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Abstract

Junfei Gu, 2013. QTL-based physiological modelling of leaf photosynthesis and crop
productivity of rice QOryza sativa L.) under well-watered and drought environments.
PhD thesis, Wageningen University, Wageningen, The Netherlands. 181 pp.

Improving grain yield of rice @Qryza sativa L.) crop for both favourable and stressful
environments is the main breeding objective to ensure food security. The objective of this
study was to amalgamate crop modelling and genetic analysis, to create knowledge and
insight useful in view of this breeding objective.

Photosynthesis is fundamental to biomass production, but the process is very sensitive to
abiotic stresses, including drought. Upland rice cv. Haogelao, lowland rice cv. Shennong265,
and 94 of their introgression lines (ILs) were studied under drought and well-watered
conditions to analyse the genetics of leaf photosynthesis. After correcting for microclimate
fluctuations, significant genetic variation was found in this population, and 1-3 quantitative
trait loci (QTLs) were detected per photosynthesis-related trait. A major QTL was mapped
near marker RM410 on Chromosome 9 and was consistent for phenotyping at flowering and
grain filling, under drought and well-watered conditions, and across field and greenhouse
experiments. These results suggest that photosynthesis at different phenological stages and
under different environmental conditions is, at least to some extent, influenced by the same
genetic factors.

To understand the physiological regulation of genetic variation and resulting QTLs for
photosynthesis detected in the first study, 13 ILs were carefully selected as representatives of
the population, based on the QTLs for leaf photosynthesis. These 13 ILs were studied under
moderate drought and well-watered conditions in the experiment where combined gas
exchange and chlorophyll fluorescence data were collected to assgssliyht response
curves. Using these curves, seven parameters of a photosynthesis model were estimated to
dissect photosynthesis into stomatal conductagge riesophyll conductancey), electron
transport capacityJfay, and Rubisco carboxylation capacity.fay. Genetic variation in
light saturated photosynthesis and the major QTL of photosynthesis on Chromosome 9 were
mainly associated with variation igs and gn. Furthermore, relationships between these

parameters and leaf nitrogen or dry matter per unit area were shown valid for variation across



genotypes and across water treatments. In view of these results and literature reports, it was
argued that variation in photosynthesis due to environmental conditions and to genetic
variation shares common physiological mechanisms.

QTL analyses were further extended to other physiological parameters of rice. Molecular
marker-based estimates of these traits from estimated additive allele effects were used as input
to the mechanistic crop model GECROS. This marker/QTL-based modelling approach
showed the ability of predicting genetic variation of crop performance within ILs for a diverse
set of field conditions. This approach also showed the potential of extrapolating to a large
population of recombinant inbred lines from the same parents. Most importantly, this model
approach may improve the efficiency of marker-assisted selection, as it provides a tool to rank
the relative importance of the identified markers in determining final yield under specific
environmental conditions.

To examine the extent to which natural genetic variation in photosynthesis can contribute
to increasing biomass production and yield of rice, the GECROS crop model was used again
to analyse the impact of genetic variation in photosynthesis on crop biomass production. It
was shown that in contrast to other studies a genetic variation in photosynthesis of 25% can
be scaled up equally to crop level, resulting in an increase in biomass of 22-29% across
different locations and years. The difference with earlier studies seems related to the fact that
variation in both Rubisco-limited and electron transport-limited photosynthesis were observed
in our IL population.

This thesis has contributed to closing the gap between genotype and phenotype by
integrating crop physiology and genetics through an innovative QTL/marker-based modelling
approach. This approach can contribute to making the use of genomics much more efficient in
practical plant breeding.

Key words: Drought, ecophysiological crop modelling, GECROS, genotype, GXxE

interaction, modelling, Oryza sativa L., photosynthesis, quantitative trait locus, rice.
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General introduction
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The Food and Agriculture Organization (FAO) of the United Nations estimates that by
2050, world population will reach 9 billion (United Nations, 2011). To accommodate
this population growth, the world will have to nearly double its current output of food,
feed, and fibre. On the other hand, crops are increasingly exposed to stresses like
drought in various ways and to different extents (Bouman et al., 2007; Tuberosa,
2012). At the same time, elevated greenhouse gas concentrations will result in
worldwide climate changes that will increase the frequency and severity of drought
stress in agriculture (IPCC, 2007). Improving yield for both favourable and stress
environments of major crops, therefore, is pivotal for world food security.

Developments in rice breeding

Rice is the most important food crop, with almost 600 million Mg produced annually
on over 150 million ha (Khush, 2005). Rice is also the staple crop with the highest
water requirement (Tuong & Bouman, 2003). To ensure food security, crop cultivars
with greatly improved agronomic traits will be required. Improving rice yield for both
favourable and stressful environments is the main breeding objective (Cattivelli et al.
2008; Miuraet al., 2011; Tuberosa, 2012).

One way to realize higher yields over the past decades was by improving the
harvest index through introducing dwarf genes, as was done in other major cereals
such as wheat (Austin, 1999) and barley (Hellewell gt 2000). For rice the semi-
dwarfing gene €d-1) was first introduced through cross breeding, in the late 1950s in
China and in the early 1960s at the International Rice Research Institute (IRRI),
Philippines. In China in 1956-1959, the first dwarf variety, Guang-chang-ai, was
developed using thal-1 gene from Ai-zi-zhan (Huang, 2001). In 1962, plant breeders
at IRRI made crosses to introduce dwarfing genes from the variety Dee-geo-woo-gen
of Taiwan into tropical, tall landraces. In 1966, IR8, the first semi-dwarf, high-yielding
modern rice variety was released, which produced record yields throughout Asia and
formed the basis for the development of new, high-yielding, semi-dwarf plant types
(Khush et al., 2001). Since the 19681 remained the predominant semi-dwarfing
gene present in rice cultivars.

In China in 1976, the first hybrid rice was developed, which showed an increase in
potential yield of ~15% compared with pure line varieties (Yuan et al., 1994). Since
then, hybrid rice has greatly contributed to the global increase of rice production.

In the late 1980s, IRRI scientists proposed the idea of a new plant type, NPT
(Khush, 1995). The NPT ideotype design focused first on large panicle size and
reduced tillering capacity, and then on low panicle position for improved lodging
resistance and canopy photosynthesis (Setter et al., 1995). Although the NPT did not
yield as hoped for (Peng et al., 1999), it stimulated China to establish a project on the
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General introduction

development of ‘super’ rice in 1996 (Cheng et al., 2007). China’s ‘super’ rice breeding
optimized the top three leaves and panicle position within a canopy in order to meet
the demand of heavy panicles for a large source supply. All these approaches focused
mainly on morphological traits, and in some cases also on physiological traits, in order
to improve agronomic yield-related traits. Further progress is expected from a
strengthening of the input of physiology into the breeding process (Mir et al., 2012).

Quantitative trait loci (QTLS) studies on agronomic traits in rice
Most important agronomic traits, such as crop yield and stress tolerance are
quantitatively inherited. The nature of quantitative traits is that their expression is
controlled by tens, or even hundreds, of quantitative trait loci (QTLs), most of them
having only a small effect on the trait (Macketyal., 2009). To support the efficient
manipulation of agronomic traits via breeding, it is important to identify QTLs
conferring the variation of these traits. Using markers associated with these QTLs,
researchers and breeders could accelerate breeding through so-called marker-assisted
selection (Mohan et a).1997; Dekkers & Hospital, 2002; Collard & Mackill, 2008).

In 2002, the genomes of two rice subspeci®s, sativa ssp. japonica (cv.
Nipponbare) an®. sativa ssp.indica 93-11 were sequenced (Geffal., 2002; Yu et
al., 2002), but only in a draft version. Subsequently the final sequence of the entire
rice genome of Nipponbare was completed by the International Rice Genome
Sequencing Project (Matsumoto et al., 2005). This achievement provided a vast
amount of information on the rice genome and enabled detailed genetic analysis.
Using this information, researchers have now succeeded in isolating and characterizing
many important QTLs/genes (Table 1), which have the potential to greatly improve
rice production. Below | highlight a few examples:

- As a complex agronomic trait, grain yield of rice is co-determined by several
component traits (Xing & Zhang, 2011), including number of tillers per plant (Li
et al., 2003; Takeda&t al., 2003), number of grains per panicle (Ashikari et al.,
2005; Xueet al., 2008; Huanget al., 2009; Jiao et al., 2010; Miuret al., 2010),
and individual grain weight (Fan et al., 2006; Song et al., 2007; Shoreuah,

2008; Weng et al., 2008; Li et al., 2011). Grain yield is also strongly determined
by genes coding for processes like grain filling (Wang et al., 2008). These genes
have been identified, cloned and characterized.

- Heading date is an important trait for the adaptation of crops to different
cultivation areas and cropping seasons (lzawa, 2007). To date many QTLs
contributing to heading date in rice have been cloned, for exatigle,Hd6,

Ehdl, Hd3a, RID1, andDTH8 (Yano et al., 2000; Takahashi et al., 2001; Doi et
al., 2004; Tamaki et al.2007; Wuet al., 2008; Wei et al., 2010).
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- There are many genes (Sasaki et al., 2002; Zou et al., 2006) associated with a
semi-dwarf growth habit that gives plants a shorter stem that is more lodging
resistant, especially in high nitrogen input environments. An alternative strategy
to achieve lodging resistance is increasing culm strength (e.g. Oataaka
2010).

- Two QTLs for broad-spectrum blast resistanq@@]l (Fukuokaet al., 2009) and
Pbl (Hayashiet al., 2010) were cloned, and these are a valuable source for
disease resistance. For abiotic stresses, many QTLs have also been found. For
example, for submergence toleran&blA (Xu et al., 2006), K1 and SK2
(Hattori et al., 2009); for salt toleranc&KC1(Ren et al., 2005); and for cold
tolerance, gLTG3-1 (Fujino et a).2008).

- Cloned genes (Chen et al., 2008; Ding et al., 2012; Yang et al., 2012) related to
hybrid sterility would allow for hybridization and gene flow, thus providing a
chance for cross breeding across rice species.

- When favourable genes are introduced into cultivated rice from wild relatives it
is necessary to eliminate any associated negative traits by marker-assisted
selection. Thus, knowledge on genes conferring important traits lost during
domestication is necessary for effective breeding. For example, genes for seed
shattering (Konishi et al., 2006; Lat al., 2006) and prostrate growth (Bhal.,

2008; Tan et al., 2008) have been cloned.

All these findings have provided a promising way to increase yield for both
favourable and stressful environments by combining all favourable QTLs or genes into
one single variety through QTL pyramiding or a transgenic approach (Takeda &
Matsuoka, 2008). But in most studies, the impacts of the genes on yield or stress
tolerance were evaluated on the basis of a single isolated rice plant at optimum
conditions, and hence it is unclear whether the gene can result in a real improvement
of yield in terms of grain yield on per area basis in the field under variable and often
limiting conditions. Although successful stories have been reported on the use of such
genes to tailor high yield or drought-tolerant genotypes, this approach seldom led to
release of new cultivars (Tardieu & Tuberosa, 2010). In field conditions, the
gene/QTL expression is highly conditional on the environment (Stratton, 1998; van
Eeuwijk et al., 2005). It has been suggested that to help solve real-world problems
more effort should be invested in integrating functional genomics with whole-crop
physiology by considering all feed-back, feed-forward, and compensation mechanisms
involving crop responses to environmental perturbations (Yin & Struik, 2008).
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Table 1. Genes responsible for major QTLs related to crop yield and stress tolerance in rice.

Trait QTL/gene Encoded protein Chr. Reference

Yield and yield components

Tillering MOC1 GRAS family nuclear protein 6 (latal. 2003)

Tillering OsTB1 Transcription factor with 3  (Takedeetal., 2003)

TCP domain

Grain number Gnla Cytokinin oxidase 1  (Ashikariet al., 2005)

Grain number, plant height Ghd7 CCT domain protein 7  (Xueetal., 2008)

and heading date

Grain number and strong  depl PEBP-like domain protein 9  (Huamegal., 2009)

culm

Grain number, low tiller Ipa OsSPL14 8  (Jiacetal., 2010)

number and strong culm

Grain number WFP OsSPL14 8  (Miuraetal., 2010)

Grain size gs3 Transmembrane protein 3  (Feral., 2006)

Grain size G5 Serine carboxypeptidase 5  (@ial., 2011)

Grain size and filling w2 RING-type ubiquitin E3 2 (Songetal., 2007)

ligase
Grain size gSW5/GW5 Unknown 5  (Shomurat al., 2008;
Wenget al., 2008)

Grain filling GIF1 Cell wall invertase 4  (Wanget al., 2008)

Duration of the basic vegetative growth and photoperiod sensitivity

Heading date Hdl CONSTANS-like protein 6 (Yanetal., 2000)

Heading date Hdé a subunit of protein kinase 3 (Takahashét al.,

2001)

Heading date Ehdl B-type response regulator 10 (Davial., 2004)

Heading date Hd3a FT-like 6  (Tamakiet al., 2007)

Switch from vegetative to RID1 Cys-2/His-2-type zinc finger 10 (Wuetal., 2008)

floral development transcription factor

Days to heading DTH8 CCT domain protein 8 (Weietal., 2010)

Plant height

Plant height, high tillering  Htd1 OsCCD7 4  (Zouetal., 2006)

Plant height sdl Gibberellin 20 oxidase 1 (Sasatial., 2002)

Disease resistance

Blast resistance pi2l Proline-rich protein 12 (Fukuokeet al., 2009)

Blast resistance Pbl CC-NBS-LRR protein 11 (Hayaskial., 2010)

Abiotic stress resistance

Lodging resistance SCM2/0sAPO1 F-box protein 6  (Ookaweet al., 2010)

Submergence tolerance SUblA ERF-related factor 9 (Xuetal., 2006)

Internode elongation under SK1, K2 ERF-related factor 12 (Hattoriet al., 2009)

submergence condition

Salt tolerance KC1 HKT-type transporter 1 (Resmal., 2005)

Cold tolerance gLTG3-1 GRP and LTP domain 3  (Fujiral., 2008)

Sterility

Regulate photoperiod- pms3 A long noncoding RNA 12 (Dingtal., 2012)

sensitive male sterility

Hybrid sterility ORF3, ORF4, A killer-protector system 6 (Chemal., 2008;
ORF5 Yanget al., 2012)

Domestication

Seed shattering sh4 Myb3 transcription factor 4  (Letal., 2006)

Seed shattering gSH1 BEL1-like homeobox protein 1 (Koniskial., 2006)

Prostrate growth PROG1 Zinc finger transcription 7  (Jinetal., 2008; Taret

factor

al., 2008)
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Physiological perspective of crop production

From a crop physiological perspective, grain yield of rice is the outcome of three
constituents: the source, sink, and flow. The source is the capacity to supply sufficient
assimilates to the sink via photosynthesis; the sink is the yield potential represented by
the mathematical product of yield components; and the flow is the ability of transport
processes to translocate the photosynthetic products and other nutrients to feed the sink
at the highest possible rate. Improved yield can only be achieved if the source, the sink
and the flow are in full balance and functioning well throughout the crop cycle.
Simultaneously, the increase in crop production should be reached with a decrease in
availability and certainty of water resources for crop production. For rice this poses an
additional challenge as the crop is highly drought susceptible.

Crop photosynthesis, being the source of energy and inorganic carbon necessary for
crop growth, depends on the ability of the crop to build up and maintain a canopy for
capturing incoming light, but also on the photosynthetic capacity and efficiency of
individual leaves. For rice, leaf area dynamics and canopy architecture may have been
effectively optimized for maximum light capture through breeding (Horton, 2000). At
the leaf level, photosynthesis is not only controlled by diffusion components [stomatal
conductancegs) and mesophyll conductance,ffy but also by various biochemical
capacities of protein complexes. The potential activity of RubisgafVIimits
photosynthesis at low GQroncentration in the chloroplast stroma)(Ghe electron
transport capacity of the chloroplas{J limits photosynthesis at hig8. (Farquhar
et al., 1980). At ambient COconcentration, the light-saturated photosynthesis is
limited by V¢max (Farquhar & Sharkey, 1982), and Mg, andJ..« are closely related
to leaf nitrogen content per unit areay)(NHarley et al., 1992b).N, is not only a
genetic trait (Cook & Evans, 1983), but also affected by plant ontogeny and the
competition for nitrogen between source and sink (Mae, 1997).

Photosynthesis is also greatly influenced by the environment during growth,
particularly as the microclimate unavoidably fluctuates under natural field conditions
(Flood et al., 2011). Abiotic stress and leaf ontogeny have a large effect on
photosynthesis (Lawlor & Cornic, 2002; Flexas et al., 2004; Grassi & Magnani, 2005;
Chaves et al. 2009). Especially water stress will dramatically decrease photosynthesis
through control ofgs and g,, (Flexas et al., 2004), or a decrease of the contents of
RuBP as well as the activities of the major carbon reduction cycle enzyme Rubisco
(Tezaraet al., 1999; Lawlor & Cornic, 2002).

Not only the source (photosynthesis), but also the sink and the flow are regulated by
environmental factors. For example, spikelet sterility is determined towards the end of
panicle formation, successful pollination is determined during flowering, and the
majority of the carbohydrates present in mature seeds is determined by assimilation

6
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during grain filling. Low availability of assimilates from photosynthesis during periods
each of the yield components are determined reduces sink size (Bindraban et al., 1998;
Boyer & Westgate, 2004; &t al., 2010). On the other hand, the source activity
(photosynthesis) may also be limited by metabolite transport processes (Brautigam &
Weber, 2011) and sink strength (Herold, 1980; McCormick et al., 2006). Because of
the complexity of regulatory networks in plant and crop systems and given the
complex interactions with the environment, field crops show strong genotype x
environment (GxE) interactions. This complexity is especially relevant when breeding
for drought tolerance.

Drought tolerance is important, but, sometimes, spectacular results obtained in one
drought scenario might have limited relevance for improving yield in other scenarios
as drought varies in intensity and timing (Tardieu, 2011). For example, in wheat,
selection for genotypes of higher transpiration efficiency (fVC) could improve
yield by 10% in very dry seasons (Rebetekal., 2002), but the yield advantage can
disappear at moderate stress (Rebettka., 2002), and even hamper plant growth
resulting in smaller plants with reduced transpiration, biomass and yield (Cehdon
al., 2004; Blum, 2005). These GXxE interactions always result in inconsistency of
morphophysiological traits, which make the selection criteria for breeding complex
and unstable, especially under drought. Therefore, it is necessary to accurately model
and predict GXE interactions for improving breeding efficiency and MAS.

Integration of crop physiology with genetics — QTL-based modelling

Since the pioneering work on plant modelling by C.T. de Wit (1959), ecophysiological
crop models have been developed extensively by integrating knowledge from different
disciplines, such as crop physiology, micrometeorology, soil science, and computing
technologies (Loomis et al., 1979; Bouman et al., 1996; McCown et al., 1996). Now,
crop models based on solid crop-physiological knowledge can quantify causality
between relevant physiological processes and responses of these processes to
environmental variables. Therefore, in principle, these crop models enable predictions
beyond the environments in which the model parameters were derived and can reveal
how GxE interactions come about (Yin et al., 2000a; 2004; Sinclair, 2011). Crop
related model input parameters are also referred to as ‘genetic coefficients’ (White &
Hoogenboom, 1996; Mavromatis et al., 2001; Messna., 2006; Whiteet al., 2008)
because these model-input parameters might be (at least partly) under genetic control.
Therefore, crop modelling has been used to give suggestions for ideotype breeding
(Penning de Vries, 1991; Dingkuhn et al., 1993; Kropffal., 1995; Haverkort &
Kooman, 1997).
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However, crop models often do not consider the genetic basis of model parameters
that describe genotypic differences (Stam, 1998; Koornneef & Stam, 2001), nor do
they consider how much genetic variation exists in the genetic materials available for
breeding. Yinet al. (1999a, b; 2000b) first tried to combine crop modelling with QTL
mapping using a SUCROS-type crop model. The QTL analysis was first applied to the
model-input traits. After the QTL analysis, the identified QTLs were then coupled to
the crop model by replacing the original, measured input trait values with those
predicted from the QTL effects (Yin et al., 2000b). This approach was first showcased
for predicting differences in yield among relatively similar lines from a genetic
population. This QTL-based modelling approach was later used to study crop traits
such as leaf elongation rate in maize, flowering time, and fruit quality (Reymond et al.,
2003; Quilot et al., 2004; Nakagaweh al., 2005; Quilot et al., 2005; Yin et al., 2005b;
Uptmoor et al., 2008; Bertin et al., 2010; Prudent et al., 2011). These later studies
showed that this approach was robust in predicting genetic differences in bi-parental
crossing populations under different conditions (in terms of vapour pressure deficit,
soil moisture content, temperature and photoperiod). The QTL-based modelling
approach applied to complex traits (e.g. yield) was not very successful (Yin et al.
1999a,b; 2000b), when compared with results applied to single crop traits. The reason
is that yield is much more complex considering the hierarchy from leaf photosynthesis
to crop yield (Yin & Struik, 2008), and further improvements in crop models were
suggested by Yin & Struik (2008).

QTL-based modelling could potentially evaluate constraints in breeding due either
to limited genetic variation or to correlations between the traits. QTL-based modelling
could evaluate the effect of QTLs for traits at organ level on crop yield under different
environments, which could be useful in breeding for specific environments. For
example, Chenet al. (2009) using the crop model APSIM-Maize simulated that a
QTL accelerating leaf elongation could increase yield in an environment with water
deficit before flowering, but could reduce yield under terminal drought stress. QTL-
based modelling could also be useful in supporting marker-assisted selection.

In short, QTL-based crop modelling, combining ecophysiological modelling and
genetic mapping, can dissect complex yield traits into component traits, integrate
effects of QTLs of the component traits over time and space at the whole crop level,
and predict yield of various allele combinations under different environmental
conditions.

Objectives and approach
In this study, | tried to amalgamate physiological and genetic approaches to study a
rice genetic population, using a crop model to create knowledge and insight useful for

8



General introduction

breeding. The difficulty to phenotype a large germplasm collection for specific trait
performance, has been a critical limitation in applying physiological information and
crop modelling in genetic analysis for more than half a century (Yin et al., 2003a,
2004; Sinclairet al., 2004; Houleet al., 2010; Sinclair, 2011). Most physiological
studies require detailed, sophisticated and usually expensive techniques to phenotype
plants, and can be only applied to a few genotypes, while a genetic analysis always
involves quick and simple phenotyping of many (often >100) genotypes. The dilemma
of phenotypic screens is that they are either too difficult and sophisticated, or too crude
and with poor resolution (Salekdehal., 2009; Sinclair, 2011).

In this thesis, | will use a relatively new crop model GECROS (Genotype-by-
Environment interaction on CROp growth Simulator, Yin & van Laar, 2005), which
requires relatively few, easily phenotyped input parameters. The model was structured
from the principles of the whole-crop system dynamics to embody physiological
causes of crop performance. | will test whether the model is potentially useful for
designing ideotypes in support of marker-assisted selection. Furthermore, the
information from combined genetic and physiological analysis of GECROS model
input parameters will be scaled up to predict crop yield under diverse environmental
conditions. The general methodological steps are outlined as:

First, a simple screen that allows a large genetic population to be examined is a
first-tier run. This round of screening could focus on simple and easily measured traits.

Second, a more sophisticated physiological study was conducted on a smaller, but
for physiologists still relatively large number of genotypes (i.e. 10~30 lines), selected
from the results of the QTL analysis from the first step. Methods are available to
describe mathematically traits that vary rapidly with environmental conditions (e.g.
photosynthesis) (Yin et al., 2009b). In this step, for each genotype, a set of genotype-
specific physiological parameters was calculated.

Last and most importantly, the genetic information and physiological analysis of
processes at the lower level will be scaled up, based on QTL effects and allelic
information, to crop level by using the GECROS model. A QTL-based crop model
will play an important role in the upscaling (Yin et al., 2000b, 2004; Tardieu, 2003;
Chenu et al., 2009; Tardieu & Tuberosa, 2010), because these process-based crop
growth models have the potential to assess a complex trait at a higher organizational
level, via integrating the information about processes at lower level (Keating et al.,
2003; Yin & Struik, 2008; Hammer et al., 2010; Zhu et al., 2011).

In this thesis | will apply this methodology, with a focus on photosynthesis, which
is the source of energy and inorganic carbon necessary for crop growth. The
physiological process of photosynthesis and the photosynthetic responses to
environment changes have been intensively studied (von Caemmerer, 2000; Bernacchi

9
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et al., 2001; Farquhar et al., 2001; Bernacehal., 2002; Tuzet et al., 2003; Flexas et

al., 2004; Yin et al., 2009b). Extensive genetic variation in photosynthesis has been
found in rice germplasm (Cook & Evans, 1983; Dingkuhn et al., 1989; Sasaki & Ishii,
1992; Adachi et al., 2011). Given the well-defined understanding of photosynthesis,
photosynthesis is a good target for applying integrated genetic analysis and
physiological analysis. More specifically, | will

1. Map QTLs for photosynthetic parameters of rice assessed by both gas exchange
and chlorophyll fluorescence measurements under drought and well watered field
conditions.

2. Investigate the physiological basis of genetic variation and resulting QTLs
identified.

3. Examine the ability of the ecophysiological crop growth model GECROS to
account for yield differences among individual genetic lines of rice.

4. Analyse the ability of the GECROS model with QTL-based estimates of
physiological input parameters to predict the yield of the lines.

5. Analyze the relative importance of individual physiological traits or markers in
accounting for genetic variation in yield.

6. Test the ability of the marker-based approach to predict yield differences in an
independent set of genotypes of the same parents.

7. Examine the extent to which exploiting the natural genetic variation in leaf
photosynthesis can contribute to variation in canopy photosynthesis and in crop
productivity in rice.

I expect, such an approach, consisting of using knowledge of fundamental plant
biology for elementary traits, at the same time considering their genetic variation, will
improve the understanding of plant responses to environmental factors, and improve
the efficiency of breeding for traits at the crop level. The approach should be
considered as a contribution of genetics and crop physiology to systems biology scaled
up at the whole-plant level and aimed at bridging the gap between functional genomics
and crop field performance.

Outline of the thesis

To achieve the above research objective to support plant breeding, an introgression
line (IL) population is preferred for this study. ILs are plant series that possess
segments of the donor parent chromosome in the background of the recurrent parent.
Phenotypic characterization of each line can reveal which chromosome fragment from
the donor has the gene(s) associated with an interesting trait. ILs have been widely
used in QTL validation, QTLs pyramiding, and map-based cloning because of the

10
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simple genetic background (Ashikari & Matsuoka, 2006; Ando et al., 2008; Takeda &
Matsuoka, 2008).

In this thesis, | first evaluate the genetic variation of leaf photosynthesis parameters
in a rice genetic population consisting of 94 advanced backcross ILs and two parents
(Chapter 2). The parents were the lowland rice cv. Shennong2@bnjca, recurrent
parent) and the upland rice cv. Haogelao (indica-japonica intermediate, donor parent).
Haogelao is drought tolerant, but low-yielding; Shennong265 is drought susceptible,
but high-yielding under irrigated conditions. After a cross between the two parents, the
resultant k plants were backcrossed with Shennong265 three times, and thgse BC
plants were consecutively self-pollinated five times to construct the genetic population
BCsFg by the single-seed descent method (Gu, 2007).

Based on the QTLs related to gas exchange and chlorophyll fluorescence detected
under well-watered and drought-stressed field condition in Chapter 2, 13 ILs were
selected for detailed physiological study. I8hapter 3, the biochemical
photosynthesis model of Farquhar, von Caemmerer & Berry (1980), combined with a
phenomenological model for quantifying stomatal and mesophyll conductance (Yin et
al., 2009b), is used to study the physiological basis of genetic variation and resulting
QTLs for photosynthesis in the 13 selected ILs. With this combined model,
photosynthesis was dissected into stomatal conductggcengesophyll conductance
(gm), electron transport capacity.fy, and Rubisco carboxylation capacity,fay.
Significant genetic variation in these parameters was found. This genetic variation in
photosynthesis model parameters, together with other measured physiological input
parameters related to phenological and morphological development, is used to feed the
ecophysiological crop model GECROS to test the ability to predict yield differences in
the IL population, and to extapolate the prediction to an independent recombinant
inbred line population (Chapter 4). A model-based sensitivity analysis is presented to
provide breeders with more information for marker-assisted selection.

Although the crop model GECROS gave a fair prediction, Chapter 4 also shows that
introducing genetic variation in leaf photosynthesis into model analysis did not
improve the ability to predict crop yields. This could be caused by the fact that ILs
differed genetically in many respects beyond photosynthesis. To examine to what
extent observed natural genetic variation in leaf photosynthesis can potentially
contribute to increasing canopy photosynthesis and rice productivity, the crop model
GECROS was also used to scale up, and project the genetic variation at leaf level to
crop growth during the whole growing season at different climatic scenarios and in
different years (Chapter 5).
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Chapter 1

| hope the integration of crop physiology with genetics — QTL-based modelling of
crop vyield - could accelerate plant breedihgalso hope this thesis research will
exemplify the concepts of ‘crop systems biology’ (Yin & Struik, 2008, 2010): to bring
the information from functional genomics to crop level; to better understand the
organization, intra- and inter-plant competition and crop responses to environmental
conditions; to fill the vast middle ground between ‘omics’ research and relative simple
crop models; and to promote communication across various biological scales. These
expectations will be discussed@mapter 6 on the basis of the results presented in the
thesis.
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Chapter 2

ABSTRACT

Photosynthesis is fundamental to biomass production, but sensitive to drought. To
understand the genetics of leaf photosynthesis, especially under drought, upland rice
cv. Haogelao, lowland rice cv. Shennong265 and 94 of their introgression lines (ILs)
were studied at flowering and grain filling under drought and well watered field
conditions. Gas exchange and chlorophyll fluorescence measurements were conducted
to evaluate eight photosynthetic traits. Since these traits are very sensitive to
fluctuations in micro-climate during measurements under field conditions, we adjusted
observations for micro-climatic differences through both a statistical covariant model
and a physiological approach. Both approaches identified leaf-to-air vapour pressure
difference as the variable influencing the traits most. Using the SSR linkage map for
the IL population, we detected 1-3 QTLs per trait-stage-treatment combination, which
explained between 7.0 and 30.4% of the phenotypic variance of each trait. The
clustered QTLs near marker RM410 (the interval from 57.3 to 68.4 cM on
chromosome 9) were consistent over both development stages and both drought and
well watered conditions. This QTL consistency was verified by a greenhouse
experiment under controlled environment. The alleles from the upland rice at this
interval had positive effects on net photosynthetic rate, stomatal conductance,
transpiration rate, quantum yield of PSII and the maximum efficiency of light adapted
open PSII. However, the allele of another main QTL from upland rice was associated
with increased drought sensitivity of photosynthesis. These results could potentially be
used in breeding programs through marker assisted selection to simultaneously
improve drought tolerance and photosynthesis.

Key words: Drought, photosynthesis, physiological model, gquantitative trait locus
(QTLs), gas exchange, chlorophyll fluorescence.

INTRODUCTION

Drought is considered to be the greatest threat to €@cgzé sativa L.) production
(Sharma & De Datta, 1994). The complex quantitative genetics nature of drought
tolerance was once thought to be the main constraint for breeding for improved rice
varieties under drought prone environments (Ngugenal.,, 1997). Yet, recent
evidence has shown that progress can be made by direct selection for grain yield under
managed stress trials (Venuprasddl, 2007, 2008; Bernieget al., 2007; Kumaet

al., 2008). For further progress, indirect methods based on effective selection criteria
and on molecular markers for component traits should be explored (etiuah,

2011).
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QTL analysis of rice leaf photosynthesis

Today unprecedented efforts are being made in dissecting complex traits into their
single genetic determinants — quantitative trait loci (QTLS), in order to support marker-
assisted selection (MAS) and, eventually, cloning of genes. An increasing number of
QTLs related to drought response have been reported and these include QTLs for root
morphology, other root traits like root penetration ability (Peteal., 2000, 2002;
Babuet al., 2003; Ugeat al., 2011); osmotic adjustment (Rolghal., 2003); grain
yield and yield components (Lanceres al., 2004; Lafitteet al., 2004; Xuet al.,

2005); stay green (Jiargd al.,2004); canopy temperature, leaf rolling and leaf drying
(Yueet al., 2005); and carbon isotope discriminatiaf’C) (Takaiet al., 2009; Xuet
al., 2009).

Photosynthesis, being the basis of crop growth, biomass production and yield, is
one of the primary physiological processes strongly affected by drought (Chaves,
1991; Lawlor, 1995). The photosynthesis response to drought is very complex.
Generally, during the onset of drought, Ofiffusional resistances increase, especially
because stomatal aperture can change rapidly (Chetvals, 2002; Cocharcet al,

2002; Lawlor, 2002). With the progress of drought and tissue dehydration, metabolic
impairment will arise gradually, including decrease of the content and activities of the
major photosynthetic carbon reduction cycle enzyme, ribulose 1,5-bisphosphate
carboxylase/oxygenase (Rubisco), as well as ribulose 1,5-bisphosphate (RuBP)
(Reddy, 1996; Tezarat al., 1999). Besides the G@iliffusion and CQ fixation
pathways, Photosystem Il (PSIl) electron transport is very susceptible to drought
(Havaux, 1992; Lu & Zhang, 1999). Chlorophyll fluorescence, emitted mainly by PSiII
in the range of 680-740 nm spectra region, has been widely used for the estimation of
PSII electron transport rata vivo. Combining gas exchange measurements for CO
fixation and chlorophyll fluorescence data for PSII electron transport may bring new
insights into the regulation of photosynthesis in response to environment variables
(von Caemmerer, 2000). The advent of portable open gas exchange systems integrated
with chlorophyll fluorescence measuring devices enables researchers to not only
simultaneously measure net photosynthetic rate (A), stomatal conductance,for CO
(gs), transpiration rate ), intercellular CQ partial pressure (), transpiration
efficiency (TE), quantum yield of PSIl &), proportion of open PSIligP), and
maximum efficiency of open PSII in the light ¢f')) in real time in the field, but

also keep records of micro-climatic conditions during the observations such as leaf-to-
air vapour pressure difference (VPD) and leaf temperatysg) (Long & Bernacchi,

2003).

