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1 New features in CANOCO 3.10 compared to CANOCO 2.x: 

- Forward selection of environmental variables (with testing if desired) to investigate 
which variables best explain the species data. 

- Regression/ordination diagnostics for samples and species to check which species and 
samples fit well and which do not fit into the ordination diagram. In ( detrended) 
correspondence analysis, a measure for niche width of species is given and a 
measure for sample heterogeneity. 

Redundancy analysis with a statistical weighting of species. This option makes the 
analysis invariant to linear rescaling of species (an attractive property shared with 
canonical correlation analysis). 

- Percentages variance accounted for in CA and CCA. Formerly, only eigenvalues were 
calculated which were often misunderstood as percentages (they were in 
PCA/RDA). 

- Collinear environmental variables (e.g. the K-th dummy variable of a nominal variable 
with K classes) are kept in the analysis. The default analysis thus yields 
CENTROIDS for all classes instead of for K-1 classes. In CANOCO 2.x, this 
required an extra analysis with passive environmental variables. 

- Data input in free format, without the need to add sample numbers in front of each 
line. The error messages when reading all types of input are improved. 

- Principal component scores of species adjusted or unadjusted for species variance. The 
new default is 'adjusted', which means that species scores are exactly the 
correlations of species with axes if the scaling of a correlation biplot is chosen 
(the former covariance biplot). 

- Hill's scaling is no longer the default in CNCCA. Instead, the default is the biplot 
scaling, which is easier to interpret (scaling to 1 instead of to 1/(1-lambda) and to 
lambda instead of to lambda/(1-lambda) ). 

- Choice between short and long dialogue. In the short dialogue, one can delete samples, 
covariables, environmental variables and choose a transformation for the species 
data. The analysis can be continued in the usual way with passive analyses, Monte 
Carlo statistical tests, etc. 

-You may specify your own defaults in a file CANOCO.INI, including names of files to 
be analyzed. This is especially convenient when using the short dialogue. 

- Screenwise output. CANOCO can present screenwise output if an ANSI screen code 
driver is installed on the computer (e.g. DEVICE=ANSI.SYS in the 
CONFIG.SYS of a MS-DOS computer). After the message at the bottom of the 
screen 
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'Press RETURN for more, S to Skip, Q to Quit page-mode' 
the user can press <RETURN> to continue, S <RETURN> for skipping the 
page-mode for the current output item, or Q <RETURN> to quit the page
mode for the entire CANOCO session. Subsequent output starts from the top of 
the screen. 

- More than 4 ordination axes may be extracted by asking for More analyses with current 
data (instead of Stop). 

- Environmental variables can be turned into covariables after the question which asks 
for more analyses with current data. 

- The methods used for the Monte Carlo test have been changed. The advantages of the 
version 3.x method are: 
-- interactions effects can be validly tested. 
-- the correlation structure of the explanatory variables ( covariables and 
environmental variables) is not changed during permutation. 
-- more power by permutation of residuals under the full model. 
The old and new method yield equivalent results in simple situations such as 
overall tests without covariables and tests with a conditioning on all covariables 
(randomized block designs). 

- In Monte Carlo testing, special permutation schemes have been added: for time series, 
for samples on a line transect, on a grid and for repeated measurements. 
Examples are given how to analyze the important Before-After-Control-Impact 
design. 

-The solution file (the former machine readable copy) is, by default, in a new format in 
which the ordination scores are given as decimal values. The former format 
reported the scores in whole numbers with the original scores multiplied by the 
MULTIPLIER (1, 10, 100 or 1000). With the decimal format, the user can 
specify, in the CANOCO.INI file, symbols to separate numbers, to enclose names 
and to signal the end of a set of scores. These options make it easier to input the 
file into a spreadsheet. CANOPLOT does accept both types of format of the 
solution file. CANODRA W accepts the decimal format only. 

-The MS-DOS redirection symbols > and < work now properly with the answer file 
CANOCO.con. Therefore, one can run CANOCO 'in batch', without output to the 
screen, or integrate CANOCO into the environment one is accustomed to, for 
example, Desqview, Windows or Pcshell. 

- CANOCO can give an environment-by-species table. This table contains: 
in CNCCNDCA: weighted averages of species with respect to standardized 

environmental variables, 
in PCNRDA: correlations between species and each environmental variable, 

when species are centred and standardized, and similar covariances, when 
species are just centred. 
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- More flexible memory management, whence more data can be analyzed. On an MS
DOS PC with 405 Kb free memory, CANOCO 3.10 can analyze 500 samples, 500 
species, 100 covariables and 58 environmental variables, but with some additional 
limitations on the number of species occurrences and environmental and 
covariable values (total data space 45000 reals) A 80x87 coprocessor is optional. 
On a PC with math coprocessor or on a standard Apple Macintosh, CANOCO 
3.10 can analyze at most 1000 samples, 700 species, 75 environmental variables 
and 100 covariables, (total data size < 80000). 

CANOCO is written in standard FORTRAN 77. Ready-to-use versions are available for 
MS-DOS computers and the Apple Macintosh. The ready-to-use version does not include 
the source code. CANOCO has been successfully implemented on various mainframe 
computers. For implementation on mainframes and workstations, the source code of 
CANOCO is available on a DOS or Apple diskette, together with compilation notes and 
a demo version of the program for DOS or Apple Macintosh. 

