.2 13.6 ± 2.6 

Phytate (Inositol hexaphosphate), mg 256 ± 13.0 119 ± 10.0 374.3 ± 16.4 

Polyphenols, mg GAE
 

24.8 ± 4.1 20.3 ± 1.0 45.1 ± 4.2 

1 
Unfortified Tubani. GAE, Gallic acid equivalent. 

2 
Contained 12 g false sesame seeds (Ceratotheca 

sesamoides) and 16.5 g groundnut oil. 
3 
Arithmetic mean ± SD, all such values. 

 

RESULTS 

Composition of Tubani and compliance 

Proximate, iron, phytic acid and polyphenol concentration of Tubani served during the 

intervention are presented in Table 1. The native iron in the cowpea seed used in this trial was 

~6 mg/100 g dry weight (~4.3 mg/serving) however the iron concentration of the unfortified 

cowpea flour was 13.1 ± 3.9 mg/serving due to added contaminant iron during milling. Based 

on the total Tubani consumed over the intervention period, the NaFeEDTA group consumed 
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on average 17.2 ± 2.5 mg Fe/day whilst the control group consumed 10.3 ± 1.3 mg Fe/day. 

Apart from iron concentration due to fortification, the composition of Tubani per serving for 

both groups was the same. Fortification iron remained stable over the period of intervention 

and did not cause clear discoloration (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Cowpea intervention trial profile: enrolment followed by 7 mo intervention. Hb, 

Haemoglobin concentration; NaFeEDTA, Sodium iron ethylene diamine tetraacetate. 

 

Compliance was not different between groups. There were 81 feeding days in total and on 

average children were present for 94% of the feeding days. The control group consumed an 

Eligible for enrolment 
n = 262 

Enrolled and 
randomly assigned            

n = 241 

-No baseline blood n= 7  
-Hb < 7 g/L n= 2  
-Migrated n= 4 
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Control Group 

n = 121 

NaFeEDTA Group 

n = 120 

End of feeding trial  
n = 117 

End of feeding trial  
n = 111 
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Travelled n= 2 
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analysis n = 115 
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analysis n = 109 

Total children in both 
schools 
n = 467 Not eligible n= 205 

   -Older than 12 y n= 80 
   -Younger than 5 y n= 125 
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average of 86% of the total quantity of Tubani served over the 7 mo compared to 88% in the 

fortification group. Of the 241 children enrolled, 228 completed the trial (Figure 1). The main 

reason for non-completion of trial in both groups was migration from the study area. Two 

children (both from iron fortified group) discontinued the study due to non-migratory reasons. 

One of them was not regular at school and subsequently stopped attending; the other did not 

like Tubani, information we did not have at enrolment. Background characteristics of children 

who dropped out were not different from those who completed the study (data not shown). 

Baseline characteristics 

At baseline only 19% of the children were negative for malaria antigenemia, and 47% had 

inflammation as marked by elevated CRP or AGP. The proportion of children with anaemia, 

iron-deficiency and iron-deficiency anaemia at baseline was 63%, 68% and 46% respectively. 

Summary values of iron status markers (Haemoglobin, SF, sTfR and BI), inflammation 

markers (CRP and AGP) and nutritional status, and prevalence of inflammation, iron-

deficiency and iron-deficiency anaemia were not significantly different between the groups at 

baseline. Typical for this area, 63% of school children in school were boys as seen in both 

groups (Table 2). 
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Table 2. Baseline characteristics of Ghanaian school children by intervention group
1 

 Group 

 Control  NaFeEDTA 

n 115 109 

Sex (male), % 63.5 62.4 

Age, y
 

8.17 ± 2.2
1 

7.83 ± 2.1 

Weight, kg
 

23.4 ± 5.5 22.1 ± 4.8 

Height, cm
 

122.2 ± 12.1 120.2 ± 11.4 

Height-for-age Z-score -1.36 ± 1.20 -1.56 ± 1.14 

BMI-for-age Z-score -0.46 ± 0.75 -0.49 ± 0.83 

Malaria antigenemia, % 81.7 80.7 

Iron Status markers   

     Haemoglobin concentration, g/L
 

109 ± 13 109 ± 14 

     Serum Ferritin (SF) concentration, µg/L
 

48.5 (27.2, 91.6)
 

52.1 (33.5, 92.4) 

  SF,  µg/L
 
excluding elevated CRP and/or AGP

2 
36.4 (22.3, 65.9) 39.1 (23.5, 84.5) 

     Transferrin receptor concentration, mg/L
 

11.0 (8.0, 12.9) 10.8 (8.2, 13.4) 

     Body Iron
3
, mg/kg bw

 
3.8 ± 3.8 4.3 ± 3.3 

Inflammation markers and classification   

     C-reactive protein concentration (CRP), mg/L
 

2.4 (0.3, 6.9) 2.1 (0.3, 3.7) 

     α1-acid glycoprotein (AGP), g/L
 

1.0 (0.8, 1.1) 1.0 (0.8, 1.2) 

     CRP >10 mg/L, % 22.6 20.2 

     AGP >1.0 g/L, % 38.3 49.5 

     CRP >10 mg/L and/or AGP >1.0 g/L, % 41.7 53.2 

Iron Status Classification   

     Anaemia
4
, % 63.5 65.1 

     ID based on SF <15 µg/L, % 7.8 6.4 

     ID based on SF <15 µg/L  

       excluding elevated CRP or AGP
2
, % 

 

11.9 

 

9.8 

     ID based on SF <15 µg/L  

       with Thurnham correction 
(42)

, % 

 

9.6 

 

7.3 

     ID based on SF <30 µg/L, % 29.6 22.0 

  ID as SF <15 µg/L and/or sTfR >8.5 mg/L,  % 66.1 70.6 

     IDA
5
, %

 
47.0 45.0 

1 
Values are mean ± SD, geometric mean (IQR) unless otherwise stated. BI, body iron; Hb, Haemoglobin; ID, 

iron-deficiency; IDA, iron-deficiency anaemia; SF, serum ferritin; sTfR, soluble transferrin receptor. 
2 
n = 67 for 

Control and 51 for NaFeEDTA group. 
3 
To convert BI from mg/kg to mmol/kg multiply by 0.0171

(43)
. 

4
 Defined 

as Hb <115 g/L for children <12 y or Hb <120 g/L for children >12 y. 
5 

Defined as anaemia and SF <15 µg/L 

and/or sTfR >8.5 mg/L. 
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Effect of the intervention on haemoglobin, ferritin, transferrin receptors and body iron 

stores 

Relative to baseline we observed a significant increase in haemoglobin concentration in both 

the NaFeEDTA group and the control group. Serum ferritin and transferrin receptor 

concentration, and body iron stores decreased significantly in both treatment groups after 7 

mo of intervention relative to baseline. Compared to non-fortified flour, consumption of 

cowpea flour fortified with NaFeEDTA resulted in significant increase in haemoglobin (P < 

0.05), serum ferritin concentration (P < 0.001), transferrin receptor concentration (P < 0.001) 

and body iron stores (P < 0.001) (Table 3). Prevalence of inflammation in both groups 

decreased from baseline by 80% (data not shown).  

P
re

va
le

n
c
e
, 

%

Control NaFeEDTA Control NaFeEDTA
0

20

40

60

80

Anemia

ID

IDA

       Baseline                                                   7 mo

*

 **

 

Figure 2. Prevalence of anaemia, iron-deficiency and iron-deficiency anaemia in control 

group and NaFeEDTA group at baseline and after 7 mo of intervention. n = 115 for Control 

and 109 for NaFeEDTA group. NaFeEDTA, Sodium iron ethylene diamine tetraacetate. 
*,**

 Different from corresponding bars in control group at 7 mo (Cox regression with adjusted 

variance (covsandwich)). 
*
P = 0.04, 

**
P = 0.002. 
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Effect of intervention on prevalence of anaemia, ID and IDA  

Post-intervention prevalence of anaemia, iron-deficiency and iron-deficiency anaemia was 

significantly lower compared to baseline in both groups (Figure 2). However, consumption of 

NaFeEDTA fortified Tubani did not result in a significant decrease in the prevalence of 

anaemia relative to control, but did result in 30% and 47% reduction (P < 0.05 in both) in the 

prevalence of iron-deficiency and iron-deficiency anaemia relative to control, respectively 

(Table 4). No adverse health outcomes related to the trial were observed. 