Because of the primary importance of photosynthesis in determining crop growth,
identifying QTLs controlling photosynthesis parameters is an important step in
enhancing MAS for improved yield. This assertion is supported by growing evidence
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that there is genetic variation for photosynthetic rates among available germplasm and
that recent yield progress in cereals from breeding was associated with increased
photosynthesis (Fischer & Edmeades, 2010). In rice, using 20 distinct varietiest Jahn
al. (2011) showed notable genetic variation in leaf photosynthetic rate. However, only
a few QTL studies have been reported so far for photosynthetic traits éTealg

2004; Zhaoet al., 2008; Adachet al., 2011), probably partly because gas exchange
measurements to phenotype these parameters under field conditions are laborious and
phenotypes are greatly influenced by environments during growth and measurement,
particularly when the micro-climate unavoidably fluctuates under natural field
conditions (Floocket al, 2011). It is very hard to expose genotypes to exactly the same
environmental conditions in terms of temperature, soil water content, and VPD.
Therefore, environmental noise is usually large and obscures genetic differences,
resulting in large QTL x environment interactions or in irreproducible results (e.g.,
Simkoet al., 1999; Yinet al., 1999a,b). Observations must therefore be corrected for
differences in microclimate.

In this study, we aim at precision mapping of QTLs for photosynthetic parameters
of rice assessed by both gas exchange and chlorophyll fluorescence under drought and
well watered field conditions. Two strategies were applied. Firstly, we developed an
advanced backcross introgression lines (IL) population, which allows to more
precisely identify QTLs than the more commonly used populations such as
recombinant inbred lines (RIL). Secondly, we explored both statistical and
physiological approaches to correct for micro-climate variation during observations,
thus enhancing the precision of observed phenotypic trait values for mapping. Our IL
population was developed from a cross between a lowland rice and an upland rice
variety, since upland rice relies exclusively on rainfall for water uptake and is
generally thought to be more drought resistant.

MATERIAL AND METHODS

Plant materials

The mapping population consisted of 94 advanced backcross introgression lines (ILs).
The parents were the lowland rice cv. Shennong265 (Japonica) and the upland rice cv.
Haogelao Ihdica-Japonica intermediate). The two cultivars were contrasting in term
of their agronomic performance under drought condition (La, 2004; Gu, 2007).
Haogelao is drought tolerant, but low vyielding; whereas Shennong265 drought
susceptible, but high yielding under irrigated conditions. After cross between the two
parents, the resultant plants were backcrossed with paternal cultivar Shennong265
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three times and these B plants were consecutively self-pollinated five times to
construct the mapping population B by the single seed descent method.

DNA extraction and simple sequence repeats (SSR) analysis

Fresh leaves were collected from the;B{ines and ground in liquid nitrogen. DNA
was extracted from the ground tissue using the cetyltrimethyl ammonium bromide
(CTAB) method (Rogers & Bendich, 1985). SSR primers were synthesized according
to the sequences published by McCoatlal. (2002). A total volume of 25ul reaction
mixture was composed of 1 ng/ul template DNA, 10 mmol Tris—HCI (pH 9.0), 50
mmol KCI, 1.5 mmol Mgd, 0.1% Triton X-100, 2 mol of each primer, 2.5 mM each

of dNTP (dATP, dCTP, dGTP, dTTP), and 1 unit Tag DNA polymerase.
Amplification was performed on a program for the initial denaturation step with 94°C
for 5 min, followed by 35 cycles for 1 min at 94°C min at 55°C2 min at 72°Cwith

a final 10 min extension at 72°The PCR (polymerase chain reaction) products were
separated on 8% polyacrylamide denaturing gels and the bands were revealed using
the sliver-staining protocol described by Panaud et al. (1996).

Phenotypic evaluation

Plants of the introgression population and recipient and donor parents were grown at
the experimental station of China Agricultural University, Beijing (39°N, 116°E),
China, in 2009, following a complete randomized block design, with two replications,
four rows per plot (plot size 2.5 m x 1.2 m), 7.5 cm between plants within each row
and 30 cm between rows in both rainfed upland and fully irrigated lowland field
conditions. The crops were managed according to standard local practice, with the
following fertilizer applications: 48 kg N g 120 kg BOsha* and 100 kg KO ha®

as the basal fertilizer, and additional 86 kg N'tat the tillering stage and 28 kg N

ha* at the booting stage. Weeds in both lowland and upland fields were controlled by
a combination of chemical and manual methods, and insects were controlled
chemically.

The flowering of the population occurred between 105 and 120 days after sowing
for the drought stressed environment, and between 107 and 119 days after sowing for
the well watered environment. Gas exchange and chlorophyll fluorescence
measurements covered both flowering stage and mid grain filling stage (around two
weeks after flowering). The measurements were adjusted by considering the flowering
time and the variation of flowering time in each line to make sure each genotype had
three replicates per block. For the drought stressed environment, soil moisture was
monitored with the time domain reflectometry method (TDR-TRIM-FM) at a soil
depth of 0 ~ 30 cm. During the photosynthesis measurements, the soil water content
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was around 13-16% (v/v) at flowering stage, and around 15-19% (v/v) at grain filling
stage. Normally measurements were made during a clear day, between 9:00 and 11:30
am and between 13:00 and 15:00 pm, with photosynthetic photon flux density (PPFD)
of natural sunlight between 700 and 1600l m? s’ T, varied from 23.3°Co

36.0°C (Fig. 1) and relative humidity from 17.4% to 67.8% (partly shown by VPD in
Fig. 1) during the measurements.

The middle parts of three fully expanded flag leaves on the main culms of three
central plants in each plot were measured using a portable open gas exchange system
(Li-6400, Li-COR Inc., Lincoln, Nebraska, USA) with an integrated fluorescence
chamber head (LI-6400-40, Li-COR Inc., Lincoln, Nebraska, USA) with setting of
PPFD at 100@mol m? s*and a CQ concentration,) at 400pmol CO, (mol air)*
by using CQ cylinders. Gas exchange data for net photosynthesis rgte (
intercellular CQ partial pressure (¢ stomatal conductance for GQ@); transpiration
rate ;) and fluorescence data fé% (the steady-state fluorescence) were recorded
after maintaining the leaf in the leaf chamber long enough forreach a steady state.
Besides this, micro-climatic data{} VPD, etc.) was automatically recorded at the
same time. Then a saturating light pulse (>8a6®I| m* s* for 0.8 s) was applied to
determineF’ ,, (the maximum fluorescence during the saturating light pulse). By the
end, after turning off the actinic light, a “dark pulse” (using far-red light to
preferentially excite PSI and force electrons to drain from PSII) was applied ko, get
(the minimum fluorescence yield in the light-adapted state). From these data three
chlorophyll fluorescence parameters were derived:

1. &g = (B — F)/Eq, the apparent PSII™ éransport efficiency (Gentgt al.,
1989), which estimates the yield of PSII photochemistry;

2.qP = (F,, — E,)/(En, — F3), which quantifies the photochemical capacity of PSII
(Bradbury & Baker, 1984; Quick & Horton, 1984);

3. E}/E;, = (F,, — E))/F;,, which quantifies the extent to which photochemistry at
PSIl is limited by competition with thermal decay processes (Oxborough & Baker,
1997).

From gas exchange data, transpiration efficiency (TE) was calculat&d,a3o
assess any genetic difference in the responsiveness to drought, the Aatindgfr the
drought treatment (f.gn) to that under the well-watered treatment,(4 was
calculated to indicate drought sensitivity (DS), for both flowering and grain-filling
stages.
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Fig. 1 Correlation between net photosynthe&igimol mi? s*) and vapour pressure deficit VPD (the

left column of plots) or L (the right column of plots) under different stage x treatment combinations.
At flowering stage for drought stressed plants (a,b) and for well watered plants (c,d) and at mid grain
filling for drought stressed plants (e,f) and for well watered plants. (Bi) minimum, mean (= SD),
maximum values are: for FS: VPD (0.96, 2.66 + 1.01, 4.75),(23.3, 30.1 + 3.0, 36.0); for FW.:

VPD (1.21, 2.00 £ 0.35, 3.00),ed (25.3, 29.5 + 1.9, 33.9); for GS: VPD (1.07, 1.94 + 0.56, 3.35),
Tear (25.1, 28.7 £ 1.8, 32.7); for GW: VPD (1.32, 2.29 + 0.47, 3.44),(24.7, 29.5 + 2.37, 34.0).
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Adjusting for the effects of environmental fluctuations on trait values

As photosynthetic ratA or related traits (e.g. stomatal conductance) can strongly vary
with environmental variables such as VPD (Cowan, 1977; Buckley & Mott, 2002), the
phenotypic trait value of theth genetic line was expressed in a statistical covariant

model using the environmental variable as a quantitative co-regressor:

ui]-k =u-+ Gi + E] + (GE)U + Bk + bxi]-k + ei]-k (1)

where,u = general mearG; = genetic effect of th genotypeE; = treatment effect,
which stands for either of the two treatments (well watered or drought stre€3g}); (

= genotype x treatment interactioB; = the block effectb = the effect of the
environmental variable;xy= values of the environmental variable during
measuremengy= residual effect. This approach allows the observed trait values to be
adjusted statistically to the same value (e.g. average) of the climatic varighlan@
VPD) that had inevitably fluctuated during the field measurement conditions. The
analysis identified that VPD was the most influential environmental factor (see
Results).

Such a statistical approach often results in increased precision for parameter
estimates and increased power for statistical tests of hypotheses (Ott & Longnecker,
2001). An alternative is to use a physiological approach €Yial., 1999a), which
helps to confirm the reliability of the statistical approach. We therefore explored the
use of a physiological approach, based on the photosynthesis model of Fatcalhar
(1980), to correct for the effects of environmental fluctuations during measurements.
SinceA is Rubisco limited under our measuring conditions (i.e. light intensity of 1000
pmol m? s*in ambient CQ concentration)A can be expressed as a consequence of
CO, and Q competing for the Rubisco binding site by carboxylation and oxygenation,
respectively:

(Ci - Il)vcmax
ST Ak, Ry (2)
whereVmaxiS the maximum rate of Rubisco carboxylati@js the intercellular C®
partial pressure,l’ is the CQ compensation point in the absence of day respiration
(Ry), and Ky is the effective Michaelis-Menten constar€y, is expressed as
Kmd(1+0O/Kyy0), WhereK,,. and K, are the Michaelis-Menten constants for Cand
O,, respectively, and @& the oxygen concentration.

In order to incorporate the effect of VPD, the model of Ballal. (1987), as

modified by Leuning (1990, 1995), states that

gs = go + Afvpd 3)

where gs is the stomatal conductance for £@iffusion, g is the residual stomatal
conductance if the irradiance approaches zero, gnd the term for the effect of leaf-
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to-air VPD.f,,q is expressed as/f{(Cs—I')(1+D4D,)], whereDgis the vapour pressure
deficit, Cs is CQ, concentration at leaf surface (which was obtained f&nand a
default value for boundary-layer conductance set in the Li-Cor),aar@hd D, are
empirical coefficients/” is the CQ compensation point, which can be derived from
egn (2) (e.g., see Azcén-Bieto et al., 1981) as :

r = 1—; + ch(1 + O/Kmo)Rd/chax

1- Rd/chax

Combining Eqns (2) and (3), and replaci@gby (G - A/gy), and then solving foA
give

4

—b +Vb? — 4ac
A= 5 (5)

where

a= fvpd(Cs +Kw) —1
b= (Csfvpd + Kvapd - 1)Rd + (Cs + KM)go - (Csfvpd - F*fvpd - 1)chax
c= [(Cs + KM)Rd - (Cs - 1—;)chax]go

The temperature response of the model parametgis Y., Kme Kmo and Ry are
described, using a general Arrhenius equation:

parameter = exp[c — AH,/(RTy)] (6)

whereR is the molar gas constant afidis the leaf temperature in kelvia,and 4H,
are scaling constant and activation energy, respectively.

As constants associated with the kinetic properties of Rubisc&&mo, 7",) are
generally conservative for most higher terrestriglpants (von Caemmerer, 2000;
Bernacchiet al., 2001), most parameters values used in the physiological model, eqns
(4)-(6), were derived from literature. Howev¥,,.x anda; were estimated from curve
fitting to our measurements for each stage x treatment combination: i.e. flowering -
drought stressed environment (FS); flowering - well watered environment (FW); grain
filling - drought stressed environment (GS); grain filling - well watered environment
(GW). All these parameters are given in Table S1 (see Supplementary materials).
Using this model, measured values #rwere normalized to the mean value of
observed VPD and d; for each stage x treatment combination (Fig. S1).

Construction of marker linkage map

The initial skeleton linkage map was constructed using MAPMAKER/EXP3.0
(Lincoln et al., 1993), based on a RIL population derived from the same parents (La
2004). New polymorphic SSRs were also identified for our IL population. To assign
all markers (including those initially identified in the RIL population) into linkage
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groups, we also took into account the ultra-dense SSR linkage map of Teetralkh
(2000) and McCoucket al. (2002), which contains SSRs identified in our population.
Their map was used as the reference to estimate marker distances, the length of
chromosomes and of introgressed segments for our IL population, based on the co-
linearity of markers across populations (e.g. Shen et al., 2004; Wu & Huang, 2007).

QTL mapping

Significance in the difference for each trait among the ILs were tested (P < 0.05), and
both simple and partial correlations among all the traits were estimated using SAS 9.13
to assist the analysis of any co-locations of the QTLs for various traits.

Chromosomal locations of putative QTLs for each trait were determined first by
single-point analysis using the general linear model (GLM) procedure in SAS. The
one-way analysis of variance (ANOVA) was used to test the significanc® 1) of
association at each locus between two genotype groups (homozygous allele from
Shennong265 vs. that from Haogelao). Multivariate analysis of variance (MANOVA)
with the PROC GLM in SAS was performed to calculate the total phenotypic variance
explained by the identified QTLs of the same trait by using genotype data of the
corresponding markers.

To improve the reliability of QTL analysis, we also used MapQTL 6 software (van
Ooijen, 2009) to perform so-called composite interval mapping (or MQM in MapQTL
6) (Jansen, 1995). We followed the procedure described betYah (2005b). The
threshold of QTL detection for each trait was based on 1000 permutation tests at the
5% level of significance in MapQTL 6. Regions with LOD score values between 2.0
and the calculated threshold were considered as suggestive QTLs (Lander & Kruglyak,
1995), once a suggestive region was approved by single point analysis.

Confirmation of an important QTL

From the field experiment, we identified a QTL around marker RM410 on
Chromosome 9, that showed a consistent effect across treatments and stages for a
number of the traits (see Results). Therefore, during the summer of 2010, at the
research facility UNIFARM, Wageningen, plants of the introgression line (IL161)
which only contains a small segment around marker RM410 from the donor parent
Haogelao, as well as the recurrent parent Shennong265, were grown in the greenhouse
under controlled-environment conditions, to validate the QTL expression under an
independent condition. In the greenhouse, temperature was set at 26°C for the 12 h
light period and 23°Cor the 12 h dark period. The GQevel was about 37Qmol

mol?, the relative humidity was set at 65%, and extra SON-T light (providing extra
PPFD ~300umol m? s?) was switched on when solar radiation intensity outside the
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greenhouse was below 4Qfhol m? s'. Sixteen plants of both genotypes were grown

in hydroponic culture by using half Hoagland’s solution. One week before flowering,
water stress was introduced by adding 12.5% polyethylene glycol (PEG-8000)
(stressed condition) or not (non-stressed condition). At flowering stage and grain
filling stage, gas exchange and chlorophyll fluorescence parameters were measured on
four plants (two measurements per plant) of each treatment by Li-Cor 6400. All
measurements were made at a photon flux density of 1@@0 m? s*, ambient CQ
concentration, VPD of 1.0 to 1.6 kPa, angbf 25°C

RESULTS

Using statistical and physiological models to correct trait values

The environmental variables, VPD ang,fJ fluctuated during measurements of the
large set of genotypes, especially for FS (Fig. 1), VPD ranged from 0.96 to 4.75 kPa,
Tieas ranged from 23.3 to 36.0°Therefore we used a statistical covariant model, egn
(1), to adjust trait values to the mean VPD ang Values for each stage x treatment
combination. The model analysis showed that VPD had a stronger influence on trait
values than I did. The analysis also showed that all the trait values differed
significantly among the ILs for each stage x treatment combind®ienQ(01).

Next, we used a physiological model, eqn (2-6), to validate the covariant model by
adjusting all net photosynthesis values (A) to the mean VPD apdfleach stage x
treatment combination. The results showed a tight correlation between the statistically
correctedA and the physiologically correctéd(R? = 0.92 for FS, R= 0.92 for FW,

R> = 0.99 for GS, R = 0.99 for GW) (Fig. S2). Further analysis using the
physiological model showed that the physiologically correéteging both VPD and

Tiear ClOsely correlated withA adjusted using VPD alone (Fig. S3), confirming that
VPD was the more important factor as also indicated by the statistical model. This was
probably because]s during measurements fluctuated only around the optimum value
for photosynthesis (Fig. S1b,d,f,h), so the effect of the fluctuation on the traits, if any,
was only marginal.

Phenotypic evaluations

Mean values, standard deviations, ranges, skewness, and kurtosis of all adjusted traits
are shown in Table 1. All traits showed continuous distribution in the population and
almost all showed a normal distribution with low levels of skewness and kurtosis.
Compared with the two parents, ILs showed a larger range of variation (Table 1),
indicating an obvious transgressive segregation. Among the traits, the relative range of
variation (i.e. CV in Table 1) in stomatal conductance for FS was the largest, while
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Table 1. Statistics of photosynthesis-related traits of two parents and the population of introgression

lines after adjusting to the mean VPD for each stage x treatment combination.

Traits Unit HaogelaoShennong Introgression lines
265 Mean CV(%) Range Skewness Kurtosis
FS A pmol CO, m? s™ 11.8 119 112 138  7.9-14.7 -0.06 -0.49
0 mol m? s* 0.091 0.094 0.089 17.5 0.061-0.128 0.11 -0.85
T mmol H,0 m?” s* 3.20 3.60 3.28 119 2.45-4.40 0.11 -0.20
G pmol CO, mor? 244 248 247 6.4  206-295 0.17 0.14
TE  mmol CQ (mol HO)*  3.72 351 350 9.7 2.65-4.49 0.08 -0.03
Pps; Mol € (mol photon) 0.245 0.249 0245 9.4 0.181-0.286 -0.39 -0.10
QP - 0.513 0.515 0519 10.6 0.381-0.616 -0.43 -0.44
F'/F',, mol € (mol photon} 0.482 0.491 0.478 5.0 0.405-0.533 -0.16 0.29
FW A umol CQ, m? st 17.6 154 171 8.6  14.3-206 0.15 -0.53
s mol m? st 0.153 0.140 0.158 8.9 0.130-0.191 0.15 -0.65
T, mmol HO m?s! 4.81 442 497 86  3.83-597 0.02 -0.27
G umol CQ, mol* 263 271 269 29 251-290 0.11 -0.12
TE  mmol CQ (mol H,O)*  3.65 346 350 6.9 295406 -0.02 -0.07
®ps; Mol € (mol photon) 0.306 0.281 0289 56 0.246-0.324 -0.06 -0.19
qP - 0.593 0528 0541 6.3 0.450-0.614 -0.38 0.27
F'/F',, mol € (mol photon} 0.519 0531 0540 3.6 0.500-0.585 0.24 -0.71
GS A pmol CQ, m? st 12.6 126 137 121 9.8517.3 0.00 -0.75
s mol m” s* 0.134 0121 0127 156 0.088-0.181 0.43 -0.04
T, mmol H,O m” s* 3.82 339 3.68 148 2.63-5.37 0.36 -0.05
G umol CQ, mol* 284 272 268 4.1 245-293 0.03 -0.71
TE  mmol CQ (mol H,O)*  3.23 375 382 95 286453 -0.17 -0.38
®psy Mol € (mol photon)* 0.246 0.247 0267 7.7 0.219-0.313 -0.23 -0.43
QP - 0.466 0.455 0531 7.6 0.424-0615 -0.52 0.20
F'/F',, mol € (mol photon} 0.532 0.543 0509 5.2 0.442-0554 -0.44  -0.35
GW A pmol CQ m? st 16.0 184 162 9.7 115204 0.32 0.65
0 mol m? s* 0.165 0.180 0.152 10.9 0.107-0.186 0.21 -0.27
T, mmol H,0 m? s* 6.03 630 544 110 3.99-6.73  0.22 -0.47
G umol CQ, mol* 285 272 270 3.1 252-287 014  -0.78
TE  mmol CQ (mol H,O)*  2.65 295 302 81 247-3.62 0.18 -0.45
®psy Mol € (mol photon) 0.292 0.281 0278 8.0 0.212-0.343 -0.21 0.81
qP - 0.575 0526 0539 9.7 0.374-0.650 -0.53 0.15
F'/F',, mol € (mol photon)t 0.514 0.542 0521 5.4 0.437-0.634 0.55 2.74
F DS - 0.672 0.773 0.653 13.4 0.451-0.826 -0.13 -0.68
G DS - 0.792 0.685 0.852 12.7 0.633-0.990 0.95 0.75
CV = coefficient of variation. For other definitions see the SYMBOLS AND ABREVIATIONS.
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that in the intercellular COpartial pressure for FW was the smallest. Between the
drought environments, the ranges of variation under drought stress were relatively
larger than those in the well watered environment, especially at flowering.

Simple and partial correlations for traits associated with gas exchange, chlorophyll
fluorescence parameters and transpiration efficiency (TE) are given in bottom left and
top right corners of Table 2, respectively, for each stage x treatment combination. In
the simple correlation analysis, net photosynthesjssignificantly correlated with all
gas exchange and chlorophyll fluorescence parameters, except TE at grain filling,
presumably reflecting the fact that photosynthesis is a complex trait associated with a
number of physical and chemical reactions.

The partial correlation coefficient betwegnandA changed from 0.14 in the well
watered environment to 0.57 in the drought stressed environment at flowering, and
from 0.33 in the well watered environment to 0.58 in the drought stressed environment
during grain filling. This shows the direct effect of drought stress, as the CO
availability decreased because of diffusional limitation through stomatal closure. The
significant negative correlations betweén and A in both the simple and partial
correlation analyses were also supported by Fick’s first law of diffusion fogr CO
transfer along the path from®© G: G = C,— Alg.

There were tight correlations between the various chlorophyll fluorescence
parameters®ps, P, F'\/F'y) in the partial correlation analysis (Table 2hese tight
correlations may reflect thabpg, is quantitatively restricted by botfP andF',/F',,

i.e. @bg=qP xF'\/F'y,.

Both the correlations betwednhand other gas exchange parametgysTt, Ci, TE)
and the correlations betwedénand chlorophyll fluorescence parameters<PgP,
F'/F'm) were significant, except betweénandgP in GS (Table 2). Compared with
using only gas exchange systems, we can still get more information from combining
both gas exchange and chlorophyll fluorescence data, especially on the genetic
diversity in electron transport components related to photosynthesis.

Construction of genetic linkage map

To obtain SSR markers showing polymorphism between Haogelao and Shennong265,
we surveyed more than 1000 SSRs and found 288 polymorphic markers. Among them
130 SSR markers were evenly distributed across the genome, and were therefore
chosen to construct the linkage map. The total length of the linkage map was 1645.1
cM, with an average marker spacing of 12.65 cM (Fig. 2). A graphical representation
of the 130 SSRs showed that these introgression lines covered the whole genome of
donor parent Haogelao (Gu, 2007).
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Table 2. Simple and partial correlation coefficients for traits associated with gas exchange,
chlorophyll fluorescence parameters and water use efficiency.
A Os T, Ci TE Dpsyi gP FJF'

FS A 0.57**  0.65***  -0.29*  0.38** 0.23* -0.19 -0.12
Os 0.55%** -0.01 0.14 -0.35%**  -0.41** 0.41**  0.40***
T; 0.69%*  0.79*** 0.05 -0.44** 0.13 -0.13 -0.07
Ci -0.58**  0.22* 0.08 -0.68*** 0.04 -0.06 -0.01
TE 0.48**  -0.34** -0.21* -0.94%** -0.06 0.06 0.11
Dpg) 0.65***  0.13 0.24* -0.66***  0.59%** 0.98***  (0.92***
qP 0.32** -0.11 -0.08 -0.58*** 0.53***  0.88*** -0.96***
F'J/F', 0.48% 0.52** 0.60*** 0.05 -0.07 -0.06 -0.52%**

FW A 0.14 0.80**  -0.08 0.46*** 0.18 -0.15 -0.11
Os 0.71%** 0.41%*  -0.21* -0.22* -0.12 0.08 0.06
T, 0.74**  (0.95%** 0.11 -0.38***  -0.08 0.10 0.12
Ci -0.30**  0.35**  (0.39*** -0.82**  0.01 -0.02 -0.03
TE 0.23* -0.43***  -0.47**  -0.98%** -0.07 0.07 0.06
Dpg)) 0.65**  0.34***  0.42** -0.29*  0.25* 0.99***  (0.95%**
gP 0.31** 0.03 0.08 -0.30**  0.29** 0.82*** -0.98***
F'JF', 0.44%* 047+  0.49** 0.09 -0.13 0.05 -0.52%**

GS A 0.58**  0.68***  -0.29**  0.49*** 0.13 -0.10 -0.06
Os 0.70*** 0.13 0.30** -0.22* -0.24* 0.22* 0.19
T; 0.78**  (0.94*** -0.01 -0.52**  0.11 -0.10 -0.08
G -0.20* 0.50***  0.40%** -0.64**  0.12 -0.09 -0.09
TE 0.10 -0.59***  -0.50*** -0.96*** 0.06 -0.04 -0.05
Dpg) 0.43***  -0.02 0.10 -0.45%*  0.46*** 0.99%+*  0.97***
qP -0.06 -0.38***  -0.34*** -0.43*** (0.48***  0.75%* -0.97***
FJ/F'., 0.67** 0.56** 0.63*** 0.02 -0.10 0.26* -0.43***

GW A 0.33** 0.60***  -0.45*** (0.22* 0.25* -0.20 -0.17
Os 0.74%*+* 0.51***  0.01 -0.17 -0.21 0.15 0.17
T, 0.74%x*  (0.98*** 0.28** -0.21* 0.04 -0.03 -0.04
G -0.21* 0.46***  0.48*** -0.74** 0.15 -0.12 -0.10
TE 0.09 -0.57**  -0.58** -0.98*** 0.07 -0.05 -0.04
Dpgy 058 0.20* 0.25* -0.35%*  0.31** 0.99%+*  0.94*
qP 0.28** -0.08 -0.03 -0.37*¥*  0.37%*  0.87*** -0.98***
FJ/F ., 0.33** 047 0.44* 0.20 -0.25* -0.12 -0.59%**

*P<0.05; **P<0.01; ***P<0.001.

The simple and partial correlation coefficients are listed in the bottom left and top right corners, respectively.
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Detection of QTLs

Quantitative trait locus analysis for various traits was conducted separately for the four
stage x treatment combinations, by using both single point analysis and MQM. In total
we detected 29 QTLs including those ‘suggestive’ QTLs: 8 QTLs for FS, 8 QTLs for
FW, 7 QTLs for GS, 3 QTLs for GW, and 3 extra QTLs for drought sensitivity. QTLs
were detected for all traits except ©©rand TE. The total fraction of the phenotypic
variation explained by QTLs using genotype data of the marker at each putative QTL
(single point analysis) ranged from 7.0 to 37.2%. The results are summarized in Table
3 and Fig. 2. The most significant QTLs (i.e., QTLs with LOD scores higher than the
permutation calculation) were marked in bold in Table 3.

Net photosynthesis rate (A)

QTLs controlling net photosynthesis are located on chromosomes 2, 3, 7, 8Aand 9.

values adjusted using the physiological model identified virtually the same QTLs (Fig.
2), again validating the statistical covariant analysis. The phenotypic variance
explained by individual QTLs varied from 7.5 to 18.2%. The additive effect ranged
from -0.92 to 1.35umol m? s*. On chromosome 9 near marker RM410, there was a

QTL for all the four stage x treatment combinations, with a consistent positive
additive effect ranging from 0.55 to 0.fimol m? s™.

Stomatal conductancedg

Three QTLs associated witli were detected on chromosome 3 and 9 for FS, and on
chromosome 6 for GS. The phenotypic variance explained by these three QTLs ranged
from 9.5 to 13.5%. No QTLs were detected for well watered conditions (FW and GW).
This difference between the well watered and stressed conditions was also shown in
Table 1, which shows that the coefficient of variancgsathanged from 8.9 to 17.5%

and from 10.9 to 15.6%, when comparing well watered with stressed conditions at
flowering and grain filling, respectively.

Transpiration rate (J)

A QTL interval was detected near marker RM410 on chromosome 9 for both FS and
GS. The interval contributed to an increase of transpiration with an additive effect of
0.152 and 0.244 mmol fs?, for FS and GS, respectively. The phenotypic variances
explained were 10.8-11.4%. Given a tight correlation betWeandgs, the reason for

no QTLs detected forsgn well watered conditions also applied for T
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Table 3. QTLs identified for gas exchange and chlorophyll fluorescence parameter traits (see Table 1
for their abbreviations) in ILs from the cross Shennong 265 x Haogelao under well watered and
drought stressed environments at both flowering and grain filling stages.

Traits Stage by QTL identification Chr CLMISAS MQ'N'I 2
treatment marker P-value 5%) gzlobal F(’(c:)'\s/:;lon LOD (R%) a
A FS gA_FS_MOQM_1 2 RM406 0.0016 11.80.4 180 2.26 8.1 -0.9204
gA_FS MQM_2 9 RMA410 <0.000122.4 67.4 4.79 18.20.7725
Fw gA_FW_MQM_1 7 RM432 0.0096 6.9 28.5 44.5 245 8.3 0.8307
gA_FW_MQM_2 9 RM5799 0.0098 3.7 0.8 2.22 7.5 -0.6558
gA_FW_MQM_3 9 RM410 0.0026 9.4 63.3 4.23 1506408
GS gA_GS_MQM_1 8 RM1235 0.0029 9.6 15.6 10.7 2.46 1608627
gA_GS_MQM_2 9 RM410 0.0055 8.0 57.3 2.27 9.4 0.7092
GW gA_GW_MQM_1 3 RM5178 0.0111 6.3 16.7 23.15 3.60 1428485
gA_GW_MQM_2 9 RM410 0.0008 11.5 64.3 2.85 12.20.5584
Os FS gqGs_FS_MQM_1 3 RM338 0.0086 5.9 17.6 1114 2.30 9.5 0.0144
gqGs FS MQM_2 9 RM410 0.0009 11.1 68.4 3.30 13.80.0069
GS gGs_GS_MQM_1 6 RM276 0.0055 8.4 8.4 47 2.28 108.0102
T FS gTr_FS_MQM_1 9 RM410 0.0006 11.91.9 67.4 2.47 11.9.1515
GS gTr_GS_MQM_1 9 RM410 0.0040 8.6 8.6 58.3 2.34 108436
Dpsy FS qQy_FS_MQM_1 1 RM9 0.0095 7.0 7.0 94.4 2.22 10030111
Fw gQy_FW_MQM_1 9 RM410 0.0067 7.7 10.8 58.3 2.09 8.8 0.0066
gQy_FW_MQM_2 11 RM1761 0.0098 7.2 0.3 2.03 8.6 0.0085
GW qQy_GW_MQM_1 11 RM1761 0.0084 75 75 7.3 2.35 1@P155
gP Fw ggP_FW_MQM_1 1 RM8051 0.0097 6.3 37.2 54.4 2.26 8.1 0.0218
qqP_FW_MQM_2 1 RM1198 0.0027 9.3 146.4 243 9.0 -0.0111
qgP_FW_MQM_3 11 RM1761 0.0047 8.5 0.3 3.71 14®0229
GS gqqP_GS_MQM_1 6 RM276 0.0003 13.8.3.8 41.3 2.29 10.©.0181
FJ/Fn FS gMeo_FS MQM_1 6 RM6836 0.0003 13.523.8 55.1 3.14 12.90.0122
gMeo_FS_MQM_29 RMA410 0.0016 10.2 64.4 2.33 9.3 0.0074
GS gMeo_GS MQM_1 4 RM2799 0.0021 11.81.0 123.8 3.58 15.10.0119
gMeo_GS_MQM_28 RM1381 0.0097 6.2 2.9 2.05 8.3 -0.0120
DS F gDS_F_ MQM_1 2 RM406 0.0010 7.0 7.0 174 2.62 1130640
G gDS G MQM_1 2 RM6911 0.0003 13.128.1 39.2 5.44 20.30.0810
gDS G MQM_2 8 RM1381 0.0015 10.3 1.9 3.06 10.9-0.0525
G gDS_G_MQM_1*2 2*8 RM6911_13810.0089 5.9

P-value, the significance of phenotypic variation associated with markers in single-point andlysis; R
the individual contribution of one QTL to the variation in a trait. GlobaltRe fraction of the total
variation explained by the QTLs of the same trait; Position, position of maximum LOD; LOD,
logarithm of oddsa, additive allelic value of Haogela;epistatic interaction between two markers.
QTLs with LOD scores higher than the threshold set by 1000 permutation tests at 5% level of
significance were marked in bold.
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Quantum yield of PSlidpg)

QTLs, located on chromosomes 1, 9 and 11, were found for quantum vyield of PSII.

The locus near maker RM1761 on chromosome 11 was consistently detected for both
FW and GW. The phenotypic variance explained by these QTLs ranged from 8.6 to

10.9% with a consistently positive effect.

