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Fig. 1. Life cycle of western flower thrips, 

Frankliniella occidentalis (McDonough et 

al., 2006). 

1. Western flower thrips as crop pest 

Western flower thrips (WFT), Frankliniella occidentalis, is a highly polyphagous insect and a 

vector of several plant viruses of which the Tomato Spotted Wilt Virus and the Impatiens 

Necrotic Spot Virus are the most important. As a result, WFT has become the most serious 

pest in several vegetable and flower crops (Daughtrey et al., 1997; Reitz, 2009). It causes 

damage on a variety of outdoor crops such as tomatoes, lettuce, celery, peppers, peas, onions, 

apples, grapes, peanuts (Robb, 1989) and maize (Heinrichs et al., 2000) and in greenhouse 

vegetable and flower crops, including tomatoes, sweet pepper, cucumber, chrysanthemum, 

rose, impatiens, ivy geranium, petunia, gloxinia, orchids, dahlia, primula, gerbera, fuchsia, 

and African violet (van Driesche et al., 1999). 

The life cycle of western flower thrips consists of an 

egg, two larval instars, the prepupa, the pupa, and the 

adult stage (Fig. 1). Both the adult and the larval stages 

feed by using their mouthparts to pierce plant cells and 

suck up the contents. Damaged plant cells collapse or 

fill with air, resulting in “silvery patches” and flecking 

on expanded leaves (Tommasini and Maini, 1995). 

Thrips feeding also results in stunted plant growth, and 

flower and fruit deformation. Oviposition by females 

causes another type of damage. Females insert eggs 

under the plant’s epidermis with their saw-like 

ovipositor, resulting in spots on leaves, petals and fruits 

(Lewis, 1997). The eggs are fairly well protected and few pesticides are effective against them 

(McDonough et al., 1999). In addition, plant viruses transmitted by WFT also cause serious 

economic losses (Reitz, 2009).  

Many synthetic pesticides have been used to control WFT. However, their widespread use has 

led to increasing resistance against the major classes of synthetic insecticides (Broadbent and 

Pree, 1997; Broughton and Herron, 2009). Therefore, it is desirable to identify natural plant-

derived compounds which are effective against WFT to allow breeders to enhance the levels 

of these compounds in different crop species. Modification in the quantities of these 

compounds through metabolic engineering has the potential to enable more sustainable 

agricultural practices by decreasing the use of synthetic insecticides. Besides pesticides, 

biological control has also been used to control WFT populations, including the use of 

predatory mites (Sabelis and van Rijn, 1997; Messelink et al., 2006; Wimmer et al., 2008), 

predatory bugs (Riudavets and Castañé, 1998; Weintraub et al., 2011), fungi (Montserrat et al., 

1998; Niassy et al., 2012), and nematodes (Heinz et al., 1996).  In addition, host plant 

resistance has been studied aiming to identify cultivars that are resistant to WFT feeding or 

oviposition (Fery and Schalk, 1991; De Jager et al., 1995) or to plant viruses transmitted by 

thrips (Funderburk, 2011). This host resistance may be based on the presence of repelling or 

deterring metabolites and knowledge of the identity of these chemical resistance factors 

would further support breeding for WFT-resistance in crop plants. A chemical class of plant 

metabolites that has been studied frequently in relation to plant resistance to insects are the 

terpenoids and particularly the monoterpenoids. 

2. Monoterpenoids 

2.1 Biological functions of monoterpenoids  

Monoterpenoids are known as constituents of floral scents and plant resins (Loza-Tavera, 

1999). They find extensive industrial application as additives in perfumes, cosmetics, 
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Fig. 2.  Compartmentation of 

terpene biosynthesis in the plant 

cell. Two independent pathways, 

the mevalonate and the 

methylerythritol phosphate 

(MEP) pathway, form the C5-

units IPP and DMAPP in the 

cytosolic and plastidic 

compartments, respectively. The 

biosynthesis of FPP and 

sesquiterpene metabolites occurs 

primarily in the cytosol, whereas 

the enzymes responsible for 

isoprene, monoterpene and 

diterpene formation are mostly 

located in the plastids (Tholl, 

2006). 

 

flavoring agents, medicines and insecticides (Wise and Croteau, 1999; Holstein and Hohl, 

2003). Besides their economic value, they have also been found to possess ecological 

significance. As important constituents of floral scents, monoterpenes function to attract 

pollinators (Dudareva and Pichersky, 2000). Some floral monoterpenes are also involved in 

antimicrobial defence, as was shown for linalool and linalool oxide in flowers of Clarkia 

species (Pichersky et al., 1994; Dudareva et al., 1996). In response to herbivory, plants emit 

blends of volatile compounds which are usually dominated by monoterpenes and 

sesquiterpenes (Dicke, 1994; Degenhardt et al., 2003). These compounds are involved in 

direct defence by repelling herbivores, and indirect defence by attracting predators or 

parasitoids (Paré and Tumlinson, 1999; Dicke and Van Loon, 2000; Dicke and Baldwin, 2010; 

Clavijo McCormick et al., 2012). For example, among the herbivore-induced volatiles in 

Nicotiana attenuata, the emission of three compounds, including linalool, increased egg 

predation rates by a generalist predator while at the same time linalool and the complete blend 

decreased oviposition rates of the herbivore lepidopteran Manduca sexta (Kessler and 

Baldwin, 2001). Furthermore, monoterpenes may play a role in protecting plants against 

oxidative stress from ozone (Fares et al., 2008). The significance of plant monoterpenes has 

promoted research on their biosynthesis and the metabolic engineering of their production in 

plants (Aharoni et al., 2005; Tholl, 2006).  

2.2 Biosynthesis of monoterpenes 

Monoterpenes are predominantly biosynthesized via the methyl erythritol phosphate (MEP) 

pathway, which is responsible for the production of the two building blocks of terpenes, 

isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP), in plant 

plastids (Fig. 2) (Tholl, 2006). They exist as hydrocarbons or as oxygenated moieties with 

alcohol, aldehyde/ketone and ester functional groups. Most monoterpenes are produced from 

geranyl diphosphate (GPP), which is the head-to-tail condensation product of DMAPP and 

IPP, and these monoterpenes are termed “regular monoterpenes”. The  “irregular 

monoterpenes” are synthesized through non-head-to-tail condensation of two units of 

DMAPP (Fig. 3) (Thulasiram et al., 2007).  

Many different terpene synthases (TPS) have been identified and cloned during the past two 

decades (Mahmoud and Croteau, 2002; Cheng et al., 2007).  Based on protein homology, 

terpene synthases (TPS) have been divided into 7 subfamilies defined by a minimum of 40% 

identity between members, and were designated TPS-a through TPS-g (Bohlmann et al., 1998; 

Dudareva et al., 2003; Falara et al., 2011). The monoterpene synthases (MTS) are distributed 

in the subfamilies TPS-b, TPS-d and TPS-g (Bohlmann et al., 1998; Cheng et al., 2007). All 
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MTS contain N-terminal transit peptides of 50-70 amino acids for plastid targeting 

(Bohlmann et al., 1998; Dudareva et al., 2003; Martin et al., 2004). All terpene synthases 

share a common aspartate-rich DDxxD motif which is thought to be involved in the 

coordination of divalent metal ions for substrate binding (Lesburg et al., 1997). Cloning and 

characterization of MTS has enabled engineering of monoterpene metabolism in plants, with 

the objective to improve plant traits, such as plant fragrance or plant resistance against pests 

(Lange and Ahkami, 2012).  

2.3 Metabolic engineering of monoterpenes by MTS in transgenic plants 

With the increase in understanding of the biosynthetic pathways of monoterpenes, successful 

metabolic engineering approaches using MTS have been developed (Lange and Ahkami, 

2012). From the large variety of cloned MTS genes, some have been transformed into plants 

to study the fate of newly expressed monoterpenes and the impact of the metabolic changes 

on plant traits (Yu and Utsumi, 2009).   

2.3.1 Metabolic changes in volatile emission 

As monoterpenes are volatiles, the headspace of transgenic plants is normally analyzed for 

product presence. Often, however, not only the emission of direct products of specific MTS 

was increased, but also the emission of some other volatiles. For example, limonene synthase 

was expressed in Mentha arvensis and M. × piperita, and apart from limonene the amounts of 

two limonene derivatives, pulegone and piperitenone, were significantly increased as well 

(Diemer et al., 2001). In another example, when geraniol synthase was overexpressed in 

tomato fruits, not only the content of geraniol increased, but also the content of 11 geraniol 

derivatives and five unrelated monoterpenes increased (Davidovich-Rikanati et al., 2007). 

Similar results have been reported for the effect of limonene synthase overexpression in 

tobacco (Lücker et al., 2004) and lavender (Muñoz-Bertomeu et al., 2008) and linalool 

synthase overexpression in tomato fruits (Lewinsohn et al., 2001), carnation flowers (Lavy et 

al., 2002), Arabidopsis leaves (Aharoni et al., 2003) and potato leaves (Aharoni et al., 2006). 

2.3.2 Metabolic changes in  non-volatile production 

Terpenes produced in transgenic plants have also been reported to be conjugated to non-

volatile products (Lücker et al., 2001; Aharoni et al., 2003). As (mono)terpene glycosides are 

widely distributed in plants, it is not unexpected to find glycosides of the introduced 

monoterpenes in transgenic plants. Glycosylation renders the monoterpenes non-volatile. 

Thus, it is necessary to analyse the non-volatile metabolites to understand the metabolic fate 

of the overexpressed monoterpenes. The first glycoside in transgenic plants overexpressing a 

MTS was reported by Lücker and co-authors (2001). They found that in transgenic petunia 

expressing linalool synthase, all linalool accumulating in various tissues of the plant was 

stored as a non-volatile glycoside. Later, the glucosides of linalool and hydroxyl linalool have 

also been reported in linalool-expressing Arabidopsis and potato leaves (Aharoni et al., 2003; 

Aharoni et al., 2006).  

2.3.3 Impact of metabolic changes on plant traits 

Several transgenic plant species with enhanced monoterpene production have been tested for 

effects on flavour or fragrance to human panels and plant resistance against pest insects. In 

tomato fruits overexpressing geraniol synthase, a majority of untrained taste panellists 

preferred the transgenic fruits over controls (Davidovich-Rikanati et al., 2007). However, in 

the case of carnation flowers overexpressing linalool synthase, the emission of linalool by the 

transgenic flowers was too low to lead to detectable changes in flower scent for human 

olfaction (Lavy et al., 2002). Linalool overexpressing Arabidopsis has been tested for 

resistance to the pest aphid, Myzus persicae, in dual-choice assays, and transgenic plants 
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significantly repelled or deterred the aphids (Aharoni et al., 2003). 

Besides plant fragrance and plant resistance to insects, plant development is also often 

affected by MTS overexpression. For example, slower plant growth and lighter leaf colour 

have been reported as a result of linalool synthase expression in Arabidopsis and potato 

(Aharoni et al., 2003; Aharoni et al., 2006), and upon geraniol synthase expression tomato 

fruits failed to develop the deep red colour of the control fruits as the lycopene level, a C40 

terpenoid produced in plastids, decreased by about 50% (Davidovich-Rikanati et al., 2007). 

However, overexpressing monoterpenes does not always lead to altered morphological 

phenotypes. No changes in development were observed in the study of limonene synthase 

expressing tobacco (Lücker et al., 2004) and lavender (Muñoz-Bertomeu et al., 2008) as well 

as linalool expressing petunia (Lücker et al., 2001) and tomato (Lewinsohn et al., 2001). 

In summary, plants have been successfully metabolically engineered to produce monoterpenes 

resulting in plants with an altered phenotype and new traits. As yet there is however little 

control over the level of the transgenic terpenoids produced for example because endogenous 

enzymes can take the product as a substrate for further conversions and plant development is 

affected in some cases. Further studies on regulatory features, such as transcription factors, 

multiple gene clusters and tissue-specific synthesis and storage could probably improve the 

success of metabolic engineering of monoterpenes in plants (Jirschitzka et al., 2012).  

2.4 Several monoterpenes serve as potential deterrent or repellent molecules to WFT  

In this thesis, several monoterpenes were chosen to be studied for their potential deterrent or 

repellent effect on WFT. Linalool is interesting as transgenic Arabidopsis emitting linalool 

were deterrent to aphids (Aharoni et al., 2003). Geraniol is potentially relevant as it is known 

to be repellent to insects including mites and ticks (Chen and Viljoen, 2010). Pyrethrins are 

the most fascinating class of monoterpenoids for WFT control. They have long been used as 

broad spectrum insecticides and are known to also affect WFT (Casida, 1973). The genes 

involved in the biosynthesis of linalool (Pichersky et al., 1995; Jia et al., 1999) and geraniol 

(Iijima et al., 2004; Bantscheff et al., 2007) have been cloned from several plant species, 

however the biosynthetic pathway of pyrethrins still needs more studies.  

Fig. 3. Reactions in the isoprenoid biosynthetic pathway. PPO, diphosphate; R, CH2(CH2CH=C(CH3)CH2)nH, where n = 0, 

1, 2, 3, and so forth (Thulasiram et al., 2007). The names are given when R is CH3. IPP, isopentenyl diphosphate; DMAPP, 

dimethylallyl diphosphate; GPP, geranyl diphosphate; LPP, lavandulyl diphosphate; CPP, chrysanthemyl diphosphate; MPP, 

maconellyl diphosphate. The chain elongation reaction yields “regular terpenes”, while cyclopropanation, branching and 

cyclobutanation reactions yields “irregular terpenes”. 
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3. Pyrethrins-the natural insecticide 

3.1 Chemistry of pyrethrins  

Pyrethrins comprise a group of 6 closely related esters, derived from two cyclopropane 

carboxylic acids, chrysanthemic acid (1) and pyrethric acid (2), and three cyclopentanone 

alcohols, pyrethrolone (3), jasmolone (4) and cinerolone (5) (Fig. 4). The 3 type I esters, 

pyrethrin I (6),  jasmolin I (7) and cinerin I (8) are derived from chrysanthemic acid, while the 

3 type II esters, pyrethrin II (9),  jasmolin II (10) and cinerin II (11)  are derived from 

pyrethric acid.  

Pyrethrins are found in all aboveground parts of pyrethrum (Tanacetum cinerariifolium), but 

predominantly in the ovaries of the flower heads (Brewer, 1973). The concentration of 

pyrethrins is about 0.1-0.2% (dry weight) in leaves and 1-2% (dry weight) in flowers 

(Baldwin et al., 1993). Pyrethrin production increases with the development of flowers (Head, 

1966). This increase is much more rapid in the first four developmental stages than in the later 

stages (Fig. 5), suggesting that the enzymes involved in pyrethrin biosynthesis are particularly 

active in the first four stages when the individual disc florets are still opening. 

  

Fig. 4. Chemical structures of pyrethrins and their acid and alcohol moieties (Matsuda, 2012). 
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Fig. 5. Pyrethrin production 

in different developmental 

stages of flowers. (a) 

Pyrethrin production per 

flower. This figure is based 

on the table published by 

Head (1966). (b) Pyrethrum 

flowers in different 

developmental stages. Stage 

1, closed buds; stage 2, 

vertical ray florets; stage 3, 

horizontal ray florets and first 

row of disk florets open; stage 

4, 3 rows of disk florets open; 

stage 5, all disk florets open; 

stage 6, disk florets 

deteriorating but ray florets 

still intact; stage 7, ray florets 

dehydrated.  

 

3.2 Properties of pyrethrins as insecticide 

Pyrethrins are the economically most important natural insecticides with broad use in homes, 

agriculture and stored products for more than 150 years (Casida, 1973). They are neurotoxins 

and they bind to voltage-gated sodium channels of neuronal cells, causing the channels to 

remain open (Davies et al., 2007). They can repel, “knock-down” (paralyse flying insects), 

and kill many different kinds of insects, including crop pests, stored food pests and household 

pests. Pyrethrins are effective against a broad spectrum of insects and their toxicity for 

mammals is very low allowing use as a preharvest spray and application during the blooming 

period (Casida and Quistad, 1995; Schoenig, 1995). All these properties make pyrethrins an 

ideal organic insecticide. Despite the long historical use of pyrethrins as insecticide, their 

ecological role in pyrethrum has not been uncovered yet. 

3.3 Biosynthesis of pyrethrins 

3.3.1 Biosynthesis of acid moieties  

Both chrysanthemic acid and pyrethric acid share the cyclopropane ring as a common 

structural feature.  Chrysanthemol is generally considered to be formed first, and successively 

oxidized to chrysanthemic acid (Donia et al., 1973). The carbon skeleton of chrysanthemic 

acid was first proposed to be built from two isoprene units (Crowley et al., 1961). To prove 

this hypothesis, 
14

C-labelled mevalonic acid (MVA) was fed to pyrethrum flowers and it was 

shown to be incorporated into the acid moieties of pyrethrins (Crowley et al., 1961; Crowley 

et al., 1962). This work confirmed that the acids are monoterpenoids. Forty years after this 

feeding experiment, the first gene in the pathway was cloned from pyrethrum flowers—

chrysanthemyl diphosphate synthase (CDS) (Rivera et al., 2001). CDS is responsible for the 

first committed step of chrysanthemic acid biosynthesis. It catalyses the condensation of two 

molecules of DMAPP via an unusual c1’-2-3 linkage to give chrysanthemyl diphosphate 

(CPP) which has a cyclopropane ring structure (Rivera et al., 2001). The sequence analysis of 

CDS showed that it has a putative plastidic targeting sequence. In plant plastids, 

monoterpenes are mostly derived from the MEP pathway (or “non-MVA pathway”), which 

was discovered around 35 years later than the feeding experiment described above (Rohmer et 

al., 1996; Dubey et al., 2003). To elucidate from which of these two pathways pyrethrins are 

derived, Matsuda and co-workers (2005) used 
13

C-labelled glucose that they fed to pyrethrum 

seedlings. They showed that chrysanthemic acid is predominantly derived from the MEP 

pathway instead of the MVA pathway. The 
14

C-labelled MVA incorporation into the acid 

moieties found in the earlier feeding experiments must hence be regarded as crosstalk 
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between the MEP and MVA pathways (Matsuda et al., 2005).  

Pyrethric acid is the methyl ester of chrysanthemic dicarboxylic acid. 
14

C-Labelled 

chrysanthemic acid was fed to dissected ovaries, and it was found to be incorporated into both 

type I and II pyrethrin esters, thus indicating that chrysanthemic acid serves as precursor for 

pyrethric acid biosynthesis (Donia et al., 1973). Chrysanthemic acid is converted to pyrethric 

acid through oxidation and methyl esterification. The methyl is transferred from L-methionine 

by carboxyl methyltransferase (Crowley et al., 1962; Godin et al., 1963). Pyrethric acid may 

be formed late in a conversion of type I into type II pyrethrins, because the ratio of pyrethrin I 

to pyrethrin II decreases during flower development and pyrethric acid has not been described 

as a free compound (Casida and Quistad, 1995). 

So far, CDS is the only published gene in the biosynthesis of the acids. For the biosynthesis of 

chrysanthemic acid, the genes involved in the following steps still need to be discovered--the 

conversion from CPP to chrysanthemol and the oxidation from chrysanthemol to 

chrysanthemic acid. 

3.3.2 Biosynthesis of alcohol moieties  

The three alcohols, pyrethrolone, cinerolone and jasmolone, share a common cyclopentanone 

structure. They have been shown to be derived from acetate when 
14

C-labelled acetate was fed 

to pyrethrum flowers (Crowley et al., 1961). They were predicted to be derived from the 

oxylipin pathway (Crombie, 1995), which is responsible for the biosynthesis of the plant 

hormone jasmonic acid (Feussner and Wasternack, 2002). Later, a feeding experiment using 
13

C-labelled glucose further supported this prediction, and the alcohols were proposed to be 

derived from either cis-jasmone or 7-hydroxy-jasmonic acid (Matsuda et al., 2005). However, 

the exact biosynthetic route of these alcohols remains to be clarified, and none of the genes 

involved in the biosynthesis of the pyrethrin precursor-alcohols have been reported. 

3.3.3 Biosynthesis of esters 

The final step in pyrethrin biosynthesis is the esterification of the acid and alcohol moieties. 

Currently, there are three different mechanisms to synthesize esters in plants (Fig. 6). In the 

first one, an acid group activated by coenzyme A (CoA) is transferred to an alcohol (Hobbs et 

al., 1999; D'Auria et al., 2002; Beekwilder et al., 2004). In the second mechanism, an 

activated alcohol group (e.g., S-adenosyl methionine) is transferred to an acid (Ibrahim, 1997; 

Seo et al., 2001). A third option is that an acid group is transferred from an ester to an alcohol 

to form a new ester (Banas et al., 2005). Pyrethrins are most likely synthesized through the 

first mechanism, which involves an acyltransferase. Recently, an acyltransferase was cloned 

from pyrethrum plants, which is capable of transferring the chrysanthemoyl group from the 

CoA thioester to pyrethrolone to produce pyrethrin I (Kikuta et al., 2012). This enzyme is also 

able to use CoA-activated pyrethric acid and jasmolone and cinerolone as substrates. The 

enzyme activity with different acyl-CoA and alcohol combinations varied from 39 to 129%, 

with 100% representing the activity of the enzyme with chrysanthemyl-CoA and pyrethrolone.  

However, it is not clear yet whether the esters are synthesized by independent or sequential 

steps, or whether the alcohol/acid side chain modifications are completed before or after 

esterification. The CoA ligase(s) responsible for biosynthesis of the acyl-CoA thioesters also 

remains to be cloned. 
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In summary, in the pyrethrin biosynthetic pathway only the enzymes of the first committed 

step in the acid biosynthesis and the last step of ester biosynthesis have been characterized, 

leaving the other enzymes to be discovered (Fig. 7). 

4. Scope of this thesis 

The objective of the research presented in this thesis is to increase the production of 

monoterpenes that are known to affect insects to improve plant resistance to crop pests such 

as WFT through metabolic engineering. Monoterpenes are known to play roles in plant 

resistance against herbivores and have been used before to engineer plant species (Jirschitzka 

et al., 2012). However, transgenic plants with elevated levels of monoterpenes have rarely 

been tested for their resistance against insects. Surprisingly, even the most well-known natural 

monoterpene-derived pesticides — pyrethrins, derived from the monoterpene chrysanthemol, 

still await a better understanding of the biosynthetic pathway.  

Chapter 2 describes the effect of linalool synthase overexpressing chrysanthemum on WFT. 

WFT were significantly deterred by the content of leaf discs from transgenic plants. However, 

the volatiles from leaves of transgenic plants were significantly attractive to WFT. The 

metabolic changes in volatile and non-volatile profiles of plants were analysed to correlate 

these to the behaviour of the insects. This study demonstrates complex, combined positive and 

negative, effects of terpene engineering on plant resistance against herbivores. 

Chapter 3 describes the effect of geraniol synthase overexpressing maize on WFT. In this 

chapter, the focus is on the metabolic fate of geraniol in maize to explain why no effect on 

WFT behaviour was observed. Geraniol produced in transgenic maize was efficiently 

converted to non-volatile glycoside, geranoyl-6-O-malonyl-β-D-glucopyranoside. The results 

demonstrate that metabolic engineering of geraniol into geranic acid can rely on the existing 

default substrate delivering pathways, but that competing glycosylation pathways must be 

controlled if accumulation of the aglycones is desired. 

Fig. 6. General mechanisms to synthesize esters in plants. CoA, coenzyme A; ATP, adenosine triphosphate; AMP, 

adenosine monophosphate.  
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Chapter 4 presents the effect of pyrethrins against WFT, with regard to WFT survival, 

feeding behaviour, and reproduction. Besides the in vitro assays of pyrethrins against WFT 

adults, pyrethrins were also infiltrated into chrysanthemum leaves to test their potential role in 

plant defence against WFT. The results show that the effects of natural concentrations of 

pyrethrins in pyrethrum leaves can explain the observed high mortality of WFT on pyrethrum 

leaves. 

Chapter 5 presents a second function of the published enzyme, chrysanthemyl diphosphate 

synthase (CDS), involved in the biosynthesis of the acid moieties of the pyrethrins. CDS has 

been reported to catalyse the formation of chrysanthemyl diphosphate (CPP); however, here it 

is demonstrated that CDS will also catalyse the next step of CPP into chrysanthemol both in 

vitro and in vivo. It is proposed that CDS should be renamed as a chrysanthemol synthase 

(CHS) using DMAPP as substrate. 

Chapter 6 describes the discovery of chrysanthemic acid:CoA ligase, which is involved in 

the final stage of pyrethrin biosynthesis. The function of this enzyme is characterized in vitro.  

Chapter 7 discusses the results from this thesis and integrates them in a wider perspective. 

Furthermore, some future perspectives are discussed. 

Fig. 7.  Biosynthetic pathway of pyrethrins. The enzymes already identified to be involved in biosynthesis are indicated with 

circles. Alternative routes are indicated with dashed arrows. DMAPP, dimethylallyl diphosphate; CPP, chrysanthemyl 

diphosphate; CDS, chrysanthemyl diphosphate synthase; P450, cytochrome P450 enzymes; CoA, coenzyme A. 
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Abstract 

Herbivore-induced plant volatiles are often involved in direct and indirect plant defence 

against herbivores. Linalool is a common floral scent and found to be released from leaves by 

many plants after herbivore attack. In this study, a linalool/nerolidol synthase, FaNES1, was 

overexpressed in the plastids of chrysanthemum plants (Chrysanthemum morifolium). The 

volatiles of FaNES1 chrysanthemum leaves were strongly dominated by linalool, but, they 

also emitted small amount of the C11-homoterpene, (3E)-4,8-dimethyl-1,3,7-nonatriene, a 

derivative of nerolidol. Several linalool glycosides were found to be significantly increased in 

the leaves of FaNES1 plants compared to leaves of wild-type plants. The top four were 

putatively identified by LC-MS-MS as two linalool-malonyl-hexoses, a linalool-pentose-

hexose and a glycoside of hydroxy-linalool. A leaf-disc dual-choice assay with western flower 

thrips (WFT, Frankliniella occidentalis) showed that WFT were significantly deterred by leaf 

discs from FaNES1 plants 20 h after WFT release. However, in the first 15 min of WFT 

release, the FaNES1 plants were significantly attractive to WFT. The attractiveness of the 

odour of FaNES1 plants was  confirmed by an olfactory dual-choice assay. Pure linalool at 10% 

concentration was similarly attractive to WFT. In summary, WFT were attracted by the smell, 

but over time deterred more by the taste of FaNES1 leaves. This study demonstrates complex 

effects of terpene engineering on plant resistance against herbivores. Considering the natural 

distribution of linalool and its glycosides in plant tissues, it suggests that flowers may balance 

their attractive fragrance with poor taste using the same precursor compound to optimize seed 

yield. 
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Introduction 

Plant volatiles play important roles in plant-insect interactions (Pichersky and Gershenzon, 

2002; Schoonhoven et al., 2005; Maffei et al., 2011). Volatiles induced by herbivore attack 

are often found to be involved in direct defence by repelling herbivores, and indirect defence 

by attracting predators or parasitoids  (Paré and Tumlinson, 1999; Dicke and Van Loon, 2000; 

Dicke and Baldwin, 2010; Clavijo McCormick et al., 2012). Herbivore-induced plant volatiles 

are usually dominated by mono- and sesquiterpenes (Degenhardt et al., 2003), and enhanced 

emissions of these terpenes have led to improved plant defence against herbivores (Turlings 

and Ton, 2006; Dudareva and Pichersky, 2008).  

Linalool is a monoterpene alcohol with a sweet fragrance occurring in the floral scent of a 

wide variety of plants (Kamatou and Viljoen, 2008). It is also reported to be induced in 

different plants by damage of a variety of herbivore species, suggesting that linalool may have 

a role in direct or indirect plant defence against several herbivores. For example, it is induced 

in crabapple damaged by Japanese beetles (Loughrin et al., 1995), cotton damaged by beet 

armyworms (Paré and Tumlinson, 1997), maize damaged by caterpillars (Turlings et al., 

1998), Nicotiana attenuata damaged by caterpillars, leaf bugs or flea beetles (Kessler and 

Baldwin, 2001), peanut damaged by beet armyworms (Cardoza et al., 2002), spruce damaged 

by white pine weevils (Miller et al., 2005), lima bean damaged by caterpillars (Mithöfer et al., 

2005) or spider mites (Dicke et al., 1990) and tobacco damaged by western flower thrips or 

caterpillars (Delphia et al., 2007). Constitutive high emission of linalool has been engineered 

in several transgenic plant species by overexpressing the linalool synthase gene (Lewinsohn et 

al., 2001; Lavy et al., 2002; Aharoni et al., 2003; Aharoni et al., 2006). Among these, linalool 

emitting Arabidopsis were found to be less attractive to aphids and diamondback moths than 

wild-type plants (Aharoni et al., 2003; Yang, 2008). 

However, expression of monoterpene alcohol synthase genes often results in the synthesis of 

an array of other volatile and non-volatile derivatives, which may also, or exclusively, be 

accountable for the observed effects on plant defence . Linalool synthase overexpressing 

plants have been found, for example, to emit, apart from linalool, also linalool oxide, 

hydroxylinalool or hydroxy-dihydrolinalool (Lewinsohn et al., 2001; Lavy et al., 2002; 

Aharoni et al., 2003; Aharoni et al., 2006). By contrast, transgenic petunia expressing linalool 

synthase, did not produce any volatile linalool or derivative, but instead efficiently converted 

linalool to a non-volatile glycoside (Lücker et al., 2001). The glycosides of linalool and 

hydroxy-linalool were also reported in Arabidopsis and potato overexpressing linalool 

synthase (Aharoni et al., 2003; Aharoni et al., 2006). Transgenic plants overexpressing a 

similar linear monoterpene alcohol geraniol by means of a geraniol synthase, produced both 

volatile and non-volatile derivatives of geraniol such as geranial (volatile), geranic acid 

(volatile), geranyl acetate (volatile) in tomato fruits (Davidovich-Rikanati et al., 2007), and 

geranoyl malonyl glucopyranoside and other derivatives (non-volatile) in maize leaves (Yang 

et al., 2011). In some cases these derivatives were not found in controls (wild-type or empty 

vector controls), but often they are also found there, and therefore can be taken to fulfil 

putative biological roles for the plant species involved. The emerging picture is that terpene 

derivatives are species and genotype specific and dependent on developmental and tissue- or 

cell-type specific variations in endogenous modifying enzymes.   

Western flower thrips (WFT), Frankliniella occidentalis, is a highly polyphagous insect, and 

has become one of the most serious pests in several vegetable and flower crops world-wide 

(Reitz, 2009). It feeds by using its mouthparts to pierce plant cells and suck out their contents. 

Damaged plant cells collapse or fill with air, resulting in stunted plant growth, flower and fruit 

deformation, or “silver” reflective patches and flecking on expanded leaves (Tommasini and 
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Maini, 1995). It causes serious damage to a variety of vegetable and flower crops, including 

chrysanthemum, and transmits Tomato Spotted Wilt Virus (van Driesche et al., 1999).  

In this study, the linalool/nerolidol synthase gene from strawberry (Aharoni et al., 2003), 

FaNES1, was introduced into chrysanthemum plants. Induced volatile and non-volatile 

metabolites were analysed by GC- and LC-MS, and the effects of linalool overexpression in 

chrysanthemum were tested against WFT behaviour. 

 

Results 

Introduction and expression of linalool synthase gene into chrysanthemum 

Chrysanthemum genotype 1581 was transformed with a linalool/nerolidol synthase gene from 

strawberry (Aharoni et al., 2004), FaNES1, under the control of the Rubisco small subunit 

promoter (Outchkourov et al., 2003). The FaNES1 protein was targeted to the plastids by 

fusion with a plastid-targeting signal. Wild-type plants were used as control. Expression 

levels of FaNES1 in cuttings of 2 T0 transgenic lines, line 28 and 37, were determined by 

quantitative RT-PCR. The transcript levels of FaNES1 in these two lines were similar ranging 

from 486 to 1275, relative to the household gene actin (Fig. 1). FaNES1 plants were shorter 

and lighter in leaf colour compared to wild-type plants (Fig. 2).  

 

GC-MS analysis of volatile compounds  

Volatiles were collected from the headspace of cut leaves at half height of the plants. Linalool, 

the primary product of FaNES1, was strongly dominant among the detected volatiles (Fig. 3, 

a-c). The linalool emission was quantified to be 0.33 to 2.91 µg·h
-1·g

-1
-FW (Fig. 4), and not 

well correlated to the transcript levels of FaNES1 (R
2
=0.64). Besides linalool, an acyclic C11-

homoterpene, (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) was also found to be emitted from 

FaNES1 plants but not from wild-type plants (Fig. 3, d-e). The peak area (total ion current) of 

DMNT was 30- to 70-fold smaller than that of linalool in transgenic plants.  

LC-MS analysis of non-volatile compounds 

As linalool could also be stored in the form of glycosides, we analyzed the non-volatile 

metabolites in transgenic (n=6) and control (n=3) plants. Aqueous methanol extracts from 

young leaves were prepared and analyzed by accurate mass LC-MS in negative mode (Fig. 5). 

In order to reveal differential compounds, the LC-MS profiles of transgenic plants and control 

plants were compared in an untargeted manner using Metalign followed by Multivariate Mass 

Figure 1 Expression level of FaNES1 relative to the expression level of  actin gene in 

wild-type or transgenic chrysanthemum plants. Expression levels of the reference 

gene, actin gene, were set to 1. Transgene expression levels were determined by 

quantitative RT-PCR. Wt, wild-type; T, transgenic. Error bars indicate SE from 3 

technical replicates. 

