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1. INTRODUCTION 

1.1. T h e n e e d o f s o i l m e c h a n i c s i n a g r i ­

c u l t u r e 

The need of soil mechanics in agriculture is encountered in pro­

blems such as compaction of the soil by agricultural machinery, 

execution of drainage works, workability of the soil, traction per­

formance of agricultural machines, bearing capacity of soils, con­

dition of sport fields on different soils and under varying moisture 

conditions. 

In all these examples there are forces acting on the soil which 

give rise to stresses and strains in the soil. In agriculture one is 

interested in this stress-strain relationship in order to predict the 

compaction of the soil after a certain activity in which the soil has 

been exposed to forces produced by the wheight of heavy machinery. 

For the evalution of traction performance one must know the maximum 

shear strength of the soil. 

There are different theories to describe the soil behaviour under 

compression and or tension. We will treat several of these theories 

which are called failure theories from which the Coulomb-Mohr failure 

law is most commonly used (chapter 2). 

The soil parameters such as shear strength and stress-strain 

relationship etc. can be measured with several different test devices. 

The different test devices do not always give the same values for the 

soil parameters under investigation. Here an effort is made to give 

an evaluation of these methods (chapter 3). 

We will also indicate the most accurate test to investigate a 

certain soil mechanical problem in agricultural engineering. The best 



procedure to estimate the strength, compactibility etc. of the soil 

is to run tests that duplicate the field conditions as closely as 

possible, same degree of saturation, same total stress, and if pos­

sible the same pressure in the liquid phase. 

Because the values for the soil parameters of most common agri­

cultural soils are not readily available in literature it was found 

useful to collect these data and to indicate the influence of soil 

density, moisture content and clay content on these parameters. 

As the Coulomb-Mohr failure theory is used most widely at present 

we give the value of c and <(> , the analytical cohesion and friction 

angle respectively, and the shear strength for the most common soils 

under different moisture and compaction conditions. These values have 

been found in literature and were obtained with different test pro­

cedures and sometimes not specified failure criteria and moisture 

and density conditions (chapters 4 and 5). The accuracy of the values 

is + 25% and one should use the values for preliminary calculations 

only. 

2. YIELD CRITERIA AND FAILURE THEORIES 

2 . 1 . T h e c o n c e p t s o f y i e l d a n d f a i l u r e 

i n s o i l s 

The terms yield and failure cannot be applied indiscriminately 

to soils. The failure of brittle materials, such as cast iron on 

rock, occurs as a fracture with little or no plastic yielding. This 

fracture can be readily identified with failure. 

The term 'yield' in the field of plasticity is used to describe 

the onset of plastic deformation, or, conversely, the upper limit 

of elastic action (see fig. 2.1.). 

The precise definition of yield in an actual material is related 

to the characteristics of the stress-strain curve of the material; 

only when there is a sharp break between the elastic portion (recove­

rable deformation) and the plastic portion (non-recoverable defor­

mation) of the stress-strain curve yield can be accurately defined. 
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Fig. 2.1. Typical stress-strain curves for various kinds of materials, 

The yield stress 

From YONG (1975) 

The yield stress a occurs at point B in a-f• 

In the fig. 2.1. a perfectly plastic material exhibits a conti­

nued strain performance at the yield stress if the stress is sus­

tained, as in fig. 2.1. d and f. The term plastic strain which is 

commonly used denotes irrecoverable strain performance as in curve 

BC in fig. 2.1. a. In this case, strain hardening is shown by BC. 

The term fracture implies the appearance of distinct surfaces of 

separations in the body, whereas yield is used to describe the onset 

of plastic deformation with the resulting unrestricted plastic de­

formation defined as flow. 'Failure' in a general sense includes 

both fracture and flow. The curve DE shows what happens when the 

compressive load is withdrawn and replaced by a tensile force. 



2.2. P r i n c i p a l s t r e s s s p a c e 

A convenient way to examine the state of stress producing yield 

on failure in a material specimen is to plot the principal stress 

components ol, a2 and a3 at yield or failure in principal stress 

space (fig. 2.2.). 

Bounding failure surface 

All failure stresses are 

assumed to lie on the 

bounding surface 

Fig. 2.2. Principal-stress space showing principal stresses at time 

of failure (or yielding). Diagram shows the Mohr-Coulomb 

failure surface as an example. From YONG (1975) 

Point 1 in fig. 2.2. represents a ol, a2 and a3 combination pro­

ducing yield in a material in a particular stressing situation. 

Similarly point 2 represents another ol, a2 and a3 principal stress 

combination obtained at yield for another stressing situation. 

By applying various stress situations the line joining the points 

are a common octahedral plane (i.e. U plane) will define a surface 

which is called the yield surface. The function f (ol, a2, a3)' is 

thus called the yield function. 

If points 1, 2 and 3 represent stress situations at failure, the 

surface defined is termed a failure surface and the function f (ol, 

a2, a3) will be called a failure function or failure theory. This 

will be examined in detail in a later section. 



2.2.1. Various types of modules in stress-strain relationship 

Concepts from the theory of elasticity 

If we apply an uniaxial stress aZ to an elastic cylinder (fig. 

2.3.) there will be a vertical compression and a lateral expansion 

such that, 

«"f (1) ex = ey = "y£
Z

 (2) 

where 

e , e , e = strains in the x, y, z directions, respectively 

E = Young's modules of elasticity 

y = Poisson's ratio 

If shear stress xzix are applied to an elastic cube, there will be a 

shear distortion such that 

c „ T Z x I o \ 

f zx = -g— (3) 

where three G = shear modules. Equations 1 to 3 define the three 

basic constants of the theory of elasticity: E, G and y. 

