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   1
Adapted from two published reviews: 

Joosen RVL, Ligterink W, Hilhorst HWM, Keurentjes JJ (2009) Advances in genetical genomics of plants. Current 

Genomics. Vol. 10: 540-549. 

 

Ligterink W, Joosen RVL, Hilhorst HWM (2012) Unravelling the complex trait of seed quality: using natural variation 

through a combination of physiology, genetics and -omics technologies. Seed Science Research. Vol. 22: S45–S52. 

 
 

Abstract 

Seed quality is a complex trait that is the result of a large variety of developmental 

processes. The molecular-genetic dissection of these seed processes and their relationship 

with seed and seedling phenotypes will allow the identification of the regulatory genes and 

signaling pathways involved and thus, provide the means to predict and enhance seed 

quality. Natural variation for seed quality aspects found in recombinant inbred line (RIL) 

populations is a great resource to help unraveling the complex networks involved in the 

acquisition of seed quality. Besides extensive phenotyping, RILs can also be profiled by 

‘omics’ technologies like transcriptomics, proteomics and metabolomics in a sophisticated 

so-called generalized genetical genomics approach. This combined use of physiology, 

genetics and several ‘omics’ technologies, followed by advanced data analysis allows the 

construction of regulatory networks involved in the different aspects of seed and seedling 

quality. This type of analysis of the genetic variation in RIL populations in combination with 

genome wide association (GWA) studies will allow a relatively quick identification of genes 

that are responsible for quality related traits of seeds and seedlings. New developments in 

several ‘omics’ technologies, especially the fast evolving next generation sequencing 

techniques, will make a similar system wide approach more applicable to non-model 

species in the near future and this will be a huge boost for the possibilities to breed for 

seed quality. 

 

GENERAL INTRODUCTION 
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Seed Quality 

Seed quality is a complex trait and comprises many different attributes describing 

the condition of a seed batch. These attributes include germination characteristics, 

dormancy, seed and seedling vigor, uniformity in seed size, normal embryo- and seedling 

morphology, storability, absence of mechanical damage, as well as the ability to develop 

into a normal plant (Dickson 1980; Hilhorst and Toorop 1997). Seed quality is largely 

established during seed development and maturation, as a result of, often complex, 

interactions between the genome and the environment. This mechanism is part of the 

normal adaptation of plants to a varying environment and is aimed at maximizing the 

probability of successful offspring (Huang et al. 2010).  

The practical definition of seed quality is determined by the end user and 

therefore, will differ substantially, depending on the use of seeds as propagule or 

commodity. For farmers or plant growers high quality seeds are those seeds that germinate 

and produce seedlings to a high percentage under a wide range of field conditions. On the 

other hand, high quality seeds for use in the food industry may be seeds with a high starch 

or oil content or oil seeds with a specific fatty acid composition (Nesi et al. 2008). As a 

result of the complexity of seed quality, testing for seed quality in order to predict 

subsequent behavior in the field is troublesome and at best an ‘educated guess’ (Powell 

2006). Therefore, seed producers have included additional attributes to the term seed 

quality such as usable plants and seedling and crop establishment. The trait ‘usable plants’ 

is one of the main characteristics of seed quality used by seed producers and plant growers. 

 Seed companies may enhance seed quality at all the different steps of the 

production process. At present seed companies try to obtain the best possible seeds mainly 

by varying the time and method of harvest, but especially by post-harvest treatments such 

as cleaning, sorting, coating and priming and controlling the storage conditions. Besides 

these methods, seed quality can also be improved by controlling the production 

environment. It is known that seed quality is largely acquired during seed development and 

particularly during the maturation phase by the successive acquisition of seed quality 

parameters such as germinability, desiccation tolerance, dormancy, vigor and longevity 

(Harada 1997) and that the environmental conditions during development have a huge 

impact on these different seed quality aspects. As a result, quality of different seed lots that 

are produced in different seasons and locations will vary. Nevertheless, influencing 

production environments is difficult, even under greenhouse conditions. Furthermore, 

since there is a complex interaction between the genome and the environment during 

development, the final effect of the environment on seed quality is difficult to determine 

and still largely unknown. Finally, the genetic component of the interaction between the 

genome and the environment can be investigated and this variation in genetic adaptation 

provides great opportunities for seed companies to breed for seed quality. 
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Natural variation for seed quality 

Although abundant natural variation for seed quality exists, genetic components 

of seed quality have hardly been used in breeding programs. Exploiting natural variation is a 

powerful way to find the genes influencing important physiological processes. There are 

several ways to exploit natural variation, but in plants QTL (Quantitative Trait Loci) analysis 

of recombinant inbred line (RIL) populations have been widely used. In this type of analysis, 

linkage is sought between the genetic variety and the variation of phenotypic traits in the 

different RILs (Alonso-Blanco and Koornneef 2000) whereby the QTL represent the genomic 

regions explaining the phenotypic variation that is identified in this way. QTL analysis in 

plants has revealed a long list of genomic regions with variation for a broad variety of 

phenotypes and several of the genes underlying these QTLs have been cloned (reviewed in 

(Salvi and Tuberosa 2005; Gupta et al. 2009)). The complex nature of the trait seed quality 

makes it a perfect trait to decipher with a QTL approach, particularly because different 

aspects of seed quality have been proven to have sufficient natural variation to tackle this 

subject. In Arabidopsis thaliana different QTLs were found for dormancy (Bentsink et al. 

2010) and several germination characteristics (Clerkx et al. 2004; Galpaz and Reymond 

2010; Joosen et al. 2010). In tomato, different QTLs for germination characteristics under 

stress (Foolad et al. 2003; Foolad et al. 2007) and for seed size (Doganlar et al. 2000) have 

been identified. In Medicago truncatula several QTLs were identified for germination at 

extreme temperatures (Dias et al. 2011) and germination and seedling growth under 

osmotic stress (Vandecasteele et al. 2011). Zeng et al. (2006) have identified QTLs for seed 

storability in rice and in lettuce QTLs have been identified for several germination 

characteristics including thermo inhibition (Argyris et al. 2008).  

In spite of these and other studies on specific aspects of seed quality, a systematic 

study of the genetics of seed quality is still lacking. A more systematic approach studying 

genetic populations differing in seed and seedling quality parameters will provide valuable 

insight in the involvement of genes, and the processes they control, in the acquisition of 

seed quality. Until now, only a few QTL positions have been cloned and characterized in 

detail, but if genes or gene sets associated with seed quality parameters become available, 

they may be used as diagnostic tools to assess seed quality, in marker-assisted breeding, or 

in genetic modification to enhance seed quality.  

High throughput phenotyping 

With the developments in sequencing technologies that enable fast and relative 

inexpensive genotyping and expression analysis, accurate phenotyping is becoming the 

limiting step in studying large genetic populations. To overcome this problem several 

initiatives have been taken to enhance phenotyping, mainly by implementing high-

throughput phenotyping platforms for analyzing plant morphology as in the Australian 

‘High Resolution Plant Phenomics Centre’ (HRPPC) (www.plantphenomics.org/hrppc), and 

http://www.plantphenomics.org/hrppc
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the Lemnatec systems (www.lemnatec.de) that perform fully automated imaging and 

subsequent data extraction of growing plants. For the systemic analysis of the different 

aspects of seed quality several (semi-)automatic phenotyping systems can be used. One of 

the most important aspects is the (semi-)automatic scoring of germination. Several 

methods to achieve this have been reported by Dell'Aquila (2009) and, more recently, by 

Joosen et al. (2010), who introduced the GERMINATOR package. Furthermore analysis of 

seedling shape and growth with systems like that of the previously mentioned HRPPC and 

Lemnatec and analysis of the root architecture of the seedlings with programs such as EZ-

Rhizo (Armengaud et al. 2009) and Roottrace (French et al. 2009) will become important 

for the in depth analysis of seed quality. 

Genetical genomics: omics QTL analysis 

Fine mapping of QTL is a crucial step for plant breeding as genetic drag should be 

minimized in every step during the breeding process. Furthermore cloning of genes 

responsible for the QTL can provide great insight in the molecular mechanism underlying 

the adaptation. Although the causal genes for several seed-quality QTLs have been cloned 

and more are underway (Salvi and Tuberosa 2005), fine-mapping and ultimate cloning of 

these genes is very labor-intensive and time-consuming. Therefore classical QTL analysis 

can be considered as a low throughput technique. 

Like for many physiological traits, variation in gene expression often shows a 

quantitative distribution, hence, all the classical statistical tools and concepts for QTL 

mapping can be applied for its genetic dissection. Thus, subjecting expression variation to 

linkage analysis identifies genetic regulatory loci, and ideally genes, explaining the observed 

variation. Knowing the position of genes and their corresponding expression QTLs (eQTLs) 

renders great opportunities for dissecting quantitative traits. This was first recognized by 

Jansen and Nap (2001) who outlined a concept, coined ‘genetical genomics’, in which the 

combination of a genotyped segregating population (i.e. genetics) and genome-wide 

expression profiling (i.e. genomics) is used to formulate hypothetic regulatory pathways 

and unravel complex traits in a more high-throughput manner. Analogously, similar 

approaches can be followed for data derived from other ‘omic’ technologies such as 

proteomics (pQTLs) and metabolomics (mQTLs) (Keurentjes et al. 2008).  

The first study reporting a proof of principle of genetical genomics was performed 

in Saccharomyces cerevisiae (Brem et al. 2002). In a relatively small population of 40 

haploid segregants from a cross between a laboratory and a wild type strain, it was shown 

that parental differences in gene expression were highly heritable and amenable to genetic 

mapping. This first report was quickly followed by more comprehensive eQTL studies in 

higher eukaryotes (Schadt et al. 2003) and has now been applied in a broad range of 

taxonomic groups including yeast (Brem et al. 2002; Yvert et al. 2003; Bing and Hoeschele 

2005; Leach et al. 2007), nematodes (Li et al. 2006), insects (Wittkopp et al. 2004; Hsieh et 

al. 2007), plants (DeCook et al. 2006; Keurentjes et al. 2007; West et al. 2007; Potokina et 

http://www.lemnatec.de/
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al. 2008), rodents (Bystrykh et al. 2005; Chesler et al. 2005; Hubner et al. 2005) and 

humans (Monks et al. 2004; Dixon et al. 2007; Göring et al. 2007; Myers et al. 2007; 

Stranger et al. 2007; Emilsson et al. 2008). All studies demonstrated the power of 

combining gene expression and genetic analyses to refine molecular pathways involved in 

complex phenotypes and to identify key driver genes thereof. Moreover, they have shown 

general and conserved mechanisms of expression regulation which improved our 

understanding of adaptive strategies and evolutionary concepts (Wittkopp et al. 2004; 

Mitchell-Olds and Schmitt 2006). 

Genetic architecture of gene expression variation 

The detection of eQTLs depends on a number of factors, which together 

determine the proportion of genetically regulated genes that can be observed. First, 

biological factors such as the assayed tissue, developmental stage or environmental 

conditions and the genotypic diversity present in the mapping population determine which 

genes are expressed and exhibit allelic variants, respectively. Second, statistical issues like 

population type and size, genetic map quality, measurement accuracy and the number of 

genes analyzed determine mapping power and detection thresholds. Because all these 

aspects vary between different experiments, reported fractions of regulated genes range 

from only a handful to over 50% of the total gene content. 

Regulation in cis 

Given the prerequisite of allelic variation, there can be many reasons why genes 

are differentially expressed in genotypically diverse individuals of a species. Well-known 

phenomena are allelic variants of transcription factors and other regulators, cis-elemental 

variation in promoter sequences, differences in mRNA stability, copy number variation and 

genomic rearrangements such as translocations, insertions and deletions. The latter include 

gene loss and duplication, resulting in neo- and sub-functionalization. Most of these 

variations in DNA structure will result in eQTLs but depending on the position of the causal 

polymorphism, an important dissection is made in local and distant eQTLs (Figure 1.1) 

(Rockman and Kruglyak 2006). Local eQTLs can be the result of closely linked trans-acting 

factors but in the majority of cases result from cis-regulatory variation in the genes under 

study.  By definition eQTLs acting in cis affect transcription initiation, rate and/or transcript 

stability in an allele-specific manner. In addition, cis-regulated genes might encode 

regulators affecting the expression of downstream target genes in trans. Although the 

exact proportion varies between studies the occurrence of cis-acting eQTLs is substantial, 

ranging from one-third to half of the total number of eQTLs (Gibson and Weir 2005). 

However, because of limitations in mapping resolution, eQTL support intervals 

may still contain multiple genes and as a result the classification of cis-eQTLs should be 

used with care. To discriminate true cis-regulatory polymorphisms from local trans-

regulation, allele specific expression (ASE) assays can be performed (Cowles et al. 2002). 
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Figure 1.1: Classification of eQTLs (solid line) 
based on the expression of the gene under 
study (blue box) and location of the causal 
polymorphism (red bar). A) local cis-eQTL, 
result from allelic variation of the gene under 
study. B) local trans-eQTL, causal 
polymorphism within the eQTL confidence 
interval but not inside the gene under study 
(no allele specific expression) C) distant 
trans-eQTL, gene under study is located 
outside the confidence interval of its eQTL. 

 

 

In such assays a transcribed polymorphism is used to enable discrimination between the 

parental transcripts and test for allele specific expression in an F1 hybrid. Because both 

parental alleles share the same genetic background in F1 hybrids, and therefore are equally 

exposed to trans-acting factors, any difference in expression can only be explained by true 

cis-acting variation. Usually, ASE-assays are performed by single gene qRT-PCR approaches 

but the recent development of whole genome SNP-tile microarrays (e.g. in Arabidopsis) 

enables the simultaneous testing of genome-wide ASE (Zhang et al. 2007). 

Although expression differences are treated as quantitative traits in mapping 

approaches, qualitative differences, characterized by a total lack of expression for one of 

the allelic variants, can also be observed. The variation in a measurable detection signal can 

be due to differences in hybridization efficiency, which can be confirmed with genomic 

DNA hybridization, or genuine loss of transcription. Hybridization efficiency differences are 

often caused by polymorphisms in the complementary sequences of the microarray probes 

or mRNA splice variation and are not necessarily accompanied by transcription differences. 

True transcription variation however, can be caused by strong polymorphisms in promoter 

regions, premature stop mutations and even the complete absence of genes in one of the 

parental lines (Gilad and Borevitz 2006). Both hybridization and true transcription variation 

will lead to strong cis-eQTLs which can subsequently be used as molecular markers, 

allowing the construction of high-resolution maps (Borevitz and Chory 2004; West et al. 

2006). 

Regulation in trans 

The majority of differentially expressed genes will show a quantitative expression 

profile with complex inheritance patterns. This is because in general genes are regulated by 

many independent factors which can show up as trans-eQTLs. Because of the multiplicity of 

regulators and the often-observed epistasis between them, each trans-eQTL can have a 

relatively small effect. In addition, compared to the direct regulation of cis-eQTLs, the 

accumulation of stochastic variation in the expression of trans-regulated genes is indirectly 
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also determined by the expression variation of one or more regulators. As a result the 

detected number of trans-eQTLs relative to the number of cis-eQTLs drops when the 

stringency for detection is increased (Doss et al. 2005).  

Whereas cis-eQTLs are inherently associated with the gene in which they reside, a 

single gene can be responsible for the appearance of multiple trans-eQTLs throughout the 

genome. As a consequence the genome-wide distribution of cis-eQTLs is dependent on 

local gene density, although variation in chromatin structure can have an impact on the 

exposure of eQTLs. The distribution of trans-eQTLs however, can deviate substantially from 

what can be expected based on gene density. The identification of so-called hot spots, 

genomic regions with a high density of trans-eQTLs, can be explained by major regulators, 

e.g. transcription factors, which influence the expression of many downstream genes. In 

Arabidopsis this was illustrated by the large number of genes mapping to the ERECTA locus, 

a gene well-known for its pleiotropic effects on many morphological and developmental 

traits (Keurentjes et al. 2007). These findings suggest that the effects of key-regulators in 

gene expression are progressed to the phenotypic level. This was recently confirmed in a 

QTL study comparing transcript, protein and metabolite data with phenotypic traits (Fu et 

al. 2009). Here, only a limited number of QTL hot spots with major, system-wide effects 

were detected, indicating that most of the genotypic variation is phenotypically buffered. 

These findings support the theory of biological robustness where hotspots indicate 

fragilities in this genetic buffering system (Kitano 2004). Until now only a few reported 

hotspots have been verified and the number of detected hotspots is far from consistent 

between different genetical genomics studies. The latter reflects differences in the 

analyzed populations, species and conditions used and additionally might be the 

consequence of different statistical procedures used to identify eQTLs (Breitling et al. 

2008). Because of the difficulties in cloning QTLs and the large biological relevance of 

hotspots, additional sources of information are often used to reduce the number of 

candidate genes or even predict the causal regulator. Such methods use information on 

gene ontology, (co-)expression, transcription factor binding sites and targets, ChIP-Seq and 

protein-protein interaction (Zhu et al. 2008). Together with computational methods such as 

regulatory modeling this can severely reduce the number of candidate genes and prioritize 

remaining candidates for further experimentation (Figure 1.2). 

Genetical genomics in plants 

As discussed above many principles of genetic regulation are shared among 

different phylogenetic taxa. Not all species however are equally suited for large-scale 

experimentation. Sometimes evolutionary distances withhold translation of biological 

relevant findings in less conserved mechanisms, e.g. in yeast and Drosophila, or long 

generation times, inbreeding depression and moral and ethical issues hinder 

experimentation, e.g. in humans and other mammals. Plants, representing one of the 

largest kingdoms, are therefore often used to test concepts in genetic studies. 
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Figure 1.2: Schematic representation of candidate gene selection with a genetical genomics approach. A) Five 
chromosomes of Arabidopsis thaliana (I-V) with a QTL support interval for a phenotypic trait indicated on 
chromosome III. B) eQTL plot showing the position of genes and their corresponding eQTLs. Genes within the 
support interval can be causal for the observed QTL, of which cis-regulated genes, indicated in green, represent 
the strongest candidates. Genes outside the QTL support interval but regulated in trans by the same locus, 
indicated in red, might be involved in the biological process under study and represent downstream effects of the 
QTL. C) Available prior information of the selected genes such as gene ontology and biological interaction data can 
assist in limiting the number of genes to those most likely involved in the trait under study. D) Connectivity 
between the remaining genes is then used to construct maximum likelihood hypothetical regulatory networks 
which will suggest the strongest candidate regulator gene causal for the observed phenotypic QTL.  

The ease to generate large families from experimental crosses and the ability to store 

genotypes in the form of seeds or clonal propagation make plants ideal subjects to study 

the mechanistic basis of genetic regulation of traits. 

Arabidopsis as a reference plant 

The comprehensive resources which are available for Arabidopsis thaliana, such as 

a whole genome sequence, a large collection of natural variants and an ever-increasing 

number of molecular tools, made it the favorable model for genetical genomics research. 

As a non-obligate selfing species Arabidopsis combines the ability to cross-pollinate with 

high tolerance to inbreeding. Together with its short generation time and high reproductive 

success rate this enables the fast generation of large experimental populations such as 

Recombinant Inbred (RI) and Introgression Line (IL) populations. The availability and 

immortal character of such populations enable the accurate estimation of phenotypic 
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values through replicated measurements and allows the testing of traits in different 

environments (Paran and Zamir 2003). 

Traditionally QTL studies of ‘classical’ physiological traits in RIL populations are 

followed by mendelizing detected QTLs in near isogenic lines (NILs) for detailed analyses. By 

isolating QTLs from their genetic background it becomes much simpler to study their 

genetic effect and relate resulting phenotypes to other processes. Because it is expected 

that much of the phenotypic variation is the resultant of differences in gene expression and 

phenotypic perturbation in turn leads to transcriptional reprogramming, data mining for 

relationships between trait values and expression levels has become a common tool 

(Weckwerth et al. 2004). Very often mutants, knockouts or over-expression lines are used 

for these purposes, in which the effect of a single gene perturbation is tested on both the 

phenotypic and the expression level. For complex traits however, the causal genes leading 

to altered phenotypes are often not known and QTL analyses only identify genomic regions 

containing such genes. Nevertheless, using RIL populations to identify QTLs for a 

phenotypic trait and subsequently analyzing NILs for expression differences can be a 

powerful alternative to explore the functional relationship between genotype and 

phenotype (e.g. Juenger et al. 2005; Juenger et al. 2006). Although the regions spanned by 

NILs can still contain hundreds of genes, of which many may display allelic variation 

between accessions, the cis-regulated genes are strong candidates explaining phenotypic 

diversity. High detection stringency can limit the number of differentially expressed genes 

to a reasonable number of candidate genes with strong local eQTLs (Juenger et al. 2006). 

 The availability of a whole genome sequence in Arabidopsis provides unique 

opportunities, especially when multiple (epistatic) phenotypic QTLs are detected. Knowing 

the position of genes allows the identification of strong cis-regulated genes co-locating with 

phenotypic QTLs. An early eQTL study in Arabidopsis analyzed genome-wide gene 

expression in a limited population of only 30 individuals, mimicking shoot regeneration 

conditions (DeCook et al. 2006). Two of the eQTL hotspots found coincided with shoot 

regeneration QTLs. The most significant eQTLs within these hotspot regions showed local 

chromosal linkage with their corresponding genes but the majority acted distantly. These 

results suggest that heritable cis-regulated expression changes of key-regulators determine 

in trans the expression of many genes related to differences in shoot regeneration 

efficiency between accessions. It also indicates that a long signaling cascade may exist 

between the causal genotypic polymorphism and the eventual phenotype. 

In contrast to the former study it is not always necessary to combine phenotypic 

measurements with expression analysis. Often, many genes are known to play a role in the 

exposure of certain traits without knowledge about the genetic regulation of these genes. 

Specific analysis of such genes can help to identify common regulators. In the first genome-

wide eQTL study in Arabidopsis, using a complete RIL population (162 lines), this concept 

was used to predict possible key-regulators of flowering time and circadian rhythms 

(Keurentjes et al. 2007). The benefits of using large populations for eQTL studies became 

also apparent in another study where expression analyses were performed in a RIL 
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population of 211 individuals (West et al. 2007). Whereas in the majority of cases only a 

single QTL could be detected per differentially expressed gene in the aforementioned 

studies, here the expression of many genes was controlled by multiple eQTLs. Moreover, a 

much larger fraction of genetically regulated genes was identified with a higher proportion 

of trans-regulated genes of which the vast majority exhibited small effects. 

The studies performed in Arabidopsis show that the statistical power to detect 

eQTLs depends largely on population size. Nonetheless, it cannot be excluded that 

differences in the analyzed tissues, developmental stages and populations used, such as 

parental variation, linkage distortion and recombination frequency, are responsible for part 

of the observed differences. All studies however, clearly demonstrated that variation in 

gene expression is for a large part genetically controlled, with much stronger effects of cis-

eQTLs compared to trans-eQTLs. In general, cis-eQTLs also exhibit much higher heritability 

values and are obvious candidates to act as causal regulators of genes showing trans-eQTLs 

in the hotspots that could be detected in each of the discussed studies. The detection of 

regulatory loci for gene expression and the elucidation of their interaction networks might 

therefore provide the research community with a powerful tool to unravel the complex 

nature of natural variation in quantitative traits.  

A good example of the power of genetical genomics is described by Jimenez-

Gomez et al. (2010) who identified EARLY FLOWERING 3 (ELF3) as the most likely candidate 

gene affecting the shade avoidance response of Arabidopsis in a Bayreuth-0 x Shahdara 

population. For narrowing down to ELF3 as the only candidate causal gene for a shade 

avoidance QTL identified in this population, they combined publicly available datasets to 

perform network analysis with eQTL data (West et al. 2007) co-expression analysis (Winter 

et al. 2007) and functional classification (Ashburner et al. 2000). Drastically narrowing down 

on the number of candidate genes with this kind of approach is feasible for all QTLs where 

the causal alleles result in differential gene expression of the causal gene. However, this 

approach will not be applicable to the cases where the alleles causal for a QTL do not have 

an effect on gene-expression, but on activity or stability of the encoded protein. In these 

cases, other levels like pQTL or mQTL and other data types, including protein-protein 

interactions and metabolic pathways can help to narrow down on the causal genes. 

Applications in crop species 

Genetical genomics studies in Arabidopsis and other model species have shown 

the enormous benefits of the availability of an annotated genome sequence. However, 

until now full annotated genome sequence information for crop species is only available for 

Zea Mays (Schnable et al. 2009), Solanum lycopersicum (Tomato Genome Consortium 

2012), Sorghum bicolor (Paterson et al. 2009), Oryza sativa (Goff et al. 2002; Yu et al. 2002), 

Populus trichocarpa (Tuskan et al. 2006),Vitis vinifera  (Jaillon et al. 2007) and Carica 

papaya (Ming et al. 2008). This relatively low number of sequenced crop species can be 

explained by their often immense (polyploid) genome sizes and the highly repetitive nature 
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of many crop genomes (Burke et al. 2007). Nevertheless, sequence efforts for many more 

species, are ongoing and the increasing power of next-generation sequencing will soon lead 

to an almost unrestricted availability of genomic sequence information. Although an 

annotated genome is a valuable resource for the comparison of the genomic position of 

genes and their respective eQTLs, for most crop species this is not feasible yet. 

Nonetheless, several studies in crops for which genetic maps are available have shown that 

comprehensive genetical genomics approaches are possible without the need for 

annotated genome sequences (Kirst et al. 2004; Street et al. 2006; An et al. 2007; 

Poormohammad Kiani et al. 2007; Shi et al. 2007; Venu et al. 2007).  

Illustratively, one of the first large genetical genomics experiments was performed 

in an economically important species, viz. Eucalyptus (Kirst et al. 2004). QTL analysis of 

transcript levels of lignin-related genes showed that their mRNA abundance is regulated by 

two genetic loci coinciding with QTLs for stem diameter growth. Genetic mapping of some 

of the candidate genes showed that most of the lignin genes are under control of a trans 

eQTL hotspot which suggests that transcription of many of the genes in this pathway are 

under a higher level of coordinated control. A strong cis-regulated gene encoding S-

adenosylmethionine synthase, co-locating with the growth and transcription QTLs, was 

presented as the possible rate limiting step in lignin biosynthesis and as such a strong 

candidate for the observed QTLs (Kirst et al. 2004).  

In some crops the required availability of genomic sequence data for large-scale 

classification of cis/trans eQTLs can be circumvented by making use of synteny with other 

species. In wheat, synteny with rice was used to assist the physical mapping of wheat genes 

(Jordan et al. 2007). A genetical genomics approach was conducted in a segregating 

population of 41 doubled haploid (DH) lines to study agronomic important seed quality 

parameters. Assuming that the most significantly different expressed genes were cis-

regulated, a selection of genes was subjected to synteny analyses. This enabled the 

positioning of genes with biologically relevant linkage to phenotypic traits in a species for 

which full genome sequence is not available yet.  

In the absence of genome-wide micro-arrays, expressed sequence tag (EST) 

libraries allow the construction of species specific sub genome-scale microarrays. In maize, 

cell-wall digestibility, which is the major target for improving the feeding value of forage 

maize, was analyzed in a RIL population (Shi et al. 2007). In addition forty extreme RIL lines 

were hybridized on a small microarray with 439 preselected candidate ESTs for cell-wall 

digestibility genes for which 89 eQTLs could be mapped. One eQTL hotspot co-located with 

a cell-wall digestibility related QTL (Shi et al. 2007). The application of genetical genomics 

approaches can be of special interest here when the detection of eQTLs is combined with 

ASE assays. The thus identified cis-regulated genes can then be positioned on the genetic 

map where they may serve as candidate genes underpinning phenotypic QTLs.  

An interesting alternative for species for which no (EST) sequence information is 

available at all, and hence no microarrays can be produced, is a gel-based cDNA-AFLP 

approach (Vuylsteke et al. 2006). Here AFLP band intensities, reflecting expression 
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differences, are profiled for a large proportion of the transcribed gene pool enabling 

standard eQTL analyses procedures. AFLP bands showing significant eQTLs can 

subsequently be sequenced to obtain the identity of the gene from which the fragment was 

derived. Additionally, the cDNA-AFLPs can be used to construct a genetic map.  

The examples given above show that genetical genomics is not necessarily 

restricted to model species but can be applied to any species in which experimental crosses 

are possible even in the absence of genomic sequence or genetic map information. The 

potential of combining phenotypic QTL analysis with gene expression traits is shown in a 

number of economically important species, e.g. Populus (Street et al. 2006), cotton (An et 

al. 2007), rice (Venu et al. 2007) and sunflower (Poormohammad Kiani et al. 2007).  The 

application of genetical genomics is particulary promising in breeding programs of crops 

that take advantage of hybrid vigor. The eQTLs involved in heterosis will segregate 

consistently in a F1 backcross population thereby identifying valuable targets for marker 

assisted breeding for the best combination of alleles in the parents of the hybrid (Kirst et al. 

2005). 

Network reconstruction 

Genetical genomics harbors the potential to dissect the genetic regulation of a 

specific biological process. Therefore, methods to reconstruct regulatory networks from 

eQTL data have obtained much attention. Prioritizing on cis-eQTLs that co-locate with a 

phenotypic QTL is a valuable approach for causal gene discovery, but in many cases little is 

known about the global regulation, interaction and function of genes that control a 

biological process. Identification of a set of genes with a trans-eQTL at an identical position 

can help to dissect genetic variation that is influencing an entire pathway and can lead to 

the identification of initiating polymorphisms upstream in a network (Hansen et al. 2008). 

Questions about the regulatory level at which trans polymorphisms act in the global gene 

expression network and what their effect is on phenotypic variation and heritability can 

only be addressed when eQTLs are further dissected.  

With a genetical genomics approach one can use the natural genetic variation as a 

source of perturbations to elucidate the structure of networks. In a summation approach 

eQTLs for all genes in the analysis are simply superimposed to identify common regions 

which control many genes (Schadt et al. 2003). Such an approach does not require any a 

priori network information but applies subsequent Gene Set Enrichment Analysis (GSEA) 

using gene ontology (GO) annotation or other descriptors to test whether selected genes 

share a common biological function (Subramanian et al. 2005). If the network under study 

is largely known or at least predicted, an a priori analysis can be performed. Here, the 

expression levels of individual genes in the network are converted into a common measure 

for the expression level of the entire network which is then used as the trait for QTL 

analysis. This strategy was tested in an Arabidopsis RIL population for 20 gene expression 

networks  and resulted in statistically significant network variation for eighteen of the 20 
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predefined networks (Kliebenstein et al. 2006). Combining summation, GSEA and a priori 

network analyses allows the generation of a more specific hypothesis about phenotypic 

effects of network eQTLs. In a study using 175 genes, selected to be involved in regulation 

of flowering and circadian rhythms, 83 genes showed an eQTL (Keurentjes et al. 2007). By 

combining co-expression analysis, which becomes feasible for microarray compendia of 

large populations, and positional information of genes and their eQTLs, it was possible to 

construct regulatory networks of key-regulators and their target genes, predicting unknown 

relationships and confirming common knowledge. 

Pre-selection of known pathways can obviously hinder the elucidation of novel 

networks in a species, for which much effort is made to develop methods to translate eQTL 

data into network information using an a posteriori approach. As the precise balance of 

active components within a tightly controlled biological pathway is in part maintained by 

coordinately regulated gene expression, this creates possibilities to model networks by 

exploring co-expression of untargeted genes. To validate this hypothesis, gene expression 

in liver from a population of 60 mice with variation in diabetes susceptibility was analyzed 

(Lan et al. 2006). The combination of correlation analysis across a genetic dimension and 

linkage mapping enabled the identification of regulatory networks, functional predictions 

for uncharacterized genes and characterization of novel members of known pathways. A 

similar approach in Drosophila, complemented with information about gene ontology, 

tissue specific expression and transcription factor binding sites, led to the construction of 

multiple interconnected networks with biological relevance for phenotypic traits (Ayroles et 

al. 2009).  

Understanding the mechanisms underlying trait regulation requires the 

identification of specific causal polymorphisms. For this purpose sophisticated self-learning 

algorithms have been developed which make use of conservation, type and position of a 

particular SNP to prioritize causal regulators by estimating the likeliness that it plays a 

causal role in gene expression variation (Lee et al. 2009). Extending such approaches might 

also provide the means to distinguish whether variation in gene expression or a regulatory 

network is the cause or a consequence of an altered phenotype, resulting in the 

construction of probabilistic directional networks (Rockman 2008).  Defining such causal 

networks is also known as reverse engineering, because it aims at understanding how the 

system works as an integrated whole instead of only defining the functionally related 

components. 

Next level networks: integration of other ‘omics’ data 

Although phenotypic variation can be partly explained by genetic variation in gene 

expression, this alone does not fully cover the possible differences in the regulatory 

mechanisms of an organism. Similar transcript levels of allelic gene variants can still result 

in varying protein levels because of variance in translational activity, protein degradation 

and post-translational modifications (Stylianou et al. 2008). Furthermore, variation in 
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coding sequences can alter protein function resulting in a flexible metabolome in terms of 

chemical structure and function (Keurentjes and Sulpice 2009). Integrating ‘omics’ data 

such as gene expression, SNPs, metabolomics and proteomics in genetic studies can 

therefore reduce the number of candidate genes for a given QTL from hundreds to a 

manageable list without excluding regulatory mechanisms a priori. Because of the analytical 

complexity in analyzing large numbers of protein samples, genetical proteomics studies are 

limited (e.g. Chevalier et al. 2004) but advances made in biochemical detection have 

already enabled the large-scale untargeted genetic analysis of metabolic content 

(Keurentjes et al. 2006; Schauer et al. 2006; Lisec et al. 2008). 

The complex relationship between different levels of regulation was illustrated in a 

study integrating parallel QTL analyses of the expression of genes, activity of encoded 

enzymes and metabolites involved in primary carbohydrate metabolism (Keurentjes et al. 

2008). It could be shown that regulation acted on each of the intermediary levels of the 

path from genotype to phenotype. Although seemingly specific independent regulation 

could be observed for each analyzed trait, a strong interconnectivity existed between them 

resulting in coherent systematic differences between populations of individuals. 

The importance of the tight regulation of such an essential component in plant 

development as primary metabolism was also demonstrated in an Arabidopsis RIL 

population where plant biomass was related to the metabolic profile (Meyer et al. 2007). 

Again, no relationship could be observed between individual metabolites and plant growth 

but a strong canonical correlation was observed between biomass and a specific 

combination of metabolites in central metabolism. The power of large-scale metabolomic 

profiling combined with detailed morphological analysis was also shown in tomato (Schauer 

et al. 2006). Significant QTLs could be detected for the accumulation of a large number of 

primary metabolites together with loci that modify yield-associated traits. With this 

information a correlation network revealing associations between phenotype, metabolic 

content and nutritional value could be generated. These studies show that analyzing 

phenotypic traits and metabolic profiles in a genetic mapping population has great 

potential for the generation of biomarkers in breeding programs. 

Whereas primary metabolites are essential in central metabolism governing 

growth and development, plants also accumulate large amounts of secondary metabolites. 

These are believed to be less essential but may play an important role in the adaptation of 

plants to local environments. Since Arabidopsis can be found in a wide variety of habitats, 

variation in secondary metabolism might explain much of the evolutionary success of the 

species. A large untargeted screen of variation in secondary metabolic composition indeed 

revealed a high proportion of genetically controlled compounds (Keurentjes et al. 2006). 

The highly flexible nature of the metabolome was clearly shown by the fact that more than 

one-third of the compounds present in the RILs were not detected in either parent but 

were the result of recombination in biosynthesis pathways. The genetic information 

obtained from such studies is of great value for the construction of molecular biosynthesis 

networks, especially if they can be combined with expression data. 
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This strategy was applied in the genetic analysis of glucosinolate biosynthetic 

networks which were studied at both the transcriptional and metabolic level (Wentzell et 

al. 2007). In all cases, variation in gene expression also affected the accumulation of 

metabolites but epistasis was detected more frequently for metabolic traits as compared to 

transcript traits. Within such an a priori defined framework it was possible to identify and 

unravel complex regulatory mechanisms like metabolic feed-back loops in which metabolic 

content regulated gene expression and vice versa.  

The examples discussed here highlight the technological advances made in high-

throughput characterization of the transcriptome, the proteome and metabolome which 

enables an integrated multidisciplinary approach to unravel the regulatory mechanisms 

involved in natural variation of complex traits.  

Future challenges  

Although much progress is being made in understanding the influence of genetic 

factors on a biological system we still have limited understanding of the interplay between 

environment and genetic factors. The discovery of molecular networks with genetical 

genomics approaches is often limited to a single experimental condition. An interesting 

concept, called generalized genetical genomics, uses controlled environmental 

perturbations combined with genetical genomics (Li et al. 2008). This generalization of 

genetical genomics will detect how the response to environmental changes is influenced by 

the genotype (i.e. genotype x environment interactions). Here, spatial and temporal 

variation can also be regarded as different environments since specific tissues and 

developmental stages often determine the biological context in which regulatory networks 

function. 

The advances in next generation sequence technology will continue to produce 

huge amounts of sequence data. Good examples are the human 1000 (Siva 2008) and the 

1001 Arabidopsis (Ossowski et al. 2008) genome projects which aim at resequencing over 

1000 different humans and accessions respectively. However, de novo sequencing of 

economically or phylogenetically chosen species is of equal importance. The accumulation 

of genomic information, in combination with genetical genomics approaches, will enable 

the precise definition of functional important polymorphisms and their role in adaptation 

to changing environments and species formation. Having access to complete genome 

sequences also enables the generation of full genome tiling arrays for different (crop) 

species, which have been proven to be very useful for expression profiling (Laubinger et al. 

2008; Matsui et al. 2008). When used within a genetical genomics approach this offers 

unique features to elucidate the genetics behind the mechanistic basis of transcriptional 

differences. For Arabidopsis for instance, a SNPtile microarray was developed harboring 

tiling probes covering both strands of the genome and in addition probes for genome-wide 

detection of SNPs and CpG methylation (Zhang et al. 2007). A properly designed genetical 

genomics study using such arrays might reveal genetic variation for gene expression, 
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alternative splicing, regulation of cis-natural antisense transcripts, allele specific expression 

and epigenetic regulation.  

As a result of developments in SNP-discovery and platforms for genotyping large 

collections of individuals, the application of Linkage Disequilibrium (LD) mapping for 

complex traits has become within reach. LD or association mapping detects the non-

random inheritance of alleles at separate loci located on the same chromosome. In an 

experimental F2 or RIL population the genetic variation is limited to the extent of natural 

variation present in the parental lines and resolution depends on the recombination 

frequency within and size of the population. In contrast LD mapping makes use of large 

collections of natural (wild) accessions or elite breeding lines, sampling a much larger 

fraction of the natural variation present within a species. Moreover, it benefits from the 

much higher frequency of recombination events accumulated during the evolutionary 

history of a species allowing higher resolution mapping (Buckler and Gore 2007). The extent 

of LD varies between species and traits analyzed but the gain in resolution relative to 

experimental populations lies in the order of magnitudes, equally increasing the need for 

dense marker spacing to enable genome wide scans (Sorkheh et al. 2008). This high 

number of necessary markers has always been a big limitation for LD mapping but next 

generation sequencing will tremendously increase the available number of markers. 

Therefore, we see great potential for phenotyping and expression profiling of LD 

populations to detect causal genes for natural variation and enable marker-assisted 

selection in breeding programs. 

Concluding remarks 

Since its introduction the concept of genetical genomics has proven to be a 

powerful approach to dissect genetic variation. Studies in crop species revealed major cis-

eQTLs which co-located with important phenotypic traits and therefore will facilitate faster 

crop improvement. The genetical genomics studies in model species help to understand the 

extent of genetic variation and much effort is spent to develop statistical tools for building 

and elucidating causal networks. Recent developments of inexpensive high-throughput 

sequencing techniques and next generation tiling microarrays will soon create 

opportunities to extend genetical genomics to unravel the genetic variation of gene 

expression, alternative splicing, allele specific expression and epigenetic polymorphisms. 

Similarly, continuing technological developments have increased the power of both 

proteomic and metabolomic approaches. Integration of phenotypic, genetic, 

transcriptomic, proteomic and metabolomic data will enable accurate and detailed network 

reconstruction for traits such as seed quality. Ultimately, this increased knowledge about 

the factors influencing seed quality will open new possibilities for the breeding industry to 

understand and control the effects of the maternal environment on seed quality and above 

all allow breeding for high quality seeds. 
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Outline of this thesis 

The objective of the research presented in this thesis was to explore the 

possibilities of using genetic mapping populations to study the molecular mechanisms 

which are important for seed performance related traits.  

 

Chapter 1 introduces the definition of seed quality and how natural variation has been 

explored to detect QTLs for seed related traits. It emphasizes on the importance to invest 

on high throughput phenotyping methods. The concept of genetical genomics is introduced 

and examples of studies are provided both for the model plant Arabidopsis thaliana and for 

several crop species. The potential to use genetical genomics experiments to deduce 

regulatory networks is discussed including the possibilities to integrate several types of 

‘omics’ data.  

Chapter 2 describes the development of the Germinator package. To allow genetic mapping 

of seed related traits it is important to be able to perform high-throughput detailed 

phenotyping of the germination process. We show that automatic scoring of seed 

germination is possible with the use of image analysis. This allows, in combination with a 

curve fitting procedure, a detailed analysis of the whole germination process. An example is 

provided showing the possibilities and advantages to use such an automatic scoring system 

to study natural variation for salt tolerance.  

Chapter 3 presents the results of using the germinator package to perform a detailed 

analysis of natural variation for a large range of seed performance traits. In total this 

analysis resulted in 327 trait scores over different harvests of the Bay-0 x Sha RIL 

population. This demanded new methods to allow high-throughput QTL analysis. Therefore 

a user friendly script was developed in the statistical programming language R which 

performs automatic multiple QTL mapping (MQM), reporting and visualization. Multitrait 

visualizations are used to detect co-locating QTLs and QTLxQTL interactions are described. 

An alternative approach was used to detect QTL x Environment interactions. A range of 

QTLs are confirmed using the heterogeneous inbred family strategy. Together, this resulted 

in a large dataset describing natural variation for seed germination in the Bay-0 x Sha RIL 

population which provides a solid resource for further dissection of the detected QTLs.  

Chapter 4 is focused on efficient data visualization which is a prerequisite for large scale 

‘omics’ data analysis. A selection of seed specific transcriptome studies from publicly 

available microarray resources for Arabidopsis thaliana was used to identify functional 

categories which are influenced during seed dormancy and germination. The MapMan tool 

allows visualizing transcript, metabolite and protein levels on custom diagrams. We created 

two of such diagrams tailored to use for seed related research. The first diagram provides 

an overview of all enriched functional categories during seed dormancy and germination 

while the other diagram allows a focused view of cell wall changes. Four examples are 

provided to show the power of using the new diagrams to study molecular processes 

related to dormancy and seed germination. 
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Chapter 5 describes a metabolomics study of germinating seeds using a generalized 

genetical genomics approach. Genotype x environment interaction (GEI) requires 

experimentation in multiple conditions and is often ignored due to the expensive nature of 

genetical genomics studies. An alternative concept to reduce the experimental load while 

allowing GEI is coined generalized genetical genomics. This concept is used to study natural 

variation for metabolic changes during four developmental stages of seed germination. 

New statistical procedures are developed to allow analysis of this type of data. Two 

identified metabolite QTL hotspots are confirmed by using the heterogeneous inbred family 

approach.  

Chapter 6 is continuing on the generalized genetical genomics approach and is focused on 

gene expression differences. Gene expression was profiled in four developmental stages of 

seed germination using a whole genome tiling microarray. An overview of the influenced 

molecular processes is provided using the Mapman diagrams that were developed in 

Chapter 4. Expression QTLs could be mapped using the statistical procedures that were 

developed in chapter 5 and are shown using a cytoscape marker-trait network which was 

introduced in chapter 3. Several examples of co-locating eQTLs are shown which allow 

building hypotheses on molecular regulation. The presented results are regarded as a 

‘sneak preview’ because the used microarrays also enable identification of genetic variation 

for alternatively spliced exons and anti-sense transcripts when analyzed to its full potential. 

Chapter 7 is exploring the possibilities of genome wide association (GWA) to detect natural 

variation for seed germination in Arabidopsis thaliana. We used a well-defined selection of 

360 worldwide collected natural accessions (HapMap population) which are genotyped 

with 214051 single nucleotide polymorphism markers. Genome wide association has 

become a promising tool to dissect natural variation with much higher resolution compared 

to traditional linkage mapping. GWA results are compared to mapping results obtained in 

the Bay-0 x Sha RIL population (Chapter 3).  