Figure 2 Phenotype of wild-type 

chrysanthemum plant Wt-1 (a) and 

transgenic chrysanthemum plants 

T28-1 (b) and T37-1 (c). 
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Spectra Reconstruction (MMSR) clustering of extracted signals, as described in Materials and 

Methods. 

In total, 8968 mass signals were extracted, which grouped into 301 clusters of different 

metabolites. Among all 8968 masses, 2482 masses (i.e. 28%, distributed in 80 clusters) 

showed at least 2-fold intensity difference (P < 0.05) between transgenic and control plants. 

More masses were found to be significantly increased (2312 masses, distributed in 74 clusters) 

than decreased (170 masses, distributed in 6 clusters) in the transgenic plants. Differential 

masses with a signal intensity higher than 500 (i.e. about 50-fold higher than the noise) were 

subsequently analyzed by LC-MS/MS (Table 1, Fig. 5, Fig. S1). According to their MS/MS 

spectra, all these compounds were putatively identified as derivatives of linalool and hydroxy-

linalool: 2 different types of linalool-malonyl-glucose, a linalool-pentose-glucose and a 

glycoside of hydroxy-linalool.  

Figure 3 GC-MS chromatograms obtained by dynamic headspace trapping of leaves of wild-type chrysanthemum plant Wt-1 

(a) and transgenic chrysanthemum plant T37-3 (b). (c), GC-MS chromatogram of an authentic standard of racemic linalool. 

The product of FaNES1 was determined as (S)-linalool by Aharoni (2003). (d), zoom-in chromatogram of Wt-1 from 8.2 to 

8.7 min. (e), zoom-in chromatogram of T37-3 from 8.2 to 8.7 min. 

Figure 4 Linalool emission 

of cut leaves of wild-type 

and transgenic 

chrysanthemum plants. Wt, 

wild-type; T, transgenic. 
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Table 1 Non-volatile metabolites significantly increased in FaNES1-Expressing chrysanthemum 

plants putatively identified by LC-MS-MS.  

Ret 

(min) 

Av 

intensity 

(Wt) 

Av 

intensity 

(T) 

Ratio 

(T/Wt) 

Accurate 

mass 

found Mol form 

∆mass 

(ppm) 

MS-MS 

fragments Putative ID MM 

47.79 54 24579 457.7 803.3721 C19H30O9 2.5 401, 357, 

315, 161 

linalool-

malonyl-

glucose
a
 

([2M-H]
-
) 

401.1812 

46.07 2678 30161 11.3 803.3718 C19H30O9  2.1 401, 357, 

315, 161 

linalool-

malonyl-

glucose
a
 

([2M-H]
-
) 

401.1812 

37.46 3910 33651 8.6 493.2278 C22H38O12  -1.4 447, 315, 

233, 191, 

161, 149, 

131 

(linalool-

pentose-

hexose)
 a
FA 

493.2285 

36.15 145 22625 155.7 505.2647 C24H42O11  0.4 459, 415, 

399, 331, 

289, 161 

(hydroxy-

linalool-

hexose-*)
 a

 

FA 

505.2649 

Significantly different metabolites between transgenic and wild-type plants with mass intensities higher than 500 

were selected for analysis by LC-MS/MS. 

Ret (min), retention time, in minutes; Av, average; Wt, wild-type control plants; T,  transgenic plants; Ratio 

(T/Wt), ratio of mass signal between transgenic plants (T) and wild-type plants (Wt); Mol form, molecular 

formula of the metabolite; ∆mass (ppm), deviation between the found accurate mass and real accurate mass, in 

ppm; Putative ID, putative identification of metabolite; MM, monoisotopic molecular mass of the metabolite; 
a 

The scheme of collision-induced MS/MS-fragmentation is shown in Fig S1; ()FA, formic acid adduct; *, 

hydroxy-linalool-hexose conjugate to a molecule with formula of C7H14O3, such as hydroxyheptanoic acid, and 

etc. 

 

Effects of transgenic plants on thrips behaviour 

Leaves at similar leaf stage were randomly picked from plants of transgenic line 37, and used 

to study the effects of FaNES1 plants on WFT behaviour. The results of repeated dual-choice 

assays showed that WFT were significantly deterred by FaNES1 plants 20-28 h after WFT 

Figure 5 Negative mode LC–QTOF–MS chromatograms of aqueous-methanol extract of leaves of a wild-type 

chrysanthemum plant Wt-1 (a) and transgenic chrysanthemum plant T37-1 (b). The top 4 significantly different peaks are 

indicated with boxes. 
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release with 65% - 70% of WFT settling on wild-type leaf discs (Fig. 6). However, we also 

noticed that in the first 15 min of WFT release, the FaNES1 plants were significantly 

attractive to WFT, with 66% WFT initially settling on those leaf discs. We hypothesized that 

the modified fragrance- linalool emission- of the FaNES1 plants caused the initial attraction 

of WFT.  

To test whether volatile cues determined the initial attraction, we assayed the choice of WFT 

by placing individual insects on a wire separating two leaf discs, and scoring their choice for 

either leaf when they left the wire. In this way we compared their response to olfactory cues 

from wild-type and FaNES1 chrysanthemum leaves. This assay demonstrated that WFT 

preferred the odour from FaNES1 chrysanthemum leaves (Fig. 7). This olfactory assay was 

repeated with similar results using test leaf discs from plants of another transgenic line, line 

39. As linalool was the major compound in the volatile profile of FaNES1 chrysanthemum 

leaves, we also tested whether pure linalool dissolved in paraffin oil was attractive to WFT, 

and found that  10% linalool in paraffin oil was similarly significantly attractive to WFT (Fig. 

7) [as demonstrated by Koschier and co-authors (2000)].  

Discussion 

In this study, we aimed to introduce resistance to western flower thrips (WFT) into 

chrysanthemum by genetic engineering of the emission of the monoterpene alcohol linalool 

from the aerial parts of the plant. A linalool/nerolidol synthase, FaNES1, was introduced in 

the plastids of chrysanthemum plants under the control of the Rubisco small subunit promoter. 

We observed that the FaNES1 plants were significantly attractive to WFT in the first 15 

minutes, but in the next 24 hours gradually turned significantly deterrent. To explain these 

results, we checked the profile of both volatile and non-volatile metabolites in transgenic 

Figure 6 Dual choice assays of western flower thrips 

on wild-type versus transgenic chrysanthemum 

leaves. The presence of the thrips on either leaf disc 

was visually recorded 0.25, 1, 2, 4, 20 and 28 h post-

thrips release. The x-axis represents 10log-

transformed time data. Asterisks indicate significant 

differences to the control (*: P < 0.05;  **: P < 0.01). 

Wt, wild-type; T, transgenic. Error bars indicate SE 

(n = 120 per treatment). The dashed line indicates 

50% level of the y-axis. 

Figure 7 Effect of transgenic 

chrysanthemum plant and linalool on 

the olfactory response of western 

flower thrips. Wt, wild-type 

chrysanthemum leaves; T, transgenic 

chrysanthemum leaves. Solvent, 

paraffin oil used to make 10% 

linalool. Ten microliter solvent or 

10% linalool was applied on filter 

paper. Asterisks indicate significant 

differences of the choices between 

odour sources (n = 60 per treatment, 

*: P < 0.05). 
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plants, and concluded, after different WFT choice assays, that the FaNES1 chrysanthemum 

volatile emissions are attractive and the non-volatiles are deterrent.  

Linalool was found to be released as the major volatile into the headspace of transgenic plants 

(Fig. 2). Besides linalool, a small amount of DMNT was also released by the transgenic plants, 

but not by the wild-type plants. In transgenic Arabidopsis overexpressing the same gene in 

mitochondria, DMNT was also detected, and it was shown to be derived from nerolidol 

(Kappers et al., 2005). In our transgenic chrysanthemum plants, we did not detect nerolidol 

emission. However, the DMNT emission indicated that also low levels of nerolidol are 

produced from presumably low levels of FPP in plastids of FaNES1 chrysanthemum. Besides 

linalool, hydroxy-linalool and dihydrolinalool were also emitted from FaNES1 Arabidopsis 

and FaNES1 potato (Aharoni et al., 2003; Aharoni et al., 2005), but those were not detected in 

the headspace of FaNES1 chrysanthemum.  

WFT, as its name describes, in the adult stage, is preferentially a pollen-feeding and flower-

inhabiting species. It responds to a number of odours which are commonly found in floral 

fragrances (Teulon et al., 1993). Linalool is present in the fragrance of many different flowers, 

and it was tested for the effect on WFT with a Y-tube olfactometer by Koschier and coauthors 

(2000). In their study, 10% linalool was significantly attractive to WFT, but 1% linalool 

showed no significant effect. Our results showed that WFT were initially significantly 

attracted to the volatiles from FaNES1 chrysanthemum leaves which were dominated by 

linalool with emission rate at 0.33-2.91 µg·h
-1·g

-1
-FW. 

The gradual change from attraction to deterrence suggests either an induced linalool-

expression related deterrent accumulating over time in response to WFT damage, or the 

constitutive presence of a deterrent which over time WFT learns to avoid, despite the 

attractive smell. Already 1 hour after WFT release the attraction is no longer significant, 

suggesting that a constitutive deterrent may be present in linalool overexpressing plants. In 

transgenic plants overexpressing different linalool/nerolidol synthase genes, linalool and 

nerolidol were reported to be stored as glycosides as well (Lücker et al., 2001; Aharoni et al., 

2003; Aharoni et al., 2006). The glycone was determined in linalool synthase expressing 

petunia as glucose (Lücker et al., 2001). In our previous study of transgenic maize expressing 

a geraniol synthase, which also produces a monoterpene alcohol, the glycone was determined 

as malonyl-glucose (Yang et al., 2011). In this study, several glycosides of linalool or 

hydroxyl-linalool were putatively identified by LC-MS/MS. The linalyl-glucopyranoside, 

reported as the only glycoside of linalool in the linalool synthase expressing petunia, was not 

detected as the major linalool glycoside in FaNES1 chrysanthemum. Among the major 

linalool glycosides listed in Table 1, two glycosides showed the same molecular mass and 

mass spectrum. They could be isomers and they were identified as linalool conjugated to 

malonyl-glucose by comparing their mass spectra to that of geranoyl-6-O-malonyl-β-D-

glucopyranoside, which was identified by NMR in geraniol synthase expressing maize. 

Another linalool glycoside was putatively identified as linalool conjugated to a pentose-

glucose. Such a glycoside has been found to be naturally present in raspberry fruit as S-(+)-

linalool 3-O-α-L-arabinopyranosyl-(1→6)-β-D-glucopyranoside (Pabst et al., 1991). A 

glycoside of hydroxy-linalool was also putatively identified in FaNES1 chrysanthemum. The 

hydroxyl linalool glycosides have also been reported in FaNES1 Arabidopsis and potato, 

however the glycone parts were not determined (Aharoni et al., 2003; Aharoni et al., 2006). 

Terpene glycosides are regarded as transport and storage forms of terpenes in plant tissues, 

and they have been recognized to play important roles as  precursors of terpene release 

(Winterhalter et al., 1997). They may be involved in indirect plant resistance against insects 

by releasing terpene volatiles as signal compounds attracting predators and parasitoids upon 
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attack by herbivores, or they may be directly toxic to the herbivores (Zou and Cates, 1997; 

Pankoke et al., 2010). As linalool was attractive to WFT, we propose that the major 

glycosides stored in FaNES1 chrysanthemum may explain the deterrence against WFT. An 

induced linalool-related deterrence is only likely if novel linalool-modifying enzymes are 

induced by thrips damage, but this was not investigated by us. And this seems less likely 

considering the rapid loss of attractiveness after 15 minutes. Future research should confirm 

whether any one or a combination of these glycosides may indeed play a role in WFT 

deterrence and especially whether this strategy is found in nature. The FaNES1 gene was 

overexpressed using a Rubisco small subunit promoter and this can lead to glycoside products, 

such as the malonyl-glucose conjugated products, that are not found in specific species. 

However, it is interesting to note that a study of the natural distribution of linalool and its 

glycosides in several linalool-emitting plants showed that linalool glycosides accumulated 

much more in flowers than in leaves, and that linalool emission was only detected from 

flowers (Raguso Robert and Pichersky, 1999). Attraction of pollinators by emitted linalool 

and parallel deterrence of co-attracted herbivores by stored linalool glycosides may, therefore, 

represent an intricate tactic of flowers to balance attractive fragrance with poor taste to 

optimize seed yields using the same precursor compound. 

 

Experimental procedures 

Plant materials  

The linalool/nerolidol synthase gene from strawberry (Aharoni et al., 2004), FaNES1, driven 

by the rubisco small subunit promoter from chrysanthemum (Outchkourov et al., 2003), was 

cloned into ImpactVector1.1 (www.impactvector.com) and introduced into chrysanthemum 

plants (Chrysanthemum morifolium Ramat.) cv. 1581. The N terminus of FaNES1 was fused 

to the plastidic targeting signal derived from FvNES1 to direct FaNES1 from cytosol to the 

plastids (Aharoni et al., 2004). Wild-type chrysanthemum plants were used as control. Plants 

were grown in a greenhouse at 25±2 °C under long day conditions (16-h-light/8-h-dark 

photoperiod).  

Two T0 transgenic plant lines 28 and 37 producing the highest levels of linalool and a wild-

type control line were propagated by cuttings. Three clones of each plant line were used in the 

following experiments to determine the transcript levels of FaNES1, total volatiles and total 

non-volatiles of leaves.  

Transcript analysis 

The RNA transcript levels of FaNES1 were determined by real-time quantitative RT-PCR 

analysis as described (Schijlen et al., 2007).  The actin gene from chrysanthemum was used as 

reference gene. The sequence of actin gene was obtained from GenBank accession AB205087. 

All primers were designed by the Beacon Designer software package (Palo Alto, CA, USA). 

For FaNES1, forward primer 5’-ATCGTCCTCAGCAGCAATTCTTC-3’ and reverse primer 

5’- CAGCCTTCATGTTCCTCTAAGTAGC-3’ with an expected product size of 116 bp were 

used, and for the actin gene forward primer 5’- GGATTCTGGTGATGGTGTGAGTC-3’ and 

reverse primer 5’- GAATCTTCATCAACGCATCAGTCAG-3’ with an expected product size 

of 119 bp. 

Volatile analysis by GC-MS and non-volatile analysis by LC-MS 

The 7
th

 leaf from the top of each plant with 14-15 leaves was harvested for headspace trapping. 

The volatiles were sampled for half an hour, and then analysed by GC-MS as described (Yang 

et al., 2011). The temperature program of the gas chromatograph was 60 °C for 2.5 min, 
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rising to 280 °C at 20 °C min
-1

 and 0.5 min at 280 °C. The mass spectrometer was set to scan 

from 35 to 300 m/z. The helium flow was constant at 1.0 mL min
-1

. Ionization potential was 

set at 70 eV. 

For identification, the authentic standard of (R,S)-linalool (Fluka) was run under identical 

conditions. (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) was identified by comparing mass 

spectra to the Wiley mass spectra library and by calculating the Kovats Index of each peak 

based on the retention time relative to alkane standards. Linalool emission from transgenic 

plants was quantified based on calibration curves with the authentic standard.  

From the same plants, the 6
th

 leaf from the top of each plant was harvested for non-volatile 

analysis. The non-volatiles were extracted and analysed by LC-MS as described (Yang et al., 

2011).  

GC-MS and LC-MS data processing 

GC-MS data were acquired using Xcalibur 1.4 (Thermo Electron Corporation) and LC-MS 

data using MassLynx 4.0 (Waters). The data were then processed using MetAlign version 1.0 

(www.metAlign.nl) for baseline correction, noise elimination and subsequent spectral data 

alignment (De Vos et al., 2007). The processing parameters of MetAlign for GC-MS data 

were set to analyse from scan number 168 to 1929 (corresponding to retention time 4.83 min 

to 13.62 min) with a maximum amplitude of 4 × 10
7
. The parameters for LC-MS data were 

set to analyse from scan number 84 to 2600 (corresponding to retention time 1.61 min to 

49.35 min) with a maximum amplitude of 35000.   

In order to elucidate which mass signals originate from the same metabolite, all the detected 

masses were clustered by an in-house developed software package based on a Multivariate 

Mass Spectra Reconstruction (MMSR) approach (Tikunov et al., 2005).  The mass signal 

intensities (expressed as peak height using MetAlign) obtained from transgenic plants and 

wild-type plants were compared using the Student’s t-test. Masses with a significant (p<0.05) 

intensity change of at least 2-fold were verified manually in the original chromatograms. 

To annotate significantly different compounds, accurate masses were manually calculated, 

taking into account only those scans with the proper intensity ratios of analyte and lock mass 

[between 0.25- and 2 (Moco et al., 2006)], and elemental formulae generated within 5 ppm 

deviation from the observed mass. In addition, mass-directed LC-MS/MS experiments were 

performed on differential compounds. To obtain proper MS/MS spectra only molecular ions 

with signal intensities higher than 500 ion counts per scan were selected. 

Dual-choice behavioural studies with thrips 

A population of western flower thrips (WFT), Frankliniella occidentalis, was mass-reared on 

flowering chrysanthemum (Chrysanthemum morifolium Ramat.) cv. Sunny Casa in a 

greenhouse under a photoperiod of L16:D8 at 25±2 °C. In this study, only adult female thrips 

were used. All bioassays were conducted in a climate room at 20-22 °C with a L16:D8 

photoregime as described (Yang et al., 2012).  

Leaf discs from wild-type chrysanthemum plants were used as control discs and leaf discs 

from plants of transgenic line 37 or line 39 were used as test discs. Twelve replicates were 

used in this experiment. The number of WFT on each leaf disc was recorded 0.25, 1, 2, 4, 20, 

and 28 h after the release of the WFT. At each time point, a Student's paired t-test was used to 

assess the significance of the differences in the mean number of WFT between test and 

control. The plants of line 39 emitted lower amount of linalool than plants of line 37 and 28. 

http://www.metalign.nl/
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Thrips olfactory choice assay   

To dissect the component of thrips host choice based on olfactory cues only, a metal wire (0.5 

mm diameter, ~2.5 cm long) was placed between 2 leaf discs (1.6 cm diameter) embedded, 

abaxial side up, on a 1.5% (w/v) agar-bed in a Petri dish (7 cm diameter). One of the leaf 

discs was from wild-type chrysanthemum plants as control disc and the other leaf disc was 

from transgenic plants of line 37 as test disc. The metal wire was not in contact with any of 

the leaf discs, and there was about 0.5 cm distance between the end of the metal wire and the 

leaf disc. Every time, one ice-anaesthetized thrips was released in the middle of the metal wire. 

Once the thrips became active, it walked along the metal wire without going off it. After one 

or a couple of rounds of walking, the thrips would finally leave the wire at either end, and 

walk towards the leaf disc of choice. The number of thrips reaching either leaf disc was 

recorded. The only available cues were volatiles released from the leaf discs. Every pair of 

leaf discs was assayed with 10 individual thrips, and this experiment was replicated with 6 

pairs of leaf discs. More than 90% WFT made their choices within 2 min in this assay. A 

Student's paired t-test was used to assess the significance of the differences in the mean 

number of WFT between test and control. 

In the experiment checking the olfactory response of thrips to the linalool standard, WFT 

were given choices between filter papers (~1.5 cm
2
) applied with 10 µl paraffin oil or with 10 

µl 10%  linalool dissolved in paraffin oil. 

 

Acknowledgments 

We thank Prof. Marcel Dicke and Prof. Harro J. Bouwmeester for their critical reading of the 

manuscript, Ric de Vos for his help in metabolomics data analysis, Bert Schipper for his 

assistance in LC-MS analysis, and Yury Tikunov for his help in using MMSR approach.  

References 

Aharoni A, Giri AP, Deuerlein S, Griepink F, De Kogel WJ, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab 

W, Bouwmeester HJ (2003) Terpenoid metabolism in wild-type and transgenic arabidopsis plants. Plant Cell 15: 2866-2884 

Aharoni A, Giri AP, Verstappen FWA, Bertea CM, Sevenier R, Sun ZK, Jongsma MA, Schwab W, Bouwmeester HJ 
(2004) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16: 3110-3131 

Aharoni A, Jongsma M, Kim T-Y, Ri M-B, Giri A, Verstappen F, Schwab W, Bouwmeester H (2006) Metabolic 

Engineering of Terpenoid Biosynthesis in Plants. Phytochemistry Reviews 5: 49-58 

Aharoni A, Jongsma MA, Bouwmeester HJ (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends 

in Plant Science 10: 594-602 

Cardoza YJ, Alborn HT, Tumlinson JH (2002) In vivo Volatile Emissions from Peanut Plants Induced by Simultaneous 

Fungal Infection and Insect Damage. Journal of Chemical Ecology 28: 161-174 

Clavijo McCormick A, Unsicker SB, Gershenzon J (2012) The specificity of herbivore-induced plant volatiles in 

attracting herbivore enemies. Trends in Plant Science 17: 303-310 

Davidovich-Rikanati R, Sitrit Y, Tadmor Y, Iijima Y, Bilenko N, Bar E, Carmona B, Fallik E, Dudai N, Simon JE, 

Pichersky E, Lewinsohn E (2007) Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway. 25: 

899-901 

De Vos RCH, Moco S, Lommen A, Keurentjes JJB, Bino RJ, Hall RD (2007) Untargeted large-scale plant metabolomics 

using liquid chromatography coupled to mass spectrometry. Nature Protocols 2: 778-791 

Degenhardt J, Gershenzon J, Baldwin IT, Kessler A (2003) Attracting friends to feast on foes: Engineering terpene 

emission to make crop plants more attractive to herbivore enemies. Current Opinion in Biotechnology 14: 169-176 

Delphia C, Mescher M, De Moraes C (2007) Induction of Plant Volatiles by Herbivores with Different Feeding Habits and 

the Effects of Induced Defenses on Host-Plant Selection by Thrips. Journal of Chemical Ecology 33: 997-1012 

Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. 

Trends in Plant Science 15: 167-175 

Dicke M, Van Beek TA, Posthumus MA, Ben Dom N, Van Bokhoven H, De Groot A (1990) Isolation and identification 

of volatile kairomone that affects acarine predatorprey interactions Involvement of host plant in its production. Journal of 

Chemical Ecology 16: 381-396 

Dicke M, Van Loon JJA (2000) Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. 

Entomologia Experimentalis et Applicata 97: 237-249 

Dudareva N, Pichersky E (2008) Metabolic engineering of plant volatiles. Current Opinion in Biotechnology 19: 181-189 



Chapter 2 

28 

Kamatou GPP, Viljoen AM (2008) Linalool - A review of a biologically active compound of commercial importance. 

Natural Product Communications 3: 1183-1192 

Kappers IF, Aharoni A, Van Herpen TWJM, Luckerhoff LLP, Dicke M, Bouwmeester HJ (2005) Plant science: 

Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309: 2070-2072 

Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291: 

2141-2144 

Koschier EH, De Kogel WJ, Visser JH (2000) Assessing the Attractiveness of Volatile Plant Compounds to Western 

Flower Thrips Frankliniella occidentalis. Journal of Chemical Ecology 26: 2643-2655 

Lavy M, Zuker A, Lewinsohn E, Larkov O, Ravid U, Vainstein A, Weiss D (2002) Linalool and linalool oxide 

production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Molecular Breeding 9: 

103-111 

Lewinsohn E, Schalechet F, Wilkinson J, Matsui K, Tadmor Y, Nam K-H, Amar O, Lastochkin E, Larkov O, Ravid U, 

Hiatt W, Gepstein S, Pichersky E (2001) Enhanced Levels of the Aroma and Flavor Compound S-Linalool by Metabolic 

Engineering of the Terpenoid Pathway in Tomato Fruits. Plant Physiology 127: 1256-1265 

Loughrin J, Potter D, Hamilton-Kemp T (1995) Volatile compounds induced by herbivory act as aggregation kairomones 

for the Japanese beetle (Popillia japonica Newman). Journal of Chemical Ecology 21: 1457-1467 

Lücker J, Bouwmeester HJ, Schwab W, Blaas J, Van Der Plas LHW, Verhoeven HA (2001) Expression of Clarkia S-

linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-β-d-glucopyranoside. The Plant Journal 

27: 315-324 

Maffei ME, Gertsch J, Appendino G (2011) Plant volatiles: Production, function and pharmacology. Natural Product 

Reports 28: 1359-1380 

Miller B, Madilao LL, Ralph S, Bohlmann J (2005) Insect-Induced Conifer Defense. White Pine Weevil and Methyl 

Jasmonate Induce Traumatic Resinosis, de Novo Formed Volatile Emissions, and Accumulation of Terpenoid Synthase and 

Putative Octadecanoid Pathway Transcripts in Sitka Spruce. Plant Physiology 137: 369-382 

Mithöfer A, Wanner G, Boland W (2005) Effects of Feeding Spodoptera littoralis on Lima Bean Leaves. II. Continuous 

Mechanical Wounding Resembling Insect Feeding Is Sufficient to Elicit Herbivory-Related Volatile Emission. Plant 

Physiology 137: 1160-1168 

Moco S, Bino RJ, Vorst O, Verhoeven HA, De Groot J, Van Beek TA, Vervoort J, Ric De Vos CH (2006) A liquid 

chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiology 141: 1205-1218 

Outchkourov NS, Peters J, de Jong J, Rademakers W, Jongsma MA (2003) The promoter-terminator of chrysanthemum 

rbcS1 directs very high expression levels in plants. Planta 216: 1003-1012 

Pabst A, Barron D, Sémon E, Schreier P (1991) Isolation of a novel linalool disaccharide glycoside from raspberry fruit. 

Tetrahedron Letters 32: 4885-4888 

Pankoke H, Bowers MD, Dobler S (2010) Influence of iridoid glycoside containing host plants on midgut β-glucosidase 

activity in a polyphagous caterpillar, Spilosoma virginica Fabricius (Arctiidae). Journal of Insect Physiology 56: 1907-1912 

Paré PW, Tumlinson JH (1997) De Novo Biosynthesis of Volatiles Induced by Insect Herbivory in Cotton Plants. Plant 

Physiology 114: 1161-1167 

Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiology 121: 325-332 

Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and 

defense. Current Opinion in Plant Biology 5: 237-243 

Raguso Robert A, Pichersky E (1999) A day in the life of a linalool molecule : Chemical communication in a plant-

pollinator system. Part 1 : Linalool biosynthesis in flowering plants. 14: 95-120 

Reitz SR (2009) Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): The making of a pest. Florida 

Entomologist 92: 7-13 

Schijlen EGWM, de Vos CHR, Martens S, Jonker HH, Rosin FM, Molthoff JW, Tikunov YM, Angenent GC, van 

Tunen AJ, Bovy AG (2007) RNA Interference Silencing of Chalcone Synthase, the First Step in the Flavonoid Biosynthesis 

Pathway, Leads to Parthenocarpic Tomato Fruits. Plant Physiol. 144: 1520-1530 

Schoonhoven LM, Loon JJAv, Dicke M (2005) Insect-plant Biology, Ed 2nd. Oxford University Press, Oxford, U.K.  

Teulon DAJ, Penman DR, Ramakers PMJ (1993) Volatile Chemicals for Thrips (Thysanoptera: Thripidae) Host- Finding 

and Applications for Thrips Pest Management. Journal of Economic Entomology 86: 1405-1415 

Tikunov Y, Lommen A, De Vos CHR, Verhoeven HA, Bino RJ, Hall RD, Bovy AG (2005) A novel approach for 

nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiology 139: 1125-1137 

Tommasini MG, Maini S (1995) Frankliniella occidentalis and other thrips harmful to vegetable and ornamental crops in 

Europe. In Loomans, A. J. M., J. C. van Lenteren, M. G. Tommasini, S. Maini, and J. Riudavets (eds.). Biological Control of 

Thrips Pests. Wageningen Agricultural University Papers, Wageningen, pp 1-42 

Turlings TC, Ton J (2006) Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to 

enhance the control of agricultural pests. Current Opinion in Plant Biology 9: 421-427 

Turlings TCJ, Lengwiler UB, Bernasconi ML, Wechsler D (1998) Timing of induced volatile emissions in maize 

seedlings. Planta 207: 146-152 

Winterhalter P, Skouroumounis G, Berger R, Babel W, Blanch H, Cooney C, Enfors S, Eriksson K, Fiechter A, 

Klibanov A, Mattiasson B, Primrose S, Rehm H, Rogers P, Sahm H, Schügerl K, Tsao G, Venkat K, Villadsen J, von 

Stockar U, Wandrey C (1997) Glycoconjugated aroma compounds: Occurrence, role and biotechnological transformation 

Biotechnology of Aroma Compounds. In, Vol 55. Springer Berlin / Heidelberg, pp 73-105 

Yang L (2008) Integration of host plant resistance and biological control: using Arabidopsis-insect interactions as a model 

system. PhD thesis Wageningen University, Wageningen 

Yang T, Stoopen G, Wiegers G, Mao J, Wang C, Dicke M, Jongsma MA (2012) Pyrethrins protect pyrethrum leaves 

against Attack by western flower thrips, Frankliniella occidentalis. Journal of Chemical Ecology 38: 370-377 



Effect of linalool chrysanthemum on thrips 

29 

Yang T, Stoopen G, Yalpani N, Vervoort J, de Vos R, Voster A, Verstappen FWA, Bouwmeester HJ, Jongsma MA 
(2011) Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation 

patterns. Metabolic Engineering 13: 414-425 

Zou J, Cates RG (1997) Effects of Terpenes and Phenolic and Flavonoid Glycosides from Douglas Fir on Western Spruce 

Budworm Larval Growth, Pupal Weight, and Adult Weight. Journal of Chemical Ecology 23: 2313-2326 

  



Chapter 2 

30 

Figure S1 Scheme of collision-induced MS/MS-fragmentation of mass 401 eluting at 47.79 and 46.07 min (a), mass 

447 eluting at 37.46 min and mass 459 eluting at 36.15 min.  
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Abstract  

Many terpenoids are known to have antifungal properties and overexpression of these 

compounds in crops is a potential tool in disease control. In this study, 15 different mono- and 

sesquiterpenoids were tested in vitro against two major pathogenic fungi of maize (Zea mays), 

Colletotrichum graminicola and Fusarium graminearum. Among all tested terpenoids, 

geranic acid showed very strong inhibitory activity against both fungi (MIC < 46 µM). To 

evaluate the possibility of enhancing fungal resistance in maize by overexpressing geranic 

acid, we generated transgenic plants with the geraniol synthase gene cloned from Lippia 

dulcis under the control of a ubiquitin promoter. The volatile and non-volatile metabolite 

profiles of leaves from transgenic and control lines were compared. The headspaces collected 

from intact seedlings of transgenic and control plants were not significantly different, 

although detached leaves of transgenic plants emitted 5-fold more geranyl acetate compared 

to control plants. Non-targeted LC-MS profiling and LC-MS-MS identification of extracts 

from maize leaves revealed that the major significantly different non-volatile compounds 

were 2 geranic acid derivatives, a geraniol dihexose and 4 different types of hydroxyl-geranic 

acid-hexoses. A geranic acid glycoside was the most abundant, and identified by NMR as 

geranoyl-6-O-malonyl-β-D-glucopyranoside with an average concentration of 45 µM. Fungal 

bioassays with C. graminicola and F. graminearum did not reveal an effect of these changes 

in secondary metabolite composition on plant resistance to either fungus. Transgenic maize 

didn’t show different effect on western flower thrips, a serious pest insect, either. The results 

demonstrate that metabolic engineering of geraniol into geranic acid can rely on the existing 

default pathway, but branching glycosylation pathways must be controlled to achieve 

accumulation of the aglycones.   
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1. Introduction 

Mono- and sesquiterpenoids are the main constituents of essential oils of aromatic plants 

(Rohloff, 2004). They play major ecological and physiological roles in flower pollination and 

in responses to biotic or abiotic stress (Yu and Utsumi, 2009). In the search for natural 

fungicides many antifungal terpenoids were identified, but their role in plant defense 

remained unclear (Inouye et al., 2001; Kalemba and Kunicka, 2003). Recently, however, the 

potential role of the antifungal monoterpenes neomenthol and menthol to enhance plant 

resistance to fungal and bacterial infections has been demonstrated by overexpression and 

silencing experiments in pepper and Arabidopsis (Choi et al., 2008).  

Fusarium graminearum and Colletotrichum graminicola are fungal pathogens of maize (Zea 

mays) seriously reducing grain yield and quality (Bergstrom and Nicholson, 1999; Vigier et 

al., 2001). F. graminearum causes maize ear and stalk rot, and seedling blight (Vigier et al., 

2001; Presello et al., 2006), and C. graminicola induces stalk rot and anthracnose in most 

maize tissues (Bergstrom and Nicholson, 1999; Sukno et al., 2008). Several studies have 

examined the in vitro effects of  essential oils against these two pathogens. For F. 

graminearum,  5 out of 37 examined essential oils inhibited fungal development, and the 

effects were attributed to the main components of these oils including the monoterpenoids 

geraniol, citral (oxidation product of geraniol) and carvacrol (Velluti et al., 2004b). For C. 

graminicola, 4 essential oils from the Cymbopogon genus effectively inhibited its mycelial 

growth (Somda et al., 2007; Zida et al., 2008), and among the monoterpenes tested citral was 

found to be the most effective (Dev et al., 2004). 

In the past years a large variety of mono- and sesquiterpenoid synthase genes from different 

plant species have been characterized, and many of them were used for metabolic engineering 

of plants (Mahmoud and Croteau, 2002; Cheng et al., 2007a; Yu and Utsumi, 2009). 

