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1. INTRODUCTION 

Rainfall interstation correlation functions can be derived analy­

tically from hypothetical storm models. In several publications the 

theory has been developped and it was shown that for three storm 

functions as suggested in the literature the analytic solution can 

be obtained. In this report an extension is given in that the frac­

tion of dry days that might occur is used as a parameter as well. 

Finally results are given in dimensionLess from using area size L as 

unit of length. 

2. REVIEW 

Publications devoted to the analytic approach of interstation 

correlation functions, written in the last few years, are the fol­

lowing : 

- Empirical treatment of daily rainfall data observed in the eastern 

part of the province of Gueldre in the Netherlands to obtain cor­

relation functions for each month (STOL, 1972). 

- A first note on the possibility that rainfall interstation corre­

lation functions can be obtained analytically (STOL, 1973). 

- Basic theory, description of the model, statistical properties and 

the transformation of storm function variâtes to gage time series 

variâtes (STOL, 1977a). 

- The solution of the required integrals to obtain the interstation 

correlation function for three different storm models (STOL, 1977b). 



- Comparison of various storm models with respect to their statistical 

parameters in order to obtain correlation functions for different 

storms with the same diameter and mean value (STOL, 1977c). 

- An article on the concept of an analytic approach to correlation 

functions on the basis of storm models in which a complete solu­

tion for the triangular storm model is given (STOL, 1977d). 

The results thus far obtained can easily be extended to be suit­

able for rainfall measuring practice in which completely dry days 

occur. This completes the first stage of the model in which homogene­

ous probability fields are assumed. 

3. MATHEMATICAL DESCRIPTION OF THE PROBLEM 

It can be proved (STOL, 1977d) that homogeneity with respect to 

statiscal properties in a model of a rain gaging area is obtained 

by adding a distance equal to half the size of the storm diameter to 

both ends of the gaged area. 

Let P denote probability, j». the stochastic time series of rain­

fall amounts measured in gage 6., and let B denote the storm diameter 

and L the length (cross section) of the gaged area perpendicular to 

the direction in which storms move, then 

P<8,- * 0) = T^Tv. > P<S,- - °) = L vsi ' ' L + B ' ^ i ' L + B 

which easily can be verified in Fig. 1. in this figure it is illustra­

ted that storm passing points u for storms are uniformly distributed 

on the storm passing area (L + B) symbolized by: 

u>t = U z = - }B, Z = L + | B 

where storm models are supposed to be symmetric about the mean. 

The above given expression tells that the terminal points of the 

storm are distributed on the area-axis according to: 



-VjjBrV2A -1/2B L*V2B U^B»Vj,Ad 

) gaged area (L) 

storm passing area for homogeneity (L»B) 

extended storm passing area accounting tor 100 p«/. dry days (A) 

Fig. 1. Relationship between axes and areas used in the analytic 

approach to determine interstation-correlation functions 

u> + i B = U[Z = 0, z = L + B] 
—t / — 

- j B + ü» t - U[i - - B, 8 - Lj 

Since 

[» - 0, z - L + B] O [z - - B, z - L] - [f - 0, z - Li 

We see that at least one point of the closed interval [Ö, £] on the 

area-axis is hit by any storm. Or, on the gage-axis: at least one 

gage in the gaged area is hit by any storm. 

If a storm function is given by: 

h = f(x) 

where h = rainfall amounts 

x = location in the storm 



and if we assume that f(0) = 0 and f(B) = 0 the realization of h in a 

gage at z. = 0 (so at the left boundary) equals h = 0, when u = - y B 

on the z-axis (Fig. 1). 

Although, in this case, the gage at the left boundary is assumed 

to be hit by the very right most point of the storm, the rainfall 

amount measured in the gage equals zero. However, this event is not 

an impossible event but it occurs with probability zero. So 

P(g. = 0 for all G. with z. £ [z = 0, z = £] ) = 0 

which will be abbreviated to 

P(£. • 0 all G.) • 0 (O 

In our model we consider storms as a unit and each storm passing 

the storm area contributes to the statistical characteristics of the 

process of occurring and measuring rainfall. It is convenient to 

think in terms of days and so for our present purpose we will con­

sider the situation that each day a storm passes the storm area. 