Proportion of open PSII (qP)

Four QTLs associated with proportion of open PSII, located on chromosomes 1, 6 and
11 were detected. The direction of their effects was positive except the QTL located on
chromosome 1 at 146.6 cM. Individual loci explained between 8.1 and 14.2% of the
phenotypic variance, and the additive effect varied from -0.011 to 0.0218.

Maximum efficiency of open PSII in the light(F",)

Four QTLs related td-'/F',, were detected on chromosomes 4, 6, 8 and 9 in the
drought stressed conditions, while no QTLs were found in the well watered conditions.
The total phenotypic variance explained by QTLs was 23.8% at flowering and 21.0%
at grain filling. The phenotypic variance explained by individual QTLs varied from 8.3
to 15.1% with a negative effect, except for the QTL located on chromosome 9 near
marker RM410.

Drought sensitivity (DS)

As indicated, DS was calculated AgougniAwates Which can characterize the relative
responsiveness of each genotype to a decline in water availability. In total, three QTLs
were found, one at flowering, two at grain filling. The QT¢4BS F MQM_1 and
gDS_G_MQM_2 coincided with QTLs ofA: gA FS_MQM_1 at FS and
gA_GS_MQM_1 at GS, respectively. The coincidences were expected because these
loci were expressed only at one of the treatments. However, we found a new QTL with
a relatively large effect for grain filling stage (not detected¥at either treatments at

this stage), on chromosome 2 with an additive effect of -0.081 on DS.

Verification of a QTL on Chromosome 9 in a controlled greenhouse environment

The above QTL analysis showed that the QTL near RM410 on chromosome 9 had a
significant multiple effect oi, g, T, @ps; andF',/F';, across development stages and
treatments. In order to assess whether the effect shown by chromosome 9 is
independent and whether there is any epistasis between identified QTLs, ANOVA by
PROC GLM was used to evaluate epistatic interactions between pairs of QTLs, as
represented by the nearest marker loci (&inal., 2000). There was no significant
epistatic interaction found, except for DS at grain filling stage (Table 3). In our IL
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population, we found an introgression line, IL161, which had the background of
recurrent parent Shennong265 but for a small introgression segment containing marker
RM410 (Fig. 3a); so, IL161 could serve as near-isogenic line of Shennong265. To
further validate the QTL near RM41@ve measured photosynthetically associated
traits for Shennong265 and IL161 in a greenhouse experimentA TidL161 was
consistently higher than that of Shennong265 (Fig. 3b), confirming the positive effect
of the allele from Haogelao at the locus AnThis difference was significanP (<

0.05) at FS and FW, which was also supported by the high LOD scores of locus
gA FS _MQM_2 andA_FW_MQM_2, respectively. The difference was insignificant
(P > 0.05) at GS and GW, respectively, partly in line with the comparatively small
additive effects and low LOD scores of loas_GS_MQM_2 andA_GW_MQM_2.

For g, T, ®ps and F'/F', the corresponding QTLsqGS FS MQM 2,
gqTr_FS_MQM_19Qy_FW_MQM_1 andMeo_FS_MQM_2 were validated by the
significant difference between IL161 and Shennong265 exceptd&iGIS (Fig. 3c-f).

DISCUSSION

In this study, we aimed to identify QTLs for photosynthetic parameters of rice under
drought and well watered field conditions during flowering and mid grain filling stage.
Because of the limited range of genetic variation and high sensitivity to environmental
perturbations, photosynthetic traits were known so far not to be amenable to QTL
analysis. We, therefore, used two strategies to enhance QTL mapping precision: using
both a statistical and a physiological approach to adjust phenotypic trait values for
micro-climatic differences during measurements in the field, and using an advanced
backcross IL population. The identified QTLs tended not only to cluster in the rice
genome, but also to consistently be expressed over both development stages and both
drought stressed and well watered conditions (Fig. 2).

Complexity of photosynthetic traits

Photosynthesis as a dynamic process, continuously interacts with environment.
Because of micro-climate fluctuations, it is difficult to phenotype photosynthesis in the
field for a large set of genotypes (Floetlal., 2011). We used a covariant model
which normalized all measurements to the mean VPD, because VPD has a dominant
effect ongsand photosynthesis (Badt al., 1987; Leuning, 1990, 1995). This dominant
effect of VPD, relative to {, was confirmed by our statistical analysis. Bernaethi

al. (2001), however, demonstrated that.finfluenced many aspects of the
biochemical and biophysical reactions which determine the rate of photosynthesis.
Using a physiological model, we could separate the mixed effects of VPD,@nd T
(Fig. S1). A sensitivity analysis with and without considering temperature effect
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Fig. 3 Confirmation of a QTL on Chromosome(8) Graphical representation of genotypes of IL161.

Gray blocks chromosome regions homozygous for ShenongB&&ck block chromosome region
introgressed from Haogelao. The graphical genotypes shown here are based on the physical map by
Matsumotoet al. (2005). (b)-(f) Comparisons of photosynthetic traits between Shennong265 (gray
column) and IL161 (black column) in 201() net photosynthesid; (c) stomatal conductance for

CQO;, g5, (d) transpiration ratd,; () quantum yield of PSIbpgy; (f) maximum efficiency of open PSII

in the lightF'\/F',. * indicates significant differences a«®.05 between IL161 and Shennong265.

showed thaf was little affected by Jx but strongly by VPD (Fig. S3). Part of reason

may be that temperature during measurements varied around the optimum temperature
of photosynthesis (~30), where the temperature response is less prominent (Fig. S1).
Partly because VPD &T e - €, Wheree(T eqy) is the saturation vapor pressure based

on Tean, € IS the vapor pressure in the ambient air. The equation indicates,dhat T
may influence photosynthesis through VPD. Therefore, the physiological model
confirmed the covariant model analysis in separating the mixed effects of VPD and
Tiear based on solid physiological principles.
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Our QTL study using corrected trait values showed that fewer than 35% of the
QTLs for chlorophyll fluorescence parameters coincided with those for gas exchange
parameters (Table 3). Chlorophyll fluorescence parameters indicate electron transport
capacity of photosynthesis (Genst al., 1989). Different QTLs identified for
chlorophyll fluorescence and gas exchange parameters suggest that photosynthetic
electron transport and GQixation are not entirely coupled. The partial uncoupling
between the two sets of parameters could be due to the faét west limited by the
Rubisco activity during our measurement conditions (FFPD = 1608 m? s%), at
this state, part of the electrons were used for processes other théiradion (Yin et
al., 2006, 2009b). The alternative use of electrons could be especially the case when
plants are facing drought stress (Chaves, 1991). During onset of water stress, stomatal
aperture will first decrease to reduce the water loss; this sensitivity of stomatal
conductance was also shown in our data (Table 1), with more variance in drought
conditions than in well watered conditions. Net photosynthesis will be reduced after
the stomatal response as a consequence of the re@ucadfurther complication
under drought is the associated increasedi High temperature will have feedback
effects, firstly, by increasing transpiration as a result of an increased VPD at the leaf
surface. Secondly, highJ; may alter the biochemical activity of photosynthetic
enzymes (e.dVemay- Thirdly, the higher canopy temperature may accelerate ageing of
the leaf, thus shortening the growing period. The complex and conflicting responses of
gas exchange and electron transport to drought stress mean that physiological
knowledge should be incorporated into genetic analysis of photosynthesis.

Merits of IL population

Since Eshed & Zamir (1994) constructed the first complete set of ILs in tomato
carrying singleLycopersicon pennellichromosomal segments into a homogeneous
background oLycopersicon esculentymepresenting the entire wild tomato genome,

the ILs also became popular in other crop species such as rice, potato and barley and in
the model plantArabidopsis. The ILs are plant series that possess segments of the
donor parent chromosome in the background of the recurrent parent. These ILs can be
considered similar to a genomic library with genome inserts. The ability to statistically
identify small phenotypic effects is increased by the removal of background noise.
Also the homozygous lines are immortal, and phenotypic data can be obtained from
different environments (e.g., across various years).

In our IL population there was an line, IL161, with only a single desirable segment
introgressed, the interval on chromosome 9, with co-location QTls @f T,, @pgy
andF'\/F'.,. Because all phenotypic variance between the IL and the recurrent parent
(cv. Shennong265) is due to the introgressed segment, we validated the detection of
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this QTL by comparing the difference in photosynthetic traits between IL161 and
Shennong265 in an independent environment (Fig. 3). Because the greenhouse micro
environment variables (temperature, humidity, light intensity, etc.) were controlled at
relatively constant levels, the results of the greenhouse experiment for QTL
verification implicitly proved the efficacy of our covariant and physiological models in
adjusting phenotypic trait values for field micro-climatic differences to have a more
accurate QTL analysis.

Cluster of QTLs

The phenomenon of QTL clusters has been observed in different crops, including rice
(Xiao et al., 1996), barley (Hordeum vulgake) (Yin et al., 1999b), wheat (Triticum
aestivumL.) (Quarrieet al., 2006), cottonGossypium hirsuturh.) (Shappleyet al.,

1998), soybean (Glycine max) (Xu et al., 2011), sorghumSprghum bicolor (L.)
Moench) (Linet al., 1995) and peach (Prunus persica L.) (Quéibal., 2004). This
clustering may be due to the tight linkage of genes or to the pleiotropic effects of a
single locus. By using substitution mapping, Monforte & Tanksley (2000)
demonstrated in tomato (Solanum lycopersidujnthat a region affecting several
agronomically important traits actually resulted from the linkage of multiple QTLs.
However, Xueet al. (2008) showed that the tight correlation between number of grains
per panicle, plant height and heading date was due to the pleiotropic effect of a single
QTL Ghd7.

In our study, four intervals located on chromosomes 6, 8, 9 and 11 were found to
control two or more photosynthetic traits each. Especially in the interval from 57.3 cM
to 68.4 cM of chromosome 9 (~2500 kb), QTLs relatedtgs, T;, @ps; and FJ/F',
were clustered and showed the same positive effect from the allele of upland rice
Haogelao. The knowledge of the photosynthetic processes indicates chloroplast
electron transport rates and carbon metabolism are coupled (at least to some extent),
suggesting that pleiotropic effects are likely. A conclusion about whether the
clustering is caused by pleiotropy or by gene linkage within these QTL regions cannot
be made at this stage. For better characterizing these loci, it is necessary to reduce the
extent of introgression and develop near-isogenic lines carrying fine-mapped QTLs.

The clustering of QTLs also indicates the difficulties of manipulating correlated
traits simultaneously. For example, TE is an important target for breedingt (Xu
2009). From theoretical perspective, Coneébral. (2004) indicated that under certain
environment conditions, leaf-level TE could be improved by higher photosynthetic
potential, lower stomatal conductance, or a combination of these two. However, in our
experiment, the clustering of QTLs fé andgs on chromosome 9 shows that the
photosynthesis was improved by keeping stomata more open, resulting in @igher
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and a higher photosynthesis (Fig. 3). This association means a higher loss of water at
the same time, thereby keeping TE virtually invariant. This could be the reason why
there was no QTL found for TE near marker RM410. Again, further analysis based on
finer substitution lines might answer the question whether the association Anmng

and T could be broken towards a significantly improved TE.

Marker-assisted selection
The above interesting QTL clusters in the IL population for a number of traits could be
explored for further MAS for an improved photosynthetic performance. Especially the
QTLs at the RM410 locus was independently confirmed, showing a positive allele
from upland rice Haogelao. The upland rice cultivar generally performed better under
drought for a number of agronomic traits (La, 2004; Gu, 2007). Our result indicates
the possibility of simultaneous improvement of drought tolerance and photosynthetic
traits. For breeders, it is interesting to identify co-locations of QTLs, especially when
their effects have the same positive direction. This co-location could potentially be
used in a breeding program through MAS to combine multiple benefits without
negative effects.

The analysis with DS (expressedfgugniAwate) identified additional QTLs (Table
3), especiallygDS_G_MQM_Iwhich has the highest LOD score (5.44) in our study.
For breeding one would select for genotypes which have not only high photosynthetic
rates but also low photosynthetic sensitivity to drought. QTLs for DS all had negative
additive effects (Table 3), indicating alleles from Haogelao were surprisingly
associated with high sensitivity to drought. Nevertheless, our ILs are good ready
breeding materials which are most alike to the recurrent parents but are further
improved by the introgression of desired traits from the donor plant. Further rounds of
selection on the basis of these ILs, using the markers associated with the QTLs, could
combine favourable alleles of multiple loci into a single genotype.

CONCLUDING REMARKS

This is the first paper using simultaneously measured gas exchange and chlorophyll
fluorescence data to intensively study the genetic differences of photosynthesis under
field conditions. We also introduced a physiological model to support our covariant
model to remove the micro-environment variation noise. Through these approaches we
obtained consistent results across environments and growth stages, and observed co-
location of physiologically tightly related QTLs. We then successfully confirmed a
QTL controlling multiple photosynthetic traits identified under field conditions. In
view of climate change (CQOenrichment, higher temperatures, and more severe
drought stress), photosynthesis as a source of crop production is directly influenced by
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these factors, and has also been considered as the only remaining major trait available
to further increase crop yield potential (Loeigal., 2006; Murchiet al., 2009; Zhiet

al., 2010). Fischer & Edmeades (2010) have shown that recent yield progress in
cereals from breeding was associated with increased photosynthesis. We expect that
photosynthesis will receive an increasing attention in genetic studies and future
breeding programmes (e.g. Adachi al.,, 2011). Great challenge for drought-prone
environments is to increase photosynthetic rate and transpiration efficiency
simultaneously. To that end, rich physiological knowledge should be explored to
enhance the genetic analysis of the traits of photosynthesis and water use, as already
illustrated for other traits (e.g. Yiet al., 1999a; Bertin et al. 2010). Our results
highlight that combined physiological and genetic tools can be helpful to improve
screening and selection strategies in rice breeding for increased photosynthesis under
field conditions.
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SYMBOLS AND ABBREVIATIONS

A

G
FJF'm
gS

qP
Tleaf

T
Dpg),
DS
TE

=

G

FS
Fw
GS
GW
PPFD
QTL

Net photosynthesis rate

Intercellular CQ concentration

Maximum efficiency of open photosystem (PS) Il in the light
Stomatal conductance for GO

Proportion of open PSII

Leaf temperature

Transpiration rate

Quantum efficiency of PSII electron transport
Drought sensitivity

Transpiration efficiency

Flowering stage

Grain filling stage

Flowering stage - drought stressed environment
Flowering stage - well watered environment
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Table S1. The values of photosynthetic parameters used in the physiological adjustment. The values
of c and 4H, describe the temperature responses of @ptake.

c AH,

Parameter Value (dimensionless) (kJ mol%) Reference
Ry (umol m?s7) s 18.72 46.39 Bernaccheét al. (2001)
Vema (Mol m?s?) — 26.35 65.33 Bernaccheét al. (2001)
I (umol mol?) 42.78 19.02 37.83 Bernacchét al. (2001)
Kme (LMol mol?) 4049  38.05 79.43 Bernacchét al. (2001)
Kme (Mmol mol*) 278.4 20.30 36.38 Bernacchet al.(2001)
o (Mol m? s?) 0.01 — — Leuning (1995)
D, (kPa) 0.35 — — Leuning (1995)
Vema (Umol mi?s?)  FS 57 — — t (0.86)

FwW 71 — — t (0.81)

GS 60 — — 1 (0.82)

GW 68 — — 1(0.73)
Y FS 16.41 — — T (0.86)

Fw 1853 — — t(0.81)

GS 17.09 — — 1(0.82)

GW 21.06 — — T (0.73)

& the values of R T, Kne, Ko Were estimated at 25°C
T, calculated from each stage-treatment combination by fitting Leuning’s stomatal-photosynthesis
model (Leuning 1990, 1995) witf in brackets.
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Fig. S1 Percentage deviation of net photosynthesis rAletq¢ VPD and T, predicted by the
physiological model for four different stage-treatment combinations (panel (a), (b) for FS, panel (c),
(d) for FW, panel (e), (f) for GS, (g), (h) for GW). Each set of functions to VPD (panel (a), (c), (e),
(9)) and temperature (panel (b), (d), (), (h)) was normalized to unity at average VPD and temperature,
respectively. The minimum, mean and maximum value of VPD and temperature in each stage-
treatment combination is shown by squares and triangles, respectively. The minimum, mean (x SD),
maximum value is: FS (VPD (0.96, 2.66 + 1.01, 4.7%) 3.3, 30.1 + 3.0, 36.0)); FW (VPD (1.21,

2.00 + 0.35, 3.00), i (25.3, 29.5 £ 1.9, 33.9)); GS (VPD (1.07, 1.94 + 0.56, 3.35)(75.1, 28.7 =

1.8, 32.7); GW (VPD (1.32, 2.29 + 0.47, 3.44),24.7, 29.5 + 2.37, 34.0).

39



Chapter 2

—~ 2 |®@ (0) y=1.0979x-1.687 &
" y=1.0317x-0.2475 R?=0.9183
P"E R?=0.9244
18

O | S

s 10

3 s

Q

g ©

c
2 2 | @ y=0.9824x+0.4756
T y =1.0244x-0.2708 R 009935
R? =0.986 :

>

% 18 |

W

S 14|

]

£ 10 |

o

6
6 10 14 18 2 6 10 12 18 2

Statistically adjusted A (u mol CO, m?s™)

Fig. S2.Comparison between physiologically adjusted net photosynthesig\yated the statistically
adjusted Apanel (a) for FS, panel (b) for FW, panel (c) for GS, panel (d) for GW).

40



QTL analysis of rice leaf photosynthesis

@ ®

y=0.9848x + 0.2145

2 _
18 v= 1.0005x - 0.1008 R®=0.998
R? = 0.9993

© (@)

22

y=1.0106x-0.3114
18 y =0.9996x - 0.0539 R? =0.9969

14

Physiologically adjusted A to mean VPD

6 10 14 18 22 6 10 14 18 22

Physiologically adjustedA to mean VPD and T4

Fig. S3. Comparison between physiologically adjusted net photosynthe<s, jateol CO, m? s?) to
mean VPD and physiologically adjustddo both VPD and I (panel (a) for FS, panel (b) for FW,
panel (c) for GS, and panel (d) for GW).

41






CHAPTER 3

Physiological basis of genetic variation in leaf photosynthesis
among rice (Oryza satival..) introgression lines under drought and
well-watered conditions

Junfei G, Xinyou Yin? Tjeerd-Jan Stomph Huaqgi Wand’, Paul C. Struil

& Centre for Crop Systems Analysis, Department of Plant Science, Wageningen University,
P. O. Box 430, 6700 AK Wageningen, The Netherlands

® Plant Breeding & Genetics, China Agricultural University, 100193 Beijing, P.R. China

This chapter is published dournal of Experimental Botarés (2012), 5137-5153.



Chapter 3

ABSTRACT

To understand the physiological basis of genetic variation and resulting QTLs for
photosynthesis in a rice (Oryza sativa L.) introgression line population, we studied 13
lines under drought and well-watered conditions, at flowering and grain filling.
Simultaneous gas exchange and chlorophyll fluorescence measurements were
conducted at various levels of incident irradiance and ambient t€QGestimate
parameters of a model which dissects photosynthesis into stomatal condugfance (
mesophyll conductance { electron transport capacityJ.fty), and Rubisco
carboxylation capacity (May. Significant genetic variation in these parameters was
found, although drought and leaf age accounted for larger proportions of the total
variation. Genetic variation in light saturated photosynthesis and transpiration
efficiency (TE) were mainly associated with variationginand g, One previously
mapped major QTL of photosynthesis was associated with variatigyaimdgy,, but

also inJnax and Vemax at flowering. Sogs and g, which were demonstrated in the
literature to be responsible for environmental variation in photosynthesis, were found
also to be associated with genetic variation in photosynthesis. Furthermore,
relationships between these parameters and leaf nitrogen or dry matter per unit area,
which were previously found across environmental treatments, were shown valid for
variation across genotypes. Finally, we evaluated the extent to which photosynthesis
rate and TE can be improved. Virtual ideotypes were estimated to have 17.0% higher
photosynthesis and 25.1% higher TE, compared with the best genotype investigated.
Our analysis using introgression lines highlights possibilities to improve both
photosynthesis and TE within the same genetic background.

Key words. Drought, genetic variation, mesophyll conductance, model®ryza
sativa L., photosynthesis, rice, stomatal conductance.

INTRODUCTION
The response of leaf photosynthesis to drought involves interactions between physical
and metabolic mechanisms (Kramer & Boyer, 1995; Pinheiro & Chaves, 2011). The
understanding of these physiological mechanisms is necessary to improve
physiological dissection of the complexity of leaf photosynthesis in response to
drought (Serraj et al., 2008).

In general, the relationships among leaf photosynthégissomatal conductance
(g, and transpiration are well understood, @shas been studied most when
investigating photosynthetic responses to dro(rgiitewed by Israelssoet al., 2006;
Casson & Hetherington, 2010; Lawset al., 2011). Howevergs is not the only
component of C@diffusion in leaves. Mesophyll conductangg,)( the conductance
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from substomatal cavities to the site of carboxylation limits photosynthesis
significantly as well, meaning that the €€@oncentration in chloroplast {Cis lower

than in intercellular space {{QLloyd et al., 1992; Warren et al., 2003; Warren, 2004,
2008; Flexas et gl.2008). Ignoringg, would erroneously attribute the decreased
photosynthesis under drought to metabolic impairment (Deffire., 1998; Flexast

al., 2004; Centritto et al., 2009).

The value ofg,, is influenced by leaf traits such as leaf dry matter per unit area
(LMA, Flexas et al., 2008; Galmés et al., 2011), but also by environmental variables,
including water status (Delfinet al., 1998; Galmést al., 2007; Niinemetst al.,

2009), temperature (Bernacchi et al., 2002; Scafaro et al., 2011), and nutrient supply
(Warren, 2004)There is increasing evidence tigatandgs are tightly correlated (e.g.
Evans, 1999; Flexas et al., 2007a; Warren, 2008;efial., 2009b; Barbouet al.,

2010; Doutheet al., 2011) and follow the same pattern of variation: declining in
response to short-term increases of,@@rtial pressure and increasing with increases

in irradiance. So the relationship betwegnandgs is worthy to be further explored,
when assessing genetic variation in leaf photosynthesis. Genetic variatjggsirato

will allow breeding for high transpiration efficiency (TE) (Galmés et al., 2011).

Photosynthesis is affected not only by diffusion componegtndg,,), but also by
various biochemical capacities of protein complexes. The potential activity of Rubisco
(Vemay limits photosynthesis at lIowZ.. As C. increases, the chloroplastic electron
transport capacity () can limit photosynthesis (Farquhetr al., 1980). BothV;max
andJnax are closely related to the amount of leaf nitrogen per unit BiggéMakino et
al., 1984, 1985; Evans, 1989; Harley et 4B92b).

Whilst most studies have focused on photosynthetic responses to environmental
factors, significant genotypic variation &f has long been reported among species of
Oryza, and among progeny plants derived from crosses between varieties. For
example, variation was observed among varietiegpbnica rice (Sasaki & Ishii,
1992; Ishii, 1995), and among varieties includindica andjaponica rice and wild
rice species (Cook & Evans, 1983; Dingkwdtral., 1989; Yeo et al., 1994; Peng et al.,
1998; Masumotcet al., 2004; Tenget al., 2004). Moreover, quantitative trait loci
(QTLs) responsible for the different photosynthetic parameters have been successfully
mapped (Zhaet al., 2008; Takaet al., 2009; Xuet al., 2009; Adachet al., 2011).
Recently, we (Chapter 2), using a population of introgression line (ILs) from a cross
between upland rice and lowland rice, identified QTLs for light saturated gas exchange
and chlorophyll fluorescence parameters under both well-watered and drought
conditions in the field. QTLs affecting these parameters tended to cluster in the same
genomic regions, suggesting a common genetic basis and inherent physiological
connections of photosynthesis parameters.
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Few studies have investigated the physiological basis for these reported genetic
variations and QTLs of leaf photosynthesis. Taylagaral. (2011) showed that the
higher N, and highergs in indica cultivars could be the reason for higl#erthan
observed in gaponica variety. Similarly, Adachet al. (2011) reported that two
mapped QTLs of net photosynthesis actually arose from an incredgeahd g
Scafaroet al. (2011) compared a cultivar @ryza sativa with two wildOryza
relatives, and found that the difference in mesophyll cell wall thickness was
responsible for differences oy, which resulted in substantial variationAnbetween
the cultivated and the wild rice. Mast¢ al. (2005) isolated a TE-regulating gene
ERECTAfrom a population ofArabidopsis and found tha¥cmas Jmax Stomatal
density, and mesophyll development caused the genetic variation in TE and A.

As a follow-up of our QTL-mapping study (Chapter 2), the present paper aims to
investigate the physiological basis of genetic variation and resulting QTLs identified
for our IL population. Therefore, we used a model to analyse experimental data for
complete curves of photosynthetic responses te @ to light measured on leaves in
a representative subset of the ILs. Such a model analysis allows: (1) to identify the
genetic variation in each biophysical and biochemical component, (2) to analyse the
physiological basis for the genetic variation in photosynthesis, and (3) to evaluate the
potential of utilising the genetic variation in these components for imprévengd TE
under contrasting drought stress. The information obtained could have an important
implication for developing drought tolerant varieties.

MATERIAL AND METHODS

Plant growth conditions, treatments and experimental design

A greenhouse experiment was conducted, at the research facility UNIFARM,
Wageningen, the Netherlands. Physiological dissection of photosynthesis requires
complete curves of responses to various, @@d light levels, and it is practically
infeasible to experimentally obtain these curves for all individual genotypes of the IL
population descripted in Chapter 2. Eleven lines (IL7, IL37, 1L42, IL69, IL84, 1L100,
IL130, IL157, IL159, IL161, and IL164) and two parents [Shennongfignica;
Haogelao,indica-japonica intermediate] were therefore selected. The selection was
based on two criteria: (i) the ILs should carry many QTLs to reflect as much as
possible the genetic variation of the population; and (ii) the ILs should contain as few
chromosome segments from the donor parent as possible, to remove the background
noises (see also Eshed & Zamir, 1995). These eleven ILs had on average 6.5% of
genome introgressed. Their graphical genotypes are shown in Fig. 1.
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Fig. 1. Graphical genotypes of the eleven introgression lines in this study. The length of each linkage
group was shown in centiMorgan (cM). The light-blue region indicate the introgression regions from
the donor parent ‘Haogelao’; the red regions indicate the homozygous regions from the recurrent
parent ‘Shennong265’. The figure was drawn using software GGT 2.0 (van Berloo, 2008). The seven
regions responsible for variation of photosynthesis paramd®grk( , Jmax ¢, G Vemax @and &, see

Table in Appendix for their definition), identified from regression analysis using Eqn (14) with
additive effects (i.ea;, ay, as, a4, as, a and a), are indicated (vertical lines). Parameters, on which
genome alleles from ‘Haogelao’ have positive effects and negative effects, were shown in red and blue
colours, respectively.

Temperature in the greenhouse was set at 26°C for the 12 h light period and at 23°C
for the 12 h dark period. The GQevel was about 38@mol mol*, the relative
humidity was set at 65%, and extra SON-T light was switched on when global solar
radiation intensity outside the greenhouse was < 4004 md then switched off once
it exceeded 500 W Hh Pre-germinated seeds of the 13 genotypes were sown on sand-
beds twice (on the"8and the 18, respectively, in June 2010), to extend flowering and
grain-filling periods for an enough time window of measurement. Seedlings were then
transferred to containers (40 cm long, 30 cm wide, and 20 cm high) in hydroponic
culture by using half-strength Hoagland’s solution, according to a completely
randomized block design. Sixteen plants of each genotype were grown with 7.5 x 7.5
cn¥ spaces between plants. One week before flowering, eight plants per genotype were
exposed to a moderate water stress (comparable to the stress level as in the field
experiment in Chapter 2) induced by adding 12.5% polyethylene glycol (PEG-8000) to
the growth solution (Money, 1989). The stress was imposed continuously on plants till
all measurements were completed. The remaining eight plants per genotype were
maintained under non-stressed condition. Flowering period of 13 genotypes of the two
sowings lasted from the f5August till the & September. Measurements were
conducted at flowering and at grain filling (ca 14 days after flowering). Therefore,
there were four stage x treatment combinations, namely flowering-drought-stressed
treatment (FS), flowering-well-watered treatment (FW), grain filling-drought-stressed
treatment (GS), and grain filling-well-watered treatment (GW), for the measurements
as described below.
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Gas exchange and chlor ophyll fluor escence measur ements

The flag leaves on the main stems of four representative plants (out of eight) per
treatment of each genotype were used for measurements (except for IL42 at FS,
because of a labour peak as flowering of the late 1L42 coincided with grain filling of
some of the earlier genotypes). We used an open gas exchange system (Li-Cor 6400;
Li-Cor Inc., Lincoln, NE, USA) and an integrated fluorescence chamber head (Li-Cor
6400-40; Li-Cor Inc., Lincoln, NE, USA) to simultaneously measure gas exchange and
chlorophyll fluorescence parameters at 21% A0 measurements were made at a leaf
temperature of 25°C and a leaf-to-air vapour pressure difference (VPD) of 1.0-1.6 kPa.
For C; response curve§, was increased stepwise: 50, 60, 70, 80, 100, 150, 250, 380,
650, 1000, and 150@mol mol*, while keeping light intensity {}) at 2000pumol mi?

s™. For thel;,c response curves, photon flux densities were in an increasing series: 10,
30, 50, 70, 100, 170, 500, 1000, 1500, and 30@6l m?s™, while keepingC, at 380

pmol mof*,

To properly estimate photosynthetic parameters, we also conducted measurements
using a 2% @gas mixture: a gas cylinder containing a mixture of 2%a@ 98% N
was used to blend with pure € produce 2% ©in the leaf chamber. Under this
condition, only the first half of the light or G@esponse curves were measured:Eor
response curves,. was kept at 100amol m? s*, andC,was increased stepwise: 50,

60, 70, 80, 100, and 150mol mol*; for line response curves,. was increased in the
order of 10, 30, 50, 70, 100 and 1ffhol m? s', and this half curve of the light
response was obtained using 2% d@@mbined with 100umol moi* C, to ensure a
non-photorespiratory condition. Light and £f@sponses for the two,Qevels were

measured on the same leaves.

Leaf respiration in darkness R was measured ~15 min after leaves had been
placed in darkness. For measurements at each irradiance stegp was allowed to
reach steady state, after whigf(the steady-state fluorescence) was recorded. Then a
saturating light pulse (>850@mol m? s* for 0.8 s) was applied to determifig, (the
maximum fluorescence during the saturating light pulse). The apparent PSIl e
transport efficiency was obtained @ = (F, — F,)/F, (Gentyet al., 1989) for each
irradiance or C@step.

Leakage of C@into and out of the leaf cuvette was corrected for all gas exchange
data, using heat-killed leaves according to Flexas et al. (2007c).

Leaf N content measur ements

Photosynthesis measurements at the two stages were made on the same leaf positions.
After measurements at grain filling, the portion of the flag leaves used for the above
described measurements was cut. The leaf material was weighed after drying at 70°C
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to constant weight, and LMA (g dry mattefrieaf) was determined. Fraction of total-
N in leaves was analysed using an element analyser based on the micro-Dumas
combustion method. From these data(dNN m? leaf) was calculated.

Model analysis

We use the model of Farquhar, von Caemmerer & Berry (1980) (FvCB model). The
net CQ assimilation Q) is expressed as the minimum of the Rubisco limited £gje (
and the electron transport limited ratg)(A

A=min A A) )

A is described, following the Michaelis-Menten kinetics:

— (Cc - I—;)chax —R
¢ Cet Kne(1+0/Knp) —°

(2)

whereC. andO are the C@Qand Q levels at the carboxylation sites of RubisZgyax
is the maximum rate of carboxylatidg,,. andK,,, are Michaelis-Menten constants of
Rubisco for CQ and Q, respectively, and’, is the CQ compensation point in the
absence of day respirationgfRIin the model/”, = 0.50%,,. As constant&,. andK,
are generally conservative for; @lants (von Caemmerer, 2000), their values were
taken from Bernacchi et al. (2002).
A is described by:
_(C-L)J

VT ac. +8r, ¢
where J is the potential PSII etransport rate that is used for €@xation and
photorespiration, and can be described by (Ogren & Evans, 1993; von Caemmerer,
2000; Yin et al., 2009b):

] = (KZLLIinc +]max - \/(KZLLIinc +]max)2 - 4'leaxKZLLIinc) /(29) (4)

wherex;, is the conversion efficiency of incident light intat strictly limiting light,
Jmax IS the maximum value of under saturated light, and 6 is the convexity factor.

Model parameters were estimated according to the procedure described by Yin et al.
(2009b). Specifically,using data of the "etransport-limited range under non-
photorespiratory conditions (i.e. the irradiance response curve at 2#rined with
1000pumol mol* C,), a simple linear regression can be performed for the obsérved
against [j,.®@./4). The slope of the regression yields the estimate of a lumped
parametess, and the intercept gives an estimat&ko{Yin et al., 2009b; 2011). This
allowed the actual rate of linear electron transport to be calculated:

:$Iincd52 (5)

3)

49



Chapter 3

Parametersky koL, and 0 were estimated by fitting Eqn (4) to the calculated J

S Was calculated by following the procedure described byeYial. (2009b; see
their Eqn (10)). Once all above parameters were estimated, their values were used as
input to the model described below, upon whi¢h., and coefficients related to
diffusional conductances were estimated.