Production and increased emissions of target mono- and sesquiterpenoids through 

heterologous expression of the corresponding terpenoid synthase genes, has been achieved in 

various plants: geraniol in tomato fruits (Davidovich-Rikanati et al., 2007); linalool in tomato 

fruits, carnation flowers, Arabidopsis leaves and potato leaves (Lewinsohn et al., 2001; Lavy 

et al., 2002; Aharoni et al., 2003; Aharoni et al., 2006); β-pinene and γ-terpinene in tobacco 

(Lücker et al., 2004); limonene in mint, tobacco and lavender (Diemer et al., 2001; Ohara et 

al., 2003; Lücker et al., 2004; Muñoz-Bertomeu et al., 2008); nerolidol in Arabidopsis 

(Kappers et al., 2005); (E)-β-caryophyllene in Arabidopsis, rice and maize (Cheng et al., 

2007b; Degenhardt et al., 2009); α-zingiberene in tomato fruits (Davidovich-Rikanati et al., 

2008); amorphadiene in tobacco and Artemisia annua (Wu et al., 2006; Ma et al., 2009). 

Apart from direct products of expressed terpene synthases, volatile or non-volatile derivatives 

are often produced as well in transgenic plants by the action of endogenous enzymes. Among 

the many types of different modifications, oxidation, hydroxylation and acetylation of primary 

terpenoid skeletons are the most common endogenous modifications. For example, when 

geraniol synthase or linalool synthase were overexpressed, the oxidation products of geraniol 

(geranial and geranic acid) or linalool (linalool oxide), the hydroxylation product of linalool 

(hydroxyl-linalool) and the acetylation product of geraniol (geranyl acetate) were found 

(Lewinsohn et al., 2001; Lavy et al., 2002; Davidovich-Rikanati et al., 2007). Modifications 

can also take place sequentially resulting in complex transformations. In plants 

overexpressing amorphadiene synthase for example, amorphadiene is hydroxylated and then 

oxidized into artemisinic acid and dihydroartemisinic acid (Ma et al., 2009). The volatile 

terpenoids may be further modified by conjugation to larger moieties such as sugar residues, 

which usually renders them non-volatile. Among glycosidic conjugations, until now, only 

glucosylation has been reported. In petunia, Arabidopsis and potato expressing recombinant 
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Table 1. Effect of mono- and sesquiterpenoids on the hyphal 

growth of F. graminearum and C. graminicola. 

 MCIC     (µg 

mL
-1

) 

MIC        (µg 

mL
-1

) 

 CGR FGR CGR FGR 

Monoterpenoids      

geranic acid 7.8 31.3 <7.8 <7.8 

carvacrol 125 125 7.8 15.6 

thymol 125 125 15.6 15.6 

perilla alcohol 250 250 125 62.5 

perilla aldehyde 250 500 125 31.3 

citronellal 250 >500 62.5 62.5 

citronellol 500 500 125 62.5 

geraniol 500 500 125 125 

iso-piperitenone 500 >500 62.5 62.5 

myrtenol >500 >500 125 125 

carveol >500 >500 250 62.5 

carvone >500 >500 500 250 

Sesquiterpenoids      

farnesol 15.6 >500 7.8 31.3 

nootkatone 62.5 250 15.6 31.3 

farnesal 62.5 >500 15.6 125 
MCIC (µg mL-1), minimum complete inhibitory concentration, in µg mL-

1; MIC (µg mL-1), minimum inhibitory concentration, in µg mL-1; CGR, 
C. graminicola; FGR, F. graminearum.  

 

 

linalool synthase, glycosides of linalool and hydroxyl-linalool were detected (Lücker et al., 

2001; Aharoni et al., 2003; Aharoni et al., 2006). Analysis of the non-volatile metabolites is, 

therefore, important for a more comprehensive understanding of the metabolic fate of terpenes 

in plants engineered for the production of novel metabolites. 

In this study, among 15 mono- and sesquiterpenoids which were tested in vitro against F. 

graminearum and C. graminicola, geranic acid was identified as the most effective one 

against the two maize pathogens. To produce geranic acid in maize, a geraniol synthase was 

cloned and overexpressed in maize. Both volatile and non-volatile metabolic profiles of 

transgenic plants were analyzed, and potential effects of the modified terpenoid content 

against these fungi were assayed.  

 

2. Materials and methods  

2.1. Antifungal compound assays 

The pathogenic fungi, Fusarium graminearum and Colletotrichum graminicola, were Pioneer 

Hi-Bred isolates from diseased corn. Cultures of each fungus were maintained on potato 

dextrose agar (PDA) and stored on silica at -20 °C. Fifteen terpenoids which were pre-

selected from previous experiments (data not shown) were selected in this study to determine 

their specific antifungal effect (Table 1). 

Antifungal effects were studied using a dilution in agar technique (Santos et al., 2005). Each 

terpenoid was tested at 7.8, 15.6, 31.3, 62.5, 125, 250 and 500 µg mL
-1

. The terpenoids were 

dissolved in 95% ethanol and assayed in 24-well plates. Into each well, 5 µl of terpenoid was 

added and quickly mixed with 500 µl of warm media (1/4 PDB+0.8% SeaPlaque-GTG 

agarose for F. graminearum and 1/4 

Czapek-Dox V8+0.8% SeaPlaque-GTG 

agarose for C. graminicola). Wells 

containing ethanol, water or only medium, 

instead of terpenoids, were used as 

negative control. When the medium 

cooled down, 3 µl of spore suspension 

(8000 mL
-1

) was centrally placed onto it. 

Wells were then sealed with double-layer 

of parafilm and double-layer of blotter 

paper. Then the plates were covered and 

incubated in the dark at 27 °C. The effects 

of terpenoids were scored after 48 h by 

measuring spore germination and hyphal 

elongation for each colony (Duvick et al., 

1992). The minimum inhibitory 

concentration (MIC) is the concentration 

inhibiting at least 25% hyphal elongation, 

and the minimum complete inhibitory 

concentration (MCIC) is the lowest 

concentration completely inhibiting spore 

germination and hyphal growth. 

2.2. Cloning of full-length LdGES cDNA and overexpressing it in maize 

The geraniol synthase gene, LdGES, was isolated from Lippia dulcis, and the LdGES protein 

was expressed in Escherichia coli to characterize its function (for details, see Supplementary 
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Methods). The LdGES was placed under the control of a maize ubiquitin promoter, and 

Agrobacterium tumefaciens strain LBA4404 harboring the binary vector (Fig. S3) was used to 

transform immature embryos of maize (Zea mays) genotype PHWWE (Pioneer Hi-Bred) 

using protocols described previously (Zhao et al., 2001). Maize plants transformed with a 

vector lacking LdGES were used as control.  

Three T0 transgenic plants producing the highest level of new compounds (see below) and one 

empty vector control plant were crossed with untransformed PHWWE to get the T1 generation. 

Plants were grown in a greenhouse at 20 °C under 18/6 h light/dark photoperiod. After 

headspace trapping of intact plants, T1 Plantlets from 3 independent transgenic lines (10 

plants per line) were screened by real-time PCR for the expression of LdGES (for primers, see 

below). For LC-MS, GC-MS analysis and measurements of phenotypic traits, 5 positive 

plantlets from each transgenic line and 5 progenies from the control line were used.   

2.3. Transcript analysis  

The expression level of LdGES was determined by real-time quantitative RT-PCR analysis as 

described (Schijlen et al., 2007). The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

gene (gi22302) was used as reference gene and the primers were designed as reported 

(Hahnen et al., 2003). For the LdGES, the following primers were designed by software 

Beacon Designer (Palo Alto, CA, USA): forward primer 5’-

AATACCACCAACGAGATATGCTAC-3’ and reverse primer 5’- 

TCCACCATTGAACCACTTTGC-3’ with an expected product size of 129 bp.   

2.4. Volatile GC-MS analysis 

Volatiles from the headspace of intact plants were collected from 2-week old T1 and control 

seedlings in a dynamic headspace trapping system. Hereto, each seedling was placed in a 2-L 

glass cuvet in a climate chamber at 20 °C. The cuvets were closed with a Teflon-lined lid with 

a Tenax cartridge (140 × 4 mm; 150 mg Tenax [20/35 mesh; Alltech, Breda, the Netherlands]) 

to purify incoming air and a second Tenax cartridge (140 × 4 mm) on the outlet to trap the 

volatiles. Air was pumped by a vacuum pump through the glass cuvet at about 100 mL min
-1

. 

The volatiles were sampled for 2 h.  

Volatiles from cut leaves were collected from 8-week old plants. Leaf tips (about 10 cm long) 

from the second top leaf were harvested and immediately transferred into a 10-mL glass vial 

filled with tap water. The vial was placed in a 1-L glass cuvet in the climate chamber and 

sampled as above. 

The volatiles trapped in the outlet cartridges were analyzed by Thermodesorption GC-MS 

using a thermal desorber (Unity, Markes International Limited) and a Trace GC Ultra 

(Thermo Electron Corporation) coupled with a DSQ mass spectrometer (Thermo Electron 

Corporation). The cartridges were first purged to waste for 5 min at room temperature using 

helium at a flow-rate of 30 mL min
-1

 to remove free water and oxygen. Trapped volatiles were 

then released from the Tenax material in the thermal desorber at 250°C for 4 minutes. 

Volatiles were then collected on a cold trap at 10 °C and desorbed by increasing the 

temperatures from 10 to 250 °C at 12 °C s
-1

, and a hold at 250 °C for 2 min. The column used 

for chromatography was an Rtx-5 ms column (Restek, 30 m × 0.25 mm i.d., 1 µm d.f.). The 

temperature program of the gas chromatograph was 40 °C for 3.5 min, rising to 280 °C at 

10 °C min
-1

 and final time for 2.5 min. The mass spectrometer was set to scan from 35 to 450 

m/z. The helium flow was constant at 1.0 mL min
-1

. Ionization potential was set at 70 eV. 

For identification, the authentic standards of geraniol, geranyl acetate and geranic acid 

(present in a mixture of geranic acid and its isomer--neric acid) were run under identical 

conditions. 
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2.5. Non-volatile LC-MS analysis 

Non-volatile compounds were analyzed using a protocol for untargeted metabolomics of plant 

tissues (De Vos et al., 2007). In brief, 200 mg young leaf tip from each plant was ground in 

liquid nitrogen and extracted with 0.6 mL methanol:formic acid (1000:1,v/v). The extracts 

were prepared by brief vortexing and sonication for 15 min. Then the extracts were 

centrifuged and filtered through 0.2 µm inorganic membrane filters (RC4, Sartorius, 

Germany). LC-PDA-MS analysis was performed using a Waters Alliance 2795 HPLC 

connected to a Waters 2996 PDA detector and subsequently a QTOF Ultima V4.00.00 mass 

spectrometer (Waters, MS technologies, UK) operating in negative ionization mode. The 

column used was an analytical column (2.0 × 150 mm; Phenomenex, USA) attached with a 

C18 pre-column (2.0 × 4 mm; Phenomenex, USA). Degassed eluent A (ultra pure 

water:formic acid [1000:1,v/v] ) and eluent B (acetonitril:formic acid [1000:1,v/v]) were 

pumped at 0.19 mL min
-1

 into the HPLC system. The gradient started at 5% B and increased 

linearly to 35% B in 45 min. Then the column was washed and equilibrated for 15 min before 

the next injection. The injection volume was 5 µl. The MS-MS measurements were done with 

following collision energies of 10, 15, 25, 35 and 50 eV. Leucine enkaphalin ([M-H]
-
 

=554.2620) was used as a lock mass for on-line accurate mass correction. 

2.6. GC-MS and LC-MS data processing 

GC-MS data were acquired using Xcalibur 1.4 (Thermo Electron Corporation) and LC-MS 

data using MassLynx 4.0 (Waters). The data were then processed using MetAlign version 1.0 

(www.metAlign.nl) for baseline correction, noise elimination and subsequent spectral data 

alignment (De Vos et al., 2007). The processing parameters of MetAlign for GC-MS data 

were set to analyze from scan number 1340 to 16000 (corresponding to retention time 2.32 

min to 28.05 min) with a maximum amplitude of 1.4 × 10
8
. The parameters for LC-MS data 

were set to analyze from scan number 70 to 2620 (corresponding to retention time 1.4 min to 

49.73 min) with a maximum amplitude of 35000.  

In order to elucidate which mass signals originate from the same metabolite, all the detected 

masses were clustered by an in-house developed software package based on a Multivariate 

Mass Spectra Reconstruction (MMSR) approach (Tikunov et al., 2005).  The mass signal 

intensities (expressed as peak height using metAlign) obtained from transgenic plants and 

empty vector control plants were compared using the Student’s t-test. Masses with a 

significant (p<0.05) intensity change of at least 2-fold were verified manually in the original 

chromatograms. 

To annotate significantly different compounds, accurate masses were manually calculated, 

taking into account only those scans with the proper intensity ratios of analyte and lock mass 

(between 0.25- and 2 (Moco et al., 2006)), and elemental formulae generated within 5 ppm 

deviation from the observed mass. In addition, mass-directed LC-MS/MS experiments were 

performed on differential compounds. To obtain proper MS/MS spectra only molecular ions 

with signal intensities higher than 500 ion counts per scan were selected.  

2.7. Purification and identification of geranoyl-6-O-malonyl-β-D-glucopyranoside  

Plant extracts were prepared as described above, and the most dominant new compound in the 

transgenic plants, later identified as geranoyl-6-O-malonyl-β-D-glucopyranoside, was initially 

purified with an analytical HPLC system coupled to a PDA detector. This purification method, 

however, was not suitable for NMR analysis, as the fractions collected were not sufficiently 

pure, mainly due to column bleeding and the multiple injections needed to purify sufficient 

amounts for NMR analysis. 

http://www.metalign.nl/
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Therefore, the compound was purified with a preparative LC-MS system, consisting of an 

Agilent 1200 HPLC with a flow splitter and connected to a Bruker MicroTOF MS. The split 

ratio was set to 1:100. The column used was an Alltima C18 (5 μm) LC column (22×150 mm). 

Degassed eluent A (ultra pure water:formic acid [1000:1,v/v]) and eluent B (methanol:formic 

acid [1000:1,v/v]) were pumped at 2 mL min
-1

 into the LC system. The gradient started at 50% 

B and increased linearly to 70% B in 40 min. This was the optimal gradient for separation of 

the mass of interest from the rest of the matrix. Then the column was washed and equilibrated 

for 30 min before next injection. For each measurement, 500 µl of extract was manually 

injected. The mass spectrum was monitored with software Hystar (ver. 3.2). The fraction 

containing the molecular ion of the desired compound ([M-H]
-
 = 831.33) was manually 

collected in a glass tube. The plant extract and the collected fractions were kept on ice or at 

4 °C, as the compound in extraction solvent was unstable at room temperature. The fraction 

collected from one preparative LC-MS run was freeze-dried, re-dissolved in methanol and 

then re-analyzed by analytical LC-MS as described above. The compound collected in this 

fraction eluted at the expected retention time (49.1 min) and showed the expected mass 

spectrum. Then, this fraction was collected from 7 sequential preparative LC-MS runs in the 

same way. The fractions were pooled, freeze-dried and re-dissolved in deuterated dimethyl 

sulfoxide (DMSO) to be analyzed by
 
NMR. The amount of the compound purified from these 

7 runs (3.5 ml extract injected) was estimated to be 20 µg. 

NMR measurements were carried out with a 600 MHz Bruker Avance III NMR spectrometer 

equipped with a 5 mm cryoprobe. All measurements were performed at 298 K. Gradient 

enhanced versions were used when applicable. One and two-dimensional NMR spectra were 

obtained (COSY, HSQC, HMBC,TOCSY). Calibration was done relative to the solvent 

resonance of DMSO at 2.54 ppm. The amount was checked by integration of the intensity of 

the signals of the compound. The Avance III NMR instrument was calibrated by measuring 

the integral of reference molecules at different receiver gain values of the instrument. 

2.8. Phenotypic trait measurements and fungal infection assays 

Plant height and leaf numbers of T1 maize plants were measured
 
at the tasselling stage. 

Chlorophyll content of leaves was measured as previously described (Mocquot et al., 1996). 

The fresh kernel weights were measured directly after harvesting. 

The leaf sheaths of leaf 4 or 5 of T1 plants at the V5 stage (plants with 5 fully developed 

leaves) were inoculated with 50 µL of spore suspension (5 × 10
6
 mL

-1
) after wounding the 

leaf sheath on both sides about half way between edge and midrib with a small screwdriver. 

Plants were grown in the greenhouse. The leaf sheath was covered with plastic wrap for 5 

days. Nine days after inoculation the area of lesions was measured. Fifty positive T1 plants 

from 10 independent transgenic lines (5 plants per line) and 50 control plants were assayed. 

2.9. Dual-choice behavioural studies with thrips 

A population of western flower thrips (WFT), Frankliniella occidentalis, was mass-reared on 

flowering chrysanthemum (Chrysanthemum morifolium Ramat.) cv. Sunny Casa in a 

greenhouse under a photoperiod of L16:D8 at 25±2 °C. In this study, only adult female thrips 

were used. All bioassays were conducted in a climate room at 20-22 °C with a L16:D8 

photoregime.  

The leaf discs (diameter 1.6 cm) were punched from chrysanthemum leaves at similar leaf 

stage. Leaf discs from wild-type maize plants were used as control discs and leaf discs from 

plants of transgenic line 13, line 19 or line 20 were used as test discs. After overnight 

starvation, WFT were anaesthetized on ice and then placed between 2 leaf discs embedded, 

abaxial side up, on a 1.5% (w/v) agar-bed in a Petri dish (7cm diameter, 10 WFT/dish). 
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Table 2. LdGES expression levels relative to the expression 

level of GAPDH in maize T1 transgenic plants and control 

plants. 

Plants Mean SD Plants Mean SD 

T1 plants   T1 plants   

ger 18-1 1.31 0.09 ger 20-2 1.54 0.06 

ger 18-3 1.45 0.08 ger 20-4 1.35 0.07 

ger 18-4 1.57 0.07 ger 20-6 1.25 0.03 

ger 18-6 1.45 0.06 ger 20-8 1.18 0.05 

ger 18-7 1.48 0.12    

ger 19-2 1.26 0.07 control 

plants 

  

ger 19-4 1.35 0.07 c 31-1 n.d. n.d. 

ger 19-6 1.26 0.07 c 31-4 n.d. n.d. 

ger 19-8 1.27 0.04 c 31-2 n.d. n.d. 

ger 19-9 1.83 0.05 c 31-5 n.d. n.d. 

ger 20-1 1.13 0.06 c 31-3 n.d. n.d. 

Transgene expression levels were determined by quantitative RT-PCR. 

n.d., not detectable. Expression levels of the reference gene, 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene, were set 

to 1. Values for each sample are based on 3 technical replicates. 

 

 

Twelve replicates were used in this experiment. The number of WFT on each leaf disc was 

recorded 0.25, 1, 2, 4, 20, and 28 h after the release of the WFT. At each time point, a 

Student's paired t-test was used to assess the significance of the differences in the mean 

number of WFT between test and control.  

 

3. Results 

3.1. In vitro antifungal effect of mono- and sesquiterpenoids 

We examined 12 monoterpenoids and 3 sesquiterpenoids for their antifungal activity against 2 

major maize pathogenic fungi, Fusarium graminearum and Colletotrichum graminicola 

(Table 1). In this in vitro antifungal assay, every terpenoid was tested at a series of 

concentrations ranging from 7.8 to 500 µg mL
-1

 for 48 h to determine the minimum complete 

inhibitory concentration (MCIC) and minimum inhibitory concentration (MIC). The most 

effective growth inhibitor of both fungi was geranic acid with a MIC of less than 7.8 µg mL
-1

 

and MCIC of 31.3 µg mL
-1 

for F. graminearum and 7.8 µg mL
-1

 for C. graminicola (Table 1).  

Previously, concentrations ranging from 7.8 to 31.3 µg mL
-1 

(i.e. 46 to 186 µM) were easily 

achieved for monoterpene alcohols in several transgenic plants (Lücker et al., 2001; Aharoni 

et al., 2003). To investigate this possibility for maize, we cloned a geraniol synthase and 

overexpressed it in maize.  

3.2. Cloning of the LdGES cDNA and introduction into maize 

LdGES, a full length cDNA of a geraniol synthase gene, was cloned from Lippia dulcis, 

which is a strongly aromatic herb of the Lamiales family, also known as Phyla dulcis (Trevir.) 

Moldenke. The LdGES gene (GU136162) contains an open reading frame of 1755 nucleotides 

encoding a protein of 584 amino acids. Nucleotide blast against the Nr database revealed that 

it shared the highest degree of homology with geraniol synthase from Ocimum basilicum 

(ObGES; Iijima et al., 2004) (For alignment of the deduced amino acid sequences of LdGES 

and other geraniol synthases, see Fig. S1).  

The entire reading frame of LdGES was 

cloned into a vector for expression in E. 

coli. In the presence of geranyl 

diphosphate (GDP), the only product 

produced by the recombinant LdGES 

protein was geraniol (Fig. S2). No 

product was detected when the enzyme 

was supplied with farnesyl diphosphate 

(data not shown).   

The coding region of the cDNA encoding 

LdGES was placed under the control of 

the strong 35S enhancer-ubiquitin-

promoter combination (Fig. S3) and 

introduced into maize plants. Plants 

transformed with the vector lacking 

LdGES were used as controls. Expression 

levels of the LdGES gene in T1 transgenic 

plants were determined by quantitative 
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real-time RT-PCR. Out of 30 analyzed plants (10 plants per line), 15 of them (5 plants per line) 

were positive with a LdGES transcript level from 1.13 (ger 20-1) to 1.83 (ger 19-9), relative to 

the level of the household gene glyceraldehyde-3-phosphate dehydrogenase (Table 2).  

3.3. Effect of LdGES on headspace emissions from intact plants and detached leaves 

Volatiles were collected from the headspace of intact plants and detached leaves from 

transgenic and control plants at the same developmental stage and analyzed by GC-MS (Fig. 1, 

a-d). The primary product of the LdGES protein, geraniol, was not detected in any plant 

analyzed (Fig. 1, a-d, f). The desired antifungal compound, geranic acid, was not detected 

either (Fig. 1, a-d, g). Subsequently, an untargeted metabolomics approach and comparison of 

all mass signals was carried out on intact and detached leaves. Only when comparing the 

headspace collected from detached leaves of transgenic and control plants were significant 

differences found. MetAlign software detected 2241 mass signals with a signal-to-noise ratio 

higher than 3, and that represented 191 metabolites (mass clusters) according to the MMSR 

clustering script (Tikunov et al., 2005). For each extracted mass, the average mass intensity 

was used to calculate the intensity ratio of transgenic (n=15) to control plants (n=5), and 

significant differences between plants were determined by the Student’s t test. Among all 

2241 detected masses, 120 masses (i.e. 5.4%) showed at least 2-fold intensity difference (P < 

0.05) between transgenic and control plants. More masses were found to be significantly 

increased (97) than decreased (23) in the transgenic plants. Differential masses were checked 

manually for differential peak areas in the original chromatograms, and compounds were 

identified by comparing to authentic standards. Geranyl acetate was the only compound found 

to be significantly different, showing 5.05-fold increase. Detailed analysis of the mass clusters 

revealed that 76 significantly increased masses corresponded to geranyl acetate. For the other 

21 significantly increased and 23 decreased masses, at most 1 or 2 masses per compound were 

different in the t-test, while manual inspection of their chromatographic peak areas showed no 

significant differences. Therefore, these differential masses were regarded as noise and not 

significantly different between transgenic and control plants. Within transgenic plants, the 

emission of geranyl acetate displayed a positive correlation with the expression level of 

LdGES (R2 = 0.88). 

3.4. Effect of LdGES on the profile of non-volatile compounds from leaves 

As monoterpene alcohols such as geraniol may (partly) be conjugated to other compounds 

rendering them non-volatile, we also analyzed the non-volatile metabolites in transgenic 

(n=15) and control plants (n=5). Aqueous methanol extracts from young leaves were prepared 

and analyzed by accurate mass LC-MS in negative mode (Fig. 2, a-b). In order to reveal 

differential compounds, the LC-MS profiles of transgenic plants and control plants were 

compared in an untargeted manner using Metalign followed by MMSR clustering of extracted 

signals, as described above for the GC-MS profiles. 
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Figure 1.  GC-MS chromatograms obtained by dynamic headspace trapping of intact plants and cut leaves of control and 

LdGES expressing plants. (a)-(b), GC-MS chromatograms of  headspaces trapped from intact control (a) and LdGES 

expressing plant 19-2 (b). There was no significant difference between them. (c)-(d), GC-MS chromatograms of  headspaces 

trapped from cut leaves of control (c) and LdGES expressing plant 19-2 (d). Compared to control, cut leaves of LdGES 

expressing plant emitted 5-fold more geranyl acetate as the only significant difference.(e)-(g), GC-MS chromatograms of 

authentic standards of geranyl acetate (e), geraniol (f) and geranic acid (g) (neric acid is the isomer of geranic acid). *, the 

peak eluting at 17.05 min is not geraniol, as the mass spectrum of this peak is different from that of geraniol. Geraniol was 

not detected in any sample. **, the peak eluting at 18.39 min is not geranic acid, as the mass spectrum of this peak is 

different from that of geranic acid. Geranic acid was not detected in any sample. 
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Figure 2.  Negative mode LC-QTOF-MS chromatograms of aqueous-methanol extract of leaves of an empty vector 

control plant (a) and LdGES expressing plant 19-2 (b). (c), the accurate mass of the compound eluting at 49.12 min 

uniquely found in the transgenic lines; (d), the MS/MS spectrum of the 49.12 min compound. (e), scheme of collision-

induced MS/MS-fragmentation of mass 415 eluting at 49.12 min, which was later identified by NMR as geranoyl-6-O-

malonyl-β-D-glucopyranoside. The ion trace of m/z 831, i.e. [2M-H]-, was extracted from the chromatograms of the 

empty vector control (f) and LdGES expressing plant (g).  
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In total, 5869 mass signals were extracted, which grouped into 257 clusters representing 257 

metabolites. Among all 5869 masses, 641 masses (i.e. 10.9%) showed at least 2-fold intensity 

difference (P < 0.05) between transgenic and control plants. More masses were found to be 

significantly increased (466) than decreased (175) in the transgenic plants. Differential masses 

with a signal intensity higher than 500 (i.e. about 50-fold higher than the noise) were 

subsequently analyzed by LC-MS/MS (Table 3). According to their MS/MS spectra, these 

compounds were putatively identified as derivatives of geraniol: 2 different glycosides of 

geranic acid, 1 geraniol dihexose, and 4 different isobaric forms (i.e. different retention times, 

but identical accurate mass) of hydroxyl geranic acid (or neric acid)-hexose. The amounts of 

these compounds did not correlate with the expression levels of LdGES (data not shown). 

Without authentic standards mass spectrometry has fundamental limitations in resolving the 

different possible chemical structures, so that it is not obvious to which carbon the hydroxyl 

group is attached and to which position the hexose is conjugated.  

The newly produced compound that was most abundant, as determined by UV absorption 

(220 nm) resulting from the double bond of geranyl-compounds, showed up as m/z of 

831.3287 (Fig. 2, c) and eluted at a retention time of 49.12 min (Fig. 2, b). In control plants, 

the amount of this compound is at least 2000-fold lower as it’s lower than the detection limit  

(Fig. 2, f-g). This compound was selected for further identification by LC-MS/MS and NMR.  

3.5. Identification of the most distinct new compound in leaves of transgenic plants by 

LC-MS/MS and NMR 

In order to identify the most abundant new compound in the extracts of transgenic maize 

plants, the apparent parent mass was fragmented by LC-MS/MS in negative mode. The 

selected mass 831.3287 appeared to be a [2M-H]
-
 adduct of 415.1608. Within the MS/MS 

fragments of 415.1608, we detected an ion with mass 167.1076, i.e. a -0.9 ppm deviation from 

the elemental formula of geranic acid (C10H15O2,). This MS/MS experiment suggested that the 

selected compound is a derivative of geranic acid. In order to unambiguously identify the 

Table 3. Non-volatile metabolite significantly increased in transgenic plants putatively identified by LC-MS-MS. 

Ret 

(min) 

Av 

intensity 

(C) 

Av 

intensity 

(T) 

Ratio 

(T/C) 

Accurate 

mass 

found Mol form 

∆mass 

(ppm) 

MS-MS 

fragments Putative ID MM 

49.12 n.d. 2255.2 − 831.3298 C19H28O10 1.4 415, 371, 353, 

311, 239, 221, 

209, 203, 191, 

189, 181, 167, 

161, 143 

geranoyl-6-O-

malonyl-β-D-

glucopyranosidea 

([2M-H]-) 

416.1683 

48.25 1.5 583.1 388.73 473.2025 C22H34O11  0.4 167 geranic acid-* 474.2101 

36.66 422.8 2204.3 5.21 523.2405 C23H40O13  2.7 477, 316, 161 (geraniol-

dihexose)FA 

524.2469 

24.12 155.0 1489.3 9.61 345.1565 C16H26O8  4.5 207, 183, 179 hydroxy geranic 

acid-hexoseb 

346.1628 

22.84 5.5 499.5 90.82 391.1621 C16H26O8  4.3 345, 183 (hydroxy geranic 

acid-hexoseb)FA 

346.1628 

19.75 59.5 707.6 11.89 345.1566 C16H26O8  4.8 121, 119, 101 hydroxy geranic 

acid-hexoseb 

346.1628 

19.31 160.3 1865.8 11.64 345.1559 C16H26O8  2.8 161,121,119, 

101 

hydroxy geranic 

acid-hexoseb 

346.1628 

 
The significantly changed metabolites with mass intensity higher than 500 in either transgenic or control plants were chosen to be analyzed 

by LC-MS/MS. Ret (min), retention time, in minutes; Av, average; C, empty vector control plants; T,  transgenic plants; Ratio (T/C), ratio of 

mass signal between transgenic plants (T) and empty vector control plants (C); Mol form, molecular formula of the metabolite; ∆mass (ppm), 

deviation between the found accurate mass and real accurate mass, in ppm; Putative ID, putative identification of metabolite; MM, 

monoisotopic molecular mass of the metabolite.  n.d., not detectable, compounds with intensity less than 1 are not detectable; a The structure 

of geranic acid-malonyl-glucopyranoside was confirmed by NMR; b The compound could also be hydroxyl neric acid-hexose; ()FA, formic 

acid adduct; Geranic acid-*, geranic acid conjugated with agarobiose, carrobiose, difructose anhydride or their isomers. 
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Table 4.  Plant height, leaf number, chlorophyll content and kernel weight of T1 transgenic plants and control plants. 

Lines 

Plant height (cm)  Leaf number 
 

 

Chlorophyll  

(mg/g FW) 

 

 

Kernel weight  

(g) 

Mean SD  Mean SD  Mean SD  Mean SD 

c 31 261.21a 30.16  13.8a  0.45   2.96a   0.50   0.46a 0.04 

ger 18 266.20a   8.70  14.4a 0.55   3.19a   0.35   0.45a 0.04 

ger 19 268.82a 13.10  14.2a  0.84   2.59a   0.40   0.41a 0.05 

ger 20 256.64a 15.53  13.6a 0.55   2.67a   0.11   0.47a 0.03 

Five plants from each line were measured. Values followed by the same letter within a column are not significantly different (ANOVA 

test: P > 0.05). 

 

structure of the compound, we subsequently purified the molecule for NMR analysis using 

preparative LC-MS. To estimate its average concentration, the molecule was purified from the 

transgenic plant with average mass intensity of mass 831 (the intensity in this particular plant 

was 2063, i.e. <10% difference from the accurate average intensity 2255.2; n=15). During 

purification, it turned out that the molecule was unstable at room temperature, posing some 

challenges to the purification. This was solved by keeping the plant extracts and collected 

fractions at 0-4 °C. Based on one and two-dimensional NMR data, we could assign the 

structure of the molecule to geranoyl-6-O-malonyl-β-D-glucopyranoside (Fig. 3; for detailed 
13

C NMR and 
1
H NMR data, see Table S1). 

This compound has not been reported in the plant kingdom before. The NMR analysis 

allowed us to estimate the average compound concentration in transgenic maize leaves at 

about 17 µg g
-1 

FW. Assuming a leaf water content of 90%, this concentration corresponds to 

45 µM. We propose that the most likely biosynthetic pathway of geranoyl-6-O-malonyl-β-D-

glucopyranoside is the conversion of the product of LdGES, geraniol, into its corresponding 

acid, geranic acid, by two dehydrogenation/oxidation steps, followed by further step-wise 

conjugation of the acid moiety with malonyl-glucose (Fig. 4).  

3.6. Effect of LdGES on plant phenotype and susceptibility to fungal and thrips attack  

Overexpression of monoterpene synthases may be directly toxic and/or lead to reduced steady 

state levels of terpenoids essential in primary metabolism and plant development such as 

gibberellic acid and carotenoids, and result in bleached leaves and delayed plant growth 

(Aharoni et al., 2003; Aharoni et al., 2006; Davidovich-Rikanati et al., 2007). We, therefore, 

investigated the phenotype and development of the transgenic plants. We observed that the 

LdGES expressing plants were phenotypically indistinguishable from the control plants (Fig. 

5). The plant height, leaf number, chlorophyll content and kernel weight of 3 transgenic lines 

and a control line were measured (5 plants were used per line). Statistical analysis showed no 

significant differences between transgenic and control plants for any of the measured traits 

(Table 4). This indicates that overexpression of LdGES at the reported levels and under the 

conditions tested does not negatively affect maize plant growth and development.  