Chapter 8 summarizes and discusses the most important results from this thesis. Two 

examples are provided to show the possibilities and the complexity of data integration for 

molecular network reconstruction. The chapter is finalized with future considerations to 

study genetics and molecular mechanisms of seed performance. 
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Abstract 

Over the past few decades seed physiology research has contributed to many 

important scientific discoveries and has provided valuable tools for the production of high 

quality seeds. An important instrument for this type of research is the accurate 

quantification of germination; however gathering cumulative germination data is a very 

laborious task which is often prohibitive to the execution of large experiments. In this paper 

we present the Germinator package: a simple, highly cost efficient and flexible procedure 

for high-throughput automatic scoring and evaluation of germination that can be 

implemented without the use of complex robotics. The Germinator package contains three 

modules; 1) design of experimental setup with various options to replicate and randomize 

samples; 2) automatic scoring of germination based on the color contrast between the 

protruding radicle and seed coat on a single image; 3) curve fitting of cumulative 

germination data and the extraction, recap and visualization of the various germination 

parameters. The curve fitting module enables analysis of general cumulative germination 

data and can be used for all plant species. We show that the automatic scoring system 

works for Arabidopsis thaliana and Brassica spp. seeds, but is likely to be applicable to 

other species, as well. In this paper we show the accuracy, reproducibility and flexibility of 

the Germinator package. We have successfully applied it to evaluate natural variation for 

salt tolerance in a large population of Recombinant Inbred Lines (RIL) and were able to 

identify several QTL for salt tolerance. Germinator is a low-cost package that allows the 

monitoring of several thousands of germination tests, several times a day by a single 

person.

GERMINATOR 
A software package for high throughput scoring and 
curve fitting of Arabidopsis seed germination 
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Introduction 

Seeds are the most sophisticated means of propagation created by plant 

evolution. They are indispensible for human society as food source and as starting material 

for new crops. Seed physiology and technology have provided valuable tools for the 

production of high quality seeds, various seed treatments and optimal storage conditions. 

In fundamental research seeds are studied exhaustively and systems biology approaches 

are undertaken to fully explore dormancy and germination (Penfield and King 2009). An 

important instrument to indicate the performance of a seed lot is the accurate 

quantification of germination by gathering cumulative germination data.  

Completion of germination is defined as the protrusion of the radicle through the 

endosperm and seed coat (Bewley 1997). The uptake of water of the dry seed during 

imbibition is triphasic and consists of a rapid initial uptake (phase I) followed by a plateau 

phase (phase II) and a further increase in water uptake (phase III).  During phase III the 

embryo axis elongates and breaks through the testa. In Arabidopsis the testa is dead tissue 

whereas the endosperm layer is living tissue. The action of several cell-wall-modifying 

proteins is required to enable a break through the endosperm. For accurate scoring of seed 

germination a careful discrimination should be made between the testa and endosperm 

rupture because this lag phase may vary among germination conditions and treatments (Liu 

et al. 2005; Finch-Savage and Leubner-Metzger 2006; Müller et al. 2006). 

Although very often used, the total percent germination after a nominated period 

of time is not very explanatory. It lacks information about start, rate and uniformity of 

germination, which are essential parameters of a normally distributed seed population, for 

many traits such as dormancy, stress tolerance and seed aging. Information about 

germination at various time intervals is required to calculate a cumulative germination 

curve, but the number of samples that can be handled with manual counting is usually the 

limiting factor. Moreover, Arabidopsis seeds are small, requiring the use of a binocular or 

magnifying glass. Therefore, a fast and reliable automated procedure would enable high-

throughput screens and unlock the full potential of seed science research.  

Arabidopsis thaliana is a popular model plant for seed science and provides insight 

in common physiological processes which can be translated to economically important 

crops (Lin et al. 1999). The availability of mutants, ecotypes, inbred populations and 

sequence information enables the molecular-genetic analysis of many seed germination 

related traits. For example, mutant analysis has identified seeds with reduced dormancy 

and altered flavonoid biosynthesis, as well as altered germination tolerances to stresses like 

salt and osmotic potential, desiccation, heat and cold (Shirley et al. 1995; Leon-Kloosterziel 

et al. 1996; Espinosa-Ruiz et al. 1999; Hong and Vierling 2000; Wehmeyer and Vierling 

2000; Kim et al. 2005). Screens for natural variation in the various available inbred 

populations revealed, among other traits, loci involved in dormancy, storability, 

glucosinolate production, salt tolerance, storage oil production and mineral content (van 

Der Schaar et al. 1997; Bentsink et al. 2000; Kliebenstein et al. 2001; Quesada et al. 2002; 
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Hobbs et al. 2004; Vreugdenhil et al. 2004). Mutant analysis and QTL localization is 

complemented with the exhausting inventory provided by transcriptomics, proteomics and 

metabolomics approaches (Gallardo et al. 2001; Cadman et al. 2006; Routaboul et al. 2006; 

Goda et al. 2008). Taken together it is evident that Arabidopsis has become an important 

and valuable tool for seed scientists but that high-throughput detailed phenotyping for 

effects on seed germination could extend its prospects.  

When studying natural variation for germination performance in an inbred 

population or performing mutant screens, the number of germination assays required is 

tremendous. In this type of large experiments it is difficult to manually score germination at 

multiple time points per day for a number of days or weeks. Although major progress for 

semi-automated scoring of seed germination of Lactuca sativa, using a flat-bed scanner, 

was made by Teixeira et al. (2007), the setup suggested by these authors only allows a 

limited number of samples. Also the system with a camera above a Jacobsen table for 

Helianthus annuus seeds as described by Ducournau et al. (2005) does not accomodate 

high-throughput screens without expensive robotics, as it requires proper alignment 

between two consecutive images. The setup that we developed enables large screens 

without the need for expensive robotics. We are making use of germination trays which are 

kept in climatized cabinets. Digital photographs are made from these trays at flexible time 

intervals and automatically analyzed by our germinator scripts. The power of this procedure 

is that it does not score germination based on the difference between two consecutive 

pictures but instead uses the information from two different color threshold analyses on a 

single picture, which circumvents alignment problems. 

Interpretation of germination performance can be accomplished by extracting the 

relevant parameters from the germination-time curve. We have used a method described 

by El-Kassaby et al. (2008) to mathematically fit the germination curve using the four-

parameter Hill function (4PHF). This function allows extraction of biologically relevant 

parameters such as maximum percentage of germination (Gmax), time to reach 50% 

germination (t50), t(x)=time to reach a user defined percentage of germination and 

uniformity of germination (like U7525: time interval between 25% and 75% of viable seeds to 

germinate). Integration of the area under the curve (AUC) provides a value that 

enumerates these parameters and often shows a high discriminative power between 

samples. To enable the quick analysis of many cumulative germination curves in large 

experiments we developed a curve fitting module which results in a clearly formatted 

output that summarizes the biological relevant parameters, describing germination 

behavior. The curve fitting module enables analysis of any type of cumulative germination 

data and is not restricted to any plant species. 

Various experiments were performed to test and validate the procedure. We used 

a one-hour interval measurement to quantify the germination of Arabidopsis accessions 

Landsberg erecta (Ler) and Columbia (Col). We compared manual with automatic counting 

and assessed the accuracy of the curve fitting at different time intervals. Furthermore, we 

tested the procedure for germination of Arabidopsis Col. at different concentrations of 
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NaCl. The application of salt stress results in different levels of maximal germination 

percentage, germination rate and uniformity of germination which provides an ideal test 

for the flexibility and accuracy of our automatic germination scoring procedure. Next, an 

Arabidopsis recombinant inbred population consisting of 165 lines was used to show the 

power of high-throughput germination phenotyping. Plant salt tolerance is a complex trait, 

which is polygenic and hence difficult to dissect and manipulate. We used the Germinator 

package to score and analyze germination in control versus salt conditions (which equals 

~2000 germination assays), and tested the genetic variation for salt tolerance. Finally, we 

analyzed germination of seeds from a Brassica spp. recombinant inbred line with a huge 

variation in seed color to show that the germinator package might be applicable to many 

more species. Recently it was shown in maize that measuring the rate of germination time 

is a good indicator for relative vigor and field performance, which underlines the 

importance of high-throughput methods for scoring germination in commercial crop 

testing as well (Khajeh-Hosseini et al. 2009). 

Results 

We have divided the process of analyzing germination in three basic steps: 

experimental setup, image analysis and data analysis. These 3 steps are represented by 

different modules of the Germinator package and can be carried out independently. 

However, especially in large scale experiments a solid administration is crucial. Therefore 

we complemented the package with a Microsoft Office Excel visual basic script that creates 

an overview of the experiments performed with active links to the generated output 

(Germinator_menu1.0.xls). 

 Experimental setup 

To enable as much automation as possible we have standardized the whole 

experimental setup. In the first module of the Germinator package 

(Germinator_table1.0.xls) the user can define the number of samples, treatments, and 

repetitions and whether a randomized setup is desired. These choices result in an 

‘Experiment Setup’ (ES) table which can be used to set up the experiment. The exact 

starting times of the individual tests can be added to the ES tables. Multiple time ranges 

within one experiment are allowed and can be handled by both the automatic scoring and 

curve fitting scripts. We use transparent germination trays which can be stacked in an 

incubator with light from the sides (Figure 2.1A, materials and methods for details). The 

content of these trays, consisting of a blue filter paper with six samples of seeds, are 

manually photographed at different time intervals. The blue filter paper is used to obtain 

optimal contrast between seed, radicle and filter paper. All images are automatically 

named with tray number, date and time. This data is used to automatically match the 

pictures to the correct tray, different treatments and samples and extract information 

about the time intervals as mentioned in the ES tables.  
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Image analysis 

In large scale experiments the number of images can become prohibitive; 

therefore an automated procedure for image analysis is required. First, the images are 

batch preprocessed in Adobe Photoshop CS3 with the action ‘crop.atn’ which divides each 

image into 6 individual pictures and saves them under a unique name (Figure 2.1B). 

Subsequent image analysis is performed with ImageJ and is based on segmentation by 

color-thresholding (Figure 2.1C).  

Figure 2.1: The workflow of the automated 
scoring of Arabidopsis germination. A) a pile 
of plastic germination trays in a climatized 
cabinet and the raw image from each tray; B) 
an Adobe Photoshop action crops the picture 
in 6 individual pictures; C) Scoring of 
germination is based on the double color 
thresholding of a single image; indicated are 
a magnification of the image, the Δarea and 
the ΔXY (both in pixels) between the color 
threshold that selects seedcoat only (YUV-) 
and the color threshold that selects both 
seedcoat and radicle (YUV+); D) Cumulative 
germination data is used as input for the 
curve fitting module. Multiple germination 
parameters are automatically extracted. Gmax 
indicates the maximum germination capacity 
of a seedlot. The t50 is the time required for 
50% of viable seeds to germinate (t50). 
Uniformity (U7525) of germination is the time 
interval between 75% and 25% of viable 
seeds to germinate. The Area Under the 
Curve (AUCx) is the integration of the fitted 
curve between t = 0 and a user-defined 
endpoint (x=120h). 
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Using visual scripting for ImageJ  (Baecker and Travo 2006) two batch scripts were 

developed which perform contrast enhancement, color-threshold, invert image, particle 

analysis and reporting of the results. Every image is analyzed twice; first with a color 

threshold that only selects the yellow/brown seed (Y100-255;U0-80V130-255) and second with a 

color-threshold that selects everything but the background (Y100-255U0-130V80-255). For this 

reason, fungal contamination during the experiment should be prevented as much as 

possible because this may cause false positive scoring of germination. The YUV model 

defines a color space in terms of one luma (Y) and two chrominance (UV) components. By 

using this color space we obtained the best separation between seed coat and protruding 

radicle. In both analyses the XY position (average of X and Y coordinates of all the pixels in 

the selection) and size (area + perimeter in pixels) for each individual seed are extracted to 

output tables which will be saved in tab delimited format. The output tables are analyzed 

with the help of a Microsoft Excel visual basic script (Germinator_table1.0.xls) that 

compares the XY position and the size of each individual seed. Seeds are scored as not 

germinated when both the difference between XY position and size of the two color-

thresholds are within a user defined limit. To prevent artifacts caused by clustered seeds, a 

size restriction is added. The total number of seeds is extracted from the first image; this 

number is used in the later time points to calculate the number of germinated seeds based 

on the detection of non-germinated seeds. To set accurate thresholds for both XY-position 

and size differences we developed a ‘parameter screen’ function as part of the Germinator 

table script that empirically compares manual versus automatic counts and determines the 

most optimal settings. The germination data and time intervals are transported to the 

initial ES tables. These final cumulative germination tables can automatically be loaded into 

the third Germinator module (Germinator_curve-fitting1.0.xls), which performs curve 

fitting and parameter extraction (Figure 2.1D).  

Data analysis 

Using the visual basic module from the Microsoft Excel package we developed a 

script which performs automated curve fitting on cumulative germination data using the 

Solver add-in (Germinator_curve-fitting1.0.xls). The Solver is used in combination with the 

least sum of squares method to find the right parameters to fit the curves to the 4-

parameter Hill function (El-Kassaby et al. 2008): 

bb

b
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where y is the cumulative germination percentage at time x (hours), y0 is the intercept on 

the y axis (≥ 0), a is the maximum cumulative germination percentage (≤ 100), b is 

controlling the shape and steepness of the curve and c is the time required for 50% of 

viable seeds to germinate (t50). Initial values for the parameters a and c are extracted from 

the cumulative germination count and b is set to 20. With these initial values the solver 

performs an iterative process (max 10,000) until the sum of squares between the measured 
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cumulative germination and the calculated curve does not decrease any further. Because in 

rare cases the first iteration does not result in optimal parameters a second iteration is 

performed using the results of this first iteration as starting values. The iteration resulting in 

the lowest sum of squares is taken as the final result. The user can define a threshold for 

the minimum number of germinated seeds, since curve fitting on very small amounts of 

germinated seeds won’t be very informative. In these situations the script returns a ‘False’ 

and the data is not used in the statistical analysis. Uniformity (Ub-a) of germination is the 

time interval between a% and b% of viable seeds to germinate. Users can define values 

used for a and b. The Area Under the Curve (AUC) is the integration of the fitted curve 

between t = 0 and a user-defined endpoint, which results in a parameter that combines 

information on maximum germination, t50 and uniformity. As described by El-Kassaby et al. 

(2008) the AUC can also be used to calculate a dormancy index (DI), by subtracting the area 

under the curve after dormancy release  (e.g by cold stratification) with the area under the 

curve of dormant seeds. By the same analogy the AUC can be used to measure the effect of 

any stress treatment and calculate a stress index (SI). The Germinator curve fitting script 

will summarize the results by calculating averages and standard errors for repeated 

samples, performing a student-t test, and provides a clearly formatted output including 

graphs for the different germination parameters.  

Accuracy and flexibility 

The completion of seed germination of Arabidopsis is a two-step process: first 

rupture of the testa, followed by the protrusion of the radicle through the micropylar 

endosperm (Liu et al. 2005). The germination of a single seed was followed in time with 

high resolution imaging (see www.germinator.wageningenseedlab.nl for a time-laps 

movie). The two steps of Arabidopsis germination are clearly distinguishable on these 

images: testa rupture after 35 hours followed by endosperm rupture after 40 hours (Figure 

2.2A). The difference in the threshold area and threshold XY position in time are shown in 

Figure 2.2B. This figure clearly shows that both the increase in area and the shift in XY 

position can serve as accurate indicators for germination sensu stricto.  

  

http://www.germinator.wageningenseedlab.nl/
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Figure 2.2: Analysis of germination by 
comparing the difference in either the area 
or XY position from a double color-threshold 
approach using a 10 minutes timelaps high 
resolution imaging series of a single seed. 
Dashed line = delta XY, solid line = delta area. 
The gray bar indicates the range for both 
area and XY position in which germination 
sensu stricto can be determined.   

 

 

 

 

 

 

 

 

 

 

 

To test the accuracy of the automatic germination scoring with lower resolution 

images that can be used to study seed batches we performed an interval experiment 

measuring the progression of germination of seed lots from two Arabidopsis thaliana 

accessions (Ler; 147 seeds and Col. (Col-0); 172 seeds) every hour. The automatic counts 

were verified at 9 time points by manual counting (Figure 2.3 and Supporting Information, 

S2.1). 

 

Figure 2.3: Comparison of manual (open 
circles; Col-0, filled circles; Ler) and 
automated scoring of Arabidopsis thaliana 
Col-0 (x) and Ler (+) germination.  

 

 

 

 

 

 

 

Measuring germination at one-hour intervals provides very accurate data, which 

enables precise curve-fitting. However, it is impossible to apply this without expensive 

robotics in large scale experiments. Therefore, we wanted to assess the effect of the 

number of measurements on the accuracy of the fitted curve using the data from the 
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experiment depicted in Figure 2.3. Different time intervals were artificially created by 

removing data points from the one hour interval dataset and curve fitting was tested to 

assay the minimum number of required data points during germination (Table 2.1, 

Supporting Information S2.2). 

Table 2.1: Comparison of germination curve fitting parameters t50, uniformity (U7525) and area under the curve until 
120h (AUC120) with measurements at different time intervals (hours). 

 Col-0 Ler  

Interval (h) t50 U7525 AUC120 r
2 fit t50 U7525 AUC120 r

2 fit 

1 67.06 6.19 81.62 0.999 90.78 14.72 56.21 0.999 

4 67.08 6.06 81.64 0.999 90.75 14.78 56.26 0.999 

8 67.36 6.50 81.36 0.999 90.85 15.41 56.47 0.999 

12 66.64 6.11 81.94 1.000 91.55 15.55 55.64 1.000 

16 66.83 4.35 81.79 1.000 91.81 15.15 55.39 1.000 

Abbreviations: r2 fit - determination coefficient; t50 - time to obtain 50% of germinated seeds; U7525 - time between 
25% and 75% of germinated seeds; AUC(120) - Area under the curve until 120h. 

From the example in Table 2.1 it is clear that our curve fitting module is able to 

accurately predict the various parameters. The desired interval will be dependent on the 

required accuracy and the level of difference between samples. Often, it is more 

convenient for practical reasons to use flexible intervals. Therefore, we tested with 5 

replicates of an Arabidopsis thaliana Col-0 seed lot for which only six time points were 

acquired; care had been taken to obtain at least two measurements during the exponential 

phase of the curve (Figure 2.4, Table 2.2). 

Figure 2.4: Germination curves of 5 
replications (indicated by the various 
symbols) of Arabidopsis thaliana Col-0.  

 
 
 
 
 
 
 
 
 
 

Table 2.2: Parameters characterizing seed germination curves of 5 replications of Arabidopsis thaliana Col-0 
(Figure 2.4) 

Replicate # 1 2 3 4 5 

Number of seeds 78 67 58 63 49 

r2 fit 1.00 0.99 1.00 1.00 1.00 

t50 39.1 39.3 39.5 38.9 37.8 

U7525 5.1 5.4 4.7 5.5 4.6 

AUC(60) 20.7 20.4 20.3 20.8 22.1 

Abbreviations: r2 fit - determination coefficient; t50 - time to obtain 50% of germinated seeds; U7525 - time between 
25% and 75% of germinated seeds; AUC(60) - Area under the curve until 60h. 
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This experiment shows that an accurate prediction for the various germination 

parameters can be obtained by as less as 6 data points with two data points in the 

exponential phase of the curve.  

Salt tolerance during germination is an important but complex trait. Salt stress 

consists of an ionic and an osmotic component which is influencing homeostasis signaling 

pathways, detoxification response pathways, and pathways for growth regulation (Zhu 

2002). Therefore, salt may influence the lag phase between testa and endosperm rupture, 

radicle growth and seedling establishment and germination on salt was used to test the 

accuracy of the measurement of germination sensu stricto. Figure 2.5 shows 25 seeds at 

different stages of germination during imbibition in 125 mM NaCl. Careful optimalization of 

the threshold for both the area and XY difference between the double color-threshold 

enables scoring of germination which resembles manual scoring as close as possible. The 

most accurate threshold settings can be determined with the ‘parameter screen’ script that 

we included in the Germinator_table file. 

Figure 2.5: Arabidopsis germination on 125 
mM NaCl on blue filter paper. A compilation 
of images of different stages of germination 
derived from the original images used for 
automatic scoring is shown. Indicated are the 
differences in XY position and area between 
two color-thresholds and scoring of 
germination based on different threshold 
settings (x=not germinated, 0=germinated at 
thresholds: light grey = 20 area/0.8 XY, grey = 
30 area/1.2 XY, black = 40 area/3.0 XY) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Both the germination rate and the maximum germination capacity are inhibited by 

sodium chloride (NaCl). We used a concentration range of NaCl to test the accuracy and 
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flexibility of the automatic scoring on six replicates of an Arabidopsis thaliana Col-0 seed 

lot, here we have set the limit for Δarea to 30 pixels and ΔXY to 1.2 (Figure 2.6, Supporting 

Information S2.4). 

Separation of the germination behavior in specific parameters can help to describe 

and compare many lines. Figure 2.7 shows a comparison of the four different parameters 

and their discriminative power for germination under salt stress based on the germination 

characteristics shown in Figure 2.6. 

Figure 2.6: Germination of Arabidopsis 
thaliana (Col-0) seeds on different 
concentrations of NaCl, analyzed with the 
Germinator curve fitting module. Error bars 
represent SEM (n=6). 

 

 

 

 

 

 

 

As shown in Figure 2.6 and Figure 2.7 the cumulative germination is inhibited by 

NaCl. At lower concentrations only the t50 is reduced where at higher concentrations the 

maximum germination (Gmax) is affected as well. 

  
 
Figure 2.7: Germination of Arabidopsis thaliana (Col-0) seeds on different concentrations of NaCl. A) Maximum 
germination after 5d, B) time to reach 50% germination, t50, C) uniformity (U7525), D) Area under the curve until 
120h (AUC120). Letters (a,b,c,d,e) represent statistical different subsets (Tukey HSD, p=0.05)  
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Natural variation for salt tolerance 

To fully exploit the power of high throughput cumulative germination data we 

used the Germinator scripts to screen the core set (165 lines) of a Bay-0 x Sha recombinant 

inbred population (Loudet et al. 2002) for salt tolerance. After-ripened seeds were 

germinated on water and 100 mM NaCl without prior stratification. We performed 

duplicate measurements of three different harvests resulting in a total of 1980 individual 

germination assays. Values obtained for germination on 100 mM salt were subtracted from 

values derived from germination on water (Supporting Information, S2.5). Figure 2.8A-C 

shows the frequency distribution of non-normalized data for Gmax, t50 and AUC in this 

population. Both parental lines are indicated with an arrow showing the large extent of 

transgression. After normalization (see Experimental procedures for details) of these trait 

data we detected multiple QTLs for salt tolerance in 6 regions (Figure 2.8D). The QTLs for 

both maximum germination and area under the curve could explain 49% of the total 

variance. The QTLs for t50 could explain 39% of the total variance. No QTL for uniformity 

(U7525) was detected. The QTL on top of chromosome 1 is affecting germination capacity 

(Gmax) but not t50. By contrast, we see QTLs on chromosome 5 that affect rate of 

germination without affecting germination capacity. 

 

 

Figure 2.8: QTL analysis of salt tolerance of germination. A) Frequency distribution of non-normalized data for Gmax, 
B) t50 and C) AUC in the Bay-0xSha RIL population for germination on 100 mM salt and corrected for germination 
on water: ΔGmax = Gmax(water) – Gmax(salt), Δt50 = t50(salt) – t50 (water), ΔAUC = AUC(water) – AUC(salt). D) The Bay-
0xSha linkage map showing the genetic locations affecting germination on 100 mM salt. Mapped traits are 
indicated above each lane. Grayscales of the arrows indicate the LOD-score (darker = higher LOD scores). Arrows 
indicate the direction of the phenotypic effect; up: Sha increasing, Bay-0 decreasing; down: Bay-0 increasing, Sha 
decreasing. The length of the arrow depicts the 2-LOD support interval determined with restricted MQM mapping.  
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Scoring Brassica germination 

Currently the whole Germinator procedure is optimized for use with Arabidopsis 

but it is probably suitable to handle many other species as well. To test whether the same 

script is also applicable to other species we tested some lines from a Brassica doubled 

haploid population from which the seeds strongly varied in color. Although some seeds are 

almost black while others are pale yellow it was possible to define two color thresholds 

which can distinguish between the protruding radicle and the rest of the seed (Figure 2.9). 

The differences between the two color thresholds can be used to automatically score 

germination, here we have set the limit for Δarea to 100 pixels and ΔXY to 1.4 (Figure 2.10, 

Supporting Information S2.6). Every seed with values below one of both limits will be 

scored as not germinated (e.g. Figure 2.9, seed III). 

 

Figure 2.9: Five Brassica seeds which strongly 
vary in seed coat color were analyzed with 
the Germinator scripts. A) original image; B) 
image after color threshold with settings: + 
Y0-255U0-125V135-255;  C) image after color 
threshold with settings: – Y0-255U0-125V120-255. 
The difference in Δ Area and Δ XY enables 
automatic scoring of germination. 

 

 

 

 

 

 

Figure 2.10: Germinator scripts were used for 
automatic scoring of Brassica seed 
germination with strong variation in seed 
coat color. Two different mixtures of 24 lines 
that strongly vary in seed color were used. 
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Discussion 

Features of Germinator 

The procedure presented here represents a novel and efficient analysis tool for 

high-throughput monitoring of seed germination. A few other studies have used image 

analysis to score seed germination for other plant species such as cabbage, broccoli, 

cauliflower, sunflower, lentil, pepper, radish and tomato (Dell'Aquila et al. 2000; Dell'Aquila 

2004; Dell'Aquila 2005; Ducournau et al. 2005; Dell'Aquila 2007; Teixeira et al. 2007). 

Basically all systems use a fixed imaging system which allows full automated scoring of 

germination. The advantage from such a setup is the possibility to precisely follow 

phenotypic properties of individual seeds and germination can be scored based on e.g. 

increase in seed size or changes in roundness of the individual seeds. Since all these 

systems require a proper alignment between consecutive images they do not allow high-

throughput analysis without huge investments in robotics. Therefore, we have chosen for a 

semi-automatic approach and have developed a system that can handle many samples 

which may be germinated at different environmental conditions. The power of the 

presented procedure is that it does not score germination based on the difference between 

two consecutive images but instead uses the information from two different color 

threshold analyses on a single image. This allows a much more flexible setup for screening 

large populations, but requires a good level of contrast between the radicle and seedcoat 

which may limit the usability for several species.   

The high level of automation during experimental setup, image analysis and curve 

fitting provides a solid, reproducible and yet flexible system which can be implemented at 

very low costs. We have shown the accuracy of the automatic scoring and showed that only 

a limited number of measurements are needed for an accurate prediction of the 

germination curves. To achieve best accuracy care should be taken to obtain at least two 

measurements in the exponential phase of germination, although this can be difficult when 

screening large populations with different times and rates of germination. Therefore, a 

critical assessment of the calculated germination curves cannot be skipped. Also, fungal 

contamination during the experiment should be prevented as much as possible because 

this may cause false positive scoring of germination. The flexibility of the curve fitting is 

shown by germinating Arabidopsis on different concentrations of NaCl which caused 

reduced germination percentage, rate and uniformity. The curve fitting module was able to 

efficiently and accurately describe those curves.  

High-throughput phenotyping 

The availability of large genetic and mutant populations offers great potential for 

seed science research but also demands a high-throughput procedure to score seed 

germination. Until now, scoring of Arabidopsis germination is a time consuming task, 
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requiring manual inspection using binoculars. Especially in large scale experiments these 

human observations can easily lead to misjudgment and the number of experiments which 

can be handled is restricted by the desired interval between two inspections and the time it 

takes to count the individual experiments. This time is reduced dramatically in the 

procedure suggested here. Scoring six individual experiments (each 50-200 seeds) is 

reduced to the time it takes to take one photograph (approx. 5 seconds). Registration of 

time intervals is automated and can therefore be corrected for each individual experiment. 

The short measuring time also contributes to the accuracy and reliability. Together, this 

enables the researcher to follow the cumulative germination in time and determine the 

germination curves in large scale experiments. Nevertheless, it should also be clear that 

automatic scoring of germination cannot be left unsupervised. If screening environmental 

perturbations like germination in the presence of NaCl one might expect effects on the lag 

time between testa and radicle protrusion and effects on radicle growth and seedling 

establishment. This requires accurate parameter thresholding which can only be achieved 

by manual counting of a small subset.  

Curve fitting for cumulative germination data 

As described by Brown and Mayer (1988) fitted curves allow germination to be 

summarized in terms of a few curve coefficients, which offers a much better description of 

the time-course of germination than single value indices, such as the widely used maximum 

germination percentage. To optimize our analysis pipeline the Germinator curve fitting 

script was developed. It provides a fast and easy tool for fitting germination curves from 

cumulative germination data. On a standard desktop computer (dual core 2.3, 4 Gb, 

Windows XP) the curve fitting and parameter extraction for 5000 germination tests was 

calculated in less than 15 minutes. The overall quality of the fit is of course strongly 

dependent on the quality and amount of data points but overall the coefficient of 

determination was close to 1.00. Here it should be noted that less data points automatically 

results in a higher coefficient of determination but that this might not always reflect the 

true germination curve. Therefore, the value attached to the coefficient of determination in 

experiments with only a few datapoints should be considered with care. The output from 

the Germinator curve fitting script contains all the parameters from the 4PHF function, 

total germination (Gmax), time to reach 50% germination (t50), uniformity (Ub-a) and Area 

under the Curve (AUC). It offers the possibility to depict both the individual data points and 

the fitted curves and it can summarize the data by calculating averages and performing 

student t-tests. The Germinator curve fitting script enables analysis of general cumulative 

germination data and can be used for all plant species.  

Gathering detailed germination data in an experiment on salt tolerance (Figure 

2.6) clearly shows the added value of the cumulative germination curve compared to e.g. 

the total germination after 5 days. The latter is not discriminative until a concentration of 

125 mM NaCl. The t50 is not discriminative until 75 mM NaCl and not between 150 and 175 
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mM. The uniformity (U7525) only shows a significant difference between the 125 mM and 

150 mM points. The combined interpretation of the parameters Gmax, t50 and U7525 can 

accurately describe the cumulative germination curve. The AUC is summarizing these three 

parameters effectively and shows optimal discrimination among the different treatments 

(Figure 2.7). Calculating the difference of the area under the curve (AUC) between 

germination on water and germination on a specific concentration of NaCl generates a 

value (Stress Index, SI) which can summarize the effect of the salt treatment based on 

maximum germination, t50 and U7525. This approach can be used for any type of stress as 

well as for the release of dormancy by e.g. cold stratification. This parameter was 

introduced by El-Kassaby, et al. (2008) as a useful index to describe dormancy (Dormancy 

Index, DI). We suggest to use this parameter as well for normalized values of stress-

treatments (Stress Index, SI).  

Natural variation for salt tolerance  

The ability to handle large scale experiments was shown in a screen for allelic 

variation for salt tolerance in the Arabidopsis Bay-0 x Sha recombinant inbred population 

(165 lines). Repetitions and water control experiments raised the number of individual 

germination experiments to 1980. It would have been impossible for one person to 

manually count this large number of experiments multiple times a day. The same 

experiment also clearly shows the large benefit of acquiring detailed germination curves 

(Figure 2.8D). The QTL on top of chromosome 1 is affecting germination capacity (Gmax) but 

not rate of germination (t50). On the contrary, on chromosome 5 QTLs are observed that 

affect rate of germination without affecting germination capacity. The area under the curve 

(AUC) is summarizing both parameters and show QTLs that are affected either in 

germination capacity or rate. Multiple QTLs for germination on NaCl were identified in 6 

regions. Distinct loci where either Bay-0 or Sha alleles improved germination were found, 

which could explain the observed transgression (Figure 2.8A-C). Comparing QTLs for 

maximum germination capacity found in the Arabidopsis Ler x Sha population (Clerkx et al. 

2004) revealed that the QTLs on chromosome 1, 3 and lower arm of chromosome 5 could 

be in the same regions and show similar directions of the Shakdara allelic effects. One of 

the apparent advantages of using cumulative germination data over endpoint germination 

is the ability to measure genetic variation for stress tolerance at lower concentrations 

(Figure 2.7). Furthermore, it is known that salt tolerance is realized via distinct pathways for 

high and low salt concentrations (Munnik et al. 1999). Cumulative germination data might 

allow separate analysis of these pathways, whereas endpoint germination might be 

restricted to pathways for higher concentrations.  

Prospects 

Although we optimized the Germinator scripts for Arabidopsis thaliana we were 

able to show that the same basic setup can also be employed for other seeds which have a 
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good contrast between the seed coat and protruding radicle. The Brassica seeds we used 

for this test displayed considerable variation in seed color but, nevertheless, it was possible 

to define a color threshold setting that efficiently distinguished between seed coat and the 

protruding radicle.  

We show that we have developed a package for high-throughput seed 

germination phenotyping. The Germinator pipeline offers a well-defined and robust 

experimental setup but is very flexible in terms of numbers and treatments. The improved 

efficiency and absence of subjectivity are great advantages of computer aided assessment. 

The procedure presented in this paper offers great potential to perform high-throughput 

germination tests in large mutant or genetic populations. Automatic germination scoring is 

optimized for use with Arabidopsis and will most likely work for many other species as well. 

The curve fitting script enables analysis of general cumulative germination data and can be 

used for all plant species. Although we tried to optimize the package it is of crucial 

importance to set accurate thresholds by comparing the automated scoring with manual 

scoring. In conclusion, Germinator is a low-cost package that allows the monitoring of 

several thousands of germination tests, several times a day by a single person. 

Experimental procedures 

Plant material and growth conditions  

Arabidopsis thaliana plants from accessions Columbia and Landsberg erecta were 

grown on soil in a climate chamber (20°C day, 18°C night) with 16 hours of light (35W/m
2
) 

at a relative humidity of 70%. Seeds were bulk harvested and stored at 20°C under ambient 

relative humidity (around 40%) for 5 months. Seeds from the core population (165 lines) of 

the Arabidopsis Bayreuth-0 x Shakdara recombinant inbred population (Loudet et al. 2002) 

were obtained from the Versailles Biological Resource Centre for Arabidopsis 

(http://dbsgap.versailles.inra.fr/vnat/) and were grown in triplicate of 5 plants each in a 

fully randomized setup. Plants were grown on 4x4 cm rockwool plugs (MM40/40, Grodan 

B.V.) and watered with 1 g/l Hyponex (NPK=7:6:19 http://www.hyponex.co.jp) fertilizer in a 

climate chamber (20°C day, 18°C night) with 16 hours of light (35W/m2) at a relative 

humidity of 70%. Seeds were bulk harvested and after-ripened until they reached their 

maximum germination after 5 d of imbibition. Subsequently, the seeds were dried for 1 

week at a relative humidity of 20% and stored at -80°C until further experimentation. To 

prevent fungus contamination during the experiment we surface sterilized the seeds by 

placing 50 mg of seeds per seed lot for 2 hours in a desiccator jar above a solution of 100 

ml 4% sodium hypochlorite + 3 ml concentrated HCL. Brassica rapa plants from a combined 

Double Haploid (DH) population containing plants from the DH38 population of Ping Lou et 

al. (2008) and plants from similar but reciprocal crossing were grown in the greenhouse. 

Seeds were harvested and stored at 20°C until use. Seeds from 24 lines representing the 

different classes of seed coat colors were used to test the Germinator. 

http://dbsgap.versailles.inra.fr/vnat/
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Germination assay  

Germination experiments were performed in plastic (15x21 cm) trays (ref 109, 

DBP Plastics, Belgium; www.dbp.be) containing 42 ml water or NaCl solution and two layers 

of blue filter paper (5.6’ X 8’ Blue Blotter Paper, Anchor Paper Company, St Paul, MN; 

www.seedpaper.com). Six samples of approximately 50-200 Arabidopsis seeds were 

dispersed on the filter paper using a mask to ensure an accurate and reproducible spacing. 

Clustering of seeds was prevented as much as possible. A maximum of 20 trays were piled 

with, on both the top and the bottom of the stack, two empty trays with 42 ml water and 2 

layers of blue filter paper to prevent unequal evaporation and ensure equal distribution of 

light. The whole pile was wrapped in a closed transparent plastic bag and placed in an 

incubator. The incubator (type 5042, Seed Processing Holland, Enkhuizen, The Netherlands; 

www.seedprocessing.nl) provides light from 3 sides and was set to a temperature of 20°C. 

For the interval experiment, the lower filter paper was used as a wedge inserted in a tray 

filled with water to prevent drying of the seeds and enable automatic hourly 

measurements. The experiment was carried out in an air-conditioned room (20°C). 

Experiment set up, automatic scoring and curvefitting was performed with the germinator 

package. 

Imaging  

A digital camera (Nikon D80 with Nikkor AF-S 60mm f/2.8 G Micro ED) was fixed to 

a repro stand and connected to a computer, using Nikon camera control pro software 

version 2.0. Two vertically placed fluorescent tl-tubes (150 cm), 1.5 meter left and right 

from the camera, were used as indirect light source; great care was taken to prevent any 

reflection. The camera was set to full manual control (ISO400, F/18, 1/3 sec, manual focus). 

Image files are named following a strict convention: mmddyy-hhmm#seq, whereby the seq 

is an automatic sequential number indicating the tray number. A position mask is used to 

make sure that the trays are placed at the correct position under the camera.  

QTL analysis 

For QTL analysis a genetic map consisting of 69 markers (provided by 

dbsgap.versaiiles.inra.fr/vnat/) with an average distance between the markers of 6.1 cM 

was used. To test and correct normality of the trait values we used the software package 

Distribution analyzer v1.2 (www.variation.com). Multiple-QTL model mapping (MQM) was 

carried out by using the software package MapQTL (version 5.0, Kyazma B.V. Wageningen, 

The Netherlands). Cofactors were selected according to the program’s reference manual 

and the 2LOD interval was determined with restricted MQM mapping. MapChart v2.2 

(Plant Research International, Wageningen, The Netherlands) was used to construct the 

linkage map shown in Figure 2.8. 

http://dbsgap.versaiiles.inra.fr/vnat/
http://www.variation.com/
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Downloading Germinator 

The full Germinator package (Windows operating systems) is freely available for 

the scientific community. It can be downloaded from www.wageningenseedlab.nl. This 

website also contains a full manual and video demonstrations about the use of the various 

modules. 
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Supporting Information 

Supporting information can be downloaded from either the online version of this 

article (Joosen et al. 2010) or from: 

www.wageningenseedlab.nl/thesis/rvljoosen/SI/chapter2 

 

Table S2.1: The Germinator curve fitting module containing the raw cumulative germination 

data, fitted curves and extracted parameters from the interval experiment shown in Figure 

2.2. 

Table S2.2: The Germinator curve fitting module containing the raw cumulative germination 

data, fitted curves and extracted parameters from the reduced interval experiment shown 

in Table 2.1. 

Table S2.3: The Germinator curve fitting module containing the raw cumulative germination 

data, fitted curves and extracted parameters from 5 replicates of Col-0 as shown in Figure 

2.3 and Table 2.2. 

Table S2.4: The Germinator curve fitting module containing the raw cumulative germination 

data, fitted curves and extracted parameters from germination on various concentrations 

of NaCl as shown in Figure 2.4 and Figure 2.5. 

Table S2.5: Values for germination on NaCl for the Arabidopsis Bay-0 x Sha recombinant 

inbred core population (Figure 2.6). All values are corrected for germination on water by 

subtraction. 

Table S2.6: The Germinator curve fitting module containing the raw cumulative germination 

data, fitted curves and extracted parameters from scoring Brassica germination as shown in 

Figure 2.8. 

 

 

 

 

 

 

 

 

 

“It is from a small seed that the giant Iroko tree has its beginning.”  
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Abstract 

Perfect timing of germination is required to encounter optimal conditions for plant 

survival and it is the result of a complex interaction between molecular processes, seed 

characteristics and environmental cues. To disentangle these processes we made use of 

natural genetic variation present in an Arabidopsis thaliana Bayreuth x Shahdara RIL 

population. For a detailed analysis of the germination response we characterized rate, 

uniformity and maximum germination and discussed the added value of such precise 

measurements. The effects of after-ripening, stratification and controlled deterioration as 

well as the effect of salt (NaCl), mannitol, heat, cold and ABA with and without cold 

stratification were analyzed for these germination characteristics. Seed morphology (size, 

length) of both dry and imbibed seeds was quantified by using image analysis. For the 

overwhelming amount of data produced in this study we developed new approaches to 

perform and visualize high throughput QTL analysis. We show correlation of trait data, 

(shared) QTL positions and epistatic interactions. The detection of similar loci for different 

stresses indicate that often the molecular processes regulating environmental responses 

converge into similar pathways. Seven major QTL hotspots were confirmed using a HIF 

approach. QTLs co-locating with previously reported QTLs and well characterized mutants 

are discussed. A new connection between dormancy, ABA and a cripple mucilage formation 

due to a natural occurring mutation in the MUM2 gene is proposed and this is an 

interesting lead for further research on the regulatory role of ABA in mucilage production 

and its multiple effects on germination parameters.  

  

Visualizing the genetic landscape of 
Arabidopsis seed performance 
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Introduction 

Seed Germination 

Colonizing plants are subject to a wide variety of environmental conditions. For 

successful adaptation to new habitats the timing of developmental transitions is especially 

important. Seed germination is one of these important transitions as it determines the 

seasonal environment experienced in further plant life (Huang et al. 2010). Natural 

populations that develop under distinct environmental conditions may reveal genetic 

adaptation, which can be used to disentangle the signaling routes that are involved. Seed 

germination is described by three phases of water uptake. In phase I the seed imbibes and 

reinitiates metabolic processes followed by a lag phase (phase II). Further water uptake 

results in protrusion of the radicle through the testa and endosperm (phase III). The 

moment of radicle protrusion through the endosperm is considered to be the moment of 

germination sensu stricto (Finch-Savage and Leubner-Metzger 2006). To characterize the 

genetic variation of germination related traits we focused on the effect of the environment 

that a seed perceives during germination rather than the effect of the environment during 

maternal plant growth, which has been the subject of other studies (Gutterman 2000; 

Dechaine et al. 2009; Elwell et al. 2011). Seed content (e.g. oil) is often used as commodity 

and modifications to the content can therefore be regarded as seed quality parameters as 

well. To prevent confusion we will use the term seed performance to indicate that the 

focus of our study was restricted to seed germination characteristics. 

The production of high quality crop seed not only entails knowledge about 

maternal plant growth, harvesting and storage of seeds, but also of germination conditions 

(Rivero-Lepinckas et al. 2006). To obtain better germination and field performance, many 

seed companies rely on enhancement methods, such as seed priming and coating and/or 

pelleting, but these methods are reaching their limits. Dissecting the molecular 

mechanisms underlying seed germination and its tolerance to the environment may unlock 

the full genetic potential and enable targeted breeding for seed performance.  

