




to explore the search space and retrieve the maximum. Because DE is derivative free, it has appealing
global optimization properties. Also, it is suitable for optimization in discrete spaces (like the labelings
space in our problem).

The graph representation of the labelings is helpful to explain how the algorithm works. Given the
graph G and its corresponding labeling X, we de�ne a reduced graph R = .VR, ER/ which contains
the nodes with corresponding labels x = 1. If X is consistent, in the TPR sense, R will be a connected
sub-graph of G and maintaining the original structure for the VR nodes. Consider two labelings L1, L2
and their graphs R1, R2 respectively is given in Figure 3. Graph union R1 ∪ R2 gives the expanded
graph Runion = .VR1 ∪ VR2 , ER1 ∪ ER2/, while graph intersection R1 ∩ R2, gives the contracted one
Rint = .VR1 ∩ VR2 , ER1 ∩ ER2/. The nodes that will be included in the resulting graph are given by set
operations (i.e. .VR1 ∪ VR2/ and .VR1 ∩ VR2/ respectively), but also equivalently by performing logical
OR (for union), X1 ∨X2, and logical AND (for intersection), X1 ∧X2 operations on the labelings directly.
Table 3 and Figure 3 illustrate those operations.

Figure 3 Examples of graph (upper row) and logical (lower row) operations, using the DAG struc-
ture of Figure 1A.

Table 3 Logical operations OR and AND for all the combinations of labels. In this exampleX1 and
X2 are univariate
x1 x2 OR (x1 _ x2) AND (x1 ^ x2)
0 0 0 0
1 0 1 0
0 1 1 0
1 1 1 1

Operations between consistent graphs (labelings) result in consistent graphs (labelings) as well, because
the edge set of the last is the union or the intersection of the operands and therefore a particular edge
has to pre-exist in at least one of the operands without violating the TPR. This property can be seen as
follows: For any parent-child pair of nodes there are three types of con�gurations that are consistent
(Table 1). Graph union and intersection between any combination of those pairs leads to locally con-
sistent labeling. This holds for all the parent-child pairs, so it holds for the full labeling. Therefore the
outcome of graph union and intersection will be consistent as well. Further, operations between more
than two labelings will be consistent as well due to the associativity property. The FALCON optimiza-
tion algorithm is based on the generation and evolution of a population of subgraphs i.e. R1...RN , with
N = 2 | V |. The population is �rst initialized with consistent labelings (graphs) and evolved exploiting
the graph-union and graph-intersection operations between individuals. Through the generations, all
the constructed labelings will be consistent due to the abovementioned property. In our optimization
problem we used four strategies to propose a new candidate solution (labelings) for the i-th graph Ri,
that is member of the population:

• S1: Global Union RCand = R1 ∨ R2 ∨ e

• S2: Global Intersection RCand = R1 ∧ R2 ∨ e

• S3: Local Union RCand = Ri ∨ R1 ∨ R2 ∨ e

• S4: Local Intersection RCand = Ri ∧ R1 ∨ R2 ∨ e





Table 4 Mean Performance measures for the evaluation dataset consisting of 100 Arabidopsis
proteins

LogitR DeltaL maxF
Per Protein

Precision 0.79 0.27 0.85
Recall 0.55 0.90 0.46

F-score 0.63 0.41 0.56
Per GO term

Precision 0.70 0.25 0.81
Recall 0.50 0.80 0.40

F-score 0.70 0.44 0.66

Figure 4 Performance on the evaluation dataset for the methods LogitR (red), DeltaL (blue), maxF
(yellow). ABC. F-score, Precision and Recall scores for different size of GO terms. DEF. The same
scores against the number of annotations per protein. Smoothed splines in each subplot show �tted
generalized additive models and using the R function smooth�spline. Because a large number of points
in the scatterplot coincided, we performed jittering by adding a small error term to each value e ∼
N.0, 10−4/, in order to make the maximum number of points visible.

We further evaluated the performance of our approaches using a set of proteins that were annotated
after obtaining the BMRF predictions (Table 5). From the total of 387 newly annotated proteins, maxF
returned predictions for 84 of them, DeltaL for 328 proteins and LogitR for 147 proteins. Again, maxF
and DeltaL show comparable performance while logitL returned an improved list in terms of F score.
Further, the higher recall rates of DeltaL tend to give longer lists of predictions. Importantly however,
DeltaL and LogitR return predictions that are consistent with GO-DAG and are therefore preferred
because such predictions are biologically interpretable.

Table 5 Mean Performance measures for the newly annotated proteins
Precision Recall Fscore Proteins

maxF 0.34 0.35 0.23 84
DeltaL 0.08 0.58 0.19 328
LogitR 0.26 0.50 0.27 147
Every method predicted different numbers of proteins. The number of proteins returned (out of the total 387) are given in the
last column of the table.

Novel predictions

We performed protein function predictions using the FALCON algorithm on the unannotated parts
of the genomes of 6 eukaryotes (human, mouse, rat, slime mold, frog and arabidopsis). This
dataset includes the eukaryotic targets used in the Critical Assessment of protein Function Annota-
tion (CAFA) experiment of 2011 [26] and consists of 32,201 proteins. Function predictions were
made for 1,917 GO terms from the Biological Process and Molecular Function compartments of
Gene Ontology. The input probabilities were computed during CAFA’11 by BMRF integrating
protein networks constructed from the STRING database [27] with orthology information obtained
from ProgMap [28]. The BMRF and FALCON predictions are available in the BMRF website:
http://www.ab.wur.nl/bmrf/FALCON_CAFA.tab.gz.
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