Figure 3. 600 MHz 1H NMR spectrum of geranoyl-6-O-malonyl-β-D-glucopyranoside. 
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 Fifty plants from 10 different T1 generation transgenic maize lines (5 plants per line) and 50 

control plants were tested in the greenhouse for resistance of leaf sheaths to infection by F. 

graminearum and C. graminicola. There was no significant difference between transgenic and 

control plants in lesion area resulting from inoculation by either fungus (Table 5). Leaves at 

similar leaf stage were randomly picked from plants of transgenic lines and empty vector 

control line to test the effects of transgenic plants on WFT behaviour. The results of dual-

Figure 4. Metabolism of geraniol in transgenic maize plants overexpressing LdGES. a The compounds were putatively 

identified based on LC-MS/MS analysis. It is not clear yet, which type of hexose is conjugated, where the hexose is attached 

to the aglycones, how the two hexoses are connected and in the case that there are more than one possible hydroxylation and 

glycosylation sites it is uncertain which site is used. The structures given in this figure are based on the most common 

structures of naturally occurring terpene glycosides. 
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Table 5. Fungal resistance of T1 transgenic and 

control plants measured by lesion area when 

infected with F. graminearum and C. 

graminicola. 

 C. graminicola  F. graminearum 

 lesion area (cm2) lesion area (cm2)  

Plants Mean  SD  Mean  SD  

Control 

plants 
0.708a 0.23 2.589a 0.63 

T1 plants 0.670a 0.19 2.778a 0.82 

Fifty control or T1 transgenic plants were tested. Values 

followed by the same letter within a column are not 
significantly different (ANOVA test: P > 0.05). 

 

Figure 5. Phenotype of control plant (a) and LdGES 

expressing plant 19-2 (b).  

choice assays showed that WFT did not distinguish transgenic plants from control plants (Fig. 

6). The increased content of geraniol and geranic acid derivatives, therefore, did not lead to 

changes in fungal or thrips resistance under the applied experimental conditions.  

 

4. Discussion 

In this study, we aimed to introduce fungal resistance 

into maize by metabolic engineering. We took a 

stepwise approach of first testing a wide range of 

terpenoids and overexpressing the most promising 

candidate. Among the 15 terpenoids that were tested 

against two maize pathogenic fungi F. graminearum 

and C. graminicola, geranic acid displayed the 

strongest antifungal activity (Table 1). The MIC of 

geranic acid was lower than 7.8 µg mL
-1 

(46 µM) for 

both fungi, and for these fungi it represents the most 

potent antifungal activity reported to date. Previously, 

citral, dimethyloctanol, terpineol and linalyl acetate 

were tested against C. graminicola and citral was the 

most effective with a MIC of 870 µg mL
-1 

(5723 µM) 

(Dev et al., 2004). Only complex essential oils have 

been screened for their inhibitory effect against F. 

graminearum, however, the MICs of the most 

effective oils were higher than 1000 µg mL
-1 

(Velluti 

et al., 2004a; Singh et al., 2008). The antifungal 

effects of the individual components of these 

essential oils are not known, but if they represent 

more than 1%  of the oil, they must be less effective 

than geranic acid.  

Previously, geranic acid has been produced de novo 

in transgenic tomato fruits by overexpressing geraniol synthase (Davidovich-Rikanati et al., 

2007). Thus, we cloned and overexpressed a geraniol synthase gene from Lippia dulcis 

(LdGES) under control of an ubiquitin promoter in maize plants. In leaves of LdGES 

expressing maize plants, we detected 7 geraniol derivatives with significantly higher 

concentrations than control plants. Remarkably, the most dominant compound geranoyl-6-O-

malonyl-β-D-glucopyranoside in transgenic maize was not detected at all in the control plants, 

whereas the other 6 geraniol-derived compounds did occur, although at relatively low levels. 

In view of the presence of these endogenous geraniol derivatives, we expect a geraniol 

synthase gene to be expressed in maize leaves. So far the only reported candidate gene is the 

Terpene Synthase 1 (TPS1) gene. This gene has been reported to be capable of producing 

geraniol and several other mono- and sesquiterpenes in an in vitro assay (Schnee et al., 2002). 

However, as the authors pointed out, it is likely to function as a sesquiterpene synthase in vivo, 

since it lacks an N-terminal signal peptide for chloroplast targeting and it’s more effective to 

convert farnesyl diphosphate than geranyl diphosphate (Schnee et al., 2002). We presume, 

therefore, that the operational geraniol synthase gene of maize still needs to be identified (for 

alignment of all published geraniol synthases, see Fig. S1).  

We suggest that the most likely reason for the observed differences in the amounts of 

accumulating compounds between the transgenic and control plants is the difference between 
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the native promoter and the ubiquitin one used in this study. The maize ubiquitin promoter is 

known to be active in most cell types of the leaf (Schunmann et al., 2004). The spatial 

expression pattern of the native geraniol synthase gene remains to be investigated once the 

gene has been cloned. We would predict that utilizing promoters which are more cell type-

specific will reduce the number of different derivatives and conjugates found upon over-

expressing terpene synthase genes in plants, and thus that could be one strategy for the 

metabolic engineering of more specific products.  

The identification of the novel compound, geranoyl-6-O-malonyl-β-D-glucopyranoside, was 

made possible by applying a non-targeted LC-MS approach to analyze any changes in the 

non-volatile metabolite profile resulting from the expression of terpene synthases. In previous 

studies analyzing the non-volatile conjugates in plants overexpressing monoterpene alcohols, 

either indirect methods of detection were used, based on the release of aglycons by 

glycosidases, or targeted methods based on available standards were used. For example, 

Lücker et al. (2001) described glucosylation of monoterpene alcohols with linalool synthase 

overexpression in petunia, but this was analyzed using a synthetic standard of (R,S)-linalyl β-

D-glucopyranoside, and did not exclude the presence of additional, possibly more abundant 

glycosides. Commercial glycosidase treatments linked with GC-MS have been used to 

identify non-volatile glycosides of linalool in transgenic Arabidopsis and potato plants 

(Aharoni et al., 2003; Aharoni et al., 2006), however, both the nature of the original 

conjugations and the effectiveness of the method to hydrolyze all types of glycosides 

remained unknown. Thus, the presented non-targeted analysis is basic to know the metabolic 

fate of heterologously expressed terpenoids, although each non-targeted method is also 

limited by the extraction method, chromatography behavior and molecular ionization potential. 

As a result, also here, additional products cannot be excluded.  

From a biochemical point of view, glycosyl conjugation reduces chemical reactivity of 

compounds (Von Rad et al., 2001), while malonyl conjugation can facilitate the transport of 

glycosylated compounds into the vacuole, a process mediated by ATP-binding-cassette 

transporters (Liu et al., 2001). Malonylation may also contribute to the water-solubility of the 

glycosylated compound and prevent glycolysis by glycosidases (Heller and Forkmann, 1994). 

Reduced susceptibility to glycosidases may have experimental and biological consequences. 

Firstly, the amount of glycosylated terpenoids reported by others in transgenic plants may 

have been underestimated, since this amount has been determined by measuring liberated 

terpenoids after glycolysis with commercial glycosidases (Aharoni et al., 2003; Aharoni et al., 

2006), which much less effectively hydrolyze malonylated glycosides (Roscher et al., 1997; 

Ismael and Hayes, 2005). Secondly, malonylation may also compromise potential release of 

Figure 6. Dual choice assays of 

western flower thrips on wild-type 

versus transgenic maize leaves. 

The presence of the thrips on either 

leaf disc was visually recorded 

0.25, 1, 2, 4, 20 and 28 h post-

thrips release. The x-axis 

represents 10log-transformed time 

data. No significant difference was 

found in any data point. Wt, wild-

type; T, transgenic. Error bars 

indicate SE (n = 120 per 

treatment).  
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the aglycon by endogenous or fungal glycosidases and this could potentially result in reduced 

biological effects under biotic or abiotic stress. 

From a physiological point of view, glycosyl and malonyl conjugations are considered to aid 

in the accumulation, storage or transport of secondary metabolites which may be phytotoxic 

(Hatzios, 1997; Crouzet and Chassagne, 1999). High concentrations of geraniol, for example, 

have been shown to be phytotoxic to maize, causing oxidative stress to membranes (Zunino 

and Zygadlo, 2004), but the compound potentially plays important biological roles in plant 

communication to attract beneficial insects (James, 2005) and repel some insect pests (Wei et 

al., 2004; Halbert et al., 2009). Temporary storage and subsequent, stress-induced enzymatic 

release of geraniol from its glycosides could, therefore, be used in maize as a defense strategy. 

Enzymatic release may not even be necessary: glycosides can also possess strong bioactivity 

themselves, as for example resveratrol glycosides against the alfalfa fungal pathogen Phoma 

medicaginis (Hipskind and Paiva, 2000). Here, we show that geraniol and geranic acid are 

both stored naturally in maize with additional hydroxylations and/or various glycosylations. 

This suggests similar potential roles of glycosides of geraniol or its derivatives in plant 

communication or defense against biotic agents.  

The goal of this work was to engineer fungal resistance into transgenic maize by expressing a 

fungicidal concentration of geranic acid. The average concentration of geranoyl-6-O-malonyl-

β-D-glucopyranoside in LdGES expressing maize leaves was around 17 µg g
-1 

FW (45 µM). 

This concentration was in the range of previously reported levels of glycosides of 

heterologous terpenes in transgenic plants. For example, 5 to 10 µg g
-1 

FW (14-28 µM) 

linalyl-β-D-glucoside has been found in petunia plants overexpressing a linalool synthase 

from Clarkia breweri (Lücker et al., 2001), and up to 110 µg g
-1 

FW (643 µM) 

hydroxylinalool has been estimated to be present as glycosides in Arabidopsis plants 

overexpressing a linalool synthase from strawberry (Aharoni et al., 2003). In our experiments, 

resistance to fungal infections did not significantly improve, however, despite the fact that the 

average concentration of geranoyl-6-O-malonyl-β-D-glucopyranoside (45 µM) was in the 

same range as the MIC of geranic acid for both fungi (<46 µM). The reasons why we did not 

observe significant antibiotic effects in the fungal bioassays (Table 5) may, therefore, be the 

lack of bioavailability of the geranic acid and/or inappropriate subcellular localization of the 

compound in relation to the infection strategy of the fungus. The bioavailability could be 

improved by the down-regulation of genes involved in glycoside biosynthesis (Lochlainn and 

Caffrey, 2009) or by the up-regulation of genes producing other more bioactive glycosides of 

geranic acid (Freitag et al., 2006; Pickens and Tang, 2009). However, the corresponding 

glycon transferases and malonyl transferase genes have not been identified yet. Alternatively, 

the bioavailability could be improved by co-expression of an appropriate glycosidase either in 

the same subcellular compartment under an inducible promoter or constitutively in separate 

compartments if the fungal infection would destroy subcellular compartmentation. As 

mentioned above the release of geranic acid from malonyl-glucoside may be compromised by 

the presence of the malonyl group. Some glucosidases have been isolated, however, which 

can effectively release the aglycone also from malonylated glycosides, such as a 

malonylesterase from chickpea (Hinderer et al., 1986) and an isoflavone conjugate-

hydrolyzing β-glucosidase from soybean (Suzuki et al., 2006). These could be used in future 

strategies to induce the release of the aglycone upon fungal infections. 

No significant difference was detected between the headspaces of intact LdGES expressing 

and control plants (Fig. 1, a, b). This indicates that in the seedling all products of LdGES were 

stored in the plant tissues. However, detached leaves of LdGES expressing plants emitted 5-

fold more geranyl acetate than control leaves (Fig. 1, c-e), suggesting that the release of 

geranyl acetate was wound-inducible in both LdGES expressing and control maize plants and 
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dependent on the relative availability of geraniol as substrate. Geranyl acetate has also been 

reported in the headspace of maize seedling after infestation by the caterpillars, Spodoptera 

littoralis (D'Alessandro and Turlings, 2006) and Helicoverpa armigera (Yan and Wang, 

2006), but not in the headspace of undamaged control seedlings (D'Alessandro and Turlings, 

2006; Yan and Wang, 2006). Together with other caterpillar-induced volatiles, geranyl acetate 

was suggested to be involved in plant direct or indirect defense to the caterpillars 

(D'Alessandro and Turlings, 2006; Yan and Wang, 2006), and LdGES expressing plants could 

be used, therefore, in further studies to establish the ecological function of geranyl acetate in 

maize-insect interactions. However, for this purpose also other genes involved in the geranyl 

acetate biosynthetic pathway or transcriptional factors controlling this pathway could help to 

control the production of geranyl acetate in maize to establish its role (Peebles et al., 2009; 

Peebles et al., 2010).  

LdGES expressing maize plants all exhibited a completely normal phenotype and 

development (Fig. 5, Table 4), despite the fact that in other plant species severe phenotypes 

have been observed as a result of overexpression of monoterpene synthase genes. Arabidopsis 

(Aharoni et al., 2003) and potato (Aharoni et al., 2006) expressing a linalool synthase 

displayed bleached leaves and retarded growth. Tomato fruits expressing geraniol synthase 

failed to develop the normal deep red color, because of a 50% drop in lycopene content 

(Davidovich-Rikanati et al., 2007). In our LdGES expressing maize plants, several semi-polar 

compounds were significantly down-regulated, but could not be further identified due to their 

low signal intensity in the LC-MS analyses. The down-regulation of these compounds could 

represent the cost of overexpressing LdGES. However, the chlorophyll content of the 

transgenic lines examined was not affected (Table 4) and no obvious phenotype was observed 

(Fig. 5), suggesting that maize plants have sufficient levels of geranyl diphosphate to support 

the accumulation of the induced geraniol-derivatives as well as of the endogenous (essential) 

isoprenoids. Engineering of isoprenoids in maize is, therefore, a feasible option in future 

research programs.  
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Supplementary Methods 

Cloning of full-length LdGES cDNA 

The geraniol synthase gene, LdGES, was isolated from Lippia dulcis. Hereto, terpene 

synthase PCR-fragments were generated using reverse transcription PCR (RT-PCR) with 

degenerate primers based on conserved domains of monoterpene and sesquiterpene synthases 

(forward primer 5’-GAYGARAAYGGIAARTTYAARGA-3’ and reverse primer 5’-

CCRTAIGCRTCRAAIGTRTCRTC -3’; indicated with arrows above the sequences in Fig. 

S1). Products of the expected size were sequenced and one fragment was found to be most 

similar to the geraniol synthase gene from Ocimum basilicum. This fragment was used as a 

template to design new gene specific primers for rapid amplification of cDNA ends (RACE). 

Finally, the full-length cDNA (GU136162) encoding the putative geraniol synthase gene was 

obtained by PCR based on the information obtained from sequencing of the 3’- and 5’-RACE 

products. 

Heterologous expression of LdGES protein in Escherichia coli 

For functional characterization of the LdGES protein, the entire reading frame was 

subcloned into the pRSET-A expression vector (Invitrogen) fused to an amino-terminal 

histidine tag, and expressed in Escherichia coli BL-21 under an isopropylthio-β-galactoside 

inducible promoter. His-tag purified proteins including those from the empty vector control 

were assayed for monoterpene synthase activity with geranyl diphosphate (GDP) and farnesyl 

diphosphate (FDP) as substrates, as previously described (Aharoni et al., 2004). The 

monoterpenes were analyzed by GC-MS using an HP 5890 series II gas chromatograph 

equipped with an HP5- MS column (30 m × 0.25 mm i.d., 0.25 µm d.f.) and HP 5972A Mass 

Selective Detector (Hewlett Packard, Agilent Technologies). The injection port (splitless 

mode), interface and MS source temperatures were 250 °C, 290 °C and 180 °C respectively. 

The injection volume was 2 µL. The oven was programmed at an initial temperature of 45 °C 

for 1 min, with a ramp of 10 °C min
-1

 to 280 °C, and final time of 5 min. Scanning was 

performed from 39-500 amu. The helium inlet pressure was checked by electronic pressure 

control to achieve a constant column flow of 1.0 mL min
-1

. Ionization potential was set at 70 

eV.  

Products were identified by comparing mass spectra to the Wiley mass spectra library 

and by calculating the Kovats Index (González and Gagliardi, 2000) of each peak based on 

the retention time relative to alkane standards. 
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Supplementary Figures 
                                                          putative transit peptide 
LdGES  1   MAS-ARSTISLSSQSSHHGFSKNSFPWQLRHSRFVMGSRARTCACMSSSVSLPTATTSSSVITGND--ALLKYIRQPMVI  

ObGES  1   MSC-ARITVTLPYRS-----AKTSIQRGITHYPALIRPRFSACTPLASAMPLS----STPLINGDN--SQRKNTRQHM--  

CtGES  1   ----MALQMIAPFLSSFLPNPRHSLAAHGLTHQKCVS-KHISCSTTTPTYSTTVP-----RRSGNYKPSIWDYDFVQSLG  

PcGES  1   -MSSISQKVVIGLNKAAANNNLQNLDRRGFKTRCVSSSKAASCLRASCSLQLDVKPVQEGRRSGNYQPSIWDFNYVQSLN  

PfGES  1   -MSSISQKVVIGLNKAAANNNLQNLDRRGFKTRCVSSSKAASCLRASCSLQLDVKPVQEGRRSGNYQPSIWDFNYVQSLN  

PsGES  1   -MCSISQKVVIGLNKAAANNCLQNLDRRGFKTRRVSSSEAASCLRASSSLQLDVKPVEEGRRSGNYQPSIWDFNYVQSLN  

VvGES  1   MAFNMSRFVTMPSHVLPS--SFVAPSLQVSSSPCSWRTRPSPCTSCHLSPSSS----SKPLLGSHDY-SLLKSLTLSPHA  

                                                                       RRXXXXXXXXW 

LdGES  78  PLKEKEGTKRREYLLEKTARELQG-TTEAAEKLKFIDTIQRLGISCYFEDEINGILQAELSDTD---------QLEDGLF  

ObGES  66  ---EESSSKRREYLLEETTRKLQRNDTESVEKLKLIDNIQQLGIGYYFEDAINAVLRSPFSTG------------EEDLF  

CtGES  71  SGYKVEAHGTRVKKLKEVVKHLLKETDSSLAQIELIDKLRRLGLRWLFKNEIKQVLYTISSDN-------TSIEMRKDLH  

PcGES  80  TPYKEERYLTRHAELIVQVKPLLEKKMEPAQQLELIDDLNNLGLSYFFQDRIKQILSFIYDENQCFHSNINDQAEKRDLY  

PfGES  80  TPYKEERYLTRHAELIVQVKPLLEKKMEAAQQLELIDDLNNLGLSYFFQDRIKQILSFIYDENQCFHSNINDQAEKRDLY  

PsGES  80  TPYKEERYLTRHAELIVQVKPLLEKKMEATQQLELIDDLNNLGLSYFFQDRIKQILSFIYDENQCFHSNINDQAEKRDLY  

VvGES  74  VNSEADSSTRRMKEVKERTWEAFYRAWDSRAAMEMVDTVERLGLSYHFEDEINALLQRFCDWN-----------ASEDLF  

 

LdGES  148 TTALRFRLLRHYGYQIAPDVFLKFTDQNGK-FKESLADDTQGLVSLYEASYMGANGENILEEAMKFTKTHLQG------R  

ObGES  132 TAALRFRLLRHNGIEISPEIFLKFKDERGK-FDES---DTLGLLSLYEASNLGVAGEEILEEAMEFAEARLRRSL-SEPA  

CtGES  144 AVSTRFRLLRQHGYKVSTDVFNDFKDEKGC-FKPSLSMDIKGMLSLYEASHLAFQGETVLDEARAFVSTHLMDIKENIDP  

PcGES  160 FTALGFRLLRQHGFDVSQEVFDCFKNDNGSDFKASLSDNTKGLLQLYEASFLVREGEDTLEQARQFATKFLRRKLDEIDD  

PfGES  160 FTALGFRILRQHGFDVSQEVFDCFKNDSGSDFKASLSDNTKGLLQLYEASFLVREGEDTLEQARQFATKFLRRKLDEIDD  

PsGES  160 FTALGFRLLRQHGFNVSQEVFDCFKNDKGSDFKASLSGNTKGLLQLYEASFLVREGEDTLELARQFATKFLRRKLDEIDD  

VvGES  143 TTALRFRLLRQNGFPTHSDVFGKFMDKNGK-FKESLTEDIRGMLSLHEASHLGAKNEEVLAEAKEFTRIHLIQSM-PHME  

 

LdGES  221 QHAMREVAEALELPRHLRMARLEARRYIEQYGTMIGHDKDLLELVILDYNNVQAQHQAELAEIARWWKELGLVDKLTFAR  

ObGES  207 APLHGEVAQALDVPRHLRMARLEARRFIEQYGKQSDHDGDLLELAILDYNQVQAQHQSELTEIIRWWKELGLVDKLSFGR  

CtGES  222 -ILHKKVEHALDMPLHWRLEKLEARWYMDIYMREEGMNSSLLELAMLHFNIVQTTFQTNLKSLSRWWKDLGLGEQLSFTR  

PcGES  240 NHLLSCIHHSLEIPLHWRIQRLEARWFLDAYATRHDMNPVILELAKLDFNIIQATHQEELKDVSRWWQNTRLAEKLPFVR  

PfGES  240 NHLLSCIHHSLEIPLHWRIQRLEARWFLDAYATRHDMNPVILELAKLDFNIIQATHQEELKDVSRWWQNTRLAEKLPFVR  

PsGES  240 NHLLSRIHHSLEIPLHWRIQRLEARWFLDAYATRHDMNPIILELAKLDFNIIQATHQEELKDVSRWWQNTRLAEKLPFVR  

VvGES  221 PHFSSHVGRALELPRHLRMVRLEARNYIGEYSRESNPNLAFLELAKLDFDMVQSLHQKELAEILRWWKQLGLVDKLDFAR  

 

LdGES  301 DRPLECFLWTVGLLPEPKYSACRIELAKTIAILLVIDDIFDTYGKMEELALFTEAIRRWDLEAMETLPEYMKICYMALYN  

ObGES  287 DRPLECFLWTVGLLPEPKYSSVRIELAKAISILLVIDDIFDTYGEMDDLILFTDAIRRWDLEAMEGLPEYMKICYMALYN  

CtGES  302 DRLVECFFWAAAMTPEPQFGRCQEVVAKVAQLIIIIDDIYDVYGTVDELELFTNAIDRWDLEAMEQLPEYMKTCFLALYN  

PcGES  320 DRLVESYFWAIALFEPHQYGYQRRVAAKIITLATSIDDVYDIYGTLDELQLFTDNFRRWDTESLGRLPYSMQLFYMVIHN  

PfGES  320 DRLVESYFWAIALFEPHQYGYQRRVAAKIITLATSIDDVYDIYGTLDELQLFTDNFRRWDTESLGRLPYSMQLFYMVIHN  

PsGES  320 DRLVESYFWAIALFEPHQYGYQRRVAAKIITLATSIDDVYDIYGTLDELQLFTDNFRRWDTESLGGLPYSMQLFYMVIHN  

VvGES  301 DRPMECFLWTVGIFPDPRHSSCRIELTKAIAILLVIDDIYDSYGSLDELALFTDAVKRWDLGAMDQLPEYMKICYMALYN  

                                               DDXXD 

LdGES  381 TTNEICYKVLKKNGWSVLPYLRYTWMDMIEGFMVEAKWFNGGSAPNLEEYIENGVSTAGAYMALVHLFFLIGEGVSAQNA  

ObGES  367 TTNEVCYKVLRDTGRIVLLNLKSTWIDMIEGFMEEAKWFNGGSAPKLEEYIENGVSTAGAYMAFAHIFFLIGEGVTHQNS  

CtGES  382 SINEIGYDILKEEGRNVIPYLRNTWTELCKAFLVEAKWYSSGYTPTLEEYLQTSWISIGSLPMQTYVFALLGKNLAPES-  

PcGES  400 FVSELAYEILKEKGFIVIPYLQRSWVDLAESFLKEANWYYSGYTPSLEEYIDNGSISIGAVAVLSQVYFTLANSIEKPK-  

PfGES  400 FVSELAYEILKEKGFIVIPYLQRSWVDLAESFLKEANWYYSGYTPSLEEYIDNGSISIGAVAVLSQVYFTLANSIEKPK-  

PsGES  400 FVSELAYEILKEKGFIAIPYLQRSWVDLAESFLKEANWYYSGYTPSLEEYIDNGSISIGAVAVLSQVYFTLANSIEKPK-  

VvGES  381 TTNDIAYRILKEHGWSVIEHLKRTWMDIFGAFLAEAYCFKGGHVPSLEEYLTNAVTTGGTYMALVHAFFLMGQGVTREN-  

 

LdGES  461 QILLKKPYPKLFSAAGRILRLWDDLGTAKEEEGRGDLASSIRLFMKEK---NLTTEEEGRNGIQEEIYSLWKDLNGELIS  

ObGES  447 QLFTQKPYPKVFSAAGRILRLWDDLGTAKEEQERGDLASCVQLFMKEK---SLT-EEEARSRILEEIKGLWRDLNGELVY  

CtGES  460 -SDFAEKISDILRLGGMMIRLPDDLGTSTDELKRGDVPKSIQCYMHEA----GVTEDVARDHIMGLFQETWKKLNEYLVE  

PcGES  478 -IESMYKYHHILRLSGLLVRLHDDLGTSLFEKKRGDVPKAVEICMKER----NVTEEEAEEHVKYLIREAWKEMNTATTA  

PfGES  478 -IESMYKYHHILRLSGLLVRLHDDLGTSLFEKKRGDVPKAVEICMKER----NVTEEEAEEHVKYLIREAWKEMNTATTA  

PsGES  478 -IESMYKYHHILRLSGLLVRLHDDLGTSLFEKKRGDVPKAVEICMKER----NDTEEEAEEHVKYLIREAWKEMNTATAA  

VvGES  459 -MAMLKPYPNIFSCSGKILRLWDDLGTAREEQERGDNASSIECYKREREMDTVLEDEACRKHIRQMIQSLWVELNGELVA  

 

LdGES  538 KGRMP-LAIIKVALNMARASQVVYKHDE------DSYFSCVDNYVEALFFTPLL----------------  

ObGES  523 NKNLP-LSIIKVALNMARASQVVYKHDQ------DTYFSSVDNYVDALFFTQ------------------  

CtGES  536 SSLP--HAFIDHAMNLGRVSYCTYKHGDGFSDGFGDPGSQEKKMFMSLFAEPLQVDEAKGISFYVDGGSA  

PcGES  554 AGCPFMDELNVAAANLGRAAQFVYLDGD----GHGVQHSKIHQQMGGLMFEPYV----------------  

PfGES  554 AGCPFMDELNVAAANLGRAAQFVYLDGD----GHGVQHSKIHQQMGGLMFEPYV----------------  

PsGES  554 AGCPFMDELNVAAANLGRAAQFVYLDGD----GHGVQHSKIHQQMGGLMFKPYV----------------  

VvGES  539 SSALP-LSIIKAAFNLSRTAQVIYQHGD------DNKTSSVEDHVQALLFRPVSSNGHAQITMH------  

 

 

Figure S1. Sequence alignment of LdGES (geraniol synthase from Lippia dulcis), ObGES 

(geraniol synthase from Ocimum basilicum; Iijima et al., 2004), CtGES (geraniol synthase 

from Cinnamomum tenuipilum; Yang et al., 2005), PcGES (geraniol synthase from Perilla 

citriodora; Ito and Honda, 2007), PfGES (geraniol synthase from Perilla frutescens strain 

1864; Ito and Honda, 2007), PsGES (geraniol synthase from Perilla setoyensis; Masumoto et 

al., 2010) and VvGES (geraniol synthase from Vitis vinifera cultivar Pinot Noir; Martin et al., 
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2010) using the ClustalX program. The LdGES gene accession number is GU136162. The 

GenBank accession numbers of ObGES, CtGES, PcGES, PfGES, PsGES and VvGES are 

AAR11765, CAD29734, DQ088667, DQ234300, FJ644545 and HM807399, respectively. 

The LdGES protein sequence shares 67% identity to ObGES, 35% identity to CtGES, 32% 

identity to PcGES,  32% identity to PfGES, 32% identity to PsGES and 48% identity to 

VvGES. Besides geraniol synthases mentioned above, they have also been cloned from 

Perilla frutescens var. crispa strain 79 (GenBank accession DQ897973), Perilla frutescens 

var. hirtella (GenBank accession FJ644547), Vitis vinifera cultivar Gewurztraminer (GenBank 

accession HM807398) and Vitis vinifera isolate CS5M2 (GenBank accession HQ326231).  As 

geraniol synthases cloned from the same species share more than 97% homology, only one 

geraniol synthase from one species was shown in the alignment.  

The DDXXD motif which is one of the most characteristic motifs of terpenoid 

synthases (Bohlmann et al., 1998) is indicated with box. The characteristic RRX8W motif of 

monoterpene synthases (Bohlmann et al., 1998; Dudareva et al., 2003) is missing in LdGES, 

ObGES and VvGES but conserved in CtGES, PcGES, PfGES and PsGES(indicated with 

box). A horizontal line indicates the putative N-terminal transit peptide region. The domains 

used for designing degenerated primers to clone LdGES were indicated with arrows above the 

sequences.  

 

 
Figure S2. GC-MS profile of the product from geranyl diphosphate catalyzed by LdGES 

expressed in E. coli. (a), GC chromatogram. (b)-1, Mass spectrum of the chromatographic 

peak at 11.16 min. (b)-2, Mass spectrum of geraniol in NIST library.  

The product was identified by comparing mass spectra to the Wiley mass spectra 

library and by calculating the Kovats Index of each peak based on the retention time relative 

to alkane standards. 

 

 
Figure S3. Structure of the binary vector containing the LdGES cDNA. RB: right border, LB: 

left border, 35S ENH: cauliflower mosaic virus 35S enhancer, UBIZMPRO: maize ubiquitin 

promoter, PIN II: potato protease inhibitor-2 terminator, MO PAT: synthetic maize-optimized 

phosphinothricin acetyltransferase gene (herbicide resistance).
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Supplementary Table 
 

Table S1 NMR data for geranoyl-6-O-malonyl-β-D-glucopyranoside. 

position 
δ13

C 
δattached

H 

geranoyl   

1 163.5  

2 115.3 5.73 

3 124.0  

4 40.9 2.22 

5 26.1 2.18 

6 123.7 5.11 

7 132.7  

8 26.3 1.69 

9 18.3 1.62 

10 19.4 2.16 

glucose   

1’ 94.3 5.41 

2’ 73.1 3.16 

3’ 76.5 3.24 

4’ 70.2 3.27 

5’ 75.4 3.48 

6’ 63.6 Hα, 4.04 

Hβ, 4.23 

malonyl   

1’’ 168.7  

2’’ 46.7 Ha, 2.88 

Hb, 2.95 

3’’ 170.9  
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Abstract  

Pyrethrins are active ingredients extracted from pyrethrum flowers (Tanacetum 

cinerariifolium), and are the most widely used botanical insecticide. However, several thrips 

species are commonly found on pyrethrum flowers in the field, and are the most dominant 

insects found inside the flowers. Up to 80% of western flower thrips (WFT, Frankliniella 

occidentalis) adults died within 3 days of initiating feeding on leaves of pyrethrum, leading us 

to evaluate the role of pyrethrins in the defense of pyrethrum leaves against WFT. The effects 

of pyrethrins on WFT survival, feeding behavior, and reproduction were measured both in 

vitro and in planta (infiltrated leaves). The lethal concentration value (LC50) for pyrethrins 

against WFT adults was 12.9 mg/ml, and pyrethrins at 0.1% (w/v) and 1% (w/v) had 

significantly negative effects on feeding, embryo development and oviposition. About 20-70% 

of WFT were killed within 2 days when they were fed chrysanthemum leaves containing 

0.01-1% pyrethrins. Chrysanthemum leaves containing 0.1% or 1% pyrethrins were 

significantly deterrent to WFT. In a no-choice assay the reproduction of WFT was 

significantly reduced when the insects were fed leaves containing 0.1% pyrethrins, and no 

eggs were found in leaves containing 1% pyrethrins. Our results suggest that the natural 

concentrations of pyrethrins in pyrethrum leaves may be responsible for the observed high 

mortality of WFT on pyrethrum leaves.  

 

Key Words Pyrethrum, Pyrethrins, Western flower thrips, Frankliniella occidentalis, Natural 

pesticide, toxicity, Tanacetum cinerariifolium.  
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Introduction 

Western flower thrips (WFT), Frankliniella occidentalis, is a highly polyphagous insect 

causing both direct and indirect effects on plant development and health. The adults and 

larvae feed on epidermal and subepidermal cells of both  meristematic and mature leaf and 

flower tissues, inhibiting plant growth and development and causing necrotic or light-

reflective blotches on the tissue. Furthermore, they indirectly damage plants by transmitting 

tospoviruses such as tomato spotted wilt virus (Reitz, 2009). As a result, WFT has become the 

most serious pest in several vegetable and flower crops world-wide (Daughtrey et al., 1997; 

Reitz, 2009). The widespread use of chemical insecticides to control WFT has led to 

increasing resistance against the major classes of synthetic insecticides (Broadbent and Pree, 

1997; Flanders et al., 2000; Broughton and Herron, 2009). The growing awareness and 

demand for insecticides that are not environmentally hazardous has stimulated the study of 

plant-derived compounds for pest control (Boeke et al., 2004). Such compounds could be 

used as natural pesticides, and in theory genes responsible for the biosynthesis of those 

compounds could be isolated and transferred to other crops to improve plant defense against 

WFT (Annadana et al., 2002; Outchkourov et al., 2004).  