In this study we used a recombinant inbred line (RIL) population derived from two 

Arabidopsis thaliana ecotypes: Bayreuth (Bay-0) which originates from a fallow land habitat 

in Germany and Shahdara (Sha) which grows at high altitude in the Pamiro-Alay mountains 

in Tadjikistan (Loudet et al. 2002). The Bay-0 x Sha RIL population has been used in many 

previous studies to map QTL positions for root morphology (Loudet et al. 2005; Reymond et 

al. 2006), anion content (Loudet et al. 2003), nitrogen use efficiency (Loudet et al. 2003), 

cell wall digestibility (Barriere et al. 2005), carbohydrate content (Calenge et al. 2006), 

sulfate content (Loudet et al. 2007), leaf senescence (Diaz et al. 2006), morning-specific 

growth (Loudet et al. 2008) and cold-dark germination (Meng et al. 2008). We have used 

the natural variation present in this RIL population to map the response of germination 

characteristics to environmental conditions to which a seed is exposed.  
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Freshly harvested viable Arabidopsis seeds often don’t germinate even when 

placed under conditions favorable for germination. This event, called primary dormancy, is 

shown to be subject to natural variation (Bentsink et al. 2010). In many Arabidopsis 

ecotypes, this primary dormancy is released after a period of dry storage at room 

temperature. Another dormancy breaking treatment is cold stratification where seeds are 

imbibed in water and stored at 4°C in the dark for four days before putting them into 

optimal conditions for germination (Finch-Savage and Leubner-Metzger 2006). Unfavorable 

conditions during seed germination may result in a changed rate or even failure of 

germination. In Arabidopsis, it has been shown that the responsiveness to temperature is 

closely related to the level of after-ripening (Tamura et al. 2006). High salt concentrations 

induce osmotic stress and ion toxicity resulting in both a delay and reduction of maximum 

germination (Galpaz and Reymond 2010). Often, these different environmental stresses are 

interconnected and will cause osmotic and associated oxidative stress (Zhu 2002; 

Chinnusamy et al. 2004). The plant hormone Abscisic Acid (ABA) plays a predominant role 

in plant responses to different environmental stresses and can activate various signal 

transduction pathways leading to a global change in transcription (Finkelstein et al. 2002; 

Xiong et al. 2002). Exogenous application of ABA during germination results in a distinction 

between testa and endosperm rupture. At certain concentrations the testa will rupture but 

germination sensu stricto (radicle protrusion through the endosperm) will be inhibited. This 

phenomenon, caused by reduced weakening of the endosperm cap, is the consequence of 

a complex interplay between ABA, GA and ethylene signals (Linkies et al. 2009). In this 

report, we determined germination sensu stricto for primary dormancy in freshly harvested 

seeds, germination of fully after-ripened seeds with and without a preceding cold 

stratification period (see material and methods for conditions), and germination under 

various stress conditions (low/high temperature, salt/osmotic stress and ABA) to assess 

natural variation in the Bay-0xSha RIL population. Additionally, seed morphology (size and 

length) and flowering time were phenotyped as they have been shown to be strong 

determinants of plant trait variation (Chiang et al. 2009; Orsi and Tanksley 2009; Elwell et 

al. 2011). We correlated these traits to our germination related traits to evaluate possible 

causality.  In total this analysis resulted in 327 trait scores over different harvests. 

Evaluation of these high numbers of phenotypes demanded methods of QTL analysis that 

extended beyond mapping of individual traits and that allowed comprehensive and 

comprehensible visualization. 

Analysis of natural variation that is captured in well-defined recombinant inbred 

populations has shown to be a powerful tool to detect important loci that influence the 

traits under study (Alonso-Blanco et al. 2009). To uncover the loci with genetic variation a 

statistical framework is needed. For this, any programming language can be used which 

supports statistics. In the life sciences the statistical language R is often the prime 

candidate. R is open source, contains the latest in statistical analysis methods and has a 

large community for help and support (http://www.r-project.org/). Furthermore, it has the 

R/qtl package  (Broman et al. 2003), which contains an array of different QTL mapping 
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methods, including Single Marker Mapping, Interval Mapping and Multiple QTL Mapping 

(MQM) (Arends et al. 2010). Although all possibilities to perform a detailed QTL analysis 

including data preprocessing and output formatting are present in R, it requires extensive 

knowledge of the R-syntax to combine all necessary steps in a single analysis protocol that 

can loop through hundreds or thousands of traits. In this paper we present a script that can 

perform these tasks. This type of automated analysis combined with efficient data 

visualization is a necessary step to keep up with the increasing rate of biological data 

production. For using single trait mapping the effect of a certain treatment, e.g. 

germination at high temperature, must be corrected by the germination characteristics 

under control conditions. Here, we subtracted the observed germination under stress 

conditions from values for germination under control conditions. This correction can lead 

to complicated interpretation, especially when the environment under study affects loci 

with already strong effects under control conditions. Further, it can reduce statistical power 

due to summation of the error components. Therefore we performed an additional analysis 

using a QTL by environment (QTLxE) approach (Jansen et al. 1994; Malosetti et al. 2004; 

Moreau et al. 2004; Eeuwijk et al. 2006). Instead of considering individual responses, one 

can then treat the stress conditions as a set of environmental perturbations and evaluate a 

single trait (such as germination percentage). Because several environments are taken into 

account simultaneously, the statistical power to detect loci that are affected by several 

environments increases and interpretation becomes more intuitive as the need for 

correcting the stress response by the control response is eliminated (Boer et al. 2007; 

Payne et al. 2011). 

The Bay-0 x Sha RIL population consists of 420 lines that were genotyped in the F6. 

This relatively low degree of inbreeding provoked residual heterozygosity present at almost 

all genome positions. This residual heterozygosity can be used to confirm QTL positions, as 

it provides a possibility to study both parental alleles at the locus of interest in an 

elsewhere homozygous background (Tuinstra et al. 1997). In contrast to conventional near 

isogenic lines (NILs) the genetic background of heterogeneous inbred lines (HIFs) consist of 

a mix of the two parental genomes. The availability of a genome wide set of HIF lines for 

the Bay-0xSha RIL population provides a fast and accurate mean to confirm QTL loci.   
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Results 

Phenotyping Seed Germination 

To map the genetic architecture of seed germination traits we have used the core-

population (165 lines) of the Bay-0 x Sha RIL population  (Loudet et al. 2002). Flowering 

time was recorded during maternal plant growth and showed good correlation (Pearson r
2
 

= 0.75) with previous published data of this population (Loudet et al. 2002). We used 

freshly harvested seeds (2 weeks of after-ripening) and tested germination with and 

without stratification (see material en methods for conditions). Further, we tested 

germination of fully after-ripened seeds and assayed germination under several stress 

conditions, with and without stratification (Table 3.1). Germination was measured with the 

automated scoring system; the Germinator (Joosen et al. 2010, Chapter 2). Using this 

package we were able to describe the cumulative germination curve under all conditions 

tested. The germination curve can accurately be described by extracting five parameters: 

Gmax = maximum germination, U8416 = uniformity of germination, time between 16 and 84% 

of germination, t10 = initiation of germination, time to reach 10% of germination, t50 = rate 

of germination, time to reach 50% of germination and AUC = area under the germination 

curve until 100h. 

To reduce environmental variation we took great care in the growth and harvest 

of the maternal plants. We used a fully randomized setup and grew the population twice in 

a climate chamber. In the first growth we separated the harvest in 3 blocks (ABC), each 

with 3-5 plants/RIL. In the second growth we pooled the harvest of 4-7 plants/RIL (D). The 

overall Pearson correlation between block A-B, A-C and B-C was higher compared to A-D, B-

D and C-D (Supporting Information, S3.1). Broad sense heritability’s were calculated with 

the QTL data analysis tools in Genstat 14, using the preliminary single environment analysis 

and adding the block as an additional fixed term (Table 3.2). Heritability values can range 

between 0 (no heritability) and 1 (maximum heritability). Overall, heritability was high, 

indicating a large genetic variance and small effect of the different harvests. The lower 

heritability for maximum germination at low temperature (AR.NS.Cold) and after cold 

stratification (AR.WS) is the result of low genetic variance for these traits, as many of the 

lines germinated to 100% under these conditions. However, we were able to capture the 

genetic variation for these traits in the other parameters (AUC, t50, t10 and U8416). Although 

this breadth of phenotypic screens is common nowadays, easy tools for performing high 

throughput QTL mapping and generating clear overview figures were not available. It is 

important to detect and correct data errors, enable selection of traits that should be 

analyzed in more detail, detect possible epistatic interactions or find strong correlations 

between phenotypes. Because these are crucial steps in determining the biological 

relevance we invested in the development of an automated analytical protocol that 

allowed large scale single trait QTL analysis. 
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Table 3.1: Overview of traits in this study and the harvest(s) used for the measurement. The indicated color-code is 
used in all figures throughout this paper. For each mentioned experiment Gmax, AUC, t50, t10 and U8416 were 
determined. Abbreviations in codes: AR: after-ripened, NS: no stratification, WS: with stratification, CD: Controlled 
deterioration. 

Trait group   Harvest Description Codes 
Germination   ABCD Germination of after-ripened seeds  AR.NS 

After-ripening   ABCD Delta between germination of freshly harvested seeds 
and germination of after-ripened seeds without 
stratification  

AR.NS - Fresh.NS 

Fresh + stratification   ABCD Delta between germination of freshly harvested seeds 
without stratification and germination of freshly 
harvested seeds with stratification 

Fresh.WS -Fresh.NS   

AR + stratification   ABCD Delta between germination of after-ripened seeds 
without stratification and germination of after-ripened 
seeds with stratification 

AR.WS - AR.NS 

NaCl    ABCD Delta between germination of after-ripened seeds on 
100 mM NaCl and germination of after-ripened seeds 
on water, without stratification (Joosen et al., 2010) 

AR.NS - NaCl.NS 

NaCl + stratification   ABCD Delta between germination of after-ripened seeds on 
125 mM NaCl and germination of after-ripened seeds 
on water, with stratification 

AR.WS - NaCl.WS 

Mannitol    AD Delta between germination of after-ripened seeds on -
0.5 mP Mannitol and germination of after-ripened 
seeds on water, without stratification 

AR.NS - AR.Mann.NS 

Mannitol + stratification   AD Delta between after-ripened seed germination on -0.5 
mP Mannitol and after-ripened seed germination on 
water, with stratification 

AR.WS - 
AR.Mann.WS 

Cold Fresh   D Delta between germination of freshly harvested seeds 
at 10°C and germination of freshly harvested seeds at 
20°C, without stratification 

Fresh.NS - 
Fresh.Cold.NS 

Cold    AD Delta between germination of after-ripened seeds at 
10 °C and germination of after-ripened seeds at 20°C, 
without stratification 

AR.NS - AR.Cold.NS 

Cold + stratification   D Delta between after-ripened seed germination at 10 
°C and germination of after-ripened seeds at 20°C, 
with stratification 

AR.WS - AR.Cold.WS 

Heat Fresh   D Delta between germination of freshly harvested seeds 
at 30 °C and germination of after-ripened seeds at 
20°C, without stratification 

Fresh.NS - 
Fresh.Heat.NS 

Heat   D Delta between germination of after-ripened seeds at 
30 °C and after-ripened seed germination at 20°C, 
without stratification 

AR.NS - AR.Heat.NS 

Heat + stratification   D Delta between germination of after-ripened seeds at 
30 °C and after-ripened seed germination at 20°C, 
with stratification 

AR.WS - AR.Heat.WS 

Controlled deterioration   D Delta between germination of after-ripened seeds 
after controlled deterioration and germination of 
after-ripened seeds on water, without stratification 

AR.NS - AR.CD.NS 

Controlled deterioration 
+ stratification 

  D Delta between germination of after-ripened seeds 
after controlled deterioration and germination of 
after-ripened seeds on water, with stratification 

AR.WS - AR.CD.WS 

ABA   D Delta between germination of after-ripened seeds 
with  0.5 µM ABA and germination of after-ripened 
seeds on water, without stratification  

AR.NS - AR.ABA.NS 

ABA + stratification   D Delta between germination of after-ripened seeds 
with  0.5 µM ABA and germination of after-ripened 
seeds on water, with stratification  

AR.WS - AR.ABA.WS 

Seed size   ABD Seed size and length of dry seeds Size.Area 

Size.length 

Seed size, imbibed   ABD Seed size of imbibed seeds Size.imbibed 

Flowering time   ABC Time till first open flower under long day (16D/8N) 
conditions 

FTLD 
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Table 3.2: Overview of the broad sense heritability scores. Included are those traits for which different blocks were 
tested (Trait code descriptions can be found in Table 3.1) 
 

Trait Gmax AUC t50 t10 U8416 

AR.NS 0.82 0.87 0.86 0.79 0.82 

AR.NS.Cold 0.51 0.77 0.73 0.66 0.48 

AR.NS.Mannitol 0.61 0.79 0.70 0.55 0.62 

AR.NS.NaCl 0.9 0.94 0.80 0.76 0.43 

AR.WS 0.63 0.79 0.78 0.72 0.72 

AR.WS.NaCl 0.91 0.93 0.86 0.78 0.70 

Fresh.NS 0.92 0.94 0.81 0.70 0.76 

Fresh.WS 0.40 0.81 0.87 0.84 0.76 

 

Single trait QTL mapping 

To evaluate the response of germination to a certain treatment, we first 

subtracted the observed germination at test conditions from germination at the proper 

control conditions. For example, the effect of NaCl on germination after cold stratification is 

determined by subtracting Gmax on NaCl from Gmax on water. This subtraction was reversed 

for the rate and uniformity parameters to correct the reversed nature of these parameters 

(e.g. slower germination results in a larger t10 and t50). Table 3.1 provides an overview of all 

corrections that have been applied. 

An analytical protocol was designed, using the popular R/qtl package of R to 

analyze trait data of recombinant inbred populations with the multiple QTL model 

approach (Arends et al. 2010). When performing a detailed QTL analysis it is important that 

several steps are performed or checked. Missing genotypic data is imputed and a 

recombination frequency plot is generated (Figure 3.1A). In the next step, quality of the 

trait data is investigated. Outliers are detected and removed using a z-score transformation 

with a user defined threshold. To estimate the effect of data normalization on MQM 

mapping we have used the distribution analyzer version 1.2 (www.variation.com). A LOD 

score correlation plot comparing raw and normalized data (Supporting Information, S3.9) 

clearly shows that this does not affect the output. Therefore, we decided to use non-

transformed data instead of fitting a polynomial distribution without proper biological 

rationale. As an extra control the results of the MQM mapping were always compared to 

standard interval mapping, using the parametric model with Haley Knott regression (Haley 

and Knott 1992) (Figure 3.1B). The whole genome additive effect was estimated based on 

the non-transformed data as half the difference between the phenotypic averages for the 

two homozygotes (Figure 3.1C).  
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Figure 3.1: R/qtl output for the effect of 100mM NaCl on the maximum germination without stratification. A) 
Pairwise recombination fractions; B) LOD profile comparison between MQM and Haley-Knott (scan-one) interval 
mapping; C) Genome wide additive effect based on raw phenotype data D) Genetic map showing the significant 
QTL markers; E) Interaction plot showing the effect size comparison between markers MSAT305754 and 
MSAT518662 at the Sha (AA) and Bay-0 (BB) alleles; F) Circle plot showing epistatic interactions between all 
significant QTL. 

 

R/qtl MQM uses a backward elimination of cofactors. As a rule of thumb one can 

select a maximum of n-16 initial cofactors with this procedure (Jansen 2008), with n being 

the number of lines in the RIL population. In our script, a cofactor file can be provided with 

the selection of the initial cofactors. When no cofactor file is provided, the analysis will be 

performed without cofactors resulting in an analysis comparable with the composite 

interval mapping (CIM) method. For the analysis of the Bay-0xSha population we selected 

39 out of 69 markers as possible cofactors. Cofactors were selected based on their quality 

(least amount of missing data or heterozygous status) and physical cM position, attempting 
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to obtain intervals of about 10 cM. Although the procedure allows the selection of all 69 

markers as cofactors, this does not improve mapping and only lowers statistical power due 

to the multiple testing correction in the permutation analysis. The provided cofactor file is 

used to perform automated backward elimination of cofactors. Backward elimination is 

performed to remove cofactors that do not significantly contribute to the fit of the initial 

model. This is achieved by comparing Akaike’s information criterions (AIC) of the different 

models (Jansen 1993). Using the final selected QTL model, the mapping LOD scores are 

calculated for all genetic markers. Plots showing all significant markers are produced 

automatically (Figure 3.1D). We have used the procedure described to map all 327 

individual measurements (Supporting Information, S3.2) but to enhance readability of this 

paper we only show average values for each trait (94 traits) (Supporting Information, S3.3).  

Detection of Epistatic Interactions 

Detection of epistatic interactions with the relatively limited sample sizes that are 

common in RIL populations is often cumbersome (Li et al. 2010). However, a useful hint of 

epistasis can be obtained when clear effects are visible between loci and the same 

interaction can be detected when measuring multiple traits. We calculated epistatic 

interactions between the QTL loci that are detected with the multiple QTL models from 

MQM. All possible combinations of the detected QTL loci were used to calculate the 

estimated interaction effect (Figure 3.1E).  Interactions will be reported when their 

biological effect size is above a user-defined threshold, which is based on the number of 

standard deviation differences between two interacting loci. In this study we have set this 

threshold to 8. For each single trait a graphical visualization shows all interactions, using the 

circle plot routine from R/qtl (Figure 3.1F).  

Multi Trait Visualizations 

The interpretation of large numbers of phenotypes requires comprehensive 

visualization methods. Therefore, we produced several outputs that can help to dissect and 

interpret the data. A correlation plot based on trait values enabled a quick overview of 

similarities between all input traits (Figure 3.2, bottom left panel). After QTL mapping of all 

traits, this was also done based on the LOD profiles (Figure 3.2, top right panel). This plot 

shows a strong correlation between the effect of after-ripening and stratification on fresh 

seeds, indicating that in the Bay-0 and Sha ecotypes both dormancy breaking treatments 

resulted in total recovery of germination. All other stress treatments had a negative effect 

on germination and resulted in negative trait correlations, as compared to after-ripening 

and stratification. Interestingly, the same structure was observed when studying the LOD 

profile correlations. This indicates that most of the variation is well captured in the genetic 

analysis. Neither dry seed size nor flowering time correlated significantly with any of the 

germination parameters. Imbibed seed size appeared to have a negative correlation with 
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germination in the presence of ABA and a positive correlation with the rate of germination. 

This correlation was strongest at LOD-profile levels. 

 

 

Figure 3.2: Correlation between all trait values (bottom left panel) and between all LOD profiles (top right panel). 
Five parameters (Gmax, AUC, t50, t10 and U8416 resp.) per experiment are shown. A precise description of the trait-
values can be found in Table 3.1. Green ellipses indicate an example of the close correlation between ‘after-
ripened’ and ‘fresh with stratification’ trait values. 

Further, the analytical script creates heat maps of all LOD scores. These heat maps 

can be used to interpret the genetic landscape of the studied traits. A heatmap of all LOD 

scores clustered by traits (one-way) with Hclust (Murtagh 1985) is created to visualize 

similarities among different traits (Figure 3.3). According to a procedure described by 

Breitling et al. (2008), the heatmap shows several significant hotspots in the genome. These 

appear to control different traits and confirm the high level of interconnection among the 

responses to different environmental stresses and is in agreement with earlier findings of 

pervasive genetic buffering (Fu et al. 2009). They found only a few influential ‘hot spot’ 

regions cause major phenotypic variation across a range of environmental conditions 

whereas the largest fraction of molecular variants is silent at the phenotypic level. Further, 

a clear separation in the clustering can be observed between dormancy / mannitol / salt / 

heat / cold QTL compared to ABA and germination after controlled deterioration QTL. This 

is mainly caused by the large QTL with reversed effect on the bottom of chromosome V. 
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Figure 3.3: A clustered heat map showing the LOD profiles of the measured traits. Columns indicate chromosome 
position along the 5 chromosomes; rows indicate individual trait LOD profiles. A false color scale is used to indicate 
the QTL significance. Positive values (yellow and red) represent a larger effect of the treatment in Sha, negative 
values (blue and green) in Bay-0. Dashed lines indicate major QTL positions which are further discussed in Table 
3.4. Clustering on the left shows the correlation between QTL profiles.  
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The protocol stores all LOD profiles in a single tab-delimited text file, allowing 

further analysis in most available statistical and/or microarray analysis software suites. A 

second output file summarizes all QTL results, providing an overview of all detected QTL, 

their LOD score, position, confidence interval and direction (Supporting Information, S3.4 

showing all 327 traits, Supporting Information, S3.5 showing the output for the average 

traits described here). An adjusted result file in the sif format (simple interaction format) 

allows direct import in Cytoscape. Using Cytoscape we created a Marker-Trait network of 

QTL positions, with nodes indicating markers or traits and edges representing LOD scores 

and directions, allowing an alternative method to visualize many trait QTL in one figure 

(Figure 3.4A, Supporting Information S3.10). One advantage of loading a QTL network in 

Cytoscape is the dynamic nature of the program, which allows ordering, filtering and 

selection in all directions. Figure 3.4B shows an example where a specific marker 

(MSAT519) was selected to show all traits that have a significant QTL at this locus, 

visualized by the adjacent edges and connected nodes. In Figure 3.4C we selected a single 

trait (germination on NaCl with stratification), to show all significant QTL positions for this 

trait.  

 
 
Figure 3.4: Cytoscape Marker-Trait network. A) Significant QTL positions are indicated by a connection between 
traits and markers, edge colors indicate the direction of the QTL effect, line width indicates the LOD score; B) Sub- 
network showing all traits with a significant QTL at marker MSAT519; C) Sub-network showing all markers with 
significant QTL for germination on NaCl with stratification 
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QTLxQTL Interactions 

Epistatic interactions between QTL can help to elucidate meaningful co-

localizations and will enable an efficient design of follow up experiments. Besides the 

visualization of the epistatic interactions per trait (Figure 3.1F) our script creates an output 

that can help to visualize all detected epistatic interactions in a single plot. This output file 

in sif format summarizes all detected epistatic interactions (Figure 3.5, Supporting 

Information S3.11). Among others, clear hotspots of epistatic interactions between QTL loci 

on chromosome 3, 4 and 5 (resp. ATHCHIB2 + MSAT332, MSAT435 and MSAT520037 + 

MSAT519) were observed for germination on salt (yellow lines) and dormancy (blue lines). 

Next to the importance of detecting possible interacting loci this QTLxQTL analysis provides 

additional arguments for co-locating QTL to be of similar genetic origin. Overall, the 

creation of this type of summarizing figures is greatly facilitating the interpretation of large 

datasets. 

 
 
Figure 3.5: Epistatic interaction network. Nodes indicate markers (small circles) and selected cofactors (large 
circles). Edges represent the detected significant epistatic interactions (edge colors represent traits). A precise 
description of the trait-values can be found in Table 3.1. 
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QTLxEnvironment interaction 

To obtain a parameter for the response, we had to correct all values with their 

proper control condition values. This sometimes led to complex interpretation, which can 

be circumvented by using the non-corrected germination parameters and model them over 

the various environmental conditions that were tested. Because several environments are 

taken into account simultaneously the statistical power to detect loci that are affected by 

several environments increases and interpretation becomes more intuitive as the need for 

correcting the stress response by the control response is eliminated. By using this approach 

the sensitivity of a specific QTL for environmental conditions can be determined for each 

separate germination parameter. Details about the procedure are described in Material 

and Methods. Results are summarized in Figure 3.6. The final model P-value profiles (top 

panel, Figure 3.6) clearly show the great consistency between the 5 germination 

parameters that we measured.  However, a closer look also reveals loci that are affecting 

different germination curve parameters. For example, the QTL on top chromosome 5 is not 

detected by measuring maximum germination but is well defined when using t50 or t10 as 

parameter. As expected, the parameter AUC (Area Under the Curve) is outperforming the 

others as it represents a combined value for maximum germination percentage, rate and 

uniformity. For comparison of the environment-specific QTL effects for the 5 different 

germination parameters (5 lower panels, Figure 3.6) the effects could be compared with 

germination under control conditions. For example, after-ripened seeds without 

stratification (AR.NS) can guide as reference for the stress treatments (AR.NS.ABA, 

AR.NS.CD, AR.NS.Cold, AR.NS.Heat, AR.NS.Mannitol, AR.NS.NaCl). The same analogy holds 

true for after-ripened seeds without stratification (AR.NS) and freshly harvested seeds 

without stratification (Fresh.NS). In this way stress specific QTLs on chromosome II and top 

chromosome III can easily be identified. Interestingly, some QTLs, including germination at 

low temperature (top chromosome I) and germination in the presence of exogenous ABA 

(bottom chromosome V) displayed opposite effects on germination when compared to the 

other treatments. In Table 3.3 the environmental specific effect sizes are summarized for 

the major loci. A complete overview of effect sizes and explained variances for all detected 

loci can be found in Supporting Information S3.6.  

 

 

 

 

Figure 3.6: Genome scan for QTLxEnvironment effects for seed germination. The P-values for the main effects of 
the different germination parameters are shown in the top panel. The red horizontal line is the genome wide 
significance threshold. The 5 bottom panels show the environment specific QTL effects. The horizontal green bar 
at the top of each panel indicates significant environment specific effects. For both Gmax and AUC a bigger effect of 
the Sha allele is indicated in yellow-red and bigger effect of the Bay-0 allele in cyan-blue. The colors scale is 
opposite for the t50, t10 and U8416 parameters due to the inversed nature of these parameters. 
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Table 3.3:  Significant environment-specific QTL effects (P<0.05). Positive values for AUC and Gmax indicate a larger 
effect of the Sha allele, negative values for AUC and Gmax indicate a larger effect of the Bay-0 allele. This is opposite 
for t50, t10 and U8416 values due to the inversed nature of these parameters. Environments as mentioned in Table 
3.1, loci as indicated in Figure 3.3.  
 

 

QTL confirmation  

Taking advantage of the residual heterozygosity present in the F6 generation of 

the Bay-0xSha population, combined with the large population size, we were able to 

confirm several QTL following the heterogeneous inbred family (HIF) approach. In short, RIL 

lines which are heterozygous at the locus of interest were selected in the next generation 

for lines homozygous for both parental alleles. These ‘families’ are near isogenic lines (NIL) 

which can be used to confirm the observed allelic effects (Figure 3.7A). We applied this 

strategy for 7 of the major QTL that we detected in this study and tested the 5 germination 
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parameters for 11 different conditions. For a single parameter (Gmax) and a single HIF (line 

HIF103) the analytical procedure is summarized in Figure 3.7B. Traits that could be 

confirmed by one or several HIF lines are indicated in Table 3.4. An overview of all HIF 

results can be found in Supporting Information S3.7.  

 

 

Figure 3.7: Confirmation of QTL with a HIF approach. A) The blue/red bars indicate the allelic distribution of the HIF 
lines used (blue=Bay-0, red=Sha, light blue=segregating). The 5 chromosomes are indicated at the top with the 
nearest genetic marker for the 7 major loci. B) Example analysis for HIF103 (segregating at MSAT5.19, bottom 
chromosome V). Indicated is the response for maximum germination for 11 conditions compared to control. Error 
bars represent standard error of at least 6 replicates. Responses are calculated by subtracting the test sample 
from the control sample as indicated in Table 3.1. Numbers above the graph are the t-test significance for the 
responses as measured between HIF/Bay vs HIF/Sha (significant values (P<0.05) are in bold). 

We detected a vast QTL for imbibed seed size at the bottom of chromosome 5, 

which could be confirmed by the use of HIF103. Upon imbibition seeds swell due to rapid 

water uptake and possibly because of the expansion of the inner mucilage layer. In Sha, 

which is a natural mutant for the mum2 gene (Macquet et al. 2007), this swelling did not 

occur. Also the HIF lines at the mum2 position showed a clear difference in swelling 

phenotype which was still significant 24 hours after imbibition (Figure 3.8).  
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Figure 3.8: Different increase in seed size during start of imbibition for Bay-0 (green), Sha (blue), HIF103/Bay-0 
(red) and HIF103/Sha (purple) seeds. Shown is the average projected seed size area of 10 seeds. Error bars 
represent standard error values. Photographs show 24H imbibed seeds. 

Discussion 

When analyzing large (RIL) populations, it is hardly feasible to manually count all 

germination experiments several times a day to obtain germination curves. Therefore, 

previous studies mostly restricted to counting end-point germination (Quesada et al. 2002; 

Alonso-Blanco et al. 2003; Clerkx et al. 2004; Laserna et al. 2008; Meng et al. 2008; 

Bentsink et al. 2010; Galpaz and Reymond 2010; Vallejo et al. 2010). A germination curve 

allows QTL mapping under conditions where rate and uniformity are delayed, but 

maximum germination is not affected. Therefore, we used the Germinator package (Joosen 

et al. 2010) that enabled measurement of cumulative germination data and extracting 5 

germination parameters that describe the resulting germination curve. In the present study 

we describe several germination QTLs that were not detected before in the Bay-0xSha 

population. We observed interesting co-localizations for several germination traits and 

identified the loci that show large effect epistatic interactions. Among these were new loci 

and loci similar to the ones already found in other RIL populations as summarized in Table 

3.4 for the major identified QTL loci. 
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Table 3.4: Co-locations at the major QTL loci 

QTL1 Trait HIF confirmed2 Marker LOD 
cM/ 
Mb 

Interval 
(cM) Effect 

Co-localization with 
other seed studies 

1-1 NaCl.NS.Gmax 
NaCl.NS.AUC 
NaCl.WS.Gmax 
ABA.NS.Gmax 
ABA.NS.AUC 
Heat.NS.AR.Gmax 
Heat.NS.AR.AUC 

 
 
098/198 
098 
098 
098 
098 

F21M12 13.1 
14.1 
4.6 
4.7 
6.6 
10.1 
14.4 

9.7/ 
3.2 

5 - 13 
6 - 13 
4 - 14 
5 - 22 
4 - 14 
6 - 18 
6 - 18 

>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 

Cloned QTL for salt 
and ABA sensitivity 
during germination 
and seedling 
growth in LerxSha, 
RAS1 (Ren et al. 
2010)  
 
QTL for germination 
after heat shock in 
LerxSha (Clerkx et 
al. 2004) 

1-2 NaCl.WS.Gmax 
NaCl.WS.U8416 
NaCl.WS.AUC 
ABA.WS.Gmax 

 T27K12 7.9 
3.6 
9.2 
4.9 

49.1/ 
15.9 

42 - 54 
38 - 62 
41 - 57 
44 - 54 

>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 

QTL for germination 
on salt in LerxSha 
(Galpaz and 
Reymond 2010) 

3-1 Stratification.AR.AUC 
NaCl.NS.Gmax 
NaCl.NS.t50 
NaCl.NS.AUC 
NaCl.WS.Gmax 
NaCl.WS.t50 
NaCl.WS.U8416 
NaCl.WS.t10 
NaCl.WS.AUC 
Mannitol.NS.AUC 
ABA.NS.Gmax 
ABA.WS.Gmax 
ABA.WS.AUC 
Cold.NS.Fresh.Gmax 
Heat.NS.AR.Gmax 
Heat.NS.AR.AUC 
Heat.WS.AR.Gmax 
Heat.WS.AR.U8416 
Heat.WS.AR.AUC 

 
 
 
 
424 
004 
004 
424 
424 
 
424/004 
105/424/004 
424/105 
 
424 
 
 
424 

ATHCHIB2 3.4 
6.0 
4.4 
9.7 
5.9 
7.9 
4.0 
4.9 
9.6 
3.6 
10.7 
10.8 
6.5 
3.4 
7.6 
6.9 
4.7 
3.4 
5.0 

6.6/ 
3.9  

0 - 19 
2 - 16 
0 - 8 
1 - 7.9 
1 - 16 
0 - 14 
0 - 19 
0 - 17 
1 - 14 
0 - 16 
1 - 7.9 
2 - 7.9 
0 - 7.9 
0 - 19 
3.2 - 8 
3.2 - 19 
0 - 17 
4 - 17 
1 – 13 

>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 
>Sha 
>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 

QTL for germination 
on ABA and salt in 
LerxSha (Clerkx et 
al. 2004) 
 
QTL for germination 
on PEG in Bay-
0xSha, OSR2 
(Vallejo et al. 2010) 
 
 

3-2 Stratification.Fresh.Gmax 
Stratification.Fresh.AUC 
Stratification.AR.Gmax 
Stratification.AR.t50 
Stratification.AR.U8416 
Stratification.AR.AUC 
After-ripening.Gmax 
After-ripening.AUC 
NaCl.WS.t50 
Mannitol.NS.Gmax 
ABA.NS.AUC 
Cold.NS.Fresh.AUC 
Heat.NS.Fresh.U8416 

192/404 
004/192/404 
004/192 
404 
 
404 
004/192/404 
404 
004 
192/404 
 

MSAT332 11.3 
12.9 
8.0 
6.7 
8.1 
7.8 
9.0 
10.0 
3.8 
6.7 
8.4 
8.0 
4.8 

39.5/ 
11.2 

36 - 50 
37 - 50 
35 - 52 
33 - 48 
35 - 48 
36 - 48 
35 - 48 
36 - 48 
33 - 52 
36 - 52 
32 - 46 
36 - 52 
33 - 48 

>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Bay-0 
>Sha 
>Bay-0 
>Bay-0 
>Bay-0 

Delay of 
Germination, DOG6 
(Bentsink et al. 
2010) 
 
QTL for dormancy 
and germination on 
salt in LerxSha 
(Clerkx et al. 2004) 
 
QTL for cold-dark 
germination in Bay-
0 x Sha, CDG-3 
(Meng et al. 2008) 

4-1 Stratification.Fresh.Gmax 
Stratification.Fresh.t50 
Stratification.Fresh.U8416 
Stratification.Fresh.AUC 
Stratification.AR.t50 
Stratification.AR.t10 
After-ripening.Gmax 
After-ripening.t50 
After-ripening.U8416 
After-ripening.AUC 
ABA.WS.Gmax 
ABA.WS.AUC 
Cold.NS.Fresh.Gmax 
Cold.NS.Fresh.AUC 
Heat.NS.Fresh.Gmax 
Heat.WS.AR.Gmax 
Heat.WS.AR.AUC 

329/415 
111 
 
329/415 
 
011 
329/011/415/111 
 
 
011/415/111 
011 
011 
 
 
 
011/415 
011/415 

MSAT435 14.6 
8.4 
9.9 
28.8 
4.0 
5.7 
20.4 
9.9 
8.8 
35.8 
5.4 
4.0 
7.4 
4.7 
3.6 
8.1 
9.2 

24.2/ 
7.5 

16 - 26 
17 - 32 
17 - 32 
17 - 26 
19 - 33 
20 - 37 
16 - 26 
16 - 28 
17 - 31 
16 - 25 
12 - 34 
16 - 37 
12 - 30 
12 - 27 
12 - 31 
17 - 37 
17 - 34 

>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 
>Sha 
>Bay-0 
>Bay-0 

Delay of 
Germination, 
DOG18 (Bentsink et 
al. 2010) 
 
 

5-1 Stratification.AR.t50 
NaCl.NS.t50 
NaCl.NS.t10 
NaCl.WS.t50 
NaCl.WS.U8416 

 
 
214 
361 

MSAT514 4.0 
8.8 
11.3 
9.9 
3.5 

26.6/ 
7.5 

21 - 37 
19 - 29 
21 - 30 
20 - 30 
18 - 30 

>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 
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QTL1 Trait HIF confirmed2 Marker LOD 
cM/ 
Mb 

Interval 
(cM) Effect 

Co-localization with 
other seed studies 

NaCl.WS.t10 
CD.NS.AR.Gmax 

5.4 
4.7 

18 - 30 
20 - 39 

>Bay-0 
>Bay-0 

5-2 Stratification.Fresh.Gmax 
Stratification.Fresh.AUC 
After-ripening.AR.Gmax 
After-ripening.AR.AUC 
NaCl.NS.t50 
Cold.NS.Fresh.U8416 
Heat.NS.AR.AUC 
Heat.WS.AR.AUC 

152 
152 
152 
152 
 
 
152 

MSAT59 4.6 
6.0 
7.7 
11.7 
4.3 
1.3 
5.1 
4.8 

57.8/ 
17.2 

48 - 68 
48 - 67 
51 - 67 
50 - 62 
52 - 70 
47 - 61 
46 - 62 
53 - 70 

>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Bay-0 
>Sha 
>Sha 

Delay of 
Germination, DOG1 
(Bentsink et al. 
2010) 
 
QTL for cold-dark 
germination in Bay-
0 x Sha, CDG-6 
(Meng et al. 2008) 

5-3 NaCl.NS.Gmax 
NaCl.NS.t10 
NaCl.NS.AUC 
NaCl.WS.Gmax 
NaCl.WS.t50 
NaCl.WS.U8416 
NaCl.WS.t10 
NaCl.WS.AUC 
Mannitol.NS.Gmax 
Mannitol.NS.AUC 
Mannitol.WS.t50 
Mannitol.WS.AUC 
Heat.NS.Fresh.Gmax 
Heat.WS.AR.t50 

 
 
 
410/152 
410/152/103 
 
 
 
152 
152 
152 
152 
 
152 

MSAT 
520037 

10.1 
6.4 
11.6 
18.0 
19.6 
5.4 
18.4 
23.2 
13.2 
10.4 
4.0 
3.5 
4.8 
8.0 

67.4/ 
20.0 

61 - 72 
62 - 79 
58 - 72 
63 - 72 
64 - 72 
59 - 74 
65 - 74 
64 - 73 
63 - 74 
60 - 74 
63 - 77 
62 - 79 
55 - 73 
63 - 74 

>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Sha 

QTL for germination 
on salt in Bay-0 x 
Sha, SSR2 (Vallejo 
et al. 2010) 
 
QTL for germination 
on salt in ShaxCol 
(Galpaz and 
Reymond 2010) 

5-4 Stratification.Fresh.Gmax 
Stratification.Fresh.t50 
Stratification.Fresh.t10 
Stratification.Fresh.AUC 
After-ripening.t50 
After-ripening.t10 
After-ripening.AUC 
Mannitol.NS.t50 
Mannitol.NS.U8416 
Mannitol.NS.t10 
ABA.NS.Gmax 
ABA.NS.t50 
ABA.NS.t10 
ABA.NS.AUC 
ABA.WS.Gmax 
ABA.WS.t50 
ABA.WS.U8416 
ABA.WS.AUC 
Heat.NS.AR.Gmax 
Heat.NS.AR.AUC 
Heat.WS.AR.U8416 
Size.imbibed.seed.Area 

152 
 
 
152 
 
 
152 
 
 
 
103 
103 
 
103 
410/152/103 
103 
103 
410/152/103 
152 
152 
103 
103 

MSAT519 3.9 
10.4 
16.3 
7.3 
14.8 
19.3 
4.7 
9.6 
5.1 
6.2 
9.9 
22.8 
9.7 
12.0 
8.2 
19.5 
11.9 
22.3 
11.0 
9.1 
13.3 
72.3 

85/ 
25.9 

80 - 91 
79 - 91 
79 - 88 
80 - 91 
79 - 90 
79 - 88 
80 - 91 
80 - 91 
80 - 91 
79 - 91 
79 - 89 
80 - 89 
80 - 90 
73 - 91 
81 - 90 
79 - 88 
76 - 88 
80 - 88 
80 - 90 
82 - 91 
80 - 91 
79 - 89 

>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Sha 
>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 
>Bay-0 
>Sha 
>Sha 
>Sha 
>Sha 

Cloned Mucilage 
affecting locus, 
MUM2 (Macquet et 
al. 2007) 

1 as marked in Figure 3.3, 2 lines indicated in Figure 3.7A, t-test P-value<0.1 

Dormancy 

Primary dormancy has been studied extensively in various RIL populations 

(Bentsink et al. 2010). These authors quantified primary dormancy with the DSDS50 

parameter (days of dry storage to reach 50% germination), which is a good measure for 

after-ripening related dormancy breaking. Although we only compared the germination 

characteristics of freshly harvested seeds with those of after-ripened seeds and fresh seeds 

with and without stratification, we detected large genetic variation. Both dormancy 

breaking treatments showed strong QTL at positions 3-2, 4-1 and 5-2, co-locating with 

DOG6, DOG18 and DOG1, respectively (Table 3.4). DOG18 was not detected in a LerxSha 

population and showed a stronger dormancy in Ler as compared with An-1, Fei-0 and Kas-2 

(Bentsink et al. 2010). We detected stronger dormancy in Sha as compared to Bay-0 at the 
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DOG18 locus. This suggests that both Ler and Sha contain an allele of similar strength which 

is stronger when compared to An-1, Fei-0, Kas-2 and Bay-0. 

Remarkably, for both the DOG6 and DOG18 location the sensitivity to ABA was 

higher in Bay-0, whereas dormancy was deeper in Sha, which resulted in a directional 

change of the QTL effect. The more dormant Sha parent contains higher initial ABA levels 

(Supporting Information, S3.8) and apparently, after-ripening and stratification reduce the 

ABA sensitivity to a greater extent as compared to the Bay-0 parent. This effect was not 

observed for the DOG1 locus. Further, we identified a strong effect of the dormancy-

breaking treatments on the initiation (t10) and rate (t50) of germination at the bottom of 

chromosome 5 (marker MSAT519, 85 cM). The same was observed for germination on 

mannitol and germination at higher temperature. A QTL with opposite effect at this 

position was found for germination on ABA. Interestingly, these co-located with a QTL 

found for imbibed seed size. 

Water uptake 

Initiation and rate of germination are highly influenced by the overall water 

potential of the seed. The mucilage layer surrounding the seed appears to play an 

important role in the process of water uptake (Penfield et al. 2001). Sha is a natural 

mucilage mutant due to a mutation in the MUM2 gene, which changes the hydrophilic 

potential of rhamnogalacturonan I (Macquet et al. 2007). Although mucilage has been 

reported to be dispensable for germination and development under lab conditions 

(Arsovski et al. 2010), a link with germination under reduced water potential conditions was 

shown by Penfield et al. (2001). They showed reduced maximum germination of a 

mucilage-impaired mutant only on osmotic PEG solutions. In our study, other traits that co-

located on the MUM2 locus were delayed initiation and rate of germination on osmotic 

mannitol solution but also on water, which clearly shows the advantage of determining a 

detailed germination curve. We also observed a very strong QTL for swelling of the seed in 

the first hours of imbibition (imbibed seed size) at the MUM2 location. Interestingly, 

exogenous ABA can be used to stimulate mucilage production and aba1 mutants are 

affected in mucilage production (Karssen et al. 1983). This indicates a regulatory role of 

ABA in mucilage production and fits with our observation of the co-localization of a QTL for 

initiation and rate of germination with a QTL with opposite effect for ABA sensitivity. 

Therefore, we hypothesize that Sha has a slower initiation and rate of germination, 

combined with reduced ABA sensitivity due to its mutation in the MUM2 gene. This 

observation may open new research strategies to define the regulatory role of ABA in 

mucilage production and its multiple effects on germination parameters.  

Germination responses to salt, heat and ABA 

At the top of chromosome I, underlying marker F12M12, we detected a strong 

QTL for maximum germination in the presence of 100 mM NaCl or 0.5µm ABA. A similar 



Chapter 3 

68 

locus has been identified and fine-mapped in a LerxSha population (Ren et al. 2010). They 

identified a premature stop codon in the Response to ABA and Salt 1 gene (RAS1; 

At1g09950) in Sha that led to a truncated protein and showed its role as a negative 

regulator of salt tolerance during seed germination and early seedling growth by enhancing 

ABA sensitivity. Here we show that a similar locus is also inferring tolerance to germination 

at 30°C. This suggests an additional role for the RAS1 gene. Increased heat tolerance due to 

modulation of ABA sensitivity has been shown before for other loci, (Argyris et al. 2008; Lee 

et al. 2010). Interestingly, our present study showed a strong effect of stratification which 

resulted in a strong reduction of significant linkage for NaCl, heat and ABA sensitivity at the 

F12M12 locus. A specific QTL for germination on NaCl preceded by a cold stratification 

period was found at the middle of chromosome I (marker T27K12). Also at this locus we 

found colocation with sensitivity for germination on ABA after stratification. Further fine-

mapping at this locus might help to elucidate the effect of stratification on ABA mediated 

abiotic stress tolerance, as well as the apparent overlap of dormancy and stress responses. 

Especially interesting is QTL 5-1 (Table 3.4, Figure 3.3) which mainly influences 

rate and initiation of germination. We detected this QTL for t50 in after-ripened seeds with 

stratification treatment, but also for t10 and t50 for germination on salt, regardless of a 

preceding cold stratification and for maximum germination after an accelerated aging 

treatment. One of the genes underlying this QTL interval is a nicotinamidase gene (NIC2, 

At5g23230), the mutant of which has retarded germination and impaired germination 

potential (Hunt et al. 2007). These authors suggested that NIC2 is normally metabolizing 

nicotinamide during moist chilling or after-ripening, which relieves inhibition of poly(ADP-

ribose) polymerase (PARP enzyme) activity and allows DNA repair to occur prior to 

germination. Both accelerated aging and germination under salt stress conditions might 

require optimal functioning of this DNA repair mechanism. Further research is needed to 

determine whether NIC2 is causal for this QTL. 