Actually only two of these constants are needed since 

G - 27Ä7) <4) 

For an elastic material with all stress components acting, we can 

employ the principle of superposition to obtain: 

1 
ex = — {ax - y (ay+az)l (5a) 

ey = Y -[ay - y (az+ax) } (5b) 

e z = — 4 a z - y (ax+ay)\ (5c) 

fxy - ̂ p (5d) 

fyZ = ̂  (5e) 

fzx = I ^ (5f ) 

the volumetric strain is 

AV /c . 
— = ex + ex + ez (5g) 
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For the special case where ax=ay=az=ao and xxy=Tyz=Tzx=o the volume 

change equals 

AV 3ao ,. 0 

The bulk modulus B is defined as 

a AV/V 3(l-2y) (b) 

Still another special type of modulus is the constrained modulus D 

which is the ratio of axial stress to axial strain for confined 

compression. This modulus can be computed from eq. (5) by setting 

ex=ey=o. 

Thus 

ax = ay = -r—- az (7) 

D _ E (1-y) ( 

- (l+y)0-2u) ( 8 ) 

Uniaxial loading and confined compression involve both shear strain 

and volume change. 

2.3. Y i e l d C r i t e r i a 

2.3.1. The maximum-stress theory 

The oldest theory of yielding and failure, sometimes known as 

Rankine's theory, postulates that the maximum principal stress in 

the material determines failure regardless of the magnitudes and 

senses of the other two principal stresses. This gives rise to its 

name "maximum-stress theory". Thus yielding in a stressed body in 

accordance with this theory begins when the absolute value of the 

maximum stress reaches the yield point stress of the material in 

simple tension or compression. 

Plotted in principal stress space the yield surface representing 

this theory is a cube as shown in the projected view of principal 

stress space (on to the a\, a2 axes) in fig. 2.4. 

The theory is contradicted in solid materials where three equal 

tensile or compressive stresses cannot produce a plastic but only 

an elastic deformation. 

For those materials in which hydrostatic compressive stresses do 
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Fig. 2.4. Representation of maximum shear-stress equation. (Timos-

henko, 1956, published by Van Nostrand-Reinhold Co., 1955 

Litton Educational Publ. Inc.) from Yong, 1975 

cause plastic deformation, the theory is contradited by the fact 

that failure in simple tension in an isotropic material would be 

along inclined planes on which neither the tensile nor compressive 

stress is a maximum. 

However, there is some merit in the theory when one considers 

the strength of non-isotropic materials, particularly layered ma­

terials, where there is a pronounced difference in strength proper­

ties in different directions, e.g., a layered rock might have almost 

no tensile strength in the direction normal to the layers and would 

fail in tension by splitting along these layers. 

The theory has also found some use in a modified form to explain 

the cleavage fracture of crystals. 

With these few exceptions the theory finds no application in 

modern practice. 



2.3.2. The maximum elastic-strain theory 

The maximum elastic-strain theory, attributed to St. Venant, 

assumes that a ductile material begins to yield when either the 

maximum (elongation) strain equals the yield point strain in simple 

tension, i.e. 

£ i _ _ - L ( a 2 + a 3 ) - °y ^ n s i l e > (2.1.) 

or the minimum (shortening) strain equals the yield point strain in 

simple compression, 

|°3-4(gï+a2)l = ay (co;Pressive> (2.2.) 

where the principal stresses ol, a2 and o3 are considered positive 

in tension, and are ordered such that a\>o2>a3 and u, E and ay are 

Poisson's ratio, Young's modulus and yield point stress respectively. 

In principal stress space the yield surface corresponding to 

theory consists of two straight three-sided pyramids in inverted 

positions relative to each other, having equilateral triangles as 

sections normal to the axis which coincides with one of the space 

diagonals, e.g. al=o~2=a3 (see fig. 2.4.) 

The slopes of the sides of the pyramids would depend on Poisson's 

ratio. This theory is again contradicted by material behaviour under 

hydrostatic tensile or compressive stresses. 

2.3.3. The constant elastic-strain energy theory 

The quantity of strain energy per unit volume of the material 

is used as the basis for determining failure in the constant elastic-

strain-energy theory. If we equate the strain energy for a given 

state of stress at failure to the energy stored at yield in simple 

tension the criterion may be written as: 

2 
^|2 = _ L (al2+a22+o32) --H- (ala2+a2a3+a3al) (2.3.) 

Again, the performance of materials under hydrostatic stresses 

indicates that the elastic energy can have no significance as a li­

miting condition. 



2.3.4. The maximum shear-stress theory 

The maximum shear-stress theory assumes that yielding begins 

when the maximum shear stress in the material equals the maximum 

shear stress at the yield point in simple tension. 

The maximum shear stress in a material under some general state 

of stress (al>a2>a3) is (al-a3)/2 and the maximum shear stress in a 

tension test is equal to half the normal stress, ay/2. The condition 

for yielding is thus given as: 

(al-a3) = ay (2.4.) 

This theory was advanced by Tresca in the period 1865 to 1870 

and is generally attributed to him. It is a direct consequence of 

the Coulomb theory for a frictionless material. The maximum shear-

stress theory (Coulomb theory) has been extended by Navier to 

account for pressures normal to the failure plane, which leads to 

its reference as the Coulomb-Navier theory. 

The concept of maximum shear stress to explain a fracture type 

failure in a cohesive soil appears in the work of Collin (1846). 

