
NN31545.1746 

* 

ICW note 1746" 

november 1986 

CO SIMULATION OF FLOW IN SURFACE WATER SYSTEMS 

O c 
c 
0) 
O) 
c 
c 
0) 
O) 

£ 
O) 
c 
O 

.c 
(O 

'5 
x: 

i_ 

CD 

C 
0) 
JÉ 
0) 
c 

.c 
o 
0> 

3 
O 
t. 

I 
*-» 
D 
3 

(0 
c 

ing. E.P. Querner 

Nota's (Notes) of the Institute are a means of internal commu­
nication and not a publication. As such their contents vary 
strongly, from a simple presentation of data to a discussion 
of preliminary research results with tentative conclusions. 
Some notes are confidential and not available to third parties 
if indicated as such 

l y 

0000 0240 8645 





C O N T E N T S 

Page 

1. INTRODUCTION 1 

2. DERIVATION OF EQUATION FOR UNSTEADY FLOW 2 

2.1. Equation of motion 2 

2.2. Boundary friction formula 4 

2.3. Wave type 6 

2.4. Equation for kinematic wave 8 

2.5. Equation for dynamic wave 10 

2.6. Solution procedure 14 

3. EQUATIONS FOR SPECIAL SECTIONS 16 

3.1. Constant water level 16 

3.2. Pump 16 

3.3. Weir 18 

3.4. Culvert 19 

3.5. Critical depth 20 

4. EXAMPLE 21 

REFERENCES 23 

APPENDIX 24 





NOTA/1746 

1. INTRODUCTION 

For the physical «odeHing of groundwater, one of the boundary condi­

tions that must be given are the waterlevels in the surface water 

system. These levels are in fact dependent on the boundary flow. 

Because with an increase in drainage water the waterlevel in the chan­

nel will rise, depending on the size and roughness of the channel. To 

Include the surface water system in a hydrlogical model it can then 

describe the interaction between groundwater and surface water more 

accurately. Therefore a model was develloped to describe the water-

movement in a channel network. The model was set up in such a way that 

it can be intergrated in a hydrological (groundwater) model. Another 

important criteria for the model was a fairly simple calculation 

scheme, so that the overall modelling system is not complicated, easy 

to use and that it requires not too much input data. Using a computa­

tional method for unsteady flow one can for instance model the water 

movements in an area for controlling the watertable and water levels 

in the channel system. 

The modelling of water movements can be for situations such as short 

and high discharge rates (e.g. rain storm) and for long term slowly 

changing discharge rates (drainage). It is evident that a computatio­

nal method should be capable to simulate these extreme situations. But 

for a specific case the solution procedure is adapted to allow a jus­

tified calculation scheme (e.g. accetable timestep). Neglecting cer­

tain terms of the equation of motion for certain situations still 

gives accurate results, but it saves computational time. This can be 

explained as follows. For the simulation of a short and high dis­

charge rate in a system a small timestep is required to calculate the 

quickly changing flow process in time. Inertia effects are very impor­

tant in these type of calculation and a timestep of 10 seconds up to 
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some minutes are the reality. In the case of a slowly changing pro­

cess, such as the simulation of drainage and/or subsurface-irrigation 

during the year, a relative large timestep would be prefable. Inertia 

effects are not significant and can be neglected. A timestep of one to 

a couple of hours is now possible. The model SIMWAT (simulation of 

flow in surface water systems) has been designed to cope with these 

slow and fast changing flow processes. 

In the following two chapters the governing equations are discussed 

for ordinary open channel flow and special structures such as weirs, 

culverts and pumps. The user's manual for the programme SIMPRO, which 

includes the groundwater and surface water module, is described by 

QUERNER (1986b). 
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2. DERIVATION OF EQUATION FOR UNSTEADY FLOW 

2.1. Equation of motion 

For a prismatic channel one can write the continuity equation as 

g - î î - » - <2» 

with Q as the discharge rate and A as the cross-sectional area of a 

channel section. 