 

Table 3. Effect of NaFeEDTA fortification on iron status of school children in Ghana
1 

Variable Group P
2 

 Control NaFeEDTA  

n 115 109  

Hb endpoint, g/L 117 ± 13  120 ± 11  

     Crude effect - 3.4 (0.3–6.6)
 

0.030 

     Adjusted effect
3
 - 3.5 (1.2–5.7) 0.002 

SF endpoint, µg/L 26.2 (15.6, 42.3)
 

35.1 (27.2, 48.1)  

     Crude effect 

     Adjusted effect
3
 

- 

- 

8.6 (2.8–17.8) 

7.8 (2.8–14.7) 

0.001 

0.000 

sTfR endpoint, mg/L 8.8 (6.8, 10.6) 7.4 (6.1, 8.6)  

     Crude effect - -1.4 [-2.1– (-0.63)] 0.010 

     Adjusted effect
3
 - -1.2 [(-1.7– (-0.76)] 0.000 

BI endpoint
4
, mg/kg body weight 2.4 ± 3.5 4.1 ± 2.9  

     Crude effect - 1.7 (0.79–2.5) 0.000 

     Adjusted effect
3
 - 1.3 (0.7–2.0) 0.000 

1 
Values are mean ± SD, effect size (95% CI) or geometric mean (IQR). BI, body iron; Hb, Haemoglobin; SF, 

serum ferritin; sTfR, soluble transferrin receptor. 
2
 ANCOVA. 

3 
Adjusted for baseline factors (Hb, SF, sTfR and 

BI respectively).
 4 

To convert BI from mg/kg to mmol/kg multiply by 0.0171 
(43)

. 
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Table 4. Effect of NaFeEDTA fortification on iron status prevalence among school children 

in Ghana
1 

Iron Status Group P
2 

 Control NaFeEDTA  

n 115 109  

Anaemia endpoint
3
, % 34.8 33.9  

     Crude effect - 0.98 (0.68 – 1.40)
 

>0.05 

     Adjusted effect
4 

- 0.99 (0.72 – 1.37) >0.05 

ID endpoint
5
, % 45.2 28.4  

     Crude effect   - 0.63 (0.44 – 0.90) 0.010 

     Adjusted effect
4
 - 0.70 (0.50 – 0.98) 0.038 

IDA endpoint
6
, % 27.8 14.7  

     Crude effect - 0.53 (0.31 – 0.91) 0.020 

     Adjusted effect
4
 - 0.53 (0.36 – 0.80) 0.002 

1 
Values are prevalence ratios (95% CI) unless otherwise stated. BI, body iron; Hb, Haemoglobin; ID, iron-

deficiency; IDA, iron-deficiency anaemia; SF, serum ferritin; sTfR, soluble transferrin receptor. 
2
 Cox regression 

with constant time to event and adjusted variance (covsandwich). 
3 
Defined as Hb <115 g/L for children <12 y or 

Hb <120 g/L for children >12 y). 
4 

Adjusted for baseline factors (HB, SF, sTfR and BI respectively).  
5 
Defined as SF <15 µg/L and/or sTfR >8.5 mg/L. 

6 
Defined as anaemia and SF <15 µg/L and/or sTfR >8.5 

mg/L. 

 

Prevalence of malaria antigenemia during the trial 

Malaria antigenemia was found in 81% of the participating children in both groups at the start 

of the trial. At midpoint during the trial the prevalence decreased to 35% and 45% in control 

and NaFeEDTA groups, respectively [PR: 1.29 (95% CI = 0.93, 1.79)] and to 5% in both 

groups at the end of the trial (data not shown).  A subgroup analysis among iron deficient 

children did not show significant difference in prevalence of malaria antigenemia between 

groups [PR: 1.35 (95% CI = 0.92, 1.98)].   

 

DISCUSSION 

We investigated the efficacy of cowpea meal (Tubani), fortified with NaFeEDTA to supply 

extra 10 mg Fe/d for 3 d/wk, in improving iron status of school children in northern Ghana. 

Our results indicate that the consumption of fortified cowpea meal significantly improved 



                                                                                                                                                                    
Chapter 5 

126 

 

both functional and storage iron status and consequently reduced the prevalence of iron-

deficiency and iron-deficiency anaemia in school aged children. Reduction in anaemia 

prevalence however was not attributable to consumption of fortified cowpea meal.  

Our study was carried out in a malarious area and baseline measurements were taken at the 

peak of malaria transmission (October – November). Therefore there was high prevalence of 

malaria antigenemia at the start of the study. In the presence of infection and chronic 

inflammation (e.g. asymptomatic malaria) iron distribution shifts towards storage and 

sequestration 
(44)

. This may explain why at baseline we observed a significant positive 

correlation between SF concentrations and inflammation markers (CRP and AGP). As such, 

SF at baseline may not be a sensitive measure of ID. However, there was a decrease in 

concentrations of CRP and AGP corresponding to a 40% and 25% decrease in SF in control 

and NaFeEDTA group respectively at end of trial. This may be partly due to the lower 

malaria transmission in May and partly due to the malaria treatment and mass deworming 

given twice in the trial at 0 and 3.5 mo. Since both malaria antigenemia and inflammation 

decreased by more than 80% at end of trial, SF is most likely a sensitive marker of post 

intervention ID status of the children in our study. 

In malarious and high infection areas, the iron sequestration processes induced by hepcidin 

may be prominent, creating a condition similar to anaemia of inflammation 
(8, 45)

. This may 

explain why a number of efficacy studies from malarious areas with high infection and 

inflammation only show marginal effects on haemoglobin 
(46, 47)

. In our study however, we 

found a significant fortification effect on haemoglobin concentration. Contrary to our 

expectation we found no fortification effect on anaemia despite significant reduction in ID 

due to fortification. The lack of fortification effect on anaemia suggests, strongly, that in these 

children ID may not be the main cause of anaemia, but other factors such as malaria 
(48)

 and 
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helminth infestation 
(49, 50)

 may play a role, for which both groups in our trial received the 

same treatment. Since we did not have a placebo group we are unable to determine the effect 

of malaria and helminth treatment on anaemia.  Another reason for the lack of fortification 

effect on anaemia may also be that the magnitude of the improvement in haemoglobin 

concentration due to fortification was not sufficient to result in relative reduction in anaemia 

and perhaps a longer duration of feeding could lead to reduction in anaemia due to 

fortification.  

Our findings add to the growing body of evidence from field trials that NaFeEDTA is 

effective in improving iron status of vulnerable groups in developing countries. Earlier 

evidence was shown in condiments; curry powder (masala) in South Africa 
(51)

 and fish sauce 

in Vietnam 
(52)

. Recent evidence of efficacy in Africa came from a trial involving school 

children who were fed fortified whole maize porridge in Kenya 
(22)

. Unlike earlier studies, our 

trial used a highly inhibitory staple (cowpea) as the fortification vehicle. Cowpea is rich in 

both inhibitory phytic acid (PA) and polyphenols (PP) 
(53)

, unlike maize that is mainly rich in 

PA . In an iron absorption study, Petry and colleagues found that PA and PP as found in 

common beans inhibited iron absorption from FeSO4 independently and when concomitantly 

present but their combined inhibition did not seem to be additive 
(54)

. However, the ability of 

NaFeEDTA to overcome the combined inhibitory effect of PA and PP has not been 

investigated in a field trial. The current trial shows that NaFeEDTA overcomes the combined 

inhibitory effect of PA and PP in white cowpea varieties. 

Based on a difference in body iron stores of 1.7 mg/kg body weight between iron-fortified and 

control group at end of intervention relative to difference in fortification iron ingested over 

the same period, fractional absorption of fortification iron was ~7%. A previous fortification 

trial with similar level of fortification (10 mg Fe/d) despite higher frequency of consumption, 
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reported ~12% fractional iron absorption from NaFeEDTA in fish source eaten with rice 
(52)

. 

The difference in fractional absorption may be due to the fact that study participants were all 

anaemic women in whom iron absorption may be more efficiently up-regulated 
(55, 56)

. 

Another reason for the difference in fractional absorption could be the difference in 

fortification vehicle; cowpea is more inhibitory than fish sauce and rice due to its higher 

concentration of PA and PP.  

The findings of this trial may be an important proof of concept for the fortification of legumes 

and pea flours in general. These foods may be recommendable for use in school feeding 

programs due to their protein content. However, cowpeas contain high concentrations of 

absorption inhibitors (PP and PA). In addition, consumption of Tubani and other legume 

source foods in schools may be limited to 2–3 times/wk to decrease boredom, therefore a 

hypothetical fortification program should utilize a highly bioavailable iron compound. A 

limitation of  the use of NaFeEDTA may however be that  level of fortification in a future 

cowpea fortification will be restricted by ADI of EDTA since current JECFA 

recommendation allows only 0.2
2
 mg Fe/kg body weight as FeEDTA 

(57)
.  