Tresca's contribution to this theory appears to account for a 

yielding type of failure. The results shown by Guest (1900) supported 

this criterion and the theory which is thus sometimes referred to as 

Guest's Law. 

In its most useful form the theory may be stated as follows: 

xmax = r — = constant (2.5.) 

In uniaxial tension, al=a0, a2=a3=0 and xmax=a0/2. In uniaxial 

compression, al=a2=0, a3=-a0. Thus Tmax=-(a0/2). 

Hence the yield condition requires that: 

Tmax = — (al-a3) = -y (2.6.) 

Eg. 2.6. requires that the yield stress of the material in either 

simple tension or compression must be equal, which is approximately 

true in the case of mild steel. 

The "slip lines" (failure lines on planes) which appear at the 

onset of plastic flow should be inclined at an angle of 45 with 

respect to the directions of the principal stress al and a3, that is, 

10 



coincident with the directions of maximum shearing stress. 

The condition of flow does not contain the intermediate principal 

stress, a2, which can have any value between o\ and o3. 

The flow condition in its most general form may be expressed by 

three equations: 

al-o-3 = +dy; a2-al = +ay; a3-a2 = +ay (2.7.) 

where ay is the absolute value of the yield stress in tension or 

compression. 

Thus the surface of yielding corresponding to the maximum shear 

stress theory consists of three sets of parallel planes which define 

a straight hexagonal prism in o\, o2, a 3 space whose axis coincides 

with the space diagonal al=a2=a3, i.e., in the positive quadrant 

the axes. 

Cross-sections of the prism are regular hexagons (fig. 2.4.). 

2.3.5. The constant elastic strain-energy-of-distortion theory 

This theory is also known as the constant octahedral shearing-

stress theory. 

The theory is variously attributed to Huber, Henckey and Von 

Mises, although it is supposed to have been first mentioned by 

Maxwell in some private correspondence. 

This theory states that plastic yielding begins when the strain 

energy of distortion given by W , 

where : 

Wn = ^S- (al-a2)2 + (a2-o-3)2 + (a3-al)2 (2.8.) 

reaches a critical value. For a material with a pronounced yield 

point in simple tension, ay, we have al=ay and a2=a3=0. Subsitution 

into the above formula gives: 

w D - ^ ( o y ) 2 

Thus the condition for yielding based on the distortion energy 

theory is : 

(al-a2)2 + (a2-a3)2 - (a3-al)2 = 2(ay)2 (2.9.) 

11 



A useful form of the theory is obtained by passing a plane through 

the unit points on the principal axes. Thus it is normal to a space 

diagonal fig. 2.4. and 2.5. a\ , o2, cr3 space i.e., principal stress 

space; there are thus eight such planes. The normal to each octahedral 

plane has the direction cos (1//3) to each of the coordinate axes. 

Normal and shearing stresses on the octahedral plane are called 

"octahedral stresses". 

Compression envelope 

Spoce diagonal 

Extension envelope 

J2«y 

Fig. 2.5. Failure envelopes from Yong, 1975 

Thus the normal octahedral stress, aoct, is: 

aoct = -j- (al+a2+a3) =̂ --Jl (2.10.) 

where Jl = al+a2+o3 = first stress invariant 

The octahedral shearing stress is: 

aoct = ~ {(o\-a2)2 + (a2-a3)2 + (a3-al)2t 2 {< V (2.11.) 

Thus any state of stress consisting of three principal stresses 

may be resolved into two component states of stress, 

12 



a) a component consisting of equal tensile (or compressive) stresses 

acting in all directions, and 

b) a component state of stress consisting of the eight octahedral 

shearing stresses. 

Thus from egs. 2.9 and 2.11 

9(aoct)2 = 2(ay)2 

and hence: 

/2 
aoct =—J- ay (2.12) 

Eq. 2.12 is thus a statement of the maximum energy of distortion 

theory. The theory further shows that at the plastic limit the 

octahedral shearing stress in the material is constant, which de­

pends on the yield point of the material in simple tension or 

compression. The yield stresses in simple tension and compression 

are thus assumed to be equal. 

The yielding surface defined by this theory is a straight cir­

cular cylinder whose axis coincides with the space diagonal al=o2=a3. 

Since planes normal to the axis of the cylinder are octahedral 

planes, the radius of the cylinder equals the octahedral shearing 

stress. The radius of the cylinder is therefore /2/3 ay. This is 

similar to the Von Mises yield criterion. 

2.4. F a i l u r e t h e o r i e s 

The failure theory proposed by MOHR (1900) followed the earlier 

work of Coulomb and Navier which considered the state of failure as 

a shear failure. As it turns out, both the Coulomb-Navier theory and 

the extended maximum shear-stress theory are special cases of the 

Mohr theory. 

The theory which considers failure by both yielding and fracture 

(assuming slippage as a mode of failure) provides a functional re­

lationship between normal and shear stresses on the failure plane, 

i.e. 

r= f(a) 

13 



.where T = shearing stress along the failure plane 

a = normal stress across the failure plane. 

From the two-parameter nature of the theory the curve defined 

by this functional relationship may be plotted on the T, a-plane 

(fig. 2.6). 
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Fig. 2.6. Mohr's failure theory plotted in the T-a plane from Yong, 

1975 

Since changing the sign of T merely changes the direction of 

failure but not the condition for it, the curve must be symmetrical 

about the a-axis. The curve so obtained which is termed the Mohr 

rupture envelope, represents the locus of all points defining the 

limiting values of both components of stress (r and a) in the slop 

planes under the different states of stress al, a2, a3 to. which 

the material may be subjected. 

The Mohr envelope thus reflects a property of the material 

which is independent of the stresses imposed on the material. 