The equation of motion, often referred to as the Saint-Venant equation 

can be written as : 

^ « • • " » ' • « ' S - « * 1 * « ^ - " <"> 

where a is a coefficient to expres the non-uniform velocity distribu­

tion in the section, g is the acceleration due to gravity, I is the 

bottom slope, C is Chêzy coefficient for boundary roughness and R is 

the hydraulic radius. The first term of equation (2.2) is the effect 

of inertia, the second term is the effect of non-uniform flow, the 

third term is the effect of hydrostatic pressure, the fourth term is 

the gravity component and the fifth term is the bottom friction term. 

The friction term is here written in a form as derived from the Chézy 

equation. The Manning formula could have been taken as well. The above 

equation is valid for turbulent flow where the vertical velocity com­

ponent can be neglected. 

With equation (2.1) and (2.2) one can model the water movements at any 

location and time within a network of channels with given boundary 

conditions. They cannot be solved analytical and therefore an approxi­

mate solution is necessary in the form of a solution at a number of 

specified locations and at certain time intervals. From the differen­

tial equations (2.1) and (2.2) one can obtain the difference equations 
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by considering a section of the channel and applying the principles of 

conservation of «ass and •omentum. 

An amount of water stored by a change in water level from h to h 

over a storage area S can be written as : 

. t . t+At 

S At - e 5 Qij + Qe 
t+At 

+ d-e) I? Qij + Qe| 
(2.3) 

in which Q is the external inflow, Q the flow from node j to node i 

and S the storage area at time t. The above equation can apply to a 

channel-junction (node) as shown in figure 1. 

Storage area 
node i 

*Qe -external flow 
(eg. drainoge or rainfall) 

Fig. 1. Water balance of junction 

The storage of water is considered to be concentrated in the nodes and 

the transportation of water to occur in the branches between two 

nodes. Flow from a node is assumed as positive. 

The weighting parameter 0 is necessary to describe the variable 

hydraulic parameters as a function of time. For 6 = 0.5 the parameters 

are calculated as the average between two successive time levels. The 

closer the weighting parameter is to 0.5 the greater is the accuracy 

but for numerical stability it should be greater then 0.5. Therefore 

the weighting parameter is given in general the value 0.55. 
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2.2. Boundary friction formula 

For the calculation of the wall resistance, one can choose out of 

three options, ni: Chézy equation; Manning equation and flexible vege­

tation concept. The choice for either Chézy or Manning equation 

depends on the type of boundary, the user's preference, etc (QUERNER, 

1985). For simulation of a maintenance work programme the flexible 

vegetation concept is introduced. Weed growth (stem length) is then 

converted to Mannings resistance coefficient depending on flow velo­

city (bending of vegetation). 

When selecting the Chézy equation one should specify the length 

(height) of the resistance elements. When using the Manning equation 

the programme requires the coefficient n. The flexible vegetation con­

cept requires various parameters for the calculation of growth rate 

and bending moment of the weed. At present the method as reported by 

KOUWEN, LI and SIMONS (1981) is used in the programme. Research on 

these type of relations will be undertaken in the near future and 

therefore the latest version of the user's manual should be consulted 

in this respect. 

The cross-section of a channel must be of trapezoidal shape. A bottom 

width, side slopes and resistance coefficient is the minimum required 

input data (one section). If necessary the side slopes can have two 

different angles. In this case the height above the bottom must be 

given where the angle of the slope changes and for all five sections 

the resistance coefficient (see figure 2). 

When using only one section the conveyance factor is calculated as: 

Chézy : K = C A /R (2.4) 

2/3 
Manning : K - 1/n A R ' (2.5) 

When using five sections the total conveyance factor is calculated as 

(CHOW, 1959): 

Kt = mil-5 K . <2 6> 
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Invert 

B 
Bos« width 

S 
1:2 (slope) 

V/KtW\W/?R8 

Flg. 2. Schematization of typical cross-sections 

2 .3 . Wave type 

With a fast changing discharge rate the inertia tern in equation (2.2) 

plays an important role. This aspect can be observed, for a certain 

discharge their are two water depth possible. For a rising stage the 

discharge is greater then with a decreasing stage, as shown in figure 

3. 