Detection of epistatic interactions in genetic studies can enhance the 

understanding of underlying molecular mechanisms. Recently, Galpaz and Reymond (2010) 

showed strong epistasis in the genetic network controlling germination under salt stress in 

Arabidopsis. Due to careful dissection of the epistatic relationships they were able to show 

that three detected QTL rely on the presence of a Columbia allele at a QTL on top of 

chromosome I. This observation led to the hypothesis that RAS1 (Ren et al. 2010) functions 

as a switch of the genetic network by regulating the expression of the other QTL. In another 

study it was found that epistasis significantly influences both fitness and germination in 

Arabidopsis (Huang et al. 2010) and novel allele combinations were identified that resulted 

in higher fitness. In our study we detected clear hotspots of epistatic interactions between 

QTL loci on chromosome 3, 4 and 5 (ATHCHIB2, MSAT332, MSAT435, MSAT520037 + 

MSAT519, respectively). This observation strengthens the hypothesis that some of the 

traits with strong QTL co-localizations indeed rely on the same underlying genetic 

networks.  
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Conclusion 

In conclusion, we analyzed natural variation for many seed germination 

characteristics and showed their correlation, (shared) QTL positions and epistatic 

interactions, using a high-throughput phenotyping approach and subsequent high-

throughput QTL mapping. Using the HIF approach, confirmation of some major QTL 

hotspots was demonstrated, which allows a fast but solid confirmation of a QTL position. 

Together with results from several other studies focusing on genetic variation in seed traits, 

this study has generated an extensive QTL database for Arabidopis and proposed a method 

of analysis to visualize the genetic landscape of seed performance. This database is a solid 

resource for further study. For most of the found loci in this and other studies further 

characterization, and in most cases fine mapping, must be undertaken to elucidate the 

causal molecular mechanisms. Further, we have designed a free available analysis protocol 

to perform detailed high-throughput QTL analysis based on the R/qtl MQM routine.  In this 

era of large-scale phenotyping we regard a detailed analysis of QTL, QTLxQTL and 

QTLxEnvironment interactions as indispensable steps to allow visualization and 

interpretation of multiple traits. Finally, there is great potential in combining extensive 

phenotyping of RIL populations with available -omics approaches to increase the speed of 

causal allele detection (Joosen et al. 2009). 

Materials and Methods 

Plant Growth  

Seeds from the core population (165 lines) of an Arabidopsis Bay-0 x Sha 

recombinant inbred population (Loudet, et al., 2002) were obtained from the Versailles 

Biological Resource Centre for Arabidopsis (http://dbsgap.versailles.inra.fr/vnat/). The 

population is mapped with 69 markers with an average distance between the markers of 

6.1 cM (Loudet et al. 2002). Maternal plants were grown twice in a fully randomized setup. 

In the first round we separated the harvest in 3 groups (A,B and C), each containing 3-5 

plants/RIL. In the second round we pooled the harvest of 4-7 plants/RIL (D).  Plants were 

grown on 4x4 cm rockwool plugs (MM40/40, Grodan B.V.) and watered with 1 g/l Hyponex 

fertilizer (NPK=7:6:19, http://www.hyponex.co.jp) in a climate chamber (20°C day, 18°C 

night) with 16 hours of light (35W/m2) at a relative humidity of 70%. Seeds were bulk 

harvested and after-ripened at room temperature and ambient relative humidity until they 

reached their maximum germination potential after 5 d of imbibition.  

Seed Germination Assays 

Germination experiments were performed as described previously (Joosen et al. 

2010). Germination was scored using the Germinator package. When mentioned, a cold 

stratification period of 4 days at 4°C in the dark was applied before transferring the trays to 

http://www.google.com/url?sa=D&q=http%3A%2F%2Fdbsgap.versailles.inra.fr%2Fvnat%2F
http://www.google.com/url?sa=D&q=http%3A%2F%2Fwww.hyponex.co.jp
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the germination incubator (20°C, continuous light). A temperature of 10°C was used for 

testing ‘cold’-germination whereas 30°C was use for ‘heat’-germination. Salt stress was 

applied by replacing the water by an NaCl (Sigma Aldrich, #S-3014) solution (100 mM for 

non-stratified, 125 mM for stratified seeds, as stratification reduces the sensitivity to NaCl). 

A solution of -0.6 MPa mannitol (Sigma Aldrich, #15719) was used to test for osmotic 

stress. ABA (Duchefa Biochemie, A0941) was initially dissolved in a few drops of 1N NaOH 

from which stock solutions were prepared in 10 mM MES buffer, pH 5.9. ABA was used at a 

final concentration of 0.5 µM. Accelerated aging of the seeds was performed using a closed 

container with a saturated NaCl solution to obtain 75% relative humidity (RH). Seeds were 

equilibrated for 7 days in this humidity at 20°C in the dark, followed by 30 days at 75% RH, 

32.5°C in the dark (Hundertmark et al. 2011). For each measurement we used at least 2 

replicates for every harvest that was tested (Table 3.1) to determine the germination 

characteristics. All germination tests were performed in a fully randomized setup. Averages 

were calculated and corrected for their proper control (Table 3.1). For Gmax and AUC the 

stress condition was subtracted from the control condition. Because t10, t50 and U8416 are 

reversed parameters, we subtracted control conditions from stress conditions. Dry seed 

size was determined by taking close-up photographs from ~100-200 seeds using a Nikon 

D80 camera with a 50mm Macro objective. Imbibed seedsize was extracted from the first 

images acquired within the Germinator setup (100-200 seeds). For Figure 3.8, 10 seeds of 

each line were photographed with maximum magnification (using a 50mm Macro 

objective). The photographs were analyzed using the open source image analysis suite 

ImageJ (http://rsbweb.nih.gov/ij/) by using color-thresholds combined with particle 

analysis. 

Single trait QTL mapping using R/qtl 

This protocol is provided as an R script and performs the following analysis and 

transformations (steps specified with an (o) are optional, (c) means that the steps can be 

configured by the user): 

Preparing and starting: 

To run an analysis two kind of files need to be provided. (1) the RAW data file 

formatted in R/qtl cross format (See the manual of R/qtl for more information) and (2) a 

configuration file. The description of the allowed (and necessary) parameters is available in 

the manual (Supporting Information, S3.12). After having prepared these files the user can 

start R and change to the directory the script is located by using the setwd command: 

> setwd(‘d:/script’) 

Now the script can be loaded by using the source command: 

> source(‘qtl_analysis_script.R’) 

Then the analysis is started by the doAnalysis command, this command takes two 

parameters a filename and a directory (only needed when different from the script 

directory): 
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> doAnalysis(‘myconfig.txt’,’d:/configfiles’) 

The script will now start the analysis.  

Analysis protocol – loading and preprocessing: 

The script starts by reading the configuration and data file and then performs the 

following analysis: 

(o,c) Use a Z-transformation to check data distribution and remove any outliers; 

(o,c) Automated phenotype normalization / User supplied normalization; 

(c) Plotting of basic genetic statistics like genetic map, recombination frequencies, trait 

correlation plots. 

Main analysis loop (performed for all traits) 

In the main loop we analyze traits independently. For each trait a directory in the 

output folder is created to store the per trait results. We used the following steps: 

Plotting of basic per phenotype statistics: Distributions of raw and normalized data; 

(c) QTL modeling using backward elimination on genetic cofactors, followed by interval 

mapping using multiple cofactors (multiple QTL mapping;); 

(o) QTL by single marker mapping using Hailey-Knott regression (scan.one);  

(o) Whole genome interaction scan heatmap made by using the scan.two QTL interaction 

mapping routine from R/qtl; 

(o) Single trait permutation using the mqmpermutation routine; 

Generation of various plots related to the single trait QTL results: 

Raw phenotype effect plots; 

QTL model by backward elimination; 

QTL profiles showing scan.one, scan.two and the MQM interval mapping results; 

Interaction effect plots. 

Furthermore at the end of the analysis for each phenotype additional information is saved. 

Also an Rdata file containing the output object from the MQMscan is saved to enable the 

user to cancel the analysis and resume at a later time. 

Multi trait analysis and plots 

After all phenotypes have been analyzed the script provides additional plots based 

on the aggregated data: 

(o,c) Circleplots showing selected cofactors and possible interactions; 

(o,c) Combined heatmaps and HClust clustering of all QTL profiles; 

(o,c) Extraction of the clusters and plotting of the grouped QTL results; 

(o) The user can output sif (simple interaction format) formatted files which can be used to 

create network overviews in Cytoscape (or other visualization tools). We provide two 

networks:  

 The QTL network: Genetic marker network based on QTL data  

 The epistatic interaction network produced by summarizing the interactions found 

between selected cofactors from the MQM algorithm. 

To visualize the created .sif files download and install Cytoscape, launch Cytoscape 

and load the network using File | Import | Network (Multiple file types). 
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QTL x Environment analysis 

By using Genstat version 14, the variance covariance (VCOV) model is calculated 

for the G+GxE variation in the phenotypic data based on an unstructured model. Given this 

VCOV model a simple interval mapping (SIM) procedure was started followed by two 

rounds of composite interval mapping (CIM) using detected QTLs as cofactors, but omitting 

these covariables in windows around the SIM QTLs. A final multi-QTL model is created using 

a backward elimination for significant cofactors.  For imputing virtual markers along the 

chromosomes a step size of 2 cM was used. Minimum cofactor proximity as well as 

minimum separation for selected QTL were set to 16 cM.  
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Supporting Information 

Supporting information can be downloaded from either the online version of this 

article (Joosen et al. 2012) or from: 

www.wageningenseedlab.nl/thesis/rvljoosen/SI/chapter3 
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(csv) format 
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in the 165 RIL lines (in rows) that are described in this paper. The crossobject can be used 

as input file for the script, comma separated value (csv) format 

Table S3.4: output file that summarizes all QTL results, providing an overview of all detected 

QTL, their peak LOD score, position, confidence interval and direction for all 327 traits 

measured, Microsoft Excel (xls) format 

Table S3.5: output file that summarizes all QTL results, providing an overview of all detected 

QTL, their peak LOD score, position, confidence interval and direction for all 94 traits 

described in this paper, Microsoft Excel (xls) format 
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QTLxEnvironment effects, Microsoft Excel (xls) format 

Table S3.7: Overview of t-test P-values for all contrasts from the HIF results 

Table S3.8: Results and methodology from ABA measurements in dry Bay-0 and Shahdara 

seeds 

Figure S3.9: LOD score correlation plot comparing raw and transformed data (fitted to a 

normal distribution) 

File S3.10: QTLnetwork.cys. Cytoscape file containing the interactive QTL network shown in 

Figure 3.4 

File S3.11: Interactionnetwork.cys. Cytoscape file containing the epistatic interaction 

network shown in Figure 3.5 

File S3.12: Package.zip. Zip file containing all necessary files for re-analysis of the presented 
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“With a little seed of imagination you can grow a field of hope.”  
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Abstract 

Seed dormancy and germination involve the concerted operation of molecular and 

biochemical programs. It has become feasible to study these processes in great detail, using 

the current methods for transcriptome, proteome and metabolome analysis. Yet, the large 

amounts of data generated by these methods are often dazzling and demand efficient tools 

for data visualization. We have used the freely available PageMan/MapMan package 

(http://MapMan.gabipd.org) to visualize transcriptome and metabolome changes in 

Arabidopsis thaliana seeds during dormancy and germination. Using this package we 

developed two seed-specific MapMan pathways, which efficiently capture the most 

important molecular processes in seeds. The results demonstrated the usefulness of the 

PageMan/MapMan package for seed research. 

Visualization of molecular processes associated 
with seed dormancy and germination using 
MapMan 

http://mapman.gabipd.org/
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Introduction 

The Arabidopsis community has developed comprehensive databases for gene 

description, annotation and expression analysis (Brazma et al. 2003; Toufighi et al. 2005; 

Zimmermann et al. 2005). The available information is not limited to transcriptome but is 

expanded to proteome and metabolome data as well (De Vos et al. 2007; Meyer et al. 

2007; Baerenfaller et al. 2008). Arabidopsis is an important model also for seed science and 

provides valuable insight into the processes underlying germination, dormancy and stress 

resistance ((Finkelstein et al. 2008; Holdsworth et al. 2008a; Holdsworth et al. 2008b).  

The seed represents a critical stage in the plant life cycle. After fertilization the 

embryo is formed, which is surrounded by the endosperm and seed coat (Liu et al. 2005). 

Seeds acquire desiccation tolerance and dormancy during maturation to survive under 

harsh conditions after seed dispersal (Bewley 1997). Germination at an appropriate timing 

is a critical step for the initiation of the plant life cycle (Huang et al. 2010; Moyers and Kane 

2010). Seeds are equipped with accurate sensors for water, light and temperature to 

monitor optimal seasonal timings for germination, successful seedling establishment and 

further plant development (Franklin and Quail 2010). Upon imbibition protein synthesis and 

DNA transcription are resumed and cell wall expansion and degradation facilitate the 

penetration of the radicle through the endosperm and seed coat (Nonogaki et al. 2007). 

Finally, energy sources are remobilized to enable a fast growth of the emerging seedling 

(Nonogaki 2006). The concerted operation of these molecular processes is organized by 

plant hormones, hormone- or photo-receptors and transcription factors (Holdsworth et al. 

2008). Modern ‘omics’ tools can provide valuable insight into the function and regulation 

mechanisms of these molecular processes (Joosen et al. 2009). 

Many tools to analyze transcriptome, proteome or metabolome data rely on 

approaches to detect co-expression or co-existence. Such clustering methods and principal 

component analysis are efficient tools to summarize data and detect groups of genes, 

proteins and metabolites with similar behavior (Rensink and Hazen 2006). However, more 

insights into multiple biological processes can be captured by organizing annotations in 

such way that profiling datasets are integrated with pre-existing biological knowledge (Zhou 

and Su 2007). A good example of this type of approach is provided in Taggit in which the 

creation of seed-specific annotations can be combined with filtered gene-expression 

datasets (Carrera et al. 2007). Taggit provides pie diagrams visualizing relative proportions 

of functional categories affected by the treatments or developmental stages of interest. A 

more comprehensive tool that uses a similar approach is called MapMan (Thimm et al. 

2004). This tool allows users to display genomic datasets onto pictorial diagrams. The 

diagrams can be fully customized to depict the biological processes of interest. One of the 

most critical points in using pre-existing knowledge is the quality of the annotation of 

genes, proteins and metabolites in terms of functional classes. The MapMan tool uses 

information from the TIGR database (http://compbio.dfci.harvard.edu/tgi/) and input from 

a number of experts to curate specific biological processes. It has been employed in 

http://compbio.dfci.harvard.edu/tgi/
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different studies and different plant species, such as barley grain maturation and 

germination (Sreenivasulu et al. 2008) and diurnal changes in Arabidopsis (Blasing et al. 

2005). 

In this article we describe the development of two new diagrams that can be used 

in MapMan and that are focused on biological processes important for seed dormancy and 

germination. By using Pageman (Usadel et al. 2006), a tool combined with the MapMan 

package, we defined the most informative functional categories. We combined these 

categories in the first diagram which summarizes transcript and/or metabolite level 

changes in the pathways important for seed germination. The second diagram provides a 

focused view of cell wall modification and degradation that are key processes for the 

completion of seed germination. This comprehensive approach, using the MapMan tools 

offers the seed science community an easy way to analyze and visualize transcriptome and 

metabolome data for Arabidopsis. 

Methods 

We used publicly available data sources that describe seed dormancy and 

germination. To study the dormancy transcriptome we used data from Finch-Savage et al. 

(2007) and Cadman et al. (2006). They compared gene expression in dormant seeds with 

that in non-dormant seeds under a variety of conditions. Transcriptome changes during 

seed germination are accurately profiled by data sets from Nakabayashi et al. (2005) and 

polar metabolite changes by data from Fait et al. (2006). Penfield et al. (2006) dissected 

Arabidopsis seeds into the embryo and endosperm shortly after radicle protrusion to 

analyze gene expression. Their transcriptome data sets were also used. In total, we 

gathered data of 20 seed-specific transcriptome analyses (Table 4.1). 

All microarray data was normalized using MAS 5.0 and raw expression values were 

filtered to display expression above a background value of 50 in four or more experiments. 

The initial screening filter yielded 11,443 seed-expressed genes (Supporting Information, 

S4.1). The Pageman tool v0.12 (http://MapMan.gabipd.org; Usadel et al., 2006) was used to 

identify functional categories with significant enrichment or depletion of up-regulated 

genes. Within the PageMan package we made use of a Wilcoxon test combined with 

Benjamin-Hochberg filtering to calculate P-values for enriched categories. The obtained P-

values were transformed to z-scores and plotted as heat map (Figure 4.1). Only significant 

functional categories are shown in the figure.  

  

http://mapman.gabipd.org/
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Table 4.1: Transcriptome and metabolome data sets used in this study 

Abbreviation Description Ecotype Replicates Reference 

PD24H Primary dormant seeds imbibed for 24 h 
in the dark 

Cvi 3 (Finch-Savage et al. 2007) 

PD48H Primary dormant seeds imbibed for 48 h 
in the dark 

Cvi 3 (Cadman et al. 2006) 

PD30D Primary dormant seeds imbibed for 30 
days in the dark 

Cvi 3 (Cadman et al. 2006) 

SD1 Secondary dormant DL seeds imbibed in 
the dark for 24 days 

Cvi 3 (Cadman et al. 2006) 

SD2 Secondary dormant SD1 seeds imbibed at 
3°C in the dark for 20 days 

Cvi 3 (Cadman et al. 2006) 

LIG Dry after-ripened seeds imbibed for 20 h 
in the dark and then 4 h in red light  

Cvi 3 (Finch-Savage et al. 2007) 

PDD Primary dormant dry seeds  Cvi 3 (Finch-Savage et al. 2007) 

NDD Non dormant dry seeds  Cvi 3 (Finch-Savage et al. 2007) 

PDL Primary dormant seeds imbibed for 24 h 
in the light  

Cvi 3 (Finch-Savage et al. 2007) 

PDN Primary dormant imbibed for 24 h on a 
10 mM KNO3 solution 

Cvi 3 (Finch-Savage et al. 2007) 

PDLN Primary dormant seeds imbibed in white 
light for 24 h on a 10 mM KNO3 solution 

Cvi 3 (Finch-Savage et al. 2007) 

PDC Primary dormant seeds imbibed for 4 
days at 3°C  

Cvi 3 (Finch-Savage et al. 2007) 

Dry seed Dry after-ripened seeds Col-0 2 (Nakabayashi et al. 2005) 

1H IMB After-ripened seeds imbibed for 1H 
under continues white light 

Col-0 2 (Nakabayashi et al. 2005) 

3H IMB After-ripened seeds imbibed for 3H 
under continues white light 

Col-0 2 (Nakabayashi et al. 2005) 

6H IMB After-ripened seeds imbibed for 6H 
under continues white light 

Col-0 2 (Nakabayashi et al. 2005) 

12H IMB After-ripened seeds imbibed for 12H 
under continues white light 

Col-0 2 (Nakabayashi et al. 2005) 

24H IMB After-ripened seeds imbibed for 24H 
under continues white light 

Col-0 2 (Nakabayashi et al. 2005) 

Endosperm Isolated endosperms from stratified and 
germinated seeds 

Ler-0 3 (Penfield et al. 2006) 

Embryo Isolated embryos from stratified and 
germinated seeds 

Ler-0 3 (Penfield et al. 2006) 

D/G* 
 

Ratios from dry versus stratified, 24H 
imbibed seeds  

Ws 3 (Fait et al. 2006) 

* Polar metabolite profiling with GC-MS. All other samples consist of expression profiling using the Affymetrix 
AtH1 microarray 
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Because we intended to select the categories with a general role only in dormancy 

and germination, we excluded mutant transcriptome datasets from the Pageman analysis. 

To create a detailed view of the enriched functional categories that we identified with 

Pageman, we made two custom pathway images (using CorelDRAW graphics suite X4, 

www.corel.com) which can be used in the MapMan tool v3.5.0 (MapMan.gabipd.org). First, 

we created an ‘Arabidopsis seed - Molecular Networks’ diagram including all enriched 

functional categories (Figure 4.2-Figure 4.4). The diagram of hormonal regulation was 

adopted from Finkelstein et al. (2002) and was simplified to depict hormone signaling. 

More detailed information about hormone signaling can be found in Kucera et al. (2005) 

and Holdsworth et al. (2008). Two functional categories describing genes that were linked 

to dormancy or germination were added to the mapping file (data derived from Taggit 

ontology, Carrera et al. 2007). Secondly, we created an ‘Arabidopsis seed - Cell wall 

Networks’ diagram that allows a focused view of cell wall changes (synthesis, modification, 

degradation and proteins). For this second diagram some subdivisions were made within 

the original ‘Cell wall’ bin. The ‘Cell wall’ bin 10.5.1, ‘Cell wall Proteins AGP (arabinogalactan 

proteins)’ was further divided to ‘AGPs’, ‘FLA (fasciclinlike arabinogalactan proteins)’ and 

‘AGP Other’ and ‘Cell wall’ bin 10.7, ‘Cell wall Modification’ was subdivided to ‘Expansin A’, 

‘Expansin B’ and ‘Xyloglucan’ (Figure 4.5). All these files are freely available at 

http://mapman.gabipd.org/. Both transcript and metabolite levels can be visualized with 

this user friendly package. All individual genes within a functional category are represented 

as a square box and their expression levels are shown in a color (blue-red) scale. 

Metabolites are represented as colored circles (Figure 4.2B). Users can load raw expression 

levels as well as expression ratios. We calculated expression ratios by dividing Log2 

expression values and subtracting -1 for scaling around 0 (‘Log2-1’). A two-tailed paired t-

test was used to calculate P-values for all expression ratios (Supporting Information, S4.2). 

AGI codes or metabolite names are used to match the data with a mapping file that 

contains the functional categorization of genes and metabolites.  

Here we show the power of efficient data visualization of changes in 

transcriptome and/or metabolome using four examples: 

 dry seeds vs imbibed seeds resulting in germination (dry vs. 24h) 

 dormant imbibed versus non-dormant germinating seeds (PD24 vs. LIG) 

 24h imbibed, stored Ler vs 24h imbibed, stored cts-1 seeds 

 embryo versus endosperm tissue 

 

http://mapman.gabipd.org/
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Figure continued on next page 
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Figure 4.1: Pageman display of coordinated changes of gene function categories during Arabidopsis seed 
dormancy and germination. The Affymetrix ATH1 normalized gene expression data were subjected to an analysis 
to identify overrepresented functional categories using Pageman. Red color indicates significant enrichment of up-
regulated genes, blue indicates significant depletion of up-regulated genes. Only significant gene function 
categories are shown. See Table 4.1 for detailed description of sample abbreviations. 
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Results and Discussion 

To examine the efficiency of MapMan data visualization, expression ratios were 

calculated for dry- versus 24-h-imbibed seeds (Figure 4.2A). In the diagram global 

transcriptome changes are obvious at a first glance. For example, strong up-regulation of 

genes related to amino acid biosynthesis (‘Amino acid’), energy metabolism (‘Energy’) and 

cell wall modification (‘Cell wall’) in 24-h–imbibed seeds were visualized (red squares). In 

contrast, transcripts related to late embryogenesis abundant (LEA) and seed storage 

proteins (Seed storage proteins) rapidly decline (blue squares). Also a decline in stress-

related transcripts was observed. Most likely these transcripts accumulated at the end of 

seed maturation and dehydration and were rapidly lost upon imbibition. In this figure we 

combined both transcript and metabolite level ratios for dry versus germinating seeds, 

which allowed us to analyze changes at the metabolite levels in relation to transcriptional 

changes. For example, several enzymes in the TCA cycle in the ‘Energy’ category were up-

regulated in 24-h-imbibed seeds (Figure 4.2A), which is consistent with higher levels of TCA 

intermediates, such as citrate, iso-citrate, 2-oxoglutarate and malate, known to occur in 

imbibed Arabidopsis seeds (Fait et al. 2006). In Figure 4.2B, we depicted an example; the 

concomitant accumulation of malate and a transcript (FUM2) encoding a fumarase that 

catalyzes the conversion of fumarate to malate. This particular example should be 

interpreted with some caution since transcript levels of Arabidopsis Columbia (Col) seeds 

were compared with metabolite levels of stratified Arabidopsis Wassilewskija (Ws) seeds in 

this case. However, this type of analysis opened the possibilities of combining transcript 

and metabolite data using MapMan.  
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Figure 4.2:  (A) MapMan Arabidopsis seed - Molecular Networks map. The Molecular Networks map shows 
differences in both transcript (colored squares) and metabolite (colored circles) levels. Squares and circles can be 
clicked to retrieve gene or metabolite data. (B) Example of close-up view of one category. The TCA cycle in the 
‘Energy’ category is shown to depict the accumulation of malate (red circle) and the up-regulation of a gene 
(FUM2) encoding a fumarase, which catalyzes one of the steps of the TCA cycle and converts fumarate to malate, 
in 24-h-imbibed seeds. Log2-1 ratios are used to express relative levels of transcripts and metabolites in dry versus 
24-h-imbibed seeds using a color scale. Red, higher levels in 24-h-imbibed seeds; blue, higher levels in dry seeds. 
Only ratios with a P-value <0.05 are presented.  

Arabidopsis seeds show certain levels of primary dormancy immediately after seed 

harvest. In our second example, we visualized changes in molecular processes that are 

affected by dormancy (Figure 4.3). Therefore, we plotted the expression ratios for primary 

dormant seeds that were imbibed for 24 h (PD24H) and seeds that were after-ripened for 

120 days and imbibed for 24 h in the dark with a 4-h pulse of red light (LIG). The PD24H 

seeds will not complete germination in contrast to the LIG-treated seeds which do 

complete germination. When dormant and non-dormant seeds were compared, obvious 

transcriptional differences were observed in the gene clusters, ‘Cell wall’, ‘Stress’, 

‘Secondary metabolism’ and ‘Hormones’. Surprisingly, relatively small changes were 

observed in Taggit gene clusters dormancy-related and germination-related.  
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Figure 4.3: MapMan Seed Molecular Networks map showing differences in transcript (colored squares) levels. 
Log2-1 ratios are used to express relative levels of transcript in the primary dormant seeds (PD24H) versus after-
ripened seeds that were imbibed for 24 h (LIG). Red, higher levels in LIG seeds; blue, higher levels in PD24H. Only 
ratios with a P-value <0.05 are presented.  

In Figure 4.2 and Figure 4.3, the same sets of data were used for the initial 

selection of gene function categories in Pageman. Because this could potentially lead to a 

self-fulfilling, re-detection of differentially regulated genes, we also analyzed a 

transcriptome dataset which was not used for our pathway selection. We compared 

transcript profiles of 24-h-imbibed, stored wild-type Landsberg erecta (Ler) seeds (Ler AR) 

and 24-h-imbibed, stored comatose (cts)-1 mutant seeds (cts-1 S) using our Mapman 

diagram (Figure 4.4). As expected, CTS-1 levels were strongly reduced in the mutant. 

Consistent with the results described by Carrera et al. (2007), effects on a production of 

anthocyanin pigment 2 protein (PAP2=MYB90), GA-responsive GAST1 protein homologs 

(GASA1, GASA4)  and the flavonoid pathway were clearly visible (Figure 4.4, ‘RNA’ and 

‘Hormones’). Theodoulou et al. (2005) described the jasmonic acid (JA)-deficient phenotype 

of the cts-1 mutant. Our results suggest that up-regulation of a seed-specific JA 

biosynthesis gene (putative 12-oxophytodienoic acid reductase,’OPR’) could be part of this 

mechanism (Figure 4.4, ‘Hormones’). The up-regulation of several photosynthesis pathway 

genes in the ‘Energy’ category in the mutant is noteworthy and might be an intriguing 

starting point for new research. 
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Figure 4.4: MapMan Seed Molecular Networks map showing differences in transcript (colored squares) levels. 
Log2-1 ratios are used to express relative transcript levels in of 24-h-imbibed, stored wild-type Landsberg erecta 
(Ler) seeds versus  24-h-imbibed stored cts-1 seeds. Red, higher levels in cts-1 seeds; blue, higher levels in Ler 
seeds. Only ratios with a P-value <0.05 are presented.  

Several studies describe the important role of the endosperm layer in the 

regulation of seed germination (e.g. Müller et al. 2006; Penfield et al. 2006). We calculated 

ratios of gene expression levels between endosperm and embryo to visualize affected 

genes and molecular processes (Supporting Information, S4.3). As expected, genes related 

to photosynthesis and DNA synthesis are mainly expressed in the embryo. Since cell wall 

changes are crucial for the completion of germination, we created a diagram to specifically 

map cell wall changes and used it to highlight differences in cell wall modification between 

embryo and endosperm (Figure 4.5). AGPs were more linked to embryo cell walls. AGPs are 

a diverse class of cell wall proteins which are implicated in growth, development and plant-

microbe interactions (Seifert and Roberts 2007), and therefore it is not surprising to find 

these transcripts more abundantly in embryo tissues.  
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Figure 4.5: (A) MapMan Cell wall map showing differences in transcript levels between the embryo and 
endosperm. Log2-1 ratios are used to express relative transcript levels of the endosperm versus the embryo 
shortly after radicle protrusion. Red, higher levels in the embryo; blue, higher levels in the endosperm (A). Only 
ratios with a P-value <0.05 are presented. (B) Images of the eFP browser (BAR website: http://bar.utoronto.ca; 
(Winter et al. 2007; Bassel et al. 2008)) are included as examples of tissue-specific expression. Left and right, 
images of the enhanced expression of AGP13 (at4g26320) in the embryo and the expression of XTR8 (at3g44990) 
in the endosperm, respectively. 

It is a major challenge to interpret the overwhelming amount of information 

currently available for genes, proteins and metabolites and understand their function in 

various biological processes. Combining the information about gene expression levels with 

known biological function of genes or gene classification can be very helpful in creating a 

categorization or applying priority within the data. The freeware tool MapMan has proved 

to be an easy-to-use and helpful tool to visualize multilevel data (transcriptomics, 

metabolomics and proteomics).  

The data used in this study (summarized in Table 4.1) and the way of data 

visualization (Figure 4.1) that we examined turned out to be very informative as it clearly 

summarizes the molecular processes that are affected. For example, the importance of 

triacylglycerol (TAG) and protein synthesis during germination can readily be inferred from 

http://bar.utoronto.ca/
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the diagram. This is in agreement with the role of TAG metabolism in germination control 

and seedling establishment (Penfield et al. 2007) and the essential role described for 

translation in the completion of germination (Rajjou et al. 2004).  

When transcript levels of dry seeds are compared to seeds that have been 

imbibed for 24 h many important molecular processes can be recognized (Figure 4.2A). 

Genes in the Calvin cycle, glycolysis and TCA cycle seem to be up-regulated, as well as in 

redox modification, cell cycle, cell wall -modification, -degradation and protein activation 

and folding. Contrarily, transcripts for seed storage proteins, LEA proteins and TAG 

synthesis are severely decreased in imbibed seeds. Noteworthy, genes involved in electron 

transport and respiration seem to be lower expressed in 24 h imbibed seeds compared to 

dry seeds. Our analysis indicated that the major differences between dormant and non-

dormant seeds were in the Hormone and Cell wall clusters (Figure 4.3). Interestingly, only 

minor differences were observed in other processes such as seed storage proteins and LEA 

proteins between dormant and non-dormant seeds. This is due to the decrease in the 

transcript levels of these proteins to a similar extent in both dormant and non-dormant 

seeds upon imbibition. It is possible that seed storage proteins and LEA transcripts are 

remnants from the seed developmental stages, which are probably not necessary during 

imbibition anymore. These MapMan diagrams allow users not only to observe global 

changes but also to retrieve detailed information about gene annotation and expression, 

because the users can click on an individual process or gene in the interactive MapMan 

tools.  

By plotting the transcriptome differences between the comatose-1 mutant and 

wild-type we showed that our selection of molecular processes has the potential to clearly 

visualize the affected genes and pathways as they were previously described (Figure 4.4) 

(Theodoulou et al. 2005; Carrera et al. 2007). For a more detailed view on a certain process 

or metabolic pathways one can make a customized diagram (as we showed for cell wall 

changes) or use already available diagrams in the MapMan package.  

We have explored the possibility to use MapMan for multi-level data by combining 

transcriptome data from Nakabayashi et al. (2005) (dry vs. 24h imbibed seeds) with 

metabolome data from Fait et al. (2006) (dry vs. germinating seeds). In this way, 

relationships between gene expression and metabolome changes can easily be visualized as 

we depicted for the TCA cycle genes and metabolites (Figure 4.2B). 

While our analysis demonstrated the usefulness of the Seed - Molecular Networks 

diagram, it does not cover all functional categories in every possible seed experiment. 

Besides, one should bear in mind that non-annotated genes are rarely selected for 

visualization, which hampers the discovery of new genes with unknown function. Also, it 

can be misleading when the original functional annotation is incorrect. Despite the 

aforementioned issues, the annotation used in MapMan has attained a high quality level 

and its usability will only improve, because knowledge about many genes and biological 

processes is rapidly increasing.  
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In conclusion, the MapMan tool allows a quick identification of the molecular 

processes that are regulated during a developmental program of interest, for which 

candidate genes with known annotation can easily be identified. This way of data 

visualization and the two pathway files that we have created provide a solid base for a next 

level of statistical data analysis and are useful tools for the seed science community. 
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false color scale. Red indicates higher levels in embryo, blue indicates higher levels in 

endosperm. Only ratios with a P-value <0.05 are represented. 

 

 

 

 

 

 

 

 

“All the flowers of tomorrow are in the seeds of yesterday.” 
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Abstract 

A complex phenotype such as seed germination is the resultant of several genetic 

and environmental cues and requires the concerted action of many genes. The use of well-

structured recombinant inbred lines in combination with omics analysis can help to 

disentangle the genetic basis of such quantitative traits. This so called genetical genomics 

approach can effectively capture both genetic (G) and epistatic interactions (G:G). 

However, to understand how the environment interacts with genomic encoded information 

(G:E) a better understanding of the perception and processing of environmental signals is 

needed. In a classical genetical genomics setup this requires replication of the whole 

experiment in different environmental conditions. A novel generalized setup overcomes 

this limitation and includes environmental perturbation within a single experimental design. 

We developed a dedicated QTL mapping procedure to implement this approach and used 

existing phenotypical data to demonstrate its power. Additionally, we studied the genetic 

regulation of primary metabolism in dry and imbibed Arabidopsis seeds. Many changes 

were observed in the metabolome which are both under environmental and genetic 

control and their interactions. This concept offers unique reduction of experimental load 

with minimal compromise of statistical power and is of great potential in the field of 

systems genetics which requires a broad understanding of both plasticity and dynamic 

regulation.

Identifying genotype-by-environment interactions 
in the metabolism of germinating seeds using 
Generalized Genetical Genomics 
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Introduction 

The use of natural variation to disentangle the genetic mechanisms underlying 

phenotypic differences has been very successful both in crop plants and in the model plant 

Arabidopsis thaliana (Alonso-Blanco et al. 2009). Most of the variation within wild or 

domesticated plant species is of quantitative nature determined by genetic polymorphisms 

at multiple loci. Such quantitative trait loci (QTL) can be analyzed efficiently using 

experimental mapping populations like recombinant inbred lines (RILs) derived from 

directed crosses.  Nowadays, many well-structured RIL populations are available, often 

accompanied with detailed studies of phenotypic variation (Mitchell-Olds and Schmitt 

2006). The complexity of quantitative traits is further determined by genetic interactions 

between genomic loci, i.e. epistasis (G:G), and between the  genotype and the environment 

(G:E). While epistasis can be effectively identified in QTL analyses, albeit with lower power 

than main effects, the detection of G:E interactions requires experimentation in multiple 

conditions of interest. Because of the large population sizes often needed to obtain 

sufficient statistical power for QTL detection, G:E interactions are usually ignored in 

experimental setups. However, a better understanding of the perception and processing of 

environmental signals is needed, since interactions provide important insights in adaptation 

mechanisms and evolutionary constraints such as balancing and disruptive selection.  

To obtain a more detailed view of the molecular mechanisms underlying 

phenotypic variation, genetical genomics studies, in which molecular traits are genetically 

analyzed, have been successfully applied to enhance a directed strategy to identify causal 

relationships (Kliebenstein et al. 2006; Keurentjes et al. 2007; Van Leeuwen et al. 2007; 

Wentzell et al. 2007; West et al. 2007; Rowe et al. 2008). The observed phenotype is often 

the resultant of a functional cascade of gene transcription followed by protein translation 

and modification which finally results in a highly dynamic metabolome underlying 

emergent properties (Kooke and Keurentjes 2011). With the technological advances made 

in genomic analytical platforms, such as transcriptomics, proteomics, and metabolomics, 

the large-scale, high-throughput analyses needed for quantitative genetic approaches have 

become feasible (Jansen and Nap 2001; Keurentjes et al. 2008). To incorporate 

developmental and environmental perturbation in the often expensive and laborious omic 

analyses, an alternative experimental setup, coined generalized genetical genomics (GGG), 

using balanced fractions of a RIL population has been proposed (Li et al. 2008). It provides 

an inexpensive experimental setup for hypothesis generating research in multiple 

environments. Such an approach aims at the creation of sub-populations of RILs, one for 

each environment to be tested, with an optimal distribution of parental alleles over all 

available markers (Li et al. 2009). When these sub-populations are subjected to 

environmental perturbation the emerging phenotypes can be explained by several sources 

of variation: 1) genetic variation 2) environmental variation and 3) genetic x environmental 

variation. Whenever the resulting phenotype is not or only mildly affected by 

environmental interactions (G:E), the analysis of the different sub-populations can be 
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combined gaining the full power of a complete population. However, when a trait shows 

strong G:E interaction, e.g. those that only express genetic variation in specific 

environments, the power to detect QTL is dependent on those sub-populations expressing 

the genetic variation. Although G:E interactions have been detected previously in genetical 

genomics studies for expression (Li et al. 2006; Smith and Kruglyak 2008; Gerrits et al. 

2009; Yeung et al. 2011) and metabolite content (Zhu et al. 2012) by analyzing all lines in a 

population under different environments, the GGG concept offers unique reduction in 

experimental load with minimal compromise to statistical power and is of great potential in 

the field of systems genetics in which a broad understanding of both plasticity and 

dynamics is required (Li et al. 2008). As a proof of principle we present experimental data 

on the genetic regulation of primary metabolism in dry and imbibed Arabidopsis seeds 

using a GGG design and discuss the application and implications of such a strategy. 

Plants are extremely rich in biochemical compounds and major roles in plant 

development, adaptation and defense have been identified for biosynthesis pathways and 

their products (Binder 2010). In Arabidopsis, genetic variation for many metabolic 

compounds has been observed, but G:E interactions were ignored in these studies 

(Kliebenstein et al. 2001; Keurentjes et al. 2006; Rowe et al. 2008) and are only addressed 

by Chan et al. (2011). Here we report on the interaction of four different physiological 

environments, i.e. developmental stages, in dry and imbibed seeds with two founder 

genotypes in a RIL population. To detect the majority of the most prominent primary 

metabolites we used gas chromatography-mass spectrometry (GC-MS) of polar extracts 

(Roessner et al. 2000; Lisec et al. 2008). These include essential metabolites such as sugars, 

amino acids, and organic acids, which are key compounds in reserve storage and 

catabolism, growth and energy metabolism. The biosynthetic pathways of primary 

metabolites are well-studied and often well-conserved between different taxa (Peregrin-

Alvarez et al. 2009). Nonetheless, quantitative variation for many of these compounds can 

be observed between natural variants which might be reflected in their different growth 

characteristics. The analysis of single gene mutants, for example, has unraveled many key 

components in biochemical pathways and has demonstrated their role in phenotypic traits 

(Fiehn et al. 2000). Metabolic profiling at different growth stages has further revealed 

important fluxes that regulate plant development and adaptation (de Oliveira Dal'Molin et 

al. 2010). Using the accumulated historical mutations that occur in natural variants in 

combination with metabolic profiling in a generalized design offers the unique possibility of 

identifying genetic effects over a series of developmental stages. 

The switch from a dry seed, which is equipped for optimal survival and storage of 

reserves, towards an imbibed seed, in which energy needed for germination is released and 

which prepares for autotrophic production is remarkable. Reserves that have been stored 

during seed maturation are degraded and remobilized during germination (Bewley 1997; 

Shu et al. 2008), a process that is heavily influenced by the capacity of C/N partitioning of a 

maturing seed (Dowdle et al. 2007). Arabidopsis mutants affected in their oil reserve 

content or its mobilization show delayed, but not full inhibition of germination (Kinnersley 
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and Turano 2000; Bouche and Fromm 2004; Shu et al. 2008; Kelly et al. 2011). This suggests 

an additional metabolic switch that occurs during seed desiccation after seed maturation, 

involving a change from accumulation of oil and storage proteins to the synthesis of free 

amino acids, sugars, fatty acids and their degradation products functioning to prepare for 

rapid metabolic recovery during imbibition (Fait et al. 2006; Angelovici et al. 2010). 

Imbibition of mature seeds specifically shows reduction of the metabolites that accumulate 

during the desiccation period. Upon germination, an increase of many metabolites, 

including amino acids, sugars and organic acids, can be observed again, which reflects the 

increase of autotrophic activity (Fait et al. 2006). Profiling the primary metabolome over 

different developmental stages in a mapping population is therefore expected to reveal the 

dynamic genetic regulation of many of these important processes. We will demonstrate 

here that much of the observed variation in biochemical profiles can be attributed to 

genotype-by-environment interactions which can be effectively identified in a generalized 

genetical genomics approach. 

Results and Discussion 

Experimental design 

Previous studies which focused on the comparative analysis of developmental and 

metabolic variation suggest a link between central metabolism and plant physiology, but 

genetic co-regulation is not frequently observed (Keurentjes et al. 2006; Meyer et al. 2007).  

That said, in several studies in Arabidopsis a major metabolite QTL cluster is associated with 

the ERECTA locus, representing a strong regulator of development which is known for its 

pleiotropic effects (Fu et al. 2009). To circumvent this strong bias we used two natural 

variants, Bayreuth-0 (Bay-0) and Shahdara (Sha), which are not polymorphic for the ERECTA 

locus. The Bay-0 x Sha RIL population (Loudet et al. 2002) has previously been shown to 

contain genetic variation for seed germination (Joosen et al. 2012) and other physiological 

traits (Loudet et al. 2003; Barriere et al. 2005; Loudet et al. 2005; Diaz et al. 2006; Reymond 

et al. 2006; Loudet et al. 2008; Meng et al. 2008), anion strength (Loudet et al. 2003), 

carbohydrate content (Calenge et al. 2006), gene expression (West et al. 2007) and primary 

(Rowe et al. 2008) and secondary metabolite levels (Wentzell et al. 2007).  

Powerful mapping of genetic variation in a RIL population is dependent on the size 

of the population, the level of recombination and on an evenly genome-wide distribution of 

the parental alleles. A core set of the Bay-0 x Sha RIL population (Loudet et al. 2002) 

consisting of 165 lines and optimized for the aforementioned factors was used in this study. 

This core population was divided in four sub-populations optimized for the distribution of 

parental alleles using the R-package DesignGG, aiming at the most accurate estimate of 

genetic and G:E effects (Li et al. 2009) (Supporting Information, S5.6).  
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Comparison of different designs using classic phenotypes 

 

Standard QTL mapping procedures can efficiently capture genetic variation and 

epistasis, but do not take environmental perturbation into consideration. Appropriate 

modeling of the genetic variance-covariance (VCOV) in the data is of great importance 

when combining information from different environments in QTL analysis (Churchill 2002). 

Linear models are particularly well suited for this. Here environmental differences are 

incorporated as an additional variable in a generalized design (GGG design). To enable 

mapping of the observed trait variation and taking the four developmental stages into 

consideration an R-script was developed which use functions and data structures from the 

R/qtl package (Broman et al. 2003; Arends et al. 2010) (Supporting Information, S5.3). The 

R-script uses a linear model to calculate the likelihood of genotype to phenotype linkage for 

each marker with the following formula:  

yi = β0 + β1ei + β2gi + β3ei:gi + εi 

where yi is the i
th

 observation of the studied phenotype, variable gi is the 

genotype, ei is a vector with seed conditions, and ei:gi the interaction term.  The values βj 

represent parameters to be estimated, and εi is the error term. The simplified description Y 

= E + G + G:E + ε of this linear model will be used henceforward. Separate likelihood 

estimates (–log10 Probability, henceforth LOD scores) are generated for the environmental 

(E), genetic (G) and genetic x environmental (G:E) effects. 

To validate the use of a GGG design, we studied the genetic (G) and the interacting 

effects between G and E (G:E) on phenotypes in four different environmental conditions 

(E). These phenotypes were obtained by studying different germination parameters under 

different environmental conditions (Joosen et al. 2012). In total we compared the power of 

different designs by performing QTL analysis for 96 classic phenotypes under 4 different 

environments (Joosen et al. 2012). Furthermore, we also investigated the interacting effect 

between genotype and environment. The full model mapping (Y = E + G + G:E + ε) was 

applied to a full block design, random design and GGG design. Single maker mapping (Y = G 

+ ε) was applied to a single block design. The number of detected QTL and interacting QTL 

(FDR = 0.05, based on >10000 runs permutation) within the different designs are shown in 

Table 5.1. In the full block design all samples were allocated to the four conditions.  