The theory is attractive for use in studying the shear strength 

14 



of soils since there is no requirement that the material obeys Hooke's 

law (for ideal elastic material) or that Poisson's ratio be constant: 

also, the strength and stiffness of the material in tension and com­

pression need not to be equal. 

The Coulomb equation, r=c+a tan $ , represents a special case of 

the Mohr theory of strength in which the Mohr envelope is a straight 

line inclined to the normal stress axis at angle cf. 

The use of the Coulomb equation to represent the Mohr envelope 

in the Mohr diagram is called the Mohr-Coulomb theory. 

Mohr's hypothesis states that failure depends upon the stresses 

on the slip planes and failure will take place when the obliquity 

of the resultant stress exceeds a certain maximum value. 

It is also stated that "the elastic limit and the ultimate 

strength of materials are dependent on the stresses acting on the 

slip planes". 

The Mohr representation of stresses acting on the three principal 

planes is shown in fig. 2.7. 

Fig. 2.7. Mohr representation of stresses in three-dimensional system 

from Yong, 1975 

15 



Stresses on any plane within the body must be within the shaded 

area. The slope of the line joining the origin and point A gives the 

obliquity of stress. The maximum inclination of stress will be given 

by the targets to the largest circle. 

Failure occurs on planes where stresses are represented by points 

B and C. These stresses act on planes which are parallel to the dia­

meter of the intermediate principle stress. Therefore the diameter 

of the largest Mohr circle and the magnitude of the stresses at points 

B and C are independent of the intermediate principal stress, a2. 

With the assumption that al is the intermediate principal stress, 

the largest of three circles representing the limiting state of 

stress will be of diameters (al-a3) and centred at (ol+o3)/2 along 

the a-axis, as seen in fig. 2.6, taking due account of the algebraic 

sign of the stresses. Since the two parallel sets of slip planes 

which occur when an isotropic specimen has been stressed slightly 

beyond the plastic limit by a state of homogeneous stress are sym­

metrically inclined with respect to the directions in which the major 

and minor principal stresses act, and the two plane systems intersect 

each other along the direction in which the intermediate principal 

stress acts, Mohr assumed that the intermediate principal stress is 

without influence on the failure of a material. 

Accordingly, some point on the perimeter of the circle of dia­

meter (al-03) must represent the limiting stress condition. 

The theory thus affords a method of devising a failure theory 

for a specific material, i.e., establishing its Mohr rupture envelope, 

from actual test results. 

In practice a series of similar specimens is subjected to dif­

ferent stresses and brought to failure (as in the triaxial test). 

The various Mohr's stress circles are plotted for the limiting 

states of stress and the unique failure stress on the failure plane 

for each test is taken as the point of common tangency between a 

smooth limiting curve (or envelope) and the various (al-o3) circles. 

By taking the points of common tangency as representative of 

the a and r stresses on the failure plane, a state of homogeneous 

stress in an isotropic material is assumed. Due to experimental 

16 



shortcomings, however, one may not necessarily obtain a state of 

homogeneous stress and thus the inferred stresses at the point of 

common tangency for the envelope, obtained experimentally, will not 

in all likelihood represent the actual stresses on the failure plane. 

It follows then that the predicted location of the failure plane, 

based on the common tangency points might be in error. 

The possible discrepancy between the actual Mohr rupture envelope 

and an experimentally obtained envelope is shown on fig. 2.6. 

Actual Mohr rupture envelopes are often curves. However, for 

soils the curvature is usually not great and it has proved useful to 

approximate the envelope by a straight line, at least over a limited 

range of normal stress. 

The equation of a straight line in the T, a-plarie is the Coulomb 

equation r=S=C+a tan <f>,. 

From fig. 2.8. the following formula may be derived: 

D o1-a3 ,al+à3. . 
R = — ~ — = c cos <}> + (—-—Jsin $ 

(2.13) 

Fig. 2.8. Properties of a straight-line Mohr envelope, a\ and a3 are 

limiting effective stresses at failure. Compressive stresses 

considered positive in deriving eg. 8.13. from Yong, 1975 
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The parameters c and $ in eg. 2.13 are the analytical parameters 

of "cohesion" and "friction angle". They are a direct consequence of 

the application of the Mohr-Coulomb theory and need not bear any 

physical semblance to the real material properties of cohesion and 

friction of soil. 

When the physical conditions of failure in the test specimen are 

met, e.g. little or no volume change, development of failure plane, 

etc., the analytical parameters will more closely correspond and 

reflect the physical material (mechanistic) parameters. 

Eg. 2.13 may be manipulated in many ways to state the failure 

criterion in various forms. For example, by adding a3 sin c(> to both 

sides of the equation and by rearranging terms, we will obtain: 

. (al-a3) (l-sin<(>) = c cos <j> + o3 sin $ (2.14) 

Eg. 2.14 which was used by Skempton and Bishop gives straight 

lines when (al-a3)/2 is plotted against 3. By multiplying both sides 

of eg. 2.13 by 2 and rearranging terms, we get: 

al(l-sin<(;) = 2c cos $ + a3 (l+sin<f>) (2.15) 

which gives straight lines when al is plotted against cr3. This last 

equation has been used as a plotting method by Rendulic and more 

recently by HENKEL (1959). 