Moaodelling of g, and gs
To examine any variation in mesophyll conductangg) (n response tdC; and
irradiance (at 21% £), the variablel method (Harleet al., 1992a) was first applied:

A
Im = T+ B(AT Ryl ©
| RY)

whereA andC; were taken from gas exchange measurementd arad calculated by
Egn (5). This first analysis showed thgt was variable (see Results). We therefore
used a phenomenological equation of Yin et al. (2009b) to madel g

Im = Gmo + 6m(A+ Ry)/(C. — I1) @)

wheregnm, is the minimum mesophyll conductance if the irradiance approaches zero,
o is the coefficient which defines th&/C; relationship under saturating light as. (C
- L)I(C - I) = 1/(1+18,) (Yin et al., 2009b).
Combining Egn (7) with Egns (2) and (3) and replacgvith (C; — Alg,,) yields
(Yin et al., 2009b):

Acor 4 = (=b — b2 — 4ac)/2a (8)
where
a=x,+ I+ 8,(C+ x3)
b =—{(x; + L)(x; — Ry + (C; + xz)[gmo(xz + L) + 6, (x; — Ry)]
+ Om[x1(C; — L) — Rq(Ci + x)1}
c= [gmo(xz + H«) + 6m(x1 - Rd)] [xl(Ci - 1—:«) _Rd(Ci + xz)]
. _( Vemax for A,
with x; = /4 for A,
_ ch(l + O/Kmo) fOI‘ AC
2= or, for A

The above model analysis showed that the pattern of variatigy isf similar to
that ofgs in response to CQand irradiance levels (see Results). Therefore, Eqn (8) is
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also valid to model the dynamics of an overall conductaggdf (places forC; are
replaced with @and those fod, are replaced with;

9t = o + 6(A + Rq)/(C. — I1) 9)
whereg is the minimum overall conductance, ahids the coefficient defining the
CJ/C, relationship under saturating light a€;  I+)/(C, — I'+) = 1/(1+1/4). Note that
o = 1/(1/g+1/g,), and that the value &, for our model analysis was adjusted to the
CO, level at the leaf surface according to the boundary-layer conductance.

Assuming bothg,,, and g, = 0 (which is generally the case, see Results), and

dividing Eqn (7) by Egn (9), the following expression is obtained:

Im/Gs = 6m/6 — 1 (10)
Egn (10) quantitatively indicates an overall relative limitation gaf vs gs to
photosynthesis. From Eqgn (10), an equation {es derived here:

gs = 6s(A+Rq)/(Cc = IL) (11)

where @ = 6y0t/(Om- ).

OnceA is calculated from Egn (8),, can be calculated using the equation obtained
by replacingC. in Egn (7) with (- A/g.), and then by solving the equations épy
(Yin et al., 2009b):

Im =[A+6n(A+RDI/(CG—T) (12)

Similarly, g can be calculated using the equation obtained by replagimgEgn (9)
with (C, — A/g) and then solving the equations fer g

g =[A+6:(A+Ry1/(Ca— 1) (13)

To allow comparisons across genotype x treatment x stage combinations, we also
estimated the value @, as constant, using the so-called NRH-A met{®grn-a),
based on the data obtained from h@lof CO, response curves and ldw levels of
light response curves at 21%.0he rationale for this method and the choice of data
was fully discussed by Yin & Struik (2009b). This estimate using the NRH-A method
should represent the average valuepivithin its lower range of the variation.

| deotype design

The 13 lines used in this study were selected based on the QTLs detected by single-
point analysis in Chapter 2. In order to quantify the additive effect of the QTLs on
each parameter in our model, a statistical covariant model was used, in which the value
of a parameteK of introgression lin&, containingN QTLs (as represented by the
nearest marker loci), for a specific stage) (§ treatment T;) combination was
presented as:
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N
Xijx=p+S5+T+ Z an X My, + €5k (14)

n=1
wherep = the intercepty = growth stage effect, which stands for either of the two
stages (flowering or grain filling)T; = treatment effect, which stands for either well
watered or drought stresseq,; = the additive effect of the-th QTL; My, = genetic
QTL scores of the individual introgression likehat take the value either -1 (allele
coming from ‘Shennong265’) or 1 (‘Haogelao’ allele preseft)isean error term.

For the ideotype design, only QTLs with significant enhancing additive effects (P <
0.05) were kept in Egn (14). For example, an ideotype for improved photosynthesis
was the virtual genotype of which parameter values were estimated as the sum of the
allele effects that enhanceM for all QTLs of each FvCB-model component. To
construct theA response of ideotype to irradiance, estimated parameters were used as
inputs in Egn (8). To calculate the TE response to irradiance, the following equation
(Farquhar & Richards 1984) was used:

Ca - Ci

TE = 1.6 (e; —ey)

(15)

where € - ) is leaf-to-air VPD, and; is calculated from our model using values of
A and estimates of the parametgsandds.

Statistics and curve fitting

A three-way analysis of variance of genotype x treatment x growth stage for the
photosynthesis parameters was calculated. Non-linear fitting was carried out using the
GAUSS method in PROC NLIN, multiple linear regression fitting for eqn (14) was
performed using the PROC GLM, of SAS (SAS Institute Inc, Cary, NC, USA).

RESULTS

Estimates of photosynthesis parameters

The estimated values f&;, did not differ among genotypes, nor among treatrment
stage combinations; so a single value $g§was obtained from the pooled data (=

3.02 + 0.03 mbapbar?). As reported by Yiret al. (2009b), the estimated values for

Ry did not differ between 21% and 2% (@vels, and a commoRy across the ©

levels was obtained. However, the estimated valuedkfaand s were genotype-,
treatment- and stage-specific (See Supplementary material Table S1); and the values
of Ry were generally lower than those Bfx (Table S1). After parametex was
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same response ag to CO, concentration and

drought-stressed treatment (=&
drought-stressed environment (GS—
stomatal conductance ratig-{gs),
combinations (FS,

with an increase i
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combinations, and was higher for drought-stressed plants than for well-watered plants,
and for flowering than for grain filling.

The variation ofg,, acrossli,c and acros<; levels was confirmed by the curve-
fitting based on Eqgn (8), as the value of paramgfgin the equation was found to be
close to zero, whereak, was found to vary from 0.452 to 1.571 (a zgke combined
with a non-zerdd, would mean thag),, varies withC; andl;,.; see Yinet al., 2009b).

This method allowed solving,, and V.« Simultaneously (Table S1; Fig. 2), when
using the earlier estimatef,,, Ry, Jnax ¢ and ;. as inputs. In this method, a
universal parameted}, (rather than specifig,, values) across whole photosynthesis
light- and CQ-response curves was estimated. A further analysis based on Eqgn (9)
also showed that parametgg did not differ significantly from zero (P > 0.05).
Therefore, an overall,/gs ratio (Egn (10)) was calculated for each introgression line
at each stage x treatment combination (Fig. 2D). The overall averdgeratio
obtained from this method for most of the stageatment combinations (Table S1)
was slightly higher than those values shown in Fig. S1, probably because the Variable
method assumes no alternativetransport, whereas the curve-fitting method does
account for any alternativé eansport (Yin et al., 2009b).

Components of variation in and correlations among photosynthetic parameters

The variation in each estimated photosynthetic parameter can be statistically
partitioned into genetic, environmental (stress vs. non-stress), and developmental (i.e.
flowering vs. grain filling) components, and their two-way interactions. However, as
most interactions were not significant (P > 0.05; results not shown), we omitted all
interaction terms (Table 1). Significant genetic differences were founBgfor,,

Jmax 0, andVemax @s well as fo andg,/gs ratio P < 0.05, Table 1, Fig. 2), although
environmental and developmental components were contributing most to the variation
in most parameters (Table 1).

The parameters of photosynthesis model were partly correlated (Table S2). In
particular, the correlations betwedp.x and Vemax 0m and Vemayw om and ds were
significant in each stage x treatment combination (P < 0.05). These correlations may
suggest that these traits are, at least partly, under common genetic control.

Physiological basis of the genetic variation
Significant genetic differences of some model paramekers .05, Table 1, Fig. 2)
hint a physiological basis for genetic variatiorAifound earlier by us in Chapter 2, in
which we identified QTLs for light-saturatéd(Ana) under field conditions.

Using our model approachnax can be dissected into four physiological
componentsgs, gm, electron transport, and Rubisco activity. To quantitatively analyse
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Table 1. A three-way ANOVA of genetic effect vs. treatment vs. growth stage for the estimated
photosynthesis parameters: and P values significant at a level d® < 0.05 are in bold. For

definitions see Appendix.)

Parameters

Genetic effect

Treatment

Stage (ontogeny)

R 4.82 (<0.0001) 3.06 (0.0721) 15.45 (0.0004)
KoLl 6.14 (<0.0001) 9.34 (0.0042) 38.93 (<0.0001)
JImax 2.00 (0.0494) 0.00 (0.9850) 80.19 (<0.0001)

Primary parameters

of the model 0 6.09 (<0.0001) 9.78 (0.0035) 100.85 (<0.0001)

Om 1.69 (0.1110) 5.55 (0.0241) 1.99 (0.1671)
Vemax 2.44 (0.0191) 6.96 (0.0122) 29.21 (<0.0001)

ot 1.70 (0.1090) 20.65 (<0.0001) 0.10 (0.7587)

O« 2.39(0.0218) 53.46 (<0.0001) 9.46 (0.0040)

Om(NRH-A) 0.82 (0.6314) 9.39 (0.0041) 50.24 (<0.0001)

Other parameters

Om/0s 2.79 (0.0085) 19.27 (<0.0001)  31.38 (<0.0001)

Jmax/Vomax 1.49 (0.1721) 25.85 (<0.0001) 1.88 (0.1787)

the effects of each componem,.; (at 380 umol mol* CO,, 1500 pmol m? s*
irradiance, 25°C, and 1.5 kPa VPD) was first plotted against each component here.
Within each stage x treatment combination, the correlation bettggnand each
componentds, gm, Jmax aNdVemay Can be observed (Fig. S2), providing the evidence
about where genetic differencesAnax possibly came about. In order to quantify the
main sources of genetic variation Ag.., a multiple regression analysis was carried
out (Table 2). For each stage x treatment combination, the genetic variagioanic
Om had the largest impact on the genetic variationAig, Under well-watered
treatmentg,, caused more genetic variationApa.y thangs did, while under drought-
stressed treatmerg; accounted for more genetic variation.
We also analysed TE under the same measurement conditions (Fig. S3). When we
inspected the relationship within each stage x treatment combination, the correlation
appeared very weak, except fr(Fig. S3A) andy,/gs (Fig. 3). Multiple regression
analysis (Table 2) also showed that genetic variatiogy Bndg,, relative to that in
Vemax @and Jnay CoNtributed more to TE in this genetic background, and not
surprisingly, ¢, and g affected TE in an opposite direction.

Physiological basis of a major photosynthesis QTL

Of the ILs used, IL161 is unique in that it has the background of the recurrent parent
Shennong265 except for a single introgression segment on chromosome 9 from the
donor parent (Fig. 1). Compared with the recurrent parent, IL161 significantly

increasedAn.x across stages and treatments; thus, a major QTL was consistently
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Table 2. Multiple linear regression analysis of light-saturated photosynth&sis) ©r transpiration
efficiency (TE) as a function ds, Om, Jmax @NdVemax (i-€. Amax OF TE =by + bigs + bygmt+ B3dmax +

bVemay, based on data of 11 introgression lines and their parents, for each stage x treatment
combination

Trait ﬁ;?ﬁ;m Int((el;(():)ept :egression coefficientb(probability of signh:)cance) .
1 2 3 4
Avex  FS 121 46.99 (4.4 x 109" 27.24 (3.0 x 10 0.04 (0.0058)°  0.00 (0.6866)"
Fw 1.26 31.19 (1.3 x 10%)?  32.82 (4.9 x 10%)* 0.02 (0.0857)*  0.02 (0.0260)°
GS 0.63 30.85 (7.0 x 10%)"  46.59 (1.5 x 107)? 0.04 (0.0001)°  0.00 (0.9929)*
GW 139 22.45(7.7x10%?  53.15 (2.8 x 10°%)" 0.00 (0.8682)* 0.04 (0.0147)°
TE FS 6.02 -20.70 (6.7 x 107)*  6.33 (0.0003)°  0.01 (0.0024)*  0.00 (0.1739)*
FW 4.29 -15.77 (1.1 x 10%)*  8.11 (8.0 x 10%)?  0.00 (0.3442)*  0.01 (0.0523)°
GS 4.84 -21.31 (1.0 x 107)*  12.89 (0.0002)>  0.01 (0.0595)°  0.00 (0.7278)"
GW 4.47 -13.21 (3.2 x 107)"  10.00 (0.0005)>  0.00 (0.4847)*  0.01 (0.0394)°

Coefficient values significant at a level Bf< 0.05 are in bold"?>* the comparative importance of
each parameter, determined from the level of significance. For definitions see Appendix.

Fig. 3. Relationship between transpiration efficiency (TE) (8ol mol* CO,, 1500pmol m? s*

light intensity, 25°C, and 1.5 kPa VPD) and ratio of mesophyll conductance and stomatal conductance
(g/gs). Linear regressions were fitted for overall data (grey solid lines) and each stage x treatment
combination: flowering-drought-stressed treatment @=S;-, ), flowering-well-watered environment
(Fw, 0O ----- ), grain filling-drought-stressed environment (@S,— -+ ), and grain filling-well
watered environment (GW), —-— ). The significance of each correlation was shown &<**,

0.01.
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Fig. 4. Photosynthesis response curves of IL161 (empty square) and Shennong265 (filled circle) under
21% Q at four stage x treatment combinations: flowering-drought-stressed treatment (A, B);
flowering-well-watered environment (C, D); grain filling-drought-stressed environment (E, F); grain
filling-well-watered environment (G, H). The curves are drawn from the model using fitted parameter
values: for IL161, dashed lines; for Shennong265, full line. Left panels (A, C, E, G) show the response
of net photosynthesi& to ambient C®(C.,) under light intensity of 100Amol m? s*. Right panels

(B, D, F, H) show the response of photosynthési® light intensity under 38@umol mol* CQ,.

Values are means + SDB<4).

detected forA,ax on chromosome 9 (Chapter 2). €@nd light response curves
measured in the present study indicated that the QTL contributed to a higher
photosynthesis rate across all irradiance and I€@Is (Fig. 4). Through our analysis,
seven parameters of both IL161 and Shengnong265 were estimated for each stage x
treatment combination (Table 3). There was no significant difference between them for
Ry, xo1L, and@ (P > 0.05). At flowering, IL161 showed significantly highef, gs,

Vemax @ndJmax than Shennong265 across the two treatments. At grain filling, however,
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Fig. 5. Relationship between (A) mesophyll conductanggnkn-a) calculated by the non-rectangular
hyperbolic method (Yin & Struik, 2009b) and leaf mass per area (LMA)g{Rkn-a) and leaf nitrogen per unit

area N ). Values are means + standard deviations of four replicates. Linear regressions were fitted for overall
data (grey solid lines) and each stage x treatment combination: grain filling-drought-stressed environment (GS,
A, =), and grain filling-well-watered environment (GW, —, — ). The significance of each correlation
was shown as: < 0.05; **, P < 0.01.

only higher diffusional conductance (larggr andgs) could be the reason for higher

A, asVemax Was even lower in IL161 than in Shennong265 for the stress treatment
(Table 3). Therefore, there was greater difference between IL161 and Shenong265 at
flowering than at grain filling (Fig. 4). Our whole-curve measurements are consistent
with the results in Chapter 2 that larger additive effects of the QTIA.Qpnwere
obtained at flowering than at grain filling.

Relationships between photosynthesis parameters and leaf mor pho-physiological
characteristics

The variation ingmnrr-a), €ither across genotypes or across treatments, was negatively
correlated with LMA (Fig. 5A). Similar relationships were found between LMA and

Om OF gs calculated for the condition of measurifg.,, despite lower?values (results

not shown). As expected, drought stress induced thicker leaves (increased LMA, Fig.
5A) and the increased LMA led to an increadgdr? = 0.40). But there was a poor
correlation betweegmngn-a) andN, (r2 = 0.08; Fig. 5B). Instead, the variationJpay
andV.may €ither across genotypes or across water-supply treatments, was found to be
positively correlated witiN, (Fig. 6A,B), but less correlated with LMA (results not
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Fig. 6. Relationship betweer] electron transport capacity.,) and leaf nitrogen conteniy), (B)
Rubisco carboxylation capacity ..y and N. The symbols and significance levels were as in Fig. 5.

shown). Analysis with aifr-test demonstrated that generally there was no significant
difference between well-watered and drought-stressed plants at grain filling on the
relationships of Figs 5-6 (P > 0.05), although the slope of the relationship betysgen J
and N was significantly lower (P = 0.012) for plants under drought.

I deotype design based on physiological under standing

Given the significant genetic difference in each of the model component traits (Table
1; Fig. 2) and their significant effects @g..x and TE (Table 2; Fig. S2 & S3), it is
worthwhile to explore the potential to impro¥eand TE using the genetic variation
observed. We, therefore, estimated additive effects of individual genome loci, based
on Eqn (14). Of the loci differing among the ILs, seven loci were identified to
significantly affect the seven primary model parameters (Fig. 1; Table 4). These seven
loci were also identified or in close proximity with those mappedAfgy using the
whole IL population (Chapter 2), suggesting that our selected 11 ILs did represent the
population well. There was no one-to-one locus-parameter relationship. Instead, each
model parameter was controlled by one to three loci and most loci had an effect
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Table 4. The effects of growth stages (flowerirgy, grain filling, S), treatmentsT, drought stressed;

Tw, Well watered), and additive effects of QTLs (eg. a,, as, as, as, 8 anda;) on seven modelled

traits, estimated from regression analysis using Eqn Ki¢)= u + S; + Tj + SN _jan X My, + €ijk-

QTLs positions and their additive effect coefficients are marked in Fig. 1. For definitions of the traits,
see Table in the Appendix. Empty cell in this Table means that the corresponding effect was not
significant £ > 0.05) and was, therefore, not included in the regression model.

Trai intercept  Growth stage  Treatment The additive effect (an) of QTLs *
rait
St Sg Ts Tw ai a as as as as ar
Ry 0.6071 0.2454 0 0.1240 0.2055
K 0.3097 0.0219 0 0.0104 0 0.0088 -0.0213 0.0182
Jmax 151.81 47.81 0 8.42 6.85
6 0.8637 -0.0890 O 0.0284 0 0.0277 -0.0304 0.0386
In 0.8189 -0.1390 O -0.0890
Vemax  131.14 37.78 0 1842 0 12.74 8.84
& 1.1547 -0.1488 0 -0.3630 0 -0.0899 0.0971 -0.0878

? The positive value for the allelic effect from donor parent ‘Haogelao’

on multiple parameters (Table 4), providing a genetic basis of significant correlations
between model parameters in Table S2.

The ideotype for highA requires highgs and g, and improved photosynthetic
efficiency .. andf) and capacities (VaxandJnay, While the ideotype for high TE
requires low g high g, and improved photosynthetic efficiency and capacities. So, the
ideotype of highA carried the alleles having positive effectsan, Jmnax ¢, n, & and
Vemaw @nd negative effects dRy, whereas the ideotype of high TE carried the alleles
having positive effects ot |, Imax ) n andVema, and negative effects al andRy.

The ideotype of highh showed an increase & of 15.2% (FS), 15.5% (FW), 20.6%
(GS) and 17.1% (GW) compared with me&rof 13 ILs (solid curves Fig. 7); the
ideotype of high TE showed an increase of 32.2% (FS), 14.8% (FW), 26.1% (GS) and
17.3% (GW) compared with mean TE of 13 ILs (solid curves Fig. 8).

The above estimated improvementAnor TE was moderate, because the same
alleles at some loci have contradicted effects on different photosynthesis parameters
(Table 4). Assuming that these contradicted effects were not due to pleiotropy, but due
to tight gene linkage which could be broken through further rounds of introgression
and a higher density marker map to develop near isogenic lines carrying fine mapped
QTLs, we evaluated virtual ideotypes #iand TE that only contained positive effects
in all the photosynthesis parameters. Porthis virtual ideotype showed an average
improvement of 29.9% (FS), 29.3% (FW), 36.4% (GS) and 34.5% (GW) compared
with the mearA of 13 ILs (dotted curves Fig. 7). For TE, the virtual ideotype showed
an average improvement of 46.9% (FS), 28.2% (FW), 42.0% (GS) and 31.6% (GW)
when compared with the mean TE of 13 ILs (dotted curves Fig. 8). When compared
with the best genotype we investigated in each stage x treatment combinati&dn, for
the virtual ideotype showed an improvement of 11.0% (FS), 9.6% (FW), 18.7% (GS)
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Fig. 7. Constructed response curve of net photosynthetic Atéo(light intensity at ambient GO
concentration (38Qumol mol™) at four stage x treatment combinations: (A) flowering-drought-
stressed treatment (FS); (B) flowering-well-watered environment (FW); (C) grain filling-drought-
stressed environment (GS); (D) grain filling-wellwatered environment (GW). Rate of photosynthesis
of 13 lines (filled circle, values are means + SDs of 13 lines) were calculated from the model using
fitted parameter values. The ideotype response (solid curves) and the potential virtual ideotype curves
(dotted curves) of photosynthesis were drawn using parameter values, which were calculated by
methods described in the Materials & Methods and Results sections.

and 28.5% (GW); for TE, the virtual ideotype showed an improvement of 38.3% (FS),
12.3% (FW), 33.9% (GS) and 15.8% (GW).

The above analysis examined the ideotype#\fand TE separately. To explore the
potential of selecting a genotype with both improved TE and photosyntAggisyas
plotted against TE (Fig. 9). There were negative correlations for all the stage x
treatment combinations, and the negative correlations were more significant under
drought environment than well-watered environment. These relationships suggest that
simultaneous improvement 8fand TE is difficult, especially under drought. We shall
later discuss the opportunities of simultaneous selection for improved A and TE.

DISCUSSION

Physiological basis of genetic variation in photosynthesis
Our model approach allowed to quantitatively dissect photosynthesis into different
physiological componentsgs, g, and biochemical efficiencyx§, ., 6) and
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Fig. 8. Constructed transpiration efficiency (TE; dark red colour) and photosyntAesgieén colour)
response curve to light intensity at four stage x treatment combinations: (A) flowering-drought-
stressed treatment (FS); (B) flowering-well-watered environment (FW); (C) grain filling-drought-
stressed environment (GS); (D) grain filling-well-watered environment (GW). All the data were
estimated at 380rmol mol* CO, and 1.5 kPa VPD. The TE (filled dark red circles, values are means +
SDs) and rate of photosynthesis (filled green circles, values are means + SDs) and of 13 lines were
calculated from the model using fitted parameter values. The ideotype response (solid dark red
curves), the potential virtual ideotype curves (dotted dark red curves) of TE, and correspoafling

the virtual ideotype (dotted green curves) were drawn. These curves were drawn using parameter
values calculated by methods described in the Materials & Methods and Results sections.

biochemical capacity fx and Vemay. In our analysis, most of model parameters
showed significant genetic differences (Table 1). For example, paramgtesndd

both affect the electron transport efficiency under limited light. So the genetic
variation inx, . andd (Table 1) could be potentially used to improve photosynthetic
efficiency before light intensity reaches saturation.

As our previous analysis identified QTLs f8rax (Chapter 2), we specifically
analysed the relative contribution of photosynthesis parametes.( Vemax andImax
Table 2) relevant for the condition under whigh,, was measuredj was found to be
most associated with genetic variatiorip, in our IL population (Table 2, Fig. S2A)
under drought. This was in line with reported results showing that mapped QTLs of
net photosynthesis (Adacki al, 2011) were related tgs. These results are not
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Fig. 9. Relationships between transpiration efficiency (TE) and light-saturated net photosynthesis rate
(Amay (380 pmol mol* CO,, 1500pumol mi? st light intensity, 25°C, and 1.5 kPa vapour pressure
deficit). Symbols and accessions as follows: 7, 7, 132, 1969, 1084, I1L200,

IL130, © IL157,Y 1L159,V IL161® IL164® Haogelao, a Shennong265. To distinguish
between stage x treatment combinations, different colours waere used: flowering-drought-stressed
treatment (FSRed; flowering-well-watered environment (FVi&reer); grain filling-drought-stressed
environment (GS,Purplg; and grain filling-well watered environment (GVBlue). The linear
regression lines (solid lines) are fitted for each stage x treatment combination. The diagonal dashed
line is fitted for all the stage x treatment combinations, when forcing the regression line to go through
the origin. This dashed line shows the trendline for both highitEAay.

surprising, given thags controls diffusion of C@from ambient air into intercellular
airspace and that stomata have evolved into physiological control mechanisms to
maximize carbon gain while minimizing water loss (Lawsoral., 2011). However,

Om Was also important for the expression of genetic variatiofin (Table 2, Fig.

S2B). In fact, under well watered conditiorg, contributed most to the genetic
variation in A (Table 2).

We found that max andJmax contributed comparatively less to genetic variation in
Amax IN each stage x treatment combination (Table 2). This is surprising, given that
Vemax @nd Jmay reflect Rubisco carboxylation and teansport capacities, respectively.
The weak correlation between biochemical capacities/apdwithin each stage x
treatment (Fig. S2 D,E) could be due to the small range of variatidg.ipandJpayx.

A comparison of IL161 vs Shengnong265 (whose difference was due to a single
introgression on Chromosome 9) showed (Table 3)Mhak andJy .« together withgy,

andg;s did explain the difference in photosynthesis light and-@3ponse curves (Fig.

4), at least for the flowering stage.

It is known that a long-term environmental adaptation results in a change in leaf
morphology, and LMA as a morphological trait has a high plasticity in adjusting to
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environmental conditions (Westoleg al., 2002; Poorteet al., 2009). For example,

Pons & Pearcy (1994) showed that plants that switched from a high-light environment
to low light can substantially (30%-50%) decrease LMA within days. The change of
LMA was also shown in our data obtained after the grain-filling stage measurements,
where the average LMA for drought stressed leaves was higher than the average for
non-stress leaves (Fig. 5A). Our result agreed with the literature (Féexhs 2008;
Niinemetset al., 2009; Galmést al., 2011) thag,, decreased with increasing LMA

(Fig. 5A). Interestingly, this relation also holds for the genetic variation across 13 lines
within either stress or non-stress treatment and the stress treatment did not change the
relationship (Fig. 5A). This suggests that LMA plays an important role in the plant’s
adaptation to environmental conditions as well as in the plant's genotypic strategies
within the same environment.

Similar to LMA, N, also varied between treatments and among genotypes (Fig. 5B).
Vemax @nd Jnay rather tharg, or gs, were linearly correlated withl, (Figs. 5 & 6).
Furthermore, Mhaxand JaxWere less correlated with LMA (results not shown). Again,
water supply treatments hardly affected these relationships across the 13 genotypes.
Since Vemax and Jyax affected genetic variation of\,.x (Table 2), especially at
flowering stage (Table 3), elevated capacity of nitrogen accumulation in the leaf
should be a preferred trait for improving leaf photosynthetic capacity, as suggested in
the literature (Peng et al., 1995; Shiratsuchi et al., 2006; Tayédraln 2011).

Physiological basis of genetic variation in transpiration efficiency
TE is another important breeding target for drought tolerance (Cosidah, 2002,
2004). Our data showed that genetic variatiogsinvas best correlated with genetic
variation in TE in our genetic material (Table 2, Fig. S3A). This was in line with
reported results that the gene of TE, ERECTA was relateqMagle et al., 2005).

From a theoretical perspective, however, Coneloal. (2004) indicated that under
certain environment conditions, TE could be improved not only by lowegnbut
also by higher photosynthetic potential, or a combination of these two. Especially, a
greaterg,/gs ratio results in a higher TE without a negative impact on carboxylation
(Barbouret al., 2010; Galmést al., 2011). We found significant genetic difference for
the g./gs ratio in this population (R 0.01, Table 1), and the genetic variation in TE
was strongly correlated with the variation in this ratio (Fig. 3). A further improvement
of TE may be achieved by improving biochemical activities, resulting in impraved
with the same transpiration. An ideal plant in drylands would have Jolgin g, and
improved biochemical efficiency (Flexasal, 2010). However, our data showed little
association between TE angwor Jnax (Table 2, Fig. S3).
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Potential of using genetic variation to improve photosynthesisand TE
Our model analysis revealed a strong physiological basis of the genetic variation in
photosynthesis and in TE; therefore, the model was used to design ideotypes for an
improvedA or TE based on their physiological components. This kind of bottom-up
approach was successful in the past for yield component analysis. For example, more
insights could be obtained from analysing QTLs or genes for yield components rather
than for grain yield per se (Yiet al., 2002), and the component-trait QTLs could be
explored to improve yields. Based on this ideotype idea, recent genomic studies have
successfully identified genes for one or a few of yield components (reviewed by Xing
& Zhang, 2011; Miureet al., 2011). However, very few studies were performed using
the same approach for photosynthesis.

Based on the genetic variation from our study, we can significantly impgrared
TE by manipulating alleles of loci influencing different physiological components of
photosynthesis (Figs. 7 & 8), suggesting that understanding of the physiological basis
of photosynthesis will benefit marker-assisted selection (MAS). Some gene linkage
limited the further improvement. For example, a locus from Shenong265 has positive
effects on bothg,, and g;, which will benefit breeding for higi\, while it has a
contradictory effect for high TE. High, @ill increase photosynthesis at the expense of
high transpiration. Any further improvement of these rice ideotypes of our IL
background for higher photosynthetic performance and TE requires further steps of
MAS. For example, further backcrossing using markers is needed to reduce the size of
introgression segments and develop near isogenic lines carrying fine-mapped QTLs to
break any gene linkage. Through this approach, a potential improved ideotype could
be achieved as shown by the dotted lines in Fig. 7 and 8.

Can A and TE beimproved simultaneously?

As expected from existing physiological understanding, our data showed general
negative correlations betweeh,.x and TE among ILs in each stage x treatment
combination (Fig. 9). This agrees with the observation that selection for higher TE
often hampered plant growth and resulted in smaller plants (Blum, 2005). The negative
correlations were stronger under drought than in the well-watered environment (Fig.
9), consistent with the result shown in Table 2 that, was most limited by genetic
variation ings under drought. So, under drought, any genetic variation resulting in
decreased)s will improve TE but will decrease photosynthesis. Under well-watered
conditions, however,x was most limited by genetic variationgp (Table 2); so it

is comparatively easier to select for higher TE and highgr The smallR? in Fig. 9

on one hand may reflect the small range of the data set, on the other hand may imply
the potential extent to select for both highgr,and TE (i.e. selecting genotypes that
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follow the dashed line in the figure). In ideotype design analysis, we assessed the
trade-off betweerA and TE, and found that improvirfy would be achieved at the
expense of on average 35.3% decrease of TE, when comparing the best virtual
ideotype ofA with the best virtual ideotype of TE. Similarly averd@gwould decrease

by 12.4%, when comparing the best virtual ideotype of TE with the best virtual
ideotype ofA (data not shown). But if the linkage betwagnandgs (as shown by the
correlation between,, andd; in Table S2, co-location of QTLs @k, andd in Table 4

and Fig. 1) could be broken (reflected by dotted curves in Fig. 8), the best virtual
ideotype could have both improved TE (dark red colour) Andgreen colour)
compared with the average of ILs (dotted lines vs filled circles in Fig. 8). Similar
results were given by Barbowat al, (2010) for barley varieties, in which variety
‘Dash’ having higherg,, and comparatively lowegs resulted in highesA and TE
across the six varieties they examined. Our analysis using ILs highlights the possibility
to improve both A and TE within the same genetic background.

CONCLUDING REMARKS

In this study, combined gas exchange and chlorophyll fluorescence data @h@O

light response curves of photosynthesis were measured for two stages on leaves of 13
ILs under moderate-drought and well-watered conditions. These curves showed that
our previously reported QTLs, especially the major QTL on Chromosome 9 (Fig. 4),
identified for the condition oA,,x measurements (Chapter 2), also affe@esicross

all irradiance and Cflevels. Using these curves, we estimated seven parameters of a
combined conductance-FvCB model as proposed by eYial. (2009b). We then
guantitatively dissected photosynthesis into different physiological components:
stomatal conductance, mesophyll conductance, and biochemical efficiency and
capacity. Our model method, Eqn (10), presents a novel approach to quantitatively
analyse an overall relative limitation of stomatal vs mesophyll diffusion on
photosynthesis of a genotype under a given condition.

Our data and analysis confirm the literature reports in several areas. Firstly, we
confirmed thatg,, strongly declined with an increase @), and increased with an
increase in light intensity, a response to,€@ncentration and light intensity similar
to that ofgs (Centrittoet al., 2003; Flexast al., 2007a; Yiret al., 2009b; Douthet
al., 2011). Therefore, there was strigi/gs proportionality (Fig. S1), although
independence of, on li,c andC; levels was also found (Taze al., 2009, 2011).
Secondly, our results confirm that there was little significant influence of drought on
Vemax and Jnax (P > 0.01), suggesting no metabolic impairment but increased
diffusional resistances happened under moderate drought (Cegitadtp2003; Grassi
& Magnani, 2005; Galmést al., 2007). Our result of a decreaselg/Vemax Under
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drought is in line with that of Gallet al. (2011), suggesting that drought stress could
cause down-regulation of linear electron transport (Kohzetnad, 2009). Thirdly, we
confirmed the decrease of photosynthetic parameters with leaf ageing (e.g. édarley
al. 1992b; Ethieet al. 2006; Flexa®t al. 2007b). The ageing decreasggl Ry, L.,

Jmax Vemax On/Qs, @nd increased. These changes of parameters may be associated
with leaf nitrogen loss through protein degradation as a result of re-translocation of
nitrogen to the grains.