Among the sources of botanical pesticides, pyrethrins from pyrethrum plants (Tanacetum 

cinerariifolium) represent the economically most important class of compounds with broad 

usage both in homes and organic agriculture (Casida, 1973). They are neurotoxins which bind 

to voltage-gated sodium channels of neuronal cells, causing the channels to remain open 

(Davies et al., 2007). Pyrethrins comprise a group of six closely related esters, named 

pyrethrin I and II, cinerin I and II, and jasmolin I and II. They are found in all aboveground 

parts of the pyrethrum plants, but predominantly in the ovaries of the flower heads (Brewer, 

1973). On average, the concentration of pyrethrins is about 0.1% (dry weight) in leaves and 1-

2% (dry weight) in flowers (Baldwin et al., 1993). Assuming a water content of 90%, 

pyrethrins account for around 0.01% of the fresh weight of leaves and 0.1-0.2 % of the fresh 

weight of flowers. Pyrethrins are effective against a broad spectrum of insects while their 

toxicity for mammals is very low, allowing their use as a preharvest spray (Casida and 

Quistad, 1995; Schoenig, 1995). WFT are sensitive to synthetic pyrethroids 

(Thalavaisundaram et al., 2008), but there is no report on the effect of natural pyrethrins 

against WFT. Pyrethrins could provide pyrethrum with a broad range protection against many 

different insect pests, but the role of pyrethrins in pyrethrum defence has not been studied.  

In initial experiments, we observed that WFT adults died within one day when fed pyrethrum 

leaves, but that they are abundant in open flowers. Here, we test the hypothesis that pyrethrins 

are responsible for protecting pyrethrum leaves against WFT by assessing adult and embryo 

toxicity, and by examining feeding and oviposition deterrence both in vitro and in planta. 

 

Methods and Materials 

Field Observation A pyrethrum field close to Luxi, Yunnan province, China, was used for 

surveying thrips populations (24°27'10.34"N-103°32'21.01"E). The field was 0.5 ha in size 

and the presence of insect species was monitored during the flowering period of spring 2010, 

when the flowers were predominantly in developmental stages 2-5 [numbered according to 

Casida (1973)]. To assess populations of small resident insects including thrips, flowers at 

each developmental stage were collected in each one of three blocks of the field.  Each flower 

was taken by the stem and turned upside down into a jar containing 75% alcohol. Flowers 

were fully immersed and vigorously stirred. The procedure was repeated until each jar 

contained the insects from 100 flowers from a single block and at a particular stage. The 
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number of insects of each species for each stage was scored. In the case of thrips, the number 

of adults and larvae were scored separately. Among all collected thrips, 30 were randomly 

picked and identified, where possible to the species level. 

Insects and Plant Material Used in Laboratory Experiments A population of western flower 

thrips (WFT) was mass-reared on flowering chrysanthemum (Chrysanthemum morifolium 

Ramat.) cv. Sunny Casa in a greenhouse under a photoperiod of L16:D8 at 25±2 °C. In this 

study, only adult female thrips were used. The chrysanthemum plants used for bioassays were 

from the same cultivar, but were grown in an insect-free compartment of the greenhouse 

under the same light and temperature conditions. All bioassays were conducted in a climate 

room at 20-22 °C with a L16:D8 photo regime.  

Insecticide Pyrethrum oil (70% w/w) was obtained as a gift from Honghe Senju Biological Co. 

Ltd., Yunnan, China and had been extracted from dried and ground pyrethrum flower heads 

with liquid CO2 leaving no solvent residue. Butylated hydroxytoluene (BHT) had been added 

to the oil (1%) to prevent oxidation. We confirmed the concentration and composition of the 

oil by Gas Chromatography-Mass Spectrometry comparison to a pyrethrin standard (Nguyen 

et al., 1998). Since the major insecticidal compounds in pyrethrum have long been known as 

pyrethrins (Casida, 1973), the effect of pyrethrum oil was considered to be the effect of 

pyrethrins. When calculating the concentrations of pyrethrins in different solutions, the 

percentage of pyrethrins in the oil (70%) was taken into account. For example, 1% (w/v) 

pyrethrins was prepared by dissolving 14.3 mg pyrethrum oil in 1 ml solvent.  

In vitro Bioassays-Toxicity Assays The toxicity of pyrethrins was evaluated by topical 

application to thrips (Robb et al., 1995). Pyrethrum oil was dissolved in acetone to achieve a 

concentration range of 1 to 30 mg pyrethrins per ml, and the solutions were applied to the 

thorax with a 10-µl glass syringe at 1 µl per thrips. The droplet briefly covered the thorax of 

the insect and also the paper support before evaporating in a few seconds, leaving a residue 

both on the insect and the support. Acetone alone was used as control. After treatment, all 

thrips were transferred to Petri dishes containing a piece of chrysanthemum leaf embedded in 

an agar substrate. Mortality was assayed after 24 h by counting the number of insects that did 

not respond to prodding with a fine brush. Six replicates were used for each concentration and 

10 thrips were used per replicate. Percent mortality was corrected for mortality observed in 

acetone control using Schneider-Orelli’s formula (Schneider-Orelli, 1947). Data were 

analyzed using probit analysis (Finney, 1977). 

In vitro Bioassays-Choice Assays with Topically Applied Pyrethrins A dual-choice leaf disk 

assay was used to determine the deterrent effect of pyrethrins on WFT. All leaf disks 

(diameter 1.6 cm) were punched from chrysanthemum leaves of similar leaf age. Pyrethrum 

oil was dissolved in 0.2% (v/v) aqueous Tween-80 to achieve 3 concentrations of pyrethrins: 

0.01%, 0.1% and 1% (w/v). Control leaf disks were sprayed with solvent solution (0.2% 

Tween-80) and test leaf disks were sprayed with the pyrethrin solutions using a Potter 

Precision Laboratory spray tower, which produced a uniform deposit (3 µl/cm
2
) of solution on 

the leaf disks. After overnight starvation, WFT were anaesthetized on ice. Groups of 10 WFT 

were positioned between a control and a test leaf disk placed abaxial side up and 2 cm apart 

on a 1.5% (w/v) agar-bed in a Petri dish (7 cm diameter).  After positioning the thrips, the 

Petri dish was covered by a 120 µm mesh size nylon mesh lid to prevent condensation. The 

number of WFT on each leaf disk was recorded 0.25, 1, 2, 4, 20 and 28 h after the release of 

the WFT. Each concentration was replicated with 12 leaf disks.  At each time point, a 

Student's paired t-test was used to assess the significance of the differences in the mean 

number of WFT between test and control. 
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In vitro Bioassays-Oviposition Assays Oviposition-deterrent effects were assayed with a non-

choice method slightly modified from Annadana et al. (2002). The assay was conducted in 

Perspex ring cages (3 cm in length and 3.5 cm diameter), which were closed with a nylon 

mesh at the bottom. Pollen of Scotch pine (Pinus sylvestris L.) was supplied in a small open 

tube as food source for WFT. After placing 10 WFT in a cage, the top was sealed with two 

layers of stretched Parafilm, with 300 µl aqueous solution in between the layers. The solutions 

used were water, 0.2% Tween-80 or pyrethrins at 0.01%, 0.1% or 1% dissolved in 0.2% 

Tween-80. WFT were allowed to adapt to the diet (pollen and water) for 3 days, and then 

every day for 5 days fresh test solution was provided. All eggs were deposited in the solutions, 

and counted daily under a binocular microscope. Each solution was replicated 6 times. Data 

were analyzed by a one-way ANOVA and a mean separation test was conducted using LSD 

(α=0.05). 

In vitro Bioassays-Embryo Development Assays Around 200 WFT were kept in a Perspex ring 

cage (7 cm in length and 9 cm diameter) to allow oviposition in a water solution as described 

above. Eggs laid on the same day were collected with a fine brush under a binocular 

microscope and then transferred to 2 layers of filter paper in Petri dishes (3.5 cm diameter). 

The filter papers were drenched in 300 µl of assay solution (water, 0.2% Tween-80 or 

pyrethrins at 0.01%, 0.1% or 1% in 0.2% Tween-80) so that each paper was fully wetted but 

had no excess solution. After transferring the eggs, the Petri dishes were closed with lids and 

sealed with Parafilm. The developmental status of eggs was monitored every day for 6 days. 

To facilitate the observations, the bottoms of the Petri dishes were marked with lines which 

could be seen through the filter paper from the top, and the eggs were placed on filter paper 

along these lines. This facilitated finding the eggs under the microscope and the viability of 

hatched larvae was assessed in terms of their ability to move away (>0.5 cm) from the hatch 

position. Four replicates of 10 eggs were used for each assay. Data were analyzed by a one-

way ANOVA and mean separation test was conducted using LSD (α=0.05). 

In planta Bioassays-Mortality Assays on Pyrethrum Leaves Mature pyrethrum leaves were 

harvested in November from a field in the Netherlands when they were still flowering 

(51°59'22.08"N-5°39'44.75"E, Wageningen). Two or three pieces of leaves were placed, 

abaxial side up, on 1% (w/v) agar in a Petri dish (7 cm diameter). After transferring 10 WFT 

to each Petri dish, dishes were covered with lids with gauze. Petri dishes with two leaf disks 

(diameter 1.6 cm) of chrysanthemum leaves, with a total mass similar to the mass of the 

pyrethrum leaf samples, or with only agar were used as controls. Six replicates were carried 

out for each treatment. The mortality of WFT was recorded daily for three days. 

In planta Bioassays-Choice Assays To test the in planta activity of pyrethrins against WFT, 

pyrethrins were infiltrated into whole chrysanthemum leaves as described by Ratcliff et al. 

(2001). Leaf disks (diameter 1.6 cm) were punched from the infiltrated leaves, avoiding the 

infiltration points so that WFT would not contact pyrethrins directly, except at the edge of the 

disk. In the initial experiments, we infiltrated only water into the leaves and determined that 

on average 29.1 mg (± 2.1 mg) water could be infiltrated into each leaf disk (6 replicates). As 

the fresh weight of each leaf disk was on average 45.3 mg (± 1.2 mg), we infiltrated 0.025%, 

0.25% or 2.5% pyrethrins solution to bring the concentrations to 0.01%, 0.1% or 1% 

pyrethrins. Leaf disks infiltrated with 0.2% Tween-80 were used as control. The assay and 

data analysis were conducted as described above for the choice assays with topically applied 

pyrethrins. The number of WFT on each leaf disk was recorded 0.25, 1, 2, 4, 20 and 28 h after 

the release of the WFT. 

In planta Bioassays-Reproduction Assays To test the effects of pyrethrins on oviposition and 

hatching of larvae, WFT were assayed with chrysanthemum leaf disks as described by De 

Kogel et al. (1997), with slight modifications. Leaf disks were punched from untreated leaves, 
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Table 1 Frequencies of small insect species living on pyrethrum flowers in the field 

Insectsa Frequency (%)  Speciesb Frequency (%) 

Thripidae (thrips)  98 

 

 

 

 

 

Thrips tabaci 

Frankliniella occidentalis 

Thrips flavus 

Thrips palmi 

Other species 

43 

25 

21 

3 

6 

Nysius sp. 1.9  n.d. 1.9 

Chrysoperla/Chrysopa sp. 

(lacewing larva) 
0.05 

 
n.d. 0.05 

a A total of 1200 insects were collected to count the frequencies of different insects. b A total of 30 thrips were used to identify species. 

N.d., not determined. 

 

from leaves infiltrated with 0.2% Tween-80, or from leaves containing 0.01%, 0.1% or 1% 

pyrethrins in Tween solution. WFT were placed on leaf disks (1.2 cm diameter, 2 WFT/disk) 

which were embedded, abaxial side up, on agar in wells of 24-well Greiner plates. Plates were 

covered with Parafilm and every well was carefully sealed by pressing the Parafilm on the 

edge of each well. WFT were allowed to oviposit for 48 h and were then removed, with 

simultaneous assessment of mortality. Subsequently, half of the leaf disks from each plate 

were used to determine the number of eggs, and the other half of the leaf disks were used to 

determine the number of hatched larvae. To determine the number of eggs, the leaf disks were 

boiled in water for 3 min so that the eggs were clearly visible under a binocular microscope 

with transmitting light. To determine the number of hatched larvae, the leaf disks were 

transferred to Petri dishes containing water and incubated in a climate chamber (25 °C, 

L16:D8) for 5 days to allow the larvae to hatch. The hatched larvae were counted under a 

binocular microscope. The 24 leaf disks in the same plate were received the same treatment. 

One plate was used for each treatment. Data were analyzed by a one-way ANOVA and mean 

separation test was conducted using LSD (α=0.05). 

 

Results 

Natural Distribution of Insects in Pyrethrum Fields Our field survey in China showed that 

several thrips species were the most abundant (98%) insects on pyrethrum flowers (Table 1). 

In addition, a few Nysius species (Heteroptera: Lygaeidae) (1.9%) and lacewing larvae 

(Neuroptera) (0.05%) were found. A total of 30 individuals were identified to species level; 

the thrips species found were mainly Thrips tabaci (44%), Frankliniella occidentalis (western 

flower thrips, or WFT, 25%) and Thrips flavus (22%). The number of thrips in flowers was 

dependent on the flower’s developmental stage (Fig. 1). The number of thrips increased until 

stage 3 (the first row of disk florets are open), and then decreased in later stages. The thrips 

found inside flowers were mainly adults. Larvae accounted for 7-26% of the total number of 

thrips per flower, depending on the flower developmental stage (Fig. 1).  

Effect of Pyrethrum Leaves on Mortality of WFT We assayed the suitability of pyrethrum 

leaves as a food substrate for WFT. Mortality could be as high as 80% within 3 days, although 

the degree of mortality depended on the plant source (data not shown). When only water and 

agar were provided, with no plant-based food, only 20-30% WFT died in 3 days. All WFT 

feeding on control chrysanthemum leaves remained alive during the 3-day-experiment. This 

showed that the mortality of WFT was caused by a toxic principle of pyrethrum leaves rather 

than deterrence or starvation. 

The toxic principle of pyrethrum plants against insects has long been known to be a group of 

6 pyrethrin esters (Casida, 1973). We were, therefore, interested in specifically testing the 

effect of pyrethrins against WFT. 
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In vitro Insecticidal and Deterrent Effects To determine the effects of pyrethrins against WFT, 

pyrethrins were tested in vitro at different concentrations on adult mortality, feeding, 

oviposition, and embryo development. 

The mortality of WFT female adults increased with the concentration of topically applied 

pyrethrins in the range of 1 to 30 mg/ml. Probit analysis showed that the LC50 and LC90 of 

pyrethrins are 12.9 mg/ml (with 95% confidence limit of 10.9-14.8 mg/ml) and 39.0 mg/ml 

(with 95% confidence limit from 30.7 to 50.4 mg/ml). 

Thrips were significantly deterred from feeding by 0.1% and 1% pyrethrins (Fig. 2). When 

given a choice between chrysanthemum leaf disks coated with 0.2% Tween (control) or 0.1% 

added pyrethrins, after 2 hours significantly more (61-77% of thrips) settled on control leaf 

disks. Pyrethrins at 1% were more highly deterrent. Within one hour 72-90% of thrips chose 

control leaf disks. For both concentrations of pyrethrins, the maximum deterrent effect was 

reached at 4 h. Application of 0.01% pyrethrins on leaf disks did not show significant 

deterrent effects except at the 4 h time point (Fig. 2). 

Pyrethrins negatively affected oviposition by WFT (Fig. 3). The carrier, 0.2% Tween-80, did 

not affect the oviposition of thrips compared to water throughout the experiment, but WFT 

oviposited significantly fewer eggs with increasing pyrethrin concentrations during the 5-day 

experiment (Fig. 3).  

The development of eggs was inhibited by 0.1% and 1% pyrethrins. About 80% of larvae 

hatched when the eggs were incubated with water, 0.2% Tween or 0.01% pyrethrins, while 

only 28% or 6% of the larvae hatched when the eggs were incubated with 0.1% or 1% 

Fig. 3 The number of eggs 

deposited by western flower 

thrips when supplied with 

different concentrations of 

pyrethrins starting on Day 1. 

Data points with the same 

letter within days are not 

significantly different, P< 0.05. 

Pyr, pyrethrins. Error bars 

indicate SE (n = 60 per 

treatment). 

 

Fig. 2 Dual choice assays of western 

flower thrips on chrysanthemum leaf 

disks sprayed with 0.2% Tween 

(control) or 0.2% Tween with 0.01%, 

0.1% or 1% pyrethrins. The presence on 

either leaf disk was visually recorded 

0.25, 1, 2, 4, 20 and 28 h after WFT 

release. The x-axis represents 10log-

transformed time data. Asterisks 

indicate significant differences to the 

control (*: P < 0.05; **: P < 0.01). C, 

control. Pyr, pyrethrins. Error bars 

indicate SE (n = 120 per treatment). 

Fig. 1 Distribution of thrips adults and 

larvae across different developemental 

stages of pyrethrum flowers in the field. 

Error bars indicate SE (n = 300 per 

stage). Stage 2, vertical ray florets; 

stage 3, horizontal ray florets and first 

row of disk florets open; stage 4, 3 rows 

of disk florets open; stage 5, all disk 

florets open. 
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pyrethrins, respectively (Fig. 4). In the latter two treatments, the embryos that did not develop 

into larvae had severely stunted and abnormal shapes (Fig. 5), and dried out after a few days.   

In planta Insecticidal and Deterrent Effects To study in planta activity of pyrethrins against 

WFT, thrips were assayed with chrysanthemum leaves that had been infiltrated with 

pyrethrins to contain 0.01%, 0.1% or 1% pyrethrins. In this experiment, the pyrethrins could 

not be contacted directly by thrips except by feeding, and the source of nutrition consisted of 

leaves instead of pollen. 

In the reproduction assay, thrips fed with chrysanthemum leaf disks containing pyrethrins 

exhibited higher mortality and lower reproduction rates compared to those fed with untreated 

leaf disks or leaf disks containing 0.2% Tween (Table 2).  

In the dual-choice assay chrysanthemum leaves containing 0.1% and 1% pyrethrins showed 

significant deterrent effects on thrips within 15 min of release (Fig. 6). A total of 74-93% of 

the thrips chose to settle on the control leaf disk when the other leaf disk contained 0.1% 

pyrethrins, and 85-95% thrips chose to settle on the control leaf disk when the other leaf disk 

Fig. 4 Percentage of larvae 

hatching from  western flower 

thrips eggs during incubation 

with different concentrations of 

pyrethrins. Data points with the 

same letter within days are not 

significantly different, P < 

0.05. Pyr, pyrethrins. Error 

bars indicate SE (n = 40 per 

treatment) 

Fig. 5 Effects of pyrethrins on 

embryo development of 

western flower thrips at day 5. 

(a), larva hatched in solutions 

of water, 0.2% Tween or 

0.01% pyrethrins at day 5; (b), 

abnormally developed 

embryos in solutions of 0.1% 

and 1% pyrethrins at day 5; (c) 

and (d), embryos before 

treatment 

Fig. 3 The number of eggs 

deposited by western flower 

thrips when supplied with 

different concentrations of 

pyrethrins starting on Day 1. 

Data points with the same 

letter within days are not 

significantly different, P< 0.05. 

Pyr, pyrethrins. Error bars 

indicate SE (n = 60 per 

treatment). 
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Table 2 Mortality, number of eggs and hatched western flower thrips larvae per leaf disk on chrysanthemum leaf disks 

infiltrated with different concentrations of pyrethrins  

Treatment of leaf disks Mortality (%) Eggs Hatched larvae 

Untreated leaf disks    0   a 2.0±0.4  a 1.4±0.3  a 

Leaf disks containing 0.2% Tween    0   a 1.7±0.5  a 1.3±0.3 ab 

Leaf disks containing 0.01% pyrethrins 25.0±6.7 b 1.3±0.3 ab 0.8±0.2  b  

Leaf disks containing 0.1% pyrethrins 29.2±7.9 b 0.7±0.2 bc 0.1±0.1  c 

Leaf disks containing 1% pyrethrins 68.8±9.3 c    0    c    0    c 

Values (mean±SE, n = 48 per treatment) followed by the same letter within a column are not significantly different 

(ANOVA: P>0.05). 

 

contained 1% pyrethrins. Chrysanthemum leaves containing 0.01% pyrethrins id not show 

significant deterrent effects. 

Discussion 

Pyrethrins, well-known natural insecticidal compounds, are exclusively found in and 

extracted from the composite flowers of pyrethrum (Tanacetum cinerariifolium), which 

belongs to Anthemideae tribe within the Astaraceae family (Casida and Quistad, 1995). 

Remarkably, the potential role of pyrethrins in pyrethrum plant defence has not been studied. 

Here, we report that western flower thrips (WFT) adults thrive on pyrethrum flowers, but die 

within a few days on pyrethrum leaves. The hypothesis that pyrethrins are responsible for 

protecting pyrethrum leaves against WFT was tested by spraying or infiltrating pyrethrins to 

leaves of chrysanthemum, a related pyrethrins-free species belonging to the same tribe. We 

assessed toxicity to the adult and embryo stages of WFT, and negative effects on feeding and 

oviposition both in vitro and in planta, and found that the natural concentrations of pyrethrins 

present in leaves have strong negative effects on WFT. We speculate that the thrips found on 

pyrethrum flowers survive on pollen which is devoid of pyrethrins (T. Yang, unpublished 

data). 

For many populations of WFT, resistance has been reported for some synthetic insecticides 

(Espinosa et al., 2005). Furthermore, many synthetic insecticides are considered harmful for 

human health and the environment. It is relevant, therefore, to find natural insecticides 

effective against WFT. Previously, several other plant-derived compounds were tested for 

their insecticidal effects against WFT adults. For example, carvacrol at 1% and thymol at 0.1% 

and 1% significantly reduced the oviposition rate of WFT when these compounds were 

sprayed on leaf disks, but neither compound affected the feeding activity of WFT (Sedy and 

Kosehier, 2003). Salicylaldehyde (0.1% and 1%) and methyl salicylate (0.1% and 1%) were 

also tested. Within 24 h of applying 1% methyl salicylate to bean or cucumber the feeding and 

oviposition activities of thrips females were significantly reduced (Koschier et al., 2007). The 

effect on the insect could be a result of changes in the plant induced by methyl salicylate, 

since it is a plant hormone involved in induced resistance (Pieterse et al., 2009). A series of 

commercially available plant-derived essential oils tested at recommended concentrations 

(0.02-0.5%), including neem oil, rosemary oil, peppermint oil, garlic oil, and cottonseed oil, 

caused less than 30% mortality within 7 days (Cloyd et al., 2009). Compared to other plant-

derived compounds, pyrethrins are highly effective against WFT. Our results showed that 0.1% 

and 1% pyrethrin solutions sprayed on leaf disks significantly deterred WFT at 4 h, and, 

topically applied pyrethrins were toxic to adults at an LC50 value of 12.9 mg/ml (1.3%). By 

mimicking the natural site of pyrethrin accumulation by infiltration of leaves, we found that 1% 

pyrethrins caused 69% mortality and completely inhibited oviposition. Furthermore, 0.1% 

pyrethrins was strongly deterrent and resulted in abortion of 95% of the embryos while as 

little as 0.01% pyrethrins caused 25% mortality in 2 days. We propose, therefore, that the 
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natural concentrations of pyrethrin in pyrethrum leaves, around 0.01% by fresh weight, 

accounts for the observed high mortality of thrips adults on this plant. 

Insecticides have not previously been reported to affect the development of WFT embryos. 

WFT eggs are embedded in plant tissues (Childers, 1997), and as a result they are unlikely to 

be affected by non-systemic chemicals that are applied on the surface of plants. However, 

pyrethrins naturally accumulate inside pyrethrum tissues, stored in what appear to be 

unstructured intercellular cavities (M.A. Jongsma, unpublished observations). Therefore, 

besides feeding and oviposition deterrence, the embryo-toxic effect of pyrethrins is a third 

component contributing to their effect for plant defence against WFT (Fig. 4 and 5).  

Compared to some synthetic insecticides, the toxicity of natural pyrethrins in the absence of 

synergists against WFT was not high. In previous studies using topical application methods, 

the LC50 values of insecticides tested against susceptible WFT strains ranged from 10 to 83 

µg/ml for pyrethroids, 20 to 960 µg/ml for carbamates and 49 to 522 µg/ml for 

organophosphates (Robb et al., 1995; Espinosa et al., 2005). The LC50 value of pyrethrins 

against WFT by topical application was determined as 12.9 mg/ml, and the action of 

pyrethrins was, therefore, 10 to 1000-fold weaker than for these synthetic pesticides. On the 

other hand, pyrethrins did show much stronger negative effects on feeding behaviour and 

reproduction, which can be explained by the action of pyrethrins on the nervous system, 

resulting in disordered function of excitable (nerve and muscle) cells (Bradberry et al., 2005). 

At 0.01% (100 µg/ml), pyrethrins not only caused mortality of adults and embryos, but also 

significantly reduced oviposition (Table 2). All those factors together cumulatively affect the 

life history parameters. As a result WFT damage on pyrethrin-containing leaves may be 

virtually absent and also virus transmission may be strongly reduced. We hypothesize that if 

plants such as closely related chrysanthemum species which do not contain any pyrethrins 

were genetically engineered to produce pyrethrins, their resistance to WFT in leaves could be 

significantly improved. 
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Fig. 6 Percentage of western flower 

thrips settled on the control 

chrysanthemum leaf disk in dual 

choice assays of leaf disks containing 

0.2% Tween with or without 0.01%, 

0.1% or 1% pyrethrins. The solutions 

were infiltrated into chrysanthemum 

leaves. The choices were recorded 

0.25, 1, 2, 4, 20 and 28 h after WFT 

release. The x-axis represents 10log-

transformed time data. Asterisks 

indicate significant differences to the 

control (*: P < 0.05; **: P < 0.01). C, 

control. Pyr, pyrethrins. Error bars 

indicate SE (n = 120 per treatment) 
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Abstract 

Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the 

biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1’-2-

3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to 

yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this 

cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene 

synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. 

CDS, the other member, was reported to perform only the prenyltransferase step. Here, we 

show that, under lower substrate conditions prevalent in plants, CDS also catalyzes the next 

step converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The 

enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a KM 

value for CPP of 196 µM. For the chrysanthemol synthase activity, DMAPP competed with 

CPP as substrate. The DMAPP concentration required for half-maximal activity to produce 

chrysanthemol was ~100 µM, and significant substrate inhibition was observed at elevated 

DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid targeting 

peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 

0.12 – 0.16 µg·h
-1

·g
-1

 FW. Chrysanthemol glycosides were also detected and the major one 

was putatively identified as chrysanthemol conjugated to malonyl-glucose. We propose that 

CDS should be renamed a chrysanthemol synthase (CHS) utilizing DMAPP as substrate. 
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Introduction 

Pyrethrins are found predominantly in pyrethrum flower heads (Tanacetum cinerariifolium), 

and represent the economically most important natural pesticide (Brewer, 1973; Casida, 1973). 

They are neurotoxins effective against a wide range of insect species, and broadly applied in 

private homes, gardens, stables and organic agriculture. Their low toxicity to warm-blooded 

animals and high degradability under sunlight gives them environmentally friendly properties 

(Casida and Quistad, 1995). 

Pyrethrins comprise a group of 6 closely related esters with either chrysanthemic acid (type I 

esters) or pyrethric acid (type II esters) as terpene acid moieties. Chrysanthemic and pyrethric 

acid share a common cyclopropane ring structure, but the latter possesses a terminal 

carboxymethyl group. The acid moieties were shown to be predominantly derived from the 

methyl-erythritol phosphate (MEP) pathway (Crowley et al., 1961; Matsuda et al., 2005). The 

MEP pathway provides two universal C5 terpene building blocks, isopentenyl diphosphate 

(IPP) and its isomer dimethylallyl diphosphate (DMAPP), in the plastids of plants. 

Monoterpenes (C10), diterpenes (C20) and carotenoids (C40) are synthesized via this pathway 

(Wu et al., 2006a). The first pathway-specific step for pyrethrin biosynthesis is the 

condensation of 2 molecules of DMAPP yielding chrysanthemyl diphosphate (CPP) (Fig 1A) 

(Epstein and Poulter, 1973). The gene responsible for this step was cloned and the 

recombinant enzyme was characterized as chrysanthemyl diphosphate synthase (CDS; EC 

2.5.1.67) (Rivera et al., 2001). The genes and enzymes involved in the next steps converting 

CPP into the monoterpene alcohol, chrysanthemol, and the further oxidation to chrysanthemic 

acid have not been identified yet, but recently the reactions were shown to occur in the 

glandular trichomes (Ramirez et al., 2012). The final step of the esterification of 

chrysanthemic acid with one of the lipid alcohols is performed by a recently cloned GDSL 

lipase from pyrethrum. This enzyme transfers the chrysanthemoyl group from the CoA 

thioester to pyrethrolone to produce pyrethrin I, but does so in the pericarp of the seeds and 

not in the glandular trichomes (Kikuta et al., 2012; Ramirez et al., 2012).  

CDS, the enzyme catalyzing the first pathway-specific step, evolved from farnesyl 

diphosphate synthase (FDS) (Rivera et al., 2001; Thulasiram et al., 2007; Liu et al., 2012). It 

takes two molecules of DMAPP as substrate to produce CPP as major product and lavandulyl 

diphosphate (LPP) as minor product (Fig. 1). CDS has been cloned and characterized from 

pyrethrum (Tanacetum cinerariifolium) (Rivera et al., 2001) and sagebrush (Artemisia 

tridentata ssp. spiciformis) (Hemmerlin et al., 2003), but recently CDS-like genes were also 

reported from Tanacetum coccineum, Achillea asiatica, chrysanthemum lavandulifolium, 

Aster ageratoides, Helianthus exilis and Helianthus annuus (Liu et al., 2012). For sagebrush, 

the CDS protein sequence shares 75% identity (and 96% similarity) with the FDS protein 

sequence from the same species. FDS catalyses the sequential c1’-4 condensation of 

isopentenyl pyrophosphate with DMAPP to form the intermediate geranyl diphosphate (GPP, 

C10), and with another IPP, the product farnesyl diphosphate (FPP, C15), or it catalyses c1’-4 

condensation of GPP with IPP to yield FPP (Szkopińska and Płochocka, 2005). CDS 

catalyses the c1’-2-3 condensation of 2 units of DMAPP yielding CPP (C10) (Rivera et al., 

2001). Thus, compared to FDS, the product size of CDS has shifted from C15 to C10, and the 

enzyme activity of CDS has changed from chain elongation to cyclopropanation. 

The c1’-2-3 cyclopropane ring structure in CPP is also found in the C30 and C40 terpenoids, 

presqualene diphosphate (PSPP) and prephytoene diphosphate (PPPP). PSPP and PPPP are 

intermediates in reactions producing squalene and phytoene, which are precursors for 

biosynthesis of sterols and carotenoids. These reactions are catalyzed by squalene synthase 

(EC 2.5.1.21) and phytoene synthase (EC 2.5.1.32), respectively (Dogbo et al., 1988). 
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Squalene synthase catalyzes the condensation of two molecules of farnesyl diphosphate (FPP) 

to give PSPP, and subsequent reductive rearrangement of this intermediate generates squalene 

(Nakashima et al., 1995). Phytoene synthase catalyzes a similar reaction, taking 

geranylgeranyl diphosphate (GGPP) as substrate to give PPPP as intermediate and phytoene 

as final product (Dogbo et al., 1988). Notably, both these terpenoid synthases are bifunctional 

enzymes catalyzing consecutive prenylation and dephosphorylation steps (Radisky and 

Poulter, 2000; Iwata-Reuyl et al., 2003).  

Our preliminary experiments with cell lysate of E. coli expressing CDS showed that the lysate 

was able to produce chrysanthemol directly from DMAPP, while cell lysate of E. coli 

transformed with the empty vector was not able to convert CPP to chrysanthemol. This 

suggested that CDS could also be a bifunctional enzyme catalyzing 2 consecutive reactions 

from DMAPP to CPP and then to chrysanthemol (Fig 1A). We now report the 

characterization of CDS to synthesize chrysanthemol from CPP and DMAPP in vitro, and the 

confirmation of this claim in planta using transgenic tobacco plants. 

 

Results 

Sequence determination of full-length cDNA of CDS. In earlier work the start codon of 

pyrethrum CDS was not determined (Rivera et al., 2001). This motivated us to study the 5’-

end sequence of CDS cDNA using RACE PCR. Eight 5’-end sequences (Fig. S1) obtained by 

us were quite different from the 5’-end sequence was previously reported CDS [Accession 

number: I13995, (Rivera et al., 2001)]. We then determined the genomic DNA (gDNA) 

sequence of CDS (Accession number: JX913537) from pyrethrum to see whether alternative 

splicing could explain these differences. By comparing the cDNA and gDNA sequences, an 

intron was easily identified at the 5’-end. The putative start codon proposed by Rivera and 

coauthors is actually in this intron region. Twenty-four nucleotides corresponding to the first 

8 amino acids of CDS reported by Rivera were the intron sequence. The rest of the coding 

sequence of CDS from Rivera is nearly 100% the same as obtained by us, with only 1 bp 

difference and no effect on the protein sequence. We also found that one out of our eight 

sequenced 5’RACE products was not correctly spliced either (Fig. S1). Apparently, Rivera 

and co-authors cloned this low frequency mRNA product. The CDS used in this study was our 

own clone isolated from pyrethrum ovaries (Accession number JX913536). 

Enzymatic characterization of CDS with CPP. CDS takes dimethylallyl diphosphate 

(DMAPP) as substrate to produce chrysanthemyl diphosphate (CPP) (Rivera et al., 2001). 

Surprisingly, when CPP was provided, CDS converted CPP into chrysanthemol (Fig. 1B). 