Expressed in its most general form, the failure surface corres­

ponding to the Mohr-Coulomb condition to failure is: 

[(oi-a2) -{2c cos(|>+ (oi+a2) sin 4> } 2 j X 

[(a2-a3)2 -{.2c cos $ + (a2+a3) sin <f> } 2 1 X 

j ( a 3 - a l ) 2 - { 2 c cos <|> + (a3+al) s in<|>}21 = 0 (2 .16) 

The failure surface defined by eg. 2.16 is a pyramid with the 

space diagonal al=a2=a3 as axis and a cross-section which is an 

irregular hexagon with nonparallel sides of equal length (see fig. 

2.9). 
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Mohr-Coulomb 

TT Plane 

so tropic line 

°5 = Constant plane 
Stress paths in conventional 
triQxial tests 

Failure locus 

Fig. 2.9. Mohr-Coulomb failure surface in principal stress space 

showing stress paths in conventional triaxial tests, 

(from YONG, 1975) 

The projection of this irregular hexagon on the plane al+a2+o3 = 

constant (i.e. a plane at night angles to the space diagonal or an 

octahedral plane) is shown in fig. 2.10. The three criteria are seen 

to coincide for compressive tests but the strength in a tensile test 

is seen to be less for the Mohr-Coulomb failure theory. 
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Extended von Mises 

/ . Extended Tresca 

Mohr -Coulomb 

Projection 
on plane 

Fig. 2.10. Failure surfaces-Mohr Coulomb and extended yield criteria, 

(from YONG, 1975) 

More details about soil behaviour and failure laws can be found 

in the work of SCHOFIELD (1968) and KURTAY (1970). 
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3. METHODS FOR MEASURING SHEAR STRENGTH OF SOILS 

3.1. P e n e t r o m e t e r 

3.1.1. Principle 

The first penetrometer developed was a cone test which utilized 

a cone with an apex angle of 90 , resting on a cohesive soil sample 

and progressively loaded (fig. 3.1.). 

1/ ,1 • /// // 

Fig. 3.1. Principle of operation of the pocket penetrometer, 

(from SANGLERAT, 1972) 

The depth of penetration into the sample for each load increment 

was measured. The area A of the imprint of the cone into the sample 

was calculated from the measured depth of penetration. The ratio of 

the load to the surface area of the imprint was a constant, called 
2 

the soil resistance to the cone penetration and measured in kg/cm or 

in bar. 

The ratio increased as the strength of the clay increased, so 

that: 

kc=P/A where k=constant, c=cohesion, P=load and A=area line 

imprint 

This may also be written as: 

2 

2 

P = n kc (h tan ß/2)' 

where ß = apex angle of the cone, and for ß = 90 P = II kc h 
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From experimental data, it is possible to determine the value of 

the constant k, and once it is known, cohesion c may be obtained. 

3.1.2. The static penetrometer 

Here the cone is driven into the soil with a constant speed and 

the resistance to penetration i6 measured. 

3.1.2.1. I n f l u e n c e o f p e n e t r a t i o n s p e e d 

o n p e n e t r a t i o n r e s i s t a n c e . On clay the in­

fluence 01 the penetration speed has a considerable influence on the 

penetration resistance. FREITAG (1968) found a relationship between 

strength ratio and penetration speed as shown in fig. 3.2., where 

the strength ratio is the soil strength measured at a speed of 180 

cm/min devided by the strength at actual speed. 

500 1000 1500 2000 
penetration speed cm/min 

Fig. 3.2. Strength ratio versus penetration speed from FREITAG (1968) 

Normally the penetration speed is less than + 50 cm/min in 

research measurements and the influence of different penetration 

speed is negliable. 

However one should prefer a mechanical operated penetrometer 

which is driven into the soil at a constant speed and where the 

resistance is registrated automatically. 

23 



3 . 1 . 2 . 2 . E f f e c t - o f t i p a n g l e a n d s u r f a c e 

m a t e r i a l o n t h e c o n e i n d e x . GILL (1968) found 

an in f luence of the t i p angle of the cone on the cone index (pene­

t r a t i o n - r e s i s t a n c e force devided by the maximum c ross s e c t i ona l a rea 

of the penetrometer t i p ) f i g . 3 . 3 . 

kg /cm 2 CONGAREE soil 
200r 14.1 

MOLOKAI SOil DECATUR Soi l 

I50-

z IOO-7, 

50 

I0 20 30 40 50 60 0 I0 20 30 40 50 60 O I0 20 30 40 50 60 
TIP ANGLE <0) 

X TEFLON CONE 

Fig. 3.3. Effect of tip angle and surface material on cone index 

from GILL, 1968 

The U.S. Army Waterways Experiment Station at Vicksburg, Miss, 

reported data to show that tip shape had little influence on the 

cone index values of soils. In U.S. the constante-rate type of soil 

penetrometer with tip angle of 30 and maximum surface area of 0.5 

sq. in- is often used. In Europe a cone with a tip angle of 60 and 
2 a maximum surface area of 10 cm is more common. 

One must always be aware of the difference between friction 

on the shaft and the resistance to the cone itself when the values 

of two different types of penetrometers are compared. 

3 . 1 . 2 . 3 . C o r r e l a t i o n b e t w e e n c o n e r e s i s ­

t a n c e , t h e c o h e s i o n a n d a n g l e o f i n t e r ­

n a l f r i c t i o n . In a g r i c u l t u r a l s o i l mechanical problems we 

a r e mostly i n t e r e s t e d in the f i r s t 2 or 3 meters of the s o i l . There-
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fore the de Beer theory for the interpretation of penetrometer test 

data for shallow foundations may be of interest. 

The de Beer theory is based on the formulas derived by 

K. Buisman of the Delft Laboratory of soil mechanics which, in turn, 

were derived from the Prandtl-Caquot equations (SANGLERAT, 1972). 