Although our study was not designed and powered with malaria as endpoint, no significant 

differences in malaria antigenemia were found between the two groups at any point in the 

trial. In a subgroup analysis at 3.5 months, children with ID or who were iron replete at 

baseline did not show differential malaria antigenemia risk between groups, contrary to the 

findings of earlier supplementation trials with iron and other nutrients among pre-school 

children in malarious areas 
(58, 59)

. There is, therefore, need for further investigation.  

The challenge with iron fortification is the alteration of organoleptic properties of the fortified 

food. In the current trial the fortified flour was not distinguishable from the unfortified flour. 

                                                           
2
 Based on the 2007 JECFA report, this value should be 0.37 mg Fe/kg body weight. 
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After cooking, Tubani from the fortified flour looked slightly darker but the colour change 

was not immediately noticeable unless the two samples were placed side-by-side. The 

fortified Tubani also had a slight but bearable iron after-taste. These together could have 

offset the blinding. However since the feeding was done in parallel rooms and the children 

never got to see or taste the fortified and unfortified Tubani together, the integrity of the 

blinding was maintained. Moreover compliance did not differ between NaFeEDTA group and 

the control group. 

The results of this trial may be particularly relevant for northern Ghana; cowpea is widely 

used in the Government-sponsored school feeding program but it is only in northern Ghana 

that there is an opportunity to use cowpea flour-based recipes (e.g. Tubani). Therefore 

fortification of cowpea flour will be more useful as a school-based targeted intervention, 

combined with adequate treatment against helminths and malaria. In the absence of central 

milling and commercial cowpea flour on the market, it is unlikely that fortified cowpea will 

find use outside schools despite the popularity of cowpea flour-based recipes.  

In conclusion, our results have shown that NaFeEDTA overcomes the combined inhibitory 

effect of PA and PP. When used for targeted school-based intervention, fortification of 

cowpea flour is effective in improving iron status and consequently reducing the prevalence 

of IDA among school children in rural northern Ghana.  
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Iron-deficiency (ID) among schoolchildren in Ghana is a public health problem, especially 

among rural communities. A sustainable strategy would be one that utilizes local foods to 

contribute to solving ID while having the added potential to improve food sovereignty of local 

communities. The main aim of the research in this thesis is to improve iron status of 

schoolchildren through the consumption of locally produced cowpeas within a school feeding 

programme. To achieve this aim, five related studies were conducted, mainly in Tolon-

Kumbungu district of Ghana. The studies comprised cross-sectional studies, chemical analysis 

of cowpea landraces, an in vivo bioavailability study and a randomized intervention trial. In 

this chapter a summary of the main findings from all the studies in this thesis is given 

(temporal linkages shown in figure 6.1). A synthesis of the internal and external validity of 

the studies, the public health and policy implications of the findings as well as suggested 

future research directions are also presented. 

 

MAIN FINDINGS 

The status quo investigation indicated that iron-deficiency and iron-deficiency anaemia are 

severe public health problems among schoolchildren in northern Ghana with 8 and 7 out of 

every 10 schoolchildren affected respectively. It also showed that the probability of adequate 

dietary iron intake is close to 0.30 but much higher (~0.90) if schoolchildren benefitted from a 

school feeding programme (Chapter 2). The chemical analysis of cowpea landraces available 

in northern Ghana indicated that cowpeas contain appreciable amounts of iron (4.9–8.2 mg/ 

100 g
 
d.w) and zinc (2.7–4.1 mg/100 g

 
d.w) but also contain high amounts of inhibitory 

phytate (477–1110 mg/100 g
 

d.w) and polyphenol (327–1055 mg/100 g
 

d.w). 

Mothers/caregivers intended to give cowpeas to their schoolchildren 2–3 times per week. The 

positive attitudes of mothers towards cowpea predicted their intention to give them to their 

schoolchildren but they were worried about the cost, long cooking time and the discomfort 
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their children may feel after consuming cowpeas (Chapter 3). The main findings in chapter 

4 showed that the iron bioavailability from red and white cowpeas were 1.4 and 1.7%, 

respectively, in NaFeEDTA-fortified meals and 0.9 and 1.2%, respectively, in FeSO4-

fortified meals. Compared with FeSO4, fortification with NaFeEDTA increased the amount 

of iron absorbed from red and white cowpea meals by 0.05 and 0.08 mg (P < 0.05) 

respectively. Irrespective of the fortificant used, there was no significant difference in the 

amount of iron absorbed from the 2 varieties of cowpea despite difference in polyphenol 

concentration. In chapter 5, the efficacy trial among schoolchildren showed that fortification 

of whole cowpea flour with NaFeEDTA resulted in almost one-third and one-half reduction in 

the prevalence of iron-deficiency (ID) and iron-deficiency anaemia (IDA) (P<0.05), 

respectively. 

 

Efficacy of fortified cowpea  

- Fortification of whole cowpea flour with NaFeEDTA resulted in 30% and 47% reduction (P<0.05) in 
iron-deficiency and iron-deficiency anemia prevalence. 

Cowpea iron bioavailability and the potential for fortification 
 

- Within the same fortificant, no difference exist in the amount of iron absorbed from white (~0.17 mg)  
and red (0.11 mg) varieties of cowpea. 

- Compared with FeSO4, fortification with NaFeEDTA increased amount of iron absorbed from cowpea 
meals by 0.05 mg and 0.08 mg (P< 0.05). 

 

Status quo: background investigation 

- Prevalence of iron-deficiency and iron-    
deficiency anaemia: 81% and 69%. 

- Probability of adequate dietary iron and 
micronutrient intake: 0.72 and 0.32. 

- Iron content of cowpea landraces: 4.9–8.2 
mg/100 g dry matter.  

- Barriers and attitudes  predicted mothers' 
intention to give cowpeas to schoolchildren. 

Chapters 2 & 3 

Chapter 4 

Chapter 5 

Figure 6.1. Summary of main findings and their temporal linkages 
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INTERNAL VALIDITY 

The subsequent section in this chapter discusses the methodological considerations for the 

studies in chapters 2–5 which may potentially influence the conclusions in this thesis, namely 

selection bias, information bias and confounding.  

Selection bias 

Systematic differences in the recruitment of study participants or comparison groups lead to 

selection bias which may cause the relationship between exposure and outcome among those 

selected to participate to be different from that of those in the population who did not 

participate 
(1)

. Self-selection by volunteers and refusal to participate in a study are examples of 

selection bias that can lead to spurious conclusions 
(2)

. None of the studies in chapters 2, 3 and 

5 were based on self-selection thus eliminating the potential for self-selection bias. A 

sampling frame was constructed by pooling class registers in the respective schools from 

which schoolchildren were randomly selected to participate in the studies. One child per 

household was included in the studies and in cases where more than one child in a household 

was qualified one of them was randomly selected to participate.  

Another source of selection bias arises from refusal to participate but this did not occur as all 

children and parents who were selected consented and did participate. In chapter 5, systematic 

difference between treatment groups in dropouts and in compliance to the treatments is 

another potential source of bias. But checks showed that there was no difference in the 

characteristics of the children who dropped out from both treatment groups. Similarly 

compliance was high and similar between intervention and control group (88% vs. 86% 

respectively) indicating that a systematic difference between groups is unlikely. Our use of 

the intention-to-treat analysis maintained the integrity of the initial randomization  
(3)

.  
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Information bias 

Information bias occurs when there are either random or systematic differences in the 

measurement of exposures, outcomes and possible confounders or when some respondents 

provide different information from the rest of the sample 
(1)

. Common sources of information 

bias discussed here include misclassification/measurement bias, non-blinding of intervention 

allocation and outcome measurements, and recall and interviewer bias. 

Misclassification of iron status 

In both chapters 2 and 5, iron status is a key outcome measure. Classifying iron status of 

children in malaria endemic areas such as in this thesis is difficult and the risk of 

misclassifying children is high 
(4, 5)

. Serum ferritin (SF) is a sensitive biomarker of iron stores 

so it is recommended as a measure of iron status 
(6)

. However SF is also an acute phase 

protein and its level rises in response to inflammation independent of iron status 
(7)

 masking 

an otherwise deficient iron store. Prolonged exposure to malaria parasites may confer varying 

levels of immunity among schoolchildren and increase asymptomatic malaria 
(8)

. The 

presence of these malaria parasites can produce a chronic or mild acute phase response among 

asymptomatic children resulting in elevated SF 
(8)

. The baseline assessment of malaria 

antigenemia in chapter 5, showed high prevalence (81%) among the schoolchildren studied. 