Obviously, this is the most expensive way of performing the experiment as the required 

resources and effort are quadrupled (4 x N).  As a consequence of the size of the 

experiment, the power of detecting genetic effects is the best for this design. 

Unfortunately, we cannot afford such expensive experiments in many situations due to 

limited resources and time. The single block design only focuses on one of the four 

conditions, as in most published genetical genomics studies to date. In this way the samples 

size for the selected condition is N and we will have equal power as in the full block design 

for detecting the genetic effects for this particular condition. Clearly, this design will miss 
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the information from the other three conditions and interacting effects between genetic 

and environmental factors cannot be investigated. In order to study both genetic and 

interacting effects with a limited budget, the random and the GGG design allocate the N 

different samples to the four environments evenly, measuring N/4 samples in each 

condition. Although the possibility to detect genetic effects is only slightly better for the 

GGG design, the detection of interacting QTL is clearly improved in the GGG design as 

compared to the random design. These results show that the optimal allocation of samples 

in the GGG design clearly improves the ability to detect both genetic and interacting effects 

and that the GGG design results in the maximization of detected variation in relation to the 

necessary resources with only a minimal compromise of statistical power as compared to 

the full block design. 

Table 5.1: Comparing different experimental designs. Comparison of different experimental designs to study G and 
G: E effects on phenotypes in four different conditions.  Each environmental condition is indicated with different 
gradients of grey in the blocks. In total there are N (=164) genetically different RILs and the data was analysed in 4 
different ways. 

 

Metabolic analyses 

To study the metabolic status of Arabidopsis seeds during germination, four 

biologically important developmental stages of seed germination with expected variation in 

metabolite levels to different extent were selected. The first two stages, being freshly 

harvested primary dormant (PD) and after-ripened (AR) non-dormant dry seeds, 

respectively, are expected to comprise a very similar metabolome as most, if not all, 

metabolic fluxes are arrested in the dry seed. The oil rich (~40%) Arabidopsis seeds (Hobbs 

et al. 2004) typically desiccate to moisture contents below 5% which results in an arrest of 

all enzymatic reactions due to the lack of free water. The other two stages represented 

early imbibition of seeds, imbibed for 6 hours (6H), and seeds at radical protrusion (RP), 

Design Full block design Single block
design

Random design GGG design

Best power for G Same power for G
in the selected
condition

Limited power for
G

Optimal power
for G

Most expensive Less expensive Less expensive Less expensive
Best power for
GxE

Missing GxE Limited power for
GxE

Optimal power
for GxE

QTL 96 93 78 81
Interacting QTL 30 0 17 27

N N

N N

N 0

0 0

N/4 N/4

N/4 N/4

N/4 N/4

N/4 N/4
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respectively. Full rehydration of dry seeds typically completes in less than 2 hours and 

although developmental differences are not yet expected, many metabolic processes will 

have started after 6 hours of imbibition (Nakabayashi et al. 2005; Howell et al. 2009). 

Radicle protrusion marks the end-point of germination sensu stricto and is known to be 

accompanied by a major switch of both the transcriptome and metabolome (Nakabayashi 

et al. 2005; Fait et al. 2006). These four developmental stages are anticipated to vary to 

different degrees in their metabolic profiles, hardly any difference between dry seed 

samples, some differences between dry and imbibed seeds and very pronounced 

differences between dry seeds and seeds at radicle protrusion.  

To determine the metabolic status of genetic variants in these different 

developmental stages, all individuals in the four sub-populations and their parental 

accessions were subjected to GC-TOF-MS. Each sample consists of the polar fraction of a 

methanol extract of a bulk of approximately 700-1000 seeds (20 mg). Samples were 

analyzed in random order and interspersed with pooled sample controls to control for 

experimental errors. The metabolic profiling of the segregating RILs was performed and the 

use of segregation population provides an intrinsic replication for each genotypic marker 

(Jansen and Nap 2001). In total 7537 mass peaks were detected, representing 161 

metabolites according to centrotyping based on retention time and correlation structure 

(Tikunov et al. 2011). In total 63 metabolites could be annotated using an in-house 

constructed library and a publicly available mass spectra library (Schauer et al. 2005) 

(Supporting Information, S5.1).  

The parental accessions Bay-0 and Sha were measured in duplicate for all four 

developmental stages allowing us to model the influence of condition and accession using a 

multi-factor univariate analysis of variance (ANOVA).  

 

yi   =   β0 + β1conditioni + β2accessioni + εi 

 

Analysis of variance for the parental samples identified 108 metabolites showing 

significant variation (FDR < 0.05) between developmental stages (E) and 85 showing 

variation between the parents (G) with an overlap of 54 metabolites showing variation 

between both variables in an interactive way (G:E) (Supporting Information, S5.2). For 37 

metabolites no significant variation was detected between the parental accessions or in any 

of the developmental stages. A self-organizing map (SOM), created from the metabolites 

showing significant variation between the parents, groups different metabolites according 

to their accumulation pattern over different genotypes and developmental stages (Figure 

5.1). Clearly different patterns of variation can be observed, namely genetic in panel A and 

H; environmental in panel C and D; genetic + environmental in panel B and G and genetic x 

environmental in panel E and F, illustrating the complex regulation of metabolic processes 

and the need for sophisticated analysis methods. 
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Figure 5.1: Self organizing map, grouping different metabolites according to their accumulation pattern over 
different genotypes and developmental stages of significantly variable metabolites (Anova F pr. < 0.05) measured 
in the parental lines Bay-0 and Sha in four developmental stages.  PD=Primary dormant, AR=After-ripened, 6H=6 
hour imbibed, RP=seeds at radicle protrusion. Two independent biological replicates were measured for each 
combination of parent and developmental stage. 

  

Because metabolite levels are varying between both parents and between the 

chosen seed germination stages a segregation of metabolic accumulation can be expected 

in the RIL population of 164 lines. A principle component analysis of the metabolic profiles, 

revealing the internal structure in the data, shows that the first component clearly 

separates 6-hour imbibed seeds and seeds at radicle protrusion from both primary 

dormant and after-ripened seeds, explaining 37% of the total variation (Supporting 

Information, S5.7). This confirms the large metabolic changes accompanying the transition 

from dry arrested seeds to the imbibed and germinating developmental stages. As 

expected, no obvious differences could be detected between the metabolomes of primary 

dormant and after-ripened dry seeds. The second component, explaining 11% of the total 

variation, sharply separates the parental accessions, indicating that this component 

explains most of the genetic variation in metabolic profiles. These results demonstrate that 

Bay-0 and Sha possess substantial genetic variation for the accumulation of primary 
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metabolites which segregates in their recombinant offspring and which is strongly 

influenced by the developmental stage used for profiling. Transgressive segregation was 

visualized by comparing parental and RIL metabolite level distributions (Supporting 

Information, S5.8). Some positive and negative transgression is observed for most of the 

metabolites in which the metabolite accumulation in a RIL is respectively higher or lower 

compared to the respectively highest or lowest parent. In addition, 15 metabolites were 

detected in RILs which were not present in either parent. This suggests that new allele 

combinations in the RIL population resulted in enhanced accumulation or even novel 

formation of metabolites.  

Genetic mapping in a generalized genomics design 

In the experimental setup of this study, the environmental variation is defined as 

variation observed between the four developmental stages (PD, AR, 6H and RP). 

Significance thresholds, determined by permutation analysis (n=1000, p<0.01) for each 

metabolite, ranged from LOD 3.43 to LOD 3.50 and was stringently set to LOD 4 for all 

analyses. Mapping resulted in 120 significant QTLs in the genetic (G) component for 83 

metabolites and 31 genetic x environmental (G:E) QTLs for 27 metabolites, ranging from 

one to four QTLs per metabolite. Thirteen of the G:E QTLs are significant in the G 

component as well. For 66 metabolites no significant QTL was detected. Clustered 

heatmaps for both the G and the G:E QTL profiles were created (Supporting Information, 

S5.9-S5.10). 

To test the performance of the generalized mapping procedure, QTLs detected in 

individual environments (using the linear model yi=β0+β1gi+εi, henceforth Y=G+ε) were 

compared to QTLs detected in the combined mapping approach (using the linear model 

Y=E+G+G:E+ε). QTLs were binned in upper or lower chromosome arms to reduce the 

effects of small positional shifts. Results were plotted in a network with nodes representing 

QTLs connected with edges to nodes representing the mapping populations in which they 

were detected (Figure 5.2). QTLs are grouped in three panels according to their detection 

in the different mapping procedures. The middle panel shows 73 QTLs that were detected 

in both the Y=E+G+G:E+ε  model and in one or more single environment mappings using 

the Y=G+ε model. This shows that most of the genetic variation present in the single 

environments can effectively be captured by using the generalized model. The presence of 

60 QTLs that were only significantly detected in the Y=E+G+G:E+ε model (right panel) 

shows the combined power of the generalized approach and the usage of more genotypes. 

These QTLs are not detected in the single environment mapping in which only 41 

individuals were used. Combining all data across all environments in the linear model 

increases power to detect QTLs, but it should be noted that there are also 20 minor QTLs 

(left panel) which are only significant in the single environment mapping with the Y=G+ε 

model. These QTLs are not detected in the Y=E+G+G:E+ε model. This can be explained by 

two factors: 1) environments in which the genetic variation is not expressed introduce 
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noise in the experimental data and thereby decrease mapping power, and 2) deviations 

from a balanced allele distribution in the different subpopulations can introduce some 

stochasticity around the threshold level. 

 

 

Figure 5.2: Comparison of QTLs detected within single environments (PD, AR, 6H and RP) by using the Y=G+ε 
model with QTLs detected when combining environments via the Y=E+G+G:E+ε model. QTLs were binned to two 
regions per chromosome. Nodes indicate metabolite QTLs and node size shows the degree of connectivity. Nodes 
are connected by edges which show the link between a QTL and a mapping population (single environments 
versus multiple environments). Separate nodes are created for the genetic (G) component and the genetic x 
environmental (G:E) component. Edge line color represents direction of the QTLs, green for higher levels in Sha; 
blue for higher levels in Bay-0. Line width indicates increasing LOD scores. 

Importantly, all major to moderate effect size QTLs could be detected using the 

generalized model even when these QTLs were not detected in the separate environment 

models. Although it is difficult to compare power with the latter models, because 

population sizes differ, the generalized design efficiently identifies all relevant QTLs which 

were detected by the four separate models and in addition it detects G:E interactions. In a 

general exploratory study, the reduction in experimental burden therefore amply 

outweighs the incidental failure to detect the limited number of small-effect QTLs. The 

application of a GGG design can thus be an important advancement in evolutionary and 

ecological studies assessing the contribution of genetic and environmental effects to 

natural variation in life history traits. 

For breeding purposes the allelic effect size is an important measure and 

differentiation of the environment in which the allelic effect is expressed can be very 

useful. In the generalized setup the allelic effect size of those metabolites with significant 
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QTLs is separated per environment (Supporting Information, S5.4-S5.5). For every QTL a 

LOD score for genetic effect is obtained from full model mapping. For these QTLs, 

normalized allelic effect sizes are calculated by Z-score transformations for each 

environment (Figure 5.3). QTLs detected in the G component of the linear model (Figure 

5.3A) show an expected linear relationship between LOD score and effect size in all 

measured environments. This correlation is much weaker for QTLs detected in the G:E 

component of the linear model (Figure 5.3B), because the genetic variation is not 

expressed in all environments. QTLs of metabolites with strong G:E interaction, therefore, 

display larger effect sizes in fewer environments compared to G component QTLs of similar 

significance levels. 

 

 

Figure 5.3: Effect sizes for each individual developmental stages are plotted against the derived LOD score. A: 
normalized allelic effect size per environment against LOD scores from the genetic (G) component and B: 
normalized allelic effect size per environment against LOD scores from the genetic x environmental interaction 
(G:E) component. Colors indicate the developmental stages (red = primary dormant (PD); blue = after-ripened 
(AR); green = 6 hours imbibed (6H); orange = seeds at radicle protrusion (RP). 

Clearly, the choice of environments used in such study is crucial. Limited power 

can be expected when environments vary too much and no overlapping genetic variation is 

present and contrarily there is hardly additive value of the design when using very similar 

environments. In this study we varied the environment by using a range of developmental 

stages starting from primary dormant dry seeds to seeds at the point of radicle protrusion. 

Different levels of environmental variation were obtained and could be mapped by the 

genetic (G) and/or genetic x environment (G:E) component of the linear model. 

Genetic regulation of metabolic traits 

One of the most rewarding benefits of the generalized approach is the possibility 

to analyze metabolic fluxes over different environments or developmental stages in 

addition to the effect of genetic variation. The acquired information of both sources of 

variation can be effectively displayed in so-called flash cards in which line graphs illustrate 

the genetic and environmental effect and detected QTLs are plotted in heat bars (Figure 

5.4; Supporting Information S5.11). The individual components of the linear model 
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Y=E+G+G:E+ε provide the valuable measures for the various sources of variation. For 

example lysine content strongly increases in germinating seeds, indicated by a significant 

LOD score of 16.1 for the environmental effect, but no genetic variation for lysine could be 

detected (Figure 5.4A). For this metabolite genetic variants vary indistinguishable from 

each other over different environments. In contrast, fumaric acid shows little variation 

between the developmental stages (LOD 0.6), but displays strong genetic variation 

explained by a highly significant QTL (LOD 6.5) for the genetic effect at the center of 

chromosome II. Higher levels for fumaric acid are detected in all developmental stages for 

those lines harbouring the Bay-0 allele (Figure 5.4B). An example of the additive effect of 

environmental and genetic factors is the decrease in levels of malic acid in imbibed seeds. 

Here a strong environmental effect (LOD 13.2) is accompanied with an additional genetic 

effect explained by a G QTL (LOD 6.9) at the bottom of chromosome I. Note that the 

genetic effect here is similar in all environments (Figure 5.4C). This is not the case for 

gluconic acid which levels are strongly affected by the interaction between the genotype 

and the environment. A strong G:E QTL (LOD 10) is detected at the top of chromosome IV. 

The Sha allele at this position causes higher levels of gluconic acid in dry seeds, but not in 

imbibed seeds (Figure 5.4D). This strong negative environmental effect (LOD 6.6) is also 

responsible for the apparent directional shift of the G:E QTL effect.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Normalized metabolite changes during 4 developmental stages (PD, AR, 6H and RP). Each panel 
represents a single metabolite and contains information about environmental variation (green line plot, average 
over all lines within a single developmental stage) and genetic variation (blue lines represent the metabolite levels 
for lines carrying the Bay-0 allele for the most significant QTL and red lines those for the Sha allele carrying lines). 
QTL profiles for metabolites with either genetic (G) or genetic x environmental (G:E) variation are indicated at the 
bottom of each panel by a heat bar representing the 5 chromosomes. Environmental (E) variation is expressed as 
LOD score in the lower left corner. Depending on the most significant variation either genetic (G) or interaction 
(G:E) effects are also indicated with LOD scores in the lower left corner. A: L-Lysine showing only Environmental (E) 
variation; B: Fumaric acid: showing Genetic (G) variation; C: Malic acid showing both Environmental and Genetic 
variation (G+E); D: Gluconic acid showing interaction between Environment and Genetic variation (G:E). 
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Similar to the self-organizing maps in Figure 5.1 flashcards can be instrumental in 

the identification of metabolic relationships with the added value of genetic regulatory 

information. This is illustrated by integrating flashcards of all metabolites that were 

identified in this study with a general Arabidopsis metabolic pathway diagram 

(http://www.KEGG.jp, Supporting Information S5.12). For instance, several pathways in 

carbohydrate metabolism, such as the biosynthesis routes for galactose, pentose 

phosphate, starch/sucrose and amino and nucleotide sugars, are highly interconnected and 

are therefore subject to co-regulation mechanisms. A number of compounds involved in 

different subparts of the carbohydrate network module (e.g. glucose-6-phoshate, maltose, 

mannose, glucuronic and gluconic acid) indeed share a strong QTL at the top of 

chromosome IV. This suggests that the observed variation for these compounds has a 

single genetic basis, possibly affecting competition for a general precursor or directing 

feedback loops. In addition many of these compounds show strong positive or negative 

correlation due to environmental control. Genetic co-regulation was also observed for 

amino acid metabolism. Amino acids are substrate for the synthesis of aminoacyl-tRNAs 

which in turn are essential substrates for translation (Sheppard et al. 2008). A single G:E 

QTL at the bottom of chromosome I was detected for eight amino acids explaining a large 

part of the observed genetic variation. The joined analysis of environmentally and 

genetically induced variation in metabolic profiles can thus identify causal relationships 

between different modular parts of metabolic networks and associate these connections 

with relevant biological processes. 

Regulatory hotspots and physiological co-regulation 

As noted, the accumulation of several metabolites maps to identical positions 

suggesting that these might be regulated by a common genetic factor. Although co-locating 

QTLs can be the result of independent closely linked genetic factors, such coinciding QTLs 

are expected to occur more or less randomly by chance. Any deviation from expected 

frequency distributions along the genome thus hints at genetic co-regulation (Breitling et 

al. 2008). When plotted against their genomic position eight of such suggestive QTL 

hotspots can be seen (Figure 5.5) of which the two major ones (Chromosome IV-MSAT4.8 

and Chromosome V-NGA139) co-locate with previously identified hotspots for metabolic 

regulation (Kliebenstein et al. 2001; Keurentjes et al. 2006; Wentzell et al. 2007; Rowe et al. 

2008).  Interestingly, both these loci have been shown to play a role in glucosinolate 

biosynthesis. The AOP locus at chromosome IV regulates side chain modification while the 

MAM locus at chromosome V determines chain elongation, but these compounds are not 

targeted for in GC-MS analysis which predominantly detects primary metabolites. As for 

many glucosinolates, for some metabolites, including GABA and maltose, QTLs were 

detected at both positions. In other cases a single QTL was detected at chromosome IV or 

V, e.g. glucose-6-phosphate and tyrosine, respectively. Although the identified  primary 

metabolites are not directly connected with the glucosinolate biosynthesis pathway such 

http://www.kegg.jp/
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associations have been reported before (Rowe et al. 2008). These results might suggest 

alternative functions for AOP and MAM or a role in resource competition and allocation in 

central metabolism. This suggestion is further supported by the fact that these loci link to 

flowering time and the circadian clock regulation in the Bay-0 x Sha population (Chan et al. 

2011). It also cannot be ruled out that other genes overlapping the AOP or MAM regions 

are causal for the observed variation. 

 

Figure 5.5: Number of significant QTLs plotted against the genetic location. Metabolic QTLs are represented by the 
solid (genetic component; G) and dashed (genetic x environmental component; G:E) lines. Germination related 
QTLs (Joosen et al. 2012) are shown by the dotted line. 

Since many metabolites appear to be co-regulated, the strong impact of some loci 

on central metabolism might also exert its effect on physiological traits. Recently, the 

genetic landscape of seed germination in the same population has been described for 

which seed germination parameters were acquired under a wide range of environmental 

conditions (Chapter 3, Joosen et al. 2012). A comparison between variation in germination 

characteristics and metabolite levels might reveal compounds involved in the process of 

germination. Although no clear co-location of hotspots for germination and metabolite 

QTLs could be observed, incidental coincidence between isolated QTLs of both types of 

traits did occur. For instance, genetic variation for seed size co-locates with a large 

metabolic QTL cluster on the lower arm of chromosome I (~75 cM). This cluster contains 

many QTLs for amino acids, but also for components of the TCA cycle (e.g. fumarate and 

malate). In plants, leucine, isoleucine and valine, can be broken down and the end products 

of their catabolic pathways enter the TCA cycle to generate energy. It has been shown that 

these amino acids promote their own degradation, but only during seed germination, 

senescence, or under sugar starvation (Binder 2010). This suggests that the degradation 

pathways provide alternative carbon sources for the plant in extreme conditions. In 

addition, branched-chain amino acids and their derived alpha-keto acids are cytotoxic and 

preventing accumulation through degradation may be an important detoxification 

mechanism (Fujiki et al. 2000). Higher levels of both fumarate and malate, as a result of the 

degradation of a surplus of amino acids, might thus be indicative for larger seed sizes. A 

second QTL for seed size on chromosome V co-locates with a QTL of opposite effect for 

GABA accumulation. Interestingly, Bay-0 alleles at both QTLs confer larger seed size, 

suggesting directed evolution, as was also observed in a different population (Alonso-
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Blanco et al. 1999). However, where levels of fumarate and malate are increased in larger 

seeds, the accumulation of GABA is decreased. GABA is known to be involved in a range of 

cellular processes (Palanivelu et al. 2003) and is rapidly accumulated in response to biotic 

and abiotic stresses (Kinnersley and Turano 2000). It has been postulated that it has roles in 

herbivore deterrence, pH and redox regulation, energy production and maintenance of 

carbon/nitrogen (C/N) balance (Bouche and Fromm 2004). In a recent study, GABA levels in 

seeds were shown to increase by expressing glutamate decarboxylase (GAD) under a seed 

maturation-specific phaseolin promoter (Fait et al. 2011). In accordance with our findings 

this resulted in smaller seed size and reduced seed vigor in T3 plants. No opposite seed size 

effect could be detected at a GABA QTL with increased levels due to the Bay-0 allele at the 

top of chromosome four, but co-locating genetic variation for germination on ABA, heat 

sensitivity and dormancy was observed at this position. These cases illustrate the power of 

joined genetic analyses of metabolic and physiological traits for generation of hypotheses 

that can help in the functional annotation of plant metabolites and their possible role in the 

regulation of important physiological processes. 

Confirmation of mQTLs 

To independently confirm the effect of a single locus it must be isolated and 

tested in an isogenic background. Several methods can be followed to perform such an 

independent confirmation of QTLs. A powerful approach is the use of residual 

heterozygosity in early generations of RILs. The Bay-0xSha RIL population (420 lines in total) 

was genotyped at F6 in which approximately 97% homozygosity is reached in each line. This 

resulted in the presence of residual heterozygosity in at least a single RIL at almost all 

genome positions. Those heterozygous regions are segregating in a Mendelian fashion in 

the next generation and can be used to confirm QTL positions, as it provides a possibility to 

study both parental alleles at the locus of interest in an otherwise homozygous background 

(Tuinstra et al. 1997). In a heterogeneous inbred family (HIF) those heterozygous regions 

are fixed and two separate lines containing the alleles of both parents respectively are 

maintained.  

HIF312 and HIF214 are segregating for regions at the top of chromosome IV and V 

(Figure 5.6A), respectively, and cover the region in which the two major metabolite 

hotspots were detected. Because many of the QTLs detected in this region showed a large-

effect size at the dry seed stages, after-ripened dry seeds were used to profile the HIFs for 

metabolic content. Significant differences between parental alleles using 4 replicates were 

defined by a two-tailed t-test (p<0.05). In total 34 out of 64 QTLs could be confirmed using 

this approach (Supporting Information, S5.13). For maltose for instance, two QTLs with 

opposite direction were found (Figure 5.6B) which both could be confirmed using the two 

distinct HIFs (Figure 5.6C).  
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Figure 5.6: QTL confirmation for maltose using the heterogeneous inbred family (HIF) approach. Two QTL regions 
(top chromosome IV and top chromosome V) were analyzed using after-ripened (AR) seeds of lines HIF312 and 
HIF214 (A). The QTL profile for maltose (B) shows two significant QTLs (dashed line indicates the LOD 4 significance 
threshold). The lower panel (C) shows the parental levels for maltose and the confirmation for both QTLs by the 
segregating HIF lines (either fixed for Bay-0 or Sha alleles at the heterozygous interval). Significant differences (t-
test p<0.05) are indicated with * in-between the two contrasting samples. 

In a number of cases a HIF effect was observed that was not detected significantly 

in the RIL population (e.g. Digalactosylglycerol). This might be the result from the higher 

power in near isogenic lines due to the absence of epistatic interactions (Keurentjes et al. 

2007). Nonetheless, a substantial number of QTLs could not be confirmed by the HIF lines. 

The enrichment for small-effect QTLs in the unconfirmed class suggests that four replicates 

generate insufficient power to identify significant differences for these metabolites in the 

HIF experiments, although we cannot rule out that they are false positives from the QTL 

analysis. Furthermore, QTLs depending on epistatic interactions cannot be detected in 
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some near isogenic lines. In addition, a number of QTL support intervals are broader than 

the region covered by the HIF and thus the causal genetic polymorphism within the QTL 

interval, but outside the region covered by the HIF, would have been missed.  

The analyses of the HIF lines indicate that most of the large-effect QTLs can be 

accurately detected using a generalized genomics approach. Although an underestimation 

of small-effect QTLs can be expected this is largely compensated by the higher power of 

detecting genetic and environmental interactions. 

Conclusions 

The use of natural variation is a valuable tool to dissect the genetics of complex 

traits and the addition of powerful ‘omics’ analysis provides a great resource to disentangle 

molecular mechanisms. However, the expensive nature of many ‘omics’ experiments limits 

researchers to deploy perturbation of either environment or development. New strategies 

are needed to enable the switch from genetical genomics to system genetics. Here we have 

reported on a strategy to divide a RIL population in well-defined sub-populations and to use 

those to perturb the environment or developmental stage. To this end a novel R-script has 

been created to enable QTL mapping using a linear model that includes the possibility to 

account for genetic and environmental variation. This R-script is fast enough to analyze 

hundreds to thousands of traits and creates possibilities to extend the generalized genetical 

genomics strategy to whole genome gene expression analysis by either microarray or next 

generation sequence approaches (Joosen et al. 2009; Ligterink et al. 2012).  

Efficient QTL mapping is strongly dependent on the population size and 

recombination frequency. Keurentjes et al. (2007) studied the effect of the population size 

and showed a linear relationship between the number of individuals used for mapping and 

the smallest detectable genetic effect. In this light it might seem undesirable to split a RIL 

population in smaller sub-populations. This is true when genetic variation is only detectable 

in a single unique environment or developmental stage leading to a strong genetic x 

environment interaction. More often, variation is subject to the environment without a 

complete abolishment of the genetic variation. In those cases the environmental effects 

can be normalized and the power of detecting a QTL is increased to the total number of 

lines used in the different sub-populations.  

The availability of a genome wide set of heterogeneous inbred family (HIF) lines of 

the Bay-0 x Sha RIL population provides a solid and fast way to confirm QTLs. By using this 

approach we tested two of the observed QTL hotspots and were able to confirm many of 

the detected QTLs. When resources are limited this can be regarded as a good alternative 

for replicating the whole experiment for e.g. different growth seasons.  

Many studies have shown the highly dynamic nature of molecular mechanisms 

leading towards seed germination (e.g. reviewed in Catusse et al. 2008; Daszkowska-Golec 

2011; Weitbrecht et al. 2011). Performing expensive genetical genomic experiments 

without any perturbation of the environment will therefore always raise questions about 
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the possible extrapolation of the results when slightly different conditions are used. 

Information about the flux of a metabolite within a range of developmental stages or within 

a range of environments allows a much more precise interpretation of the molecular 

effects. By using the generalized strategy we showed that it is possible to deduct the 

metabolic fluxes (Figure 5.4). This extra level of information is a very valuable addition and 

helps to interpret the effect of genetic variation in the context of a dynamic and constantly 

changing metabolome. 

 Metabolite hotspots can reveal important loci involved in major metabolic 

pathway differences between two natural variants. In several studies the detected ‘omics’ 

hotspots did not co-locate more than expected by chance with phenotypic hotspots 

(Keurentjes et al. 2006; Meyer et al. 2007). However, in this study we detected some co-

locating QTLs which might be explained by the narrow developmental window in which 

both metabolite and phenotypic QTLs (Chapter 3, Joosen et al. 2012) were gathered. We 

detected overlapping QTLs for amino-acid synthesis, TCA cycle compounds and seed size at 

the bottom of chromosome I and also co-location between QTLs for GABA, seed size and 

germination under stress conditions at the top of chromosome 5 (Chapter 3, Joosen et al. 

2012). These co-locating QTLs are interesting leads for further research which is necessary 

to elucidate the true causal molecular mechanisms.  

In conclusion, in the era of large systems genetics initiatives, we propose to 

consider the use of a generalized design for genetical genomics studies. The simultaneous 

acquisition of both genetic variation and developmental fluxes is a cost effective approach 

enabling a much better understanding of the processes involved. We see great potential in 

further exploration of the generalized design for transcriptome or other ‘omics’ related 

studies.  

Material and methods 

Plant material 

Seeds from the core population (165 lines) of the Arabidopsis Bay-0 x Sha 

recombinant inbred line population (Loudet et al. 2002) and heterogeneous inbred family 

(HIF) lines were obtained from the Versailles Biological Resource Centre for Arabidopsis 

(http://dbsgap.versailles.inra.fr/vnat/). The population is mapped with 69 markers with an 

average distance between the markers of 6.1 cM (Loudet et al. 2002). Maternal plants were 

grown in a fully randomized setup and seeds from 4-7 plants/RIL were bulk harvested. 

Plants were grown on 4x4 cm rockwool plugs (MM40/40, Grodan B.V.) and watered with 1 

g/l Hyponex fertilizer (NPK=7:6:19, http://www.hyponex.co.jp) in a climate chamber (20°C 

day, 18°C night) with 16 hours of light (35 W/m2) at a relative humidity of 70%. Seeds were 

either stored at -80°C 1 week after harvest (primary dormant; PD) or after-ripened at room 

temperature and ambient relative humidity until maximum germination potential after 5 d 

of imbibition was reached (after-ripened; AR). After-ripened seeds were imbibed on water 

http://www.google.com/url?sa=D&q=http%3A%2F%2Fdbsgap.versailles.inra.fr%2Fvnat%2F
http://www.google.com/url?sa=D&q=http%3A%2F%2Fwww.hyponex.co.jp
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saturated filter paper at 20°C for 6H and quickly transferred to a dry filter paper for 1 

minute to remove excess of water  (6 hours imbibed seeds; 6H) Manual selection with help 

of a binocular was carried out to harvest seeds with the radicle at the point of protrusion 

(radicle protrusion; RP). Three radicle protrusion lines failed the metabolite analysis and 

were replaced by dry primary dormant samples.  

Metabolite analysis  

The metabolite extraction was performed based on a previously described method 

(Roessner et al. 2000) with some modifications. Seeds (20 mg) were homogenized using a 

micro dismembrator (Sartorius) in 2 ml tubes with 2 iron balls (2,5 mm), precooled in liquid 

nitrogen. 700 µl methanol/chloroform (4:3) was added together with the standard (0.2 

mg/ml ribitol) and mixed thoroughly. After 10 minutes of sonication 200 µl MQ was added 

to the mixture followed by vortexing and centrifugation (5 min., 13500 rpm). The methanol 

phase was collected in a glass vial. 500 µl methanol/chloroform was added to the remaining 

organic phase and kept on ice for 10 min. 200 µl MQ was added followed by vortexing and 

centrifugation (5 min., 13500 rpm). Again the methanol phase was collected and mixed 

with the other collected phase. 100 µl was dried overnight using a speedvac (35°C Savant 

SPD121).  

A GC-TOF-MS method (Carreno-Quintero et al. 2012) was used with some minor 

modifications. Detector voltage was set at 1600V. Raw data was processed using the 

chromaTOF software 2.0 (Leco instruments) and further processed using the Metalign 

software (Lommen 2009), to extract and align the mass signals. A signal to noise ratio of 2 

was used. The output was further processed by the Metalign Output Transformer (METOT; 

Plant Research International, Wageningen) and mass signals that where present in less than 

3 RIL’s where discarded. Centrotypes were created using the MSclust program (Tikunov et 

al. 2011). The mass spectra of these centrotypes were used for the identification by 

matching to an in-house constructed library and the NIST05 (National Institute of Standards 

and Technology, Gaithersburg, MD, USA; http://www.nist.gov/srd/mslist.htm) libraries. This 

identification is based on spectra similarity and comparison of retention indices calculated 

by using a 3
th

 order polynomial function (Strehmel et al. 2008).  

QTL mapping  

Data was preprocessed using a log10 transformation and per phenotype outliers 

were removed after Z-transformation (Z-scores > 3). With the open source statistical 

package R (version 2.14.1) we fitted a basic linear model (yi=β0+β1gi+εi) on the 4 conditions 

separately. This was followed by a combined mapping allowing for a developmental 

covariate and interaction term between the genetic marker and developmental stage (y i= 

β0+β1ei+β2gi+β3ei:gi+εi). P-values from all mappings are transformed into LOD scores by 

taking the –log10. Additionally, raw and normalized effects were calculated for each 

individual environment. Normalized effects were calculated by dividing the difference 
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between the maximum and the minimum value for that trait by the mean effect at the 

marker. LOD significance was determined using permutations for the combined mapping of 

the 4 environments: a LOD score of 4 was found to be significant (Breitling et al. 2008). 

Supporting Information S5.3 contains the R script used for the data analysis.  
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of the metabolite analysis in the Bay-0 x Sha RIL population. Colors indicate the 
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hours imbibed (6H); orange = seeds at radicle protrusion (RP), parental lines are indicated 
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Abstract 

Gene expression can vary between accessions due to an evolutionary 

accumulation of polymorphisms. Such quantitative variation can be used to identify the 

responsible loci; a procedure called eQTL mapping. In the era of microarray technology it 

became feasible to perform large scale genome wide expression analysis and several 

studies have presented the transcriptome architecture of single developmental stages. In 

this ‘sneak preview’ we present the first results of a newly generated dataset using the 

Arabidopsis Bay-0 x Sha recombinant inbred lines (RIL) population. Gene expression was 

profiled in seeds using a tiling microarray which allows full genome expression profiling and 

enables identification of genetic variation for alternatively spliced exons and anti-sense 

transcripts in future analysis. The used experimental design allows for perturbation of the 

environment within a single hybridization of the RIL population and has been applied to 

study four developmental stages during seed germination. We show that such design is 

effective to capture both genetic en environmental variation of gene expression.

Next generation eQTL mapping; a sneak preview 
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Introduction 

Natural variation provides a great resource to study the genetics of complex 

physiological traits which are determined by a concerted action of multiple genes. 

Quantitative genetics has been applied to study a wide range of agriculturally important 

traits (Alonso-Blanco et al. 2009). However, the cloning of the causal genetic polymorpishm 

requires finemapping which is labor intense and time consuming (Weigel and Nordborg 

2005). Like many physiological traits, variation in gene expression often shows a 

quantitative distribution. This opens the possibility to subject expression variation to 

linkage analysis, a concept called ‘genetical genomics’ (Jansen and Nap 2001). Experiments 

following this concept combine a genotyped segregating population and genome wide 

expression profiling in order to formulate hypothetic regulatory pathways and disentangle 

complex traits in a more high-throughput manner. Several studies in a broad range of 

taxonomic kingdoms have now been conducted and demonstrate the power to refine 

molecular pathways and to identify key driver genes thereof (reviewed in Wittkopp et al. 

2004; Mitchell-Olds and Schmitt 2006).  

The proportion of genetically regulated genes that can be observed is depending 

on the genotypic diversity present in the mapping population and on biological factors that 

influence gene expression. Due to the expensive nature of whole genome expression 

profiling, most genetical genomic studies are confined to a single tissue, developmental 

stage or environmental condition. Increased understanding of the interplay between 

environment and genetic factors will allow a more precise prediction of the physiological 

effects of gene expression variation. An alternative design, called generalized genetical 

genomics, allows a cost efficient perturbation of the environment, tissue or developmental 

stage (Chapter 5,  Li et al. 2008). The biological context in which regulatory networks 

function often determines the information about spatial or temporal variation. 

 Seed germination is a complex trait and is the result of an interaction between 

the genome and the environment encountered during seed development and maturation. 

This interaction is part of the adaptation of plants to a varying environment and is aimed at 

maximizing the probability of successful offspring (Penfield and King 2009; Huang et al. 

2010). In Arabidopsis thaliana different QTLs were found for dormancy and for a range of 

germination characteristics but a detailed understanding of the molecular mechanisms that 

are affected during the transition from a dry dormant seed towards completion of 

germination is largely lacking (Bentsink et al. 2000; Clerkx et al. 2004; Bentsink et al. 2010; 

Galpaz and Reymond 2010; Joosen et al. 2012).  

In this paper we describe a generalized genetical genomics experiment using the 

Bay-0 x Sha recombinant inbred lines (RIL) population (Loudet et al. 2002). This population 

was used in previous studies to characterize a broad range of seed germination related 

traits, metabolite and flavonoid levels (Rowe et al. 2008; Joosen et al. 2012; Routaboul et 

al. 2012). Further, it has been used for expression profiling of plants at the rosette stage 

and 10 day old siliques (West et al. 2007; Cubillos et al. 2012). Here, we expand the 
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expression profiling data with four different developmental stages during seed 

germination. The use of an Affymetrix tiling microarray enables a very detailed analysis of 

all annotated genes in the Arabidopsis genome (Zhang and Borevitz 2009).  

Results and discussion 

Experimental setup 

In this study the core set of the Bay-0 x Sha RIL population (Loudet et al. 2002) 

consisting of 165 lines was used. To reduce environmental variation derived from the 

maternal plants as much as possible the population was grown in a randomized setup 

under fully controlled conditions and seeds from 4-7 plants/RIL were pooled. These seeds 

were extensively tested for their germination behavior and showed very good heritability 

scores when different harvests were compared (Joosen et al. 2012).  

The Bay-0 x Sha RIL population was divided in four sub-populations optimized for 

the distribution of parental alleles using the R-procedure DesignGG (Li et al. 2009). Four 

biologically important developmental stages of seed germination were selected (Supporting 

Information, S6.1). The first two stages, freshly harvested primary dormant (PD) and after-

ripened (AR) non-dormant dry seeds are expected to comprise a very similar transcriptome. 

The other two stages represented seed imbibed for 6 hours (6H) and seeds at radical 

protrusion (RP). Full rehydration of dry seeds is completed typically in less than 2 hours and 

although developmental differences are not yet expected, many metabolic processes will 

have started after 6 hours of imbibition (Nakabayashi et al. 2005; Howell et al. 2009). 

Radicle protrusion marks the end-point of germination sensu stricto and is known to be 

accompanied by a major shift in the transcriptome (Nakabayashi et al. 2005; Fait et al. 

2006).  

Full genome expression profiling was performed using the Affymetrix AtSNPtile 

microarray (Zhang and Borevitz 2009). This microarray contains 1.7 million unique 25mer 

tiling probes in sense and antisense direction covering the non-repetitive part of the 

genome at 35 bp resolution. Genomic DNA from the parental Bay-0 and Sha lines was 

hybridized in a triplicated experiment to enable filtering of probes with bad hybridisation 

characteristics. This prevents false positive eQTL detection which are solely caused by 

polymorphisms that lead to hybridisation differences. Tair9.0 (www.arabidopsis.org) gene 

annotation was used to extract antisense exon probes for each gene. The hybridisation 

levels of all selected probes per gene were averaged to obtain a solid measure for gene 

expression. In total we extracted expression levels for 29.304 genes from 180 microarrays 

(Supporting Information, S6.2). A principal component analysis of the expression profiles, 

revealing the internal structure in the data, shows clear separation patterns (Figure 6.1). 

The first component, explaining 54.6% of the total variation, separates 6 hours imbibed 

seeds and seeds at radicle protrusion from both primary dormant and after-ripened seeds. 

This confirms the large transcriptome changes accompanying the transition from dry 

http://www.arabidopsis.org/
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arrested seeds to the active imbibed and germination developmental stages. The second 

component, explaining 9.6% of the total variation, might be expected to separate the 

observed genetic variation. However, it should be noted that both parental accessions are 

not clearly separated in the second component. This might indicate that the non-shuffled 

parental genomes exhibit a relatively robust transcriptome, which is destabilized in the 

RILs.   

 

 

Figure 6.1: Principal component plot showing the first and second component of the explained variation derived 
from the whole transcriptome measurements per RIL line and both parental lines. Developmental stages are 
indicated by colors (red= Primary dormant (PD), blue = After-ripened (AR), green = 6H imbibed (6H), orange = 
seeds at radicle protrusion) and shape indicates the genotype background (circle = RIL lines, triangle = Bay-0, 
square = Sha). 

Developmental variation 

Although the primary purpose of this experiment was focused on detection of the 

genetic variation in gene expression, it offered great opportunities to acquire insight in 

developmental variation of transcription as well. For each developmental stage a total of 45 

microarrays were analyzed. When comparing the transcriptomes of dry primary dormant 

(PD) with dry after-ripened (AR) seeds, only small expression differences were detected but 

a striking over-representation of down regulated cell-wall related genes can be observed 

(Table 6.1). Most probably, those genes are mainly located in the seed-coat in which the 

RNA might be less protected to oxidative degradation compared to the embryonic tissues. 

Whether the degradation of these genes is causally linked with loss of dormancy is an 

interesting subject for further research and can be tested by evaluating gene expression 

levels during seed after-ripening in lines with various dormancy levels.  

As many as 6559 genes were found to be differently expressed when comparing 

the transcriptomes of dry after-ripened seeds against 6H imbibed seeds (Bonferroni 

corrected t-test P-value < 1.7 10
e-7

, Supporting Information S6.3).  
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Table 6.1: Overview of the 25 most significantly changed genes during seed dry storage. Average and t-test P-
values of 45 microarrays performed on primary dormant (PD) seeds and after-ripened (AR) seeds each.  

AGI-ID Symbol Description 

P (t-test) 
Average 
Expression 

Standard 
error 

PD-AR PD AR PD AR 

AT3G13400 SKU5  SIMILAR 13 
(sks13) 

SKU5  similar 13 (sks13); FUNCTIONS IN: oxidoreductase activity, 
copper ion binding 

2.3E-07 5.77 5.55 0.03 0.02 

AT3G62730  Unknown protein;  6.2E-07 5.27 5.14 0.02 0.02 

AT2G47050  Plant invertase/pectin methylesterase inhibitor superfamily 
protein; FUNCTIONS IN: enzyme inhibitor activity, pectinesterase 
inhibitor activity, pectinesterase activity; 

1.2E-06 5.68 5.45 0.04 0.02 

AT5G19580  Glyoxal oxidase-related protein; 2.2E-06 5.60 5.48 0.02 0.01 

AT1G02790 POLYGALACT-
URONASE 4 (PGA4) 

Encodes a exopolygalacturonase. 5.4E-06 5.83 5.59 0.04 0.03 

AT3G28750  Unknown protein; LOCATED IN: endomembrane system 5.7E-06 5.41 5.23 0.03 0.02 

AT3G62170 VANGUARD 1 
HOMOLOG 2 
(VGDH2) 

VANGUARD 1 homolog 2 (VGDH2); FUNCTIONS IN: enzyme 
inhibitor activity, pectinesterase activity 

1.9E-05 5.30 5.20 0.02 0.01 

AT3G01270  Pectate lyase family protein; FUNCTIONS IN: lyase activity, 
pectate lyase activity 

2.9E-05 5.34 5.21 0.03 0.02 

AT2G47040 VANGUARD1 (VGD1) Share high homologies with a group of pectin methylesterases 
(PME) 

3.3E-05 5.58 5.42 0.03 0.02 

AT1G61563 RALF-LIKE 8 (RALFL8) Member of a diversely expressed predicted peptide family 
showing sequence similarity to tobacco Rapid Alkalinization 
Factor (RALF) 

5.1E-05 5.84 5.63 0.03 0.03 

AT5G20390  Glycosyl hydrolase superfamily protein; FUNCTIONS IN: cation 
binding, hydrolase activity, hydrolyzing O-glycosyl compounds, 
catalytic activity 

7.2E-05 5.17 5.08 0.02 0.02 

AT5G14380 ARABINOGALACTAN 
PROTEIN 6 (AGP6) 

Encodes an arabinogalactan protein that is expressed in pollen, 
pollen sac and pollen tube. 