For practical purposes the resistance at the point of the pene­

trometer could be expressed by the following equation (from experi­

mental data of Keverling Buisman, Delft) 

[ 2 'Il <k n tan* c r 2 .II <k H tan* ,-, 
po tan2 (J+|) e + t £ m ^{ tan (4+J) e * - 1}J 

eg. 1 

where qc = cone resistance 

po = overburden pressure at the same level of the cone. 

The empirical coefficient of 1.3 is due to the conical shape of 

the penetrometer point (10.0 - cm section, apex angle of 60 ). 

When dealing with sands, c=o and knowing the value of qc, the angle 

of internal friction may be calculated from equation 1 . 

When dealing with homogeneous cohesive material, the value of 

qc must be determined at two locations at different depths. This 

gives a set of two equations with two unknowns, namely, the cohesion 

c and the angle of shearing resistance*. These two unknowns can 

theoretically be calculated. De Beer has produced practical calcu­

lation methods for the solution of the equations. 

Other practical values for the cohesion of normally consolidated 

sandy clay are between qc/10 and qc/20, depending on the type of 

penetrometer used. 

From Sanglerat page 201, 

"It has been shown here how important it is to know the type of 

penetrometer used in field tests to determine by which formula 

the cohesion may be evaluated". 

For deeper penetration tests de failure surface above and below 

the cone is very similar tot that presented in fig. 3.4. 
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Fig. 3.4. Critical embedment: logarithmic spiral equation Y> = d 
ß tan <j> 

Y = d e from SANGLERAT (1972) 

The print resistance is actually equal to twice the value ob­

tained from the Buisman-Prandtl formula (eq. 1 ) . It can therefore 

be concluded that the failures occuring both above and below the 

point each contribute about 50% of the resistance of penetration 

of the cone. 

For cohesive soils <(> = 0 one has found the formula 

cu = (qc - Pb) / 13,4 

where qc = priot resistance of the penetrometer in bar 

cu = cohesion 

Pb = overburden pressure at the depth of the test. 

At shallow depths, the value of Pb is often so small that it may 

be ignored. 

The coefficient of 13.4 used with the data of the penetrometer 

tests gives results which are in very good agreement with those of 

the vane shear tests. 
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3.1.3. The dynamic penetrometer - Standard Penetration test 

3.1.3.1. P r i n c i p l e . The most widely used penetration test 

is the "standard penetration test", which consists of driving a 

spoon into the ground by dropping a 63,4 kg weight from a height of 

0,76 m (LAMBE and WHITMAN, 1969). 

The penetration resistance is reported in number of blows of the 

weight to drive the spoon 0,3 m. 

Tabel 3.1. presents a correlation of standard penetration resis­

tance with relative density of sand and a correlation of penetration 

resistance with unconfined compressive strength of clay. 

Tabel 3.1. Standard Penetration Test 

Relative Density 
of Sand Strength of Clay 

Penetration 
Resistance N Relative 

(blowd/ft) Density ' 

Penetration Unconfined Compressive 
Resistance N Strength 

(blows/ft) (tons/ft2) Consistency 

0-4 Very loose 0-15 

4-10 Loose 15-35 

10-30 Medium 35-65 

30-50 Dense 65-85 

>5J0 Very dense 85-100 

< 2 

2-4 

4-8 

8-15 

15-30 

>30 

<0.25 

0.25-0.50 

0.50-1.00 

1.00-2.00 

2.00-4.00 

>4.00 

Very soft 

Soft 

Med ium 

Stiff 

Very stiff 

Hard 

From Terzaghi and Peck, 1948. From Lambe, 1969 

Relative density D = 

e = void ratio = 

e max - e 
e max - e min 

void volume 

X 100% 

solid volume 

e min = void ratio of soil in densest condition 

e max = void ratio of soil in loosest condition 

e = actual void ratio 
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The standard penetration test is a very valuable method of soil 

investigation. It should, however, be used only as a quide, because 

there are many reasons why the results are only approximate. 

As laboratory tests show the penetration resistance depends on 

factors other than relative density. The penetration resistance 

depends on the confining stress and or the type of sand. The in­

fluence of sand type on penetration resistance is particularly large 

at low densities. 

Another factor that may have a marked influence on the penetra­

tion resistance in a sand is the pore pressure condition during the 

measuring operation. 

Experience has shown that the determination of shear strength 

of a clay from the penetration test can be very unreliable (LAMBE 

and WHITMAN, 1969). 

Fig. 3.5. shows the correlation between friction angle and 

penetration resistance for a sand (Lambe and Whitman). 
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Fig. 3.5. Correlation between friction angle and penetration resis­

tance (From PECK, HANSEN and THORNBURN, 1953). From LAMBE, 

1969 
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3 . 1 . 3 . 2 . C o r r e l a t i o n b e t w e e n N - v a l u e s o f 

t h e s t a n d a r d p e n e t r a t i o n t e s t a n d d y ­

n a m i c s h e a r m o d u l i . Dynamic shear modulus i s one of 

the most important parameters in the response ana lyses of s o i l d e ­

p o s i t s dur ing an ea r thquake . 

Because the standard penetration test is a simple and rapid 

means of soil exploration, extensive efforts have been made to cor­

relate the results of the test with a number of important soil pro­

perties which otherwise require laborious sampling and testing tech­

niques for their determinations. 

OHSAKI and IRVASAKI (1973) report that from statistical analyses 

of accumulated data on dynamic characteristics of various soil de­

posits measured by means of seismic exploration it has been found 

that shear moduli for small shear strain level are well correlated 

with N-values of the standard penetration test, and that their in­

terrelation may be expressed by a simple, approximate eg. 