Proportion of children with inflammation was also high (>40%). It is therefore most likely 

that SF values were elevated and could have underestimated iron-deficiency. To reduce 

misclassification iron-deficiency was defined as low SF and/or elevated sTfR. It is known that 

sTfR is a sensitive marker of tissue iron need and is not affected by inflammation 
(9, 10)

 so 

such a combination improved the classification of iron-deficient schoolchildren 
(4)

.  

Misclassification of anaemia status could also have occurred. Given the range of ages, 

schoolchildren fell into two categories for the classification of age specific haemoglobin 
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status. Wrong age classification could lead to wrong assignment of anaemia status and either 

underestimate or overestimate anaemia prevalence. WHO reference cut-offs for haemoglobin 

were used and care was taken to obtain accurate ages of schoolchildren based on verifiable 

documents such as birth certificates, community birth register and health cards. In the absence 

of these verifiable documents, age estimation is difficult because over 90% are not literate; 

however using events on a local calendar and verifiable record of a sibling good estimate was 

made for a small proportion (10%) of children.   

Blinding of intervention treatments 

The aim of blinding is to prevent information bias which may occur through knowledge of the 

nature of the allocated intervention and also through the preference of the researcher for a 

particular outcome 
(11)

. To minimize this form of information bias in chapter 5, both subjects 

and researchers were blinded to the intervention allocation and the code was not broken until 

data analysis was completed. Production, fortification and coding of cowpea flour were done 

by an independent food company. Integrity of blinding was maintained and the likelihood of 

cross-over treatment was eliminated by assigning different feeding rooms to colour codes 

throughout the intervention. Biochemical analysis was done by people unaware of the 

intervention treatment allocations. 

 Dietary assessment 

Accurate and precise assessment of habitual dietary intake of individuals and groups remains 

a major challenge in dietary assessment 
(2)

. Both systematic and random errors may occur, and 

measures to reduce the impact of these are critical components of a dietary assessment 
(2)

. In 

chapter 2, we aimed to estimate group level habitual nutrient intake and our use of 24-hour 

recall with a non-consecutive duplicate recall among a subsample has been recommended and 

shown adequate for such measurement 
(2, 12)

. With a duplicate recall from a 20% subsample of 
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schoolchildren we were able to estimate usual intake from the observed dietary intake by 

adjusting for day-to-day variation using the National Research Council’s (NRC) method 
(13)

. 

The use of the NRC adjustment method allowed precise estimation of the prevalence of 

inadequate nutrient intake among the schoolchildren based on probabilities. The alternative to 

the NRC method would have been to compare nutrient intakes to the RDA (recommended 

dietary allowance but this method seriously overestimates the proportion of a group at risk of 

inadequate nutrient intake 
(12)

. 

Major sources of systematic bias include under or over-reporting of intake and the processing 

of dietary information 
(2, 14)

. Misclassification of nutrient intake adequacy could have occurred 

as a result of under or over-estimation of food intake by mothers. To minimize misreporting 

of food intake, caregivers were taken through a systematic multiple-pass procedure which 

aided recollection of foods and ingredients used in preparation of meals at home 
(2)

. Also, 

because mothers were likely to omit foods consumed out-of-home such as fruits and snacks 

(15)
, children were present to assist with foods that were consumed out of home. The use of 

household measures from the respondents’ own home aided them to remember and to 

estimate quantities and portion sizes, and when food ingredients were available actual weights 

were taken to avoid mistakes with estimation. In addition to these measures, we examined 

likely misreporting by comparing  age and sex specific estimated energy requirement (EER) 

(16)
 to energy intake based on 24-recall. We found that most of the children were in positive 

energy balance but the anthropometric data did not confirm this as none of the children was 

overweight or obese. Therefore it is likely that caregivers overestimated the dietary intake of 

their schoolchildren. However this misreporting is less likely to affect the differences 

observed in nutrient intakes between the two groups since total energy intake from home-

consumption were not significantly different. 
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The use of food consumption tables to convert food intake into nutrients could introduce bias 

into nutrient intake estimates 
(2, 14, 17)

. The newly released West African food composition 

table (WAFCT) 
(18)

 was the primary source of nutrient composition because apart from 

capturing local foods in Ghana it also covered a wider range of nutrients compared to the 

Ghana food composition table. The food composition values in WAFCT are averages from 9 

countries and updated with data from scientific literature, theses, university reports and food 

composition databases. Nutrient values of cooked foods were calculated by using appropriate 

yield factors and nutrient retention factors 
(19)

. In addition the table was compiled following 

international standards for food composition and compilation 
(20, 21)

 thereby improving the 

quality and the validity of the dietary assessment.    

Mixing of stable isotope tag with test meals and sequence of test meals consumption 

A possible source of bias in chapter 4 is inadequate mixing of extrinsic stable iron isotope 

labels with test meals prior to consumption 
(22, 23)

.  The consequence is that extrinsic iron may 

not equilibrate with intrinsic iron in the test meal and may result in underestimation of 

bioavailability of extrinsic iron. It is not known how long it takes for extrinsic iron label to 

equilibrate with intrinsic iron but we believe that mixing prior to consumption (for 5 minutes 

in our case) was adequate 
(24)

. There is evidence that even when the tag is not homogenously 

mixed with the test meal but put in a component of the meal, there is subsequent equilibration 

in the stomach 
(25)

. Also our use of a test meal made from flour rather than whole grain 

improved equilibration and exchange between intrinsic and extrinsic iron 
(24)

. Cook et al. 
(26)

 

have demonstrated that in single meal studies the effect of iron absorption inhibitors is likely 

to be exaggerated. This observation implies the reported bioavailability in chapter 4 could be 

higher in composite meals. However the test meal as used in this thesis is representative of 

how it is traditionally consumed in Ghana. 
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Confounding 

A measure of an association between exposure ( e.g. fortified cowpea meal) and outcome (e.g. 

iron status of schoolchildren) is confounded if an explanatory/third factor is associated with 

both exposure and outcome at the same time 
(3)

. In chapter 2, unobserved/unmeasured 

community-level characteristics could be prognostic for the observed differences in dietary 

intake and/or iron status between school feeding participants and non-participants. We had no 

control over the selection of the communities for the pilot school feeding programme but tried 

to match community characteristics in the selection of control communities. Where there were 

differences in measured community-level characteristics, they were accounted for in analysis 

but residual confounding of unobserved or unmeasured/inaccurately measured characteristics 

could still be present 
(3)

. Even though we selected communities that were otherwise qualified 

but not selected for the pilot school feeding programme, there is the likelihood of selection 

bias and confounding by indication 
(27)

 which we could not eliminate. 

In chapter 5, the possibility for confounding was reduced by the randomization of 

schoolchildren into respective treatment groups 
(3)

. Possible confounders of the association 

between intervention and iron status were identified during design stage to include age, sex 

and nutritional status (weight and height) of schoolchildren. Block randomization was used to 

assign children into the treatment groups by a researcher who was not present in the field and 

had no personal contact with the children enrolled into the trial. The similarity between 

intervention groups with respect to baseline characteristics showed that randomization was 

successful albeit unknown/unmeasured confounders may be present. Malaria and helminthic 

infestations are two factors that could influence the outcome of intervention in the research 

area 
(4, 28)

. Therefore mass deworming as well as screening for malaria antigenemia among 

schoolchildren was carried out twice during the intervention however the possibility of re-

infestation during the intervention cannot be ruled out. 
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EXTERNAL VALIDITY 

Under this section, the main findings in this thesis as outlined in Figure 6.1 will be discussed 

in relation to other findings in literature and the extent to which our findings may be applied 

in different settings.   

Status quo: nutrient intake, micronutrient adequacy, and prevalence of iron-deficiency and 

anaemia among schoolchildren. 