Kinematic wave 

Dynamic wave 

Fig. 3. Discharge curve 
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With a slowly changing discharge rate the inertia and non-uniformity 

term have a marginal effect on the properties of the flood wave and 

can therefore be neglected. With these terns omitted in equation (2.2) 

we obtain the so-called kinematic wave equation instead of the dynamic 

wave equation, then we consider the complete equation without any 

terms neglected. 

Weather to use the kinematic or dynamic wave equation has been given 

by GRUSEN and VREUGDENHIL (1976). Physical properties of the flood 

wave can be determined giving a classification to choose the wave 

type. Two dimensionless parameters are used for the classification : 

Fr « * r (2.7) 
(g A 3 / B ) * 

and a factor: 

3 2 
Jg A B T

w I v 
E • » 2 4 2 ( 2 8 ) 

where Fr is the Froude number, B is the channel width at the water 

surface, E is a factor to indicate the importance of unsteadiness and 

non-uniformity and T is the wave period. For equation (2.7) and (2.8) 

one can use the extreme values at the highest water level. With the 

use of figure 4 the difference in effective velocity of propagation 

can be determined between a solution based on the kinematic wave 

equation and the dynamic wave equation. Prom figure 4 it can be seen 

that if E is large the kinematic wave approach gives correct veloci­

ties of propagation, the same as with the dynamic wave. For small 

values of E the kinematic wave has no damping and the wave front tra­

vels too fast. If the ratio c./c. is greater then 0.95 both wave types 

can be used to solve the problem. For these cases a kinematic wave 

type will be preferred, because it gives more freedom to choose the 

timestep to be used. 
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Fig. 4. Velocity of propagation of kinematic waves in relation to 

dynamic waves 

2.4. Equation for kinematic wave 

If we consider the equation of motion and neglect the effect of iner­

tia and non-uniform flow, then equation (2.2) becomes: 

A 3h A T OIQI 
g A r - - g A I + g 2 

8 x C2 R A 

(2.9) 

taking the water level at node i as h. and the adjacent nodes as h., 

then equation (2.8) can be written for a branche length L. . as: 

,A ,W,-»w 
ij C2 R A 

(2.10) 

Equation (2.10) is quadratic in the discharge. For the solution proce­

dure only linear equations are required. This can be achieved by 

inserting one discharge term as known value from the previous itera­

tion. The discharge between node i and j is then: 

'ij L 
C2 R A 

(h, - h j (2.11) 
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where 0* is the discharge calculated in the previous iteration. If we 

,. now substitute equation (2.11) into equation (2.3) it can be written 

as: 

h1 - h t + A t 2 
e i i /. «x „t ^ . _ C R A ,.t+At .t+At. ̂  si Ät (i - e) Q + e j | | (h. - h ) + 

ij ' ij ' J 

t+At 
+ e Qg " (2.12) 

in which: 

Q* = I Q*. + Q 1 (2.13) 
o j ij e * ' 

and is the summation of all discharges towards node i at time t and is 

a known term. Equation (2.12) can be re-arranged to have all known 

terms on the left hand side of the equal sign and the factors to be 

multiplied with the water levels h. and h. on the right hand side. 
i J 

Equation (2.12) becomes then : 

,a ^ .t ±
 Si hl a „t+At I - e C2 R A2 Si I . t+At (Ô " 2) Q ""AT" 6 Q e = I 5 LJJ | Q*| + AT I hi -

e C 2 A2 R .t+At ln „„. 
- LJJ | Q*| h j ( 2 1 4 ) 

Equation (2.14) can be seen as a set of simultaneous equations. There 

can be N-equations with N-unknown water levels. Equation (2.14) can be 

written assembled for all nodal points in matrix form as : 

{Tj = [K] {h} (2.15) 
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where the vector {T} contains all the known terms, the matrix [K] can 

be seen as a resistance and storage matrix between two connected 

nodes. The water levels can be solved by taking the inverse of the 

matrix [K], and multiplied with the vector {T} as: 

{h} = [K]"1 {T} (2.16) 

The set up of matrix [K] and the inversion is discussed further in 

paragraph 2.6. 