However, the main aims of our study were to analyse the effect of genotypes arisen
from segregation of photosynthetic QTLs detected in Chapter 2 and to identify the
physiological basis of genetic variation and QTLs. Although the effects of leaf stage
and water supply on photosynthesis were predominant, the effect of genotype was
significant enough to allow the examination of the physiological basis of the genetic
variation by the use of the combined conductance-FvCB model. Genetic variation in
Anax as well as in TE was mainly caused by genetic variatigg amdg,, (Table 2), in
line with significant stomatal and mesophyll limitations when plants face
environmental stress (e.g. drought stress, Fletaal., 2004; Grassi & Magnani,
2005). So, more efforts should be focusedggandg,, in breeding programmes for
improving photosynthesis and TE. Furthermore, the relationships between
photosynthetic parameters,(GVemax Jmaxy @and morpho-physiological measurements
(LMA, Ng), which were usually found across environmental treatments (e.g. Harley
al. 1992b; Flexas et al., 2008; Galmés et al., 2011), were shown here, for the first time,
valid for the variation across genotypes of the same genetic background (Figs. 5A &
6). Therefore, variation in photosynthesis due to environmental conditions and the
variation in photosynthesis due to genetic variation within the same environment, may
share common physiological mechanisms.

Based on the genetic variation of physiological components undedyisgd TE
we explored the ideotype design by constituting alleles which contain loci influencing
different components of physiological process of photosynthesis. The suggested virtual
ideotypes could be obtained by more rounds of introgression to break any gene linkage
within the genome segments of our present ILs. Model calculation showed that these
ideotypes can potentially improv& and TE by 17.0% and 25.1%, respectively,
compared with the best genotype we investigated. Besides, our analysis using ILs
highlights the possibility to improve both and TE within the same genetic
background. Further experimental data with more ILs especially under field conditions
can strengthen this conclusion. Of course, improvemert ahd TE could also be
achieved by broadening the genetic background. Recent advance in genome wide
association studies (e.g. Huang et al., 2010) would enhance this approach.
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APPENDI X

Symbols and abbreviations

o> > >

G
Os
Gm
Gmo

Im(NRH-A)

KoLl

LMA
TE

Net photosynthesis ratarfiol m? s?)

Light saturated net photosynthesis at ambien &@ Q level umol m? s?)

Rubisco activity limited net photosynthesis ratenpl m? s*)

Electron transport limited net photosynthesis rptad| m? s?)

Ambient air CQ concentrationi(mol mol®); for model analyse€, refers to leaf-surface GO
level, with boundary conductance already considered (~6.78 el nfrom Li-Cor manual
version 6.1)

Intercellular CQ concentrationi{mol mol*)

Stomatal conductance for GQmol m? s?)

Mesophyll conductance (molfrs*)

Residual mesophyll conductance in ignodel Eqn (7) (mol /s

Om estimated by the NRH-A method (Yin & Struik 2009b) based on the data obtained from high
C; of CO, response curves and ldyy levels of light response curves at 21%(@ol m? s*)
Diffusion conductance from ambient air to the site of carboxylation (rfah

Residual diffusion conductance in thenodel Eqn (9) (mol A s?)

Photon flux density incident on leavgst(ol photon rif s%)

€ transport rate through PSII used for NADBduction fimol € m? s?)

Maximum value of] under saturated lighpinol € m? s

Michaelis-Menten constant of Rubisco for £@bar)

Michaelis-Menten constant of Rubisco fos @nbar)

Oxygen partial pressure (mbar)

Day respiration (respiratory G@elease in the light other than by photorespiratipmal m? s*)
Respiratory C@release in the darkuol m? s?)

A lumped parameter, see Eqgn (5) (-)

Relative CQ/O, specificity factor for Rubisco (mbabar?)

Maximum rate of Rubisco activity-limited carboxylatiqmgol m? s?)

A parameter in thg,, model, definingC;: C ratio at saturating light (-), see Eqn (7)

A parameters in thg. model, definingC; : C, ratio at saturating light (-), see Eqn (9)

A parameters in thgs model, definindC; : C, ratio at saturating light (-), see Eqn (11)
Value of conversion efficiency of incident light indat the strictly limiting light [mol e(mol
photon)']

Convexity factor for response ato |, (-), see Eqn (4)

Apparent quantum efficiency of PSIifeow on PSll-absorbed light basis [mal(enol photon}]
Leaf nitrogen per unit area (g Nteaf)

C. based C@compensation point in the absenc&gfubar)

Combination of flowering stage and drought-stressed treatment

Combination of flowering stage and well-watered treatment

Combination of grain filling stage and drought-stressed treatment

Combination of grain filling stage and well-watered treatment

Leaf mass per area (g fieaf)

Transpiration efficiency (mmol md)
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Table S2. Simple correlation coefficients among seven parameters of the photosynthesis model at four
stage x treatment combinations (FS, FW, GS, GW) based on data of 11 ILs and their parents. For
definitions of the parameters and abbreviations, see table in the Appendix.

Rq KoLl Jiax g On Vemax
FS KoLl 0.41
Jmax -0.18 0.22
g 0.32 -0.37 0.02
on 0.07 0.21 -0.53 -0.43
Vemax -0.02 -0.13 0.79* 0.45 -0.84**
& -0.20 0.31 -0.26 -0.46 0.79** -0.61*
Fw KoL 0.23
Jmax 0.25 0.39
g 0.22 -0.44 0.13
On -0.24 -0.44 -0.71** -0.23
Vemax 0.24 0.35 0.92** 0.14 -0.77**
[o) -0.46 0.08 -0.60* -0.37 0.70** -0.66*
GS KoL -0.57*
Jmax 0.59* 0.01
8 0.70** -0.65* 0.12
on -0.20 -0.31 -0.55 0.20
Vemax 0.57* 0.12 0.94** 0.10 -0.70**
[oX -0.33 -0.09 -0.16 -0.03 0.63* -0.32
GW KoLl -0.08
Jmax 0.25 0.50
g 0.35 -0.71** -0.19
on -0.49 -0.53 -0.62* 0.18
Vemax 0.43 0.44 0.95** -0.10 -0.79**
[oX -0.49 -0.01 -0.49 -0.34 0.61* -0.60*

*, ** significant at the level of < 0.05 and 0.01, respectively.
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Fig. S1. Relationship between stomatal conductamgegnd mesophyll conductancg, calculated

using the variabld method (Harleyet al. 1992b) at (A) flowering—drought-stressed treatment (FS),

(B) flowering-well-watered treatment (FW), (C) grain filling-drought-stressed treatment (GS), and (D)
grain filling-well-watered (GW). Values are means +* standard error of four replicates at each light
intensity (10, 30, 50, 70, 100, 170, 500, 1000, 1500, and g6@d m? s*) and CQ concentration

(50, 60, 70, 80, 100, 150, 250, 380, 650, 1000, and [L&Gf morl), based on measurements under

the 21% Q condition. Symbols and accessions as follodvs: A7, 1837, 42, 1869, IL84,

O 1L100, ® 1L130,Q IL157,Y IL159Y IL161® IL164¢ Haogelao, ad Shennong265. The
linear regression lines (solid line) are based on all the data points for each stage x treatment
combination. The diagonal (dashed line) is the 1:1 line.
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Fig. S2. Relationships between light-saturated net photosynthesisAate (380 pmol mol* CO,,

1500 pmol m? s* light intensity, 25°C) and (A) stomatal conductance to, @), (B) mesophyll
conductance to Cgn), (C) total diffusion conductance to g@ncludinggs andgn, (g, (D) electron
transport capacityJfay, and (E) Rubisco carboxylation capaciy...y). Linear regressions were
fitted for overall data (grey solid lines) and each stage x treatment combination: flowering-drought-
stressed treatment (FS,--;- ), flowering-well-watered environment QFW:-- | ), grain filling-
drought-stressed environment (@S— + ), and grain filling-well watered environmentXGW,
—-— ). The significance of each correlation was shown as:<0R05; **, P< 0.01.
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Fig. S3. Relationships between transpiration efficiency (TE) (88®! mol* CO,, 1500pmol m? s*

light intensity, 25°C, and vapour pressure deficit of 1.5 kPa) and (A) stomatal conductancg to CO
(g¢); (B) mesophyll conductance to €@g); (C) electron transport capacityyfy); (D) Rubisco
carboxylation capacityM.may. The symbols, abbreviations, and significance levels were as in Fig. 3.
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Chapter 4

ABSTRACT

Marker-assisted breeding can be enhanced by accurate, model-based prediction of
phenotypic variation in crop yield. We measured input parameters of the crop
simulation model GECROS and created molecular marker-based estimates of these
parameters from estimated additive allele effects for a r@e/z@ sativa L.)
population of 96 introgression lines (ILs). We then compared the ability of two
versions of the model to predict the yield of ILs under well-watered and droughted
conditions, one version with the measured model parameters and one with the marker-
based estimates as input. The total variation in yield accounted for was 72% under
well-watered conditions and 57% under drought when measured parameters were
used, but 52% and 47%, respectively, when marker-based parameters were used.
Regression analyses showed that ‘total crop nitrogen uptake’ had the most significant
effect on yield; five other model parameters also significantly influenced yield, but
seed dry weight did not. Using the marker-based estimates of model parameters,
GECROS also gave a fair prediction of variation in yield among 251 recombinant
inbred lines of the same parents under either well-watered or drought conditions. The
model-based approach detected more markers than marker selection using multiple
regression for yield. Markers most important for determining yield differences among
the ILs were on Chromosomes 2 and 3 for well-watered and drought environments,
respectively. Further research should aim at (1) upgrading the GECROS model for rice
grown under drought, and (2) breaking the putative genetic linkage between high
photosynthesis and low yield exhibited in the IL population.

Key words: QTL, ecophysiological crop modelling, model-based breeding, genotype
X environment interactions, rice, introgression lines, photosynthesis, recombinant
inbred lines, Oryza sativa.

INTRODUCTION

An increase in yield of crop cultivars for both favourable and stress-environments is
required to feed the growing world population. In riGeyza sativa..), breeders have
been successful in improving yield during the last 60 years (€tealg 2008), through
extensive, largely empirical, selection. Developments in genomics provided useful
tools and information for dissecting complex traits into single genetic determinants,
quantitative trait loci (QTLs). QTLs related to important agronomic traits, such as
yield and stress tolerance, have been mapped, cloned and characterized [e.g. Xing et
al., 2008; see reviews by Miuret al. (2011) and Xing & Zhang (2011)]. These
developments have provided a firm basis for further improving yield through marker-
assisted selection (MAS) or genetic transformation of crops. However, selection for, or
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transformation of, only a few or even a complex of genes may not result into a major
yield increase (Sinclair et al., 2004; Yin & Struik, 2008). Furthermore, MAS has
hardly been proven successful in breeding for complex traits like yield, which have
low heritabilities and exhibit strong genotypeenvironment (Gx E) interactions
(Collard & Mackill, 2008).

The complexity of the yield trait stems from its many underlying processes, which
are often environmentdependent and show strong feed-back and feed-forward
mechanisms during crop growth. Crop yield can be analysed and evaluated using
ecophysiological crop growth simulation models that integrate information about
processes at lower levels (Yin & Struik, 2008; Hameteal., 2010; Zhu et al., 2011).
Such models are based on crop-physiological knowledge and can quantify causality
between relevant physiological processes and responses of these processes to
environmental variables (e.g. irradiance, temperature, availability of water and
nutrients). By feeding crop models with weather data from other locations, these
models could predict yield beyond the environments in which the model parameters
were derived and could explain variation in yield of a specific genotype among
contrasting environments (Yin et al., 2000a; Sinclair, 2011).

A major challenge for the use of crop models is to predict phenotypic differences
between relatively similar lines from a genetic population on the basis of genotype-
specific model parameters (Yin et al., 2000a,b; Reymond et al., 2003; Prudent et al.
2011). These model parameters are often referred to as ‘genetic coefficients’ (Messina
et al., 2006; Whiteet al., 2008) and are supposed to be little affected by variation in
environment (Yin et al., 2000a). Modelling could thus assist in quantifying the G x E
interactions (Yinet al., 2004; Reymonst al., 2004; Hammeket al., 2005; Yin et al.,
2005b; Hammer et al., 2006; Chenu et al., 2008; Tardieu & Tuberosa, 2010), and in
predicting genotype-to-phenotype relationships (Beetiral., 2010; Messinat al.,

2011).

Advances in the use of molecular markers enable genetic information on
physiological traits to be integrated into crop models as determined QTLs for
physiologically important parameters, making model parameters genotype specific
(Yin et al., 2000b; Reymond et al., 2003, 2004; Nakagawa et al., 2005; Quilot et al.,
2005; Uptmoor et al. 2008; Xet al., 2011). This ‘QTL-based modelling’ approach
can dissect complex traits (e.g. yield) into physiologically relevant component traits,
integrate effects of QTLs on the component traits over time and space at whole-crop
level, and predict yield of various allele combinations under different environmental
conditions (Tardieu & Tuberosa, 2010; Yin & Struik, 2010). In general, the ‘QTL-
based modelling’ approachfollows the different steps described bgtYah (2000b,
2004): (i) designing and validating an ecophysiological model; (ii) identifying QTLs
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and their impact on model parameters following the common marker linkage analysis
and QTL mapping approaches; (iii) creating a QTL-based version of the
ecophysiological model with QTL allelic information included; (iv) validating whether
the QTL-based model can help to understand the G x E interactions within
populations.

Such a QTL-based modelling approach was proven to be robust in predicting

genetic differences in comparatively simple traits, such as leaf elongation rate in
maize, flowering time of barley or rice, and fruit quality in bi-parental crossing
populations under different environmental conditions (in terms of vapour pressure
deficit, soil moisture content, temperature and photoperiod) (Reymond et al., 2003;
Quilot et al., 2004, 2005; Nakagavea al., 2005; Yin et al., 2005b; Uptmoet al,
2008, 2012; Bertin et al., 2010; Prudent et al., 2011). Only in a few cases was the
QTL-based modelling approach used to predict yield (Yin et al., 2000b). To the best of
our knowledge, this approach has not been used to incorporate genetic variation in
photosynthesis into crop model analysis.

In the present study, we followed the same approach and used the crop model
GECROS (Genotype-by-Environment interaction on CROp growth Simulator, Yin &
van Laar, 2005) to predict variation in grain yield and biomass of biparental crosses of
rice under well-watered and drought-stress environments. Based on the experience of
using an older crop model (Yt al., 2000a,b), the GECROS model was designed in
such a way that most of its input parameters are close to the traits breeders score for
selection. In our previous studies (Chapter 2 and 3), we have analysed genetic control
and physiological basis of the genetic variation in leaf photosynthesis and its
sensitivity to drought. Whether or not leaf photosynthesis affects biomass and grain
yield in our rice populations warrants further analysis, especially considering the
inconsistency in the literature with regards to the role of photosynthesis in determining
crop biomass or yields (e.g. Richards, 2000; Fischer & Edmeades, 2010). We will,
therefore, integrate physiological and genetic effects on leaf photosynthesis with other
GECROS model parameters.

We aimed: (1) to examine the ability of the GECROS model with measured model
parameter values, or with marker-based estimates of model parameters, to account for
yield differences among introgression lines (ILs) of rice; (2) to test the extrapolation
ability of the marker-based approach to predict yield variation in an independent
population of recombinant inbred lines (RILs) derived from the same parents, and (3)
to analyze the relative importance of individual markers in accounting for variation in
yield and to examine whether the markers for leaf photosynthesis are also important
for grain yield. We focus on the analysis of yield traits of the ILs and of the RILs,
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illustrating that the model approach can enhance MAS for inbred breeding to improve
yields. Thus, markers, instead of QTLs, are identified for our analysis.

MATERIAL AND METHODS

Plant material and field experiments

The genetic population consisted of 94 advanced backcross ILs and two parents, as
described in Chapter 2. The parents were the lowland rice cv. Shennong265 (Japonica
recurrent parent) and the upland rice cv. Haogeladiga-Japonica intermediate,
donor parent). Haogelao is drought tolerant, but low-yielding; Shennong265 is drought
susceptible, but high-yielding under irrigated conditions. After a cross between the two
parents, the resultant plants were backcrossed with Shennong265 three times, and
these BGF; plants were consecutively self-pollinatéide times to construct the
genetic population by the single-seed descent method.

Field experiments were conducted to assess model parameters and to measure grain
yield and shoot biomass (two major model-output traits). The ILs and the two parents
were sown on IOMay, 2009 by direct-seeding at the experimental station of China
Agricultural University, Beijing (39°54°N, 116°24’E; elevation 50 m above sea level),
China. The mean annual temperature is 13.7he total annual precipitation is 486
mm; the mean daily global radiation is 14 MJ m’. The soil is classified as a
calciaquoll, which contains 23.5% sand, 57.1% silt, and 19.4% clay. The field
experiment design followed a randomized complete block design, with two
replications, four rows of 2.5 m per plot, 0.30 m between rows, in both rainfed upland
and fully irrigated lowland conditions. Seed was hand sown at a depth of 0.03 to 0.04
m. At seedling stage, plants were thinned to a 0.075 m distance between plants within
each row (resulting in a plant density of 44.4 plants f@r Weeds in both conditions
were controlled by a combination of chemical and manual methods. Insects and
diseases were controlled chemically. Basal fertilizer application included 48 kg N ha
(as urea), 120 kg,Ps ha' and 100 kg KO ha', and an additional 86 kg N fhavas
applied at the tillering stage and 28 kg N'ta the booting stagéor fully irrigated
lowland conditions, rice was grown under continual flooding until harvest. For rainfed
upland conditions, besides rainfall, irrigation was only applied when necessary at
critical stages (i.e. at sowing, 120 mm; at tillering, 150 mm; at booting, 130 mm).

An independent population of 251 RILs derived from the same parents (La, 2004;
Zhang, 2006) was sown o' of May, 2005 by direct-seeding at the experimental
station in Zhuozhou (39.29' N, 115.59' E; elevation 45 m above sea level), China
(Zhang, 2006). The mean annual temperature is @3t6® total annual precipitation
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is 389 mm; the mean daily global radiation is 14 M3 dit. The experiment design
and management are the same as in the field experiments in Beijing in 2009.

The crop growth model

The model used in this study was the crop growth model GECROS, first described by
Yin & van Laar (2005). GECROS is a generic model that operates in daily time steps,
simulates the growth and development of the crop on a daily basis, and generates
phenotypes for a multitude of traits, based on concepts of the interaction and feedback
mechanisms among various contrasting components of crop growth, carbon-nitrogen
interaction in particular (Yin & Struik, 2010). The summary information about the
latest GECROS model (v3.0) is given in Supplementary Materials (also see Yin,
2013). For a given set of model parameters and environmental conditions, the model
produces predictions of grain yield and biomass.

Model inputs, parameterization, and test

The weather inputs for the GECROS model are daily radiation, vapour pressure,
maximum temperature, minimum temperature, rainfall and wind speed. These required
weather data were collected from a nearby weather station in 2005 (RILs) and 2009
(ILs) at Zzhuozhou and Beijing, respectively. Atmospheric, €@ncentration and the
amount of irrigated water were also used as model input.

A complete set of model parameters (Table 1) was determined for each IL from data
collected in a well-watered environment in 2009, which include individual seed dry
weight §y), seed nitrogen concentrationsgh maximum plant height (kky, the
minimum number of days for vegetative growth phasg) (©r for reproductive (seed
fill) phase (rg) provided both photoperiod and temperature are optimal, and specific
leaf area constant (b Table 1 also lists total cragtrogen uptake at maturity ()
as a model parameté,. per se, as an accumulative quantity in the crop life cycle, is
not considered as a model parameter of the original GECROS. However, there was not
sufficient information about the soil, and modelling of nitrogen availability for
transition between flooded and nonflooded soil environments is complex and usually
full of uncertainties (Gaydost al., 2012). To reduce an influence of uncertainties in
predicting edaphic variables for nitrogen supply, we took a simple approach, using
Nmax@s a model parameter. The valueNgf,was estimated based on dry weight and
the nitrogen concentration in plant orgams, was determined by means of micro-
Kjeldahl digestion and distillation. Nitrogen concentration in straw was assumed to be
conservative at 0.463% (see data of Singh et al., 1998), and nitrogen accumulation in
the roots was assumed to be 5% gfNYin & van Laar, 2005)

82



Molecular marker-based modelling of rice yields

Table 1. List of genotype-specific parameters of the GECROS model (see Materials and Methods).
DM stands for dry matter.

Trait Description Unit

Sy Seed dry weight g DM seed
Nsc Seed (storage organ) N concentration g N g'DM
Hmax Maximum plant height m

my Minimum days for vegetative growth phase day

mg Minimum days for reproductive (seed fill) phase day

Sa Specific leaf area constant m? leaf g* DM
Nimas Total crop N uptake at crop maturity* g N m?ground

* Not an input parameter in the original GECROS (see the texts)

As in GECROS, parameters, and my are calculated based on a flexible bell-
shaped nonlinear function of phenological response to temperaturet(alin 2005a),
flowering time, and harvest time for each IL. For other non-genotype-specific
parameters, default values based on previous studies were used for all lines (Yin & van
Laar, 2005).

Robust crop growth models can predict yield based on plant growth potential and
whether the supply of carbohydrate and nitrogen can satisfy that potential (Hatnmer
al., 2010). So, model parameters were estimated from the well-watered experiment
(2009, Beijing) as plants could reach their ‘potential’ growth. To test the model,
predicted dry grain yield and dry shoot biomass were compared with measured data
for both ILs and RILs. To evaluate the quality of the model outputs, we used the
relative root mean square error (rRMSE; Wallathal., 2006), calculated as the root
mean square error divided by the mean of the observed value. In additid®. the
coefficient of linear regression between predicted and observed values was used to
indicate the percentage of phenotypic variation accounted for by the model.

Statistical identification of important markers for model parameters and yield

A total of 130 SSR markers and their position for the IL population were reported previously
(Chapter 2; see also the Supplementary material Fig. S1). In order to select markers which
could be potentially used for breeding, the effects of markers were analyzed using a two-stage
approach. Firstly, using the general linear model (GLM) procedure in the statistical package
SAS 9.2 (SAS Inst. Inc.), one-way analysis of variance (ANOVA) was used to test the
significance P < 0.05) of markers across the whole genome. Secondly, all significant markers
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were put into a multiple regression model (GLM) procedure in SAS, using Eqn 1 where a
model parameter valué (listed in Table 1) or yield of introgression likeas affected b\
markers, was presented as:
Y = pt+ Xho1 Gy M (1)

where p= the intercepty, = the additive effect of the n-th markeri M= genetic score of the
n-th marker of the individual introgression likehat takes either the value -1 (allele coming
from recurrent parent ‘Shennong265’) or 1 (donor parent ‘Haogelao’ allele present). We used
the simple additive model (Egn 1) in whi¥treflects the breeding value, as additive genetic
effects are predictably transmitted to progeny. For this second step, including all selected
markers may lead to non-significant markers in the multiple regression because of the
collinearity of markers. Such collinearity can sometimes lead to serious stability problems
(Martens & Nees, 1992; Nees & Mevik, 2001). To solve this problem, the non-significant
marker with the highes?-value during multiple regression was excluded in the next round of
multiple regression. This approach left out one marker at a time, until all markers in the
multiple regression became significaRt< 0.05) (Ott & Longnecker, 2001).

Using the same Eqgn (1), marker-based values of GECROS-model parameters were
calculated for each genotype, based on the estimated additive effects for each parameter and
the marker allelic information of the ILs or the RILs.

Identifying important yield-determining traits and markers

Multiple linear regression analyses were performed to identify which model parameter
in Table 1 influenced yield most. A sensitivity analysis using the GECROS model was
performed to identify the contribution of single markers to yield production. This is
achieved by following the approach of Yet al. (2000a), i.e. examining vyield
variation accounted for by the GECROS model when the tested marker was excluded
in estimating the marker-based model parameters. First, the baseline simulation was
conducted, where IL-specific allelic values for all markers were used as input for
simulation. Then, allelic values were fixed, one marker at a time, at zero. The extent to
which the percentage of yield variation accounted for by GECROS was decreased
relative to the percentage accounted for by the baseline simulation was used to rank
the relative importance of the markers in determining grain yields. This model-based
identification of markers was compared with the marker analysis based on yield data
per se

RESULTS

Variation in yield and physiological model parameters
There was no yield difference between replicates in either well-watered or drought-
stressed conditions (P 0.05). The IL population exhibited considerable genotypic
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variation in model parameters and grain yield (Fig. 1), showing transgressive
segregation. Most model parameters, iy, Nso, Hmax Sa Nmax (drought-stressed
environment) and yield presented a unimodal distributionngomg and N (well-
watered environment), a bimodal distribution was observed. Parent ‘Shennong 265’
yielded more than ‘Haogelao’, even under drought.
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Fig. 1. Frequency distribution of seven model parameters and yield in the population of introgression
lines (ILs). Arrows show values for the two parents (full arrow for ‘Haogelao’ and dotted arrow for

‘Shennong265’).
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Table 2. Linear regression of rice yield)(against total crop Nptake Nmay) and one other parameter
trait of both well-water and drought-stressed input parameter96; for definition of these traits, see
Table 1).

Equation bo by b, R
Y = by + bNmax -15.43/-62.6%  44.49*** | 37.13*** 0.576 /0.592
Y = by + byNpax + boSw -39.73/-44.54 43.86*** [ 37.37*** 1356.6 /-881.1 0.577/0.593

Y = by + byNmax + bonso 466.60 / 86.83 47.11%* [ 35.94** -35698.7** [ -10033.9* 0.749/0.614
Y = by + byNmax + boHmax  77.43 1 48.84 49.70%** [ 40.49** -128.5** [ -120.7*** 0.609/0.646
Y =y +biNmax + bomy  630.66/553.40  39.03*** [ 29.32*** 6, 73%* [ -6.41*+* 0.668/0.714
Y =y +bNmax + bomr -310.43/-339.14 38.54*** [ 29.04*** 15.69*** [ 14.63*** 0.669/0.710
Y =by+bNmax+ 0,5, 161.52/92.18 42.74%* [ 36.78*** -8334.2* [ -7903.0** 0.598/0.625

* xx Rk Significant at the 0.05, 0.01, and 0.001 probability levels, respectively.
T Values before slash are for well-watered conditions; values after slash are for drought-stressed conditions.

Contribution of individual model parameters to yield

Effects of individual model parameters on yield were analyzed, for both well-watered
and drought-stressed environments as assessed in 2009. Simple single-factor
regression based on data of all genotypes revealed that yield correlated with most
model parameters. Among them,,,, was correlated with yield mosh,.x alone
accounted for 57.6% and 59.2% of the variation in yield under well-watered and
drought-stressed environments, respectively (Tabl&2) was also associated with
other model parameters. For example, under well-watered condiiggs;orrelated

with Sy, Hmax My, andmg (r = 0.29, 0.44, -0.29, and 0.32, respectivétys 0.01).
Therefore, Npax Was used as covariate, when multiple regression was conducted
relating yield to each model parameter (Table 2). The results showed yield correlated
significantly with all model parameters, except fy. Amongst model parameters
under well-watered conditionsiso was best correlated to yield besidés,,; under
drought-stressed conditions, mvas best correlated to yield.

Performance of the GECROS model

The GECROS model was first evaluated using both well-watered and drought-stressed
experiments in 2009. Under well-watered conditions, the model accounted for 72% of
the variation in yield (Fig. 2A) and for 78% of the variation in biomass (Fig. 2B), with
rRMSE values of 0.10 and 0.09, respectively.

For simulating yield in the drought-stressed environment, first, all parameter values
as used for the well-watered environment were applied. This procedure resulted in
systematic over-predictions, as the actual nitrogen uptalsemuch less, resulting in
reduced growth under drought. Therefore, obseNgg from the drought-stressed
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Fig. 2. Comparison between observed and simulated values of grain yield (A, C) and biomass (B, D)
of rice introgression lines for both well-watered (A, B) and drought-stressed (C, D) environments. The
diagonal line is the 1:1 line.

environment was used. The model accurately predicted biomass, but still over-
estimated grain yield by over-estimating the number of grains Pefresults not
shown). This could be due to the fact that the generic crop model GECROS lacks
specific algorithms to account for the impact of high tissue temperature associated
with reduced transpirational cooling under drought on spikelet sterility in rice. A
further calibration was applied by reducing the seed number (i.e. ~6) 7arrall ILs,

based on the difference between predicted average population mean and real
experimental data. After such a calibration, the model accounted for 57% of the
variation in grain yield (Fig. 2C), and 73% of the variation in biomass (Fig. 2D), with
rRMSE values of 0.23 and 0.12, respectively.

Both estimations of yield for well-watered and drought-stressed environments were
poor compared with the best fit of linear regression in Table 2. This suggests that the
input parameters required for GECROS were not all important for defining yield for
this IL population, as confirmed by later analysis.
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Fig. 3. Comparison between observed and predicted values by introducing photosynthesis parameters
for grain yield (filled circles, bold Rand rRMSE ) and biomass (open circles, non-bBfdand
rRMSE), under (A) well-watered and (B) drought-stressed environments. The diagonal line is the 1:1
line.

Introducing genetic variation in leaf-level photosynthesis in the GECROS crop
model
Based on representative ILs of the same population, We (Chapter 3) reported the
QTL/marker effects on individual parameters of the biochemical photosynthesis
module in GECROS. We introduced these QTL/marker effects into GECROS. After
introducing genetic variation in leaf-level photosynthesis for each IL, the model over-
estimated production, especially for biomass, and the variation accounted for by the
crop model decreased significantly for both well-watered and drought-stressed
conditions (Fig. 3).

Given the poor performance of the model after introducing genetic variation in leaf
photosynthesis, the photosynthesis parameters for each IL were replaced by the
population mean in all subsequent modelling analyses.

Coupling the effects of identified markers to crop model
First, an analysis was conducted to identify markers conferring for each model
parameter. In total 20 markers were detected for all seven model parameters (Tables 3
and 4, Fig. S1). The total fraction of the phenotypic variation accounted for by the
markers ranged from 27.3% to 51.7%. Marker RM410 showed multiple effentg,on
Himax My, Mg, and S,; marker RM8030 had multiple effects &, Hmax and Npmax
under well-watered conditions; marker RM11 was related to phenology influencing
bothm, andmg; marker RM338 influenced both, andN,,. in the drought-stressed
environment; marker RM475 was relatedNg,x in both well-watered and drought-
stressed environments.

Secondly, based on the additive effects predicted by the multiple regression analysis
and allele information at each detected locus, marker-based values for each of the

88



Molecular marker-based modelling of rice yields

Table 3. Coefficients of Eqn (1) used to identify markers conferring for seven physiological model-
input parameters and for grain yield, using data from the well-watered conditions in 2009 and also
from drought-stressed conditions for total nitrogen uptake. For definition and unit of these parameters,
see Table 1. Marker positions were based on the SSR marker linkage map established for the rice
introgression lines population (Chapter 2; see Fig. 81)denotes the percentage of phenotypic
variation accounted for by all markers identified for a given parameter or trait.

Trait u Chr. Location Markers Additive P-value R (%)
(cM) effect @,)
Sy 1 124.8 RM1152 0.0010 0.0002 45.2
0.0222 2 1109 RM1367 0.0008 0.0007
2 139.3 RM8030 -0.0009 0.0035
4 123.8 RM2799 -0.0006 0.0039
Nsc 3 79.1 RM251 0.0009 <0.0001 36.8
0.0148 9 64.4 RM410 0.0003 0.0002
12 61.6 RM1261 -0.0004 0.0039
Himax 1 9.5 RM8068 0.037 0.0213 51.7
2 139.3 RM8030 -0.057 0.0004
1174 4 255 RM518 -0.035 0.0042
7 43.5 RM432 0.081 <0.0001
9 64.4 RM410 0.042 <0.0001
10 87.1 RM294A 0.058 0.0021
my 1 124.8 RM1152 -1.38 0.0041 33.6
90.78 3 108.4 RM338 1.31 0.0487
7 47 RM11 1.61 0.0191
9 64.4 RM410 1.23 0.0002
Mg 1 124.8 RM1152 0.52 0.0127 27.3
21.71 7 47 RM11 -0.81 0.0086
9 64.4 RM410 -0.59 0.0001
Sa 1 25.4 RM8145 0.0007 0.0006 31.0
0.0203 7 81.05 RM3753 0.0006 0.0020
9 64.4 RM410 0.0003 0.0098
Nimax 2 925 RM475 -0.44 0.0082 37.0
well-watered 783 2 139.3 RM8030 -0.50 0.0052
’ 8 83.7 RM284 -0.53 0.0004
9 0.8 RM5799 -0.35 0.0460
Nmax 1 98.1 RM306 0.62 0.0011 36.2
drought- 2 92.5 RM475 -0.46 0.0066
stressed 5.13 3 108.4 RM338 -0.76 0.0042
5 20.6 RM7302 -0.47 0.0277
Yield 2 92.5 RM475 -21.7 0.0288 56.5
well-watered 2 139.3 RM8030 -34.9 0.0009
325.3 8 35.7 RM4085 -14.5 0.0431
8 83.7 RM284 -22.4 0.0113
9 64.4 RM410 -19.5 0.0048
Yield 3 108.4 RM338 -42.2 0.0002 45.4
drought- 5 20.6  RM7302 222 0.0067
stressed 137.2 5 132.7 RM538 25.7 0.0328
9 64.4 RM410 -18.8 0.0004
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Fig. 4. Comparison between observed values and those predicted by the marker-based trait inputs for
96 rice genotypes of the IL population, for grain yield (A) and biomass (B), for well-watered (empty
symbols, non-boldR? andrRMSE) and drought stress (filled symbols, b&tand rRMSE). The
diagonal line is the 1:1 line.

model parameters were estimated using Eqn (1) for each IL. The performance of
GECROS with marker-based estimates of model parameters was examined (Fig. 4).
The marker-based GECROS model accounted for 52% of the across-IL phenotypic
variation of yield in the well-watered environment and for 43% of the across-IL
phenotypic variation in the drought-stressed environment, MRMSE of 0.13 and

0.27, respectively. These percentages were almost comparable with those percentages
accounted for by the markers identified for yield pe(Table 3).

The GECROS model using marker-based estimates of model parameters gave less
accurate predictions than using measured model parameters (Fig. 4 vs Fig. 2). In both
well-watered and drought-stress cases, the marker-based model seemed to over-predict
the lower end of observed yield and biomass, and to under-predict the higher end of
observed yield and biomass, and, as a result, the range of predicted values was
narrower than that of the observed data. This narrower range could be caused by the
fact that the detected markers only explained part of the variation of model parameters
(Table 3).