However, equation (1) expresses that at least one gage is hit by a 

storm each day, or that the probability that this is not the case 

equals zero. 

Now we assume that this probability is greater than zero, which 

means that we introduce days at which no gages are hit by a storm: 

the (completely) dry days. 

Suppose that in a certain area the fraction of dry days equals 

p, then we have 

P(££ = 0 all G.) = p, 0 < p < l 

Our model has to be extended so that it can cope with this com­

plication. 



4. THE EXTENDED AREA 

Drawing storm passing points to on z = - — B, z = L + -» B from 

a uniform distribution means that the event 

(g. = 0 all G.) viz.: a dry day 
-x l 

has probability zero. The correct way of sampling (STOL, 1972 and 

SHARON, 1974) by taking into account only those 'days' (drawings) 

which are potentially rainy days is automatically simulated by this 

procedure. However, it is rather simple to generalize the procedure 

to a more often used way of sampling namely: to involve completely 

dry days in the sample as well. 

Suppose it is found in a certain area that 

P(£. - Ol all G.) - p 

then we define the extended area by (see Fig. 1): 

[z » - 1 B - I V z - L + Î B + 7 Ad] 

where the total length of this interval namely (L + B + A.) will be 

denoted by A. If we take 

(2) 

we 

Ad 
1 m 

A 

have 

Ad = 

L + 

pa 
i • 

Ad 
B + Ad 

+ B) 
* P 

with which the storm area has to be extended to account for a frac­

tion of dry days equal to p. Since A, = A - (L + B) we have from (2): 

A L + B 
A - 1 - p 

which defines the extended (storm passing) area A into 



L = size of the gaged area 

B = storm diameter 

p = fraction of dry days 

5. NOTATION 

In the following sections we will employ the notation given below 

g. = gage time series for gage G. 

Y = expectation of g. for all i 
2 ~ 1 

<j) = variance of g_. for all 1 
h = storm variate 
£ 

y = expectation of h for all a 
2 -

a = variance of h for all a 

£ 
X] = expectation of random or exposure errors for all a 

2 
T = variace of random or exposure errors for all a 
p = interstation correlation between gage time series in gages G. 

and G. with interstation distance D 
J 

p . • correlation between storm variâtes h and h, at interstation 
ab a b 

distance D 

2 2 . 
¥ = p , a , covariance of h and h, at interstation distance D 

ab ' £ b 

8 , • correlation between random or exposure errors at location a 

and b with interstation distance D 

The correlations p, p , and 6 depend on the interstation dis­

tance D, so, in particular, p = p(D) and we try to express p in 

storm characteristics and area parameters, viz.: 

2 2 
p = p(D; B, L, A, y, a , n, T , p^, 9^) 

where 

L + B 
A =• 

1 - p 

and the fraction of dry days p is a parameter as well. 



6. GENERAL SOLUTION 

For the interstation correlation function STOL (1977a) derived 

general-formulas that do not depend on specific storm functions. The 

solution given in the Appendix there, makes use of the area parameter 

A = L + B 

Using the new definition for A, viz.: 

L + B 
A = -: 

1 - P 

(3) 

which accounts for the fraction of dry days p, the general solutions 

still hold. 

Since 

A _ B = ^ i * (4) 
1 - p 

we have for the statistical characteristics of gage time series the 

following expressions. 

6 . 1 . T h e e x p e c t a t i o n o f g. 

From previous results (Report No. 992, Appendix 1 and Section 12) 

we have immediately 

Y = j(v + n) 

or 

Y = 
(1 -

L 
• P ) 
+ B —(y + Tl) 

6 .2 . T h e v a r i a n c e o f £ . 

From the same Appendix we have 

/I Br 2 x 2 A - B , x , 2 , 



or 

(1 - p) Br 2 ± 2 L + pB, _,_ .2i 
(5) 

6 . 3 . T h e c o v a r i a n c e b e t w e e n g. a n d g. 