The findings in chapter 2 indicate that in the absence of school feeding the probability of 

adequate micronutrient intake (especially iron) among schoolchildren is low (~0.30). This to a 

large extent reflects the poor quality of diets at the household level since almost all meals 

consumed by the non-school feeding children were from home. Micronutrient quality of 

cereal and legume-based diets of rural African households has been reported as poor and 

contributes to inadequate intake of bioavailable iron 
(29, 30)

. Although the school feeding 

programme is associated with an increased iron intake of about 5 mg (P<0.05), we did not 

find a difference in prevalence of iron-deficiency anaemia (~65%) between beneficiaries and 

non-beneficiaries of the school feeding programme. This supports the suggestion that iron 

bioavailability plays a major role in causing ID among children in this area and sub-Saharan 

Africa in general 
(31)

. The increment in iron intake in school feeding programme was largely 

due to the consumption of micronutrient fortified Corn-Soy Blend (CSB+) from World Food 

Programme, confirming that fortification is probably needed to achieve adequate iron intake 

(32, 33)
.  Combined with the observation that school meals did not replace home meals, long 

term intake of fortified school meals may augment iron intake and contribute to iron status.  

The prevalence of ID (~80%) reported in this chapter is higher than values reported among 

schoolchildren in other West African countries  irrespective of whether ID was defined by 

only SF as in Benin (49%) 
(34)

 or in combination with sTfR and/or ZnPP as in Cote d’Ivoire 

(45%) 
(4)

. However it is consistent with the high prevalence reported in chapter 5 (~70%) 
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although measured two years apart. It is unclear why ID prevalence is higher among the 

children in this thesis but the findings together point to the severity of ID as a public health 

problem in West Africa.  

The prevalence of anaemia (~80%) is also a severe public health problem in our study 

population and is similar to the 70% observed among schoolchildren in Cote d’Ivoire 
(28)

. 

Findings from northern Benin, in the same ecological zone as the research area in this thesis, 

suggest seasonal influence on anaemia; 70% in the post-harvest but 33% in the pre-harvest 

season 
(34)

. Even though malaria was not measured, the authors speculated that the difference 

was due to high malaria prevalence in the post-harvest season. Anaemia prevalence in chapter 

2 was measured in the post-harvest season; a period marking the end of peak malaria 

transmission in northern Ghana. Therefore, similar to Benin, malaria likely contributed to the 

high anaemia prevalence in accord with other studies 
(4, 28, 35, 36)

.  Moreover the high anaemia 

prevalence is again consistent with the baseline findings in chapter 5, also measured in early 

post-harvest season but two years apart, where malaria antigenemia was found among 80% of 

the children. 

Status quo: cowpea landraces and factors predicting consumption  

Human dietary behaviour is complex and getting a model that accurately predicts it is 

challenging. Two cognitive models have found wide use in predicting health and dietary 

behaviour: the theory of planned behaviour 
(37)

 and the health belief model 
(38)

. The 

overlapping constructs in these models have led to recommendation for their application as 

combined model in anticipation of improved predictive ability 
(39)

. The combined model was 

useful in predicting intention to consume fortified soy sauce in China 
(39)

. It has also been 

used to identify important factors influencing fonio consumption in Mali 
(40)

 and amaranth 

consumption in Kenya 
(41)

. In this thesis, the combined model identified two constructs as 
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significant predictors of mothers’ intention to give cowpeas to their schoolchildren; barriers 

and attitudes towards behaviour (chapter 3). Whereas barriers negatively predicted intention, 

attitudes of mothers towards cowpeas positively predicted intention. Consistent with previous 

applications of the intention model in Mali 
(40)

 and Kenya 
(41)

, the variance explained by the 

model was low despite the extensive literature search that was done to identify factors for 

inclusion into the behavioural models used in this thesis. The low predictive ability of the 

intention model suggests that other factors still need to be explored. It does not however 

invalidate the significant predictors (barriers and attitudes towards cowpeas) of intention 

identified in this thesis 
(42)

.  

Chapter 3 confirmed cost 
(43)

, long cooking time 
(44)

 and uneasiness after consumption 
(44, 45)

 

as important barriers to cowpea consumption. Cost is driven by market forces but 

investigation into processing techniques show that the use of cooking aids such as bicarbonate 

(rock or pure powder) have been reported to decrease cooking time without affecting the 

nutrient quality of cowpeas 
(46)

. The feeling of uneasiness has been reported to be related to 

flatulence producing properties 
(47)

 and can be reduced by soaking or fermentation 
(46)

.  

As shown in chapter 2, the prevalence of iron-deficiency is high and the probability of iron 

intake is low. For cowpeas to contribute significantly to dietary iron intake they must have a 

high concentration of potentially bioavailable iron 
(48)

. However the analysis of cowpea 

landraces in chapter 3 showed that even though cowpeas may have an appreciable amount of 

iron its bioavailability is likely low due to the high phytate-to-iron molar ratio: a ratio 

associated with inhibition of iron absorption 
(49)

. An assessment of commonly consumed 

cowpea dishes in Benin also suggest that phytic acid-to-iron molar ratios are still high enough 

to inhibit iron absorption 
(44)

. This is likely because phytate is heat stable up to a temperature 
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of ~100 
0
C thus making conventional heat processing at the household unable to degrade it 

(50)
.  

Cowpea iron bioavailability and potential for fortification 

The 2×2 cross-over stable isotope study in chapter 4 showed that the absolute amounts of iron 

absorbed from both white and red cowpeas were similar. Investigations of iron absorption 

from common beans support these findings. Among iron replete women, Beiseigel et al. 
(51)

 

found that the amounts of iron absorbed from white and brown varieties of common beans 

were similar. The same observation was made among Rwandan women with marginal iron 

stores when iron absorptions from white and red common beans were compared 
(52)

. 

Donangelo et al. 
(53)

 observed that even within the same variety of common beans, the amount 

of iron absorbed from a high iron genotype was similar to that from a low iron genotype. 

These findings point to a common observation; varietal or genotypic differences may not 

influence the amount of iron absorbed from cowpeas or common beans. Thus conventional 

biofortification of cowpeas for improved iron concentration alone may not be adequate to 

improve intake of bioavailable iron unless native phytate and polyphenols are both reduced 

drastically. Independent of each other, phytate and polyphenols decrease iron bioavailability 

(54)
. Breeding a cowpea variety with very low phytate and polyphenol is a challenge for 

breeders. Due to the difference in the location of phytate and polyphenols in cowpeas 
(50)

, pre-

consumption treatment/processing of cowpeas such as soaking, milling, dehulling, 

germination, fermentation and roasting may have different effects on their concentrations.  It 

may therefore require multiple processing techniques to drastically reduce both inhibitors 

which may lead to loses of other important minerals such as zinc, magnesium and calcium 
(50, 

54)
.   
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The findings in chapter 4 also showed that iron absorption from cowpea fortified with 

NaFeEDTA is better than when fortified with FeSO4 although the fractional absorption was 

generally low (<2%). In other absorption studies, the potential of NaFeEDTA as a fortificant 

has been shown in vehicles other than cowpeas 
(55-58)

.  A simulated calculation using the low 

bioavailability observed in chapter 4 showed that even the consumption of cowpeas with iron 

content similar to biofortification target of ~10 mg/100 g 
(48, 59)

 may not improve iron status 

unless it is fortified with a highly bioavailable iron compound like NaFeEDTA (Abizari, 

unpublished data). Madode et al.’s work on traditional processing to improve iron availability 

of cowpea foods in West Africa, also supports the need to explore the fortification of cowpea 

flour 
(44)

.  

Efficacy of fortified whole cowpea flour 

Whole cowpea flour fortified with NaFeEDTA improved body iron stores and reduced the 

prevalence of iron-deficiency by 30% and iron-deficiency anaemia by 47% among 

schoolchildren (Chapter 5). To our knowledge, no previous study has reported on the efficacy 

of fortified whole cowpea flour. However in Kenya, whole maize flour fortified with 

NaFeEDTA decreased iron-deficiency and iron-deficiency anaemia by 91% and 89% among 

3–8-year-old children 
(60)

. NaFeEDTA fortified whole wheat flour was also efficacious in 

reducing iron-deficiency and iron-deficiency anaemia by 67% and 51% among iron depleted 

6–15-year-old Indian schoolchildren 
(61)

. These two interventions have shown markedly 

different effect sizes albeit similar fortification levels. Relative to Kenya, it was expected that 

the intervention effect in India would be larger because of the absence of potential blunting by 

both malaria 
(62)

 and helminths 
(28)

 coupled with inclusion of children with low iron status; a 

known determinant of iron absorption 
(63)

. It is not immediately clear what accounts for the 

difference but low detection (precision) of iron status in Kenya could have been masked by 

inflammation and the few detected were truly iron-deficient and responded well to the 
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intervention. The smaller effect size in our study relative to Kenya and India could be 

attributed partly to our use of cowpea as vehicle which may have dual inhibition by both 

phytic acid and polyphenols 
(64)

 compared to maize and wheat that have main iron inhibition 

from phytic acid.    