We directly compared the predictions of yield and biomass of the two versions of
the model, the marker-based model and the model using the measured parameters (Fig.
5). The marker-based predictions correlated well with the original predictions in grain
yield for both the well-watered (k 0.73) and the drought-stressed £r0.70)
environment. Similar correlations were obtained in biomass(Q.75 and 0.71 for the
two environments, respectively). These correlations suggest that model parameters
estimated using marker information can replace measured input parameters.
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Fig. 5. Correlation between predicted values from marker-based model parameters and those from
measured model parameter values for 96 rice genotypes of the IL population for grain yield (A) and
biomass (B), for well-watered (empty symbols) and drought-stressed environment (filled symbols)

Extrapolating the prediction of marker-based modelling to a population of
recombinant inbred lines from the same parents

For predicting yield differences within an independent population of RILs derived
from the same parents, marker-based estimates of model parameters were used
according to the same approach as in the IL population using Egn (1). The model
predicted 21% of the phenotypic variation under well-watered conditions and 20% of
the phenotypic variation under drought-stressed conditions (Fig. 6),/RMSE =

0.31 and 0.45, respectively.

Fig. 6. Comparison between observed values of grain yield and those predicted by additive effects of
marker-based parameters for a population of 251 recombinant inbred lines grown under well-watered
(empty circles, non-bol®R* andrRMSE) and drought-stressed (filled circles, b&fdand rRMSE)
environments.
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Model-based sensitivity analysis to identify important yield-defining markers

The sensitivity for a single marker was analysed by excluding the effect of the marker
in estimating marker-based model parameters. Marker RM8030 on Chromosome 2
contributed most to the yield of the IL population under well-watered conditions,
whereas marker RM338 on Chromosome 3 contributed most under drought-stressed
conditions (Table 4). When excluding the additive effect of RM8030, the phenotypic
variation accounted for by the GECROS model decreased from 51.6% to 34.2%; for
RM338, the phenotypic variation accounted for decreased from 42.6% to 29.8%. The
marker ranking obtained through the sensitivity analysis (Table 4) agreed well with the
linear regression analysis of rice yield against model parameters (Table 2). As shown
by the linear regressidn,x contributed most to the variation in yield. In accordance
with that observation, the most important yield-influencing markers identified by the
sensitivity analysis were all related tgN(Table 4).

Table 4 also shows that under well-watered conditions markers RM410 and RM251
related tonsp had a higher ranking than RM5799 related\t@,; in drought-stressed
conditions marker RM410 and RM432 influencikigx had a higher ranking than
RM306 and RM475 influencin,.. Parametersiso andH,.x also had statistically
significant effects on yield for well-watered and drought-stressed conditions,
respectively (Table 2). Therefore, the regression analysis supported our conclusion
based on the model-based sensitivity analysis approach.

Our analysis showed that removing some markers could also have no effect on yield
prediction or even increase the power of the prediction (Table 4). For example, by
removing the additive effect of marker RM251, the prediction for drought-stressed
conditions could improve from 42.6% to 46.2% variation accounted for.

Most high-ranking markers found in this approach were consistent with the markers
identified for yieldper sein Table 3, for example, the four highest-ranking markers in
the well-watered environment (i.e. RM8030, RM284, RM475 and RM410) and the
three highest-ranking markers in the drought-stressed environment (i.e. RM338,
RM7302 and RM410). The model-based approach detected 20 markers contributing to
yield (Table 4), more than the markers identified from multiple regression analysis for
yield (Table 3).

DISCUSSION

Using crop models to predict genotypic differences in yield has constantly been a
challenge for crop modellers (Yiet al, 2000a; Yin & Struik, 2010). This study
examined the ability of the generic crop model GECROS to account for differences in
yield within IL and RIL populations of rice. We also used the principles for QTL-
based modelling as defined earlier (hal., 2000b; 2005b) and integrated genetic
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information on molecular markers identified for individual model parameters of
GECROS to predict both yield and biomass. In this discussion section we will mainly
analyse the performance of the resulting marker-based GECROS model, and explore
how models can help breeders design the ideotypes and support selecting the best
genotypes.

Performance of the (marker-based) GECROS model

The GECROS model uses the concept of carbon-nitrogen interactions for simulating
crop growth (Yin & van Laar, 2005; Yin & Struik, 2010; Yin, 2013). Unlike those of
earlier crop models (Yirt al., 2000a), the input parameters of GECROS are mostly
related to the traits that breeders usually measure (Table 1), which may facilitate the
use of crop modelling in support of breeding (Yin et al., 2004).

Our results indicated that using as few as seven parameters (Table 1), the GECROS
model showed a good potential to account for observed differences in yield among the
96 ILs including the parents (Fig. 2). More importantly, marker-based GECROS also
predicted yield differences among the 96 ILs (Fig. 4).

Since the marker-based model parameters were based on the estimated genetic
effects, the marker-based crop model should be able to predict the variation within any
progeny from the same parents. This was shown to be the case, using independent
lines of the same cross that were not included in the QTL mapping step (Regtond
al., 2003). Here we tested this possibility using a different population, i.e. RILs
derived from the same parents. The comparatively low percentage of yield variation
accounted for the RIL population (Fig. 6) could have been caused by the
comparatively larger number of RILs (m 251), which might have involved
segregations that were not revealed by markers found in the smaller IL population. The
limited number of markers with small additive effects only accounting for from 27.3%
to 51.7% of the phenotypic variation of model-input parameters in the IL population
(Table 3) could be another reason.

Despite the promising results there were also problems to overcome when applying
this approach. First of all, the model performance was sensitive to nitrogen uptake, as
plant nitrogen contermot only affects canopy development, but also photosynthesis,
and therefore, biomass and yield. Due to the complexity in modelling the transition
between flooded and nonflooded soil environments (Gagtlah, 2012) and the lack
of information on soil-related parameters needed to simulate nitrogen ugtakesas
directly used as an input parameter of GECROS in this study (Table 1).

Secondly, the drought treatment changed the sink-source relationships which
required adjustments to be made. In our simulation, model parameters were first
estimated from the well-watered experiment (2009, Beijing). However, a further
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calibration was found necessary for simulating spikelet numbers, when the model was
applied to the drought-stress environment (see the Results). Drought environments
reduce transpirational cooling, leading to high tissue organ temperature and high
spikelet sterility in rice; this effect can be highly genotype-dependent (Jagadikh

2007). The generic model GECROS relates potential seed number to carbon and
nitrogen accumulation in the vegetative phase, and does not have algorithms to
account for this effect of organ temperature (Yin & van Laar, 2005). Obviously, there

is a need to better account for the final spikelet number of rice when applying the
model for predictions under stress.

Role of crop models in designing ideal plant types

Identifying the most determinant yield-defining traits may help to design the ‘new
plant type’ (Penget al., 2008). Crop modelling can dissect complex traits into
physiological components. Using the crop model GECROS, yield was connected to,
and dissected into seven model parameters. By dissecting complex traits into
physiologically meaningful components, it is possible to assess genetic variation for
each component and evaluate its relative importance by sensitive analyses or
regression analyses. Regression analyses showedlthahad the most significant
effect on yield (Table 2). This is in line with the result that the important yield-
determining markers identified by GECROS-based sensitivity analysis (Table 4) were
mainly those forNn. (Table 3). Similarly, Prudergt al. (2011) combining a fruit
sugar model and QTL analysis, identified key elementary processes and genetic factors
underlying tomato fruit sugar concentration. All these results show that the dissection
approach based on physiological models can point where the QTLs for complex traits
come about (Yin et al., 2002), thereby revealing biological insights into complex traits.
At the same time this dissection approach suggests how to create the best combination
of component traits for an ideal plant type that will perform best under given
conditions.

Marker-based GECROS also indicates markers that had a least impact on grain
yield (Table 4). Such an analysis may suggest whether or not the model has
incorporated right parameters in predicting yield differences among genotypes in a
certain environment. Removing some markers even increase the power of the
prediction, as was the case of marker RM251 when using the model to drought-
stressed conditions (Table 4). This could have been caused by the fact that marker
RM251 only influenced the traits (i.Bsc), which did not have a significant effect on
yield of our IL population under drought-stressed conditions.

The model-based dissection approach should not be considered to replace, but only
to complement the yielder seapproach, as the latter identified markers (e.g. RM4085
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for well-watered, and RM538 for drought-stress environment, Table 3; Fig. S1) that
were not detected by the model-based sensitivity analysis. This arises from the
possibility that markers under statistical threshold of detection for component traits
can be detected when the aggregated complex trait itself was analyseet @in
2002). The other possibility is that some yield-influencing traits were not incorporated
into the GECROS model as input parameters.

Marker-based modelling to improve the efficiency of marker-assisted selection
Combined with conventional breeding approaches, MAS has been used to integrate
major genes or QTLs with large effect into widely grown varieties (Jena & Mackill,
2008). But so far MAS only had a moderate impact on breeding for complex traits, for
which many small effect genes are involved and highly environment-dependent (e.g.
yield, drought tolerance) (Collard & Mackill, 2008). One of the advantages of QTL-
based models is that they can be used to evaluate the contribution of a single QTL to
yield (Chenuet al., 2009). This could potentially assist in finding the most important
markers for MAS.

We showed that the existing GECROS model can be a useful tool to enhance the
efficiency of MAS especially for complex traits (i.e. yield). The markers were first
identified for various yield-determining physiological traits that are input parameters
of GECROS (Table 3). The relative importance of these markers were then ranked by
performing marker-based model sensitivity analysis (Table 4). Such an analysis
detected markers that breeders can prioritize in their MAS programmes for specific
environments. Compared with identification of markers/QTLs for yped se the
model-based approach provided breeders with more information for MAS. This
analysis confirms the assertion that rather than looking only for QTLs for a complex
trait (yield) itself, determining QTLs for underlying component traits will provide
more genetic information (Yiet al.,2002; Tardieu & Tuberosa, 2010; Prudenal.,

2011). Notably, the GECROS model-based approach identified some markers that
were otherwise unidentified by analysis of yigldr se (e.g. marker RM432 for
drought-stress environment) (Table 3). This approach provided breeders with more
choice of markers for selection. It remains to be tested through actual breeding
whether this additional information does indeed result in better genotypes.

QTL/marker-based modelling combined with sensitivity analysis (Table 4) can also
directly evaluate a single QTL/marker’s effect on yield level, which could be used to
evaluate specific genotypen silico, thus potentially reducing labour extensive
selection in the field. Since crop modelling quantifies causality between relevant
physiological processes and responses of these processes to environmental variables,
we could resolve the commonly observed G x E interactionglal., 2004; Hammer
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et al., 2006; Tardieu, 2011), even the QTL x environment interaction (Hemasetalini

al., 2000; Asins, 2002). For example, Chestual. (2009) using the crop model
APSIM-Maize simulated that a QTL accelerating leaf elongation will increase yield in
an environment with water deficit before flowering, but reduced yield under terminal
drought stress. Our model analysis showed that the marker RM338 contributed the
greatest to yield under stressed environment, but had no effect at all under well-
watered environment (Table 4). This modelling analysis will greatly improve the MAS
efficiency for traits which greatly influenced by environment factors.

Leaf photosynthesis in relation to crop biomass and yield

The above discussions were based on our results without considering the genetic
variation in leaf photosynthesis. As a follow-up of our previous analyses (Chapter 2
and 3) that reported significant genetic variation in photosynthesis in our IL
population, we introduced genetic variation in leaf photosynthesis into the crop model
to examine whether this would improve the predicting power of GECROS for different
genotypes.

Photosynthesis, being the source of organic carbon, is expected to be correlated
with yield, as evidenced by Fischer & Edmeades (2010). Our analysis gave the results
opposite to this expectation (Fig. 3). This is seemingly in line with the result that
introducing leaf nitrogen content led to poorer prediction of the variation in grain yield
among barley RILs (Yiret al., 2000a) and with the statement that increasing leaf
photosynthesis is not a useful strategy to increase crop yield (e.g. Richards, 2000). Our
result could be caused by the fact that in our IL population the photosynthesis-
increasing allele of the major QTL stemmed from the lower yielding parent
‘Haogelao’ (Chapter 2) — the parent that had lower yield in both well-watered and
drought environments (Fig. 1). Furthermore, the genetic variation in parameters of the
biochemical steady-state leaf photosynthesis model was only studied at flowering and
at grain filling in the greenhouse (Chapter 3), which might be different from the
acclimated real-life differences between leaves in the dynamic conditions in the field
(Archontoulis et al., 2012). More extensive measurements and increased temporal
resolution may be required.

Nevertheless, our results reflect the complex hierarchy from leaf-level
photosynthesis to crop yield. Our ILs differ genetically in many respects other than
photosynthesis (Fig. 1), and the variation in photosynthesis may only play a
comparatively small role in this population. A simulation study focusing on the impact
of natural genetic variation in leaf photosynthesis on crop productivity would be
needed to exclude potential confounding effects due to variation in other physiological
processes.
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CONCLUSIONS

Our results are promising for applying marker-based modelling in support of breeding:
the approach integrates genetic information for model parameters to predict a complex
yield trait across different environments and genetic make-ups. The approach can
prioritize markers in the MAS programmes for specific environments. Compared with
identification of markers for yielgher se our analysis provided breeders with more
information for MAS, although the approach should be considered to be
complementary to the analysis-of-yield-pa- Further improvement could be
achieved by upgrading crop models for rice especially when grown under drought
stress. It is also necessary to try more generations of introgression to break the
putatively tight genetic linkage between high photosynthesis and low yield) and use a
higher-density linkage map and a larger population size to improve the genetic
resolution by increasing the power of the analyses.
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Supplementary Materials in Chapter 4

Description of crop growth model GECROS

GECROS is a generic crop model operating in daily time steps (with phenology and
photosynthesis related processes simulated in shorter time steps). The model simulates
crop growth and development over time and generates phenotypes for many different
traits. For a detailed description of its first version, see Yin & van Laar (2005). The
latest version of the model (v3.0) was described as the Supplementary material of Yin
(2013). Here, we only describe key features of this latest version that are related to
modelled processes relevant to this paper.

Instantaneous leaf photosynthesi$ {&s calculated from the analytical algorithms
that are based on the model of Farquhetr al. (1980), coupled with a
phenomenological C&diffusion conductance model (for overview, see Yin & Struik,
2009 and references therein; Yat al., 2009). The analytical cubic polynomials
simultaneously solve stomatal conductancey), (ginternal [CQ], and leaf
photosynthesis rated]. The obtainedys was used in the Penman-Monteith equation
(Monteith, 1973) for surface energy balance to model leaf transpiration and leaf
temperature. Leaf temperature was then used for re-calculating leaf photosynthesis and
transpiration. The effects of leaf nitrogen (N) content on photosynthgsend
transpiration are reflected by the effects of leaf N on parameters of the photosynthesis
model. Furthermore, an option is allowed for mesophyll conductapged vary in
proportion withgs in response to all environmental factors, given recent reportg,that
may resembleys in response to various environmental variables (e.g. Flekad,

2008; Yinet al., 2009; Gu et al., 2012).

Spatial extension from leaf to canopy photosynthesis and transpiration was
established using the sun/shade model of de Pury & Farquhar (1997). Temporal
extension from instantaneous rates to daily total was performed using the five-point
Gaussian integration (Goudriaan, 1986) to account for (a)symmetric diurnal course of
radiation and temperature. These approaches for spatial and temporal extensions apply
to the case in the absence of drought stress.

In the presence of drought stress, the available water is partitioned between sunlit
and shaded leaves according to the relative share of their potential transpiration to
obtain their instantaneous actual transpiration. The actual transpiration is transformed
into the actual level ofs using the Penman-Monteith equation, and the actuahs
then used as input to an analytical quadratic model, to estimate the instantaneous
actual photosynthesis of the sunlit and shaded leaves. The Gaussian integration is
again used to obtain the daily total of the actual photosynthesis.
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Crop respiration was modelled, based on the framework of Cannell & Thornley
(2000) that recognises individual relationships between respiration and each process it
supports.

GECROS uses two equations of Yin & Schapendonk (2004) for simulating the
partitioning of C and N, respectively, between shoots and roots. They were based on
the classical root-shoot functional balance theory, with an incorporation of the
mechanism that plants control root-shoot partitioning in order to maximise their
relative C gain.

The intra-shoot nitrogen partitioning is based on a pre-defined maximum grain N
concentration of a genotype and a minimum N concentration in the stems. If the N
requirements for the grains and stems are met from the current N uptake, the
remaining shoot nitrogen goes to the photosynthetically active plant parts (including
leaf blades, leaf sheaths, photosynthetically active parts of the stems and ears), whose
surface area determines the green-surface area index (GAl). If the requirements for the
grains are not met, remobilisation of N takes place, first from the reserves and then
from the leaves and the roots, until the reserves are depleted and N concentrations in
the leaves and roots reach their minimum values. This remobilisation advances leaf
and root senescence.

Maximum stem weight of the crop is assumed to be proportional to maximum plant
height, whilst maximum single grain weight is set as genotypic parameter. Potential
grain number per fnis co-determined by carbon (C) and N accumulation during
vegetative growth. Daily demand for C by stems and grains is simulated using the
differential form of an equation for describing any asymmetric sigmoid pattern of a
determinate growth (Yiret al., 2003). The remaining shoot-carbon goes either to the
leaves or to the C reserve pool in the stems, depending on whether GAIl becomes
limited by nitrogen. The GAI can be either C or N limited; it is calculated following
the principles described by Yiet al. (2000). If C reserves are present, C is made
available to the grains, when current photosynthesis does not satisfy their C demand.

For simulating phenological development, development stage is defined as 0 at
seedling emergence, 1 at start of grain filling and 2 at physiological grain maturity.
The intervals from stage 0 to 1 and from 1 to 2 depend on the genotype-specific
number of days at optimum temperature. A flexible bell-shaped non-linear function
(Yin et al., 1995) is used to describe the temperature response of development rate.
This rate has a value of 0 when the hourly temperature is below the base temperature
or above the ceiling temperature; it is 1 when it is equal to the optimum temperature.
Development rate is also affected by daylength during the photoperiod sensitive part of
the vegetative phase (but the daylength effect was not used for the simulations in the
current study).
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Chapter 5

ABSTRACT

Rice productivity can be limited by available photosynthetic assimilates from leaves.
However, the lack of significant correlation between crop yield and leaf photosynthetic
rate @A) is noted frequently. The effects of engineering for an improved photosynthesis
have been reported to damp down gradually when moving up from leaf to crop level,
because of complicated constraints and feedback mechanisms. Here we examined the
extent to which natural genetic variation M can contribute to increasing rice
productivity. Using the mechanistic model GECROS we analysed the impact of
genetic variation irA on crop biomass production, based on the quantitative trait loci
for various photosynthetic components within a rice introgression-line population. We
showed that genetic variation i of 25% can be scaled up equally to crop level,
resulting in an increase in biomass of 22-29% across different locations and years.
This was probably because the genetic variatiof resulted not only from Rubisco-
limited photosynthesis but also from electron transport-limited photosynthesis; as a
result, photosynthetic rates could be improved for both light-saturated and light-
limited leaves in the canopy. Rice producticould be significantly improved by
mining the natural variation in existing germplasm, especially the variation for
parameters that determine light-limited photosynthesis.

Key words: Canopy photosynthesis, crop model, GECROS, genetic variation, Oryza
sativa L., photosynthesis, rice.

INTRODUCTION

Cereal yield is determined by the accumulated photosynthetic assimilates over the
entire growing season that are partitioned into the caryopses. Improvements in crop
management and genetic gain in harvest index are largely responsible for the increased
cereal yields over the last decades (Austin, 1999; Peng et al., 2008). However, it has
been argued that cereal production is now approaching a plateau and further increases
in yield will necessitate an increase in photosynthesis (Austin, 1994; Mitchell &
Sheehy, 2006; Lawson et al., 2012).

Crop photosynthesis accumulated for the entire growing season depends on the
ability of the crop to build up and maintain a canopy for capturing incoming light, but
also on the photosynthetic capacity and efficiency of leaves. There may be chances to
increase the light capture by improving early leaf area growth rate or by introducing
‘stay green’ genes to extend the growing season (Long et al., 2006). For rice, however,
leaf area dynamics and canopy architecture may have been effectively optimized for
maximum light capture through breeding (Horton, 2000). Any further increase in
photosynthesis of the rice crop may have to come from improved leaf photosynthesis.
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Photosynthesis per unit leaf area seems to have been improved already as suggested by
experimental comparisons of old and modern varieties of cereals, including rice, in
concert with improvements in harvest index and grain number (Fischer & Edmeades,
2010).

Given the fast developing biotechnology, opportunities for improving leaf-level
photosynthesis via genetic engineering have been extensively explored, by either
experimental approaches or theoretical computation. Approaches include, for example,
designing more efficient Rubisco (Mueller-Cajar & Whitney, 2008; Whitney &
Sharwood, 2008); exploiting existing inter-specific variation in Rubisco efficiency
(Zhu et al., 2004a)ncreasing RUBP regeneration and light reaction (Miyagetwa.,

2001; Peterhansel et al., 2008; Rott et al., 2011); increasing mesophyll conductance
(Uehlein et al., 2008); introducing G@oncentrating mechanism intg €rops (Price

et al., 2008); introducing C&concentrating mechanism with Kranz anatomy ingo C
crops (von Caemmerer et al.,, 2012); short-circuiting photorespiration (Maurino &
Peterhansel, 2010); and increasing the rate of transition from photoprotectioat(Zhu

al.,, 2004b). Longet al. (2006) estimated that these ambitious approaches, if
successful, would need research efforts of 10-30 years, depending on the avenues to be
used.

Leaf photosynthesis could be improved not only through transgenic biotechnology,
but also through the exploitation of natural variation with a conventional breeding
approach. Parrgt al. (2011) indicated that mining existing genetic variation could be
the most efficient method for short term improvements (< 5 years). Recently,
quantitative trait loci (QTLS) related to different photosynthetic parameters have been
successfully mapped (Takai et al., 2009; Adachi et al., 2011; Chapter 2). Furthermore,
in Chapter 3, we using the biochemical photosynthesis model of Faefudlaf1980)
as adapted by Yiret al. (2009b), successfully dissected genetic variation of leaf
photosynthesis present in an introgression line (IL) population into different
biophysical and biochemical components. Their analysis showed that by using genetic
variation in all components, leaf-level photosynthesis could potentially be increased by
ca 20% through marker assisted selection.

However, photosynthesis rate per unit area of leaf does not correlate well with
biomass produced (Evans & Dunstone, 1970; Teng et al.,, 2004). This has led to a
common notion that increasing leaf photosynthesis is not a useful strategy to increase
crop vyield (Richards, 2000; Zhao et,&008). Actually, this notion was confirmed by
our own work on the IL population: among the many physiological parameters
examined, leaf photosynthesis was not important in determining the differences in crop
yield among the ILs observed in a field experiment, either under drought or under
well-watered conditions (Chapter 4). This lack of persistence of variation across scales
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is probably due to the complex hierarchy from leaf-level photosynthesis to crop yield
and to interaction and feedback mechanisms occurring between physiological
components within the individual plant, between plants of the same crop and between
the crop and the environment. Moreover, leaf photosynthesis and crop yields are both
associated with some random experimental error. Together, the complexities and the
experimental noise might mask the potential contribution of the small within-
population variation in leaf photosynthesis to the variation in final crop vyield.
Therefore, modelling has been a useful tool to investigate the potential of improved
photosynthesis on crop productivity (Day & Chalabi, 1988; Long et al., 2006).

In this paper we use the process-based crop model GECROS (Yin & van Laar,
2005) to examine the extent to which exploiting the natural genetic variation in leaf
photosynthesis components can contribute to variation in canopy photosynthesis and in
crop yield in rice. The GECROS model combines sufficient physiological rigour for
complex phenotypic responses with genotype-specific parameters. We use this model
to scale up variation in leaf photosynthesis components as detected in our previous
study (Chapter 3) to variation in canopy photosynthesis and in biomass productivity
across the entire growing season for contrasting environments. Input parameter values
for model simulation are only those derived from our previous results on quantitative
trait loci (QTLs) for various leaf photosynthesis parameters, while other input
parameters of the GECROS model are maintained the same across rice genotypes. In
this way, potential confounding effects due to variation in other physiological
processes can be avoided to exclusively illustrate the potential impact of natural
genetic variation in leaf photosynthesis on crop productivity. We specifically
hypothesise for potential larger persistence during scaling up than observed in
previous studies from the literature if photosynthesis can be improved irrespective of
light level, and test this hypothesis using the IL population segregating for QTLs
related to both light-saturated and light-limited photosynthesis parameters.

MATERIALS AND METHODS
Based on the genetic variation found in an IL population of rice (Chapter 2 and 3), the
crop model GECROS (Yin & van Laar, 2005) was used to evaluate the expression of
genetic variation in leaf photosynthesis in terms of variation of canopy photosynthesis
and crop biomass production.

Crop growth model GECROS

GECROS is a generic model that operates in daily time steps, simulates the growth
and development of the crop over time, and generates phenotypes for a multitude of
traits, based on concepts of the balance, interaction and feedback mechanisms among
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various contrasting components of crop growth. A detailed description of GECROS
and its algorithms can be found in Yin & van Laar (2005). In this section, only key
features, related to carbon partitioning, nitrogen (N) demand and partitioning,
phenological development, and photosynthesis are described; the corresponding
algorithms are given in Appendix 1.

Nitrogen demand is the maximum of the deficiency driven and the growth-activity
driven demand (Egn 1-6). The deficiency driven demand is the amount of nitrogen
required to restore the critical minimum nitrogen concentration. The growth-activity
driven demand is based on the optimum nitrogen/carbon ratio for the maximum
relative carbon gain.

Root-shoot partitioning for nitrogen and carbon responds to environmental factors,
based on the root-shoot functional balance theory (Charles-Edwards, 1976). The intra-
shoot nitrogen partitioning (Eqn 7) is based on a pre-defined maximum grain nitrogen
concentratiorof a genotype and a minimum nitrogen concentration in the stems. If the
nitrogen requirements for the grains and stems are met from the current nitrogen
uptake, the remaining shoot nitrogen goes to the leaves, which include the
photosynthetically active parts of the stems, sheaths and ears. If the requirements for
the grains are not met, remobilisation of nitrogen first from the reserves and then from
the leaves and the roots takes place, until the reserves are depleted and the nitrogen
concentrations in the leaves and roots reach their minimum values. This remobilisation
stimulates leaf and root senescence. If the grain nitrogen requirements are not met by
shoot nitrogen and remobilisation, the grain nitrogen concentration declines. Intra-
shoot carbon partitioning to the stems (including sheaths) and to the grains are
determined according to their expected daily carbon demands, which are described by
the differential form of a sigmoid function for asymmetric determinate growth (Yin et
al.,, 2003b). The remaining shoot-carbon goes either to the leaves, or to the carbon
reserve pool in the stems when the green-surface area index (GAI) becomes nitrogen
limited. The GAI is calculated according to the principles described byetial.
(2000c), as either the carbon or the nitrogen limited GAI. The carbon reserves, if any,
become available to the grains, when current photosynthesis does not satisfy the
carbon demand by grains.

In GECROS, phenological development is calculated by Egn 8-10. Development
stages are defined as 0 at seedling emergence, 1 at start of grain filling and 2 at
physiological grain maturity. The intervals from stage 0 to 1 and from 1 to 2 depend
on the genotype-specific number of days at optimum temperature. A flexible bell-
shaped non-linear function (Yiet al., 1995) is used to describe the temperature
response of development rate, which has a value of zero when the hourly temperature
is below the base temperature or above the ceiling temperature and one when it is
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equal to the optimum temperature. In case of photoperiod-sensitive genotypes,
development rate is also affected by daylength during the photoperiod sensitive phase
of the vegetative interval.

Canopy photosynthesis sub-model of GECROS

To compute canopy photosynthesis as driver of crop growth, GECROS uses the two-
leaf approach that divides the canopy into sunlit and shaded fractions, based on solar
height; each fraction is modelled separately with a single-layer leaf model (Eqn 11-16;
de Pury & Farquhar, 1997; Wang & Leuning, 1998). For both canopy fractions, the
photosynthetically active nitrogen is calculated using a base value of leaf nitrogen
(below which photosynthesis is zero) and a leaf nitrogen extinction coefficient to
describe an exponential profile in the canopy for vertical decline in nitrogen (Yin et
al., 2000c). For example, photosynthetically active nitrogen for the entire cangpy (N

for the sunlit leaf fraction of the canopy (Y and for the shaded leaf fraction of the
canopy WN.s), can be estimated by Eqn 17-19. To estimate the photosynthesis
parameters for the entire canopy, we introduced the nitrogen dependency through a
linear function (Egn 20) (Harlest al., 1992b). The photosynthetic rate of each canopy
fraction was then computed using a leaf model as described below. The canopy
photosynthesis model was also decoupled from GECROS in order to simulate the
variation among the ILs in canopy photosynthesis alone, without the crop growth
feedback loops.

Leaf photosynthesis sub-model

In GECROS, prediction of the rate of photosynthesis at leaf level is based on the
models of Farquhaet al. (1980) as modified by Yirt al. (2009b) (Egns 21-24). A
phenomenological model of the Leuning type (Leuning 1995), Egn 25, was introduced
(Yin & Struik, 2009a) for quantifying stomatal conductargge A similar equation,

Egn 26, was used to describmesophyll conductance,, (Yin et al., 2009b).
Parametersd, and & in Eqns 25 and 26 can be used to estimategihes ratio
(Chapter 3). Egns 27 and 28 were used to predicteffects of vapour pressure
difference on the conductances. Leaf temperature, which affects the rates of most
biochemical reactions of photosynthesis (Eqns 29-30), is also predicted in GECROS
by coupling thegs and leaf photosynthesis models (Yin & Struik 2009a) with the
Penman-Monteith equation. The kinetic constantg. @dK,,,) of Rubisco required

for leaf photosynthesis were taken from Bernacehial. (2002), and Rubisco
specificity &) was set at 3.02 mbabar’ (Chapter 3); and both were assumed to be
conservative across all the ILs. In GECROS, day respiraRgnwas assumed to be
scaled with the maximum Rubisco activity (). Genetic variation in leaf
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photosynthesis parameters likg,., was based on results from Chapter 3 (also see
below).

Genetic input parameters for leaf photosynthesis of introgression lines

The above leaf model contains six photosynthesis parametefdmax. ¢, o, & and

Vemax GeNome regions or QTLs were previously assigned for these parameters, based
on 11 representative lines of the IL population (see Fig. 1 in Chapter 3). The additive
effects of the QTLs estimated therein were used to estimate genotype-specific values
of the six parameters for individual lines of the IL population, based on the marker
allelic information for these ILs. The QTL model takes into account both the origin of
the allele at a detected locus (conditional on the genotype score of the nearest marker)
and the effect of the alleles at this locus on the parameter value. A parametet value
of introgression line kcontainingN QTLs, was presented as:

Xy=u+ 211;]:1 an X Mk,n

wherep = the intercept; g= the additive effect of the-th QTL; My , = genetic score

of the n-th QTL of the individual introgression linke that takes either the value -1
(allele coming from recurrent parent ‘Shennong265’) or 1 (donor parent ‘Haogelao’
allele present). All the calculations were based on the results from Chapter 3. Note that
while the population contains 96 ILs, only 38 genotypes were identified based on the
allelic information of the QTLs for the six photosynthesis parameters.

Other input parameter values and model simulation

All other parameter values were calibrated for rice in Chapter 4 and were used here
across all individual ILs. Simulation was performed for the conditions from 13th May
2008 and 14th May 2009 onwards at Shangzhuang Experimental Station (39°54'N,
116°24’E; elevation of 50 m above sea level) of China Agricultural University, in
Beijing, North China (coded as BJ08 and BJ09, respectively). To test the genetic
variation in response to different climate conditions, simulations were also carried out
for the dry season (from 10th Jan) in Los Bafios (14°11'N, 121°15’E; elevation of 21
m above sea level), International Rice Research Institute, Philippines from 2001 to
2005 (PHO1, PHO2, ..., PHO5, respectively). The time course of weather variables in
these environments are shown in Supplementary Fig. S1.

Data analysis

In order to quantitatively evaluate the genetic variation in the IL population, genetic
variation was calculated as (,(gg—xmm)/f) x 100 (%) wher&yax andXmi, stands for
maximum and minimum value, respectively, ahdtands for the mean, of all the lines
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Fig. 1. The modelled light response curves of net photosynthesig\jate l{ight intensity at ambient
CO, concentration (38Aimol mol*) and a leaf temperature of°25n a population of 38 introgression
lines.

in the population. Note that although the simulations were conducted only for the 38
genotypes, the population mean of the simulated output traits was still calculated on
the basis of 96 ILs, i.e. the weighted mean given the number of IL repeats in each
genotype. For each individual introgression line, the genetic gain or loss was
calculated as ¥ - X)/ X) x 100 (%), whereX; stands for the output parameter value
for the i-th IL. The correlations and multiple analyses were calculated by PROC
CORR, PROC GLM, respectively in SAS 9.2 (SAS Inst. Inc.).