The covar iance f i n a l l y i s given by 

2 A - B, Cov(g.g.) = z { p a b a + 0 a b T + —j-Cp + n) } 

which in the same way as the variance can be expressed in the frac­

tion of dry days p, using equations (3) and (4). 

In the above given formula it is not necessary to calculate p , 

explicitely since p , a ~ Cov(h h, ) which has to be determined first. 

Since nothing is known about the correlation between random exposure 

errors, and since nothing is assumed about it, we still write 8 , . 

The notational convention of Section 5 now allows us to write 

c°v<^> - < L ^ V + eab , ^ ^-E5<u • , ,
2} (6) 

6 .4 . T h e i n t e r s t a t i o n c o r r e l a t i o n p 

Since the i n t e r s t a t i o n c o r r e l a t i o n i s given by the r a t i o between 

(5) and (6) so by 

P = 

Cov^g.) 

we have, multiplying numerator and denominator by ,. —r—=• for the 

correlation coefficient 

P(D) = 
(L + B) (f2 + eab T

2) + (L + pB) (u + n ) 2 

(L + B) (a2 + T2) + (L + pB) (y + n ) 2 
(7) 

which is the general solution for the interstation correlation expres-
2 

sed in the required parameters. We note that Y and 6 , are functions 



of the interstation distance D. 

An alternative form for this solution reads 

p(D) = I - (L + B) 

2 2 2 
CTZ - r + (i - eab) xl 

(L + B)(a2 + T2) + (L + pB) (y + n ) 2 
(8) 

where correlations are expressed relative to unity. 

7. THE PRACTICAL SOLUTION 

The last formula can be used to determine interstation correla-
2 

tion relationships after the expectation y, the variance a and the 
2 

covariance f have been determined for a given storm model. 

Calculations can be simplified by taking into account that 

a2 - E(h h ) - y2 

a a 

Y2 = E C h ^ ) - y2 

and so 

a2 - ¥2 = E(h h ) - E (h h. ) 
a a a b 

where subtraction of y from the expectations and the cancelling of 

it by taking the difference is avoided. 

To simplify the notation for intermediate results we define for 

the nominator and denominator, respectively 

1 NI 
Case I: (0 4 D < y B < B), p = 1 - (L + B ) — — 

1 NII 
Case II: (0 < j B 4 D 4 B), p = 1 - (L + B) -=ri— 

II 

1 NIII 
Case III: (0 < 7 B < B < D ) , p = 1 - (L + B) jf^=-

III 



The elaborations require to distinguish between D , V and Dj,-

although they have the same expression since they are not a function 

of the interstation distance and so D_ = D__ = Dn 
II 'III" 

8. THE RECTANGULAR STORM TYPE 

Since the rectangular storm has a constant rainfall amount H, 

integrals are replaced by sums and so we use the general solution 

with (see Report No. 993, section 5A): 

Case I : 

Case I I : 

Case I I I : 

y 

2 
a 

'Î 

*ïi 

* ' 

= H 

= 0 

- DH 
B 

- DH 
B 

= - H 2 

III 

and so 

(L + B) (I-2L + 6ab T2) + (L + PB) (H + n ) 2 

1 , 1 1 (L + B) T 2 + (L + pB) (H + n ) 2 

(L + B) (- H2 + 9ab T2) + (L + pB) (H + n ) 2 

1 1 1 (L + B) T2 + (L + pB) (H + n ) 2 

which can be written 

P I , I I = 

P I I I = 

(L 

(L 

+ 

+ 

B) <6ab 

B(L + 

B) 

(L 

( 6 a b 

+ B) 

2 2 
B T - DH ) + 

B) 

2 
T 

2 
T 

T2 + B(L + 

- H2) +CL • 

+ (L + pB) 

B(L 

pB) 

•• pB) 

(H + 

+ pB) 