The reaction followed standard Michaelis-Menten kinetics (R = 0.997) with apparent KM and 

kcat values of 196 ± 23 µM and 3.3± 0.2 × 10
-3

 min
-1

, respectively (Fig. 2A). Chrysanthemol 

was not detected in the control assay incubated with CPP for 20 h (Fig. 1B). 
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Fig. 1. Reactions catalyzed by CDS. (A) Scheme of the two-step reaction catalyzed by CDS. Major and minor refer to the 

relative product quantity in each conversion. (B) GC-MS chromatograms of the products of purified CDS enzyme assayed 

with CPP or DMAPP. Empty vector, control assay with protein purified (by eluate volume) from E. coli cells harboring 

empty vector; standard, a mixture of trans- and cis-chrysanthemol. For assay with CPP, assay time was 20 h. For assay with 

DMAPP, assay time was 96 h. 

 

Product analysis of CDS with DMAPP. The conversion of CPP into chrysanthemol 

suggested that CDS supplied with DMAPP should also produce chrysanthemol. However, no 

formation of chrysanthemol was detected when CDS was assayed with 2 mM DMAPP for 2 h 

(Rivera et al., 2001) or upon longer incubation for 6, 12 and 24 h.  

We then decided to prolong the assay time to 96 h and lower the DMAPP concentration. First 

we made sure that CDS was active during the 96-h assay. CDS was incubated with 400 µM 

CPP and chrysanthemol production was checked every 24 h. A linear correlation was found 

between chrysanthemol production and assay hours with R
2
=0.995 (Fig. S2), indicating that 

CDS was fully active during this 96-h assay. The DMAPP concentration was then lowered 

from 2000 to 600 µM, which is the previously published KM value of CDS for DMAPP to 

produce CPP (Rivera et al., 2001). Figure 1B shows that under those modified assay 

conditions chrysanthemol, as well as lavandulol, were detected in the 96-h assay. However, 

by incubating the same water phase with alkaline phosphatase, also significant concentrations 

of CPP and lavandulyl diphosphate (LPP) were found in the assays. Clearly, a quantitative 

approach was necessary to establish the balance in the production of chrysanthemyl and 

lavandulyl diphosphates and alcohols. For this, a series of DMAPP concentrations ranging 

from 10 to 600 µM were assayed with CDS for 96 h and both terpene alcohol and phosphate 

production was determined (Fig. 2B). Chrysanthemol production increased with DMAPP 

concentration up to 300 µM (Fig. 2B, top). Further increase of DMAPP concentration led to a 

decrease of chrysanthemol, but strong further increase of CPP production. More 

chrysanthemol than CPP was detected with DMAPP concentrations ranging from 40 to 150 

µM (Fig. 2B, top). The DMAPP concentration required for half-maximal activity to produce 

chrysanthemol was ~100 µM and at that concentration on a molar basis at least twice as much 

chrysanthemol was formed compared to CPP. On the other hand, CPP production increased 
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with DMAPP concentrations up to the tested maximum of 600 µM (Fig. 2B, top). To check 

non-enzymatic conversion of CPP into chrysanthemol, control reactions without enzymes 

were performed at CPP concentrations ranging from 2 to 80 µM. This range covered the CPP 

production in 96-h assays, which produced a maximum of 25 µM CPP with DMAPP. 

However, no chrysanthemol was detected in any of the control reactions. 

The relationship between DMAPP substrate concentration and lavandulol or LPP production 

was very similar to chrysanthemol and CPP (Fig. 2B, bottom). Lavandulol production was 

highest with 150 µM DMAPP and decreased with higher concentrations of DMAPP, while 

LPP production increased with DMAPP concentrations up to 600 µM.  

Chrysanthemol production with CPP is inhibited by DMAPP. The above experiments 

suggested that higher concentrations of DMAPP substrate caused inhibition of chrysanthemol 

production. We, therefore, assayed CDS activity with both CPP and DMAPP as substrates in 

the same assay tube. In all assays, CPP concentration was kept constant at 150 µM (around 

the KM value of CDS for CPP) while DMAPP concentrations were varied from 0 to 600 µM. 

In general, addition of DMAPP to the assays caused a decrease of chrysanthemol production, 

and this effect was significant from 75 µM upward (Fig. 2C). The chrysanthemol production 

was not inhibited when 10 to 40 µM DMAPP was added. 

Fig. 2. GC-MS product analyses of reactions of purified CDS with CPP and/or DMAPP as substrate.  

(A) CDS turnover rate to produce chrysanthemol when CPP was provided as a substrate. The incubation time was 20 h. (B) 

Product analysis of CDS incubated with different concentrations of DMAPP for 96 h measuring both the intermediate 

diphosphate and product alcohol. (C) Inhibition of CDS chrysanthemol synthase activity by the substrate DMAPP. In these 

assays, both CPP and DMAPP were substrates, but CPP concentration was kept at 150 µM and DMAPP concentration varied 

from 0 to 600 µM. The incubation time was 20 h. Data points with the same letter are not significantly different, P < 0.05. 

Error bars indicate SE (N=3). 
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Subcellular localization of CDS. The N-

terminal sequence of CDS was predicted to 

serve as a targeting signal to plastids (Rivera 

et al., 2001). To test the prediction, we 

analyzed the targeting with gene fusions to 

green fluorescent protein (GFP). The gene 

fragment corresponding to the first 54 amino 

acids or the whole cDNA without stop codon 

were fused to GFP and transferred to tobacco 

(Nicotiana tabacum) protoplasts. Transient 

expression of the fused GFP in tobacco cells 

showed that both the N-terminal signal peptide 

and the complete CDS protein targeted GFP to 

plastids (Fig. 3).  

Headspace emissions of transgenic tobacco 

overexpressing CDS. To verify the function 

of CDS in vivo, its cDNA was cloned under 

the regulation of the chrysanthemum RbcS1 

promoter into a binary vector and used to 

transform tobacco plants. Strong emissions of chrysanthemol and lower emissions of 

lavandulol, similar to the in vitro ratios of volatile products of CDS, were detected in the 

headspace of transgenic tobacco plants expressing CDS (n=9), but not in control tobacco 

plants (n=3) which were transformed with the empty vector lacking CDS (Fig. 4). 

Chrysanthemol was emitted at levels of 0.12 – 0.16 µg·h
-1

·g
-1

 FW. Transgenic tobacco plants 

were shorter and leaf color was lighter compared to empty vector control plants. 

Non-volatile profile of transgenic tobacco overexpressing CDS. To study whether there is 

also accumulation of non-volatile derivative(s) of chrysanthemol and/or lavandulol, we 

analyzed the non-volatile metabolites in transgenic (n=3) and control (n=3) plants using a 

non-targeted approach (Fig. S3). The newly produced compound that was most abundant, as 

determined by UV absorption (220 nm) resulting from the double bond of the compounds, 

showed up as m/z of 803.3498 and eluted at a retention time of 45.93 min. In control plants, 

this compound was not detected. The non-volatile product was putatively identified as 

Fig. 3. Subcellular localization of CDS using transient 

expression of GFP fusions in tobacco protoplasts. 

CDS_TAR-GFP, the putative CDS targeting signal (first 

54 amino acids) fused to GFP. CDS-GFP, the complete 

CDS fused to GFP.  

Fig. 4. GC-MS chromatograms obtained by dynamic headspace trapping of cut leaves of empty 

vector control (A) and CDS expressing (B) tobacco plants. 
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chrysanthemol conjugated to malonyl-glucose by comparing its mass spectrum to that of 

geranoyl-6-O-malonyl-β-D-glucopyranoside, which was identified by NMR in geraniol 

synthase expressing maize [Fig. S4; (Yang et al., 2011)]. 

 

Discussion 

Although pyrethrins represent the economically most important and widely used natural 

pesticide, not much is known about their biosynthesis at the genetic or enzymatic level. Only 

the genes involved in the first and last step of the biosynthetic pathway have been cloned 

(Rivera et al., 2001; Kikuta et al., 2012). CDS has been reported to catalyze the first 

committed step of pyrethrin biosynthesis by joining two molecules of DMAPP to produce 

CPP (Rivera et al., 2001), but the recently evolved enzyme serves roles also in other 

composite plant species that do not produce pyrethrins (Hemmerlin et al., 2003; Liu et al., 

2012). Interestingly, our in vitro and in vivo results demonstrate that CDS also catalyzes the 

subsequent conversion of CPP to chrysanthemol, which furthers our understanding of the 

monoterpene branch of pyrethrin biosynthesis that occurs in pyrethrum glandular trichomes 

(Ramirez et al., 2012). 

CDS was active with DMAPP and CPP as substrates. In both cases, the production of the 

monoterpene alcohols, chrysanthemol and lavandulol, was detected. Rivera et al. (Rivera et al., 

2001) reported earlier that CPP and LPP were the final products of CDS. We used a typical 

protocol for activity analysis of terpene synthases which produce volatile and hydrophobic 

products (Bouwmeester et al., 2002b; Aharoni et al., 2004), while earlier protocols were based 

on the activity analysis of diphosphate synthases, which produce non-volatile and hydrophilic 

products (Burke et al., 1999; Hemmerlin et al., 2003). Though we used similar reaction 

conditions, the combination of the following factors in our assays could contribute to the 

observed differences: (a) a pentane overlay to capture the volatile alcohol; (b) the addition of 

detergent, Tween-20, to promote release of the hydrophobic product; (c), a low substrate 

concentration, common to plants; and (d) a long incubation time to observe products in this 

notoriously slow reaction in vitro. In former assays, the lack of an organic layer to capture the 

volatile product may have prevented detecting chrysanthemol formation. The presence of 

Tween-20 could increase the CDS activity to produce chrysanthemol as reported for SQS and 

PSY. For SQS, Tween-80 stimulated its activity 10-20 fold, and Tween-20 showed similar 

stimulating effects (Zhang et al., 1993). PSY also requires a detergent for maximal activity, as 

the presence of Tween-80 was reported to result in almost 20,000-fold higher activity 

compared to previously reported PSY activities (Iwata-Reuyl et al., 2003).  

Rivera and co-authors used 2 mM DMAPP to assay the CDS activity. However, our results 

(Fig. 2C) showed that DMAPP concentrations higher than 0.3 mM inhibited chrysanthemol 

production, but not CPP production. In addition, we established that using low substrate 

concentrations, incubation times up to 96 h were needed to produce significant amounts of 

chrysanthemol. The turnover number (kcat) of CPP hydrolysis was determined as 3.3± 0.2 × 

10
-3

 min
-1

, which is about 150-fold slower than that of the initial step (kcat = 0.5 min
-1

, (Rivera 

et al., 2001)). This low velocity explains the long incubation time needed for the monoterpene 

alcohol production from DMAPP, but at low substrate conditions the rate of producing 

chrysanthemol was twice higher than for CPP. 

Though the turnover from CPP (3.3 × 10
-3 

min
-1

) or DMAPP (~ 1 × 10
-4 

min
-1

) to 

chrysanthemol was inefficient in the in vitro assays, the production of chrysanthemol by CDS 

was efficient in vivo. Chrysanthemol was emitted from leaves of transgenic tobacco 

overexpressing CDS (Fig. 4), at rates of 120-160 ng·h
-1

·g
-1

 FW. This rate was on the high end 

of the emission rates of other overexpressed terpenes in tobacco leaves. In tobacco plants 
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overexpressing three monoterpene synthases (CaMV35S promoter), the total level of 

additional monoterpenes emitted from leaves reached up to 30 ng·h
-1

·g
-1

 FW (Lücker et al., 

2004), and plants overexpressing patchoulol synthase, emitted patchoulol at levels of 50-100 

ng·h
-1

·g
-1

 FW (Wu et al., 2006b). Our preliminary enzyme assays using cell lysate instead of 

purified CDS also showed much faster turnover rates. The enzyme activity of the lysate was 

about 10-40 fold higher than that of purified CDS. This suggests that the enzyme loses 

activity during purification. We tested the effects of adding protein (BSA), all known mineral 

co-factors (Murashige and Skoog salts) and reduced nicotinamide adenine dinucleotide 

phosphate (NADPH) to the enzyme assays (Radisky and Poulter, 2000), but the activity of 

purified CDS was not improved. We suspect, therefore, that another organic co-factor is 

responsible for promoting CDS enzyme activity in vivo.   

Our in vitro results showed that CDS favored the synthesis of chrysanthemol when the 

DMAPP concentration was lower than 300 µM (Fig. 2C). This DMAPP concentration range 

is most likely the range encountered by CDS in vivo. DMAPP concentrations in leaves have 

been determined for several plant species. Compared to the isoprene-emitting species 

cottonwood (Fisher et al., 2001) and oak (Brüggemann and Schnitzler, 2002), leaf DMAPP 

concentrations in non-emitting species, such as Arabidopsis, are 6-10 times lower (Loivamäki 

et al., 2007). Considering that tobacco is also a non-emitting species (Vickers et al., 2011), 

leaf DMAPP concentrations in tobacco may be similar to those in Arabidopsis at an estimated 

concentration of around 10 pmol·mg
-1 

FW (Loivamäki et al., 2007). Then, the DMAPP level 

in tobacco plastids, the cell compartment where CDS is targeted to [Fig. 3; (Hemmerlin et al., 

2003)], was estimated to be around 30 µM based on the assumption that leaf fresh weight is 

usually linearly correlated to leaf volume with a regression coefficient of 1 g·ml
-1 

(Huxley, 

1971), and assuming that chloroplasts typically occupy 20% of the total cell volume in mature 

leaf cells (Ellis and Leech, 1985), and that 60% of DMAPP occurs in the chloroplast 

(Rosenstiel et al., 2002). Chrysanthemol emission and glycosides could also be detected in 

transgenic Arabidopsis and chrysanthemum plants overexpressing CDS (Fig. S5 and S6).  

CDS shares several characteristics with SQS and PSY, which both catalyze intermolecular 

c1’-2-3 cyclopropanation reactions. All three synthases are bifunctional enzymes, functioning 

as prenyltransferases in the first reaction and as terpene synthases in the second reaction. 

However, the cyclopropane ring structure remains in the final product of CDS, but not in 

those of SQS or PSY. The overall enzyme activities of all three enzymes are inhibited by high 

substrate concentrations, but the production of the intermediate diphosphates is not. For 

example, the production of squalene by SQS has been shown to be inhibited by FPP 

concentrations higher than 100 µM (Zhang et al., 1993; Radisky and Poulter, 2000), but the 

production of the intermediate PSPP is not inhibited by high FPP concentrations (Radisky and 

Poulter, 2000). Similarly, PSY was reported to be significantly inhibited at GGPP 

concentrations above 100 µM (Iwata-Reuyl et al., 2003), though each of the separate reactions 

of PSY showed Michaelis-Menten behavior (Dogbo et al., 1988). In our experiments, 

DMAPP concentrations higher than 300 µM reduced total chrysanthemol production in 

favour of CPP (Fig. 2B, top), while lavandulol production was reduced by DMAPP at 

concentrations higher than 150 µM (Fig. 2B, bottom). CPP production was not inhibited by 

DMAPP concentrations up to of 600 µM (Fig. 2C, top), in good agreement with earlier data 

(Rivera et al., 2001). This indicated that DMAPP inhibits the overall CDS activity by 

inhibiting the second, but not the first reaction. This was confirmed by providing both 

DMAPP and CPP to CDS resulting in a significant reduction of chrysanthemol production 

when DMAPP concentration was higher than 75 µM (Fig. 2C). These results suggest that 

DMAPP and CPP are converted in the same active site.  
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Previously, chimaeric enzymes have been made in the group of Poulter (Thulasiram et al., 

2007) which showed the evolution between the four fundamental coupling reactions: chain 

elongation, cyclopropanation, branching, and cyclobutanation using farnesyl diphosphate 

synthase (FDS) and CDS as building blocks. In those experiments the bifunctional activity of 

the CDS enzyme was not known, but our findings allow an additional perspective on the 

evolution of FDS, with diphosphate synthase activity only, into a chrysanthemol synthase 

with bifunctional activity. Future research could reveal the structural and mechanical basis of 

the two-step reaction and verify this process also in the other members of this new terpene 

synthase gene family which potentially yields not only chrysanthemol, but also lavandulol, 

maconelliol or more ancestral C15 alcohols in other plant species (Thulasiram et al., 2007; 

Liu et al., 2012). 

In summary, we have shown both in vitro and in vivo that the previously reported 

prenyltransferase, (CDS), also functions as a terpene synthase. CDS is therefore the first 

bifunctional monoterpene synthase showing both prenyltransferase and terpene synthase 

activity. Considering its overall ability to preferentially catalyze both consecutive reactions in 

vivo where low substrate concentrations prevail, we propose to rename CDS a chrysanthemol 

synthase EC 2.5.1.XX. This identification moves forward our understanding of a recently 

evolved branch of irregular monoterpene biosynthesis which is not involved in primary 

metabolism like phytoene and squalene synthases. Normally, there is an ancient and strict task 

division in terpene biosynthesis between synthases of terpene diphosphates and terpenoid 

products. Terpene synthases, at the expense of the diphosphate, can modify the skeleton in 

highly diverse ways to accommodate the required chemical variation in both primary and 

secondary metabolism of organisms. As an example geranyl diphosphate synthases exist 

separately from geraniol synthases and are evolutionarily selected not to hydrolyze their own 

GPP product. CDS, however, evolved only very recently, and there is an evolutionary 

bottleneck if two enzymes are needed simultaneously to generate a useful product like 

chrysanthemol. The bifunctional activity solves this issue and serves the needs of a plant 

which has not yet evolved a secondary purpose for CPP substrates.   

 

Materials and Methods 

Plant materials and chemicals. Pyrethrum plants (Tanacetum cinerariifolium) were grown 

in the field of Wageningen, the Netherlands. Chrysanthemyl diphosphate (CPP) and 

chrysanthemol were purchased from Isoprenoids Lc. (USA). Dimethylallyl diphosphate 

(DMAPP) was obtained from Sigma. CPP was a mixture of trans- and cis-racemic forms in a 

ratio around 9:1, and so was the chrysanthemol.  

Cloning full length cDNA and genomic DNA of CDS. To clone the full length cDNA of 

CDS, following primers were used in 3’ and 5’ RACE PCRs: TcCDS_F 5’-

CATCTTCTGGACCTCTTCAATGAG and TcCDS_R 5’-

GTACTGAACAATCCGACGGTTAAG. RACE libraries were synthesized with 1µg of total 

RNA from pyrethrum ovary using Supercript® II Reverse Transcriptase (invitrogen), and the 

Smart RACE kit (Clontech). In a final step based on the complete sequence information, 

primers were designed to obtain the full length cDNA (Accession number JX913536). Eight 

clones were sequenced. Based on the full length cDNA information, primers were designed 

for amplification of the genomic DNA corresponding to the gene with introns (Accession 

number JX913537). The sequence of CDS obtained by us slightly differs from the one 

reported by Rivera, et. al. (Accession number I13995)(Rivera et al., 2001). The detailed 

differences are explained in the results. The CDS sequence used in this study is the one 

obtained by us (Accession number JX913536).  
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Protein production in Escherichia coli and purification. The open reading frame of CDS 

without the putative targeting sequence was subcloned into the pRSET-A expression vector 

(Invitrogen) fused to an amino terminal histidine tag, and expressed in E. coli BL21(DE3) 

(forward primer 5’- TTATGGATCCACTACGACATTGAGCAGCAATCTAG-3’ and 

reverse primer 5’- TTATGAATTCTTACTTATGTCCCTTATACATCTTTTCC-3’; 

restriction sites are underlined). E. coli cells were grown to an OD600 of 0.6 and then induced 

with 0.02% L-arabinose at 18 °C for 16 h. After harvesting, the cells were resuspended in 

lysis buffer containing 50 mM Tris-HCl (pH 7.5), 300 mM NaCl and 1.4 mM β-

mecaptoethanol, disrupted by sonification (6 × for 10 s), and centrifuged at 13,000 g for 10 

min at 4 °C. His-tagged proteins were purified with Ni
2+

-NTA agarose (Qiagen) according to 

the manufacturer’s protocol. Proteins were concentrated and desalted in 50 mM Tris-HCl (pH 

7.5, containing 1.4 mM β-mercaptoethanol) using Amicon Centrifugal Filters for Protein 

Purification and Concentration (Millipore), checked for purity by SDS/PAGE , and quantified 

by Bradford method using bovine serum albumin as a standard (Bradford, 1976). The protein 

purity was greater than 90%. 

Reaction of CDS with CPP. The activity of CDS to produce chrysanthemol from CPP was 

assayed by incubating 35 µg purified enzyme in a final volume of 100 µl assay buffer (pH 7.0) 

containing 15 mM MOPSO, 2 mM dithioerythreitol, 12.5% (v/v) glycerol, 1 mM MgCl2, 1 

mM ascorbic acid, 0.1% (v/v) Tween 20 and various concentrations of CPP. After addition of 

a 100 µl pentane overlay, the assays were incubated for 20 h at 30 °C. Then, the assay mixture 

was extracted as previously described (Bouwmeester et al., 2002a) and the organic phase was 

concentrated to 200 µl under nitrogen flow. A 1-µl portion of the concentrated organic phase 

was analyzed by GC-MS using a GC (Agilent 7890A) equipped with an HP5- MS column (30 

m × 0.25 mm i.d., 0.25 µm d.f.) and a mass-selective detector (Agilent 5975C, Hewlett 

Packard, Agilent Technologies). The injection port (splitless mode), interface and MS source 

temperatures were 250 °C, 290 °C and 180 °C respectively. The oven was programmed at an 

initial temperature of 45 °C for 1 min, with a ramp of 15 °C min
-1

 to 280 °C, and final time of 

3.5 min. Proteins extracted from E. coli lysate cells harboring the empty vector were assayed 

with CPP as control. For identification, the authentic standard of chrysanthemol was run 

under identical conditions. 

To determine the apparent KM value of CDS for CPP, the Mg
2+

 concentration (1.0 mM) and 

pH value (7.0) were set at optimal level as described before (Rivera et al., 2001), and the CPP 

concentration was varied between 10 and600 µM with 8 different data points. Triplicate sets 

of assays were performed at each CPP concentration. The apparent KM value was obtained by 

fitting the data to the Michaelis-Menten equation, using KaleidaGraph (Synergy Software). 

Reaction of CDS with DMAPP. The activity of CDS to produce diphosphates (CPP and 

lavandulyl diphosphate, LPP) and terpene alcohols (chrysanthemol and lavandulol) from 

DMAPP was assayed by incubating 35 µg purified enzyme in a final volume of 100 µl assay 

buffer described above, but with 600 µM DMAPP instead of CPP. After addition of a 100 µl 

pentane overlay, the assays were incubate for 96 h at 30 °C. The chrysanthemol production 

was determined by analyzing the organic phase as described above. CPP production was 

determined by analyzing the water phase of the same reaction tube. For that, 50 µl water 

phase was transferred to a fresh reaction tube, treated with calf alkaline phosphatase (Sigma). 

Liberated compounds were extracted as described before (Rivera et al., 2001). The extracted 

compounds were then analyzed by GC-MS as described above. For KM determination, assays 

were performed with different DMAPP concentrations from 10 to 600 µM with 8 different 

data points. Triplicate sets of assays were performed at each DMAPP concentration. To check 

non-enzymatic conversion from CPP to chrysanthemol in this 96-h assay, control reactions 

without enzyme were performed with CPP concentrations ranging from 2 to 80 µM. This 
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range covered a maximum concentration of 25 µM CPP produced by CDS under different 

DMAPP concentrations. 

For identification of chrysanthemol, the authentic standard of chrysanthemol was run under 

identical conditions. For identification of lavandulol, mass spectra of eluted peak fractions 

were compared with the published mass spectrum for lavandulol (Thulasiram et al., 2007).  

Determination of DMAPP substrate inhibition in the reaction of CDS with CPP. In order 

to check whether chrysanthemol production by CDS from CPP is inhibited by DMAPP, 

different amounts of DMAPP were added into CDS enzyme assays containing 150 µM CPP 

(the apparent KM value of CPP determined above). The enzyme assays were conducted as 

described above (20-h incubation). DMAPP concentrations were tested in a range of 0 to 600 

µM with 8 different data points. The determinations were replicated 3 times. Terpene alcohol 

and diphosphate products were analyzed by GC-MS as described above.  

Subcellular localization of CDS using GFP. The gene fragment corresponding to the first 54 

amino acids of CDS or the whole CDS gene without stop codon were cloned into the binary 

vector pBINPLUS-1.1eGFP (Seiichi et al., 1995) as an in frame protein fusion to a green 

fluorescent protein (GFP) reporter gene using the KpnI and XbaI restriction sites. These 

constructs were named pCDSTAR-GFP and pCDS-GFP, respectively. Tobacco plants 

(Nicotiana tabacum Samsun) were transformed with these constructs as described (Jongsma 

et al., 1995). Transgenic tobacco mesophyll protoplasts were isolated according to Sheen 

(2001). Images were taken using a confocal laser scanning microscope (Zeiss) with 

fluorescence bandwith filters of 620 to 750 nm for chlorophyll imaging, and 500 to 530 nm 

for GFP. 

Generation of transgenic tobacco. The complete cDNA of CDS was placed under the 

control of chrysanthemum RbcS1 promoter, and Agrobacterium tumefaciens strain AGL-0 

harboring the binary vector was used to transform the tobacco plants using protocols 

described previously (Jongsma et al., 1995). Tobacco plants transformed with a vector lacking 

CDS were used as control. Transgenic plants were grown in a greenhouse at 25±2 °C under 

18/6 h light/dark photoperiod. The presence of CDS was checked by PCR. All PCR positive 

plantlets of the T0 transgenic line were analyzed by GC-MS to check the presence of 

chrysanthemol in the headspace. The three plantlets with highest production of chrysanthemol 

were analyzed by LC-MS. Three plantlets from the empty vector control line were also 

analyzed by GC-MS and LC-MS. 

Volatile GC-MS and non-volatile LC-MS analysis of transgenic tobacco. Volatiles from 

cut leaves were collected from 4-week old plants. The second leaf from the top was harvested 

for headspace trapping. The volatiles were sampled for 2 h, and then analysed by GC-MS as 

described (Yang et al., 2011). The temperature program of the gas chromatograph was 40 °C 

for 3 min, rising to 280 °C at 10 °C min
-1

 and final time for 2 min. The mass spectrometer was 

set to scan from 35 to 450 m/z. The helium flow was constant at 1.0 mL min
-1

. Ionization 

potential was set at 70 eV. For identification of chrysanthemol, the authentic standard of 

chrysanthemol was run under identical conditions. For identification of lavandulol, the mass 

spectrum of the eluted peak was compared with the published mass spectrum of lavandulol 

(Thulasiram et al., 2007). 

The third leaf from the top was used for non-volatile analysis according to a protocol for 

untargeted metabolomics of plant tissues (De Vos et al., 2007) as described in detail before 

(Yang et al., 2011).  

Statistical analysis of GC-MS and LC-MS data was conducted as reported (Yang et al., 2011). 

The processing parameters of MetAlign for GC-MS data were set to analyze scans 1340 to 
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16000 (corresponding to retention time 2.32 min to 28.05 min) with a maximum amplitude of 

3.5 × 10
8
. The parameters for LC-MS data were set to analyze scans 70 to 2620 

(corresponding to retention time 1.4 min to 49.73 min) with a maximum amplitude of 35000. 
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Supporting information 
TcCDS-1      ACCTTTACCTCCTGCTTTCACATACACTCAAATTAAGATTCTGTTGTAAATGGCTTGCTC 

TcCDS-2      ACCTTTACCTCCTGCTTTCACATACACTCACATTAAGATTCTGTTGTAAATGGCTTGCTC 

TcCDS-3      ACCTTTACCTCCTGCTTTCACATACACTCACATTAAGATTCTGTTGTAAATGGCTTGCTC 

TcCDS-4      ACCTTTACCTCCTGCTTTCACATACACTCACATTAAGATTCTGTTGTAAATGGCTTGCTC  

TcCDS-5      ACCTTTACCTCCTGCTTTCACATACACTCAAATTAAGATTCTGTTGTAAATGGCTTGCTC  

TcCDS-6      ACCTTTACCTCCTGCTTTCACATACACTCAAATTAAGATTCTGTTGTAAATGGCTTGCTC  

TcCDS-7      ---------------------ATACACTCAAATTAAGATTCTGTTGTAAATGGCTTGCTC 

TcCDS-8      ------------------------------------------------------------ 

I13995       -------------------------TCGGCACGAGATTCGGCACGAGAAATGGCTTGCTC 

TcCDS gDNA   ACCTTTACCTCCTGCTTTCACATACACTCACATTAAGATTCTGTTGTAAATGGCTTGCTC 

AtCDS cDNA   ----------CCAGCTTCCGCAGACACTCACATTAAGAATTTGTTGTAAATGGCATCCTT 

 

TcCDS-1      TAGTAG------------------------------------------------------ 

TcCDS-2      TAGTAG------------------------------------------------------  

TcCDS-3      TAGTAG------------------------------------------------------  

TcCDS-4      TAGTAG------------------------------------------------------  

TcCDS-5      TAGTAG------------------------------------------------------  

TcCDS-6      TAGTAG------------------------------------------------------  

TcCDS-7      TAGTAG------------------------------------------------------ 

TcCDS-8      ------------------------------------------------------------ 

I13995       TAGTAGGTACTAGTTACTCTTATTGCTATAAACATATTGCTTAATTCATGATGTCCTAGC 

TcCDS gDNA   TAGTAGGTACTAGTTACTCTTATTGCTATAAACATATTGCTTAATTCATGATGTCCTAGC 

AtCDS cDNA   TATTAG------------------------------------------------------ 

                                                                              

TcCDS-1      ------------------------------------------------------------ 

TcCDS-2      ------------------------------------------------------------ 

TcCDS-3      ------------------------------------------------------------ 

TcCDS-4      ------------------------------------------------------------ 

TcCDS-5      ------------------------------------------------------------ 

TcCDS-6      ------------------------------------------------------------ 

TcCDS-7      ------------------------------------------------------------ 

TcCDS-8      ------------------------------------------------------------ 

I13995       GAGCAATTGTGACAGCATCCGAATGATGATATATATGGGCGATCTACATATAAAATACTC 

TcCDS gDNA   GAGCAATTGTGACAGCATCCGAATGATGATATATATGGGCGATCTACATATAAAATACTC                                                                              

AtCDS cDNA   ------------------------------------------------------------ 

 

TcCDS-1      ------------------------------------------------------------ 

TcCDS-2      ------------------------------------------------------------ 

TcCDS-3      ------------------------------------------------------------ 

TcCDS-4      ------------------------------------------------------------ 

TcCDS-5      ------------------------------------------------------------ 

TcCDS-6      ------------------------------------------------------------ 

TcCDS-7      ------------------------------------------------------------ 

TcCDS-8      -------------------GTAGAAATATACTTATTTAAAGATATAAAAAATGTCCGCAC  

I13995       CTAGATCGATGTGCATTTAGTAGAAATATACTTATTTAAAGATATAAAAAATGTCCGCAC 

TcCDS gDNA   CTAGATCGATGTGCATTTAGTAGAAATATACTTATTTAAAGATATAAAAAATGTCCGCAC                                                                            

AtCDS cDNA   ------------------------------------------------------------ 

 

TcCDS-1      ----------------------------------------------TCTTTCTTCCAAAT 

TcCDS-2      ----------------------------------------------TCTTTCTTCCAAAT 

TcCDS-3      ----------------------------------------------TCTTTCTTCCAAAT 

TcCDS-4      ----------------------------------------------TCTTTCTTCCAAAT 

TcCDS-5      ----------------------------------------------TCTTTCTTCCAAAT  

TcCDS-6      ----------------------------------------------TCTTTCTTCCAAAT  

TcCDS-7      ----------------------------------------------TCTTTCTTCCAAAT  

TcCDS-8      TTGTTATGATTCCATGATATATAATGTCTTGGTGTCTCTTATGCAGTCTTTCTTCCAAAT  

I13995       TTGTTATGATTCCATGATATATAATGTCTTGGTGTCTCTTATGCAGTCTTTCTTCCAAAT 

TcCDS gDNA   TTGTTATGATTCCATGATATATAATGTCTTGGTGTCTCTTATGCAGTCTTTCTTCCAAAT                                                        

AtCDS cDNA   ----------------------------------------------TCTTTCTTCCAAAT                                             

                ************** 

Fig. S1. Comparison of 5’ genomic DNA sequence with cDNA sequences of CDS gene. TcCDS-1 to TcCDS-8: 

5’ cDNA sequences of CDS gene in pyrethrum cloned in this study. I13995 is the CDS reported by Rivera et. al 

(Rivera et al., 2001). TcCDS gDNA: 5’ genomic DNA sequence of CDS gene in pyrethrum cloned in this study 

(Accession number JX913537). AtCDS cDNA: 5’ cDNA sequence of CDS gene in sagebrush (Artemisia 

tridentate) (Hemmerlin et al., 2003). Blue color shows the intron, pink color shows the start codon proposed by 

Rivera et. al, and green color shows the start codon. 
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Fig. S2. CDS activity indicated by chrysanthemol production from CPP for 96 h. Chrysanthemol production was 

checked every 24 h.   

 

 

Fig. S3. Negative mode LC–MS chromatograms of aqueous-methanol extract of leaves of an empty vector 

tobacco plant (a) and CDS overexpressing tobacco plant (b).  
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Fig. S4. The MS spectrum of the compound eluting at 45.93 min (a), which was only detected in CDS 

overexpressing tobacco plants but not in empty vector control plants. (b), the scheme of its collision-induced 

fragmentation. The compound was putatively identified as chrysanthemol conjugated to malonyl-glucose.  

 

 

Fig. S5. GC-MS chromatograms obtained by dynamic headspace trapping of whole plant of empty vector control 

(a) and CDS expressing (b) Arabidopsis plants.  



Chapter 5 

84 

 

Fig. S6. GC-MS chromatograms obtained by dynamic headspace trapping of leaves of empty vector control (a) 

and CDS expressing (b) chrysanthemum plants. 
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Abstract 

Pyrethrins are the most widely used natural pesticides. In pyrethrum they are synthesized by 

the transfer of alcohol moieties to activated acid moieties, such as chrysanthemic acid. 