1.0E-04 5.84 5.69 0.03 0.02 

AT5G07430  Pectin lyase-like superfamily protein; FUNCTIONS IN: 
pectinesterase activity 

1.2E-04 5.04 4.92 0.03 0.02 

AT5G26700  RmlC-like cupins superfamily protein; FUNCTIONS IN: manganese 
ion binding, nutrient reservoir activity 

1.6E-04 5.62 5.48 0.03 0.02 

AT3G17060  Pectin lyase-like superfamily protein; FUNCTIONS IN: 
pectinesterase activity 

2.4E-04 4.95 4.86 0.02 0.01 

AT1G75335  Unknown protein 2.6E-04 4.97 5.08 0.02 0.02 

AT5G07410  Pectin lyase-like superfamily protein; FUNCTIONS IN: 
pectinesterase activity 

3.7E-04 5.37 5.22 0.03 0.03 

AT2G47030  (VGDH1) VGDH1; FUNCTIONS IN: enzyme inhibitor activity, pectinesterase 
activity 

4.2E-04 5.04 4.97 0.02 0.02 

AT3G28830  Protein of unknown function 4.4E-04 5.05 4.96 0.02 0.01 

AT1G61566 RALF-LIKE 9 (RALFL9) Member of a diversely expressed predicted peptide family 
showing sequence similarity to tobacco Rapid Alkalinization 
Factor (RALF) 

5.3E-04 5.73 5.48 0.05 0.04 

AT3G62710  Glycosyl hydrolase family protein; FUNCTIONS IN: xylan 1,4-beta-
xylosidase activity, hydrolase activity, hydrolyzing O-glycosyl 
compounds 

6.7E-04 5.23 5.14 0.02 0.01 

AT5G48140  Pectin lyase-like superfamily protein; FUNCTIONS IN: 
polygalacturonase activity 

7.2E-04 4.88 4.80 0.02 0.01 

AT5G50030  Plant invertase/pectin methylesterase inhibitor superfamily 
protein 

7.5E-04 5.40 5.27 0.03 0.02 

AT4G18596  Pollen Ole e 1 allergen and extensin family protein 8.5E-04 5.69 5.57 0.02 0.02 

AT1G08310  Alpha/beta-Hydrolases superfamily protein 9.0E-04 4.89 4.93 0.01 0.01 

 

A subset of the most differentially expressed genes was used to visualize the 

affected molecular processes using the MapMan Arabidopsis-seed map (Figure 6.2) 

(Chapter 4, Joosen et al. 2011). This shows clearly that 6 hours of imbibition is enough to 
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induce genes involved in glycolysis, TCA, cell cycle, DNA synthesis, RNA transcription or 

translation and GA anabolism. Genes coding for LEA proteins, starch and ABA anabolism 

were downregulated.  

 

 

Figure 6.2: MapMan Seed Molecular Networks map showing differences in transcript levels (colored squares) 
between dry after-ripened seeds and 6 hours imbibed seeds. Ratios are used to express differences (red = 
upregulated in 6H imbibed seeds, blue = downregulated in 6H imbibed seeds). Only ratios <-0.1 or >0.1 with P-
values < 1.7 10e-7 are presented. 

Comparing the transcriptomes of dry seeds and seeds at the point of radicle 

protrusion resulted in the detection of 13058 genes with differential expression 

(Supporting Information, S6.4). Again, a subset of the most differentially expressed genes 

was used to visualize the affected molecular processes using the MapMan Arabidopsis-seed 

map (Figure 6.3). Next to the molecular processes that had already started 6 hours after 

imbibition a clear up-regulation of genes involved in cell wall modification and degradation, 

photosynthesis, Calvin cycle and fatty acid (FA) synthesis was observed. Genes encoding for 

seed storage proteins and TAG synthesis were downregulated. The affected molecular 

processes are in agreement with the expected mechanisms that initiate the transition from 

a dry dormant seed, which is equipped for optimal survival and storage of reserves, 

towards an imbibed seed, in which energy needed for germination is released and which 

prepares for autotrophic growth.  
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Figure 6.3: MapMan Seed Molecular Networks map showing differences in transcript levels (colored squares) 
between dry seed and seeds at the point of radicle protrusion (RP). Ratios are used to express differences (red = 
upregulated in RP, blue = downregulated in RP). Only ratios <-0.1 or >0.1 with P-values < 1.7 10e-7 are presented. 

Genetic variation 

Capturing genetic variation in a genetical genomics experiment combined with 

different developmental stages requires an alternative QTL mapping method. Linear 

models are well suited to build a variance-covariance model (VCOV) using the following 

formula: 

 

yi= β0+β1ei+β2gi+β3ei:gi+εi 

 

where yi is the i
th

 observation of gene expression, variable gi is the genotype, ei is a 

vector with developmental stages, and ei:gi the interaction term.  The values βj represent 

parameters to be estimated, and εi is the error term. The simplified description Y = E + G + 

G:E + ε of this linear model will be used henceforward. Analysis is performed with the open 

source R-statistics program (http://www.r-project.org) using the R-scripts described in 

chapter 5 of this thesis. Separate likelihood estimates (–log10 probability, henceforth LOD 

scores) are generated for the environmental (E), genetic (G) and genetic x environmental 

(G:E) effects (Supporting Information, S6.5). In this study’s experimental setup the 

environmental variation is defined as variation observed between the four developmental 

stages (PD, AR, 6H and RP). The significance threshold is determined by a rather 

http://www.r-project.org/
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conservative Bonferroni correction at P=0.05 for 30.000 tests and equals LOD 5.8. In total 

2006 eQTLs were detected in the genetic (G) component, representing 1990 genes (Figure 

6.4A). At most, 2 QTLs were found for an individual gene. For 517 genes a strong 

interaction between the genetic x environmental (G:E) variation was observed, which 

resulted in the detection of 529 eQTLs (Figure 6.4B). Genes with a strong genetic effect in a 

specific environment will often result in QTLs in both the G and G:E component. However, 

250 G:E specific eQTLs were detected. From the total of 29304 profiled genes, 15310 

showed significant variation between the tested developmental stages (E). 

 

 

Figure 6.4: Distribution of mapped genes versus the position of their accompanying eQTL. Positions of detected 
eQTLs are plotted against the position of the gene for which that eQTL was found. QTLs were multiplied by the 
sign of effect resulting in a color distribution ranging from red (larger effect in Bay-0) to blue (larger effect in Sha). 
Chromosomal borders are depicted as horizontal and vertical lines. Panel A represents genes with genetic 
variation (G); panel B represents genes with genetic x environmental variation (G:E). 

Expression QTLs in the fully sequenced Arabidopsis can be classified according to 

the position of the causal polymorphisms. Local eQTLs can be the result of closely linked 

trans-acting factors but in the majority of cases result from cis-regulatory variation in the 

genes under study (Chapter 1, Joosen et al. 2009). By definition eQTLs acting in cis affect 

transcription initiation, rate and/or transcript stability in an allele-specific manner. In 

addition, cis-regulated genes might encode regulators affecting the expression of 

downstream target genes in trans (Rockman and Kruglyak 2006). Because of the multiplicity 

of regulators and the often-observed epistasis between them, each trans eQTL can have a 

relatively small effect. As a result the detected number of trans eQTLs relative to the 

number of cis eQTLs drops when the stringency for detection is increased (Doss et al. 

2005). The term cis eQTLs should be used with care because eQTL support intervals may 

contain multiple genes and as a result it can overlap with local-trans eQTLs. We therefore 

prefer using the terms local and distant eQTLs. Local eQTLs were defined by comparing 

eQTL locations with genome positions allowing an interval of 2.4 mega bases (approx. 10 
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cM). Genes with eQTLs outside this interval are classified as distant eQTLs. Of the 2006 

eQTLs that were detected to have genetic (G) variation, 1809 were classified as local and 

197 as distant. Accordingly, 447 local and 82 distant eQTLs were found for genes with 

genetic x environmental (G:E) variation. 

Visualizing the eQTL network 

Applying the generalized genetical genomics approach on 4 developmental stages 

combined with full genome transcription profiling results in a large and highly information 

dense dataset. Efficient visualization can be of great help to detect patterns and to query 

the data. Here, we used the program Cytoscape, which is an open source platform for 

complex network analysis and visualization, to create a marker-trait network. Within the R 

analysis procedure a peak-detection is performed to find the significant eQTL positions; this 

information was subsequently used to connect genes and markers. Network nodes indicate 

either genetic markers or genes which are connected by edges which represent the LOD 

score and the direction of the detected eQTL. Further, a Spearman correlation (cutoff 0.9) 

has been applied to detect genes which are co-expressed over both the 4 developmental 

stages and the various genotypes. In total, co-expression was determined over 180 

microarrays (164 RIL + 16 parent hybridizations) and 430 gene pairs showed correlation 

above the threshold of 0.9 (Figure 6.5). Additional attributes, such as gene description, 

number of probes, GO-annotation, ratio between dry and imbibed seed expression, and 

transcription family category can be added to further describe the data. A large advantage 

of loading a QTL network in Cytoscape is the dynamic nature of the program (Supporting 

Information, S6.6). It allows ordering, filtering and selection in all directions which is of 

great help to query the data.  

Seed development, dormancy and germination are regulated by many genes and 

several of them have been identified and characterized by reverse genetics approaches. 

Using the AmiGo browser (http://amigo.geneontology.org) a list of 211 genes with a known 

function in seeds was extracted. This list of a priori candidate genes was compared against 

our dataset and 24 genes showed significant expression variation between Bay-0 and Sha 

(Figure 6.6A). Expanding the selection by adding genes that are co-expressed with the 24 

selected candidate genes (Figure 6.6B) resulted in 34 genes. Interestingly, we identified 

DOG1, the major regulator of dormancy, showing a local eQTL with strong genetic x 

environment interaction on chromosome V at marker MSAT518662 overlapping the DOG1 

QTL for seed dormancy. Six genes are tightly co-expressed with DOG1 in our dataset and 

thus might indicate a shared functional pathway.  

Although a detailed discussion for all identified candidate genes would transcend 

the scope of this paper we would like to elaborate on one very interesting candidate: 

MIPS2 (AT2G22240). 

 

http://amigo.geneontology.org/
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This myo-inositol-1-phosphate synthase, catalyzes the rate limiting step in the de- 

novo synthesis of myo-inositol (Donahue et al. 2010). An eQTL for MIPS2 was found on 

chromosome II, marker 2.36 and overlaps an mQTL found for myo-inositol concentration in 

the same population (this thesis, Chapter 5). MIPS proteins localize in the cytosol of 

Arabidopsis seed endosperm during seed maturation (Mitsuhashi et al. 2008). Myo-inositol-

6-phosphate is the predominant form of phosphorus found in seeds and is hydrolyzed into 

myo-inositol and inorganic phosphates (Pi) by phytase during imbibition and subsequent 

seedling growth (Loewus and Murthy 2000). Further, it has been shown to act as a co-

factor for auxin binding to the TIR1 auxin receptor (Tan et al. 2007). MIPS proteins are 

suggested to fulfill a role for auxin-regulated embryogenesis and show embryo-lethality in 

double and triple mutants (Luo et al. 2011). Together this suggests a possible role for the 

detected MIPS2 gene in the process of seed germination but so far, a detailed analysis of 

germination characteristics including determination of dormancy is lacking for MIPS 

mutants. Our observation may open new research strategies to study the role of MIPS 

genes during seed germination or dormancy including a possible interaction with the DOG1 

gene.     

 

Figure 6.6: Cytoscape marker-trait network showing a selection of a priori seed germination related candidate 
genes with significant variation in expression between Bay-0 and Sha and their associated QTL positions. A second 
order selection of the candidate genes including co-expressed genes (Spearman correlation > 0.9) is shown in 
panel (A).  Gene-node shape indicate whether the gene is up or down-regulated upon seed imbibition 
(up=triangle, down=diamond, no change = ellipse). Co-expressed genes are indicated by connections between 
genes. Edge colors indicate either the direction of the QTL (green = larger effect in Bay-0, blue = larger effect in 
Sha) or the Spearman correlation coefficient (negative values = green, positive values = blue). The LOD-score is 
represented by the line width. Solid lines represent genetic (G) QTLs while genetic x environment interactions 
(G:E) are indicated by dashed lines, markers are indicated as red ellipses. Panel (B) shows a list of the selected 
genes with their GO category. 

A polymorphism in a major regulator might cause expression variation in a whole 

cascade of downstream genes. The presented marker-trait network can be used to extract 
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all eQTLs at a certain genome interval followed by gene ontology over-representation 

analysis using the Cytoscape BINGO plugin. For example, after selecting all eQTLs at marker 

MSAT5.59 a clear over-representation was observed for genes involved in light response 

and photosynthesis (Table 6.2). The Cytoscape network can be used to divide genes 

according to their eQTL position (Figure 6.7). Four genes with a local eQTL and 7 genes with 

a distant eQTL were detected. All seven genes with a distant eQTL were up regulated upon 

seed imbibition and showed a G:E eQTL affected at the Sha allele. Two genes with a local 

eQTL showed the same characteristics and might therefore be considered as candidate cis-

regulators of the observed molecular response. In this example, a large local eQTL with 

similar characteristics compared to the identified distant eQTLs is found for AT5G38430; 

which encodes a member of the rubisco small subunit (RBCS1B) multigene family (Table 

6.3). Rubisco plays a crucial role in carbon fixation and is often the rate limiting step for 

photosynthesis. Photosynthesis is restarted prior to seed germination and differences in 

the rate of initiation might have large influence on seedling establishment. Expression 

variation in RBCS1B can therefore explain the observed effect on genes involved in light 

response and photosynthesis. It should be noted that a cis-regulator not necessarily needs 

to have an expression difference or a similar expression profile. Both examples illustrate 

the power of the generalized genetical genomics approach combined with powerful 

filtering and sorting capabilities of a marker-trait network.  

Table 6.2: Over-represented GO categories between genes with an eQTL at marker 5.59. The P-value is based on a 
hypergeometric test on the Arabidopsis GO biological process annotation. Cluster frequency indicates the number 
of genes within each GO sub category from the selected set of genes. Total frequency indicates the number of 
genes within each GO sub category from the total genome.   

GO-ID Description P-value cluster 
freq 

total freq genes 

9637 response to blue light 2.59E-06 4/43  
9.3% 

50/22304  
0.2% 

AT4G10340, AT2G30520 AT5G38150, 
AT5G38430 

10114 response to red light 3.53E-06 4/43  
9.3% 

54/22304  
0.2% 

AT4G10340, AT4G36880 AT4G14690, 
AT5G38430 

9628 response to abiotic 
stimulus 

5.87E-05 10/43  
23.2% 

1168/22304  
5.2% 

AT4G10340, AT5G20250 AT5G65020, 
AT2G30520 AT4G36880, AT4G14690 
AT5G38470, AT5G38150 AT5G38430, 
AT5G43060 

10218 response to far red light 6.76E-05 3/43  
6.9% 

41/22304  
0.1% 

AT4G10340, AT4G14690 AT5G38430 

9416 response to light 
stimulus 

2.24E-04 6/43  
13.9% 

455/22304  
2.0% 

AT4G10340, AT2G30520 AT4G36880, 
AT4G14690 AT5G38150, AT5G38430 

9639 response to red or far 
red light 

2.47E-04 4/43  
9.3% 

159/22304  
0.7% 

AT4G10340, AT4G36880 AT4G14690, 
AT5G38430 

9314 response to radiation 2.70E-04 6/43  
13.9% 

471/22304  
2.1% 

AT4G10340, AT2G30520 AT4G36880, 
AT4G14690 AT5G38150, AT5G38430 

15979 photosynthesis 1.35E-03 3/43  
6.9% 

113/22304  
0.5% 

AT4G10340, AT3G47470 AT5G54270 
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Figure 6.7: Marker-trait network showing 
over-represented genes for light response 
and photosynthesis at marker MSAT5.59. 
Genes are separated based on their QTL 
position (local = left, distant = right). Gene 
descriptions are presented in Table 6.3. Edge 
colors indicate the direction of the QTL 
(green = larger effect in Bay-0, blue = larger 
effect in Sha). The LOD-score is represented 
by the line width. Solid lines represent 
genetic (G) QTLs while genetic x environment 
interactions (G:E) are indicated by dashed 
lines. 

 
 
 
 

 
Table 6.3: Gene descriptions for the genes shown in Figure 6.7. 

ID Symbol Description 

AT2G30520 RPT2 Light inducible root phototropism 2 encoding a signal transducer of the phototropic 
response in Arabidopsis 

AT3G47470 CAB4 Encodes a chlorophyll a/b-binding protein that is more similar to the PSI Cab proteins 
than the PSII cab proteins 

AT4G10340 LHCB5 Photosystem II encoding the light-harvesting chlorophyll a/b binding protein CP26 of the 
antenna system of the photosynthetic apparatus 

AT4G14690 ELIP2 Encodes an early light-induced protein. ELIPs are thought not to be directly involved in 
the synthesis and assembly of specific photosynthetic complexes, but rather affect the 
biogenesis of all chlorophyll-binding complexes 

AT5G20250 DIN10 Encodes a member of glycosyl hydrolase family 36. Expression is induced within 3 hours 
of dark treatment, in senescing leaves and treatment with exogenous photosynthesis 
inhibitor 

AT5G38150 PMI15 Involved in chloroplast avoidance movement under high-light intensities 

AT5G38430 RBCS1B Ribulose bisphosphate carboxylase (small chain) family protein INVOLVED IN: carbon 
fixation, response to blue light, response to red light, response to far red light 

AT5G38470 RAD23D Encodes a member of the RADIATION SENSITIVE23 (RAD23) family. RAD23 proteins play 
an essential role in the cell cycle, morphology, and fertility of plants through their 
delivery of UPS  substrates to the 26S proteasome 

AT5G43060  Granulin repeat cysteine protease family protein 

AT5G54270 LHCB3*1 Lhcb3 protein is a component of the main light harvesting chlorophyll a/b-protein 
complex of Photosystem II (LHC II) 

AT5G65020 ANNAT2 Annexins are calcium binding proteins that are localized in the cytoplasm. They may be 
involved in the Golgi-mediated secretion of polysaccharides 

 

In conclusion, we analyzed natural variation of gene expression in the Bay-0xSha 

RIL population in four developmental stages during seed germination. This approach is 

effective in determining differences in gene expression due to genetic and environmental 

variation. Summarizing the data with the use of a marker-trait network constructed with 
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Cytoscape offers great opportunities to mine and combine data with public available 

resources such as gene annotation.  

Future prospects 

In this study we assessed gene expression with the help of a tiling microarray. The 

described data represents overall gene expression levels acquired by averaging all anti-

sense exon probes per gene. However, a more detailed analysis is required to analyze this 

data to its full potential. The used microarray, AtSNPtile, contains 1.7 million unique 25mer 

tiling probes in sense and antisense direction covering the non-repetitive part of the 

genome at 35 bp resolution. Currently, statistical procedures are in development which 

uses individual probe expression levels to investigate expression variation. Next to a more 

accurate estimation of transcript expression this will provide information about alternative 

splicing events and detect natural antisense transcription. Both alternative splicing and 

anti-sense transcription are important mechanisms for gene expression under both normal 

and stress conditions (Jin et al. 2008). Genetic variation for these events between Bay-0 

and Sha might therefore provide important insight in such regulatory mechanisms. 

The Bay-0xSha RIL population has been used in numerous studies to map QTL 

positions. Often, comparisons between studies are hampered because different 

developmental stages or plant growing conditions were used. With the data described in 

this paper we finalized a comprehensive study on seed traits at the morphological, 

germination potential (Joosen et al. 2012), metabolic (this thesis, Chapter 5) and gene 

expression level. Combining these datasets might provide insight in the molecular 

processes that underlie differences observed for seed germination potential between Bay-0 

and Sha.  

Materials and methods 

Plant material 

Seeds from the core population (164 lines) of the Arabidopsis Bay-0 x Sha 

recombinant inbred line population (Loudet et al. 2002) and heterogeneous inbred family 

(HIF) lines were obtained from the Versailles Biological Resource Centre for Arabidopsis 

(http://dbsgap.versailles.inra.fr/vnat). The population is mapped with 69 markers with an 

average distance between the markers of 6.1 cM (Loudet et al. 2002). Maternal plants were 

grown in a fully randomized setup and seeds from 4-7 plants/RIL were bulk harvested. 

Plants were grown on 4x4 cm rockwool plugs (MM40/40, Grodan B.V.) and watered with 1 

g/l Hyponex fertilizer (NPK=7:6:19, http://www.hyponex.co.jp) in a climate chamber (20°C 

day, 18°C night) with 16 hours of light (35 W/m2) at a relative humidity of 70%.   

http://www.google.com/url?sa=D&q=http%3A%2F%2Fdbsgap.versailles.inra.fr%2Fvnat%2F
http://www.google.com/url?sa=D&q=http%3A%2F%2Fwww.hyponex.co.jp
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Sample preparation 

The Bay-0 x Sha RIL population was divided in four sub-populations optimized for 

the distribution of parental alleles using the R-procedure DesignGG (Li et al. 2009). The four 

sub-populations are used to represent four different developmental seed stages.  Seeds 

were either stored at -80°C 1 week after harvest (primary dormant; PD) or after-ripened at 

room temperature and ambient relative humidity until maximum germination potential 

after 5 d of imbibition was reached (after-ripened; AR). After-ripened seeds were imbibed 

on water saturated filter paper at 20°C for 6H and quickly transferred to a dry filter paper 

for 1 minute to remove excess of water (6 hours imbibed seeds; 6H). Manual selection with 

help of a binocular was carried out to harvest seeds with the radicle at the point of 

protrusion (radicle protrusion; RP).  

RNA isolation 

Total RNA was extracted according to the hot borate protocol modified from Wan 

and Wilkins (1994). Twenty mg of seeds for each treatment were homogenized and mixed 

with 800 µl of extraction buffer (0.2M Na boratedecahydrate (Borax), 30 mM EGTA, 1% 

SDS, 1% Na deoxy-cholate (Na-DOC)) containing 1.6 mg DTT and 48 mg PVP40 which had 

been heated to 80°C. 1 mg proteinase K was added to this suspension and incubated for 15 

min at 42°C. After adding 64 µl of 2 M KCL the samples were incubated on ice for 30 min 

and subsequently centrifuged for 20 min at 12,000 g. Ice-cold 8 MLiCl was added to the 

supernatant in a final concentration of 2 M and the tubes were incubated overnight on ice. 

After centrifugation for 20 min at 12,000 g at 4°C, the pellets were washed with 750 µl ice-

cold 2 M LiCl. The samples were centrifuged for 10 min at 10,000 g at 4°C and the pellets 

were re-suspended in 100 µl DEPC treated water. The samples were phenol chloroform 

extracted, DNAse treated (RQ1 DNase, Promega) and further purified with RNeasy spin 

columns (Qiagen) following the manufacturer’s instructions. RNA quality and concentration 

were assessed by agarose gel electrophoresis and UV spectrophotometry.  

Microarray analysis 

RNA was processed for use on Affymetrix Arabidopsis SNPtile array 

(atSNPtilx520433) as described by the manufacturer. Briefly, 1 mg of total RNA was reverse 

transcribed using a T7-Oligo(dT) Promoter Primer in the first-strand cDNA synthesis 

reaction. Following RNase H-mediated second-strand cDNA synthesis, the double-stranded 

cDNA was purified and served as template in the subsequent in vitro transcription (IVT) 

reaction. The IVT reaction was carried out in the presence of T7 RNAPolymerase and a 

biotinylated nucleotide analog/ribonucleotide mix for complementary RNA (cRNA) 

amplification and biotin labeling. The biotinylated cRNA targets were then cleaned up, 

fragmented, and hybridized to the SNPtile array.  
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Data analysis 

The hybridization data was extracted using an R-script with the help of an 

annotation-file based on TAIR9 annotation (http://aquilegia.uchicago.edu). Expression 

levels of anti-sense exon probes were averaged for each annotated gene. Data was 

normalized in R using quantile normalization. QTL analysis has been performed using the R-

procedure described in this thesis, Chapter 5. After an initial QTL analysis using the original 

69 markers a selection of strong local eQTLs was used to improve the genetic map. In total 

6 new markers were added and 67 missing alleles were imputed. This improved genetic 

map (Supporting Information, S6.7) was used for the presented eQTL analysis. 

Supporting Information 

Supporting information can be downloaded from an online storage located at 

www.wageningenseedlab.nl/thesis/rvljoosen/SI.  

Table S6.1: Microarray hybridization sample list including the RIL division in four 

developmental stages 

Table S6.2: Gene expression levels for all 180 microarray hybridizations 

Table S6.3: Differential genes between dry seed and 6H imbibed seeds 

Table S6.4: Differential genes between dry seed and seeds at radicle protrusion 

Table S6.5: LOD scores for environmental, genetic and genetic x environmental variation 

File S6.6: Cytoscape file for the model presented in Figure 6.5.  

Table S6.7: Improved genetic map the Bay-0 x Sha RIL population 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“They sowed the seed of an "if', but it didn't germinate.”

http://aquilegia.uchicago.edu/
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Abstract 

Association mapping is rapidly becoming an important method to explore the 

genetic architecture of complex traits in plants. Over the past decades, a large amount of 

accessions has been collected for Arabidopsis thaliana. Ultra-high density genotyping 

followed by careful family-structure analysis has resulted in the assembly of a core-

population consisting of 360 accessions. In this study we used this population to quantify 

seed size, germination on water, as well as the germination response to salt, heat and ABA. 

Experiments were replicated with seeds harvested in two successive years and a high level 

of heritable variation was observed. Five new natural seed coat mucilage mutants were 

discovered by analyzing the correlation between dry and imbibed seed size. Interesting 

correlations between the measured phenotypes and latitude or longitude positions were 

found. Such local adaptation is the most compelling source of evidence for natural 

selection during evolution. The combination of highly heritable phenotype measures and an 

optimally designed population increases the probability to find statistically significant SNP 

associations. However, no significant SNPs were detected when applying a Bonferroni 

multiple testing correction, which complicates the discovery of true associations. Due to 

the importance of seed germination in a plant’s life cycle, a robust biological system is 

needed in which many loci with small additive effects may determine the final output. 

Thus, genome wide association can easily be underpowered to efficiently detect such 

relatively small effect loci. A comparison with traditional linkage mapping in a Bay-0 x Sha 

RIL population was made in an attempt to enforce the discovery of true associations. De 

novo candidate genes are listed and prioritized using available expression and annotation 

data. 

Comparing Genome Wide Association and 
Linkage analysis for seed traits 
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Introduction 

Accumulation of mutations during evolution is the powering force of adaptation to 

a large variety of environmental cues. In the early 60s plant biologists realized that a 

functional dissection of these mutations can be realized by creating structured populations 

(Thoday 1961).  A particularly powerful approach is the creation of so-called recombinant 

inbred lines (RILs). These are made by crossing two homozygous founder lines which are 

adapted to distinct environments. The F1 will undergo recombination during meiosis which 

is fixed by several rounds of self-pollination. This results in an immortal population that can 

be tested for phenotypic variation in different developmental stages and under a large 

array of environmental perturbations. Subsequent linkage mapping allows identification of 

chromosomal regions, i.e. quantitative trait loci (QTL), which contain genetic variation 

important for the trait under investigation (reviewed by Doerge 2002). For complex and 

polygenic traits this often results in the detection of several QTLs with varying effect on the 

final phenotype. This approach has proven its power in numerous studies for a wide range 

of phenotypic traits and dozens of causal genes have subsequently been identified by a 

procedure called fine mapping (Alonso-Blanco et al. 2009). Fine mapping relies on 

narrowing the genomic region of a QTL by searching new recombinants within the linkage 

interval. This is a time consuming and laborious task which confines this classical approach 

for QTL mapping to a low throughput technique. Another disadvantage is the limited 

amount of genetic variation that can be analyzed when only two founder parents are used. 

Advanced crossings using multiple parental lines can partly overcome this limitation (Kover 

et al. 2009; Huang et al. 2011).  

Linkage mapping requires controlled crosses which are not desired to apply on 

humans. Therefore an alternative procedure called genome wide association (GWA) was 

developed for human genetics. It requires a large set of genetically variable individuals and 

a detailed inventory of polymorphisms that are inherited and shuffled by recombination 

(Hirschhorn and Daly 2005).  In this type of studies the genomic regions that are associated 

with a phenotype are often very small because the accumulated genetic variation results in 

small genomic regions that are independent of each other. This phenomenon is also 

referred to as ‘fast decay of linkage disequilibrium’. The level of linkage disequilibrium is 

not only influenced by genetic linkage but also by the rate of recombination, rate of 

mutation, genetic drift, non-random mating and population structure. Individual single 

nucleotide polymorphisms (SNP) or multimarker combinations (haplotypes) can be used to 

identify the genetic variation within a genomic region. GWA studies require a high density 

of SNP variants to survey the size of genome regions that are in linkage disequilibrium. 

Another important factor to consider is the population structure (also referred to as 

population stratification). Population structure can lead to an over-representation of 

subgroups within the population that differ in trait prevalence. This phenomenon usually 

causes confounding factors which results in the association of markers with phenotypic 
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effects without being truly related with the causes of the phenotype. Methods to correct 

for population structure are reviewed in Price et al. (2010).  

Already in 1937, Friedrich Laibach began collecting local ecotypes of the wild 

crucifer Arabidopsis thaliana, and his initiative was continued by many other plant 

scientists. This resulted in a large set of ecotypes which were globally collected at natural 

sites. A high density genotyping microarray (AtSNPtile) containing 250.000 SNP probes was 

developed (Zhang and Borevitz 2009) and used to genotype 1307 lines 

(https://cynin.gmi.oeaw.ac.at/home/resources/atpolydb). Since the genome size of 

Arabidopsis is around 120 megabases this resulted in approximately one SNP in every 500 

bp. The first study in Arabidopsis showing the feasibility of GWA mapping was performed 

on 191 ecotypes and describes 107 phenotypes (Atwell et al. 2010). One of the important 

observations in this study was related to the required sample size. In contrast to human 

studies, the environmental conditions during growth and phenotyping assays can be well 

controlled and replicated in plants. This leads to high trait heritability and thus allows GWA 

studies on a much smaller number of individuals compared to GWA studies in humans. 

However, a strong and complex population structure was detected which can be expected 

to generate a high rate of false positive associations (Atwell et al. 2010). This confounding 

factor was corrected by using a mixed-model approach including the kinship between the 

natural accessions. The success of such strategy is hard to evaluate, but it was shown that 

some highly expected associations (e.g. the FLC gene for flowering time) could still be 

detected after correction for the population structure. It was suggested that both a larger 

sample size and a reduced complexity of the population structure would increase the 

power to detect true associations. Global population structure was therefore estimated 

within 5707 ecotypes with a set of 137 SNPs (Platt et al. 2010) and this data was used to 

define an Arabidopsis population consisting of 360 ecotypes with maximized diversity and 

elimination of unusually close relationships (Li et al. 2010). This Arabidopsis core 360 

HapMap population was used in the study presented in this paper.  

In general, genome wide association has become a promising tool to dissect 

natural genetic variation but it remains hard to distinguish true from false positives and 

detect rare alleles. However, in plants we can benefit from a combination of genome wide 

association and traditional linkage mapping (Brachi et al. 2010). GWA benefits from a high 

level of genetic variation resulting in high resolution but it has limiting power to detect rare 

alleles whereas linkage mapping in a RIL population has limited genetic variation, low 

resolution but high power to detect QTL. Combining the two approaches can be powerful 

to validate associations, increase power to detect rare alleles and reduce the number of 

candidate genes.  In our study we compared GWA in the core 360 HapMap population with 

traditional linkage mapping in the Bay-0 x Sha RIL population.  

The change from a seed to seedling marks an important phase transition with 

evolutionary importance (Barua et al. 2011). In order to optimize the chance of successful 

reproduction, seed germination must be timed accurately. This timing is determined by 

seed dormancy which is relying on signals received from the environment. Also genetic 

https://cynin.gmi.oeaw.ac.at/home/resources/atpolydb
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differences are detected for dormancy between several Arabidopsis ecotypes with the help 

of QTL analysis (Bentsink et al. 2010). Not only the timing of germination, but also the 

adaptation to particular environments is an important selection criterion. Therefore, the 

control of seed germination is a consequence of complex genome by environment 

interactions. Environmental factors such as light, temperature, nutrient availability and the 

duration of seed after-ripening generate integrated signals that interact with endogenous 

factors (Bewley 1997). These include the control of genes responsible for signaling 

pathways and metabolism of the hormones ABA and GA as well as cell wall weakening 

enzymes, the circadian clock and phytochrome-interacting factors, energy metabolism, 

reactive oxygen scavenging and many others (Penfield and King 2009). The role of many of 

these genes has not been elucidated thus far and additional research is required to improve 

our understanding of seed germination. Both traditional linkage mapping and genome wide 

association analysis are methods well suited to investigate the evolutionary important and 

complex adaptations important for seed germination and we believe that there is a clear 

advantage of using the combination of these methods for dissecting the molecular 

pathways influencing this trait. In this paper we describe the analysis of seed size and seed 

germination under optimal conditions, under salt (125 mM NaCl) and heat (30°C) stress. 

ABA is an important regulator of stress responses and germination. Therefore, we also 

tested the natural variation for sensitivity of seed germination for externally applied ABA.  

Results and Discussion 

Phenotyping the HapMap population for seed characteristics 

In Arabidopsis seed size differences can be the result of changes in e.g. seed coat 

thickness or embryo/cotyledon size. It might therefore be expected that a clear correlation 

exists between seed germination characteristics and seed size. However, several studies 

showed that this correlation is only observed for seedling growth and not present at the 

level of seed germination. The results of those studies can be biased because they were 

performed in recombinant inbred populations derived from only two genotypically 

different parents (Joosen et al. 2012; Kazmi et al. 2012; Khan et al. 2012).  GWA offers the 

unique possibility to assess this correlation in a much broader genotype perspective. Seed 

size was determined with the help of the free image analysis tool imageJ. Pictures that 

were taken during germination could directly be used to determine seed size of imbibed 

seeds. To test whether imbibed seed size reflects initial dry seed size we compared the size 

of dry mature seeds to the size from 12 hours imbibed seeds (Figure 7.1A). Apart from 

several outliers this showed a good correlation (r
2
 = 0.6917) for normal mucilage forming 

seeds (Figure 7.1B-D). Interestingly, a closer inspection of the outliers revealed that those 

seeds did not form a proper mucilage layer after imbibition (Figure 7.1E-J). A crippled 

mucilage formation may result in either slower imbibition leading to reduced seed swelling, 

or an imaging artifact caused by diffraction due the shiny mucilage layer surrounding the 
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imbibed seed. By using the outliers from the correlation between dry and imbibed seed size 

we were able to identify 6 natural mucilage mutants. Only one of them, Shahdara, has been 

described before as a natural mutant for the MUM2 protein (Macquet et al. 2007). The 

imbibed seed size measures were used for further genome wide association.  

 
Figure 7.1: Natural mucilage mutant 
detection with outliers of dry vs. imbibed 
seed size correlation (A). Normal mucilage 
formation in B: Col-0 (CS76113), C: ALL1-3 
(CS76090), D: LDV-34 (CS76162). Crippled 
mucilage formation in E: Lc-0 (CS76159), F: 
Eden-2 (CS76125), G: Sha (CS76227), H: 
Tad01 (CS76243), I: Var2-1 (CS76298), J: Lov-
5 (CS76175).   

 

 

 

 

 

 

 

 

 

 

Seed germination is the final output from a complex signaling cascade, which is 

heavily influenced by the environment. Freshly harvested Arabidopsis seeds are often not 

germinating when exposed to conditions optimal for germination. This phenomenon, called 

‘primary dormancy’, will substantially interfere when measuring germination performance. 

Primary dormancy is slowly released in time by a process commonly referred to as ‘after-

ripening’. Another dormancy breaking treatment is the application of a period of 4 days at 

4°C in the dark to imbibed seeds (‘cold stratification’). In this study we wanted to test seed 

performance and reduce the effect of primary dormancy as much as possible. Therefore we 

combined both dormancy breaking treatments. First we tested germination on water at 



Chapter 7 

132 

20°C with continuous light, which is considered to be the optimal condition for Arabidopsis 

seed germination (Toorop et al. 2005). Seed germination was monitored for 5 days and 

cumulative germination data was obtained with the use of the Germinator setup (Joosen et 

al. 2010).  The integration of the area under such cumulative germination curves (AUC) can 

efficiently summarize germination performance because it is affected by the rate, 

uniformity and maximum germination. To evaluate the ability of seeds to germinate under 

stress conditions we tested germination in the presence of 125 mM NaCl and germination 

at 30°C. Both salinity and heat tolerance can be regarded as important mechanisms for 

evolutionary adaptation and speciation. One of the plant hormones with major impact on 

seed germination and stress tolerance is abscisic acid (ABA). Applied ABA inhibits cell wall 

degrading enzymes often resulting in an incomplete protrusion of the radicle through the 

surrounding layers (Müller et al. 2006).  Further, the proper establishment of seedlings is 

often inhibited. In agreement with the other germination measures only complete radicle 

protrusion through the endosperm layer was scored as germination. The response to any of 

the applied stresses is expressed as the difference in the AUC between germination on 

water at 20°C and the AUC of the stressed seeds. A z-score transformation was applied to 

standardize the comparison between the harvests from consecutive years and blocks. 

Correlation analysis (Figure 7.2A) shows the quality of the replications between the two 

blocks and two successive years. In the response to NaCl (block I from year 1) one 

experiment resulted in a low correlation with the other replicates. When comparing the 

correlation between the different experiments (Figure 7.2B) a clear resemblance can be 

observed between germination under both stress conditions. This might indicate that the 

signaling cascade under both NaCl and heat stress comprises similar components. No clear 

correlation could be observed between seed size and germination performance which also 

confirms the previous reported lack of correlation in a much broader genetic perspective.  

 
Figure 7.2: Correlation analysis of replicated 
phenotype measurements in the HapMap 
population. A) correlation between 
replicated experiments (block I+II year 1+2). 
B) Correlation between the average values 
for each experiment. The false color scale 
represents the Pearson correlation 
coefficient. ISS = imbibed seed size, Water = 
AUC of germination at 20°C on water, NaCl = 
AUC of germination on 125 mM NaCl, Heat = 
AUC of germination at 30°C, ABA = AUC of 
germination on 0.5 µM ABA. 
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Phenotype-location correlation 

Local adaptation is the most convincing source of evidence for natural selection 

during evolution. The HapMap population used in this study provides very suitable material 

to study patterns in global distribution. Detailed information about the location of origin is 

available for all accessions and can be used for correlation analysis with the observed 

phenotypes. Here, we restricted the analysis to the correlation between phenotype and 

latitude or longitude.  

Table 7.1: Linear regression results comparing phenotype against latitude and longitude. Significant P values 
(p<0.001) are indicated in bold. ISS = imbibed seed size, Water = AUC of germination at 20°C on water, deltaNaCl = 
AUC of germination on water – AUC of germination on 125 mM NaCl, deltaHeat = AUC of germination on water – 
AUC of germination at 30°C, deltaABA = AUC of germination on water - AUC of germination on 0.5 µM ABA. 

 Latitude correlations Longitude correlations 

Trait Reg.coeff SE P value Reg.coeff SE P value 

ISS -1.5072      0.3309 7.29e-06 -1.0563 1.9017   0.579 

Water -0.4666      0.3540   0.188     -4.2548      1.9682   0.0313 

deltaNaCl -1.5980      0.3771   2.9e-05 -10.2908      2.0875   1.28e-06 

deltaHeat -1.6274      0.3500    4.75e-06 -7.4671      1.9744   1.83e-4 

deltaABA -0.3186      0.3569   0.373 -4.7036      1.9789   0.018 

 

Imbibed seed size, germination response to salt and germination response at high 

temperature show negative correlations with the latitude of the origin of the accessions. 

This indicates that accessions from the northern regions tend to have smaller seeds that 

withstand salt and heat stress better, as compared to the bigger seeds from the more 

southern regions. Germination on salt and high temperatures also show negative 

correlation with the longitude of the accessions origin, indicating that accessions from the 

eastern Eurasian regions withstand salt and heat stress better, as compared with the 

accessions from western Europe and US regions. For each trait a world map with positions 

of the accessions and a color coded phenotype ranking is presented in Figure 7.3B-Figure 

7.7B and discussed in more detail hereafter. More elaborate correlation analysis involving 

e.g. climatological data or soil composition might lead to a better ecological interpretation 

but is a future perspective. 

Genetic mapping 

A complicating factor in GWA is the presence of population structure. Although 

the population used in this study was especially selected to contain a low level of 

confounding structure it should still be taken into account. To allow proper correction an 

identity-by-state (IBS) matrix was calculated using 214051 SNP markers. Such an IBS matrix 

facilitates quality control of genomic data, e.g. plants with high IBS values indicate close 

relatedness. An advantage for plant geneticists is the possibility to control environmental 

variation by replicating experiments under strictly regulated conditions. This allows an 
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optimal evaluation of the present genetic variation for the traits under study. Calculating 

the trait heritability provides a good measure for the fraction of phenotype variation that 

can be attributed to genetic variation. Here, the broad sense heritability was calculated by 

taking the IBS matrix into account using the calculations provided by Kang et al. (2010) and 

MacKenzie and Hackett (2012). Overall trait heritability (Table 7.2) was high, indicating that 

a substantial part of the observed variation could be attributed to genetic variation. 

Table 7.2: Trait heritability scores for seed size and germination performance expressed by the deltaAUC, 
calculated from replicated experiments (two years with two blocks). 

Trait Heritability(H2) 

Imbibed seed size 0.673 

Germination on Water 0.628 

Germination response to 125 mM NaCl 0.431 

Germination response to high temperature (30°C) 0.553 

Germination response to 0.5 µM ABA 0.580 

Seedling establishment on 0.5 µM ABA 0.651 

 

These observed levels of heritability provide a good starting point for GWA. A 

modified version of the EMMAX procedure (Kang et al. 2010) was created using the open 

source statistics package R in combination with C++. Basically we used a mixed model that 

takes genetic similarity (using the IBS matrix) into account and which incorporates cofactors 

such as block or replicate effects in the analysis. Similar to EMMAX, p-values derived from 

our procedure might be affected by SNPs with rare alleles. Therefore a stringent cutoff of 

10% minor allele frequency (MAF) has been used throughout the analysis as has been used 

in simulations by (Kang et al. 2008).  

For each trait the genome wide association was calculated for both the year 1 and 

year 2 experiments separately as well as for the average of the two years. The observed 

variation between block and year replicates was taken into consideration. No significant 

SNPs were detected when applying a Bonferroni multiple testing correction, resulting in a 

threshold of –Log10 = 6.5 (p>0.05 / number of SNPs tested = 171.935). Therefore, only 

genomic positions with 2 or more SNPs with p-values above 4 (–log10) within an interval of 

20 kb in the average between year 1 and 2 were considered for further analysis. Given the 

fact that average linkage disequilibrium decays at 10 kb in Arabidopsis (Clark et al. 2007) we 

took a conservative interval of 20 kb to search for associated candidate genes. The high 

density genotyping with 250.000 SNPs results in an average 1 SNP for every 500 bp and can 

thus be expected to reflect haplotype structures. Therefore we considered single 

associated SNPs within a 20 kb interval more likely to be false-positive compared to those 

instances were multiple SNPs within the interval were found to be associated. 

Nevertheless, it remains cumbersome to distinguish true from false associations in GWA 

mapping.  

Brachi et al. (2010) have shown that a combination of traditional linkage mapping 

and association mapping can outperform each individual method. Recently, the Bay-0xSha 
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RIL population was extensively phenotyped for seed performance under a wide range of 

environmental conditions (Joosen et al. 2012). These results were compared with our GWA 

analysis by overlapping the 2LOD support intervals with the GWA results. All SNPs located 

in those intervals with a –log10 p-value > 4 in the average between year 1 and 2 were 

considered possible candidates. 

Seed size 

As shown in Figure 7.1A dry seed size correlated very well with imbibed seed size 

(r
2
=0.6917) except for six outliers for which we observed a deformed mucilage phenotype. 

Seed size varied considerably (almost doubled from smallest to largest seed) and despite a 

large maternal effect on seed size the trait heritability reached a level of 0.673. Linear 

regression revealed a trend for imbibed seed size and latitude, indicating that seeds from 

the northern regions are smaller compared to seeds from the southern regions (Table 7.1). 

Figure 7.3B shows the global distribution of all accessions used in this study colored 

according to their rank in seed size. From this figure it is obvious that European accessions 

are overrepresented in the HapMap population which implicates that the North-South 

correlation with seed size is mainly based on European distribution.  GWA (Figure 7.3C-E) 

was compared to QTL analysis in the Bay-0 x Sha RIL population (Figure 7.3F). However, in 

this population imbibed seed size yielded a single large QTL at the bottom of chromosome 

V. This is most probably caused by a mutation in the Sha allele of the mum2 gene which is 

involved in the modification of mucilage preventing its expansion after hydration (Dean et 

al. 2007). Considering the good correlation between dry and imbibed seed sizes in the GWA 

panel we used QTL analysis of dry seed size in Bay-0 x Sha to compare with the imbibed 

seed size in the GWA analysis. Table 7.3 shows selected candidate genes according to the 

aforementioned criteria (2 or more SNPs with –log10 p-values above 4 within an interval of 

20 kb in the average between year 1 and 2, or single SNPs with –log10 p-values above 4 

within an interval of 20 kb in the average between year 1 and 2 when overlapping with a 

Bay-0 x Sha QTL interval). 