(H + i 

(H + 

n)2 

(H + 

I ) 2 

n)2 

n)2 

10 



We can divide denominator and numerator by L and put 

B' = ? and D' - £ 

and drop the primes. Then the correlation is given in dimensionless 

form, the new B and D being expressed in units of L. So 

'1,11 

(1 + B) (6ab B T 2 - DH2) + B(l + pB) H + n ) 2 

B(l + B) T2 + B(l + pB) (H + n ) 2 

'III 

(1 + B) (6ab T
2 - H2) + (1 + pB) (H + n ) 2 

(1 + B) T2 + (1 + pB) (H + n ) 2 

It must be noted that all magnitudes related to rainfall amounts 

have to be expressed in the same units, but the unit can be chosen 

arbitrarily, viz. put 

H« - 5 , n . = a , T. . i 
a ' a ' a 

and drop the primes. The result then gives the same formulas as those 

given above. 

Using the alternative form the correlation functions are 

pI,II = l 

B(l - e , ) T2 + DH2 

ab 
B (1 + B) T 2 + (1 + pB) (H + n ) 2 

1 + B 

PIII = l - (1 + B)-
(i - eab) x2 * H2 

(1 + B) t2 + (1 + pB) (H + n ) 2 

This solution reduces to the one given in Report No. 993, Annex 

la, by putting 

n = 0 (mean exposure error zero) 
2 

T = 0 (variance exposure errors zero) 

p = 0 (no dry days) 

2 
then, dividing through by H , 

11 



1 _L±JL n 
P I , I I = ! E " D 

PIII = " B 

the most simple solution for rainfall interstation correlations. 

9. THE TRIANGULAR STORM TYPE 

The statistical parameters necessary to obtain the correlation 

function for this storm type are obtained from Report No. 993, Sec­

tion 5B, viz.: 

H 
y = 2 

2 2 2 2 H IT .H. a = —= — - (T) 

2 2 
Case I: V* = — o ( B - 6BDZ + 6DJ) - £ ) 

1 3B l 

2 2 
Case II: *; = — ^ ( B - D ) J - (f) 

1 3B Z 

2 H 2 

Case III: Y ^ = - (|) 

From which we have 

02_ 2 = J H V . 2 H V (9) 

B B 

2 2 
a2 - Y2 = 4 - --^(B - D) 3 (10) 

2 
a2 - f2 = — (in 

This gives, starting with (9), for the first numerator NT multi-
3 

plied by B , 

12 



B3NT = H2D2(B - D) + B3(l - e , ) T2 

I ab 

and for the denominator 

,H2 . 2X . ,T . „N ,H . .2 
T)1 = (L + B) (JJ+ T ) + (L + pB) (j + n)' 

or, 

12DI = (L + B) (H2 + 12T2) + 3(L + pB) (H + 2n)2 

and finally, putting with auxiliary variables a and 3, 

B3N = aT and 12D]; = 3 

we have now 

NI al 12 12 al 
DI B3 ' * " B3 g 

so 

a , , B ) - ^ - ' 2 a * B ) ^ 
1 B3 6 

giving 

12(L + B) 2H2(B - D) D2 + B3(l - 8 ) T2 

1 B3 (L + B)(H2 + 12T2) + 3(L + pB) (H + 2n)2 
PT - 1 -

which becomes in dimensionless form 

12(1 + B) 2H2(B - D) D2 + B3(l - 9ab) T 2 

1 B3 (1 + B) (H2 + 12T2) + 3(1 + pB) (H + 2n)2 

The second case can be solved as follows, starting with (10), 

13 



3B 3 N n = B3H2 - 2H2(B - D ) 3 + 3B3(1 - 6^) x2 

Then, see D , 

12D = (L + B) (H2 + 12T2) + 3(L + pB) (H + 2n)2 

and finally, putting 

3B3NI]; = a and 12DI]; 