2.5. Equation for dynamic wave 

For the calculation scheme of dynamic waves equation (2.2) is now 

taken without any terms omitted. First the separate terms are looked 

at. The first term is integrated with respect to x over a full branch 

L as: 

fc Lf0 Q «X - L g «,.„, 

The second term of equation (2.2) is analysed as: 

IT««' & - « S g - 4 s 
A 

The first term on the right hand side of equation (2.18) becomes: 

A ax " A at A at 
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ï The second term on the right hand side of equation (2.18) becomes: 

û! 3A _ fi! 3(B h) _ Q? 3h i 
A2 3x A2 3x " A2

 y 3x 3x' A A A 

We assume that the cross-section does not change considerable and so 

that the term h(3B/3x) becomes zero. The second term of equation (2.2) 

becomes now after integration over the branch length: 

A 

The third term of equation (2.2) is not integrated, but averaged over 

a branch as : 

g A (hj - h{) (2.20) 

The result of the five terms from equation (2.2) and divided by g A 

gives: 

L dQ Q2 B L , . . , Q B L d , . . , , . . , 

7Ï ft - ~T (h2 - hi> - lL—l dT (hi + V + ( h j - hi> 
g A g A 

+ MPV0 (2.21) 
(T R kà 

The Froude number can be written as: 

Fr2 = &-g (2.22) 
g A3 
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The water depth is differentiated to elevation and invert level as: 

hl * hi " Zi (2.23) 

and 

h 2 - hj - Zj (2.24) 

Substitution of equation (2.22) to (2.24) into equation (2.21) gives: 

L dQ Q B L d ,. . % ,, „2. 

71 ft - TT dT (hi + h 2 ) + (1 - Fr > 

(h. - h.) - Fr2 (z. - z.) + L f ' \ 

Equation (2.25) integrated in respect of tine: 

» «t+At . _t L Q _ L Q 
At g A t g A 

Ut+At Ut+At . t v t 
fi_BJL f

h i + h2 + fiJLL (
hl * \ 

42
 l At ' A2 * At ' 

g A g A 

e [ (1 - Fr2) (hj - h j ) ] **** 

+ (1 - 9) [ (1 - Fr2) (hj - h j ) ] - Fr2 ( Z j - Zj) 

<T RA^ (T R A45 

(2.259 

(2 .26) 



NOTA/1746 13 

The known terms from the previous time level t are grouped into the 

variable F as: 

At g A 

+ (1 - 6) [(1 - Fr2) (hj - h ^ ] 1 + 

+ (1 - e) [ L
i

S 3 - Q L] t - Fr2 (Zj - Z l ) (2.27) 
C R A 

and certain other terms grouped into the variable F as: 

B L ,. t+At .t+At. ,. ... 
F2 = - — z (h + h2 ) (2.28) 

At g A 

Re-arranging equation (2.26) and written in terms of the discharge Q 

it follows: 

... (1 - Fr2) (h - h.) F, + F. 
Q t + A t - e [ r - i L] _ -^—l (2.29) 

F 3 F 3 

where F„ is: 

JJiÜ^L F0 = A,L
 A - 8 L • ** • (2.30) 

3 At g A c 2 R A 2 

Substitute equation (2.29) into equation (2.12) it becomes: 

Q .t .t+At 
Si hi Si hi fl e (1 - Fr2) ,. . . 