Genes that influence seed size are expected to be expressed during seed 

development. A careful microdissection of developing seeds followed by transcriptome 

analysis was performed by Le et al. (2010) and can be queried via the Bio-Array Resource e-

northern facility (Toufighi et al. 2005). Expression levels of this transcriptome analysis that 

reached a level > 200 in any of the tissues during seed development are marked with (+) in 

Table 7.3. This might allow a more precise selection of the candidate gene within each 20 

kb interval. However, it should be noted that it only provides an overview of expression in 

the Columbia ecotype and might therefore lead to false negative interpretations for genes 

which lost their expression in Columbia. Three genes within the 20 kb interval on 

chromosome I exhibit expression during seed development (AT1G68580, AT1G68590 and 

AT1G68640). PERIANTHIA (PAN; AT1G68640) mutants are affected in their floral organ 

patterning and have a pentamerous pattern of 5 sepals, 5 petals 5 stamens, and 2 carpels 
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(Running and Meyerowitz 1996). This phenotype is not observed in the HapMap association 

panel and might thus indicate that a knock-down mutation for PERANTHIA is more common 

than complete knock-out mutations. PERIANTHIA has been shown to have overlapping 

functions with ULTRAPETALA and the CLAVATA signal transduction pathway in controlling 

shoot and floral meristem size and meristem determinacy (Fletcher 2001) and evolutionary 

diversification in this function cannot be ruled out.      

One of the most plausible candidate genes for the region below the association 

peak on chromosome V is ANGUSTIFOLIA (AN3; AT5G28640). ANGUSTIFOLIA is a 

transcription coactivator which interacts with the GROWTH-REGULATING FACTOR 1 (GRF1) 

transcription factor. Its function in the control of cell proliferation via cell cycle regulation 

has been well studied (Lee et al. 2009).   

 

Figure 7.3: Analysis of imbibed seed size. Panel A shows the z-score adjusted distribution of the average imbibed 
seed size measured in year 1 and 2 sorted from small to large over all 349 HapMap accessions. Error bars indicate 
the standard error. Global distribution of the accessions (ranked from large to small z-score values with indicated 
color code; blue = big seeds, red = small seeds) is shown in panel B. Genome wide association corrected for the IBS 
population structure (Year 1: C, Year 2: D, Average Year 1 and Year 2: E). SNPs with –log10 p-values > 4 are marked 
with red dots. Selected peaks for further analysis are indicated with numbers in panel E. Linkage mapping results 
for dry seed size in the Bay-0 x Sha RIL population are shown in panel F. Significance thresholds, determined by 
permutation (n=1000) are indicated with dashed lines (Red=85%, Blue=95%). Positions shaded in grey visualize the 
overlap of genome positions determined by the 2LOD drop of significant QTLs in the Bay-0 x Sha population. 

The AN3 mutant has reduced cell numbers of lateral organs, such as leaves and flowers as 

well as cotyledons and overexpression results in 20-30% increase in leaf size (Horiguchi et 

al. 2005). AN3 is well expressed during seed development but no effects on seed size were 

reported, to our knowledge. Confirmation of its influence on seed size can be studied using 

the available mutants and overexpression lines. With the ongoing sequence initiatives 

(www.1001genomes.org/) it will become feasible in the near future to evaluate neutral, 

http://www.1001genomes.org/
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nonsense and missense mutations present in the candidate genes in all the ecotypes used 

for association. Further research is required to confirm the involvement in seed size 

regulation of the candidate genes described in Table 7.3.  

Table 7.3: Candidate genes for variation in imbibed seed size selected from the GWA analysis. Peak numbers are 
shown in Figure 7.3E. All annotated (TAIR10) genes overlapping the selected 20 kb regions are presented. The 
column (Expr.) indicates whether expression reaches levels > 200 during seed development queried using the Bio-
Array Resource e-northern facility (Toufighi et al. 2005). 

Peak ID Symbol Description Expr. 

1 AT1G68580   Agenet domain-containing protein / bromo-adjacent homology (BAH) 
domain-containing protein 

+ 

1 AT1G68585   Unknown protein - 

1 AT1G68590   Ribosomal protein PSRP-3/Ycf65 + 

1 AT1G68600   Aluminium activated malate transporter family protein - 

1 AT1G68610 (PCR11) Target promoter of the male germline-specific transcription factor DUO1 - 

1 AT1G68620   Alpha/beta-Hydrolases superfamily protein - 

1 AT1G68630   PLAC8 family protein - 

1 AT1G68640 (PAN) Encodes bZIP-transcription factor. Mutant plants have extra floral organs. 
PAN is essential for AG activation in early flowers of short-day-grown plants 

+ 

2 AT3G42800   unknown protein - 

3 AT5G28640 (AN3) Encodes a protein with similarity to mammalian transcriptional coactivator, 
the gene is also shown to be involved in cell proliferation during leaf and 
flower development. Loss of function mutations have narrow, pointed 
leaves and narrow floral organs. AN3 interacts with members of the growth 
regulating factor (GRF) family of transcription factors 

+ 

3 AT5G28646 (WVD2) Encodes a novel protein. The wvd2 gain-of-function mutant has impaired 
cell expansion and root waving, and changed root skewing 

n.d. 

3 AT5G28650 (WRKY74) Member of WRKY Transcription Factor- group II-d - 

n.d. = not determined because probeset is not available for this gene on the AtH1 microarray 

Seed germination 

Germination was evaluated to test the optimal performance of a seed batch. Seed 

germination may be affected substantially by the primary dormancy level of a seed batch. 

To eliminate this effect as much as possible, seeds were after-ripened and perceived a cold 

stratification period. Seeds were germinated on excess water at 20°C with continuous light 

which can generally be considered optimal conditions for Arabidopsis germination (Toorop 

et al. 2005). It should be noted that these optimal conditions can vary considerably for the 

large range of genotypes tested. Only 23 accessions showed significantly less than 90% 

maximum germination after 5 days in the four replicates. However, large differences in 

both rate and uniformity of germination were observed. To take these factors into account 

the area under the germination curve (AUC) (Joosen et al. 2010) was used as a measure for 

seed performance (Figure 7.4). Heritability reached a level of 0.628 (Table 7.2). No clear 

trend could be observed in the global distribution of the accessions (Table 7.1, Figure 7.4B). 

QTL analysis of the AUC of seed germination from cold stratified after-ripened seeds from 
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the Bay-0 x Sha RIL population was used to compare with the GWA results (Figure 7.4F). 

Table 7.4 shows the selected candidate genes according to the aforementioned criteria. 

 

 

Figure 7.4: Analysis of seed germination on water at 20°C after 4 days of stratification. Panel A shows the z-score 
adjusted distribution of the average area under the germination curve (AUC) in year 1 and year 2 sorted from 
small to large over all 349 HapMap accessions. Error bars indicate the standard error. Global distribution of the 
accessions (ranked from large to small z-score values with indicated color code; blue = good germination, red = 
bad germination) is shown in panel B. Genome wide association corrected for the IBS population structure (Year 1: 
C, Year 2: D, Average Year 1 and Year 2: E). SNPs with –log10 p-values > 4 are marked with red dots. Selected 
peaks for further analysis are indicated with numbers in panel E. Linkage mapping results for seed germination on 
water at 20°C after 4 days of stratification in the Bay-0 x Sha RIL population are shown in panel F. Significance 
thresholds, determined by permutation (n=1000) are indicated with dashed lines (Red=85%, Blue=95%). Positions 
shaded in grey visualize the overlap of genome positions determined by the 2LOD drop of significant QTLs in the 
Bay-0 x Sha population. 

STRUBBELIG (SUB; AT1G11130, Table 7.4) also known as SCRAMBLED encodes a 

leucine-rich repeat transmembrane receptor-like kinase that is required for floral organ 

shape, the development of the outer integument of ovules, stem development and 

specification of epidermal root hairs (Yadav et al. 2008). The ovule phenotype of SUB 

mutants has been described in detail by Chevalier et al. (2005) who showed that it is 

variable, ranging from severely affected to normal and fertile ovules, and sensitive to 

ecotype background. A germination related phenotype has not been described yet but can 

be expected according to the ovule development phenotype. Expression analysis via the 

Bio-Array Resource e-northern facility (Toufighi et al. 2005) shows that NLM1 (AT4G19030) 

is highly expressed upon seed imbibition and shows light responsive expression. Further, it 

has been detected in a screen for PIF3 targets (Feng et al. 2008). Together this implies a 

role for NLM1 in the light responsive PIF3/DELLA coordinated GA-signaling with obvious 
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consequences for seed germination. More research is required to confirm the involvement 

in seed germination of the candidate genes described in Table 7.4. 

Table 7.4: Candidate genes for variation in seed germination selected from the GWA analysis. Peak numbers are 
shown in Figure 7.4E. All annotated (TAIR10) genes overlapping the selected 20 kb region are presented. The 
column (Expr.) indicates whether expression reaches levels > 200 during seed germination queried using the Bio-
Array Resource e-northern facility (Toufighi et al. 2005). 

Peak ID Symbol Description Expr. 

1 AT1G11120   Unknown protein n.d. 

1 AT1G11125   Unknown protein - 

1 AT1G11130 (SUB) Encodes a receptor-like kinase. Regulates expression of GLABRA2, CAPRICE, 
WEREWOLF, and ENHANCER OF GLABRA 

- 

1 AT1G11145   Protein of unknown function (DUF674) n.d. 

2 AT3G42310   Unknown protein - 

3 AT4G19000  (IWS2) The C-terminal portion of this protein has homology to the C-termini of the 
IWS1 (Interacts With Spt6) proteins found in yeast and humans 

- 

3 AT4G19003  (VPS25) VPS25 n.d. 

3 AT4G19006   Proteasome component (PCI) domain protein n.d. 

3 AT4G19010   AMP-dependent synthetase and ligase family protein - 

3 AT4G19020 (CMT2) Chromomethylase 2 (CMT2) n.d. 

3 AT4G19030 (NLM1) An aquaporin whose expression level is reduced by ABA, NaCl, dark, and 
dessication. Is expressed at relatively low levels under normal conditions. Also 
functions in arsenite transport and tolerance 

+ 

n.d. = not determined because probe set is not available for this gene on the AtH1 microarray 

Germination on Salt 

GWA is expected to be particularly powerful for traits that require evolutionary 

adaptation to environmental conditions. Plant salinity tolerance can be regarded as such 

and has been intensively studied (Munns and Tester 2008). A clear association peak was 

detected in a recent study focusing on leaf Na
+
 accumulation in Arabidopsis (Baxter et al. 

2010). The peak overlapped the AtHKT1:1 gene (AT4G10310), a Na
+
 transporter which was 

shown to be responsible for salt tolerance. They also observed a clear overrepresentation 

of salt tolerant plants growing in coastal regions and on saline soils which suggests 

adaptation to the elevated salinity of their local environment. We studied salt tolerance by 

scoring seed germinating in the presence of 125 mM NaCl. Maximum germination was 

severely affected when compared to germination on water resulting in a normally 

distributed germination range between 0 and 93%. Heritability reached a level of 0.431 

(Table 7.2). A negative correlation with both latitude and longitude was observed (Table 

7.1) which indicates that accessions from the north-eastern regions outperform accessions 

from the south-western regions (Figure 7.5B). A more detailed correlation study accounting 

for e.g. coastal regions and saline soils is needed to gain better understanding of the 

ecological implications of this observation. Several SNPs showed clear association but the 

expected candidate AtHKT1:1 was not identified. However, expression analysis via the Bio-
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Array Resource e-northern facility (Toufighi et al. 2005) shows that AtHKT1:1 is mainly 

expressed in roots and flowers and no expression is detected in seeds. This tissue specificity 

may indicate that other genes are responsible for salt tolerance adaptation during seed 

germination. 

 

Figure 7.5: Analysis of seed germination on 125 mM NaCl at 20°C after 4 days of stratification. Panel A shows the z-
score adjusted distribution of the average delta (water-NaCl) area under the germination curve (AUC) in year 1 
and year 2 sorted from small to large over all 349 HapMap accessions. Error bars indicate the standard error. 
Global distribution of the accessions (ranked from small to large z-score values with indicated color code; blue = 
good germination on NaCl, red = bad germination on NaCl) is shown in panel B. Genome wide association 
corrected for the IBS population structure (Year 1: C, Year 2: D, Average Year 1 and Year 2: E). SNPs with –log10 p-
values > 4 are marked with red dots. Selected peaks for further analysis are indicated with numbers in panel E. 
Linkage mapping results for seed germination on 125 mM NaCl at 20°C after 4 days of stratification in the Bay-0 x 
Sha RIL population are shown in panel F. Significance thresholds, determined by permutation (n=1000) are 
indicated with dashed lines (Red=85%, Blue=95%). Positions shaded in grey visualize the overlap of genome 
positions determined by the 2LOD drop of significant QTLs in the Bay-0 x Sha population. 

The large number of significant SNPs around peak 1 results in an interval that 

contains 27 genes, peak number two only matched transposable elements. Several of the 

identified genes are highly expressed in either developing and/or germinating seeds and 

based on their annotation some of those can easily be regarded as potential causal 

candidates for the salt-tolerance phenotype. The unknown protein At1G19530 is a plasma-

membrane associated protein that is upregulated by a repressor of GA (unpublished 

annotation detail; TAIR). GA is a major regulator of seed germination. Excess of NaCl can 

induce oxidative stress and a role for genes involved in the detoxification of reactive oxygen 

species can therefore be hypothesized (AT1G19550, AT1G19570, AT2G22420, AT2G15620). 

AtHB6 (AT2G22430) encodes a homeodomain leucine zipper class I (HD-Zip I) protein that is 

a target of the protein phosphatase ABI1 and is a negative regulator of the ABA signaling 

pathway (Himmelbach et al. 2002). An extensive survey of gene expression during abiotic 
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stress was performed by Kilian et al. (2007). This data can be accessed via the Bio-Array 

Resource e-northern facility (Toufighi et al. 2005). Three of our candidate genes showed 

clear upregulation during salt stress in the Kilian dataset (AT1G19550, AT1G19570 and 

AT2G22430). Further research is required to confirm the involvement in salt tolerance of 

the candidate genes described in Table 7.5. 

Table 7.5: Candidate genes for variation in seed germination on 125 mM NaCl selected from the GWA analysis. 
Peak numbers are shown in Figure 7.5. All annotated (TAIR10) genes overlapping the selected 20 kb region are 
presented. The column (Expr.) indicates whether expression increased during salt stress queried using the Bio-
Array Resource e-northern facility (Toufighi et al. 2005). 

Peak ID Symbol Description Expr. 

1 AT1G19464 MIR864A Encodes a microRNA of unknown function n.d. 

1 AT1G19470   Galactose oxidase/kelch repeat superfamily protein - 

1 AT1G19480   DNA glycosylase superfamily protein - 

1 AT1G19485   Transducin/WD40 repeat-like superfamily protein - 

1 AT1G19490   Basic-leucine zipper (bZIP) transcription factor family protein n.d. 

1 AT1G19500   Unknown protein - 

1 AT1G19510 (RL5) RAD-like 5 (RL5) - 

1 AT1G19520 (NFD5) NUCLEAR FUSION DEFECTIVE 5 (NFD5) - 

1 AT1G19530   Unknown protein - 

1 AT1G19540   NmrA-like negative transcriptional regulator  - 

1 AT1G19550   Glutathione S-transferase family protein + 

1 AT1G19560   Pseudogene, putative CHP-rich zinc finger  n.d. 

1 AT1G19570 (DHAR1) Encodes a member of the dehydroascorbate reductase gene 
family 

+ 

1 AT1G19580 (GAMMA CA1) Encodes mitochondrial gamma carbonic anhydrase - 

1 AT1G19600   PfkB-like carbohydrate kinase family protein - 

1 AT1G19610  (PDF1.4) Predicted to encode a PR (pathogenesis-related protein)  - 

1 AT1G19620   Unknown protein - 

1 AT1G19630 (CYP722A1) Member of CYP722A - 

1 AT1G19640 (JMT) Encodes a S-adenosyl-L-methionine: jasmonic acid carboxyl 
methyltransferase 

- 

1 AT1G19650   Sec14p-like phosphatidylinositol transfer family protein  - 

1 AT1G19660   Wound-responsive family protein - 

1 AT1G19680   RING/U-box superfamily protein - 

1 AT1G19690   NAD(P)-binding Rossmann-fold superfamily  - 

1 AT1G19700 (BEL10) Encodes a member of the BEL family of homeodomain 
proteins 

- 

1 AT1G19710   UDP-Glycosyltransferase superfamily protein - 

1 AT1G19715   Mannose-binding lectin superfamily protein - 

1 AT1G19720   Pentatricopeptide repeat (PPR-like) superfamily  n.d. 

3 AT1G43766   Pseudogene, putative phosphofructokinase beta subunit n.d. 

3 AT1G43770   RING/FYVE/PHD zinc finger superfamily protein - 



Chapter 7 

142 

Peak ID Symbol Description Expr. 

4 AT2G04630  (NRPB6B) Subunit of nuclear DNA-dependent RNA polymerases II and V - 

4 AT2G04650   ADP-glucose pyrophosphorylase family protein - 

4 AT2G04660 (APC2) Ubiquitin-protein ligase involved in cell cycle regulation - 

5 AT2G15620 (NIR1) Involved in the second step of nitrate assimilation - 

5 AT2G15630   Pentatricopeptide repeat (PPR) superfamily  - 

5 AT2G15640   F-box family protein - 

5 AT2G15670   Best Arabidopsis thaliana protein match is: SEC14 cytosolic 
factor family protein 

- 

6 AT2G22420   Peroxidase superfamily protein - 

6 AT2G22425   Microsomal signal peptidase 12 kDa subunit (SPC12) - 

6 AT2G22426   Unknown protein n.d. 

6 AT2G22430 (HB6) Encodes a homeodomain leucine zipper class I (HD-Zip I)  + 

6 AT2G22440   Matches Ribonuclease H-like superfamily  - 

n.d. = not determined because probe set is not available for this gene on the ATH1 microarray 

Germination at high temperature 

An increase in global temperatures has made heat stress an increasing problem in 

agriculture. It affects plant growth and development and may lead to a drastic reduction in 

economic yield. Heat stress affects plant growth throughout its ontogeny. Depending on 

the duration and intensity it might slow down or totally inhibit germination. Plants have 

developed an array of mechanisms to cope with heat stress, including maintenance of 

membrane stability, scavenging of reactive oxygen species (ROS), production of 

antioxidants, accumulation and adjustment of compatible solutes, induction of mitogen-

activated protein kinase (MAPK) and calcium-dependent protein kinase (CDPK) cascades, 

and chaperone signaling and transcriptional activation (Wahid et al. 2007). We studied heat 

tolerance by germinating seeds at a constant temperature of 30°C (Figure 7.6). Maximum 

germination was severely affected when compared to germination at 20°C and resulted in a 

normally distributed germination range between 0 and 99%. Heritability reached a level of 

0.553. A negative correlation with both latitude and longitude was observed (Table 7.1) 

which indicates that accessions from the north-eastern regions outperform accessions from 

the south-western regions (Figure 7.6B). Surprisingly, most heat tolerant ecotypes were 

found in the colder northern regions whereas the heat sensitive ecotypes were found in 

the warmer southern regions. However, from an ecological point of view this might be 

explained by considering the expected length and intensity of the heat stress. In the 

northern regions, 30°C can be a positive trigger because it can be regarded as an extreme 

temperature which indicates the presence of a mild summer with regular rainfall and good 

opportunities for plant survival and reproduction. Contrarily, in the southern regions 30°C 

can serve as a warning message because it indicates a long hot and dry summer with low 

probability for plant survival and reproduction.  
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Figure 7.6: Analysis of seed germination at 30°C after 4 days of stratification. Panel A shows the z-score adjusted 
distribution of the average delta (water-30°C heat) area under the germination curve (AUC) in year 1 and year 2 
sorted from small to large over all 349 HapMap accessions. Error bars indicate the standard error. Global 
distribution of the accessions (ranked from small to large z-score values with indicated color code; blue = good 
germination at 30°C, red = bad germination at 30°C) is shown in panel B. Genome wide association corrected for 
the IBS population structure (Year 1: C, Year 2: D, Average Year 1 and Year 2: E). SNPs with –log10 p-values > 4 are 
marked with red dots. Selected peaks for further analysis are indicated with numbers in panel E. Linkage mapping 
results for seed germination at 30°C after 4 days of stratification in the Bay-0 x Sha RIL population are shown in 
panel F. Significance thresholds, determined by permutation (n=1000) are indicated with dashed lines (Red=85%, 
Blue=95%). Positions shaded in grey visualize the overlap of genome positions determined by the 2LOD drop of 
significant QTLs in the Bay-0 x Sha population. 

Plants cope with heat stress via a broad range of molecular mechanisms. This 

makes it difficult to prioritize the genes listed in Table 7.6. However, several genes 

specifically involved in response to stress conditions can be recognized. BAM3 (AT4G17090) 

encodes a beta-amylase targeted to the chloroplast. Starch hydrolysis was correlated with 

maltose accumulation during cold shock and increased expression of BAM3 (Sicher 2011). 

Genes involved in scavenging of ROS and production of antioxidants (PMSR2; AT5G07460, 

PMSR3; AT5G07470 and KUOX1; AT5G07480) can be regarded as important candidates 

regarding heat stress tolerance. SMC6A (AT5G07660) encodes for a component of the 

SMC5/6 complex. SMC5/6 complex promotes sister chromatid alignment and homologous 

recombination after DNA damage. SMC5 has been characterized to be essential for proper 

seed development (Watanabe et al. 2009). None of the genes showed increased expression 

during the heat stress experiments performed by Kilian et al. (2007) but several of the 

genes are highly expressed during seed germination as indicated in Table 7.6.  
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Table 7.6: Candidate genes for variation in seed germination at 30°C selected from the GWA analysis. Peak 
numbers are shown in Figure 7.6. All annotated (TAIR10) genes overlapping the selected 20 kb region are 
presented. The column (Expr.) indicates whether expression reaches levels > 200 during seed germination queried 
using the Bio-Array Resource e-northern facility (Toufighi et al. 2005). 

Peak ID Symbol Description Expr. 

1 AT1G29300 (UNE1) Unfertilized embryo sac 1 (UNE1) n.d. 

1 AT1G29310   SecY protein transport family protein + 

1 AT1G29320   Transducin/WD40 repeat-like superfamily protein n.d. 

1 AT1G29330 (AERD2) Similar to endoplasmic reticulum retention signal receptor + 

1 AT1G29340 (PUB17) Has E3 ubiquitin ligase activity + 

2 AT2G36960 (TKI1) Arabidopsis thaliana myb/SANT domain protein + 

2 AT2G36970   UDP-Glycosyltransferase superfamily protein + 

2 AT2G36980   Tetratricopeptide repeat (TPR)-like superfamily protein - 

2 AT2G36985 (ROT4) Encodes ROTUNDIFOLIA4 n.d. 

2 AT2G36990 (SIGF) Encodes a general sigma factor in chloroplasts  - 

2 AT2G37010 (NAP12) Member of NAP subfamily - 

2 AT2G37020   Translin family protein + 

2 AT2G37025 (TRFL8) TRF-like 8 (TRFL8) n.d. 

2 AT2G37030   SAUR-like auxin-responsive protein family - 

3 AT4G10780   LRR and NB-ARC domains-containing disease resistance protein - 

3 AT4G10790   UBX domain-containing protein + 

3 AT4G10800   Best match is: BTB/POZ domain-containing protein - 

3 AT4G10810   Unknown protein + 

3 AT4G10820   F-box family protein - 

3 AT4G10840   Tetratricopeptide repeat (TPR)-like superfamily protein + 

4 AT4G17070   peptidyl-prolyl cis-trans isomerases - 

4 AT4G17080   Histone H3 K4-specific methyltransferase SET7/9 family protein - 

4 AT4G17090 (BAM3) Encodes a beta-amylase targeted to the chloroplast - 

4 AT4G17098   Natural antisense gene, locus overlaps with AT4G17100 n.d. 

4 AT4G17100   Unknown protein n.d. 

5 AT5G07450 (CYCP4;3) Cyclin p4;3 (CYCP4;3) - 

5 AT5G07460 (PMSR2) Ubiquitous enzyme that repairs oxidatively damaged proteins + 

5 AT5G07470 (PMSR3) Ubiquitous enzyme that repairs oxidatively damaged proteins + 

5 AT5G07480 (KUOX1) KAR-UP oxidoreductase 1 (KUOX1) - 

5 AT5G07490   Unknown protein n.d. 

5 AT5G07510 (GRP14) Encodes a glycine-rich protein - 

5 AT5G07630   Lipid transporters - 

5 AT5G07640   RING/U-box superfamily protein - 

5 AT5G07650   Actin-binding FH2 protein n.d. 

5 AT5G07660 (SMC6A) Encodes SMC6A (STRUCTURAL MAINTENANCE OF CHROMOSOMES ) - 

5 AT5G07670   RNI-like superfamily protein n.d. 

5 AT5G07680 (NAC080) NAC domain containing protein 80 (NAC080) - 

n.d. = not determined because probe set is not available for this gene on the ATH1 microarray 
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Germination response to exogenous ABA 

Abscisic acid (ABA) is a phytohormone which is a positive regulator of seed 

dormancy; it inhibits seed germination and has a role during after-ripening (Kucera et al. 

2005). Seed germination requires that the growth potential of the radicle overcomes the 

tissue resistance of the seed covering layers. In Arabidopsis and many other species testa 

rupture and endosperm rupture are two sequential steps during germination (Müller et al. 

2006). ABA sensitivity depends on genotype and seed age and a range of phenotypes might 

be observed. Externally applied ABA can either completely inhibit germination, prevent 

radicle protrusion through the endosperm or inhibit seedling greening and growth. We 

studied response to ABA by germinating seeds in the presence of 0.5 µM ABA. Maximum 

germination was severely affected when compared to germination at 20°C resulting in a 

normally distributed germination range between 0 and 99%. Heritability reached a level of 

0.58. No clear trend could be observed in the global distribution of the accessions (Table 

7.1, Figure 7.7B). 

 

Figure 7.7: Analysis of seed germination on 0.5 µM ABA after 4 days of stratification. Panel A shows the z-score 
adjusted distribution of the average delta (water-ABA) area under the germination curve (AUC) in year 1 and year 
2 sorted from small to large over all 349 HapMap accessions. Error bars indicate the standard error. Global 
distribution of the accessions (ranked from small to large z-score values with indicated color code; blue = good 
germination on ABA, red = bad germination on ABA) is shown in panel B. Genome wide association corrected for 
the IBS population structure (Year 1: C, Year 2: D, Average Year 1 and Year 2: E). SNPs with –log10 p-values > 4 are 
marked with red dots. Selected peaks for further analysis are indicated with numbers in panel E. Linkage mapping 
results for seed germination on 0.5 µM ABA after 4 days of stratification in the Bay-0 x Sha RIL population are 
shown in panel F. Significance thresholds, determined by permutation (n=1000) are indicated with dashed lines 
(Red=85%, Blue=95%). Positions shaded in grey visualize the overlap of genome positions determined by the 2LOD 
drop of significant QTLs in the Bay-0 x Sha population. 
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Despite the high heritability and the association of several SNPs only two peaks 

met our selection criteria (2 or more SNPs with –log10 p-values > 4 within an interval of 20 

kb in the average between year 1 and 2, or single SNPs with –log10 p-values above 4 within 

an interval of 20 kb in the average between year 1 and 2 when overlapping with a Bay-0 x 

Sha QTL interval). GH9B6 (AT1G23210, Table 7.7) encodes a glycosyl hydrolase and might 

be involved in cell wall hydrolysis upon germination but it should be noted that expression 

analysis using the Bio-Array Resource e-northern facility (Toufighi et al. 2005) shows a very 

specific pollen expression of GH9B6 without any expression during seed germination. The 

dynein light chain type 1 family protein is part of a microtubule associated complex and is 

annotated to be involved in the catalysis of movement along a microtubule. AtOPT7 

(AT4G10770) is expressed in the embryonic cotyledons prior to root radicle emergence and 

is suggested to have distinct cellular roles including nitrogen mobilization during 

germination and senescence,  ovule development, seed formation and metal transport 

(Stacey et al. 2006). None of the possible candidate genes mentioned in table 7 was 

previously shown to be affected by ABA. 

Table 7.7: Candidate genes for variation in seed germination on 0.5 µM ABA selected from the GWA analysis. Peak 
numbers are shown in Figure 7.7. All annotated (TAIR10) genes overlapping the selected 20 kb region are 
presented. The column (Expr.) indicates whether expression reaches levels > 200 during seed germination queried 
using the Bio-Array Resource e-northern facility (Toufighi et al. 2005). 

Peak ID Symbol Description Expr. 

1 AT1G23205   Plant invertase/pectin methylesterase inhibitor superfamily protein - 

1 AT1G23210 (GH9B6) Glycosyl hydrolase 9B6 (GH9B6) - 

1 AT1G23220   Dynein light chain type 1 family protein + 

1 AT1G23230   CONTAINS InterPro DOMAIN/s - 

2 AT4G10767 (SCRL21) Member of a family of small, secreted, cysteine rich proteins n.d. 

2 AT4G10770 (OPT7) Oligopeptide transporter + 

2 AT4G10780   LRR and NB-ARC domains-containing disease resistance protein - 

2 AT4G10790   UBX domain-containing protein + 

2 AT4G10800   Best match is: BTB/POZ domain-containing protein - 

n.d. = not determined because probeset is not available for this gene on the ATH1 microarray 

Conclusions 

We tested seed germination related traits and compared GWA results with 

conventional mapping in the Bay-0 x Sha RIL population. Phenotyping of such a diverse 

panel of accessions resulted in several interesting observations. For example, we 

discovered 5 new mucilage mutants as being outliers in the correlation between imbibed 

and dry seed size and we noticed that accessions from the northern regions were less 

affected by high temperatures compared to accessions from the southern regions. 

Phenotypes were accurately assessed by using 4 replicates (2 years, 2 blocks) and high 

heritability scores (ranging from 0.431 to 0.673) were obtained. In a large and well-defined 



GWAS for seed traits 

 147 

population such as the core360 HapMap in which the population structure has been 

minimized one would expect enough power to efficiently map genetic variation for traits 

expressing such levels of genetic variation. Despite the high heritability scores we must 

conclude that none of the traits resulted in clear association with –log10 p-values above 

the Bonferroni multiple test corrected threshold of 6.5. Seed germination is a crucial step in 

the life cycle and the involved loci might be under strong evolutionary selection as they are 

of great relevance for adaptation to new locations (Huang et al. 2010). Contrarily, due to 

the importance of seed germination, a robust system is needed in which many loci with 

small additive effects determine the final output. Genome wide association can easily be 

underpowered to efficiently detect such relatively small effect loci. Effects are bigger in 

structured biparental populations but such populations will also lack genetic variation for 

many loci. Combining GWA analysis and traditional linkage mapping can be an efficient 

approach to validate associations, increase power to detect rare alleles and reduce the 

number of candidate genes (Brachi et al. 2010). However, no clear peaks of multiple 

associated SNPs in the GWA co-located with any of the QTL intervals detected in the Bay-0 

x Sha RIL population. New RIL populations created from extreme ecotypes discovered in 

our HapMap phenotyping could be an interesting lead for further research. In conclusion, 

genome wide association is a promising tool to dissect natural genetic variation but it needs 

further development of the procedures of analysis and population definition to overcome 

the lack of power encountered and described in this paper.  

Materials and methods 

Mapping population 

The Arabidopsis population used in this study is composed of a selection of 360 

accessions (Li et al. 2010) and were obtained via the Arabidopsis Biological Resource 

Centre. Large differences in flowering time exist within this population which might affect 

the conditions during seed maturation.  To reduce the effect of flowering time all plants 

were vernalized (5°C, 16 hour day) for 8 weeks before transferring them to the greenhouse.  

This resulted in a uniform start of flowering restricted to a period of 2 weeks. All available 

accessions (349) were grown in duplicate in two blocks for two consecutive years. Plants 

were randomly distributed in two blocks of two plants per accession. Seeds were harvested 

after complete maturation on the plant and bulked for each block. Two growth seasons 

(2010 and 2011) were used with the same setup as described above but with a different 

growing substrate. In season 2010 fertilized soil was used while in season 2011 rockwool 

plugs fertilized with 1 g/l Hyponex was used.  
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Germination experiments 

Germination experiments were performed by using the Germinator setup. Seeds 

were after-ripened at ambient laboratory conditions (~30 RH%, 20°C); seeds from harvest 

year 1 for 7 months and seeds from harvest year 2 for 6 months. A cold stratification period 

of 4 days at 4°C in the dark was applied before transferring the trays to the germination 

incubator (20°C, continuous light). A temperature of 30°C was used for ‘heat’-germination. 

Salt stress was applied by replacing the water by a 125 mM NaCl (Sigma Aldrich, #S-3014) 

solution. ABA (Duchefa Biochemie, A0941) was initially dissolved in a few drops of 1N NaOH 

from which stock solutions were prepared in 10 mM MES buffer, pH 5.9. ABA was used at a 

final concentration of 0.5 µM. All germination tests were performed in a fully randomized 

setup. Averages were calculated and corrected for their proper control.  

Seed size measurements 

Dry seed size was determined by taking close-up photographs from ~100-200 

seeds using a Nikon D80 camera with a 50mm Macro objective. Imbibed seed size was 

extracted from the first images acquired within the Germinator setup (100-200 seeds). The 

photographs were analyzed using the open source image analysis suite ImageJ 

(http://rsbweb.nih.gov/ij/) by using color-thresholds combined with particle analysis 

(Joosen et al. 2010). 

GWA mapping 

Genome wide association mapping was performed using a custom R-script and C+ 

program (ScanGLS) which was tailored to perform analysis on replicated phenotype 

measurements. The used procedure including the construction of the IBS matrix exactly 

follows the procedure described by Kang et al. (2010). All scripts will be implemented at the 

x-QTL workbench (www.xqtl.org).   

 

 

 

 

 

 

 

The mouth who ate the seeds asks; “Now what shall I plant?”  
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Seed Quality 

Seed quality is a collective term for the condition of a seed batch, comprising 

attributes such as genetic and physical purity, viability, germination, dormancy, vigor, 

storability, uniformity in size, freedom from seedborne diseases and absence of mechanical 

damage, heat damage and preharvest sprouting. The practical definition of seed quality can 

differ, depending on the end user. A farmer or plant grower may desire high-quality seed 

that produces rapidly growing plants of uniform size, with high yielding capacity under a 

wide range of field conditions, whereas a producer of oil seed crop may desire seed with a 

certain stable fatty acid composition. Since seed quality is such a complex ‘trait’, testing is 

in many cases at best an ‘educated guess’ to predict behavior in the field. In addition, seed 

producers have redefined the term ‘seed quality’ to include important attributes, such as 

‘usable plants’ and ‘seedling and crop establishment’, whereas the traditional notion of 

seed quality is predominantly seed-centered, e.g. related to germination or storability. This 

poses important questions, such as: how is seedling- or plantlet performance established 

during seed development or dependent on germination/growth conditions? Furthermore, 

any study of seed quality must be aware of the fact that changes in seed performance may 

occur during dry storage, even under the most optimal conditions. 

Seed quality is largely acquired during seed development and mainly during the 

maturation phase. The resulting performance of the seed is a function of the complex 

interaction between the genome and environment during development. Thus, quality of 

seed lots, as they are received by seed companies, often from locations all over the world, 

vary among regions and production seasons and years. In the present seed production 

practice the emphasis is on harvest timing and methods and post-harvest treatments since 

it is difficult to influence the production environment, even under greenhouse conditions 

where the outside climate also has it influences on the environment. Moreover, the effect 

of the environment on seed quality is largely unknown. So far, genetic components of seed 

quality have hardly been used in breeding programs. Some quantitative trait loci (QTLs) 

related to germination, storability and stress tolerance have been found in Arabidopsis and 

General discussion  
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tomato (Foolad et al. 2003; Clerkx et al. 2004; Kazmi et al. 2012) but a systematic study of 

the genetics of seed quality is lacking.  

With current technological advances it has become possible to combine 

quantitative genetics with genomics. In our study we aimed at an integration of genetics 

with detailed phenotyping at the physiological, metabolomic and genomic level. If genes, or 

rather gene sets, associated with seed quality parameters become available, they may be 

used as diagnostic tools to assess seed quality, in marker-assisted breeding, or for genetic 

modification to enhance seed quality.  

Development of a new toolbox was needed to enable high-throughput 

characterization of the genetics of seed performance. First a method was developed to 

allow automatic scoring of seed germination (Chapter 2). With the use of this method a 

broad range of environmental conditions was screened to identify QTLs for germination 

capacity (Chapter 3). New diagrams were developed for the MapMan tool to allow 

combined analysis of gene expression and metabolite fluctuations with a focused view on 

molecular processes related to seed dormancy and germination (Chapter 4). This was 

followed by large-scale QTL analysis and efficient environmental perturbation in genetical 

genomics experiments, new analysis scripts to allow data-analysis are developed and 

described (Chapter 5 and 6). The metabolome and gene-expression study was restricted to 

dry mature seeds (dormant and non-dormant), 6-hour imbibed seeds and seeds at the 

moment of radicle protrusion. Recently, the expression QTL landscape of developing seeds 

has been described in the same RIL population as in the present study (Cubillos et al. 2012). 

An integration of both datasets is now possible and is highly recommended for future 

research. Finally we assessed the possibilities to use genome wide association to dissect the 

genetics of seed performance and compared the obtained results to QTLs that were 

detected in the Bay-0 x Sha RIL population (Chapter 7). 

Measuring seed germination 

An important instrument to assess the performance of a seed lot is the accurate 

quantification of germination by collecting cumulative germination data. Completion of 

germination is defined as the protrusion of the radicle through the endosperm and seed 

coat (Bewley 1997). We have created a high resolution time-lapse movie of this process 

which was published at the Arabidopsis Information Resource (www.arabidopsis.org). For 

accurate scoring of seed germination a careful discrimination should be made between the 

moment of testa and subsequent endosperm rupture because the intermittent lag phase 

may vary among germination conditions and treatments (Liu et al. 2005; Finch-Savage and 

Leubner-Metzger 2006; Müller et al. 2006). Although commonly used, the total percent 

germination after a nominated period of time is not very explanatory. It lacks information 

about start, rate and uniformity of germination, which are essential parameters of a 

normally distributed seed population for many traits such as dormancy, stress tolerance 

and seed aging. Information about germination at various time intervals is required to 

http://www.arabidopsis.org/
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calculate a cumulative germination curve, but the number of samples that can be handled 

with manual counting is usually a limiting factor. Therefore, we have developed the 

Germinator system, an automated procedure that enables high-throughput germination 

screening (Chapter 2, Joosen et al. 2010). Many experiments described in this thesis 

(Chapter 3 and 7) have relied heavily on high-throughput characterization of seed 

germination and would not have been possible without the use of the Germinator. The 

system was optimized for use with Arabidopsis seeds but it can be used for other species as 

well: optimization for tomato, Brassica and lettuce is currently under development. The 

system was complemented with a high-throughput module for analyzing cumulative 

germination curves. The use of this curve-fitting module is not restricted to any species and 

has been supplied to over 300 researchers from various universities and commercial seed 

companies all over the world. Further extensions using a similar approach, but with a more 

advanced image analysis algorithm called ‘expectation maximization’ are now in 

development. This new procedure has the potential to detect both germination sensu 

stricto and the development of green cotelydons. Developmental arrest after germination 

is an important seed quality characteristic and simultaneous detection of both parameters 

will allow a more precise description of the performance potential of a seed batch.  

Using natural variation 

Two approaches are used to study natural variation present for seed performance 

(Chapter 3 and Chapter 7). We first used a recombinant inbred line (RIL) population derived 

from two distinct Arabidopsis thaliana ecotypes: Bayreuth (Bay-0) which originates from a 

fallow land habitat in Germany and Shahdara (Sha) which grows at high altitude in the 

Pamiro-Alay mountains in Tadjikistan (Loudet et al. 2002). The Sha parent has successfully 

adapted to the harsh environment which it encountered in Tadjikistan and is often found to 

be remarkably stress tolerant. With the use of the Germinator system, germination sensu 

stricto was determined under a wide range of environmental conditions. In total this 

analysis resulted in 327 trait scores over several different harvests. Evaluation of these high 

numbers of phenotypes demanded methods of QTL analysis that extended beyond 

individual trait mapping and that allows comprehensive and comprehensible visualization. 

Analysis of loci with genetic variation can efficiently be done using the statistical language R 

which includes the R/qtl package  (Broman et al. 2003). This package contains an array of 

different QTL mapping methods, including Single Marker Mapping, Interval Mapping and 

Multiple QTL Mapping (MQM) (Arends et al. 2010). Although all possibilities to perform a 

detailed QTL analysis including data preprocessing and output formatting are present in R, 

it requires extensive knowledge of the R-syntax to combine all necessary steps in a single 

analysis protocol that can loop through hundreds or thousands of traits. We created a 

script that combined all these necessary steps and that can perform automated QTL 

mapping including the necessary data preprocessing and output formatting (Chapter 3, 

Joosen et al. 2012). This type of automated analysis combined with efficient data 
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visualization is a necessary step to keep up with the ever increasing rate of biological data 

production. 

The detailed phenotyping of such a wide range of seed germination characteristics 

has yielded a comprehensive inventory of loci with genetic variation. This ‘genetic 

landscape of seed performance’ not only provides information about the various QTL 

positions (G) but also about the interaction between loci (GxG) and between loci and the 

environment (GxE). Many QTLs showed overlap with previously reported loci in either the 

same or different RIL populations. Confirmation of some major QTL hotspots was 

demonstrated using the heterogenous inbred family (HIF) approach (Tuinstra et al. 1997). 

However, examples of clear causality are sparse and QTL intervals often span large genomic 

regions that can easily contain up to 1000 annotated genes. Refining the QTL intervals by 

classical fine mapping procedures is labor intensive and should be regarded as a low 

throughput technique. Therefore, alternative procedures to obtain insight in the molecular 

processes underlying the detected QTLs were studied. 

The ultimate mapping population to explore the comprehensive reservoir of 

natural variation consists of a worldwide collection of accessions. In our study in Chapter 7 

we used the Arabidopsis HapMap population, which is an assembly of the most diverse 360 

accessions found worldwide (Li et al. 2010). The low level of linkage disequilibrium (LD) in 

this population allows a high resolution mapping which confines the causal gene detection 

to only a few genes. It is thought that the relatively low LD reflects a history of frequent 

outcrossing together with rapid dispersal enabled by the selfing mode of reproduction 

(Weigel 2012). We assessed seed size and germination capacity in the HapMap population 

by using 4 replicates and observed large genetic variation. However, we must conclude 

that, despite the high heritability scores, none of the traits resulted in significant 

association after a Bonferroni correction (Chapter 7). This lack of statistical power can be 

the consequence of several technical reasons such as the quality of the SNP genotype data 

or the statistics used to determine the linkage. Soon the SNP genotype data for this 

population will be replaced by full genome sequence data which might allow a more 

powerful analysis (Nordborg and Weigel 2008). However, for crucial steps in the plant’s life 

cycle or survival a robust biological process is needed. In those cases, the evolutionary 

selection might be directed towards a system with many loci with small additive effects. 

Genome wide association can easily be underpowered to efficiently detect such small 

effect loci. Further, functional variants at low frequency have little influence on the 

population as a whole, and their signal is therefore difficult to detect (Myles et al. 2009). 

Methods to detect genes with epistatic interaction or genes with multiple alleles with 

similar effects on the phenotype are still in development (Weigel 2012). Effects are bigger 

in structured biparental populations but such populations will also lack genetic variation for 

many loci. Combining GWA analysis and traditional linkage mapping can be an efficient 

approach to validate associations, increase power to detect rare alleles and reduce the 

number of candidate genes (Brachi et al. 2010). Overlap between multiple associated SNPs 

in the GWA with QTL intervals that were detected in the Bay-0 x Sha RIL population are 
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discussed in Chapter 7. New RIL populations created from ecotypes with extreme 

phenotypes discovered in the HapMap phenotyping could be an interesting lead for further 

research. In conclusion, genome wide association is a promising tool to dissect natural 

genetic variation but it needs further development of the procedures of analysis and 

population definition to overcome the lack of power encountered and described in this 

thesis. 