RESULTS AND DISCUSSION

Genetic variation in leaf photosynthesis

For this paper we were only interested in the genetic variation in leaf photosynthesis,
so the 96 ILs (including the two parents) were divided into 38 unique genotypes, based
on origin of the alleles at the seven loci of leaf photosynthesis parameters reported in
Chapter 3. Light response curves of leaf photosynthesis for the IL population were
constructed based on detected QTLs for each of the six parameters (Fig. 1). Associated
with QTLs detected for photosynthetic efficiency under limiting lighb (, 6),
diffusional conductancedy, &), maximal rate of electron transpord.§y), and
maximum rate of Rubisco activity {¥.), genetic variation in leaf level
photosynthesis at various light intensities was considerable. At low lighju(h60m

2 s'l) level, genetic variation amounted to 31.4%, whereas it was 18.7% at intermediate
light (500 umol m? s?) level, and 25.4% at saturated light (20080l m? s?) level

(Fig. 1).
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Fig. 2. Heat map of genetic gain or loss (%) of 38 genotypes at leaf, canopy and crop level, from left
to right as separated by the vertical black lines. Each row represents a unique genotype based on
alleles at detected loci (Gu et,&012b), each column represents a model parameter. The first column
shows in total 38 different genotypes out of 96 introgression lines with number of repeats in brackets.
The values increase from green via white to red. The genetic gain or loss for each introgression line
(%) was calculated ag((- X)/ X, whereX; stands for the parameter value fah genotype, and X
stands for the population mean. In this figure, the vertical direction shows the genetic gain or loss for
all genotypes at the leaf, canopy, and crop level; the horizontal direction shows how each line
performed with regards to the photosynthetic components at leaf level, the canopy photosynthesis at
low or high GAIl, the GAI dynamics, the biomass dynamics, and the harvested biomass at different
locations and years; ., value of conversion efficiency of incident light intatansport at the strictly
limiting light; Jnaw Maximum value of ‘etransport under saturated lighit; convexity factor for
response of dransporto irradiancegy, ds, andd;, parameters defines chloroplast /intercellular ICO

ratio, intercellular /ambient [C{ratio, and chloroplast /ambient [GlOratio at saturating light,
respectivelyVemax Mmaximum rate of Rubisco activity-limited carboxylati@qge, Aseo, aNdAzgee leaf
photosynthesis at low light (108mol m? s%), intermediate light (50@mol mi? s%), and saturated

light (2000umol mi? s%), respectivelyA'.; andA' 5 daily canopy photosynthetic gain at high light

level for green-surface aréadex (GAI) = 1 and GAI = 5, respectively; GAk GAl; o and GAbg,

value of GAI at development stage 0.25 (seedling), 1.0 (flowering), 2.0 (harvest), respectivgly; Bio
Bio; o, Bio; s and Big, total biomass at development stage 0.5 (seedling), 1.0 (flowering), 1.5 (grain
filling), and 2.0 (harvest) for Beijing in 2009, respectively; i3i9 Biopno, BiOphoa BiOphos Biopros
andBiopos, total harvest biomass at location Beijing year 2008, and location Philippines year 2001 to
2005, respectively.
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Estimated genetic variation in canopy photosynthesis
Canopy photosynthesiA’() was spatially integrated from base to the top of the
canopy. Some parameters (egmax Jmax Js» aNdgm) were adjusted to change with
depth in the canopy, based on the modelled profile of leaf nitrogen content in the
canopy. Spatially integrated canopy photosynthesis must consider the heterogeneous
radiation in canopies and the non-linear response of photosynthesis to irradiance. At
the same time, the heterogeneous light condition within the canopy is affected by solar
angles, incident photon flux during the day, and different GAl values. All these
complexities shed doubt whether relations between photosynthetic parameters and leaf
photosynthesis apply when scaling up to canopy level photosynthesis. Using the
canopy model decoupled from GECROS, we simulagdwith various GAls and
under different environmental conditions.

As shown by Figs 2 and 3, leaf photosynthesis at saturating Aglat) (correlated
well with daily canopy carbon gain at high light intensity when GAl was 1 or 5 (i.e.
A’c1 & A'.s). Moreover, component parameters of leaf photosynthesis show similar
correlations withAygee A'cy and A'cs In Fig. 2, we found more or less the same
genetic gain or loss at leaf {f), and canopy levelN.; andA'. 5) for each genotype.
For Axooo genetic variation was 25.6%, which is comparable with 26.5%'fgrand
25.8% for A’;s (Table 1). All these results suggest that genetic variation in leaf
photosynthesis in this IL population scales up well to canopy level.

Fig. 3. Pearson correlation coefficient heat map of parameters from leaf level, canopy level to crop
level. Correlations are scaled by the colour of the corresponding cell. Parameters are represented in the
same order on the &and yaxes. The meaning of symbols and abbreviations is the same as in Fig. 2.
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Table 1. Minimum, maximum and population mean of traits, and observed genetic variation of
introgression lines at leaf level, canopy level and crop level. For traits, see explanation in Fig. 2.
Genetic variation was calculated @&n{ —Xuin) / X, WhereXmax and Xmin stands for maximum and
minimum value in the population, respectivefystands for the population mean.

Trait Min Max  Population mean Genetic variation (%)

Leaf level KoL 0.272 0.369 0.324 29.8
Jmax 136.5 167.1 147.5 20.7

6 0.723 0.916 0.790 24.5

o 0.730 0.908 0.878 20.3

Vemax 109.6 152.7 124.8 34.6

& 0.806 1.355 1.109 49.5

a 0.383 0.544 0.489 32.8

A1oo 2.9 4.1 3.6 314

Asoo 13.4 16.2 14.9 18.7

Az000 19.3 24.9 22.4 25.4

Canopy level A'cq 25.5 33.2 28.9 26.4
Acs 78.7 101.7 89.2 25.8

GAlg 25 1.86 2.09 1.93 12.0

Crop level GAly 4.64 6.09 5.38 26.9
GAlyo 0.89 1.01 0.94 13.0

Biogs 672 949 806 34.4

Bioy o 1897 2554 2241 29.3

Bioy 5 2142 2799 2482 26.5

Bio, o 2097 2740 2422 26.5

BiOg,0s 2092 2775 2436 28.0

BiOpHo1 2049 2748 2409 29.0

Biopho2 2352 2988 2692 23.6

BiOpHos 2370 2952 2693 21.6

BiOpHo4 2240 2881 2569 24.9

BiOpHos 2113 2794 2470 27.6

We also examined the light response of daily canopy photosynthesis under various
environmental conditions. For that purpose, the genotype-specific light response of
daily A’ at various air temperatures, vapour pressures, and GAls were calculated for
the site with 39°54’'N latitude (Beijing) on day 107 with a day-length of 13.1 hour (a
typical day in the season there) (Fig. 4; Table 2) assuming a uniform light distribution
over the day. At an air temperature of 25 °C, a GAI of 5, and a vapour pressure of 1.5
kPa, the genetic variation of the daf§, among the ILs was 30.3% at low light (100
pmol m? s*, ~PAR = 1.04 MJ A d?) level, 31.0% at intermediate light (5Qénol m
2s' ~PAR = 5.18 MJ M d™) level, and 25.8% at high light (20@@nol m* s*, ~PAR
= 20.7 MJ n¥ d') level (Table 2). When adjusting air temperature, canopy
photosynthesis changed dramatically, especially when canopy photosynthesis was
compared for an air temperature of 40°C with that at 10°C or 25°C. Still, the genetic
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Fig. 4. Canopy photosynthetic responses to photosynthetically active radiation (PAR) under different
air temperature (A), vapour pressure (VP; B) and green-surface area index (GAIl; C) for the
introgression line population. For clarity, only maximum and minimum values of the IL population
are shown. The control is for location Beijing, the 107th day of the year 2009, with day length of
13.11 hours, and assuming a uniform light distribution over the day, a constant air temperature of 25
°C, an ambient COconcentration of 38fimol mol*, a green-surface area index of 5 and a vapour
pressure of 1.5 kPa. For each individual simulation, control parameters were used for the whole
introgression line population except for the tested parameters that were varied.
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Table 2. Genetic variation in daily canopy photosynthe&ig @t different combinations of air
temperature, vapour pressure (VP), and green-surface area index (GAl).

PAR A’ (min) A’. (max) Population Genetic
MIm?dY)  (gco,m?d") (gCco, m?d") mean variation (%)
Control 1.035 9.17 12.44 10.81 30.3
(air temp. = 25°C, GAI=5, g 175 35.75 48.94 42.60 31.0
VP = 1.5 kPa)
20.700 78.72 101.71 89.16 25.8
Air temperature 10°C 1.035 12.11 15.84 13.92 26.8
(GAI=5, 5.175 41.10 50.47 44.20 21.2
VP =15kPa) 20.700 76.41 92.44 82.26 19.5
40°C 1.035 11.44 14.98 12.67 28.0
5.175 20.91 28.19 24.06 30.3
20.700 31.95 46.57 38.36 38.1
Vapour 0.5kPa 1.035 8.53 11.57 10.02 30.3
pressure (VP) 5.175 31.31 43.68 37.89 32.7
(gﬁe:msf; =25°C, 20.700 69.43 89.03 78.38 25.0
3.0kPa 1.035 10.66 14.36 12.60 29.3
5.175 45.34 60.10 53.07 27.8
20.700 97.88 123.57 109.55 235
Green-surface 1 1.035 4.10 5.56 4.84 30.2
area index 5.175 15.84 19.98 17.73 23.4
GAy 20.700 25.54 33.17 28.86 26.4
(\{’}',QIST_% QPZ;) ©3 1.035 7.56 1027 8.91 305
5.175 29.90 39.99 35.08 28.8
20.700 59.07 76.28 66.68 25.8

variation within the IL population was relatively stable for the different levels of light
intensity (range 25.8-31.0%), despite its large variation with temperature (Table 2).

Genetic variation in green-surface area index and biomass production
We used GECROS to assess how the spatial and temporal integration of genetic
variation in leaf photosynthesis resulted in genetic variation in GAI and total biomass
(including dry weight of all living and dead shoot and root materials) in this IL
population. Simulated grain yield was not analysed here because of the multiple
uncertainties related to the quantification of grain numbers in the model (the model
assumes that grain number can be carbon- or nitrogen-determined; also see Chapter 4).
Fig. 5 illustrates for Beijing, 2009, assuming a total nitrogen uptake of 15 §,N m
that there was considerable genetic variation in both GAI and total biomass,
throughout the growing season. For GAI, there was more genetic variation at
flowering (DS = 1.0: 26.9%) than at an early vegetative growth stage (DS = 0.25:
12.0%), or at harvest stage (DS = 2.0: 13.0%) (Table 1). The reason for the larger
genetic variation at flowering could be the fully developed canopy and the large
amount of nitrogen held in the canopy. At early vegetative stage, the canopy was not
fully developed yet, and therefore the genetic variation was not fully expressed. At

115



Chapter 5

3000

A B
6 - " — /¥ P
T S £ 2000 - /i
AT v @ ] :;}'
< : a
G o ] £
E &
3 4 3 2 7
& @ 1000 -
s
0 +— . : T 0 = - T
130 180 230 280 130 180 230 280
Days of year Days of year

Fig. 5. Time courses of calculated (A) green-surface area index (GAti3rand (B) total biomass (g
m?) of 38 genotypes in Beijing during the year 2009.

harvest stage, leaves were senescing and most nitrogenous compounds in the leaves
were decomposed and the N translocated to the grains. For biomass, the genetic
variation at DS 0.5 (~ tillering stage), 1.0 (flowering), 1.5 (mid-grain filling) and 2.0
(harvest) was 34.4%, 29.3%, 26.5% and 26.5%, respectively.

There was a negative relationship between GAI and total biomass, especially at
flowering stage (see also Fig. 3). The negative relationship could be due to the
feedback mechanisms in the model. A high rate of canopy photosynthesis is associated
with high Jynax and Vemax (Fig. 3), which means more nitrogen content per leaf area,
whereas in the model GAIl is co-determined by available carbon assimilates and
canopy nitrogen content (Yin et al., 2000c). The feedback mechanism in the GECROS
model -that current high photosynthesis may dilute leaf nitrogen in the subsequent
days-, can lead the model to predict an accelerated leaf senescence, a phenomenon
generally also observed experimentally (Fangmeier et al., 2000; Ainsworth & Long,
2005). In Fig. 4C, after full canopy closure had been reached (i.e. GAl = 3), canopy
photosynthesis hardly increased with a further increase in GAI. This may explain why
a plant with improved leaf photosynthesis and a comparatively small GAI, still has an
advantage in biomass production.

In view of the fact that environmental factors considerably influence both leaf and
canopy photosynthesis, we show the dynamic pattern of GAI and biomass during an
entire growing season (Beijing 2009), and biomass production at different latitudes
and in different years (Beijing 2008, 2009 and Los Bafios 2001-2005) (Fig. 2). The
simulations carried out for both Beijing and Los Bafios have a similar tendency across
different growth stages growing seasons and locations, despite of variation in the
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climatic variables across years and locations (Supplementary Fig. S1). In fact, genetic
variation for each level mostly ranged between 20 and 30% (Table 1).

Our model simulation already showed that genetic variation in leaf photosynthesis
among the 38 genotypes resulted in an average 25.9% increase in biomass production.
Further improvement is still possible. Based on the seven QTL regions, there are in
total 2 = 128 possible genotypes. By evaluating the 128 possible genotypes, the
potential ideotype that combines all positive alleles for photosynthesis was simulated
to have a biomass production advantage of 5.6%, 7.4%, 8.8%, 7.0%, 5.1%, 7.6%, and
8.2%, when compared with the best IL of the 38 genotypes, for BJ08, BJ09, PHO1,
PHO02, PHO3, PHO4, PHO5, respectively.

On contribution of leaf photosynthesis components to biomass productivity

There has been a long-standing controversy as to whether an increase in leaf-level
photosynthesis would increase yield (Evans & Dunstone, 1970; Borras et al., 2004,
Long et al., 2006). It is commonly assumed that even when there is an improvement in
leaf photosynthesis components, the effects will be diluted through biological
hierarchy, resulting in only a small effect at canopy level or crop level. For example,
by assuming a widely observed inverse relationship between maximum catalytic rates
of carboxylation per active site’(dkand Rubisco specificity {§, Zhu et al. (2004a)
showed that replacing the average Rubisco of terrestripla@ts by Rubisco with an
optimal &, would only increase canopy photosynthesis by 3%. Sinefaat. (2004)
presented an calculation for soybean, starting with an assumed 50% increase in the
production of mMRNA for synthesis of Rubisco, but ending with only 6% increase or
even a 6% decrease in yield depending on whether there is extra nitrogen
accumulation possible or not. Yin & StrujR008) assessed the impact of a successful
introduction of the full ¢ system into rice. The simulation resulted in ca 25% yield
increase, lower than the originally expected 50% increase.

These results are not surprising, since photosynthesis in the canopy can be either
light saturated or light limited. Light-limited photosynthesis is electron transport-
limited, whereas light-saturated photosynthesis is generally Rubisco-limited,
particularly at lower [C@. In Zhu's calculation, the optimal specificity of Rubisco
will increase leaf photosynthesis at high light level (>400 unidkm), this effect was
weakened by an opposite effect at low light (due to the negative relationship between
S andk®). In Sinclair's simulation, 50% more mRNA for synthesis of the subunits of
Rubisco only increased light-saturated photosynthesis. If there were no additional N
inputs, the required investment in Rubisco will cause less nitrogen being available for
subsequent transfer to the seed and the seed becomes nitrogen limited (i.e. 6%
decrease in yield). In Yin & Struik’s analysis on the potential benefit from introducing
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Table 3. Regression coefficients (with standard errors between brackets), intercept, and total variation
accounted forR?) for multiple linear regression analysis of total biomass (Bio) as a functies of

Jmax: 01 dm cha>o andé (le B|0 = l@ + b1K2LL + bZJmax + b30 + bAdn + b':':chax+ bﬁé)f based on data Of

an introgression line population. Regressions were made for locations Beijing, 2008 (BJ08); Beijing,
2009 (BJ09) and Los Bafios, Philippines from 2001 to 2005 (PHO1, PHO2, ..., PHO5, respectively).
The meaning of symbols are same as in Fig. 2.

Trait Regression coefficient (probability of significance) Intercept R?
b1 bz b3 b4 b5 bG (bO) (%)

Biogj0s 5483.1 (<1.0 x 18) 11.3 (0.0035)604.3 (2.6 x 16) 176.9 (0.0012) -3.8 (0.1520)224.3 (<1.0 x 18) -1427.6  99.5
Biogj0g 5806.6 (<1.0 x 1) 8.2 (0.0400) 774.6 (9.0 x 18) 259.7 (2.8 x 18) -1.9 (0.4813)213.0 (<1.0 x 1) -1500.9 99.4
BiOpo1 5806.2 (<1.0 x 18) 10.5 (0.0069)864.7 (<1.0 x 16) 219.7 (0.0001) -2.9 (0.2606)340.5 (<1.0 x 18) -1902.0 99.5
BiOpyop 5433.8 (<1.0 x 1) -1.4 (0.7690)791.4 (3.8 x 18 258.9 (0.0005) 5.0 (0.1549) 321.2 (<1.0 x 18) -692.3  99.0
BiOppos 5040.2 (<1.0 x 18) -0.5 (0.9356)709.0 (0.0003)  274.8 (0.0023) 4.2 (0.3296) 298.6 (<1.0 x 18) -527.9  98.3
BiOppo4 5572.8 (<1.0 x 18) 7.8 (0.0597) 803.5 (1.0 x 10) 265.0 (3.7 x 18) -1.4 (0.6133)334.2(<1.0 x 18) -1440.8 99.3

BiOphos 5820.8 (<1.0 x 18) 7.0 (0.0414) 796.0 (<1.0 x 16) 186.1 (0.0003) -1.2 (0.6272)359.4 (<1.0 x 18) -1503.6  99.6

Coefficient values significant at a level Bk 0.05 are in bold.

the G system into grice through the C@concentrating mechanism, light-saturated
photosynthesis significantly improved while the light-limited photosynthesis at leaf
level remained unchanged. This may explain the much lower increase in yield than
originally expected.

Using our simulation results, we performed multiple regression analysis to indicate
which parameters are most important for determining final biomass. Multiple
regression analysis showed that the leaf-level genetic variatiag, incontributed
most to the variation in total biomass, followedday6, &, andJm.x (Table 3), which
somewhat differed from the results of the simple correlation analysis (Fig. 3). Since
Ko contributes to electron transport at limiting light, this result was in line with the
assumption that in a canopy most leaves were in the state of electron transport-limited
photosynthesis. This is further supported by the fact Whai, did not significantly
contribute to the explanation of observed variance in any of the simulations (Table 3).
This may explain the results of our simulation, which unlike most earlier simulation
studies, incorporated the genetic variation in both light-saturated and light-limited
photosynthesis parameters. Our results are in line with the report of Day & Chalabi
(1988) that a same percentage increase in quantum use efficiency, relative to light-
saturated photosynthetic capacity, resulted in a more significant increase of canopy
photosynthesis.
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CONCLUDING REMARKS

In our previous research (Chapter 3), we not only found QTLs for light-saturated
photosynthesis (e.g. QTLS f&fmas I, &), but also QTLs contributing to light-
limited photosynthesis (e.g. QTLs feg,,, 6). This could also be the explanation why
genetic variation in our genetic population showed to scale up equally from leaf, to
canopy to crop-level (Fig. 2). Our results showed a very promising approach to
increase plant production through conventional marker-assisted breeding. This is in
line with Parryet al. (2011), who suggested that improving photosynthesis through
mining existing germplasm is the most efficient way. There have been reports on
considerable genetic variation between rice cultivars (Adachi et al., 2011; Chapter 2)
to be utilized in a breeding programme. Further progress could be enhanced through
recent advances in genome wide association studies (Htahg2010), by exploiting

a broader genetic background.
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APPENDIX 1. Main equations used to simulate carbon partitioning, nitrogen demand and
partitioning, phonological development, and canopy and leaf photosynthesis.

Meaning of the symbols, derivation of the algorithms, and a detailed description of the GECROS and
its algorithms, can be found in Yin & van Laar (2005).

Important equations in GECROS

Ngemp = Ws(Neri — Nace) (1 + Ng/Ns) /At (1)
Neri = n(:riOe_OA-19 (2)
Naema = Crot/(doc/dx) 3)
ac = (A4C/At)/Cs (4)
doc/dk = [ocperan) — Ocoo ] /AK (%)
Ngem = min[Nmaxup: max(Ngemp, NdemA)] (6)
9m
20e—0m) We—01) (i e~Um

Coi = wiCmaX( 19e(19e—)1(9m)2 )(lg_e)(ﬁ om) (7)

g9(T)/my 9<90or1=>9>9,
w; =3 9(TMh(Dyp)/my 9, <9<, (8)

9(T) /ma 9> 1

(TO—Tb) Ce
Ny re=T N ¢ T-1u \\T=To

g(T) - (Tc—To) (To—Tb) (9)
h(Dlp) =1- Psen(Dlp - Mop) (10)
Canopy photosynthesis sub-model
¢su,i = e~ Fli (11)

1L _p . _
bsu =7 Jy e7PhdL; = (1 — e7") /(kpL) 12)
Psh =1 — gy (13)
Ie = (1= pen)loo (1= €74) + (1 = pay)lao (1 = €744 (14)
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ka [1 —_ e_(k¢,:l+kb)L]

Ic,su = (1 - G)Ibo(l - e_kbL) + (1 - pcb)ldo

kg + ky
k[ 1-e~(katho)L 1—e-2kpL
+10 (1 = pe) | P, | ~(1-0)— (15)

Ic,sh =1 — Ic,su (16)
N, =no(1 —e by /k, —nyL 17
Nesu = no[1 — e~ ®n )] /(e + k) — (1 — e7F0L) /ky, (18)
Nc,sh =N, — Nc,su (19)
P25 = Sya(N, —ny)  (nitrogen dependence for Vemax and Jmax at 25 °C) (20)
Leaf photosynthesis sub-model

_ (Cc—T)Vemax _
Ao = i Kme1+0/mg) 10 (1)

— (CC_F*)] _

I 7 ac+8r, Rq (22)
A =min (A, A) (23)
] = (KZLLIinc +]max - \/[KZLLIinc +]max]2 - 4'ejmaxKZLLIinc)/(ze) (24)
9s = YGso + 65(14 + Rd)/(Cc - r*) (25)
Im = Imo T 6m(A+ Ra)/(Cc — I1) (26)
9t = 6(A+Rq)/(Cc— L) (27)

— a1
8 = 14VPD*D, (28)
(T1-25)E
Parameter = Parameter,<el2°¢R(T1+273)]  (for Ry, Vemax, Kme, Kmo) (29)
(T)-25)E _
]max = ]maxzsem X Lee e /D (30)

1+el(T1+273)S-D]/[R(T+273)]
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Table. Symbols (with units) used in Egn (1) — (30) in the APPENDIX.

Symbols Description

a; an empirical coefficient, see Egn (28) (-)
A Net photosynthesis ratgrfiol m? s?)
A, Rubisco activity limited net photosynthesis ratm0l m? s*)
A; Electron transport limited net photosynthesis ramad| m? s?)
Ct curvature factor in Eqn (9) (-)
c total carbon in live material of the crop (g G ground)
C. CO, concentration at the carboxylation site of Rubigaagl mol*)
Crnax maximum carbon content of stem or seed at the end of its growth (§ C m
ground)
Cr carbon in live root (g C fhground)
Cs carbon in live shoot (g C figround)
Coi carbon demand for growth of an organ at siggg C m? ground d)
D Deactivation energy (J md|
Dy an empirical coefficient, see Eqn (28) (kPa)
Dip daylength for photoperiodic response of phenology (h)
E activation energy (J md)
g function for phonological response to temperature (-)
Im Mesophyll conductance (molfs?)
Imo Residual mesophyll conductance in thevadel Eqn (7) (mol fis?)
Js Stomatal conductance for G@nol m? s
Jso residual Stomatal conductance for g@ol ni? s?)
It Diffusion conductance from ambient air to the site of carboxylation (rifcs
h(Dyp) function for phenological response to photoperiod (-)
Ivo incident direct-beam radiation above canopy fJgrounds)
Iesh absorbed radiation by shaded leaves of canopy’(drounds)
Iesu absorbed radiation by sunlit leaves of canopy tgnounds)
I. absorbed radiation by canopy (F grounds)
Io incident diffuse radiation above canopy (3 grounds)
Line Photon flux density incident on leavgst(ol photon rif s?)
Ji e transport rate through PSII used for NADBduction imol € m? s
K nitrogen-carbon ratio in crop (g N‘@)
ky direct-beam radiation extinction coefficient{ground rif leaf)
ky direct-beam radiation extinction coefficient{ground rif leaf)
ky scattered-beam radiation extinction coefficient ground rf leaf)
kj diffuse radiation extinction coefficient frground rf leaf)
ky nitrogen extinction coefficient (rground nf leaf)
Kme Michaelis-Menten constant of Rubisco for g@bar)
Ko Michaelis-Menten constant of Rubisco fos @bar)
L green leaf area index of canopy?(eaf m? ground)
L L counted from the top to theh layer of canopy (Aleaf ni? ground)
mg minimum number of days for seed filling phase (d)
my minimum number of days for vegetative growth phase (d)
Mop maximum or minimum optimum photoperiod (h)
ng canopy top-leaf nitrogen (g Nfieaf)
Nact actual nitrogen concentration in living shoot (g Nyv)
ny minimum leaf nitrogen for photosynthesis (g N teaf)
Neri critical shoot nitrogen concentration (g N dw)
Nerio initial critical shoot nitrogen concentration (g N dw)
N, leaf nitrogen content per area (g N teaf)
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Table continued

Symbols Description

Nesh photosynthetically active nitrogen in shade leaves of canopy (g eaf)
N su photosynthetically active nitrogen in sunlit leaves of canopy (g°Nesar)
N, total photosynthetically active nitrogen in canopy (g Ngnound)
Nmaxup maximum crop nitrogen uptake (g N°rground d)
Ny nitrogen in live root (g N fground)
Ng nitrogen in live shoot (g N fhground)
0] Oxygen partial pressure (mbar)
p2s value for MmayOr Jnaxat 25 °C jimol m? s%)
Psen photoperiod sensitivity of phonological developmerit) (h
R universal gas constant (=8.314 J iol™)
R4 Day respiration (respiratory G@elease in the light other than by
photorespiration)mol m? s?)
S Entropy term (J K mol™)
T diurnal temperature (°C)
Ty base temperature for phenological development (°C)
Tc ceiling temperature for phenological development (°C)
T leaf temperature (°C)
To optimum temperature for phenological development (°C)
VPD vapour pressure deficit (kPa)
Vemax Maximum rate of Rubisco activity-limited carboxylatiqmgol m? s?)
Ws weight of live shoot (g dw fhground)
Om A parameter in thg, model, defining €: C ratio at saturating light (-)
8 A parameters in the.gnodel, defining C: G, ratio at saturating light (-)
St A parameters in the ghodel, defining €: G, ratio at saturating light (-)
KoLl Value of conversion efficiency of incident light intatithe strictly limiting light
[mol € (mol photonY]
Peb canopy beam radiation reflection coefficient (-)
oc relative shoot activity (g CC d?)
wj development rate at stage(d™)
9,1 development stage at which plant starts to become sensitive to photoperiod (-)
9, development stage at which plant ends to respond to photoperiod (-)
e development stage at the end of growth of stem or seed (-)
95 development stage during the growth of stem or seed (-)
. development stage at the time of maximal growth rate of stem or seed (-)
dsh fraction of shaded leaves in in a canopy (-)
Dsui fraction of sunlit leaves at canopy depth{-)
Psu fraction of sunlit leaves in a canopy (-)
I, C. based C@compensation point in the absence gfbar)
0 Convexity factor for response 9fto k. (-)
o leaf scattering coefficient (-)
9 development stage (-)
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Supplementary Materials in Chapter 5
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Fig. S1. Variation during the growing season of (A) vapour pressure, (B) daily maximum (MAX) and
minimum (MIN) temperature and (C) irradiance for a rice crop at Beijing (BJ), year 2008, 2009 (08,
09) (summer season) and at Los Bafios, Philippines (PH), 2001-2005 (01, 02, 03, 04, 05) (dry season).
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Chapter 6

Improving grain yield of rice (Oryza sativa L.) for both favourable and stressful
environments is the main breeding objective. Increasing rice grain yields will help
ensure food security. Crop modelling has long been considered a useful tool to assist
breeding (Loomist al., 1979; Whislert al., 1986; Shorteet al., 1991; Booteet al.,

1996, 2001). However, to date the contribution has been small (Miflin, 2000; Tardieu,
2010).

Probably this small contribution was because crop physiologists and modellers did
not fully consider the genetic basis of model-input parameters (Stam, 1998), although
they often refer to these model-input parameters as ‘genetic coefficients’ (White &
Hoogenboom, 1996; Mavromagtal., 2001; Whiteet al., 2008). The development of
molecular genetics provided a new method for relating crop model input parameters to
their genetic determinants, quantitative trait loci (QTLs). With QTL allelic information
and estimated QTL effects, model input trait values can be calculated based on the
genotype and used as inputs to crop models thus replacing original measured input
trait values. This QTL-based approach can dissect complex traits (e.g. yield) into
physiologically relevant component traits, integrate effects of QTL of the component
traits over time and space at whole-crop level, and predict yield of various allele
combinations under different environmental conditions (Yin & Struik, 2011). Such a
QTL-based modelling approach was first introduced byeril. (1999a,b; 2000b), to
predict differences in yield among relatively similar lines from a genetic population.
They showed, however, that improved models were needed in order to make this
approach really successful and robust (&ial., 2004). Later, this approach was used
to study crop traits such as leaf elongation rate in maize, flowering time, and fruit
quality (Reymond et al., 2003; Quilot et al., 2004; Nakagaetaal., 2005; Quilot et
al., 2005; Yin et al., 2005b; Uptmoor et al., 2008; Bertin et al., 2010; Prudent et al.,
2011). These later studies showed that this approach was robust in predicting genetic
differences in bi-parental crossing populations under different conditions (in terms of
vapour pressure deficit, soil moisture content, temperature and photoperiod). But most
studies focused on specific traits, only a few used the QTL-based modelling approach
to predict complex traits like yield (Yin et al., 2000b). To the best of my knowledge,
this approach has not been applied to analyse leaf photosynthesis, especially not to
photosynthetic response to stress.

Because of the importance of photosynthesis and its sensitivity to drought, | firstly
amalgamate ecophysiological photosynthesis modelling and QTL analysis to study the
genetic variation in photosynthesis in a backcross introgression line population
developed from a cross between lowland and upland rice cultivars and grown under
well-watered and drought conditions. Secondly QTL analysis was further extended to
other physiological parameters of rice. Molecular marker-based estimates of these
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traits from estimated additive allele effects were used as input into the mechanistic
crop model GECROS (Genotype-by-Environment interaction on CROp growth
Simulator, Yin & van Laar, 2005). Thirdly, the genetic variation at the level leaves
was upscaled up, again by using the GECROS model, to examine whether such a
variation can be expressed into the variation of a similar magnitude for biomass
production at the crop level. | hope that through this thesis study, useful knowledge
and insights were created for closing the gap between genotype and phenotypes across
various scales.

In this general discussion, first | will summarize and discuss the results presented in
this thesis. | will then evaluate how crop modelling and QTL/marker-based modelling
can assist crop breeding and genetics. Finally, | will discuss the future prospects of
integrating crop physiology, crop modelling, plant genetics and plant breeding.

RESEARCH FINDINGSOF THISTHESIS

Genetic variation of photosynthesisin thefield

Because of the primary importance of photosynthesis in determining crop growth,
guantifying genetic variation and identifying QTLs related to enhanced photosynthesis
in rice populations are important steps in improving rice productivity. But
photosynthesis is greatly influenced by environmental factors. Moreover, the
microclimate unavoidably fluctuates under natural field conditions (Flood et al., 2011),
making photosynthesis a difficult variable to assess for a large population. For
example, it was shown in Chapter 2 that during flowering and grain filling the light-
saturated photosynthesis fluctuated more than three-fold, because of fluctuations in
temperature and humidity of the air. This will hamper QTL analysis of photosynthesis
measured under field conditions. It is quite possible to draw wrong conclusions if the
random noise caused by variation in the micro-environment is not removed. In this
thesis, both a statistical covariant model and a photosynthesis model were used to
standardize observations to the same temperature and vapour pressure deficit (Chapter
2). This approach showed its value and could thus be used also in other situations
where the same problem occurs.

Teng et al. (2004) and Zhacoet al. (2008) did not correct for microclimate
fluctuations, when measuring photosynthesis under field conditions. They found QTLs
for photosynthesis that did not co-localize with QTLs for yield. In contrast, the main
QTL associated with variation in photosynthesis among individuals of an introgression
line population studied in Chapter 2 was found to be near marker RM410 on
Chromosome 9, the same marker that indicated the position of a QTL accounting for
variation in yield of this population (Chapter 4). This contrasting result could be due to

127



Chapter 6

differences in genetic backgrounds in the experiments, but may also be caused by
ignoring the effects of microclimate on photosynthesis in the studies by elfehg

(2004) and Zhaoet al. (2008). In our experiments, consistent results across
environments and growth stages were obtained, and co-location of physiologically
tightly related QTLs was observed. The major QTL near marker RM410 was
consistent across both developmental stages and both drought and well-watered
conditions. This QTL controlling multiple photosynthetic traits identified under field
environment was then successfully confirmed in an independent greenhouse
experiment (Chapter 2). These results also suggest that photosynthesis at different
stages and under different treatments is, at least to some extent, influenced by the same
genetic factors.

Physiological basisfor genetic variation in leaf photosynthesis
Only few studies have investigated the physiological basis for reported genetic
variation in leaf photosynthesis (Magdeal., 2005; Adachi et al., 2011; Scafaro et al.,
2011; Taylaran et al., 2011). The physiological basis of the genetic variation in
photosynthesis is therefore still unclear. Dissecting photosynthesis into different
physiological processes will help:

« To identify the genetic variation in each biophysical and biochemical

component of photosynthesis;
« To evaluate the potential of utilizing the genetic variation in these components
for improving photosynthesis (A) and transpiration efficiency (TE).