à 

F + F 
- O - ^ ä + O Q*+At + (1 - 6) [J Qdj + Q*] (2.31) 
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Bringing t he known terms t o t he l e f t hand s i de g i v e s : 

<- * S. h , F , + F„ . . . 

J i j e J At F Ne 

[e ; A J i ^EEÎ i j h . ( 2 . 3 2 ) 

Simmilar as for the kinematic wave the above equation can be written 

in matrix notation as: 

{ r } = [K-] {h} (2.33) 

Now we have the same form of equation as for the kinematic wave type 

and the solution procedure is identical. 

2.6. Solution procedure 

If we consider the network of channel sections and a set of equations 

per nodal point as given by equation (2.16), then it follows that the 

stiffness matrix is symmetrical. This means that the terms above and 

below the leading diagonal contain the same values, so that for the 

program only the diagonal and the coefficients above are stored. In 

the matrix [K] for node i which is connected to node j in the matrix 

on the ith row and jth column a value is given. If we choose the num­

bering of the network in such a way we can arrange the non-zero terms 

in the matrix to occur near the diagonal. This rearranging of node 

numbers is done by the program. The (external) numbers defined by the 

user is changed to an internal number. The assembled roughness and 

storage matrix contains now many zero terms and in particular there is 

a distance from the leading diagonal beyond which all terms are zero 
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(see figure 5a). The seni-bandwidth denoted as BW is only used by the 

program as shown in figure 5b. 

BW 
t- H 

X" 
Y-

Zero terms 

Zero terms 

x \ \ Y 

\ 

Fig. 5. a full matrix with M x M terms and semi-bandwith BW 

b banded matrix 

Equation (2.16) can now be solved by any one of the matrix inversion 

techniques. The Crout reduction method was chosen. The essential 

feature of Crout's reduction procedure is the reordering of the 

sequence in which the terms of the coefficient matrix are modified. If 

we consider Gauss elimination, a modification of each term of the 

reduced coefficient matrix is made every time an equation is elimina­

ted. This procedure is tedious, because it requires that the coeffi­

cient matrix be rewritten many times. In Crout reduction it is neces­

sary to rewrite the coefficient matrix only once, because each term is 

changed directly from its initial value in the unreduced matrix to its 

final value in the compressed matrix. 
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3. EQUATIONS FOR SPECIAL SECTIONS 

3.1. Constant water level 

A constant water level is one of the boundary conditions one can spe­

cify. If we consider equation (2.15) for these nodal points the terms 

in the coefficient matrix are known and mist be taken out of the 

roughness and storage matrix and included in the array with the known 

terns {TJ. All node points connected to this node with the prescribed 

water level must be corrected in the [K] aatrix as shown in figure 6. 

The inflow or outflow, outside the region, to maintain the prescribed 

level follows from the calculations. 

K„ K,2 
*2 2 

K,3 
K23 

*33 * 3 t 

* u 

K55 

• 

h, 
h2 

h3 
m 

T, 

T2 

T3 

T4 

T5 

K„ K,2 0 
K„ 0 

1 0 

K« 

h2 

*3 

h5 

m 

K,3 h3 

K23 h 3 T2 

Fixed level 

T4 - K 

T5 

34 h3 

Fig. 6. Correction to [K] matrix and {T} vector for node with prescri­

bed water level (in node 3 a fixed water level is present) 

3.2. Pump 

A pumping station can be present on the boundary (external) or Inside 

the region to be studied (internal). The pumping rate must be speci­

fied in the form of a rating curve. The rating curve must be discre-

tlsed into sections, each having the relation: 



NOTA/1746 17 

Q = On H + ßn n n (3.1) 

where the coefficient a and ß apply for a section n of the pump curve 

as shown in figure 7. The discretization in piecewise linear sections 

is required for the adopted solution procedure. The pumping head can 

be written as the delivery head Minus the suction level, in the case 

of a pump as a boundary node. Then equation (3.1) can be written as: 

a h. - o h. + ß n d n i n (3.2) 

For an internal pump or inlet between two nodal points the pumping 

head is the difference between the head at node i and j. Equation 

(3.1) can now be written as: 

Q = « n (hj - h l ) + ß n (3.3) 

The known terms of equation (3.2) or (3.3) can be brought to the left 

hand side and are then in the same form as equation (2.15) and can be 

substituted in equation (2.16). 