G = 1200 N0'8 (tons/sq. meter) 

where : 

G = shear modulus 

N = n-values of the standard penetration test (blows/ft) 

OHTA ET ALL (1972) found G = 1390 N°' 7 2 

They found for different soils different correlation coefficients 

and other values for the coefficients (see fig. 3.6). 
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Fig. 3.6. Shear moduli and N-values (OHTA ET AL, 1972) from OHSAKI, 

1973 

Relationships between Poisson's ratio and shear modulus under 

dynamic and static conditions have also been pointed out by Ohsaki 

and Iwasaki. 

3.1.4. Summary 

In present publications the principal approach encountered is 

to relate the penetrometer resistance for a certain type of soil 

on a specific location with the cohesion and angle of internal 

friction or other soil mechanical parameters which are determined 

with other measuring devices (i.e. uniaxial tests, unconfined com­

pression test, vane tests, shear tests). 

This for the sake of rapideness and cheapness of the penetrometer 

test compared with the other tests. 

For static soil mechanical parameters the static penetrometer is 

preferable above the dynamic penetrometer because of the lack of 

theoretical background for the dynamic penetrometer. 

For dynamic soil mechanical parameters one can use the dynamic 

penetrometer as showed OHSAKI (1973). 
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3 .2 . V a n e t e s t 

3 . 2 . 1 . P r i n c i p l e 

The vane is forced into the ground and then the torque required 

to rotate the vane is measured. The shear strength is determined 

from the torque required to shear the soil along the vertical and 

horizontal edges of the vane (see fig. 3.7). 

^ 
M 

H 

M = r(2lID2H + ^IID3) where 

M = torque to shear in soil kg/cm 
2 

r = shearing stress kg/cm 

D = diameter vane cm 

H = height of vane blades cm 

Fig. 3.7. Vane blades 

The two chief advantages of the vane test are 

1) the test is conducted in situ and avoids the problems of stress 

release and sample disturbance 

2) the test is relatively inexpensive compared with conventional 

tube sampling and laboratory testing. 

The restrictions of the test are 

1) it can only be used in rather uniform cohesive soils which are 

fully saturated 

2) it does not yield samples by which an accurate identification 

of the materials in a boring profile can be made 
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3) it imposes a failure surface on the soil which may not be rele­

vant to the problem being studied (EDEN, 1966) 

4) inserting the vane into the soil disturbs the soil or the "un­

disturbed sample". 

With the vane test one cannot apply a normal load to the soil. 

So the shear strength is only measured with normal zero, hence one 

cannot distinguish between cohesion and friction components in the 

shear strength formula. 

Therefore the vane test is only used in cohesive soils wittig 

supposed to be zero and so the shear strength is completely due to 

the cohesion. 

Fig. 3.8. gives different types of vanes. 
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A—standard vane, 0 to 1.0 ton/ft2 range 
B—high-capacity vane adapter, 0 to 2.5 ton/ft2 range 
C—sensitive vane adapter, 0 to 0.2 ton/ft2 range 

Acorn nut 

Calibrated 
dial number plate—-f 
Stop pin 

Snap ring 
Insert 

Spacer 

Teflon washer 

Handle 

3 Teflon washers 
(.020 thick) 
6-32 Set screw 

Spring 

/4"-20 Socket head 
cap screw 

6-32 Set screw 

Shear vane 

Fig. 3.8. Hand-operated torsional vane shear device from SIBLEY 

(1966) 
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3.2.2. Influence of rate of loading on the vane shear strength 

SIBLEY (1966) found the relationship between shear strength and 

rate of stress as showed in fig. 3.9. 
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Fig. 3.9. Relationship between torsional vane shear strength and 

rate of stress, Bootlegger Cove clay (from SIBLEY, 1966) 

A high loading rate gives a higher strength especially in soils 

with a low shear strength. 
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3.3. S h e a r a n n u l u s 

This instrument has been developed in order to overcome the 

fact that the outermost elements must move considerable further 

than those in the center of the vane. Shearing stress is easily 

calculated for a narrow annulus by using polar coordinates (agri­

cultural handbook no. 316 U.S.D.A.). 

An elemental area is given by 

r de dr 

and assuming a constant shear stress T acting on the annulus area, 

the force on the elemental area is 

T rdedr 

The force acts at a distance r from the center so that the moment 

at the center of the annulus is 

Sr2d6 dr 

Integrating over the appropriate area gives the total moment, which 

has the form 

M = ;rI fln S r2 d 0 d r 
r2 0 

Performing the integration gives 

M = 2nS (rl3-r23) 

Fig. 3.10. Shear annulus 
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In fact one should also count for the sidewall friction 

{ 2(2nrjXr]xH) + 2(2IIr2xr2xH)}P, where 

H = depth of annulus in the soil 

P = metal to soil friction factor or when the ring is open to one 

side the shear strength of the soil. 

KUIPERS (1966) found that an oiled annulus gave a value for the 

cohesion that was + 10% lower than that of a not oiled one. 

C0HR0N (1962) discussed the problem of the uniform normal stress 

distribution under a loaded shear head. He concluded that the 

assumption of uniform pressure distribution might lead to errors 

of the order of + 25%. The shear vane data, however, reveal no 

such startling discrepancies in the test sand, when compared with 

the results of the translational shear test. Therefore, for all 

practical purposes, the assumption of uniform pressure is a valid 

one. 