we have for 

( B> »II " B3 S 

giving 

4(L + B) B3H2 - 2H2(B - D ) 3 + 3B3(1 - 6^) x2 

1 1 B3 (L + B) (H2 + 12x2) + 3(L + pB) (H + 2n)2 

The third case can be solved as follows, starting with (11), 

3 N m = H2
 + 3(1 - 9ab) x2 

and 

12DII]; = (L + B) (H2 + 12 x2) + 3(L + pB) (H + 2n)2 

resulting into 

H2 + 3(1 - 9 ) x2 

PIII • ' * 4 ( L + B ) 2 2 2 
1 1 1 (L + B) (HZ + 12x ) + 3(L + pB) (H + 2ri) 

which becomes in dimensionless form 

14 



p m = 1 - 4(1 + B) 
H2 + 3(1 - e , ) T2 

ab 
(1 + B) (H2 + 12T2) + 3(1 + pB) (H + 2n)2 

Also for the solution of the rectangular storm type the result 

can be simplified by putting 

2 2 . . . 2 
n = T = p = 0, dividing through by H , 

Then we have for case I, II and III the correlation functions 

= 1 -
24(1 + B) (B - D) D' 

4 + B 

p _ 4(1 + B) B3 - 2(B - D ) 3 

II „3 
B" 

p = 4(1 + B) 
III 4 + B 

4 + B 

similar to the solution given in Report 993, Annex lb 

10. THE EXPONENTIAL STORM TYPE 

The statistical parameters for the exponential storm type are 

given in Report No. 993, Section 5C, viz.: 

H/. -bBv 
u = ^ 0 - e ) 

or, putting 

u = 1 - e 

v = 1 + e 

-bB 

-bB 

this becomes 

H 
y = bFu 

15 



2 H2 . H .2 
0 = 2bB U V - ( b F u ) 

Now, introducing 

-2bD 
w = e 

we can write for the covariances: 

2 
Case I : ¥? = ~ A v 2 ~ e " 2 b B + 2bDw2) - y 2 

1 ZDWri 

2 
Case I I : ¥?_ = ^ ( B - D) - y 2 

Case I I I : V* = - y 2 

2 2 
The expression a - ¥ thus becomes, using the equality 

uv - 1 - exp(- 2bB), 

2
 w

2 - _ S 1 (uvw - w2 + 1 - uv - 2bDw2) 
a " *I " 2bwB 

H2 {(uv - w - 1) (w - 1) - 2bDw2} 
2bwB 

° 2 - *II " l Ï Ï B ^ - 2 b w ( B - D)î 

2 m2 H2 

0 " ¥ I I I - - 2 B 5 - U V 

Proceeding in the same way as for the other storms, we now have 

2bwBNI = H2{(uv - w - 1) (w - 1) - 2bDw2} + 2bwB(l - 9 ) x2 

2 2 
Dj - (L + B) (JL uv - -^-j u2 + x2) + (L + pB) (g|-u + n ) 2 

b B 

so 

2b2B2D]. = (L + B){H2u(bBv - 2u) - 2b2ß2x2} + (L + pB) 2(Hu + bBn)2 

16 



Now we put in the same way as before 

2bwBN = a and 2b2B2D = 

so 

ül_ A_ 2b2B2 bB i 
Dj 2bwB '• ß ~ w ' ß 

which finally results in the equation for the interstation correla­

tion function, 

PT = 1 - (L + B) 1 1 . 
1 w 

H 2 { . . . } + 2bBw(l - 9 a b ) T2 

(L + B) { } + 2(L + pB) (Hu + bBn)2 

where 

{...} = (uv - w - 1 ) (w - 1 ) - 2bDw^ 

{ } = H2u(bBv - 2u) + 2b2B2T2 

The second case gives the following elaborations 

2bBNTT = H2{uv - 2bw(B - D)} + 2bB(l - 9 . ) T 2 

II l ' ab 

and 

NII NII all 2b2B2 »II 
— z — = bJJ D DI 2bB ß 

so, for the interstation correlation function 

p I I - ' • 

H2{uv - 2bw(B - D)} + 2bB(l - 6 ) T 2 

- (j + v.\ h?. a 

(L + B) { } + 2(L + pB) (Hu + bBn) 