0, Oj Qo 
Pump capacity (m5-»-') 

Fig. 7. Typical pump curve and its discretization in piecewise linear 

sections 
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3.3. Weir 

A weir can be situated on the boundary or internal as a channel sec­

tion. The discharge over a weir can be written as: 

Q «= c B H 3 / 2 (3.4) 

where c is the discharge coefficient (1.6 - 2.1), B the width and H 

the head at the upstream side. This equation can be written for a weir 

on the boundary as: 

Q - K H (3.5) 

with: K = c B /H w 
H = h* - h i w 

where h* is the water level at node i fron the previous iteration and 

h is the weir level. Equation (3.5) can now be written as: 

Q + K h = K h , (3.6) 
w w w ! 

In this form the equation is written similar as equation (2.15) with 

known terms on the left hand side of the equal sign. For a weir 

between two nodal points equation (3.6) becomes : 

Q = K (h. - h.) - K (h - h*) x w i j w w j 

or 

Q + K (h - h*) = K (h. - h.) (3.7) 
v w x w j' w i j y 
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In this form the equation is written similar as equation (2.15) and 

can be substituted into equation (2.16). 

Dependent of the downstream water level the weir can be submerged. If 

the upstream head above weir level is smaller the 1.5 times the head 

at the downstream side above weir level then equation (3.4) is not 

valid any more. The discharge is now also dependent on the downstream 

level as: 

Q = C B 1/2 g (hj - hw) /(hj - hj) (3.8) 

This equation can be re-arranged to the same form as equation (3.7) 

3 .4. C u l v e r t 

The discharge thru a culvert section can be written as; 

2 2 
C R A .. . ... , ( 3 i 9 ) 

'lJ • M ^ T <hi - "j - "t' 

where AH is the entrance and exit loss, dependent on the geometry of 

entrance and exit. This loss is written in terms of the velocity head 

in the culvert as: 

V2 0* I OJ 
A Ht » «t i"g- = °t ™ i ( 3 1 0 ) 

2 g A 

where a is the sum of entrance and exit loss coefficient. For circu­

lar culverts two hydraulic parameters are defined to calculate the 

wetted perimeter and area (culverts flowing not full) as: 
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P = F4 (h / D} D 

A = F5 {h / D} D 

where F. and F_ are constants depending on the dimensionless water 

depth in the culvert, iï is the average water depth and D is the 

.culvert diameter. Equation (3.10) is substituted into equation (3.9) 

and re-arranged to the same form as equation (2.15). 

3.3. Critical depth 

The critical depth occurs at a stage between subcritical and supercri­

tical flow. It is reached for one specific discharge and it requires 

the least amount of energy head, as shown in figure 8. The critical 

depth occurs when the Froude number is equal to unity and can be cal­

culated with equation (2.7). A lower value then unity indicates sub-

critical and a higher value then unity indicates supercritical flow. 

,1 

Specific energy (m) 

Fig. 8. Specific-energy curve 
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4. EXAMPLE 

For a channel system as shown In figure 9 the programme was run for a 

winter period with a drainage situation. A weir is situated at the 

outlet. The larger channels in the region are modelled and shown on 

the figure, but the smaller channels and ditches are represented in 

the model as additional storage per nodal point. A typical depth-

storage curve (depth minus groundlevel) is given and per nodal point a 

multiplication factor takes the area to be drained into account. The 

results of three nodal points and channel sections are shown in figure 

10. 