Fig. 3.11. Normal annulus with cross and coupling. From KUIPERS 

(1966) 
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3.4. S o l i d s h e a r h e a d 

The shearhead is a disc with grousers. On the disc one can 

apply a normal load. With this instrument one can find the shear 

strength under different normal load conditions and so the cohesion 

and the angle of internal friction can be found (COH. ON, 1962). 

The formula for the shear strength 

where 

P = 
3M 

211 R3 

T = shear strength 

M = torque to shear in the soil 

R = diameter of disc (see fig. 3.12) 

Fig. 3.12. Torsional shearhead. From BAILEY (1965) 
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3.5. D i r e c t s h e a r t e s t 

The direct shear test is the oldest form of shear test upon 

soil, first used by COULOMB in 1776. The essential elements of the 

direct shear apparatus are shown by the schematic diagram in fig. 

3.13. The soil is held in a box that is split across its middle. 

A confining force is applied and then a shear force is applied so 

as to cause relative displacement between the two parts of the box. 

The magnitude of the shear forces is recorded as a function of the 

shear displacement, and usually the change in thickness of the soil 

specimen is also recorded. 

Top block and yoke free 
to move up or down to 
allow for volume changes 

Top block 

Yoke 

Shear plane 

Top and bottom blocks fitted with 
teeth for gripping sample. Solid 
spacer blocks between teeth used 
in undrained tests, porous stone 
blocks in drained tests 

Fig. 3.13. Cross section through direct shear box (B.K. Hough -

Basic Soils Engineering. Copyright, 1957 the Ronald 

Press Co. N.Y.). From LAMBE, 1969 

The shear box may be either square of circular in plan view. 
2 

Typically the box will be 20-25 cm and about 2,5 cm in height. The 

normal load P is applied either by a loading press or by means of 

dead weights. In most devices the normal stress will range from 0 
2 

to about 10 kg/cm . The shear force S is applied either by dead 

weights (stress controlled test) or by a motor acting through gears 

(strain controlled test). 

When testing dry soils the duration of the direct shear test 

is similar to that of the triaxial test. 
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The shear box can also be used in the field (see fig. 3.15). 
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Fig. 3.15. Scheme used for field direct shear tests from ZEITLER, 

1966 
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3.6. T r i a x i a l t e s t 

3.6.1. Types of triaxial test 

BISHOP and HENKEL (1957) 

i) undrained tests. No drainage, and hence no dissipation of pore 

pressure, is permitted during the application of the all-round 

stress. No drainage is allowed during the application of the 

deviator stress, 

ii) consolidated-undrained tests. Drainage is permitted during the 

application of the all-round stress, so that the sample is fully 

consolidated under this pressure. No drainage is allowed during 

the application of the deviator stress, 

iii) drained tests. Drainage is permitted throughout the test, so 

that full consolidation occurs under the all-round stress and 

no excess pore pressure is set up during the application of the 

deviator stress. 

Axial load 

Pressure, gauge Air release 
valve 

Rubber 
ring-

-\ 
Water-

Rubber 
ring 

Loading ram 

—Top cap 
—Porous disc 

—Flexible tube 

—Sample enclosed 
in a rubber 
membrane 

—Porous disc 
Sealing ring 
=$= 
=£= 

To cell pressure control Connexions for drainage or 
pore pressure measurement 

Fig. 3.16. Diagrammatic layout of the t r i ax i a l t e s t 
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3.6.2. Urtdrained test on saturated cohesive soils 

The test is carried out on undisturbed samples of clay, silt 

and peat as a measure of the strength of the natural ground; and 

on remoulded samples of clay when measuring sensitivity or carrying 

out model tests in the laboratory. 

The deviator stress as failure is found to be indepent of the 

cell pressure (with the exception of fissured clays and compact 

silts at low cell pressure). 

If shear strength is expressed as a function of total normal 

stress by Coulomb's empirical law: 

Tf = cu + atg<(>4 

cu = apparent cohesion with respect to changes in 

<t>4 = angle of shearing resistance total stress 

Then it follows that, in this particular case 

<t>4 = 0 

cu = \ (ol-o3) 

Total stresses 

hH \-u-A 

Fig. 3.17. Mohr stress circles for undrained tests on saturated 

cohesive soils 
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The shear strength of the soil, expressed as the apparent co­

hesion, is used in a stability analysis carried out in terms of 

total stress, which, for this type of soil, is known as the $ = 0 

analysis. 

For saturated clays both the major principal effective stress 

a = (al-u) and the minor principal effective stress a (=a3-u) are 

independent of the magnitude of the cell pressure applied (u = pore 

pressure). Hence only one effective stress circle is obtained from 

these tests and the shape of the failure envelope in terms of effec­

tive stress cannot be determined. 

Because the sample as used here has another stress history than 

the soil in situ no pore-pressure measurements are made during un-

drained tests on saturated samples. 

The failure stress is taken to be the maximum deviation stress 

which te sample can withstand. 

Where the stress-strain curve has a pronounced peak this value 

is unambiguous. In some soils which have softened after being heavily 

consolidated, and in remoulded soils, failure takes the form of 

plastic yield at a constant stress and occurs only after very large 

axial strains. Termination of the test at an arbitrary strain of 10% 

or even 20% may lead to an underestimate of strength. 

3.6.3. Undrained test on partly saturated cohesive soils 

The deviator stress at failure is found to increase with cell 

presse. This increase becomes progressively smaller as the air in 

the voids is compressed and passes into solution and ceases when 

the stresses are large enough to cause full saturation. The failure 

envelope expressed in terms of total stress is thus non-linear, 

and values of Cu and <(>4 can be quoted only for specific ranges of 

pressure (see fig. 3.18). 
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