There are concerns that a highly bioavailable iron compound such as NaFeEDTA may not be 

desirable for flour fortification in malarious areas because it is suspected to create a milieu of 

non-transferrin bound iron (NTBI) which may be used by malaria parasites to proliferate and 

thereby worsen infestation 
(65)

. Troesch et al. showed that 6 mg fortification iron as 

NaFeEDTA used in a stable isotope study did not increase NTBI among healthy women 
(66)

 

suggesting that this may mitigate the safety concerns associated with using NaFeEDTA for 

fortification in malaria endemic areas 
(67)

. However this proof of principle investigation is yet 

to be demonstrated on the field. There is therefore need to monitor malaria morbidity in the 

implementation of fortification programmes in malaria endemic areas so that potential harm 

may be identified 
(65)

. The school setting provides a favourable environment for such 

monitoring. Another safety concern regarding the use of NaFeEDTA as fortificant has been 

related to adverse effect on zinc and other important minerals 
(68)

. In developing countries, 

iron-deficiency often coexists with zinc deficiency 
(69, 70)

 and it is feared that using 

NaFeEDTA as a fortificant may further worsen zinc deficiency. In this thesis zinc status was 

not measured but other field studies in Kenya 
(60)

 and India 
(71)

 showed that fortification with 

NaFeEDTA within recommended levels 
(72)

 for schoolchildren is unlikely to worsen zinc 

status or urinary zinc excretion respectively. 

In 2009, the WHO-led expert committee issued a consensus directive to use NaFeEDTA as 

the only recommended fortificant for whole maize and high extraction wheat flour 

fortification 
(73)

. The findings in chapter 5 indicate that NaFeEDTA is not only effective in 
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phytic acid-rich cereals but can be extended to include whole legume flours that are phytic 

acid as well as polyphenol-rich. The relatively high cost of NaFeEDTA still make people 

favour the use of elemental iron in flour fortification 
(74)

 albeit poorly absorbed and has 

previously not shown efficacy in Africa 
(28, 60)

. It is however envisaged that increasing 

utilization of NaFeEDTA will drive its cost towards levels that would allow wider use as 

whole flour or high extraction flour fortificant.  

 

GENERAL CONCLUSIONS 

Overall, the research in this thesis has shown that in a malarious region with high iron-

deficiency like (northern) Ghana, iron status of schoolchildren can be improved through the 

consumption of cowpeas within a school feeding programme. The improvement in iron status 

is however unlikely to result from the usual/conventional consumption of cowpeas but 

through fortification of whole cowpea flour with a highly bioavailable iron compound. This 

thesis has also shown that NaFeEDTA is a suitable iron compound for whole cowpea flour 

fortification irrespective of whether the cowpea has low or high concentration of polyphenols. 

IMPLICATIONS FOR PUBLIC HEALTH PRACTICE AND FUTURE RESEARCH 

The consistency in the findings of intervention studies involving NaFeEDTA in inhibitory 

cereals 
(60, 61)

 and legume vehicles collectively establish it as the compound of choice for 

fortification in Africa and similar settings. However its application at the population level in a 

place like Ghana may still be hampered by lack of central milling of staple cereal flours 
(75)

. 

Currently there is no legislation for mandatory fortification in Ghana 
(75)

 but even if enacted it 

will only affect industrially processed flours. Cowpea flour is not in this category confining it 

to small scale processing. Supplying cowpea flour to schools would require centralized 

processing and perhaps this could trigger the development of a business model for the 

fortification of legume flour.   
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A school feeding programme is a social protection intervention with potential to improve 

educational participation and nutritional status of school-going children 
(76)

. Even though this 

thesis shows that participation in school feeding programme seems to benefit micronutrient 

intake in general and iron intake in particular (chapter 2), iron bioavailability may remain 

poor due to high native phytate of staples 
(31)

. Using NaFeEDTA fortified food within a 

school feeding programme will not only improve absorption of fortification iron but also that 

of native iron in cowpeas 
(74)

 thus contributing substantially to dietary iron intake among 

schoolchildren. There is need however for complementary regular deworming of 

schoolchildren because apart from preventing blunting of fortification 
(77)

 it can also improve 

anaemia status independent of other interventions 
(28)

. Currently deworming of schoolchildren 

is not an integral part of the school feeding programme so the Government and partner 

organizations should consider making deworming an integral and regular component of the 

school feeding programme.  

An important observation in chapter 2 is that home meals were not replaced by school lunch 

of school feeding beneficiaries. This is contrary to what was reported in Southern Ghana 
(78)

. 

Given that only two beneficiary schools in one district were studied in this thesis, the 

observation (no replacement) may not be generalizable to northern Ghana and thus calls for 

similar studies in other districts.  

The assessment of malaria antigenemia halfway through the intervention in this thesis 

suggests that the fortification group had higher prevalence (45% compared to 35%) though it 

did not reach statistical significance. A subgroup analysis to further examine whether there 

was differential prevalence between iron replete and iron-deficient children was not possible 

because iron status was not measured at mid-intervention therefore baseline iron status was 

used. This could have affected the relationship between antigenemia and fortification since 
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both were not measured at the same time. The very low prevalence of antigenemia at the end 

of intervention did not also allow for comparison. There is the need to further examine the 

influence of NaFeEDTA fortification on malaria morbidity. 

The acceptable daily intake (ADI) expressed on body weight basis, is the estimated amount of 

food additive that can be ingested daily over a lifetime without appreciable health risk 
(79)

. For 

EDTA, the Joint FAO/WHO Expert Committee on Food Additives (JECFA) has set it at 1.9 

mg/kg body weight 
(72)

. Given the inhibitory nature of cowpea flour coupled with the quantity 

of cowpea flour consumed per capita in this thesis, fortification guidelines suggest 

fortification level of 40 ppm 
(73)

. Future research should evaluate the efficacy of cowpea flour 

on iron status at lower enrichment. 

Over the seven months duration of the intervention in this thesis, cowpea flour was milled in 

two batches and none of the batches was used for more than four months. Monthly samples of 

the cowpea meal showed stability of fortification but we could not measure effect of extended 

period of storage on sensory qualities of both the flour and the cowpea meal. Such 

investigation is desirable in future.  

THE TELFUN PROGRAMME – A REFLECTION 

The TELFUN programme was designed to demonstrate how focusing on a local and 

culturally accepted index crop could contribute to improve food sovereignty in developing 

regions of the world. The hypothesis is that by improving food sovereignty, nutritional status 

(iron) of the people would also improve. The causes of such a problem as iron deficiency are 

varied and cut across disciplines. An interdisciplinary team is thus appropriate to find a 

solution. In the Ghana/Benin arm of the programme the index crop that was investigated by 

the team (breeder, food technologist, nutritionist and social scientist) is cowpea. The nutrition 

component has contributed to the TELFUN programme aim by demonstrating that a local, 
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well-embedded index crop like cowpea could be adapted to improve iron status of 

schoolchildren within a school feeding programme. Specifically the nutrition research has 

shown that whole cowpea flour is a good vehicle for NaFeEDTA fortification.  

The interdisciplinary approach of the programme created a platform to first disagree across 

disciplines, understand why there was disagreement and to find reasons to agree. Such 

constructive process eventually created consensus and focus, and the need to coordinate 

disciplinary studies. The coordinated network study (CNS) at the start of the programme 

allowed a comprehensive understanding of the problems relevant to actors in the cowpea 

network and offered opportunity to identify discipline-specific as well as cross-disciplinary 

questions for further investigations. Interdisciplinarity also created interdependence which did 

not always work as planned but forced innovation. For instance, the nutrition component was 

expected to receive and test a cowpea variety with “improved iron and  inc content” from the 

breeder and “improved processing technique” from the food technologist. Whereas it was 

unrealistic to receive an improved variety of cowpea from breeder within a short period, it 

became also clear with time that an improved processing technique of existing cowpeas was 

unlikely. Thus the links of nutrition with breeding and food technology became weak. But the 

continuous interactions among these disciplines still helped to move the nutrition research 

forward.  

Even though the original plan to test an improved variety and processing technique was no 

longer feasible, the food sovereignty concept continued to inform the design of the nutrition 

intervention trial. Preliminary investigations prior to selection of intervention (chapters 3 and 

4) suggested that fortification rather than mere consumption of cowpeas with high native iron 

could improve iron status of school children.  Staying within the concept of food sovereignty, 

the local food system was explored further for a flour-based local dish that was acceptable and 
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could serve as a fortification vehicle. Tubani (a cowpea flour-based steam cooked paste) was 

eventually identified as a suitable vehicle in consultation with communities and was tested in 

the intervention. Food sovereignty advocates for the use of local resources to solve local 

problems, but in the context of cowpea flour fortification as tested in this thesis an external 

input (fortificant) was introduced. Since the introduction of this external input was in 

consultation with the stakeholders in the communities and was found acceptable, it supported 

food sovereignty.  