Genetical ‘omics’ 

Another approach to close in on the molecular mechanisms underlying the genetic 

variation that was found for seed germination in the Bay-0 x Sha RIL population is the use of 

‘omics’ technology. Genetical genomics studies, in which molecular traits are genetically 

analyzed, have been successfully applied to enhance a directed strategy to identify causal 

relationships (Kliebenstein et al. 2006; Keurentjes et al. 2007; Van Leeuwen et al. 2007; 

Wentzell et al. 2007; West et al. 2007; Rowe et al. 2008; Cubillos et al. 2012). Many studies 

have shown an effect of variable environments on these molecular traits and feedback 

mechanisms between different levels of organization are well known. To incorporate 

developmental or environmental perturbation in the often expensive and laborious omics 

analyses, an alternative experimental setup, coined ‘generalized genetical genomics’ (GGG) 

has been proposed. This approach aims at the creation of sub-populations of RILs, one for 

each environment to be tested, with an optimal distribution of parental alleles over all 

available markers (Li et al. 2009). This concept offers unique reduction in experimental load 

with minimal compromise to statistical power and is of great potential in the field of 

systems genetics in which a broad understanding of both plasticity and dynamics is 

required (Li et al. 2008). We divided the Bay-0 x Sha RIL population in four well balanced 

subpopulations consisting out of 41 lines each. This created the possibility to profile four 

different environmental conditions; 1) primary dormant dry seeds, 2) after-ripened dry 

seeds, 3) 6-hour imbibed seeds and 4) seeds at the time of radicle protrusion. An R-

procedure using linear models was developed which enables a fast QTL mapping for this 

type of design which takes the environmental perturbations into consideration (Chapter 5). 

Different levels of variation were obtained and could be mapped by the environmental (E), 

genetic (G) and/or genetic x environment (G:E) component of the linear model. Often, the 

observed variation is subject to the environment without a complete abolishment of the 

genetic variation. Environmental effects can be normalized in those cases and the power of 

detecting a QTL is restored to the total number of lines used in the different sub-

populations. However, if genetic variation is only detectable in a single unique environment 

or developmental stage, QTL detection is limited by the number of lines used for that 

specific environment. A careful selection of the environments used for a GGG experiment is 

therefore crucial. Limited power can be expected when environments vary too much and 

no overlapping genetic variation is present. Contrarily, there is hardly additive value of the 

design when using very similar environments.  
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One of the benefits of the generalized approach is the possibility to simultaneously 

analyse fluxes of the trait under study. Many studies have shown the highly dynamic nature 

of molecular mechanisms leading towards seed germination ((e.g. reviewed in Catusse et 

al. 2008; Daszkowska-Golec 2011; Weitbrecht et al. 2011). Performing expensive genetical 

genomic experiments without any perturbation of the developmental stage will therefore 

always raise questions about the possible extrapolation of the results when slightly 

different conditions are used. To enhance the visualization of the molecular processes that 

underlie seed germination we describe in Chapter 4 (Joosen et al. 2011) the creation of two 

new diagrams which can be used in the program MapMan (Usadel et al. 2006). Pre-existing 

biological knowledge was used to group genes and metabolites in functional categories. 

These categories were combined in a single diagram which summarizes transcript and/or 

metabolite level changes in the pathways important for seed germination. A second 

diagram provides a focused view of cell wall modification and degradation that are key 

processes for the completion of seed germination (Lee et al. 2012). This approach, using 

the MapMan tools, offers the seed science community an easy way to analyze and visualize 

transcriptome and metabolome data for Arabidopsis. The produced pathways are also 

useful for the analysis of genetical genomics data described in chapters 5 and 6. An overlay 

of the annotated metabolites and genes that show genetic variation at a specific locus can 

be visualized and allows a broad perspective of the molecular processes that might affect a 

co-located phenotypic QTL.  

The feasibility of the generalized genetical genomics concept was first tested by 

using metabolite analysis. Polar fractions of a methanol extract from all individuals of the 

Bay-0 x Sha RIL population at the aforementioned four different developmental stages 

were subjected to GC-TOF-MS (Chapter 5).  In total, 161 metabolites were detected of 

which 63 could be annotated. Further improvement in the development of mass 

identification libraries is important as it would increase the number of identified 

compounds. The unraveling of metabolic pathways requires proper identification of the 

detected compounds and would benefit much from such improvement. We were able to 

detect 83 metabolites with genetic variation and 27 metabolites with a clear interaction 

between the genetic and environmental variation. Several QTLs were confirmed by using 

the heterogeneous inbred family (HIF) approach (Tuinstra et al. 1997). Overlapping QTL 

positions for several metabolites were observed and could be explained by the fact that 

they play a role in highly interconnected pathways from which the individual compounds 

are most likely subject to co-regulation. Since some metabolites appear to be co-regulated, 

the strong impact of the involved loci on central metabolism might also exert its effect on 

physiological traits. If true, a comparison between the variation in germination 

characteristics described in Chapter 3 (Joosen et al. 2012) and metabolite levels (Chapter 5) 

would reveal compounds involved in the process of germination. However, no clear co-

location of hotspots for germination and metabolite QTLs could be observed but only 

incidental overlap between QTLs of both types of traits was detected. Several hypotheses 

regarding the physiological effects of variation in amino-acids, fumarate, malate and GABA 
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levels could be formulated based on the overlapping QTL positions and these are 

interesting leads for further research.  

After the experience gathered with the metabolomics experiments the same 

generalized genetical genomics approach was used to perform gene expression profiling 

(Chapter 6). The exact same material and developmental stages were used to allow optimal 

comparison. Expression profiling was performed using the Affymetrix AtSNPtile microarray. 

This array contains 1.7 million unique 25-mer tiling probes in sense and antisense direction 

covering the whole genome at a 35 bp resolution. Expression QTLs for Arabidopsis can be 

classified according to the position of the causal polymorphisms. In our study we detected 

2006 eQTLs that had genetic (G) variation from which 1809 were classified as local and 197 

as distant. Accordingly, 447 local and 82 distant eQTLs were found for genes with genetic x 

environmental (G:E) variation. Efficient modeling of molecular processes influenced by a 

strong local eQTL requires overlapping detection of the small effect distant eQTLs (Jimenez-

Gomez et al. 2010). Unfortunately, only few examples of such co-expressed molecular 

processes were detected. Possibly more replications of the expression profiling are needed 

to increase the statistical power to enable detection of many more small effect distant 

eQTLs. Improvement of the statistical methods used for the eQTL detection in the 

generalized design (e.g. by allowing cofactors as used in MQM mapping) will also enhance 

the chance to detect small size effects (Jansen et al. 1994). Screening an a-priory list of 211 

candidate genes with known functions in seed germination resulted in 24 genes that 

showed significant expression variation between Bay-0 and Sha. For example, we identified 

DOG1, the major regulator of seed dormancy, showing a local eQTL with strong genetic x 

environment interaction on chromosome V overlapping the DOG1 QTL for seed dormancy.  

Despite our efforts to analyze this huge dataset in great detail we were not able to 

exploit its full potential. For example, the tiling array allows to analyze probe specific QTLs. 

Currently, statistical procedures are in development which use these individual probe 

expression levels to investigate expression variation. Next to a more accurate estimation of 

transcript expression this will provide information about alternative splicing events and 

detect natural antisense transcription. Both alternative splicing and anti-sense transcription 

are important mechanisms for gene expression under both normal and stress conditions 

(Jin et al. 2008). Genetic variation for these events between Bay-0 and Sha might therefore 

provide important insight in such regulatory mechanisms. 

Data integration 

The Bay-0 x Sha RIL population has been used in numerous studies to map QTL 

positions which provide great opportunities for future research to integrate data ranging 

from physiological, metabolic and gene expression levels. Often comparisons between 

studies are hampered because different developmental stages or plant growing conditions 

were used. With the data described in this thesis we finalized a comprehensive study on 

seed traits at the physiological (Chapter 3, Joosen et al. 2012), metabolic (Chapter 5) and 
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gene expression level (Chapter 6). These three studies were carried out on the exact same 

biological material, providing a solid base to elucidate the phenotype-to-genotype 

relationship. Overlapping QTL positions may be indicative for common regulatory processes 

but must be interpreted with great caution because assuming causal relations only based 

on overlapping QTL intervals should be regarded with skepticism (Li et al. 2010). However, 

performing an in-depth analysis using prior knowledge of interrelated biological data can 

improve the interpretation of possible phenotype-to-genotype relationships. A great 

information resource for metabolic pathways including predicted enzymes and coding 

genes for Arabidopsis is available at AraCyc (http://pmn.plantcyc.org). This information can 

help to recognize possible relations between metabolite- and expression QTLs found in our 

studies.  

Figure 8.1: Myo-inositol biosynthesis pathway. 
Metabolite QTLs are detected for glucose-6-
phosphate and myo-inositol. An expression QTL is 
detected for MIPS2. Each panel contains 
information about environmental variation (green 
line plot, average over all lines within a single 
developmental stage) and genetic variation (blue 
lines represent the metabolite levels for lines 
carrying the Bay-0 allele for the most significant 
QTL and red lines those for the Sha allele carrying 
lines). QTL LOD profiles are indicated at the 
bottom of each panel by a heat bar representing 
the 5 chromosomes. Genetic (LOD) and 
Environmental (E) variation is expressed as LOD 
score in the lower left corner.  

  

http://pmn.plantcyc.org/


General discussion 

 157 

For example, several components were detected in our studies for the myo-

inositol biosynthesis pathway: the metabolites glucose-6-phosphate, myo-inositol and 

three genes encoding myo-inositol-1-phosphate synthase (MIPS) (details in Chapter 6). The 

global expression patterns of these genes can be evaluated using the eFP-browser 

(http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi) and show that MIPS1 is mainly expressed 

during seed development, MIPS2 at the end of seed maturation and in dry seeds and MIPS3 

in young seedlings and throughout the rest of vegetative plant life. Comparing the QTL LOD 

profiles show that MIPS2 (At2G22240) overlaps with the metabolite QTL found for myo-

inositol at chromosome II, marker 2.36 (Figure 8.1). Because 4 different developmental 

stages were used in our study the allelic effect can be separated accordingly. This reveals a 

comparable expression pattern for MIPS2 and myo-inositol at the dry primary dormant 

(PD), dry after-ripened (AR) and 6-hour imbibed (6H) stages with higher expression in lines 

with the Bay-0 allele. However, the expression for MIPS2 is decreasing at the point of 

radicle protrusion (RP) while the level of myo-inositol is increased at this stage. Here MIPS3 

is highly expressed and may take over the function of MIPS2. MIPS3 does not show 

expression variation between Bayreuth and Shahdara which could explain the converging 

allelic effect lines at the point of radicle protrusion. This example shows both the high level 

of information enclosed in the data described in this thesis and the potential of including 

prior knowledge to hypothesize causal relationships.  

A particular helpful software tool to include prior biological knowledge is Pathway 

Studio (www.ariadnegenomics.com) which can be used to add biological perspective based 

upon knowledge extracted from scientific literature. It can find common regulators and 

associated pathway components for biological processes validated by literature citations. 

As an example we used Pathway Studio to visualize molecular processes involved in 

osmotic stress regulation (Figure 8.2). Elements of this process are expected to play crucial 

roles during seed desiccation and germination under non-favorable conditions. Identifying 

the components of this pathway that showed natural variation between Bayreuth and 

Shahdara accessions may help to explain their differential response to salt exposure during 

seed germination. Five genes in this pathway showed significant expression differences 

between the two accessions, resulting in either a local or distant eQTL under the non-

stressed conditions used for the expression QTL analysis. A strong local eQTL was detected 

for ABI2 which encodes a protein phosphatase 2C and is involved in ABA signal transduction 

(Finkelstein and Somerville 1990). ABI2 mutants are abscisic acid tolerant, contain 

increased levels of endogenous ABA during seed development but are reduced in seed 

dormancy and have reduced sensitivity to salt and osmotic stress during germination. The 

detected eQTL for ABI2 overlaps with a QTL detected for seed germination in the presence 

of NaCl and mannitol. In agreement with the ABI2 mutant phenotype, a lower ABI2 

expression level was detected in Shahdara compared to Bayreuth. Surprisingly, RAS1, a 

gene recently discovered to play a role in ABA signaling during salt stress (Ren et al. 2010) 

showed a distant expression QTL overlapping with the ABI2 eQTL. This suggests an 

interaction between these two genes which is supported by an epistatic interaction 
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between two QTLs that were detected in chapter 3 for seed germination under salt 

exposure which overlaps with both the RAS1 and ABI2 positions (Joosen et al. 2012). 

However, the complexity of this type of interpretation is shown by the fact that the ABI2 

eQTL also overlaps a phenotypic QTL for seed germination in the presence of ABA at which 

the Bay-0 accession shows higher tolerance to ABA. Although, this type of opposite effects 

are expected for complex traits which are regulated by many genes it complicates 

associative studies which are based on co-location of QTLs. A strong phenotypic QTL for the 

rate of seed germination on salt was also detected on the top of chromosome V with 

higher tolerance for the Bay-0 allele. Two genes in the osmotic stress pathway (NHX1; 

AT5G27150 and H
+
 ATPase; AT5G08690) are flanking this QTL but it must be noted that 

both only partly overlap with the phenotypic QTL interval. NHX1 encodes a vacuolar 

sodium/proton antiporter involved in salt tolerance (Barragan et al. 2012). The detected 

NHX1 local eQTL shows higher expression levels in Bayreuth which is in agreement with the 

detected phenotypic QTL and the reported improved salt and drought tolerance in NHX1 

overexpression lines in various species (Leidi et al. 2010; Teakle et al. 2010; Zhou et al. 

2010; Asif et al. 2011). The H
+
 ATPase encodes a mitochondrial ATP synthase beta-subunit 

and functions in mitochondrial oxidative phosphorylation. The increased activity of H
+
 

ATPases creates the driving force for Na
+
 transport by membrane salt overly sensitive 

proteins 1 (SOS1) (Zhu 2003) and a proteomics study showed clear induction of this protein 

after NaCl treatment in Arabidopsis cell suspension cultures (Ndimba et al. 2005).  Finally, 

we identified one member of the PLC gene family with expression variation between 

Bayreuth and Shahdara. The Arabidopsis genome contains nine AtPLC genes (Tasma et al. 

2008). Members of this gene family are differentially expressed in Arabidopsis organs and it 

has been shown that a majority of the AtPLC genes are induced in response to various 

environmental stimuli, including cold, salt, dehydration, and ABA. Transcriptional activation 

of the AtPLC gene family is considered to be important for the adaptation of plants to 

stressful environments. A local eQTL showing expression variation between Bayreuth and 

Shahdara was detected for PLC8. Expression patterns and phylogenetic relationships in the 

ecotype Columbia-0 indicate that AtPLC gene members AtPLC8 and AtPLC9 may represent 

a recent duplication; this observation could not be confirmed by our eQTL data. This 

example clearly shows the complexity enclosed in expression QTL data. Together, the 

integrated analysis combining the expression QTL data, phenotypic QTL data and available 

biological knowledge shows its potential of identifying possible candidate genes and 

interactions. While the expression QTL study was performed under non-stressed conditions 

it appears possible to examine molecular processes involved in osmotic stress signaling. 
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Future considerations 

In conclusion, the study described in this thesis shows that the newly developed 

tools allow a dissection of seed germination genetics. However, it was expected that 

overlapping QTL positions between phenotype, metabolite and gene expression variation 

would uncover many more relationships that could provide leads to disentangle the 

molecular mechanisms behind the observed phenotypic variation. It can be argued that this 

is a consequence of several technical reasons such as the used population, repeatability or 

statistical power consequences due to the used environmental perturbation. Moreover, it 

might be a warning to retain a certain level of reticence when trying to understand the 

consequences of evolution within a limited set of experiments. The overwhelming 

complexity of the genetics which is dissected via either a recombinant inbred population or, 

even worse, a genome wide association panel of natural variants, should not be 

underestimated and might therefore always suffer from lack of statistical power to detect 

causal relations and interactions. Recently, a systematic comparison between the 

transcriptome architecture in leaf tissue of two RIL populations obtained from a connected-

cross design involving 3 commonly used Arabidopsis accessions demonstrated the 

extensive diversity and moderately conserved eQTL landscape between crosses (Cubillos et 

al. 2012). This stresses the need for a wider spectrum of diversity to fully understand 

expression trait variation within a species. Therefore the trend in genetic analysis is 

directed towards the use of complex cross populations and genome wide association which 

allows studying a broad range of natural variants. However, it must be noted that the 

increase in genetic variation in these populations also increases the complexity to 

understand possible relations and variation due to developmental or environmental 

changes. A reduction in genetic complexity might therefore be beneficial and can be 

achieved by the construction of chromosome substitution lines (Koumproglou et al. 2002). 

The recent developments in reverse breeding, which includes an optimized procedure to 

construct chromosome substitution lines, holds a great promise for crop improvement and 

will be a valuable complement to the existing approaches to study polygenic traits in the 

future (Wijnker et al. 2012).  

With the recent developments in sequence technology there is evident need for 

methods that increase our understanding of genotype to phenotype relationships in a high-

throughput manner. A wealth of methods to produce high density genotype information is 

currently available and is not the limiting factor for this type of research. A range of 

methods for large scale phenotyping using automated screens became available recently 

and allows in depth analysis of phenotype to environment interactions. For example, the 

development of an automated method to phenotype seed germination (Chapter 2) turned 

out to be indispensable for the research described in this thesis. In chapter 6, full genome 

gene expression phenotyping has been conducted by using microarray analysis. RNA-

sequencing will soon become the method of choice for expression profiling. This will 

generate high quality expression data which can be used to detect sequence 
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polymorphisms simultaneously. With this wealth of data the need for bio-statistics 

increases even further. Efficient statistical procedures such as the R/qtl loop (Chapter 3) 

and the linear model to evaluate genetic x environmental interactions in generalized 

genetical omics studies (Chapter 5) are needed and should always be combined with 

effective data visualization (e.g. Chapter 3 and 4) to allow interpretation of the often 

complex results. We detected new QTLs for seed performance (Chapter 3) which can be co-

located with QTLs detected for metabolites (Chapter 5) and gene expression (Chapter 6). 

The potential of such an integrated approach is shown by two examples in this Chapter. 

Several new mucilage mutants are discovered while screening the HapMap population 

(Chapter 7) and interesting global distribution patterns of adaptation were observed.  

In conclusion, the tools and concepts described in this thesis should be fueling 

future research and provide opportunities for efficient improvement of seed performance 

in crop species. 
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Summary 

The Netherlands has a long history of plant breeding which has resulted in a 

leading position in the world with respect to the sales of vegetable seeds. Nowadays high-

tech methods are used for crop-production which demands high standards for the quality 

of the starting materials. While breeding has mainly focused on crop yield and disease 

resistance in the past, it now becomes equally important to create seeds that rapidly and 

uniformly germinate under a wide range of production environments. A better 

understanding of the molecular processes that are underlying seed quality is a crucial first 

step to enable targeted breeding. In this thesis we describe the results of new methods 

that were used to map the genetics of seed germination.  

For this research we have used the leading plant science model species 

Arabidopsis thaliana which has a short generation time and a fully sequenced genome. 

Further, the large scientific community working on this model species is providing a wealth 

of resources ranging from large collections of worldwide accessions, genetic mapping 

populations, mutants and knowledge about gene, protein and metabolite action. A 

disadvantage of using Arabidopsis is the small size of the seeds, which requires evaluation 

of the germination of individual seeds with the use of magnifying glasses. This problem has 

been solved by using image analysis to create an automated procedure to obtain detailed 

information for parameters such as rate, uniformity and maximum germination. This 

procedure, called ‘the Germinator’, is described in Chapter 2 and has been enthusiastically 

adopted by the seed community.  

Plants cannot walk away from the environment at which the seed is dispersed. To 

survive and to enable reproduction, plants adapt to the prevailing environment which 

results in considerable genetic variation. This ‘natural variation’ is a great resource to study 

the mechanisms of adaptation. In Chapter 3 we have used two distinct Arabidopsis 

accessions, one originating from Germany (Bayreuth) and the other from high altitude in 

the Pamiro-Alay Mountains in Tadjikistan (Shahdara). In contrast to the Bayreuth accession, 

the Shahdara accession is well adapted to survive harsh conditions and is known to be 

stress tolerant to a range of environments. A genetic mapping (recombinant inbred line; 

RIL) population, consisting of 165 lines, that was derived from these two accessions is 

therefore particularly suitable to locate the genomic regions with genetic differences that 

influence seed germination. Such genomic regions are commonly referred to as 

quantitative trait loci (QTL). With help of the Germinator system we were able to evaluate 

germination of this RIL population under many different conditions. This resulted in a 

description of the ‘genetic landscape of seed performance’ in which we identified many 

QTLs for Arabidopsis seed germination. 

QTL regions are often large and identification of the causal gene requires intensive 

follow up research. We therefore aimed for a high throughput analysis using modern 

‘omics’ techniques to analyze differences in metabolite levels and gene expression between 

the lines. A method to classify and visualize the vast amount of data derived from such an 
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approach is described in Chapter 4. The so called genetical ‘omics’ experiments are 

expensive and therefore often force researchers to limit their study to a single 

developmental stage or environment only. A novel generalized setup overcomes this 

limitation and was tested for metabolite level changes in Chapter 5. This setup offers a 

unique reduction of experimental load with minimal effect on statistical power and is of 

great potential in the field of system genetics. Four different developmental stages of seed 

germination were tested in the RIL population. This approach resulted in a large dataset for 

which efficient analytical procedures were lacking. Thus, Chapter 5 also includes a 

description of a newly developed statistical procedure to analyze this type of data. The 

same approach and material were used in Chapter 6 to evaluate the genetics of genome 

wide gene expression.   

Another approach to zoom in on the molecular mechanisms underlying seed 

performance is described in Chapter 7. Here, the genetic diversity was maximized by using 

360 different Arabidopsis accessions which had been subjected to ultra-high density 

genotyping. In potential, such a genome wide association (GWA) study can provide high 

resolution mapping of genetic variation resulting in only a few candidate genes per 

association for the phenotype under study. Although we were able to replicate 

experiments over two years with a high level of heritability, no significant associations were 

found. This emphasizes the need to critically review the power of such an approach for 

traits that are expected to be determined by many small effect loci.  

Finally, closing in on the molecular mechanisms underlying the seed traits that we 

studied might be possible by a full integration of the datasets that were described in the 

different chapters. Two examples that show the potential and the complexity of such 

integration are described in the General Discussion (Chapter 8). Research focused on seed 

quality does not end here but has gained an impulse by the described new methods and 

hypotheses to continue on both the fundamental and applied level in the coming years. 
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Samenvatting 

Nederland kent een lange geschiedenis in de plantenveredeling. Dit heeft 

geresulteerd in een leidende positie in de wereld voor de verkoop van groentezaden. De 

hightech methodes die momenteel worden gebruikt voor gewasproductie vereisen zeer 

hoge standaarden voor de kwaliteit van het uitgangsmateriaal. Terwijl de veredeling zich in 

het verleden vooral heeft gericht op eigenschappen zoals opbrengst en ziekteresistentie, is 

het nu ook van groot belang om zaden te creëren die snel en uniform kiemen in 

verschillende productieomgevingen. Een verbeterd inzicht in de moleculaire processen die 

ten grondslag liggen aan zaadkwaliteit is een cruciale eerste stap om gerichte veredeling 

mogelijk te maken. In dit proefschrift worden de resultaten beschreven van nieuwe 

methodes waarmee de genetica van kiemingseigenschappen nauwkeurig in kaart kan 

worden gebracht. 

Voor dit onderzoek hebben wij gebruik gemaakt van de populaire modelplant de 

Zandraket (Arabidopsis thaliana). Deze heeft een zeer korte generatietijd en de volledige 

DNA volgorde van het genoom is bekend. Daarnaast is er een uitgebreide collectie van 

wereldwijd verkregen accessies, genetische kartering populaties, mutanten en kennis over 

gen, eiwit en metaboliet functie beschikbaar. Het nadeel van het werken met de Zandraket 

is dat de zaden zeer klein zijn waardoor het moment van kieming enkel met behulp van 

vergrotingsapparatuur kan worden bepaald. Om dit probleem op te lossen hebben we een 

geautomatiseerd systeem van beeldanalyse ontwikkeld waarmee gedetailleerde informatie 

over de snelheid, uniformiteit en maximale kieming verkregen kan worden. De hierbij 

gebruikte procedure, genaamd ‘de Germinator’, is beschreven in Hoofdstuk 2 en wordt 

momenteel enthousiast gebruikt door vele onderzoekers.  

Planten kunnen niet ontsnappen uit de omgeving waarin het zaad terecht is 

gekomen en hebben zich daarom tijdens de evolutie aangepast aan hun omgeving om te 

kunnen overleven en zichzelf te kunnen vermeerderen. Dit heeft geresulteerd in grote 

genetische variatie. Het bestuderen van deze variatie geeft geweldige mogelijkheden om 

de mechanismen van aanpassing aan de omgeving te onderzoeken. In Hoofdstuk 3 hebben 

we hiervoor twee accessies van de Zandraket gebruikt, de eerste werd aangetroffen in 

Duitsland (Bayreuth) terwijl de tweede op grote hoogte groeit in het Pamiro-Alay gebergte 

in Tadzjikistan (Shahdara). Deze Shahdara accessie heeft zich, in tegenstelling tot Bayreuth, 

erg goed aangepast aan overleving in moeilijke omstandigheden. Een genetische 

karteringspopulatie (recombinante inteelt lijnen; RIL) van 165 lijnen afkomstig van deze 

beide ondersoorten, is daarom uitermate geschikt om genetische verschillen op het 

genoom te lokaliseren die betrokken zijn bij de regulatie van kieming. Dit soort regio’s 

worden QTLs (Quantitative Trait Loci)  genoemd. Met behulp van het eerder ontwikkelde 

‘Germinator’ systeem waren we in staat om de kiemingseigenschappen van deze RIL 

populatie onder een groot aantal verschillende omstandigheden te onderzoeken. Dit heeft 

geresulteerd in een beschrijving van het genetische landschap van zaad eigenschappen 
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waarin we vele QTLs hebben gevonden die betrokken zijn bij de regulatie van de kieming 

van Zandraket zaden. 

De beschreven genoomregio’s zijn echter behoorlijk groot, waardoor het 

aanwijzen van het causale gen veel vervolgonderzoek vereist. Om dit te omzeilen hebben 

we ons onderzoek toegespitst op het gebruik van moderne ‘omics’ technologieën. Hiermee 

is het mogelijk om de verschillen in een groot aantal metabolieten en genen tussen de 

lijnen nauwkeurig te analyseren. Een methode om al deze informatie te classificeren en te 

visualiseren is beschreven in Hoofdstuk 4.  

De ‘genetische omics’ experimenten zijn duur, waardoor onderzoekers er vaak 

voor kiezen om een studie te beperken tot één enkel weefsel of één enkele conditie. Een 

nieuwe gegeneraliseerde experimentele opzet voorkomt dit probleem en is in Hoofdstuk 5 

getest voor verschillen in metaboliet niveaus. Deze nieuwe opzet leidt tot een vermindering 

van het benodigde aantal metingen met slechts een minimale invloed op de onderliggende 

statistiek en heeft veel potentie voor toekomstig onderzoek in het veld van de 

systeemgenetica. Vier verschillende ontwikkelingsstadia tijdens zaadkieming zijn op deze 

manier getest in de 165 lijnen van de RIL populatie. Deze aanpak resulteerde in een grote 

hoeveelheid data waarvoor nog geen efficiënte analyse methode beschikbaar was. 

Hoofdstuk 5 beschrijft daarom ook een statistische procedure om dit type data te kunnen 

analyseren. Dezelfde aanpak en hetzelfde materiaal zijn in Hoofdstuk 6 gebruikt om de 

genetica van de gen expressie van het gehele genoom in kaart te brengen.  

 Een andere aanpak om de moleculaire mechanismen van zaadkieming te 

onderzoeken is beschreven in Hoofdstuk 7. Hier hebben we de genetische variatie 

gemaximaliseerd door gebruik te maken van 360 accessies van de Zandraket waarvan een 

genotypering met hoge dichtheid beschikbaar is (Genoom Brede Associatie). Dit type 

onderzoek kan de genetische variatie ontrafelen met een zeer hoge resolutie waardoor er 

per associatie slechts enkele kandidaat genen overblijven die verantwoordelijk kunnen zijn 

voor het fenotype dat wordt bestudeerd. Hoewel we in staat waren om de experimenten 

met een hoge nauwkeurigheid te herhalen, werden er geen significantie associaties 

gevonden. Dit benadrukt de noodzaak om deze methode kritisch te evalueren voor 

eigenschappen waarvan verwacht mag worden dat ze gereguleerd worden door veel genen 

met voor elk gen afzonderlijk een klein effect. 

Tot slot hebben we de mogelijkheid onderzocht om meer kennis te verkrijgen van 

de moleculaire mechanismen die ten grondslag liggen aan de eigenschappen die we 

hebben bestudeerd door alle datasets uit de verschillende hoofstukken te integreren. In de 

algemene discussie (Hoofdstuk 8) zijn twee voorbeelden beschreven die de potentie, maar 

tegelijkertijd ook de complexiteit van een dergelijke benadering laten zien. Het onderzoek 

naar zaadkwaliteit is hiermee niet beëindigd maar heeft een impuls gekregen door de 

ontwikkelde nieuwe methoden en hypotheses waarmee zowel op fundamenteel als op 

toegepast niveau veel vervolgonderzoek gedaan kan worden in de komende jaren. 
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Dankwoord  

Het proefschrift dat voor u ligt is het gevolg van een eenvoudige boswandeling. De 

vraag om wel of niet te gaan promoveren had me nachten lang wakker gehouden, want ik 

had het enorm naar mijn zin bij Plant Research International waar ik geweldige collega’s en 

uitdagend werk had. Toch heb ik dankzij de bemoedigende woorden van Joost en Miranda 

tijdens die boswandeling het besluit genomen om de kans te grijpen en een poging te 

wagen om een promotieonderzoek te gaan doen. Ik heb er zeker geen spijt van gehad! 

Henk, jij nam me op in jouw team en ik voelde me meteen welkom. Je kunt als 

geen ander een team leiden, ziet kansen en weet mensen te verbinden. Ik heb van jou 

geleerd om niet de techniek maar de onderzoeksvraag centraal te stellen. Daarmee heb je 

de richting van het onderzoek bepaald. Hoe vaak heb je me niet gevraagd: "waarom?", 

waarop ik dan steevast het verkeerde antwoord gaf: "..omdat het kan".  Wilco, als dagelijks 

begeleider was jij mijn wetenschappelijk anker. Simpelweg een knal voor mijn kop vanwege 

een stom idee, maar tegelijkertijd verder kijken en nieuwe oplossingen verzinnen: zo breng 

je wetenschap tot leven. Je enthousiasme, optimisme en je eigenwijsheid leverde vurige 

discussies op, waarin we elkaar zonder omhaal op het scherpst van de snede uitdaagden. 

We misten bijna een vliegtuig omdat we zaten te fantaseren over de eindeloze 

mogelijkheden van onze geweldige datasets. Kortom, wetenschap zoals het behoort te zijn: 

spannend, leuk, vernieuwend en dat zonder ooit een chagrijnig gezicht gezien te hebben! 

Leo, zonder jou was ik sneller klaar geweest met het schrijven, want dan was er veel minder 

data gegenereerd. Nooit klagen en keihard werken is de beste typering voor jou. Toch had 

je redenen genoeg, we hebben samen tienduizenden zaden uitgestrooid en gefotografeerd 

en hoewel dat zaaddodend werk was heb je daar absoluut geen last van gehad! Ook niet als 

we na een nachtje doorzakken en veel te weinig slaap letterlijk slaapdronken in het lab 

stonden. “Het leven is een toverbal” klonk het tussen de planten; wie weet hebben de 

alcoholdampen de proeven toch beïnvloed. Ik ben blij dat je ook tijdens de promotie als 

paranimf naast me staat. Rashid and Noorullah, both of you were working on the most 

important part of the project. A real crop! We had great times both in the lab and during 

the exciting congresses we visited. I am looking back on a great collaboration in which we 

shared many ideas on how to analyze the extremely big datasets we gathered. My two 

students, Leticia and Gabriela were both of great help and enabled the analysis of many 

aspects of the never ending wish list. 

Trots ben ik op het feit dat Prof. Linus van der Plas mijn promotor wilde zijn. 

Tijdens mijn HLO-stage heb je me begeleid, je was leerstoelhouder van de vakgroep 

plantenfysiologie toen ik daar als analist werkte en je hebt nu vier jaar lang aan mijn zijde 

gestaan als promotor. Linus, dank voor alle inspirerende gesprekken, alle hulp en voor de 

zeer nauwgezette controle van de teksten. Veel dank ben ik ook verschuldigd aan Prof. 

Maarten Koornneef. Wij hebben vaak overleg gehad en telkens wist jij me binnen een half 

uur meerdere weken werk te verschaffen door te wijzen op belangrijke ontwikkelingen in 

de vakliteratuur. Hetzelfde geldt voor Joost, zowel als vriend maar zeker ook in de rol van 
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wetenschappelijk adviseur heb jij een grote bijdrage geleverd aan de totstandkoming van 

dit proefschrift. Martijn, als oud-collega’s mochten wij nooit een kantoor delen. 

Kinderachtig natuurlijk, maar niet onbegrijpelijk want als duo zijn we niet te hanteren. We 

hebben onze “raakvlakken” inmiddels verplaatst naar de squashbaan. Ik ben dan ook blij 

dat jij als paranimf aan mijn zijde staat.  

Next to the project team I am left with great memories about all members of the 

Wageningen seed lab. Our sometimes hilarious work discussions but also the many lunches, 

trips, dinners and parties will always bring back a smile. Now I understand why so many of 

our guests were crying during their farewell. Rina, de steun en toeverlaat van ons team wist 

de weg in de onoverkomelijke administratieve rompslomp en was een grote hulp bij het 

boeken van allerlei reizen. De lijfstraf met de houten liniaal zal ik niet snel vergeten! Ruim 

5000 planten zijn er opgegroeid onder toeziend oog van Taede en Gerard. Jullie waren 

meteen enthousiast over mijn wens om steenwol te gaan gebruiken. Mede dankzij dit 

enthousiasme staan de kassen nu vol met zandraketten op steenwol. 

Het is een eenvoudige hypothese dat er een significante kans bestaat dat ik hier 

helemaal niet zou staan zonder extra statistische hulp. Regelmatig reisde ik vol vragen af 

naar Groningen waar Danny, Yang en Ritsert altijd weer helderheid wisten te verschaffen. 

In Wageningen waren Willem en Martin van cruciaal belang om de GWAS experimenten te 

kunnen analyseren.  

Science is not bound to local borders and international collaboration is often the 

key to enhance research. I am looking back on great collaborations with Nick Provart and 

Thanh Nguyen from the University of Toronto who hybridized the 180 microarrays for our 

expression QTL study. Richard Pridmore and Tingting Wang from Nottingham University 

created valuable enhancements of the Germinator system, which are now close to 

implementation. Further I was inspired a lot by the many discussions I had during 

congresses and visits to scientists in Poland, France, Italy, Germany, United Kingdom, 

United States of America and Brazil. Naast de inspirerende congressen heb ik geweldige 

herinneringen aan vele discussies, lunches, kerstdiners en labuitjes met de collega’s van de 

leerstoelgroep plantenfysiologie.  

 Tot slot wil ik graag nog een aantal mensen buiten het laboratorium noemen. 

Allereerst mijn moeder die dit moment helaas niet meer mocht meemaken. Je was er altijd, 

vol belangstelling en liefde. Mam, ik weet hoe trots je bent. Pap, jij was degene die me 

nieuwsgierig gemaakt heeft voor techniek. Je hebt me altijd aangemoedigd om toch vooral 

te blijven studeren. Je geduld is beloond; na 41 jaar sta ik dan eindelijk hier. Daarnaast een 

woord van dank aan iedereen die dicht bij me staat. Jullie hebben me altijd op de voet 

gevolgd en steeds geïnteresseerd geluisterd naar mijn eindeloze verhalen over de 

vorderingen. Rianne, de laatste zinnen heb ik voor jou bewaard. Jouw impulsiviteit maakt 

het leven spannend. Je hebt me ontzettend veel werk uit handen genomen, me altijd 

gesteund tijdens het schrijven en je creativiteit losgelaten op het ontwerp van de kaft. Ik 

kijk ontzettend uit naar wat de toekomst ons brengt. Je bent super! 
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Ronny Joosen was born on the 10
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he obtained his secondary school diploma (HAVO, De Bouwmeester, Haaksbergen) and he 

finished a bachelor study plant biotechnology at the International Agricultural College 

Larenstein in Wageningen in 1996. After his graduation he started working as research 

assistant on a project related to monitoring water and metabolic activity in tomato seeds at 

Wageningen University (department Plant Physiology). After 3 years the project was 

finished and he moved to Plant Research International (Wageningen, business unit plant 

developmental systems). In this period he was involved in a range of projects related to 

embryogenesis, apomixis and androgenesis and had the opportunity to train his skills in 

many state of the art molecular techniques. In 2008 he was asked by Dr. Henk Hilhorst to 
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started working as a researcher quantitative genetics at the breeding company Rijk Zwaan. 
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     Education Statement of the Graduate School  

 
 

Experimental Plant Sciences 

 
   

 Issued to: Ronny Joosen 
 

 Date: 24 May 2013 
 

 Group: Plant Physiology, Wageningen University 
& Research Centre  

 
 

 
 1) Start-up phase  date 

►  First presentation of your project   
  Genes for Seed Quality; Physiological Genetical Genomics 

Approach in Arabidopsis 
Jun 24, 2008 

►  Writing or rewriting a project proposal   
  Arabidopsis Seed Quality Genes Jun 20, 2008 
►  Writing a review or book chapter   
  Advances in Genetical Genomics of Plants, Current Genomics 

10, 540-549 (2009) 
Jun 2009 

  Unravelling the Complex Trait of Seed Quality, Seed Science 
Research 22, S45-S52 (2012) 

Jan 2012 
►  MSc courses   
►  Laboratory use of isotopes   
  Subtotal Start-up Phase 13,5 credits* 

    

2) Scientific Exposure  date 
►  EPS PhD student days   
  EPS PhD stundent day (Naturalis), Leiden Univeristy Feb 26,2009 
  EPS PhD student day, Wageningen University May 20, 2011 
►  EPS theme symposia   
  EPS  theme 1 symposium 'Developmental Biology of Plants' 

Leiden University  
Jan 22, 2011 

  EPS Theme 3 symposium 'Metabolism and Adaptation' 
University of Amsterdam 

Mar 22, 2013 
►  NWO Lunteren days and other National Platforms   
  NWO-ALW meeting 'Experimental Plant Sciences', Lunteren 

The Netherlands 
Apr 06-07, 2009 

  NWO-ALW meeting 'Experimental Plant Sciences', Lunteren 
The Netherlands 

Apr 19-20, 2010 
  NWO-ALW meeting 'Experimental Plant Sciences', Lunteren 

The Netherlands 
Apr 04-05, 2011 

  NWO-ALW meeting 'Experimental Plant Sciences', Lunteren 
The Netherlands 

Apr 02-03, 2012 
►  Seminars (series), workshops and symposia   
  Seminars (Nicolas Provart, Jian-Kang Zhu) Jun-Nov 2008 
  Seminar Pamela J. Hines (Science from an editors view) Nov 06, 2008 
  Seminars (Wallace A. Cowling, M. Vuylsteke, H. Nonogaki a.o) 

Wim Soppe) 
Jun-Oct 2009 

  Symposium Series NIOO-KNAW Revolution in Evolution? 
Epigenetics in Ecology and Evolution', Amsterdam, NL 

Sep 18, 2009 
  EPS Symposium 'Ecology and Experimental Plant Sciences 2' Sep 22, 2009 
  Seminars (Justin Borevitz, Glenda Willems, Regina Delourme) Jan-Oct 2010 
  Keys Seminars (Keygene) Vincet Colot & Marc Block Oct 2010 
  Mini symposium 'How to write a world class paper' Apr 19, 2011 
  Seminars (L. Summer, C. Wagstaff, J. Jimenez Gomez a.o) 

Pecinka, Manuela Nagel) 
Aug-Dec 2011 

  ServiceXS Seminar, Wageningen Sep 2011 
  Seminars (Luc Janss, Ian Henderson) Jan-Feb 2012 
  Cost meeting, modeling and databases for terpenes Feb 16, 2012 
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►  Seminar plus   
►  International symposia and congresses   
  ISSS Congres, Olsztyn, Poland Jul 06-11, 2008 
  QTL mas, Wageningen, The Netherlands Apr 20-21, 2009 
  ICAR, Edinburgh, Scotland Jun 30-Jul 04, 2009 
  ISSS congress York, UK Jul 18-22, 2010 
  ISSS congress Bahia, Brasil Apr 10-15, 2011 
  ASPB , Minneapolis, USA Aug 06-09, 2011 
►  Presentations   
  PhD course Natural Variation (Oral) Aug 26, 2008 
  INRA Anger, France (Oral) Sep 09, 2008 
  INRA Versailles, France (Oral) Sep 26, 2008 
  User commitee STW (Oral) Dec 11, 2008 
  Breedwise course (Oral) Apr 01, 2009 
  NWO-ALW meeting 'Experimental Plant Sciences', Lunteren 

The Netherlands (Oral) 
Apr 07, 2009 

  User commitee STW (Oral) Apr 09, 2009 
  QTL mas, Wageningen, The Netherlands (Oral) Apr 20, 2009 
  ICAR meeting (Poster) Jun 29, 2009 
  User committee STW (Oral) Oct 15, 2009 
  Masterclass Seed Science (Oral) Oct 29, 2009 
  NWO-ALW meeting 'Experimental Plant Sciences', Lunteren 

The Netherlands (Poster) 
Apr 19, 2010 

  PRI Bioscience (Oral) May 11, 2010 
  Masterclass Seed Science (Oral) Jun 03, 2010 
  Breedwise course (Oral) Sep 29, 2010 
  EPS  theme 1 symposium 'Developmental Biology of Plants' 

Leiden University (Oral) 
Jan 22, 2011 

  NWO-ALW meeting 'Experimental Plant Sciences', Lunteren 
The Netherlands (Poster) 

Apr 04-05, 2011 
  Seed Science Masterclass (Oral) May, 2011 
  Warwick University, Coventry, UK (Oral) Nov 15, 2011 
  IPK Gatersleben, Germany (Oral) Dec 14, 2011 
  NWO-ALW meeting 'Experimental Plant Sciences', Lunteren 

The Netherlands (Oral) 
Apr 02-03, 2012 

►  IAB interview Feb 18, 2011 
►  Excursions   
  KeyGene (organised by EPS PhD student council) Jan 26, 2012 

Subtotal Scientific Exposure 36,3 credits* 

      

3) In-Depth Studies date 
►
  

EPS courses or other PhD courses   
  Master Class 'Seed technology' (Hilhorst & Groot) Jun 09-12, 2008 
  PhD course 'Natural Variation' (Koorneef & Aarts) Aug 26-29, 2008 
  Plant Systems Biology Summer School (Warwick University) 

Venice, Italy 
Sep 12-16, 2011 

  Association mapping for Learning from  Nature data Feb 2012 
►
  

Journal club   
  Participation in literature discussion group at WU-PPH 2008-2012 
►
  

Individual research training   
Subtotal In-Depth Studies 7,2 credits* 
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4) Personal development date 
►
  

Skill training courses   
  Course R-statistics Oct 23-24, 2008 
  Biometris QTL mapping Jun 2011 
  Expectations day EPS Nov 18, 2011 
  Presentation skills, Wageningen Language Services Oct 14-28, 2011 
►
  

Organisation of PhD students day, course or conference   
►
  

Membership of Board, Committee or PhD council   
Subtotal Personal Development 3,6 credits* 

    
TOTAL NUMBER OF CREDIT POINTS* 60.6 

 
Herewith the Graduate School declares that the PhD candidate has complied with the 
educational requirements set by the Educational Committee of EPS which comprises of a 
minimum total of 30 ECTS credits  

  
  * A credit represents a normative study load of 28 hours of study. 
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