Chrysanthemic acid is activated with coenzyme A (CoA) by CoA ligases. A chrysanthemic 

acid:CoA ligase, named Tanacetum cinerariifolium Acyl Activating Enzyme 1 (TcAAE1)  

was cloned from ovaries of pyrethrum plants based on the similarity of its expression pattern 

with chrysanthemyl diphosphate synthase, the first pathway-specific gene of pyrethrin 

biosynthesis. TcAAE1 is specifically activating chrysanthemic acid and not benzoic acid, as 

an alternative short chain aromatic acid, and that benzoic acid ligase has no activity towards 

chrysanthemic acid. TcAAE1 possesses a putative N-terminal plastid targeting sequence. The 

potential role of CoA ligation also in facilitating transport of chrysanthemic acid between 

plant tissues is discussed. 
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Introduction 

Pyrethrins are natural insecticides that are synthesized by the chrysanthemum species, 

Tanacetum cinerariifolium (earlier species name: Chrysanthemum cinerariaefolium) of the 

Asteraceae family and have been used for pest control since medieval times(Crombie, 1995). 

Although the market for pyrethrins has been taken over by synthetic pyrethroids, there is still 

worldwide demand for natural pyrethrins as organic pesticides. Like synthetic pyrethroids, 

natural pyrethrins knock-down, repel and kill many different kinds of insects, including crop 

pests, stored food pests and household pests. However, in contrast to the synthetic pyrethroids, 

they are considered environmental friendly as they have low toxicity to mammals and low 

persistence after use which leads to weak development of resistant strains (Casida and Quistad, 

1995). Hence, it would be highly beneficial to breed T. cinerariifolium cultivars with 

enhanced pyrethrin production or otherwise produce pyrethrins by fermentation. However , to 

achieve this, knowledge of the biosynthetic pathway is essential.  

Pyrethrins are biosynthesized by ester condensation of the acid and alcohol moieties. The two 

acid moieties (chrysanthemic acid and pyrethric acid) possess a cyclopropane ring, while the 

three alcohol moieties – pyrethrolone, jasmololone and cinerolone– contain a cyclopentenone 

ring. The pathway-specific enzyme and gene inducing cyclopropane ring formation, 

chrysanthemyl diphosphate synthase, has been characterized (Rivera et al., 2001). 

Chrysanthemic acid was recently demonstrated to be synthesized in the glandular trichomes 

present on most aerial parts of the plants but in high densities on the flower achenes (Ramirez, 

et al., 2012). It is transported in a basipetal direction into the achene pericarp tissue where it is 

esterified into pyrethrins. The basis of ester linkage formation by an acyltransferases has also 

been elucidated recently based on (1R,3R)- chrysanthemoyl CoA and (S)-pyrethrolone. The 

purified and cloned enzyme was a member of the GDSL lipase family and named TcGLIP. 

This GDSL lipase showed high substrate specificity for the chrysanthemic and pyrethric acid 

CoA and rethrolones (Matsuda, 2012). 

The monoterpenoid precursors of TcGLIP are Co-enzyme A activated chrysanthemic acid and 

pyrethric acid molecules, chrysanthemoyl-CoA or pyrethroyl-CoA. The activation of 

chrysanthemic acid and pyrethric acid with CoA is expected to occur through the action of an 

enzyme family known as CoA ligase utilizing ATP as an energy carrier. In enzymological 

terms, a chrysanthemoyl-CoA ligase (EC 6.2.1.xx) is an enzyme that catalyzes the chemical 

reaction that takes ATP, chrysanthemic acid or pyrethric acid, and CoA as substrates and give 

ATP, chrysanthemic acid or pyrethric acid, and CoA as products.  

Acyl-CoA thioesters such as chrysanthemoyl-CoA are formed by members of the acyl-

activating enzyme (AAE) superfamily that activate carboxylic acids through an adenylate 

intermediate (Schmelz and Naismith, 2009). In plants the substrates of AAEs include 

phenylpropanoids, fatty acids, terpenes and jasmonate precursors. 4-Coumarate:CoA ligase 

(4CL), an enzyme involved in phenylpropanoid metabolism, and the long-chain acyl CoA 

synthetases, are perhaps the best characterized of the plant AAEs (Shockey et al., 2002; Hu et 

al., 2010). The genomic organization and biochemical diversity of AAEs has been recently 

reviewed (De Azevedo Souza et al., 2008; Shockey and Browse, 2011).  

Here we report the cloning and identification of chrysanthemic acid:CoA ligase (AMP-

forming). The abbreviated name is TcAAE1 for Tanacetum cinerariifolium Acyl Activating 

Enzyme 1. 
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Materials and Methods 

Isolation of RNA from ovary, leaf and trichome 

The ovaries were carefully separated from the flower base and the corollas were removed. 

Trichomes were isolated from ovaries by vortexing the ovaries in liquid nitrogen and filtering 

the vortexed ovaries with a pre-cooled 150 μm mesh. The trichomes that passed through the 

mesh were collected. The young leaves which were not fully developed were used to isolate 

RNA. To avoid inference of trichome content on RNA isolation, all RNA samples were 

isolated with hexadecyltrimethylammonium bromide (CTAB).  

454-EST sequencing and processing 

Three to twenty-five µg of RNA of each tissue were sequenced with 454 sequencing 

technology (Vertis GmbH, Germany). Briefly, the cDNAs from 3 different tissues, obtained 

with random hexamer primers, were labelled with different adapters to generate 3 cDNA 

libraries. The libraries were normalized and then sequenced in a single 454 run. A single 454 

run on the 3 libraries generated 281,264 reads for the ovary library (60% of total reads), 

87,226 reads for the trichome library (19% of total reads) and 98,672 reads for the leaf library 

(21% of total reads). After adapter clipping, reads were discarded if the lengths of the reads 

were lower than 60 nt. For each library, less than 3% of reads were discarded. The remaining 

reads were clustered and assembled. In every library, about 40-50% reads could not be 

assembled into contigs and remained as singlets. Since all the plant materials were harvested 

from the same genotype, the reads from different libraries were pooled together to be 

assembled. In this way, 458,726 high quality reads from all 3 libraries were incorporated into 

27,314 contigs leaving 31.6% (144,825) reads as singlets. The average length of contigs was 

411 bp. 

Gene expression analysis by qPCR 

The expression levels of different contigs were determined by real-time quantitative RT-PCR 

analysis (qPCR). The sequences of primers were listed in Table S1. The glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) gene was used as reference gene (Ramirez et al 2012). 

The qPCR primers were designed by the software Beacon Designer (Palo Alto, CA, USA) 

with expected product sizes of around 120 bp.   

Cloning of full length AAE1 cDNA 

The contigs were used as templates to design gene specific primers for rapid amplification of 

cDNA ends (RACE). The sequences of primers were listed in Table S2. Finally, the full-

length cDNA encoding the putative AAE1 was obtained by PCR based on the information 

obtained from sequencing of the 3’- and 5’-RACE products. 

Heterologous expression of AAE1 protein in E. coli 

For functional characterization of the AAE1 protein, the entire reading frame was subcloned 

into the pRSET-A expression vector (Invitrogen) fused to an amino-terminal histidine tag, and 

expressed in Escherichia coli BL-21 under an isopropylthio-β-galactoside inducible promoter. 

E. coli cells were grown to an OD600 of 0.6 and then induced with 0.02% L-arabinose at 

25 °C for 20 h. After harvesting, the cells were resuspended in lysis buffer containing 50 mM 

Tris-HCl (pH 7.5), 300 mM NaCl and 1.4 mM β-mecaptoethanol, disrupted by sonification (6 

× for 10 s), and centrifuged at 13,000 g for 10 min at 4 °C. His-tagged proteins were purified 

with Ni
2+

-NTA column (Qiagen) according to the manufacturer’s protocol. 
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AAE1 activity assay 

His-tag purified proteins were assayed for chrysanthemic acid:CoA ligase activity in a final 

volume of 1 ml assay buffer containing 0.2 M Tris (pH8.0), 0.2mM chrysanthemic acid, 0.2 

mM CoA, 2.5 mM ATP and 10 mM MgCl2. The assay without enzyme was used as control. 

The assays were incubated for 15 min at room temperature. Then the reaction products were 

filtered through 0.2 µm inorganic membrane filters (RC4, Sartorius, Germany) before HPLC 

analysis. 

Product analysis in HPLC 

HPLC analysis was performed using a Waters Alliance 2795 HPLC connected to a Waters 

2996 PDA detector (Waters, MS technologies, UK). The column used was an analytical 

column (4.6 × 150 mm; Phenomenex, USA) attached with a C18 pre-column (2.0 × 4 mm; 

Phenomenex, USA). Degassed eluent A (10 mM ammonium acetate, pH 5.3) and eluent B (70% 

acetonitrile in 10 mM ammonium acetate, pH 5.3) were pumped at 1 mL min
-1

 into the HPLC 

system. The gradient started at 10% B and increased linearly to 100% B in 23 min. Then the 

column was washed and equilibrated for 7 min before the next injection. The injection volume 

was 50 µl. 

 

Results 

Screening of candidate genes 

To obtain transcripts from different pyrethrin producing tissues, the cDNAs of pyrethrum 

ovaries, leaves and trichomes were sequenced with 454 DNA sequencing technology. The 

454-ESTs were BLASTN-aligned to the NCBI database to obtain a putative annotation for 

each EST. In total, 54 contigs were annotated as acid: CoA ligase, with 52 contigs detected in 

ovaries, 37 contigs in leaves and 31 contigs in  trichomes. There were 31 contigs detected in 

at least 2 tissues and those were selected for further screening based on gene expression 

profiles in different tissues. 

Fig 1. Expression patterns of CDS and 3 CoA ligase contigs in ovaries at different developmental stages of flowers measure 

by qRT-PCR in three experimental replicates (error bars are SE). The expression level of house-keeping gene (GADPH) was 

set to 1. St, stage of flowers. 
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In the first round of screening using qRT-PCR, we analysed the gene expression patterns of 

those 31 contigs in 3 tissues: young ovary (from stage 3 flowers), old ovary (from stage 5 

flowers) and 3-d old seedlings. These patterns were compared to the pattern of the CDS gene, 

which expressed 20 times higher in young versus old ovaries and did not express in the 

seedling. Three contigs showed highly similar expression patterns to that of CDS (Table S3). 

These 3 contigs, Contig 1490, 4402 and 5325, were selected for the second round of screening. 

In the second round of screening, we analysed the gene expression patterns of those 3 contigs 

in the ovaries from 6 different developmental stage flowers. All 3 contigs showed similar 

expression patterns to that of the CDS gene in different developmental stages (Fig. 1). 

Fig 2. Alignment of candidate TcAAE1 and top 2 BLASTN hits of the gene, AMP dependent ligase (EEF40686) and 

acyl:coa ligase acetate-coa synthetase-like protein (EEE94198). 

AMP depedent          ------------------------------------------------------------ 

acyl_coa like        -------------------------------------TRICHO----------------- 6 

Contig4402&5325      MDHMVVLHSKSFYSYHNKLSNEATNFNVEKILKKSKNTRLDHNPTKLANRSFKVQCKSSS 60 

                                                                                  

 

AMP depedent          -------------MEGLVCCSTNYVPLSPTSFLERAAKVYRDRTSVVYGDVKYSWSGTYD 47 

acyl_coa             --------CARPAMEGLVRCKANYAPLSPISFLERSATVYRDRTSVVYGSLKFTWAETHQ 58 

Contig4402&5325      QESDPSFNESRQPMEGVVRSVANYVPLSPISFLERAAKVYRDRTSVVYGSIKYTWEETHR 120 

                                  ***:* . :**.**** *****:*.***********.:*::*  *:  

 

AMP                  RCVKLASALAQLGISHGDVV--------------------------ATLAPNVPAMYELH 81 

acyl_coa             RCLKLASALSQLGISRGDVVSLFFCLFYFFFQQWGLSAAFHRLLQVAALAPNVPAMYELH 118 

Contig4402&5325      RCVKLASSLNRLGVARGDVV--------------------------AILAPNVPAMIELH 154 

                     **:****:* :**:::****                          * ******** *** 

 

AMP                  FAVPMAGGVLCTLNTRYDSNMVSILLDHSEAKIIFVDFQLLDVASKALELLANTER--KS 139 

acyl_coa             FAVPMAGAVFCTLNTRHDSNMVSILLKHSEAKIIFVDHQLLDIARGALDLLEKTGT--KP 176 

Contig4402&5325      FAVPMAGAIICPLNTRLDSNMITTLLGHSETKILFVDYQLLHKAMEAVNLLKKTHSESRP 214 

                     *******.::*.**** ****:: ** ***:**:***.***. *  *::** :*    :. 

 

AMP                  PIVVLISESDGLSPTGFTSNTYEYESLLANGNKGFEIRRPKNEWDPISVNYTSGTTSRPK 199 

acyl_coa             PMVVLISESDVSSPTGFSSSSYEYESLLANGHSGFEIRQPESEWDPISVNYTSGTTSRPK 236 

Contig4402&5325      PLLVVISEVDSQSPLTLAN-EHEYQRLVEAGDTDFPIIRPNDECDPISLNYTSGTTSKPK 273 

                     *::*:*** *  **  ::.  :**: *:  *...* * :*:.* ****:********:** 

 

AMP                  GVVYSHRGAYLNSLATVFLHGIGAMPVYLWTVPMFHCNGWCLTWGVAAQGGTNICIRKVT 259 

acyl_coa             GVVYSHRGAYLNTLATLFLHGIGTTPVYLWTVPMFHCNGWCLTWGMAAQGGANVCLRKVS 296 

Contig4402&5325      GVIYSHRGAYLNSLGSVFMHGMREMPTYLWSVPLFHCNGWCLSWGIAIVGGTNVCLRRSD 333 

                     **:*********:*.::*:**:   *.***:**:********:**:*  **:*:*:*:   

 

AMP                  PKAIFDSIGQHNVTHMGGAPTVLNMIVNSPVSDRRTLPHKVEIMTGGAPPPPQIIFKMEE 319 

acyl_coa             PKDIFDSIDQHKVTHMAGAPTVLSMIVNSAVSDKKPLPHKVEIMTGGAPPPPQIFFKMEK 356 

Contig4402&5325      PKDIFDNIVRHKVTHMGGAPTVLNMIANSLVANQKPLPHRVEIMTAGAPPPPSILSKIKG 393 

                     ** ***.* :*:****.******.**.** *::::.***:*****.******.*: *::  

 

AMP                  LGFGVSHLYGLTETYGPGTYCAWKPEWDSLPPDERAKLKARQGIHHLGLEDVDVRDPMTQ 379 

acyl_coa             LGFGVSHLYGLTETYGPGTYCSWKPEWDSLPLNERSKMKARQGVQHLGLEDVDVKDTFTM 416 

Contig4402&5325      LGFHVSHAYGLTEVYGLSTWCLWKPEWDLLPMEEQGKLKARQGVNHFGVEDVDVKDPVTM 453 

                     *** *** *****.** .*:* ****** ** :*:.*:*****::*:*:*****:*..*  

 

AMP                  ESVPADGKTIGEIVFRGNTVMSGYLKDLKATEEAFQGGWFRSGDLAVKHPDGYIEVKDRL 439 

acyl_coa             ESVPADGKTIGEIMLRGNTVMSGYLKDSKATEDAFRGGWFRSGDLAVKHSDGYIEVKDRA 476 

Contig4402&5325      ESVKSDGRSTGEIMLRGNTVMSGYLKDPKATEDAFAAGWFRSGDIGIKHPDGYIEVKDRL 513 

                     *** :**:: ***::************ ****:** .*******:.:**.*********  

 

AMP                  KDIIISGGENISTVEVETVLYSHPAIFEAAVVARPDDHWGQTPCAFVKLKEGFVVSEQDI 499 

acyl_coa             KDIVITGGENVCTLEVETVLYNHPAILEVAVVGRPDDLWGQTPCAFVKLREGFDVDAQDI 536 

Contig4402&5325      KDIVISGGENISTIEVEFVIYRHQAVLEVAVVARPDDYWGQTPCAFVKLKEGYHADAQEI 573 

                     ***:*:****:.*:*** *:* * *::*.***.**** ***********:**: .. *:* 

 

AMP                  IKFCRDRLPHYMAPRTVIFEDLPRTSTGKVQKFILRQKAKATENL----- 544 

acyl_coa             IKFCRDRLPHYMAPKTVIFEDLPRNSTGKVQKFILREKAKALGSL----- 581 

Contig4402&5325      IQYCRDHMPHYMSPRTVIFQDLPRNSTGKVEKSVLREKANGLGSLSHKNV 623 
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These 3 contigs were each used as template to 

design gene specific primers for rapid 

amplification of cDNA ends (RACE) to obtain 

the full length. For Contig 1490, we failed to 

get 5’ RACE product, despite the use of 3 

different gene specific primers. For Contig 

4402 and 5325, the RACE results turned out to 

yield exactly the same gene. This gene then 

represented the only remaining candidate for 

chrysanthemic acid:CoA ligase activity. 

The cDNA sequence of the candidate AAE1 

(Fig. S1) was BLASTN-aligned to NCBI 

database. The top 2 hits were shown to be 

AMP-dependent ligase (EEF40686) from 

Ricinus communis and Acyl:CoA ligase 

Acetate-CoA synthetase-like protein from 

Populus trichocarpa (EEE94198; Fig. 2). 

However, the functions of these 2 enzymes 

have not been determined. Among different 

tissues with or without trichomes, this gene 

showed similar pattern as CDS suggesting it is 

also exclusively expressed in the trichomes 

(Fig. 3). 

Enzyme assay for chrysanthemic acid:CoA ligase activity 

The recombinant his-tagged chrysanthemic acid:CoA ligase candidate (Contig 4402&5325) 

was purified from cell-free homogenates. Chrysanthemic acid, ATP and coenzyme A were 

provided as substrates according to standard protocols. The reaction without any enzyme was 

used as control. The peak eluting at 6.702 min showed up in the reaction with TcAAE1 

candidate, but not in the control reaction (Fig. 4 a-c). The UV spectrum of this peak showed a 

characteristic absorption spectrum for CoA thioesters. Benzoic acid:CoA ligase (BZL) from 

Clarkia breweri (Beuerle and Pichersky, 2002) was also tested, and it was not able take 

chrysanthemic acid as substrate (Fig. 4 d). BZL can take benzoic acid as substrate (Fig. S2). 

TcAAE1 was not able to take benzoic acid as substrate either (Fig 4 e).  

 

Discussion 

In this study, we describe the cloning and characterization of an Acyl Activating Enzyme 

capable of activating chrysanthemic acid with CoA (TcAAE1). Among different 

developmental stages of pyrethrum flowers, this gene showed an expression pattern similar to 

CDS, the first pathway-specific gene of pyrethrin biosynthesis. Both CDS and AAE1 were 

highly expressed in the ovaries of flowers at stage 2 to 4, then their expression levels 

decreased 10- to 20-fold at stage 5, and further decreased in later stages (Fig. 1). This 

expression pattern followed the accumulation pattern of pyrethrins. Pyrethrin content 

increased steadily in early stages (stage 1 to 4), then it reached the maximum at stage 5 and 

stayed stable afterwards (Casida and Quistad, 1995). It indicated that the biosynthesis of 

pyrethrins was highest at early stages (stage 1 to 4), when there were still closed disc florets.   

The alignment of the deduced protein sequence of TcAAE1 with other acyl activation 

enzymes (Fig. 2) indicated that it could possess a targeting signal. AAEs have been reported 

Fig 3. Expression pattern of CDS and TcAAE1 in complete 

ovaries, ovaries without trichomes and trichomes. The 

expression level of house-keeping gene (GAPDH) was set to 

1.  
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to localize to several cell compartments, including chloroplast membranes (Schnurr et al., 

2002),  ER membranes (Zhao et al., 2010) and peroxisomes (Fulda et al., 2002). The 

biosynthesis of the acid moiety of pyrethrins was demonstrated to be in chloroplasts by 

feeding 
13

C-labelled glucose to pyrethrum seedlings (Matsuda et al., 2005). CDS has also 

been demonstrated to localize in chloroplasts by fusing its target signal peptides to GFP 

(Szkopińska and Płochocka, 2005)(Yang et al., Chapter 5). Thus, we propose that TcAAE1 

may also be targeted to chloroplasts.  

TcAAE1 showed highest homology to an AMP-dependent ligase from Ricinus communis, 

however, this enzyme was not further studied. The most well studied AAE family is from 

Arabidopsis. Their protein sequences were compared phylogenetically and grouped into 7 

distinct categories (Shockey et al., 2003; Shockey and Browse, 2011). Clade I contains the 

long-chain acyl-CoA synthetases (LACS). Clade II contains 3 members with limited sequence 

similarity to acetyl-CoA synthetase. Clade III represents the largest clade containing 

adenylases participating plant hormone signalling pathways. Clade IV contains 4-

coumarate:CoA ligases (4CLs). Clade V contains 4CL-like proteins. Clade VI is composed of 

plant-specific branch of AAE, but not yet characterized. Clade VII contains genes with 

unknown functions. Considering the narrow specificities of the other clades, it was expected 

that TcAAE1 belongs to the last two clades, as pyrethrins are secondary metabolites requiring 

specialized unique enzymes specific to plants, but not shared by all. Indeed, among all 

Arabidopsis AAEs, TcAAE1 showed the highest homology to Arabidopsis AAE2 belonging 

to Clade VI.  

Recently, a trichome acyl-activating enzyme, CsAAE1 from Cannabis sativa was 

characterized (Stout et al., 2012). This enzyme takes hexanoate to synthesize hexanoyl-CoA, 

Fig 4. HPLC chromatograms of enzyme assays with AAE1 candidate (b) or without it (a). The chromatograms were 

obtained at wavelength 260 nm. The UV spectrum of the peak eluting at 6.702 min was shown in the insert (c). (d), HPLC 

of enzyme assay of benzoic acid:CoA ligase (BZL) incubated with chrysanthemic acid. (e) HPLC of enzyme assay of 

TcAAE1 incubated with benzoic acid. 
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which is the precursor for the psychoactive and analgesic cannabinoids (e.g. Δ
9
-

tetrahydrocannabinol (THC)). Cannabinoids are known to be synthesized in glandular 

trichomes on female flowers, and Stout and co-authors showed that CsAAE1 like TcAAE1 is 

highly expressed in trichomes, and exhibits similar expression pattern as other genes involved 

in cannabinoid biosynthesis.  

In pyrethrin biosynthesis, the acid precursor of pyrethrins, chrysanthemic acid, was shown to 

be synthesized in trichomes and subsequently transported to the pericarp (Ramirez et al., 

2012). The concentrations of chrysanthemic acid in trichomes and pericarp were very low 

however (100-1000 fold), compared to the pyrethrin concentrations. It may be therefore that 

the free acid represents a breakdown product relative to a much higher concentration of CoA-

ligated product produced in the trichomes and transported out. AAEs have been reported to be 

involved in transportation of activated acids. For example, LACS was shown to be a 

necessary component for export of free fatty acids using kinetic labelling experiments (Koo et 

al., 2004). We propose that TcAAE1 may facilitate this transport of activated chrysanthemic 

acid. 
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Supplementary tables  

 

Table  S1. Quantitative RT-PCR Primer sequences of 31 CoA ligase contigs. 

primer name primer sequence primer name primer sequence 

Contig24997_Fw AGCACACTCCTCCATCAACTCC Contig24997_Rv GTTGTTCCGCCTGTGATCTTGG 
Contig12880_Fw CATCCAAAGAATCAGCCACGAC Contig12880_Rv AACCAACTCAGAAGCCTATCGC 
Contig2189_Fw TCACAAAATCAGTGGGCATAGC Contig2189_Rv TGAAGCATTGTGGCGAGACC 
Contig1662_Fw TCGGCAGGCAATGATAAGAGG Contig1662_Rv CAAGGCAAAGTTGTCAGCAAGG 
Contig1490_Fw GGAGGCAAGATGACAACAACG Contig1490_Rv TCCTCTCACTCCTCTCACATTC 
Contig8412_Fw ACCAGTCAAGTTATCACCATCC Contig8412_Rv TTTGGGCTCGGGTGCTTC 
Contig5540_Fw CCTCCACATTCCACAGCAAACG Contig5540_Rv GCCTGTTGTTGCGTCGATGTAC 
Contig4402_Fw ACACCAGGCTTGACCATAATCC Contig4402_Rv ACTCCGCACCACACCTTCC 
Contig27122_Fw TCGTTGTGTTCGTCTTGCTTCG Contig27122_Rv AAGAATTGCACCGGCCATTGG 
Contig5325_Fw ATTCACTCCTTGTCGTGCTTTG Contig5325_Rv ACGGTCTCACTGAAGTGTATGG 
Contig388_Fw GCAATGGGTCGTCGGAGATG Contig388_Rv ATGCTCGCCACACTTCTTAACC 
Contig2030_Fw ATCTGGAGTTGCACACAATCGG Contig2030_Rv TTCTGCCGCTTGTTGTCATACC 
Contig24254_Fw GGGCAAGCGGTGAAGTCTATAC Contig24254_Rv CGGTGAGTTTGGGAGTAGGATC 
Contig98_Fw AATGTCGGGCAGTTTCCAATGG Contig98_Rv AAAGCCACTCGCCTGATTTGC 
Contig522_Fw TGTCCTTCAGCAGCCAACTTAG Contig522_Rv AACTCGCACCATACAAGCTACC 
Contig16153_Fw ATTCGCTCGCACACATTTCCC Contig16153_Rv TCCACTACCCGCAAGAAGATCC 
Contig22542_Fw GCAGCCGCACTTCTAAATGATG Contig22542_Rv GCCAAGAGGAGATTGCCATACC 
Contig27133_Fw TGCCCCTTTCGCCGATAAGC Contig27133_Rv CCGAAGCAAGACGAACACAACG 
Contig4387_Fw GGGTGGAACTGAGCATTTAGGG Contig4387_Rv TCCAACGCCTCCATGATTGC 
Contig22693_Fw TGGAGCGACTTCCTTCATATGG Contig22693_Rv ATGTTTGTGGTGGCGTTTGC 
Contig549_Fw ACTGCTCCACCTGGTAGACG Contig549_Rv ACAACTGTCACACCTGCTTCC 
Contig14383_Fw TCCGAAGGACAGGTTGTTGAGG Contig14383_Rv CAGCATTGACGATCCCACTAGC 
Contig189_Fw TTGGCACACAAAGGCACACG Contig189_Rv TCAAGAACAGGCTGGGTGGTC 
Contig19635_Fw CCTAAGGTAGCGGACAGAGACG Contig19635_Rv GCATCAGCGGCCACTAACTTG 
Contig7785_Fw GGATGCGTTGGTTCTACACTGG Contig7785_Rv CGCTGCCTCAACCTTTCCTAAG 
Contig276_Fw GTATGCCAATTCGTTCCACAGC Contig276_Rv TTCCATCTCACACAAACTTGCG 
Contig8656_Fw GCCACCCTAGCATCCTGTTATC Contig8656_Rv TCGGTCCCGTTTATCGTAATCC 
Contig16842_Fw ATCACGGTCCTTGTGTTTCTGG Contig16842_Rv TCAACGGCACCACCAAATCG 
Contig3859_Fw TGCTTGGAGAACTCGGTGGTC Contig3859_Rv ACTTGAAGAGACGGGCACAGG 
Contig8455_Fw GGTGGTGCCGTTGATGATGC Contig8455_Rv CGCCTCTCTTGATTCTGTGACC 
Contig15865_Fw TGCCACATCGTGCCTCTTTG Contig15865_Rv TGAGCGGGAGATTATTGATGGG 

 
Table S2. RACE primer sequences of 3 contigs, contig 1490, 4402 and 5325. 

primer name primer sequence 

Contig1490_GSP2_1 CCTCTCACATTCATCAAGAGAGCCTCCA 
Contig1490_GSP1_1 AGGGCGGAGGCAAGATGACAACAAC 
Contig1490_GSP2_2 ACAACCGGACATCCGTCGTCTACGC 
Contig1490_GSP1_2 CGCCAAGTAAATCGGACTCCTGCGTA 
Contig1490_GSP2_3 GAAGGGCGGAGGCAAGATGACAACA 
Contig1490_GSP1_3 CCTCTCACATTCATCAAGAGAGCCTCCA 
Contig4402_GSP2 TGAGTTGAGGCTTGGTCTCCGAAA 
Contig4402_GSP1 TAGCCGCTCGCTCCAAGAAGCTAAT 
Contig5325_GSP2 GGCGTGCAACAACTGCAACCTCTAA 
Contig5325_GSP1 GGATTGGGGTTTCACGTCTCTCACG 
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Table S3. Gene expression level of 31 CoA ligase contigs in stage 3 ovary, stage 5 ovary  and seedling. 

Contig No. RGE ov3 RGE ov5 RGE seedling 
ratio of RGE 
ov3/ov5 

ratio of RGE 
ov3/seedling 

CDS 1.3024 0.0559 0.0001 23.30 15195.81 

Contig1490 0.0067 0.0004 N/A 16.73 N/A 

Contig4402 0.0078 0.0013 N/A 6.18 N/A 

Contig5325 0.0508 0.0037 N/A 13.89 N/A 

Contig4387 0.0310 0.0361 0.0010 0.86 29.78 

Contig12880 0.0031 0.0005 0.0001 5.98 23.87 

Contig98 0.1342 0.0269 0.0071 5.00 18.79 

Contig189 0.0214 0.0046 0.0022 4.68 9.73 

Contig22693 0.0139 0.0040 0.0025 3.51 5.61 

Contig8656 0.0107 0.0036 0.0032 2.98 3.35 

Contig2189 0.0548 0.0350 0.0178 1.57 3.07 

Contig2030 0.0005 0.0030 0.0002 0.16 2.25 

Contig5540 0.0068 0.0064 0.0053 1.05 1.28 

Contig549 0.1300 0.1020 0.1074 1.27 1.21 

Contig14383 0.0921 0.0884 0.0795 1.04 1.16 

Contig24997 0.0649 0.0759 0.0675 0.85 0.96 

Contig8455 0.1233 0.1471 0.1474 0.84 0.84 

Contig276 0.0681 0.0435 0.0839 1.57 0.81 

Contig522 0.0198 0.0153 0.0326 1.30 0.61 

Contig27133 0.0025 0.0023 0.0050 1.09 0.50 

Contig19635 0.0558 0.0923 0.1155 0.60 0.48 

Contig1662 0.0276 0.0632 0.0806 0.44 0.34 

Contig16153 0.0287 0.0811 0.1203 0.35 0.24 

Contig7785 0.0042 0.0048 0.0176 0.87 0.24 

Contig3859 0.0208 0.0481 0.0946 0.43 0.22 

Contig16842 0.0214 0.0756 0.1157 0.28 0.19 

Contig27122 0.0026 0.0037 0.0142 0.69 0.18 

Contig388 0.0009 0.0031 0.0080 0.30 0.12 

Contig15865 0.0004 0.0099 0.0046 0.04 0.09 

Contig24254 0.0010 0.0087 0.0125 0.11 0.08 

Contig22542 0.0031 0.0371 0.0604 0.08 0.05 

Contig8412 0.0034 0.0122 0.0697 0.28 0.05 

RGE, relative gene expression. The expression level of house-keeping gene (GADPH) was set to 1. 