The annual workshops organised by the TELFUN programme improved interaction within 

and between disciplines. It also sustained interest in the programme and prevented stagnation 

of individual projects. The rotation of the annual workshops helped the researchers to 

appreciate the common challenges in the different locations around which the TELFUN 

programme was formulated. Through this, it was easier to understand and appreciate the 

socio-cultural context within which each researcher was working; each researcher had a 

global picture of their local research. 

In a semi-controlled setting, the TELFUN programme has served as proof-of-principle that it 

is possible to work on a common theme despite disciplinary differences and contribute to food 

sovereignty. 
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Summary 

In sub-Saharan Africa children are more likely to have survived the critical first 1000 days of 

life carrying along unresolved micronutrient deficiencies into the school-age. In addition, the 

growth spurts during the school-age period also impose high nutrient requirements which are 

seldom met by dietary intakes and often cause micronutrient deficiencies. Iron-deficiency is 

the most prevalent micronutrient problem affecting school-age children in sub-Saharan Africa 

and yet the most difficult to resolve. It is necessary to ensure an adequate iron intake through 

the diet. However, if in school, the dietary intake of school-age children is less closely 

supervised by parents and this may affect micronutrient intake. School-based feeding 

interventions may therefore be a way to improve iron intake of school-age children. Such a 

feeding intervention would be more sustainable if it embeds locally produced food(s) with the 

potential to support food sovereignty. In this context, this thesis investigates whether foods 

based on cowpeas, an indigenous legume crop originating from Africa, can be used in a 

school feeding setting to improve iron status of school-age children in Ghana. This research 

was done as part of an interdisciplinary programme known as TELFUN (Tailoring food 

sciences to Endogenous patterns of Local food supply for Future Nutrition) involving 

breeders, food technologists, nutritionists and social scientists from Ghana/Benin, India and 

Ecuador. 

The investigations in this thesis comprised cross-sectional studies, chemical analysis of 

cowpea landraces, an in vivo bioavailability study and a randomized intervention trial 

conducted mainly in Tolon-Kumbungu district of Ghana. In a cross-sectional study, we first 

investigated the status quo of schoolchildren (5-13 years old) comparing iron status, iron 

intake and its adequacy between beneficiaries and non-beneficiaries of the Ghana school 

feeding programme (Chapter 2). The results indicated that iron-deficiency and iron-

deficiency anaemia are severe public health problems among schoolchildren in northern 
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Ghana with 8 and 7 out of every 10 schoolchildren affected respectively. It also showed that 

the probability of adequate dietary iron intake is 0.32 but much larger (~0.90) if 

schoolchildren benefitted from a school feeding programme. The high but similar prevalence 

of iron-deficiency among school feeding beneficiaries and non-beneficiaries coupled with the 

difference in iron intake and adequacy between these two groups suggested that: (i) school 

feeding did not close the iron gap and (ii) iron bioavailability from the diet may be low. This 

indicated towards the need to promote consumption of iron dense foods with good 

bioavailability. Compared to commonly consumed cereals like maize and rice, cowpeas have 

a higher content of iron and perhaps landraces with high iron content could be promoted to 

improve iron intake within a school setting.  

To understand what factors would be important to consider in promoting consumption of a 

cowpea variety with high iron content, we conducted a cross-sectional study among 120 

mothers-schoolchild pairs using a combined model of the Theory of Planned Behaviour and 

Health Belief Model in chapter 3. Mothers/caregivers intended to give cowpeas to their 

schoolchildren 2–3 times per week. The positive attitudes of mothers towards cowpea 

predicted their intention to give them to their schoolchildren but they were worried about the 

cost, long cooking time and the discomfort their children may suffer after consuming 

cowpeas. We also analysed the iron, zinc, phytic acid and polyphenols content of 14 locally 

available cowpea landraces in northern Ghana and found that they contain appreciable 

amounts of iron (4.9–8.2 mg/ 100 g
 
d.w) and zinc (2.7–4.1 mg/100 g

 
d.w) but also high 

amounts of inhibitory phytate (477–1110 mg/100 g
 
d.w) and polyphenol (327–1055 mg/100 g

 

d.w). Polyphenol concentration in particular differed (P<0.05) between white and coloured 

landraces. This led to the conclusion that the conventional consumption of cowpeas may not 

improve bioavailable iron intake. 
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This led to the studies in chapter 4 where in vivo iron absorption from cowpea (stable iron 

isotope labelled) was measured and potential fortificants for cowpea flour were evaluated in a 

2×2 cross-over design involving 16 apparently healthy young women. The setup compared 

white and red varieties of cowpea with different concentrations of polyphenols but similar 

phytic acid-to-iron molar ratios. The findings showed that iron bioavailability from red and 

white cowpeas were 1.4 and 1.7%, respectively, in NaFeEDTA-fortified meals and 0.89 and 

1.2%, respectively, in FeSO4-fortified meals. Compared with FeSO4, fortification with 

NaFeEDTA increased the amount of iron absorbed from white and red cowpea meals by 0.05 

and 0.08 mg (P < 0.05) respectively. Irrespective of the fortificant used, there was no 

significant difference in the amount of iron absorbed from the 2 varieties of cowpea. The 

results suggested that rather than polyphenols, phytic acid-to-iron molar ratios may determine 

iron absorption from cowpeas. The results further suggested that NaFeEDTA is more 

bioavailable fortificant in cowpea flour than FeSO4. 

 In chapter 5, the efficacy of NaFeEDTA-fortified cowpea flour in improving iron status was 

tested in a double-blind randomized controlled trial among 241 schoolchildren (5–12-year-

old).  Eligible children received either cowpea meal fortified with 10 mg Fe/meal as 

NaFeEDTA or an identical but unfortified cowpea meal on 3 non-consecutive days for 7 

months. The results showed that fortification of whole cowpea flour with NaFeEDTA resulted 

in improvement of haemoglobin (P<0.05), serum ferritin (P<0.001) and body iron stores 

(P<0.001), and reduction in transferrin receptor concentration (P<0.001). Fortification also 

resulted in 30% and 47% reduction in the prevalence of iron-deficiency (ID) and iron-

deficiency anaemia (IDA) (P<0.05), respectively. 

Overall, the research in this thesis has shown that in a malarious region with high iron-

deficiency like (northern) Ghana, iron status of schoolchildren can be improved through the 
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consumption of cowpeas within a school feeding programme. The improvement in iron status 

is however unlikely to result from the usual/conventional consumption of cowpeas but 

through fortification of whole cowpea flour with a highly bioavailable iron compound. This 

thesis has also shown that the most suitable iron compound for such whole cowpea flour 

fortification is NaFeEDTA irrespective of whether the cowpea has high or low concentration 

of polyphenols. 

This thesis has provided evidence that cowpea flour fortification can be explored within a 

school setting to improve iron status and consequently educability of schoolchildren an 

African setting. Future research should evaluate the efficacy of cowpea flour on iron status at 

lower enrichment than used in this thesis and assess the effect of extended period of storage 

on sensory qualities of both the flour and the cowpea meal.  
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Samenvatting 

Kinderen in sub-Sahara Afrika die hun eerste kritische 1000 levensdagen hebben overleefd, 

gaan vaak met onopgeloste micronutriëntendeficiënties hun schooljaren tegemoet. Daarnaast 

vraagt de groeispurt in de schoolleeftijd ook extra nutriënten en deze worden zelden via het 

voedsel aangeleverd. In sub-Sahara Afrika is ijzertekort het meest voorkomende 

micronutriëntenprobleem bij schoolgaande kinderen. Helaas is deze ook het moeilijkst te 

bestrijden. Het is daarom noodzakelijk dat er voldoende ijzer in de voeding zit. Wanneer 

kinderen naar school gaan, kunnen ouders de voedselinname van hun kinderen echter minder 

in de gaten houden en dit kan dan ook bijdragen aan een ijzertekort. Interventies op school 

zouden daarom een goede manier kunnen zijn om de ijzerinname van schoolkinderen te 

verbeteren. Zo’n schoolvoedingsinterventie  ou duur amer  ijn wanneer het gebruik maakt 

van lokaal geproduceerd voedsel ter ondersteuning van voedselsoevereiniteit. Binnen deze 

context onderzoekt deze studie of voedsel gebaseerd op cowpeas, een inheemse leguminose 

van Afrikaanse oorsprong, gebruikt kan worden in een schoolvoedingsprogramma ter 

verbetering van de ijzerstatus van schoolkinderen. Deze studie vormt een onderdeel van een 

groter interdisciplinair onderzoek met de naam TELFUN (‘Tailoring food sciences to 

Endogenous patterns of Local food supply for FUture Nutrition’) waarbij plantenveredelaars, 

voedseltechnologen, voedingskundigen en sociaal-wetenschappers uit Ghana, Benin, India en 

Ecuador betrokken zijn. 