Over the calculation period a drainage rate is specified changing in 

time. This can be a time consuming effort and for these situations a 

groundwater submodel can be linked, so that the interaction between 

groundwater and surface water is done automatically (QUERNER, 1986a). 

The advantage is also that the drainage rate is calculated taken into 

account the difference in groundwater level and water level in the 

channel system. 

12 

70S 

U 1U 
3 

106 103 

111 

112 11 110 10 109 

102 

>wa 

113 

13 

0.7 5 n 

106 

101 

Nodal point 

* Section 

- • Weir 

» • • Inflow 

- i Weir on region 
boundary 

Fig. 9. Channel layout and geometry 
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network shown in f igure 9 
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Appendix A - Derivation of the unsteady gradually varied flow equation 

Consider a small channel segment of length dx and write the change in 

energy terms between upstream and downstream ends of the reach in dif­

ferential form : 

2 2 2 
f-jj + h + z = [j-£ + d {—) * h + dh + z + dz + dH] (al) 

where dH is the total head loss over the reach with length dx. It 
2 

should be noted that d(V /2g) and dh may be eithe 

or zero (uniform flow). Equation (al) reduces to: 

2 
should be noted that d(V /2g) and dh may be either positive, negative, 

dH = - [d (?—) «• dh + dz] = - [r^~ dV2 + dh + dz] 2 g l2 g J 

d(V)2 = 2 V dV 

dH = - (- dV T dh + dz) (a2) 

The rate of change of total head can be obtained by dividing equation 

(a2) by dx: 

dH ,V dV dh dz, , ., 
dx" = - ( i d x " + dx" + Tx] (a3) 

For unsteady flows there is an additional component due to changes of 

velocity with time. The acceleration a has two components: 

ir a v a v i A\ 

a = V ^ * â I (a4) 



NOTA/1746 25 

The first term of equation (a4) represents the head loss due to change 

of velocity in the downstream direction (change in cross-section). 

The second term of equation (a4) represents the head loss due to 

change of velocity in time at a given point, which can be invoked by 

Newton's second law: 

' , - > « e (a5) 

where p is the mass density of the fluid and F. is the force exerted 

on a volume B of fluid undergoing local acceleration. The work done, 

or energy expended in accelerating this volume is the force times the 

downstream distance dx, so: 

d F i = P B a! dx (a6) 

where dF. represents the energy lost as a result of local accelera­

tion. This energy loss is transformed to a head loss dH. by dividing 

by the weight of water: 

dH. = c —r T- dx = - TT dx 
y B 3t g at 

(a7) 

where y is the weight density. 

The rate of head loss due to local acceleration is 

dx 
i ay 
g at 

(a8) 

Introducing this component of head loss into equation (a3) and 

switching to partial derivative notation throughout gives the equation 

for the downstream rate of head loss in unsteady gradually varied 

flows: 
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ah y av 
3x = g 3x 

ah + 3z i av 
ax + ax + g at' 

(a9) 

3 H e 
r- * S 
dx e 

*z » - s 
3x o 

thus: 

s _ s . Y 9V + 3h A 1 av 
o e g 3x 3x g 3t (alO) 

Equation (alO) was derived from energy considerations, but one could 

also arrive at the same relationship with expressions for the conser­

vation of momentum in an unsteady flow. Therefore equation (alO) is 

usually referred to as the momentum equation. The above equation 

together with the continuity equation are the system of partial dif­

ferential equations that describes one-dimensional, gradually varied, 

unsteady open-channel flows. Equation (alO) was first developed and 

published by Jean-Claude Barre de Saint-Venant (1797-1886) in France 

in 1848, and is known as the Saint-Venant equation. 

Equation (alO) has two dependent variables (V or Q and h) and two 

independent variables (x and t). Partial differential equations of 

this type can only be solved numerically. To do this, we must specify 

the values of the dependent variables at t=0 (initial conditions) and 

two boundary conditions. 