Finally we proceed with 

17 



2bBNTTT = H2uv + 2bB(l - e . ) T 2 

I I I ab 

giving, with 

N N a 
III III ,_ III 

— DD —z 
DIII D I 

PIII = ] • 

H2uv + 2bB(l - 6 K ) T 2 

- ('T + i n HR a 

Vi-" T OJ DD „ 

(L + B) { } + 2(L + pB) (Hu + bBn) 

The simplification for n = T = p = 0 needs more algebra than the 

other solutions. We start with the denominator including the factor 

(L + B) bB. Then we have 

(L + B) bB 

(L + B) H2u(bBv - 2u) + 2LH2u2 

(L + B) bB 

H u{bBvL - 2uL + bB v - 2Bu - 2Lu} 

(L + B) b 

H u{(L + B) bv - 2u} 

in accordance with the result obtained in Report No 993, Annex 1C. 

Next we have for Case I 

H2r ? 

— {(uv - w - 1) (w - 1) - 2bDw } 

2 

H r 9 9 
= (uvw - uv - w + 1 - 2bDw 1 

w l ' 
= — i uvw - 1 + e - w + 1 - 2bDw \ w l ' 

= H2{uv - w(l -^j e~2bB) - 2bDw} 
w 

Which is in agreement with the results in Report No. 993, Annex 

1C. 

18 



For Case II and Case III the comparison with the results in 

Report No. 993 is obvious. 

11. DIMENSIONLESS FORM FOR THE EXPONENTIAL TYPE 

It must be noted that after some precautionary measures the cor­

relation coefficient for the exponential storm type also can be 

written in dimensionless form. 

Putting bL = b' we may write 

bB = bL . £ = b'B' 
Li 

and 

bD = bL . j - = b'D' 

giving 

. -bB , -b'B' u = I - e = 1 - e 

. ̂  "bB , A -b'B' 
v = 1 + e = I + e 

-2bD -2b*D' 
w = e = e 

After having expressed L, B and D in units of L, and after having 

multiplied the storm constant b by L, the dimensionless form is ob­

tained. Dropping the primes, the structure of the correlation func­

tion remains the same, however, in the original formula the symbol L 

should be replaced by the numer 1 to obtain dimensionless expressions. 

12. FINAL REMARKS AND SUMMARY 

In this report the correlation function for rainfall amounts 

measured in gages at various distances was extended with p, a para­

meter for dry days. This parameter finally appeared in the numerator 

19 
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\ ^ 

Fig. 2. Comparison of the influence of increasing values of the 

tion function of three storm types (rectangular, triangu 

various diameters B (B expressed in units of length of 
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P 10 

P 10-

-*. 

-B 

^ ^ 

- i 1 1 — 

B«5 B-10 

parameter p (fraction of dry days) on the shape of the correla-

lar and exponential respectively) with the same mean value and 

the gaged area) 

21 



of the correlation function. As a result, the correlation increases 

if p increases, for given values of the other parameters. 

The effect of increasing values of p on the shape of the corre­

lation function for three storm types is illustrated in Fig. 2. 

Specifications are: 

n = T = e = 0 

B = 0.5 1 5 10 

p = 0 (0.10 0.20) 0.40 0.80 

y = 0.5 for all storms considered 

The upper row in Fig. 2 illustrates the rectangular storm type, 

the following rows the triangular- and exponential storm type res­

pectively. 

Form the figures it becomes clear that in practice it will be 

difficult to distinguish between the three storm types, especially 

in case of a wide scattering of estimated correlations. 

We also see that it will be difficult, if not impossible, to 

distinguish between the effect of the storm diameter B and the frac­

tion of dry days p. For instance for large values of B (e.g. B ̂  5) 

the correlation function for the triangular and the exponential storm 

type look alike. 

For the exponential storm type with parameter values B = 5, 

p = 0.60 the correlation function is approximately equal to the one 

with B = 10 and p = 0. The interpretation of the figures has to be 

done carefully and needs further meteorological information than the 

one given by the estimated correlations only. 

The generalization of the formulas of the interstation correla­

tion with a parameter for the fraction of dry days completes the 

first stage of the model in which homogeneous probability fields are 

assumed. 
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