Therefore, combined gas exchange and chlorophyll fluorescence data were collected to
assess Cpand light response curves of 13 introgression lines grown under moderate
drought and well-watered conditions (Chapter 3). These 13 lines were carefully
selected as representatives of the population, based on the QTLs for leaf
photosynthesis reported in Chapter 2. Using these curves, seven parameters of a
combined conductance-FvCB (Farquhar, von Caemmerer, & Berry, 1980) model as
proposed by Yin et al. (2009b) were estimated. Photosynthesis was then quantitatively
dissected into three different physiologically relevant component traits: (1) stomatal
conductanceq), (2) mesophyll conductance.flg and (3) biochemical efficiency and
capacity. Although the effects of development stage and water supply on
photosynthesis were predominant, significant genetic variation in the three mentioned
component traits was found. Genetic variation in light saturated photosynthesis and TE
was mainly caused by variation ¢3 andg,, which suggests more efforts should be
focused orgs andg,, in breeding programmes for improving photosynthesis and TE.
Our results also showed for the first time that relationships between these
photosynthetic parameters and leaf nitrogen or dry matter per unit area, which were
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previously found across environmental treatments, were also valid for variation across
genotypes. Based on the genetic variation of physiological components undérlying
and TE, ideotypes were designed by combining alleles positively influencing different
components of photosynthesis. Model calculations showed that these ideotypes can
potentially improve photosynthesis and TE by 17.0% and 25.1%, respectively,
compared with the best genotype of the 13 lines investigated. Chapter 3 also presented
a novel approach to quantitatively analyse an overall relative limitatigh wérsusgs

on photosynthesis of a genotype under a given condition. It was shown that if the tight
link betweeng, and gs could be broken, both photosynthesis and TE could be
improved simultaneously, despite the common negative correlation befwssah TE
(Condon et al., 2002, 2004; Blum, 2005; Barbour €t al., 2010). This result would be
especially interesting for breeding for semi-arid environments.

Projection of leaf photosynthesisto rice production

Plant growth is driven by the availability of carbohydrates and other assimilates. Rice
productivity can be limited by available photosynthetic assimilates from leaves; so an
increased photosynthesis is expected to result in higher yields. But recent studies
reveal that the relationship between leaf photosynthesis and crop yield is not as
straightforward as expected. For example, numerous free airel@@ation studies

show that higher rates of photosynthesis do not lead to a commensurate increase in
biomass and yield (Ainsworth & Long, 2005). Studies of natural genetic diversity in
fact often reveal a negative correlation between leaf photosynthesis and biomass or
yield (e.g. Jahn et al.,, 2011). The effects of engineering for an improved
photosynthesis have been projected to damp down gradually when moving up from
leaf to crop level, presumably because of complicated constraints and feedback
mechanisms (Sinclair et al., 2004; Zhu et,a2004a; Yin & Struik, 2008). My thesis
seemed to support these statements, as there was no correlation between leaf
photosynthetic rate and grain yield among individuals of the rice population (Chapter
4).

To examine the extent to which natural genetic variation in photosynthesis can
contribute to increasing biomass production and yield of rice, | used the mechanistic
model GECROS of Yin & van Laar (2005), and incorporated quantitative information
from QTLs for various photosynthetic components to model genetic variation within a
rice introgression line population (Chapter 5). It was shown that genetic variation in
photosynthesis of 25% can be scaled up equally to crop level, resulting in an increase
in biomass of 22-29% depending on location and year. The analysis suggests that the
genetic variation in photosynthesis resulted not only from Rubisco-limited
photosynthesis but also from electron transport-limited photosynthesis; consequently,
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photosynthetic rates could be improved for both light-saturated and light-limited
leaves in the canopy. Rice productioould thus be significantly improved by mining
the natural variation in existing germplasm.

APPLICATION OF THE MODELLING APPROACH

Yin & Struik (2010) summarized the potential added value of robust physiological
modelling for classical quantitative genetics and expressed their opinions on the
perspectives for modelling gene-trait-crop relationships. Here, based on own
experiments and analysis, | will address how modelling can assist crop breeding and
genetics.

M odels can support the Quantitative Trait Loci (QTLS) mapping

A pre-requisite of the proper use of phenotypic data for quantitative genetic analysis is
that the phenotypic data of the different genotypes should be collected under the same
environmental conditions and at the same plant developmental stage. On the other
hand, quantitative genetic analysis requires screening of a large population to realize
the required genetic resolution based on high power of the analyses. Complicated
statistical analyses and experimental designs were often used to remove environmental
errors, for example, caused by heterogeneity in the experimental field. But for highly
sensitive traits (such as photosynthesis), microclimate fluctuations could also obscure
the genetic effects existing in the population. Ecophysiological models based on solid
physiological knowledge could be useful tools to standardize the measurements
(Chapter 2). Using model-based standardization, several QTLs related to
photosynthesis were found under field conditions. Ecophysiological models can thus
play a role in improving the quality of data on traits that are difficult to phenotype.
Another example was reported by Yaéhal. (1999a), who mapped specific leaf area
(SLA) in a barley recombinant inbred lines population. After adjusting SLA values
measured at the same chronological time to values at the same physiological age, the
effect on SLA from thedenso gene was no longer significant. The effect of dbeso

gene detected at the same chronological time was therefore the consequence of its
direct effect on flowering time. An ecophysiological model can thus indeed assist QTL
analysis by removing either environmental noise or indirect effects from other traits.

M odels can dissect complex traitsinto physiological components

Physiological modelling can dissect complex traits (e.g. photosynthesis or yield) into
physiological component traits. In Chapter 3, a photosynthesis model was used to
dissect photosynthesis into: (1) stomatal conductagc€) mesophyll conductance
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Om, and (3) electron transport capacity and Rubisco carboxylation capacity. In Chapter
4, using the crop model GECROS, yield was connected to, and dissected into seven
physiological input parameters. By dissecting complex traits into physiologically
meaningful component traits, it is possible to assess genetic variation for each
component trait and evaluate its relative importance by sensitive analyses or regression
analyses. For example, in Chapter 3, genetic variation in light-saturated photosynthesis
and transpiration efficiency was found to be mainly associated with variatipraimd

Om- In Chapter 4, the physiological input trait ‘total crop nitrogen uptake at maturity’
was found to have the most significant effect on yield. Similarly, Prueeht (2011)
combining an ecophysiological modelling and QTL analysis, identified key elementary
processes and genetic factors underlying tomato fruit sugar concentration. All these
results show that the physiological model could be helpful to decide on priority targets
for breeding, although possible impact remains to be validated through actual breeding
and field testing.

Models can integrate and project single organ level genetic variation to crop level
Modelling not only can dissect complex traits into physiological relevant components,
but can also integrate effects of QTLs of the component traits over time and space, and
predict complex traits at the whole-crop level of various genetic make-ups under
different environmental conditions (Yin & Struik 2011). This could be useful to
evaluate the effect of changes in a single trait or single trait-related QTL on a crop,
while keeping other traits constant to avoid the confounding effects from other
physiological processes, which is not plausible in a ‘real’ experiment. For example, as
stated earlier, improving photosynthesis is generally thought crucial for improving
plant production, but often no correlation or even negative correlations between
photosynthesis and plant production were observed (Evans & Dunstone, 1970; Teng et
al., 2004; Zhao et al., 2008; Jahn et al., 2011; Chapter 4). The reason for this
discrepancy could be that plants differed genetically in many respects other than
photosynthesis. Hence, | used the crop model GECROS, and found that the natural
genetic variation in leaf photosynthesis within our experimental materials would result
in equivalent differences in production when scaled up to crop level. The ability of
integration and upscaling can also help evaluate impacts of QTLs for a specific organ-
level trait at crop level in a different environment. Chenal. (2009), using the crop
model APSIM-Maize, evaluated a QTL accelerating leaf elongation on maize yield.
This QTL could cause a yield increase in an environment with water deficit before
flowering, but reduced yield under terminal drought stress. This information could be
used in breeding for specific environments or for facing the challenges caused by
climate change. Most importantly, the feature of integration could allow for designing
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ideotypes of various genetic make-ups underlying physiological processes. Based on
the genetic variation and resulting QTLs for each physiological component in
photosynthesis, it was shown that the ideotype for leaf-level photosynémesisE

could potentially be improved by 17.0% and 25.1%, respectively (Chapter 3).

QTL-based modelling can quantify constraintsin breeding

Model simulation could inspire breeders. However, Stam (1998) and Koornneef &
Stam (2001), from a geneticist's perspective, expressed their concerns that the
ignorance of the inheritance of the model-input traits is a major constraint for breeders
to adopt the results of model-based approaches. Often in ideotype design by
modelling, modellers implicitly assumed that plant traits can be combined at will into a
single genotype. Such an unrealistic practice ignores the possible existence of
constraints, feedback mechanisms and correlations among traits. By integrating crop
modelling with genetics — QTL-based modelling, it is possible to evaluate constraints
in breeding either due to limited genetic variation or to correlations. For example, in
Chapter 3, trade-offs were shown between improving photosynthesis and TE either
due to tight linkage or to pleiotropic effects of QTLs related,iandgs. If the linkage
betweeng,, andgs, or co-location of QTLs 0§, andgs could be broken, the virtual
ideotype could have both improved photosynthesis and TE. The quantitative
importance of breaking this linkage could be used together with insights of geneticists
about chances of success in guiding decisions in breeding programs thus strengthening
the scientific basis for breeding program design.

QTL-based modelling can assist marker-assisted selection

Marker-assisted selection (MAS), combined with conventional breeding approaches,
has been used to effectively integrate major genes or QTLs with large effect into
widely grown varieties (Jena & Mackill, 2008). The use of cost-effective DNA
markers and a MAS strategy will provide opportunities for breeders to develop high-
yielding, stress-tolerant, and better quality rice cultivars (Collard & Mackill, 2008).
For example, pyramiding different resistance genes using MAS provided opportunities
to breeders to develop broad-spectrum resistance against diseases and insects (Huang
et al., 1997). This thesis also showed that the existing GECROS model can be a useful
tool to enhance marker-assisted breeding through a model-based ideotype design
(Chapter 4). Using the principles for QTL-based modelling as defined earlieet(Yin

al., 2000b; 2004; 2005b), marker-based crop modelling was performed in Chapter 4 to
rank the markers identified for various yield-determining physiological traits that are
input parameters of GECROS. Such an analysis detected markers that breeders can
prioritize in their MAS programmes for specific environments. Chapter 4 showed that
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compared with identification of markers through multiple regression for pezlde,
the model-based approach identified additional QTLs and could be complementary to
the analysis of yield per se

FUTRUE PROSPECTS OF INTEGRATION OF CROP MODELLING AND
PLANT GENETICS

In this thesis, QTLs were identified for a set of physiological parameters associated
with leaf photosynthesis (Chapter 2), phenological development rates and
morphological traits (Chapter 4). These traits were used as input parameters of the
crop model GECROS. With their marker/QTL-based estimates as input to the model,
the QTL effects for traits typically at the single-organ level over a short time scale,
were projected for their impact on crop growth during the whole growing season in the
field (Chapter 4). This thesis provided a strong case where the information from
functional genomics can be brought up to crop level via modelling.

I first focused on leaf photosynthesis by using a detailed biochemical
photosynthesis model (Chapters 2 and 3), and then scaled up to crop level by the
GECROS model which uses the concept of carbon-nitrogen interactions for a balanced
modelling of crop growth (Chapters 4 and 5). This analysis showed that the modelling
strategy can promote communication across scales from the level of leaves, through
canopy to crop level.

Systems simulation modelling has long been suggested as a powerful tool to
understand crop yield formation and to assist crop improvement programmes (e.g.,
Loomis et al., 1979). However, modelling studies at the crop level using some
knowledge of fundamental plant biology (e.g., biochemistry, genomics) are currently
still sporadic (Yin & Struik, 2008). Some model algorithms are based on untested or
empirical hypotheses, or even missing. For example, it was shown in Chapter 4 that a
better account for the final spikelet number of rice is needed when applying the model
to drought environments, when high tissue organ temperature and high spikelet
sterility can be expected (Jagadettal., 2007). This indicates that model components
related to sink formation still need to be improved especially for predictions under
stress environments.

In this thesis | used the approach of éral. (2000b; 2004) and performed QTL-
based physiological modelling of leaf photosynthesis and crop productivity in rice.
The approach could be expanded. Gene-based crop modelling has already practiced by
White & Hoogenboom (1996), Messiret al. (2006), and White (2008), on an
empirical basis though. The fast development of genomics with second-generation
genome sequencing and genome-wide association studies may enhance opportunities
for developing gene-based modelling. The advance of transcriptomics, proteomics,
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metabolomics, and phenomics may enhance the link between genome data, metabolic
pathways and processes, physiological component processes, and crop yield and
production. Accordingly, different temporal, spatial and structural scales are required
for different components, pathways, and processes of the model (Yin & Struik, 2008).
In the end, such ‘crop systems biology’ approach (Yin & Struik, 2008, 2010) should
enablein silico assessment of crop response to genetic fine-tuning under defined
environmental scenarios, thereby providing a powerful tool in support of breeding for
complex crop traits.
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Summary

Improving grain yield of rice (Oryza sativd..) under both favourable and stressful
conditions is the main breeding objective for this crop to ensure food security. Crop
growth models based on solid crop-physiological knowledge have long been used to
support field research in agriculture. But their applications in exploring genetic
variation in e.g. rice germplasm, designing ideotypes, and supporting plant breeding
are still limited. Recently, attempts to amalgamate physiological and genetic
approaches, whereby quantitative trait loci (QTLs) information has been incorporated
into crop models, have resulted in a so-called QTL-based modelling approach. This
integrated approach has shown the potential to narrow genotype-phenotype gaps and
to resolve genotyp& environment interactions. This approach has been proven to be
robust in predicting genetic differences in comparatively simple traits, such as leaf
elongation rate in maize and flowering time of barley or rice in bi-parental crossing
populations under different conditions (in terms of vapour pressure deficit, soil
moisture content, temperature and photoperiod). Only in a few cases was the QTL-
based modelling approach used to predict complex traits such as yield, and it was less
successful. To the best of my knowledge, this approach has not been applied to analyse
leaf photosynthesis, certainly not to photosynthesis under drought stress. Furthermore,
potential contributions of exploiting natural variation in a genetic population to crop
productivity have hardly been quantified. As outlined in Chapter 1, | have performed
QTL-based modelling for this thesis research, with a focus on photosynthesis, to
develop an efficient marker-assisted strategy for improving grain yield of rice under
both favourable and stressful conditions.

Because of the importance of photosynthesis and its sensitivity to drought, | first
studied the genetic variation in photosynthesis in a backcross introgression line
population developed from a cross between lowland cv. Shennong 265 (sensitive) and
upland rice cv. Haogelao (tolerant) (Chapter 2). Gas exchange and chlorophyll
fluorescence data were collected under a saturating light condition for the two parents
and 94 of their introgression lines (ILs) under drought and well-watered conditions at
both flowering and grain filling. Photosynthesis was greatly influenced by the
microclimate which unavoidably fluctuates under field conditions: the measured light-
saturated photosynthesis fluctuated more than three-fold. This hampers QTL analysis
of photosynthesis measured under field conditions. In this study, both a statistical
covariant model and a physiological approach were used to standardize the
observations. Both approaches identified leaf-to-air vapour pressure difference as the
most important factor influencing photosynthesis. After correcting for microclimate
fluctuations, significant genetic variation was found in this population, and 1-3
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Summary

guantitative trait loci (QTLs) were detected per photosynthesis-related trait. A major
QTL was mapped near marker RM410 (the interval from 57.3 to 68.4 cM on
Chromosome 9) and was consistent for phenotyping at flowering and grain filling, and
under drought and well-watered conditions. This QTL consistency was also verified in
a greenhouse experiment under controlled conditions. These results might imply that
photosynthesis at different phenological stages and under different environmental
conditions is influenced by the same genetic factors. These results also provided
information for selecting genotypes for a detailed physiological modelling study.

Based on the QTLs for leaf photosynthesis detected in Chapter 2, 13 ILs were
carefully selected as representatives of the population to study the physiological basis
of genetic variation in leaf photosynthesis and resulting QTLs in ILs (Chapter 3).
Measurements of gas exchange and chlorophyll fluorescence were simultaneously
conducted at various levels of incident irradiance and of ©Gssess the G@nd
light response curves under drought and well-watered conditions, at flowering and
grain filling. Through curve fitting, seven parameters of a photosynthesis model were
estimated for each IL, which dissected photosynthesis into stomatal conductince (g
mesophyll conductance { electron transport capacityJ.t), and Rubisco
carboxylation capacityM.may. Although drought and leaf age accounted for the larger
proportions of the total variation, significant genetic variation was also found in these
parameters. Genetic variation in light saturated photosynthesis, transpiration efficiency
(TE), and the major QTL of photosynthesis on Chromosome 9 were mainly associated
with variation ings andg,. So0,gs andg,, which were demonstrated in the literature to
be responsible for environmental variation in photosynthesis, were found also to be
associated with genetic variation in photosynthesis. Furthermore, relationships
between these parameters and leaf nitrogen or dry matter per unit area, which were
previously found across environmental treatments, were shown valid for variation
across genotypes. In view of these results and literature reports, it was argued that
variation in photosynthesis due to environmental conditions and to genetic variation
shares common physiological mechanisms. Based on these results from
ecophysiological photosynthesis modelling and QTL analysis, ideotypes for leaf
photosynthesis and TE were designed, showing 17.0% and 25.1% improvement,
respectively, when compared with the best genotype investigated. This analysis also
highlights possibilities to improve both photosynthesis and TE simultaneously within
the same genetic background.

As rice production is not only determined by photosynthesis, but also by other
physiological processes. Physiological traits like individual seed dry wSghtdeed
N concentration (), maximum plant height (k), minimum days for vegetative
growth phasenf,), minimum days for reproductive phasexjnspecific leaf areaSy),
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and total cropN uptake N.a) were measured (Chapter 4). The mechanistic crop
model GECROS (Genotype-by-Environment interaction on CROp growth Simulator)
was used to integrate these physiological component traits and to predict crop yield of
individual ILs under well-watered and drought conditions. With measured
physiological trait inputs, the GECROS model could account for 72% and 57% of the
variation in yield under well-watered and drought conditions, respectively. QTL
analysis was performed to these physiological model-input parameters, and molecular
marker-based estimates of these traits were calculated from estimated additive allele
effects and QTL allelic information of each IL. With marker-based estimates of model
inputs replacing the original measured inputs, this QTL/marker-based crop model
accounted for 52% and 47% of the variation in yield under well-watered and drought
conditions, respectively. Simple correlation and multiple regression analyses showed
Nmax had the most significant effect on yield; five other genotype-specific model-input
traits also significantly influenced vyield, b&y did not. Using the marker-based
estimates of physiological input parameters, GECROS also gave a fair prediction of
variation in yield within a population of 251 recombinant inbred lines of the same
parents grown under either well-watered or drought-stressed conditions. Model-based
sensitivity analysis provided a tool to rank the relative importance of the identified
markers in determining yield, and detected more markers than marker selection using
multiple regression for yield per se. In our analysis, markers RM8030 on Chromosome
2 and RM338 on Chromosome 3 were found most important for well-watered and
drought-stressed environments, respectively, suggesting that the priority markers for
selection to improve grain yield should be environment specific. All these suggest that
a QTL/marker based modelling approach might improve the efficiency of marker-
assisted selection.

Chapter 4 also showed that leaf photosynthesis was not important in determining
the differences in crop yield among the ILs observed in the field experiment, either
under drought or under well-watered conditions. This lack of persistence of variation
across scales is probably due to the complex hierarchy from leaf-level photosynthesis
to crop yield and to interaction and feedback mechanisms occurring between
physiological components within the individual plant, between plants of the same crop
and between the crop and the environment. Moreover, measured leaf photosynthesis
and crop yields are both associated with some random experimental error. Together,
the complexities and the experimental noise might mask the potential contribution of
the small within-population variation in leaf photosynthesis to the variation in final
crop yield. To examine the extent to which natural genetic variation in photosynthesis
can contribute to increasing biomass production and yield of rice, the GECROS crop
model was used again to analyse the impact of genetic variation in leaf photosynthesis
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on crop biomass production (Chapter 5). This was performed by fixing each of the
other model-input parameters at a constant value (i.e. the population mean) across the
ILs. It was shown that a genetic variation in photosynthesis of 25% can be scaled up
equally to crop level, resulting in an increase in biomass of 22-29% across different
locations and years. This was in contrast to earlier studies where the percentage of
improvement decreases when moving up from leaf to crop level. The difference with
earlier studies seems related to the fact that variation in both Rubisco-limited and
electron transport-limited photosynthesis was observed in our IL population. Rice
production could be significantly improved by mining the natural variation in existing
germplasm, especially the variation for parameters that determine light-limited
photosynthesis.

In Chapter 6, | summarized and discussed the results presented in this thesis. |
evaluated how physiological modelling and QTL/marker-based modelling can assist
crop breeding and genetics. Finally, | discussed the future prospects of integrating crop
physiology, crop modelling, plant genetics and plant breeding, in the context of ‘crop
systems biology’.
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Het verbeteren van de korrelopbrengst van rijst (Oryza sativa L.), zowel onder
gunstige als onder stressvolle omstandigheden, is het belangrijkste veredelingsdoel bij
dit gewas. Zo kan de voedselzekerheid gegarandeerd worden. Al sinds lange tijd
worden gewasgroeimodellen gebruikt ter ondersteuning van landbouwkundig
veldonderzoek. Deze modellen zijn gebaseerd op solide gewasfysiologische kennis. Ze
worden echter nog slechts mondjesmaat toegepast bij het verkennen van bijvoorbeeld
genetische variatie in rijst, het ontwerpen van ideale planten en het ondersteunen van
plantenveredeling. Recentelijk werden modellen ontwikkeld waarin getracht werd
fysiologische en genetische benaderingen te combineren. Informatie betreffende
zogenaamde loci voor kwantitatieve eigenschapen (in het Engels: quantitative trait
loci, afgekort QTLs) werd in gewasmodellen ingebouwd en op deze manier ontstond
de zogenaamde QTL-gebaseerde modelbenadering. Met deze geintegreerde aanpak
bleek het mogelijk om de kloof tussen genotype en fenotype te verkleinen en de
interacties tussen genotype en omgeving mechanistisch te benaderen. Inmiddels is
gebleken dat deze aanpak op robuuste wijze genetische verschillen in relatief
eenvoudige eigenschappen kan voorspellen. Voorbeelden van dergelijke
eigenschappen zijn snelheid van bladstrekking bij mais en bloeitijd van gerst of rijst in
twee-ouder kruisingspopulaties onder verschillende omstandigheden (in termen van
dampspanningstekort, bodemvocht, temperatuur en daglengte). Slechts in enkele
gevallen werd de QTL-gebaseerde modelbenadering gebruikt om complexe
eigenschappen zoals opbrengst te voorspellen; deze modellen waren daarin ook minder
succesvol. Bij mijn weten is deze benadering niet eerder toegepast om
bladfotosynthese te analyseren, zeker niet de fotosynthese onder droogtestress.
Bovendien zijn de potentiéle bijdragen van het exploiteren van natuurlijke variatie in
een genetische populatie aan het verhogen van de gewasproductie nauwelijks
gekwantificeerd. Zoals uiteengezet in Hoofdstuk 1, heb ik in dit promotieonderzoek
QTL-gebaseerde modellen ontwikkeld en benut om fotosynthese te onderzoeken en
daarmee een efficiénte merker- ondersteunde strategie voor het verbeteren van de
korrelopbrengst van rijst te ontwikkelen, zowel onder gunstige als onder stressvolle
omstandigheden.

Vanwege het belang van de fotosynthese en zijn gevoeligheid voor droogte, heb ik
allereerst onderzocht hoe groot de genetische variatie in fotosynthese was in een
terugkruisingspopulatie van introgressielijnen. Deze populatie was ontwikkeld uit een
kruising tussen het voor natte teelt geschikte ras Shennong 265 (gevoelig voor
droogte) en het voor droge teelt geschikte ras Haogelao (droogtetolerant) (Hoofdstuk
2). Metingen aan gasuitwisseling en chlorofylfluorescentie werden uitgevoerd onder
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verzadigende lichtomstandigheden voor de twee ouders en 94 van hun
introgressielijnen (ILs) onder omstandigheden van droogte en van voldoende water,
zowel tijdens de bloei als tijdens de korrelvulling. Fotosynthese werd sterk beinvioed
door het microklimaat en dat fluctueert onvermijdelijk onder veldomstandigheden: de
gemeten lichtverzadigde fotosynthese fluctueerde meer dan drievoudig. Dit
belemmerde de QTL-analyse van de fotosynthesemetingen onder veldomstandigheden.
In deze studie werden zowel een statistisch model met covariantie als een
fysiologische benadering gebruikt om de waarnemingen te standaardiseren. Beide
benaderingen gaven aan dat de dampdrukverschillen tussen blad en lucht de grootste
invloed op de fotosynthese hadden. Na correctie voor schommelingen in het
microklimaat, bleek deze populatie significante genetische variatie te bevatten. We
konden één tot drie QTLs detecteren per fotosynthese-gerelateerde eigenschap. Een
belangrijk QTL werd gelokaliseerd nabij merker RM410 (het interval 57,3 tot 68,4 cM
op Chromosoom 9); deze was consistent voor fenotypering tijdens de bloei en de
korrelvulling en voor fenotypering onder omstandigheden van droogte en van
voldoende water. Deze consistentie in QTLs werd ook bevestigd in een kasproef onder
gecontroleerde omstandigheden. Deze resultaten lijken aan te geven dat fotosynthese
in verschillende fenologische stadia en onder verschillende omstandigheden door
dezelfde genetische factoren wordt beinvloed. Deze resultaten gaven ook informatie
voor het selecteren van de genotypen voor een gedetailleerde fysiologische
modelstudie.

Op basis van de QTLs voor bladfotosynthese die werden gedetecteerd in Hoofdstuk
2 werden 13 ILs geselecteerd die als representatief voor de populatie konden worden
beschouwd. Deze 13 ILs werden gebruikt om de fysiologische basis van genetische
variatie in bladfotosynthese en de daaruit voortvioeiende QTLs te bestuderen
(Hoofdstuk 3). Gasuitwisseling en chlorofylfluorescentie werden gelijktijdig gemeten
bij verschillende niveaus van invallende straling en CO,. Met deze metingen werden
de CO,- en lichtresponscurves onder omstandigheden van droogte en van voldoende
water bepaald, zowel tijdens de bloei als tijdens de korrelvulling. VVoor elke IL werden
via “curve fitting” zeven parameters van het fotosynthesemodel geschat. Op deze
manier werd de fotosynthese herleid tot CO, geleidbaarheid van de huidmondijes (gs)
en van het mesofyl (gm), elektronentransportcapaciteit (Jmax) €n Rubisco-
carboxyleringscapaciteit (Vmax). Hoewel droogte en bladleeftijd het grootste deel van
de totale variatie verklaarden, werd ook een significante genetische variatie voor deze
parameters gevonden. Genetische variatie in lichtverzadigde fotosynthese, transpiratie-
efficiéntie (TE), en de belangrijke QTL voor fotosynthese op Chromosoom 9 waren
voornamelijk gekoppeld aan variatie in gs en g,,. Dus bleken gs en g, die volgens
literatuur verantwoordelijk zijn voor de omgevingsvariatie in fotosynthese, ook
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verband te houden met genetische variatie in fotosynthese. Bovendien bleken de
relaties tussen deze parameters en bladstikstof of droge stof per bladoppervlakte-
eenheid zowel te gelden voor variatie als gevolg van milieueffecten (zoals eerder reeds
werd aangetoond) als voor variatie tussen genotypen. In het licht van deze resultaten
en van eerdere rapportages in de literatuur werd beargumenteerd dat de variatie in
fotosynthese als gevolg van omgevingsfactoren en als gevolg van genetische variatie
op de zelfde fysiologische mechanismen gebaseerd zijn. Op basis van deze resultaten
van het ecofysiologisch modelleren van fotosynthese en de QTL analyse werden
ideotypes voor bladfotosynthese en TE ontworpen, die een verbetering van
respectievelijk 17,0% en 25,1% gaven ten opzichte van het beste experimenteel
onderzochte genotype. Deze analyse onderstreept dat het mogelijk is om de
fotosynthese en de TE gelijktijdig te verbeteren binnen dezelfde genetische
achtergrond.

Rijstproductie wordt niet alleen bepaald door fotosynthese, maar ook door andere
fysiologische processen. Fysiologische eigenschappen, zoals het drooggewicht van het
individuele zaad (Sw), de N-concentratie in het zaad (nsp), de maximale planthoogte
(Hmax), het minimum aantal dagen voor vegetatieve groei (my), het minimum aantal
dagen voor reproductieve groei (mg), de specifieke bladoppervlakte (S;,), en de totale
N opname van het gewas (Nm.x) werden gemeten (Hoofdstuk 4). Het mechanistische
gewasmodel GECROS (Genotype-by-Environment interaction on CROp growth
Simulator [NL: simulator van gewasgroei voor de interactie tussen genotype en
milieu]) werd gebruikt om deze fysiologische deeleigenschappen te integreren en de
gewasopbrengst van individuele ILs te voorspellen onder omstandigheden van
voldoende water en van droogte. Wanneer het model werd gevoed met invoer van
fysiologische eigenschappen op basis van feitelijke metingen kon het GECROS model
de variatie in opbrengst voor 72% (nat) en 57% (droog) verklaren. Er werd een QTL
analyse uitgevoerd op deze fysiologische model-invoerparameters. Vervolgens werden
schattingen van deze eigenschappen berekend op basis van geschatte additieve
alleleffecten en QTL allel-informatie van elke IL, gebruikmakend van moleculaire
merkers. Wanneer de gemeten invoerparameters werden vervangen door op merkers
gebaseerde schattingen verklaarde dit op QTL / merkers gebaseerde gewasmodel 52%
(nat) en 47% (droog) van de variatie in opbrengst. Enkelvoudige correlatie-analyses en
multiple regressie-analyses toonden aan dat Ny de meeste invloed had op de
opbrengst; vijf andere genotype-specifieke model-invoer eigenschappen beinvioedden
de opbrengst ook significant, maar Sy, deed dat niet. Met behulp van de merker-
gebaseerde schattingen van fysiologische invoerparameters gaf GECROS ook een
redelijke voorspelling van de variatie in opbrengst binnen een populatie van 251
recombinante inteeltlijnen van dezelfde ouders geteeld onder omstandigheden van
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voldoende water of van droogte. Een gevoeligheidsanalyse met behulp van het
groeimodel bleek een nuttig middel om het relatieve belang van de geidentificeerde
merkers voor de opbrengst vast te stellen. Bovendien werden zo meer merkers
gedetecteerd dan op basis van merkerselectie met multiple regressie voor opbrengst
per se. In onze analyse bleken de merkers RM8030 op Chromosoom 2 en RM338 op
Chromosoom 3 het belangrijkst voor respectievelijk omstandigheden van voldoende
water en van droogte. Dit suggereert dat de belangrijkste merkers om te gebruiken in
de selectie op hoge korrelopbrengst milieu-specifiek zijn. Dit alles suggereert dat een
QTL / merker gebaseerde modelbenadering de efficiéntie van merker-gestuurde
selectie kan verbeteren.

Hoofdstuk 4 toonde ook aan dat bladfotosynthese niet bepalend was voor de
opbrengstverschillen tussen de ILs zoals die werden waargenomen in de veldproef.
Dat gold zowel voor de omstandigheden van voldoende water als voor die van
droogte. Dit gebrek aan persistentie van variatie over de schalen heen is waarschijnlijk
te wijten aan de complexe hiérarchie, van bladfotosynthese naar gewasopbrengst, en
aan interacties en terugkoppelingsmechanismen die zich voordoen tussen fysiologische
componenten van de individuele plant, tussen planten van hetzelfde gewas en tussen
het gewas en de omgeving. Bovendien zijn de gemeten bladfotosynthese en de
opbrengst beide behept met een zekere, willekeurige experimentele fout. Samen
kunnen de complexiteit en de experimentele ruis de potentiéle bijdrage van de kleine
variatie in bladfotosynthese binnen een populatie aan de variatie in de uiteindelijke
opbrengst maskeren. Teneinde de mate waarin natuurlijke genetische variatie in
fotosynthese kan bijdragen aan het verhogen van de biomassaproductie en de
opbrengst van rijst te onderzoeken, werd het GECROS gewasmodel wederom gebruikt
om het effect van genetische variatie in bladfotosynthese op biomassaproductie van
het gewas te analyseren (Hoofdstuk 5). Dit werd uitgevoerd door telkens één van de
model-inputparameters constant te houden, dat wil zeggen te fixeren op het
gemiddelde van de populatie voor alle ILs. Er werd aangetoond dat een genetische
variatie in bladfotosynthese van 25% gelijkwaardig kan worden opgeschaald naar het
gewasniveau, resulterend in een toename in biomassa van 22 tot 29% over
verschillende locaties en jaren. Deze uitkomst was in tegenstelling tot eerdere studies
waarbij het percentage verbetering afnam bij het opschalen van bladniveau naar
gewasniveau. Het verschil met eerdere studies lijkt verband te houden met het feit dat
in onze IL populatie variatie in zowel Rubisco-gelimiteerde als elektronentransport-
gelimiteerde fotosynthese werd waargenomen. Rijstproductie kon aanzienlijk worden
verbeterd door de natuurlijke variatie in het bestaande kiemplasma uit te baten, vooral
de variatie van de parameters die de licht-gelimiteerde fotosynthese bepalen.

170



Samenvatting

In Hoofdstuk 6 heb ik de resultaten van dit proefschrift samengevat en
bediscussieerd. Ik evalueerde hoe fysiologisch modelleren en QTL / merker-gebaseerd
modelleren veredeling van gewassen en genetica kunnen bijstaan. Tot slot besprak ik
de vooruitzichten voor de toekomst van de integratie van gewasfysiologie,
gewasmodellering, plantengenetica en de plantenveredeling, dat alles in het kader van
de zogenaamde gewassysteembiologie.
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