De studies in dit proefschrift omvatten cross-sectionele studies, chemische analyse van 

cowpeas rassen, een in vivo biobeschikbaarheidsstudie en een gerandomiseerde 

voedingsinterventie, allen uitgevoerd met name in Tolon-Kumbungu District in Ghana. In een 

cross-sectionele studie bepaalden we eerst de ijzerstatus, de ijzerinname en of deze inname 

voldoende was bij schoolkinderen (5-13 jaar oud), en  vergeleken inname en status tussen 

kinderen van scholen die wel en die niet betrokken waren bij het Ghanese 
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schoolvoedingsprogramma (Hoofdstuk 2). De resultaten lieten zien dat 8 van de 10 kinderen 

ijzerdeficiënt waren en dat 7 van de 10 kinderen bloedarmoede door ijzerdeficiëntie hadden 

en dit wijst er op dat zowel ijzerdeficiëntie als bloedarmoede door ijzerdeficiëntie ernstige 

gezondheidsproblemen vormen in noord Ghana. De studie gaf ook aan dat de kans op 

voldoende ijzerinname via voedsel 0.32 was en dat deze kans veel hoger is (0.90) wanneer het 

kind deelneemt aan het schoolvoedingsprogramma. Dat de ijzerinname hoger is bij 

schoolkinderen die deelnemen aan het schoolvoedingsprogramma maar dat de prevalentie van 

het ijzertekort niet verschilt tussen beide groepen wijst erop dat: (1) de schoolvoeding het 

tekort aan ijzerinname niet volledig opheft en dat (2) de biobeschikbaarheid van het ijzer in 

het voedsel mogelijk laag is. Dit geeft aan dat het noodzakelijk is om de consumptie van 

voedsel met een hoog gehalte aan biobeschikbaarijzer te stimuleren. Vergeleken met gangbare 

granen zoals mais en rijst, hebben cowpeas een hoger ijzergehalte en misschien kunnen rassen 

met een nog hoger gehalte gevonden worden die gebruikt kunnen worden om ijzerinname van 

kinderen in een schoolvoedingsprogramma te verbeteren. 

Om te begrijpen welke factoren belangrijk zijn bij de promotie van de consumptie van 

cowpeas rassen met een hoog ijzergehalte, hebben we een cross-sectionele studie gedaan bij 

120 moeder-kindparen. In deze studie maakten we gebruikt van een gecombineerd 

gedragsmodel gebaseerd op de ‘Theory of Planned Behaviour’ en het ‘Health Belief Model’ 

(Hoofdstuk 3). Moeders gaven aan dat ze van plan waren hun schoolkinderen 2 tot 3 keer 

week cowpeas te laten eten. De positieve houding van moeders ten opzichte van cowpeas 

bepaalde in belangrijke mate hun voornemen om hun kinderen cowpeas te geven. Ze maakten 

zich echter zorgen over de kosten, de hoeveelheid tijd die nodig is om de cowpeas te koken en 

het ongemak dat de kinderen ondervonden na het eten van cowpeas. We analyseerden ook het 

gehalte aan ijzer, zink, phytaten en polyfenolen van 14 lokaal beschikbare cowpeas rassen in 

noord Ghana. We vonden dat zij aanzienlijke hoeveelheden ijzer (4.9-8.2 mg/100 g 
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drooggewicht) en zink (2.7 – 4.1 mg/100 g drooggewicht) bevatten maar ook hoge gehaltes 

aan fytaten (477-1110 mg/100 g drooggewicht) en polyfenolen (327-1055 mg/100 g 

drooggewicht). De polyfenolen concentraties verschilden met name tussen witte en gekleurde 

rassen. Aangezien fytaten en polypfenolen de absorptie van ijzer remmen, concludeerden we 

dat de consumptie van conventionele cowpeas rassen de inname van opneembaar ijzer 

waarschijnlijk niet verbetert.  

Dit leidde tot de studies beschreven in hoofdstuk 4. Daarin werd in een in vivo stabiele 

isotopenstudie  de ijzerabsorptie uit cowpeas gemeten en werden potentiele ijzerfortificanten 

geëvalueerd in 16 gezonde jonge vrouwen in een 2 X 2 cross-over studie-opzet. De studie 

vergeleek witte en rode cowpeas rassen met verschillende polyfenolenconcentraties  maar met 

vergelijkbare fytaat:ijzer molar ratio’s. Resultaten lieten zien dat de ijzerbiobeschikbaarheid 

in rode en witte cowpeas 1.4% en 1.7% was in het geval van fortificatie met NaFeEDTA en 

0.89% en 1.2% wanneer gefortificeerd werd met FeSO4. Vergeleken met FeSO4, verhoogde 

de fortificatie met NaFeEDTA de  geabsorbeerde hoeveelheid ijzer uit witte en rode cowpeas-

maaltijden met 0.05 en 0.08 mg (P<0.05). Er was geen significant verschil in de 

geabsorbeerde hoeveelheid ijzer tussen de twee cowpeas rassen, onafhankelijk van welke 

fortificant was gebruikt. De resultaten suggereren dat de fytaat:ijzer molar ratio’s belangrijker 

zijn voor de absorptie van ijzer in cowpeas vergeleken met polyfenolen. Ook wijzen ze er op, 

dat NaFeEDTA een betere beschikbare fortificant is in cowpeas dan FeSO4.  

In hoofdstuk 5 is het effect van NaFeEDTA-gefortificeerd-cowpeas meel op een verbetering 

van de ijzerstatus van 241 schoolkinderen (5-12 jaar oud) in een dubbel-blind 

gerandomiseerde trial getest. Kinderen ontvingen óf een cowpeas maaltijd die gefortificeerd 

was met 10 mg Fe per maaltijd in de vorm van NaFeEDTA, óf een identieke niet-

gefortificeerde cowpeas maaltijd op 3 niet-opeenvolgende dagen per week gedurende  een 

periode van 6 maanden. De resultaten laten zien dat fortificatie van een cowpeas maaltijd met 
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NaFeEDTA leidde tot een verhoging van hemoglobine (P<0.05), serumferritine (P<0.001) en 

ijzeropslag in het lichaam (P<0.001) en tot een verlaging van transferrin-receptor concentratie 

(P<0.001). Fortificatie leidde ook tot een significant verlaging van de prevalentie van 

ijzerdeficiëntie (30%), en van de prevalentie van bloedarmoede door ijzerdeficiëntie (40%).  

Samenvattend laten de studies in dit proefschrift zien dat in gebieden waar malaria heerst en 

waar veel ijzerdeficiëntie voorkomt, zoals in noord Ghana, de ijzerstatus van schoolkinderen 

verbeterd kan worden door consumptie van cowpeas in een schoolvoedingsprogramma. De 

verbetering van de ijzerstatus vindt waarschijnlijk niet plaats wanneer de conventionele 

cowpeas worden gegeten maar alleen wanneer de cowpeas maaltijden verrijkt worden met een 

ijzerfortificant met een hoge biobeschikbaarheid. Dit proefschrift laat ook zien dat 

NaFeEDTA de meest geschikte ijzerfortificant voor cowpeas meel is ongeacht een hoge of 

lage concentratie aan polyfenolen. 

De studies in dit proefschrift leveren bewijs dat fortificatie van cowpeas meel  onderzocht kan 

worden in een schoolsituatie ter verbetering van de ijzerstatus en het daaropvolgend 

leervermogen van schoolkinderen in Afrika. Vervolgonderzoek zou zich moeten richten op de 

evaluatie van het effect van cowpeas meel op de ijzerstatus met fortificant concentraties die 

lager zijn dan die wij gebruikt hebben in ons onderzoek en op   het effect van langdurige 

cowpeas-opslag  op de sensorische kwaliteit van zowel het cowpeas meel als de cowpeas 

maaltijd.  
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