Ov3, ovaries from stage 3 flowers. Ov5, ovaries from stage 5 flowers. 
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Supplementary Figures 

>TcAAE1 

TTTGAGTTGAGGCTTGGTCTCCGAAAATATTACATTATAAGGTATGGATCATATGGTCGTT

TTACACTCCAAAAGCTTCTATTCATATCACAATAAGCTCTCAAACGAGGCTACAAACTTC

AATGTGGAGAAGATCTTGAAGAAGTCGAAAAACACCAGGCTTGACCATAATCCCACGAA

ATTGGCAAACCGTTCTTTCAAGGTTCAATGTAAGAGCTCATCCCAAGAGTCTGATCCTTCG

TTCAATGAATCAAGGCAACCAATGGAAGGTGTGGTGCGGAGTGTAGCAAATTACGTCCCT

TTATCACCTATTAGCTTCTTGGAGCGAGCGGCTAAAGTTTATAGAGACCGGACATCTGTG

GTTTATGGATCCATCAAGTACACATGGGAAGAAACTCATCGTCGGTGTGTCAAGCTTGCA

TCTTCTCTGAACCGATTAGGGGTTGCTCGAGGAGACGTTGTAGCCATACTAGCACCAAAC

GTCCCTGCGATGATAGAACTTCATTTCGCAGTTCCCATGGCTGGAGCAATTATCTGTCCTC

TTAACACACGTCTCGATTCGAATATGATCACAACCCTTCTTGGACACTCAGAAACCAAGA

TCCTCTTTGTTGACTACCAACTACTTCATAAGGCCATGGAAGCTGTGAATCTTCTTAAAAA

AACACATTCAGAATCAAGACCACCTCTTCTTGTGGTAATATCTGAGGTCGACTCTCAATCT

CCATTGACGCTTGCTAATGAACATGAATATCAACGACTTGTTGAGGCTGGAGATACTGAT

TTCCCTATTATTCGACCAAACGATGAATGTGATCCTATCAGTCTAAATTATACATCCGGAA

CAACGTCAAAGCCAAAAGGGGTTATTTATAGTCATAGAGGGGCTTATCTTAACTCCCTCG

GCAGTGTGTTCATGCATGGTATGCGAGAGATGCCAACATACCTATGGTCAGTGCCTTTAT

TTCACTGTAACGGTTGGTGCTTGTCGTGGGGTATCGCTATAGTTGGTGGGACTAATGTTTG

CCTACGACGCAGTGATCCTAAAGACATCTTTGACAATATAGTCCGTCATAAGGTCACACA

TATGGGCGGAGCGCCAACTGTCTTGAACATGATTGCAAATTCTTTGGTGGCAAATCAGAA

ACCACTTCCACATAGAGTTGAGATCATGACCGCAGGTGCACCACCGCCTCCATCAATTTT

GTCAAAAATAAAGGgATTGGGGTTTCACGTCTCTCACGCTTACGGTCTCACTGAAGTGTAT

GGTCTATCGACTTGGTGTTTATGGAAGCCYGAATGGGATCTGTTGCCTATGGAAGAACAA

GGAAAACTCAAAGCACGACAAGGAGTGAATCACTTCGGAGTCGAGGATGTAGATGTAAA

AGATCCAGTTACCATGGAAAGCGTAAAAAGTGACGGAAGATCTACAGGTGAGATTATGT

TGAGAGGTAACACGGTCATGAGTGGGTACTTGAAGGATCCAAAAGCAACAGAAGATGCT

TTTGCTGCAGGATGGTTTAGAAGTGGTGACATTGGAATCAAACATCCAGATGGGTATATA

GAAGTGAAGGATCGGTTGAAAGACATTGTGATATCTGGTGGCGAGAATATATCTACTATT

GAGGTTGAATTTGTGATTTATAGACATCAAGCGGTTTTAGAGGTTGCAGTTGTTGCACGC

CCGGATGATTATTGGGGTCAAACTCCATGTGCATTTGTGAAATTAAAGGAAGGTTATCAC

GCTGATGCTCAAGAAATTATTCAGTATTGTCGAGATCATATGCCACATTATATGTCACCCC

GAACTGTTATTTTCCAAGATTTGCCCCGAAACTCGACTGGTAAGGTAGAGAAATCTGTGC

TGAGGGAGAAGGCAAATGGTTTAGGAAGTTTGTCTCATAAAAATGTATGACCTTTGTAAC

ATTTGCAATTAATAATATGTATTTATAAAAACTTAAAACCCAAAAAAAAAAAAAAAAAA

AAAAAAAGTACTCTGCGTTGA 

>ORF:44..1915 Frame +2 623AA 

MDHMVVLHSKSFYSYHNKLSNEATNFNVEKILKKSKNTRLDHNPTKLANRSFKVQCKSSSQE

SDPSFNESRQPMEGVVRSVANYVPLSPISFLERAAKVYRDRTSVVYGSIKYTWEETHRRCVKL

ASSLNRLGVARGDVVAILAPNVPAMIELHFAVPMAGAIICPLNTRLDSNMITTLLGHSETKILF

VDYQLLHKAMEAVNLLKKTHSESRPPLLVVISEVDSQSPLTLANEHEYQRLVEAGDTDFPIIRP

NDECDPISLNYTSGTTSKPKGVIYSHRGAYLNSLGSVFMHGMREMPTYLWSVPLFHCNGWCL

SWGIAIVGGTNVCLRRSDPKDIFDNIVRHKVTHMGGAPTVLNMIANSLVANQKPLPHRVEIM

TAGAPPPPSILSKIKGLGFHVSHAYGLTEVYGLSTWCLWKPEWDLLPMEEQGKLKARQGVNH

FGVEDVDVKDPVTMESVKSDGRSTGEIMLRGNTVMSGYLKDPKATEDAFAAGWFRSGDIGI

KHPDGYIEVKDRLKDIVISGGENISTIEVEFVIYRHQAVLEVAVVARPDDYWGQTPCAFVKLK

EGYHADAQEIIQYCRDHMPHYMSPRTVIFQDLPRNSTGKVEKSVLREKANGLGSLSHKNV* 

 

Prediction algorithms of signal peptides all predict the absence of targeting. However, it seems that 

there might still be a targeting signal because most homologies in the protein Nr database start after 
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amino acid 74 (MEGVV...)with proteins which themselves start with that conserved sequence and 

therefore lack such a targeting peptide. Marked underlined is therefore the predicted targeting signal. 

 

Fig S1. The cDNA sequence of chrysanthemic acid:CoA ligase, TcAAE1. 

 

 

Fig. S2 HPLC chromatograms of enzyme assays with benzoic acid:CoA ligase (b) or without it (a). The 

chromatograms were obtained at wavelength 260 nm. The UV spectrum of the peak eluting at 6.675 min was 

shown in the insert (c). 
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Plant-insect interactions are receiving increasing attention because of their importance in crop 

production. Among the many factors involved in these interactions, monoterpenes play an 

important role as they may mediate attraction of pollinators, repellence or deterrence of 

herbivores and attraction of natural enemies of herbivores. Overexpression of monoterpenes 

with repellent or deterrent effects could improve plant resistance to pest insects, such as 

western flower thrips (WFT), the most serious pest in several vegetable and flower crops 

world-wide. The aim of the study presented in this thesis was to increase the production of 

monoterpenes that are known to affect herbivorous insects to improve plant resistance to WFT 

through metabolic engineering.  

Production and metabolism of monoterpenes in transgenic plants 

The production of monoterpenes in plants can be achieved by overexpressing the 

corresponding monoterpene synthases. However, it is known, that the monoterpenes produced 

in such transgenic plants are often further converted to volatile or non-volatile derivatives or 

conjugates (Lücker et al., 2001; Aharoni et al., 2003). In our study, three monoterpene alcohol 

synthases were studied in different transgenic plants , i.e. linalool synthase (LIS) in transgenic 

chrysanthemum (Chrysanthemum morifolium Ramat.) (Chapter 2), geraniol synthase (GES) in 

transgenic maize (Zea mays) (Chapter 3) and chrysanthemol synthase (CHS) in transgenic 

tobacco (Nicotiana tabacum) (Chapter 5). LIS-overexpressing chrysanthemum and CHS-

overexpressing tobacco plants emitted large amounts of linalool and chrysanthemol, 

respectively. However, in GES-overexpressing maize no geraniol emission was detected. LC-

MS and NMR analysis showed that the geraniol produced in the transgenic plants was further 

oxidised to  geranic acid and then conjugated to malonyl-glucose by endogenous enzymes of 

maize. This is the first time that glycosylation with malonyl-glucose is reported for transgenic 

plants overexpressing terpene synthases. However, similar conjugation was also detected in 

LIS-overexpressing chrysanthemum and CHS-overexpressing tobacco. These results suggest 

that glycosylation with malonyl-glucose is a common strategy for plants to deal with excess 

terpenes. Lücker and co-authors (Lücker et al., 2001) reported for the first time the presence 

of a terpenoid glycoside conjugate in a transgenic plant. They showed that overexpression of a 

linalool synthase in petunia resulted in (S)-linalyl-β-d-glucopyranoside formation. The 

metabolic changes resulting from transformation with terpene synthases in terms of non-

volatile derivatives and conjugates were studied in more detail by others. In LIS Arabidopsis 

and LIS potato, for example, a range of glucosides of linalool and linalool-derivatives were 

reported (Aharoni et al., 2003; Aharoni et al., 2006). The identification of entirely new 

glycosylation types, such as terpenoid conjugations with malonyl-glucose, makes non-

targeted LC-MS analysis a necessary analytical complement to GC-MS to fully characterize 

and interpret the metabolic phenotype of transgenic, terpene synthase overexpressing plants. 

Also in the headspace of transgenic plants, volatile derivatives of the primary monoterpene 

alcohol products have been detected. Small amounts of (3E)-4,8-dimethyl-1,3,7-nonatriene 

(DMNT) were detected in the headspace of LIS chrysanthemum plants, but not in wild-type 

plants (Chapter 2). DMNT is derived from the sesquiterpene nerolidol, which is also a product 

of LIS when FPP is provided as substrate (Kappers et al., 2005). In our study, LIS was 

targeted to the plastids in transgenic chrysanthemum. The low emission of DMNT suggests 

that small amounts of FPP are available in the plastids. When LIS was targeted to the 

mitochondria, where larger amounts of FPP are available, substantial amounts of DMNT were 

emitted by Arabidopsis (Kappers et al., 2005). In plastid-targeted LIS-overexpressing 

Arabidopsis and potato, in addition to linalool, hydroxy-linalool and dihydrolinalool were 

detected in the headspace (Aharoni et al., 2003; Aharoni et al., 2006). However, these two 

volatiles were not detected in the headspace of LIS chrysanthemum (Chapter 2). Apparently, 

the hydroxylation and/or double-bond reduction of linalool are common but not universal in 
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different plant species. For GES, the overexpression in tomato fruits led to an increase in the 

already endogenously present geraniol as well as in ten volatile derivatives including geranyl 

acetate, geranial, geranic acid (Davidovich-Rikanati et al., 2007). In the GES-overexpressing 

maize the headspace of intact plants was not different from control maize, indicating that 

geraniol produced in the transgenic maize is efficiently converted to non-volatile derivatives. 

However, the detached leaves of GES maize emitted 5-fold more geranyl acetate than control 

leaves, suggesting that the release of geranyl acetate is wound-inducible in both GES-

expressing and control maize plants and dependent on the availability of geraniol as substrate, 

which is higher in the transgenic plants. Based on the above observations, it seems that 

glycosylation or malonyl-glycosylation of terpene alcohols is the rule rather than the 

exception in transgenic plants overexpressing these terpenes. Both the primary terpenes and 

their derivatives even when already present in the plant species will tend to increase when the 

corresponding terpene synthases are overexpressed using constitutive promoters. However, 

the nature and quantity of any new derivatives will depend on the difference in tissue-specific 

expression between the endogenous and ectopic promoter. The study on the terpene glycosyl 

transferases will be helpful if the accumulation of terpene glycosides would need to be 

controlled. Co-overexpressing these enzymes with terpene synthases could, for example, 

further increase the accumulation of terpene glycosides. On the other hand, when the emission 

of terpenes should be increased, the glycosyl transferases could be suppressed, or the terpene 

synthases could be introduced in cultivars/mutants that lack them.  

Growth and development of transgenic plants overexpressing monoterpenes  

Overexpression of monoterpenes, especially monoterpene alcohols, was sometimes shown to 

lead to strong effects on growth and development. For example, LIS-overexpressing 

Arabidopsis and potato were smaller and lighter green than wild-type control plants (Aharoni 

et al., 2003; Aharoni et al., 2006). GES-overexpressing tomato also showed lighter fruit 

colour because of a 50% decrease in lycopene content (Davidovich-Rikanati et al., 2007). In 

the present study, LIS chrysanthemum (Chapter 2) and CHS-overexpressing tobacco (Chapter 

5) also showed slower growth rate and lighter leaf colour compared to wild-type or empty 

vector control plants. However, GES-overexpressing maize plants (Chapter 3) did not differ 

from control plants in plant height, leaf colour and grain weight. Similarly, LIS-

overexpressing petunia plants were also visually indistinguishable from control plants (Lücker 

et al., 2001). In both latter cases, the products of the monoterpene synthases were completely 

converted to non-volatile glycosides in the transgenic plants as described above.  

The strong growth and colour phenotypes of transgenic plants with high levels of gene 

expression could be due to direct phytotoxicity of the produced monoterpene alcohols 

(Lewinsohn et al., 2001), or to insufficient availability of isoprenoid precursors for other 

essential metabolites such as carotenoids, chlorophylls and gibberellins (Aharoni et al., 2003). 

In this context, it is remarkable, that when monoterpene alcohols were not released in free 

form, but fully converted to non-volatile glycosides or when the monoterpenes did not have 

an alcohol functional group and immediately emitted, the transgenic plants maintained their 

wildtype appearance. For example, the growth and development was not affected in 

transgenic tobacco releasing limonene, β-pinene and γ-terpenine (Lücker et al., 2004), or in 

transgenic spike lavender (Lavandula latifolia) releasing limonene (Muñoz-Bertomeu et al., 

2008). Direct phytotoxicity therefore arguably contributes most to the sometimes observed 

growth and colour phenotypes. 

Roles of monoterpenes and their derivatives in WFT resistance 

In earlier work, several monoterpenes have been tested as pure compounds for their effects on 

WFT. While some of them, including linalool, geraniol, nerol and citronellol, induced 
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significant attraction of WFT at 10% (v/v) (Koschier et al., 2000), other monoterpenes, 

including thymol and carvacrol, showed anti-oviposition effects on WFT at 0.1% and 1% (v/v) 

(Sedy and Koschier, 2003). In the research presented in this thesis, the response of WFT was 

tested using LIS-expressing chrysanthemum and GES-expressing maize (Chapters 2 and 3) as 

well as on chrysanthemum leaves infiltrated with pyrethrins (Chapter 4). The data show that 

WFT are attracted by the smell of linalool, but deterred by the taste of linalool glycosides, 

putatively identified as conjugates of linalool to malonyl-glucose and pentose-hexoses. In 

GES-overexpressing maize, in which geraniol was efficiently converted to non-volatile 

geranoyl-6-O-malonyl-β-D-glucopyranoside, the behaviour of WFT was not affected.  

Terpene glycosides are regarded as transport and storage forms of terpenes in plant tissues 

(Winterhalter et al., 1997). They may be involved in plant resistance against insects by direct 

deterrence (Pankoke et al., 2010), which is illustrated by the deterrence of linalool glycosides 

to WFT in our LIS-overexpressing chrysanthemum. Flowers of various plant species 

accumulate many terpenes as glycosides to high levels (Watanabe, 1993). In some rose 

cultivars, nearly half the petal monoterpenes are present as glycosides (Ackermann, 1989). In 

the case of LIS-overexpressing chrysanthemum, it is not clear yet, which specific linalool 

glycoside is responsible for the deterrence to WFT, but the finding suggests that terpene 

glycosides present in flowers may be involved in protecting them from pest insects while the 

volatile flower terpenoids attract pollinators. Another interesting example of terpene 

glycosides with insect resistance property is iridoid glycosides, a group of glycosides of 

monoterpene derivatives that are found in over 50 plant families (Jensen, 1991). They have 

been demonstrated to have deterrent effects toward generalist insect herbivores (Bowers and 

Puttick, 1988; Biere et al., 2004). The proposed mechanism of this effect is that the iridoid 

glycosides are hydrolysed upon feeding and the resulting iridoid aglycone can denature amino 

acids, proteins and nucleic acids (Konno et al., 1999). We assume that the mechanism of 

deterrent effects of linalool glycosides on WFT may be similar to that of iridoid glycosides. 

The lack of effect in GES-overexpressing maize, therefore, may be due to the malonyl group 

in the accumulated non-volatile geranoyl-6-O-malonyl-β-D-glucopyranoside, as malonyl 

conjugation can prevent the glycosides from glycolysis (Heller and Forkmann, 1994). 

Pyrethrins are ester derivatives of monoterpenes and show strong effects against many insects 

(Casida, 1995). The primary mode of action of pyrethrins is keeping the voltage-gated ion 

channels open in insect neurons   (Davies et al., 2007). Up to 80% of WFT adults died within 

3 days when feeding on leaves of pyrethrum. Both in vitro and in planta assays showed that 

pyrethrins exhibit a strong negative effect on WFT (Chapter 4). As pyrethrins not only deter 

WFT from feeding from the plants but also negatively affect WFT reproduction, producing 

pyrethrins in transgenic plants could be an effective way to improve plant resistance to WFT. 

Potential to create WFT-resistant plants by overexpressing pyrethrins  

The engineering of WFT resistance by overexpression of pyrethrins requires a thorough 

understanding of the biosynthesis and regulation of pyrethrin biosynthesis in pyrethrum. 

Knowledge of the biosynthesis of the acid moieties has strongly increased since the genes 

catalysing the biosynthesis of chrysanthemol (chrysanthemol synthase, CHS, Chapter 5) and 

chrysanthemic acid (chrysanthemic acid synthase, CAS; Ramirez, 2013) have been 

characterized recently. CHS is able to catalyse two consecutive reactions from DMAPP to 

chrysanthemoyl diphosphate and then to chrysanthemol. Then, chrysanthemol is oxidized to 

chrysanthemal and chrysanthemic acid, catalysed by a single cytochrome P450 enzyme, 

chrysanthemic acid synthase (CAS). The modification from chrysanthemic acid to pyrethric 

acid is through oxidation and methyl esterification. It may require anywhere between one to 

three enzymes to perform the hydroxylation and subsequent oxidation to the acid of the vinyl 
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methyl group and subsequently 1 methyl transferase to perform the methyl esterification 

(Godin et al., 1963). 

The alcohol moieties - jasmolone, cinerolone and pyrethrolone - with which the resulting 

pyrethric acid esterify resemble the plant hormone jasmonic acid. They were proposed to be 

derived from cis-jasmone or 7-hydroxy-jasmonic acid (Matsuda et al., 2005; Matsuo et al., 

2012). Jasmonic acid is suggested to be the precursor of cis-jasmone through dehydrogenation, 

double bond migration and decarboxylation as a vinylogous β-keto acid (Crombie, 1999). In 

the next step, jasmone is supposed to be hydroxylated into jasmolone, which might be the 

precursor of cinerolone and pyrethrolone through modifications of the side-chain (Crombie, 

1999). 7-Hydroxy-jasmonic acid, the hydroxylation product of jasmonic acid, could be 

converted to jasmolone through decarboxylation and dehydrogenation. Therefore, depending 

on the biosynthesis route, at least 3 or 4 enzymes involved in the conversion from jasmonic 

acid to jasmolone need to be further characterized to understand the biosynthesis of the 

alcohol moieties.  

The ester linkage between acid and alcohol moieties is finally formed by sequential action of 

two enzymes, an acyl-CoA ligase (Chapter 6) and an acyl-transferase (Kikuta et al., 2012). So, 

in total at least 8 enzymes are required to produce the most basic one of the six pyrethrin 

esters, jasmolin I, from the precursors DMAPP and jasmonic acid which are universally 

present in plants (Fig. 1). For the formation of the major pyrethrin esters, pyrethrin I and II, at 

least 1 and 3 extra enzymes are required, respectively. Once all these genes are characterized, 

a major task remains to introduce them into a different plant species and to express them in 

such a way that indeed pyrethrins are produced and properly sequestered. Such a project may 

have more success if one stays close to the original source of the pathway, pyrethrum. 

Introduction into the commercial ornamental crop chrysanthemum is a logical choice, but also 

sunflower might be possible. The transformation of multiple genes has been achieved in 

several plants. The genes were either introduced in a sequential manner in subsequent 

generations of plants or by crossing (Zhang et al., 2011), or more efficiently, they were 

introduced at once and on one locus via a multi-gene vector (Farhi et al., 2011). This new 

system recently even enabled transformation of up to nine genes at once (Zeevi et al., 2012). 

Other candidate compounds for host-plant resistance against WFT 

Considering the complexity of overexpressing pyrethrins in transgenic plants, overexpression 

of compounds involved in host-plant resistance against WFT might be an alternative approach 

to improve plant resistance to WFT. Host-plant resistance against WFT has been identified in 

many wild or cultivated accessions, including cotton (Trichilo and Leigh, 1988), pepper (Fery 

and Schalk, 1991), rose (Gaum et al., 1994), tomato (Krishna Kumar et al., 1995), cucumber 

(Soria and Mollema, 1995) and chrysanthemum (De Jager et al., 1995). Non-targeted 

metabolic analysis (metabolomics) of thrips-resistant and -susceptible plants has been 

employed to reveal which compounds correlate with host-plant resistance. In Senecio hybrids, 

two pyrrolizidine alkaloids jaconine and jacobine-N-oxide and a flavonoid, kaempferol 

glucoside, were identified to be related to thrips resistance in this way (Leiss et al., 2009). In 

chrysanthemum, WFT-resistant plants contained higher amounts of the phenylpropanoids 

chlorogenic acid and feruloyl quinic acid, and bioassays with artificial diets showed that 

chlorogenic acid at 1% and 5% significantly deterred WFT (Leiss et al., 2009). In tomato, 

acylsugars were identified as a resistance factor against WFT (Mirnezhad et al., 2010). In 

pepper, seven compounds were identified to be correlated with resistance to WFT, including 

tocopherols, an unknown sequiterpene, an unknown phytosterol and three other unknown 

compounds (Maharijaya et al., 2012). The identification of these metabolites involved in host-

plant resistance could facilitate the relative straightforward breeding of WFT resistant crops. 
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However, the effectiveness of these compounds against WFT still requires more detailed 

studies. 

Outlook 

Metabolic engineering of monoterpenes in plants is a promising way to manipulate plant-

insect interactions. However, the production of monoterpenes and their derivatives in plants is 

controlled by many factors besides the overexpressed monoterpene synthases. In this thesis, 

glycosylation of monoterpenes was identified as an important factor since it does not only 

affect the monoterpene emission but is also directly involved in insect resistance. This 

suggests that more attention should be given to the biosynthesis of specific monoterpene 

glycosides which may have deterrent effects against pest insects. In addition, metabolic 

engineering of monoterpenes will also benefit from studies on other factors, such as enzyme 

targeting, regulatory elements (promoters), upstream signalling pathways, multi-enzyme 

complexes, substrate supply and transporters (Jirschitzka et al., 2012).  

Pyrethrins are ideal compounds for host-plant resistance against WFT because of their strong 

negative effect on feeding, reproduction and survival of WFT. Identification of the genes 

involved in pyrethrin biosynthesis, as described in this thesis, will enable the metabolic 

Fig. 1.  Biosynthetic pathway of the pyrethrins. The identified enzymes involved in biosynthesis are indicated with circles. 

Alternative routes are indicated with dashed arrows. DMAPP, dimethylallyl diphosphate; CPP, chrysanthemyl diphosphate; 

CHS, chrysanthemol synthase; CAS, chrysanthemic acid synthase; AAE, acyl activating enzyme; CoA, coenzyme A. 
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engineering of pyrethrins in transgenic plants. However, a number of missing genes still need 

to be identified. The regulation of pyrethrin biosynthesis also awaits further study. Once 

pyrethrins are introduced into transgenic plants, these plants could be resistant to a broad 

spectrum of insects, as shown in in vitro studies with pyrethrins (Casida, 1995). For WFT 

control, it could also be interesting to co-express linalool, an attractant of WFT, and 

pyrethrins, as such plants could serve as a trap to kill WFT and reduce WFT reproduction. 
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Summary 

Western flower thrips (WFT), Frankliniella occidentalis, is one of the most serious pests in 

several vegetable and flower crops worldwide. It is a highly polyphagous insect and a vector 

of several plant viruses of which the Tomato Spotted Wilt Virus and the Impatiens Necrotic 

Spot Virus are the most important. Feeding by WFT causes light coloured patches on leaves, 

petals and fruits, stunted plant growth, and flower and fruit deformation. Synthetic pesticides 

has been widely used to control  WFT. However, the frequent use of these pesticides leads to 

rapid resistance in WFT, and they are a threat to the environment. Therefore, it is desirable to 

identify natural sources of resistance effective against WFT to allow breeders to improve 

resistance in crop species. 

Monoterpenes, as constituents of floral scents and plant resins, play an important role in 

pollinator attraction and in direct and indirect plant defence against pest insects and pathogens. 

For example, linalool is a common floral scent constituent and found to be emitted from the 

leaves by many plant species after herbivore attack. In earlier work, linalool-overexpressing 

Arabidopsis has been tested for resistance to the pest aphid, Myzus persicae, in dual-choice 

assays, and transgenic plants significantly repelled or deterred the aphids. A linalool synthase 

(LIS) was overexpressed in chrysanthemum plants and studied the effect of transgenic plants 

on WFT (Chapter 2).  The volatiles from leaves of transgenic plants were significantly 

attractive to WFT, however, WFT were significantly deterred by the content of leaf discs 

from transgenic plants. The headspace analysis showed that the volatiles of LIS 

chrysanthemum leaves were strongly dominated by linalool, but, they also emitted small 

amounts of the C11-homoterpene, (3E)-4,8-dimethyl-1,3,7-nonatriene, a derivative of 

nerolidol. In addition, LC-MS analysis showed that several non-volatile linalool glycosides 

were significantly increased in the leaves of LIS chrysanthemum compared with leaves of 

wild-type plants. A geraniol synthase (GES) was overexpressed in maize to see whether WFT 

could be affected by geraniol or its derivatives (Chapter 3). However, geraniol produced in 

transgenic maize was all efficiently converted to non-volatile glycoside, geranoyl-6-O-

malonyl-β-D-glucopyranoside, and GES maize had no effect on WFT behaviour. These 

studies demonstrate complex effects of terpene engineering on the metabolic changes in 

transgenic plants. These results suggest that the release/glycosylation of terpenes should be 

controlled to improve plant resistance against WFT upon metabolic engineering with terpene 

synthases.   

The research subsequently focused on a well-known natural pesticide—pyrethrins. Pyrethrins 

comprise a group of six closely related esters, derived from the monoterpene alcohol 

chrysanthemol. Pyrethrins are the economically most important natural insecticide with broad 

uses in homes, agriculture and stored products for more than 150 years. The effect of 

pyrethrins against WFT was evaluated on its survival, feeding behaviour, and reproduction 

both in vitro and in planta (infiltrated chrysanthemum leaves) (Chapter 4). Pyrethrins at 0.1% 

(w/v) and 1% (w/v) exhibited a significantly negative effect on feeding, and the effects of 

natural concentrations of pyrethrins in pyrethrum leaves can explain the observed high 

mortality of WFT feeding on pyrethrum leaves. After the finding of this strong effect of 

pyrethrins on WFT, the study on the biosynthetic pathway of pyrethrins was continued in 

order to introduce pyrethrin biosynthesis in transgenic plants. A second function of the 

published enzyme, chrysanthemyl diphosphate synthase (CDS) was identified (Chapter 5). 

CDS has been reported to catalyse the formation of chrysanthemyl diphosphate (CPP). 

However, CDS was demonstrated to also catalyse the next step of CPP into chrysanthemol 

both in vitro and in vivo. CDS was proposed to be renamed as a chrysanthemol synthase (CHS) 

using DMAPP as substrate. The gene involved in the next step converting chrysanthemol to 

chrysanthemic acid has also been characterized (Ramirez, 2013). A chrysanthemic acid:CoA 
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ligase, which is involved in the final stage of pyrethrin biosynthesis was also studied (Chapter 

6). The function of this enzyme was confirmed in vitro and the encoding gene showed a 

similar expression pattern as CHS in several different tissues and flower developmental stages. 

The gene responsible for making the final esters is a GDSL-lipase-like acyltransferase (Kikuta 

et al., 2012). We assume still three to four enzymes are required for the biosynthesis of the 

basic one of the six pyrethrin esters, jasmolin I, from the precursors DMAPP and jasmonic 

acid which are universal in plants. And four to five extra genes are required for the complete 

biosynthesis of all six pyrethrin esters. 

In this study, new insights were gained for the biosynthesis of monoterpenes and their 

derivatives and conjugates, as well as for plant resistance to WFT mediated by these 

compounds. The characterization of genes involved in pyrethrin biosynthesis paves the way 

for metabolic engineering of this natural pesticide in other crops. 
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Samenvatting 

Californische trips (CT), Frankliniella occidentalis, is wereldwijd een van de meest 

problematische plaaginsecten in verscheidene groente en bloemengewassen. Het is een 

uitzonderlijk polyfaag insect en vector van verscheidene plantenvirussen, waarvan het 

tomatenbronsvlekkenvirus TSWV en het Impatiens-vlekkenvirus INSV de meest belangrijke 

zijn. Het voedingspatroon van CT veroorzaakt licht gekleurde vlekjes op bladeren, petalen en 

vruchten, alsook verminderde groei en vervorming van bloemen en vruchten. Synthetische 

pesticiden worden breed ingezet tegen CT. De frequente inzet van deze pesticiden leidt echter 

tot snelle ontwikkeling van resistentie in CT en ze vormen een bedreiging voor het milieu. 

Om die reden is het wenselijk om natuurlijk bronnen van tripsresistentie te identificeren 

teneinde veredelaars in staat te stellen de resistentie in hun gewassen te verbeteren.  

Monoterpenen zijn componenten van de geur van bloemen en secreties van planten, en in die 

hoedanigheid spelen ze een belangrijke rol in de aantrekking van bestuivers en in de directe 

en indirecte afweer tegen plaaginsecten en pathogenen. Linalool is bijvoorbeeld een algemeen 

voorkomende component van de geur van bloemen, maar wordt ook afgegeven door de 

bladeren van veel plantensoorten wanneer ze worden belaagd door herbivoren. In eerder werk 

werden Arabidopsisplanten die linalool produceerden getest op hun resistentieniveau tegen de 

perzikluis, Myzus persicae. Keuze-experimenten toonden aan dat de bladluizen significant 

afgestoten werden door de transgene linaloolplanten. Een linalool synthase (LIS) werd in dit 

promotieonderzoek tot expressie gebracht in chrysant en het effect op CT werd bestudeerd 

(Hoofdstuk 2). De vluchtige stoffen uit bladeren van transgene planten bleken significant 

aantrekkelijk voor CT, maar CT werd afgestoten door de inhoudsstoffen van de geteste 

bladponsen van transgene planten. Analyse van plantengeur toonde aan dat geur van LIS-

chrysanten sterk gedomineerd werd door linalool, alhoewel er ook kleine hoeveelheden van 

de C11-homoterpeen, (3E)-4,8-dimethyl-1,3,7-nonatriene, een derivaat van nerolidol, 

aangetroffen werden. Bovendien werd met LCMS analyse aangetoond dat verscheidene niet-

vluchtige linaloolglycosiden significant hoger waren in de bladeren van LIS-chrysanten 

vergeleken met de wildtype-planten. Een geraniol synthase (GES) werd tot overexpressie 

gebracht in mais in een andere studie om te zien of CT beïnvloedt zou worden door geraniol 

of derivaten daarvan (Hoofdstuk 3). In transgene mais werd alle geraniol echter efficient 

omgezet in het niet-vluchtige glycoside, geranoyl-6-O-malonyl-β-D-glucopyranoside, en 

GES-mais had in dit geval geen effect op het gedrag van CT. Deze studies tonen aan dat er 

complexe effecten zijn van de genetische modificatie van terpeen biosyntheseroutes op de 

inhoudsstoffen van transgene planten. De resultaten suggereren dat, bij de genetische 

modificatie van de terpeen biosynthese, de emissie, dan wel de glycosylering van terpenen 

beter gereguleerd moeten worden om CT-resistentie in planten te bewerkstelligen. 

Het onderzoek hield zich vervolgens bezig met een bekend natuurlijk pesticide, pyrethrine 

genaamd. Pyrethrines omvatten een groep van zes nauw verwante esters, die afgeleid zijn van 

de monoterpeen alcohol chrysanthemol. Pyrethrines vormen al meer dan 150 jaar het 

economisch meest belangrijke natuurlijke insecticide met brede toepassingen in huishoudens, 

de land- en tuinbouw en in de bescherming van de oogst. Het effect van pyrethrines op de 

overleving, het gedrag en de reproductie van CT werd zowel in vitro als in planta 

(geinfiltreerde chrysantenbladeren) bestudeerd (Hoofdstuk 4). Concentraties van pyrethrines 

van 0.1% (w/v) en 1% (w/v) bleken een significant negatief effect op het voedingsgedrag te 

hebben en de natuurlijke concentraties van pyrethrines in pyrethrumblad zelf konden de hoge 

mortaliteit van CT op pyrethrumblad verklaren. Op basis van dit sterke effect van pyrethrines 

op CT, werd vervolgens een onderzoek uitgevoerd met de doelstelling om de pyrethrine 

biosyntheseroute op te helderen en in transgene planten te introduceren. Een tweede functie 

van het bekende enzym, chrysanthemyl difosfaat synthase (CDS) werd geidentificeerd 
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(Hoofdstuk 5). Van CDS was bekend dat het de vorming van chrysanthemyl difosfaat (CPP) 

katalyseerde. Ik toonde echter aan dat CDS ook de volgende omzetting van CPP in 

chrysanthemol zowel in vitro als in vivo uitvoert. Het CDS enzym werd daarom hernoemd tot 

een chrysanthemol synthase (CHS) enzym dat dimethylallyldifosfaat (DMAPP) als substraat 

gebruikt. Het gen dat chrysanthemol in chrysanthemylzuur omzet werd ook gekarakteriseerd 

(Ramirez, 2013). Een chrysanthemylzuur:CoA ligase, betrokken in de laatste stap van de 

pyrethrine biosynthese werd ook geïsoleerd (Hoofdstuk 6). De functie van dat enzym werd 

bevestigd in vitro en van het gen werd aangetoond dat het een vergelijkbaar expressiepatroon 

vertoonde als het CHS gen in verschillende weefsels en ontwikkelingsstadia van de bloemen 

van pyrethrum. Het gen verantwoordelijk voor de synthese van de pyrethrine esters is een 

GDSL-lipase met een ongebruikelijke acyltransferase activiteit (Kikuta et al., 2012). We 

veronderstellen dat er nu nog drie tot vier tot nog toe onbekende enzymen nodig zullen zijn 

om met de universele precursors DMAPP en jasmonzuur, jasmoline I te kunnen maken. 

Jasmoline I wordt gezien als de precursor van de overige pyrethrines. Synthese van die 

overige pyrethrines vereist de opheldering van mogelijk nog eens vier tot vijf enzymen. 

In dit onderzoek werden niet alleen nieuwe inzichten verworven in de biosynthese van 

monoterpenen en hun derivaten en conjugaten, maar ook in de effecten daarvan op de 

resistentie van planten tegen californische trips. De karakterisering van verscheidene genen 

betrokken bij de biosynthese van pyrethrines heeft de mogelijkheid om de biosynthese van 

deze insecticiden te introduceren in andere gewassen een stuk dichterbij gebracht. 
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