Default CANOCO.INI for version 3.10 

*CANOCO (values start in position 2) 
1 =range [0,1] = (01) decimal output in file for canoplot 

= char ;;;;; (02) separator between decimal values in file for canoplot 
:;;: char = (03) character by which to enclose names " , , 
:::: char = (04) character to close the scores of each item , , 

1 = range [0,1] = (05) pagemode of screen 
25 = range [10,100]= (06) number of lines on a. screen 
2 = range [-3,3] = (07) scaling ordination scores pca/rda 
2 = range [-3,3] = (08) scaling ordination scores ca/dca/cca/dcca . 
2 = range [1,4] = (09) dimension of biplot in DCA and t-value biplot in PCA/RDA 
26 = range [10,46] :;;: (10) number of segments in detrending process in DCA 
4 =range [0,20] :;;; (11) number of times for nonlinear rescaling 
0 = range [0,100] = (12) 100 TIMES rescaling threshold 
0 =range [0,1] ;;; (13) downweighting of rare species in ca/cca/dca 
1 = range [0,4] = (14) centring/standardization by species in pca/rda 
0 = range [0,3] = (15) centring/standardization by samples in pca/rda 
0 =range [0,1] = (16) long dialogue 
0 = range [0,1] = (17) forward selection of environmental variables 
3 = range [0,3] = (18) ordination diagnostics 
4 = range [0,4] = (19) output of correlation matrix 
1 = range [0,1] = (20) spec-envi table on file canoco.pun 
0 =range [0,1] = (21) symmetric autocovariance function in grid permutations 
0 = range [0,3] = (22) transformation of species data 
1 =range [0,1] = (23) value of c in log( y + c) transformation 
7 = range [1,9] = (24) default analysis number (1=PCA 2=RDA, etc.) 
ANSWERS.CON = (25) answer file (input from file) 
CANOCO.SPE = (26) file with species data 

CANOCO.OUT 
CANOCO.SOL 
CANOCO.PUN 

= (27) file with covariables 
= (28) file with environmental data 
= (29) print file 
= (30) solution file for CANOPLOT or other prog 
= (31) output file for spec-envi table 

2 2 0 0 1 2 2 2 = 8 values in range [0,6] = (32) output ordination results 
*ENDCANOCO 
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2 Summary of the ordination 

2.1 Summary of the ordination without covariables in the analysis 

An example summary from a CCA of the Dunemeadow data is: 

**** Summary **** 
Axes 1 2 3 4 Total inertia 

Eigenvalues .461 .298 .160 .134 
Species-environment correlations .958 .902 .855 .889 
Cumulative percentage variance 

of species data : 21.8 35.9 43.5 49.8 
of species-environment relation: 37.8 62.3 75.4 86.3 

Sum of all unconstrained eigenvalues 
Sum of all canonical eigenvalues 

2.115 

2.115 
1. 220 

Which items are displayed depends on the particular analysis, e.g. in DCA (segments) the 
gradient lengths of the axes are given also. 

The eigenvalues measure the importance of an axis (values between 0 and 1). 
The total inertia is the total variance in the species data as measured by the chi

square of the sample-by-species table divided by the table's total (Greenacre, 1984). Note 
that, for abundance data or presence-absence data, chi-square does not have its usual 
statistical meaning; in particular, it does not follow the chi-square distribution. In 
PCA!RDA, the total variance is always set to 1, because the species data are scaled in 
this way (CAN21, p. 30). 

The species-environment correlation measures the strength of the relation between 
species and environment for a particular axis. It is akin to the canonical correlation in 
canonical correlation analysis. It is the correlation between the sample scores for an axis 
derived from the species data and the sample scores that are linear combinations of the 
environmental variables. Note that a high correlation does not mean that an appreciable 
amount of the species data is explained by the environmental variables. The amount 
explained is given by the eigenvalue in constrained analyses (RDNCCA) and by r2 * 
eigenvalue in unconstrained analyses (PCNCA). These amounts are given in the next 
item. 

The percentage of variance of the species data explained by the axes is given 
cumulatively. Except in DCA (segments), these percentages can easily be derived from 
the eigenvalues and the sum of all unconstrained eigenvalues, e.g., for axis 2, 100 * 
(A 1+ A2)/(sum of all unconstrained eigenvalues). For abundance data or presence-absence 
data, these percentages are usually quite low, in particular when analyzed with CNCCA, 
but this is nothing to worry about. Species data are often very noisy. An ordination 
diagram that explains only a low percentage may be quite informative ( cf. Gauch, 1982). 

With environmental variables in the analysis, CANOCO uses these to explain the 
species data. This yields fitted values for the species. In PCA!RDA, the fitted values can 
be obtained by a multiple regression for each species on the environmental variables. In 
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CNCCA, this is a weighted regression (see Escoufier, 1985 and the Section Ordination 
diagnostics). The total variance of the fitted values is precisely the sum of all constrained 
eigenvalues. Each axis explains a part of this variance. This information is given 
cumulatively in the line 'percentage variance of species-environment relation'. In 
RDNCCA, the percentages can easily be calculated from the eigenvalues and the sum 
of all constrained eigenvalues, e.g., for axis 2, 100 * (A- 1 + A-2)/ (sum of all constrained 
eigenvalues). In PCNCA, the formula is a bit more difficult (namely, the eigenvalues in 
the nominator must be multiplied by the square of the species-environment correlation). 
The fitted values with two axes can be displayed in a two-dimensional biplot of the 
species scores and the sample scores that are linear combinations of the environmental 
variables. 

There exists another interpretation of the percentage variance of the species
environment relation. In PCA!RDA, the relationships between the species data and the 
environmental data can be summarized in a table of species by environmental variables 
with as entry the correlation between each particular species and each particular 
environmental variable. The total weighted variance in this table (CAN21, p.94, (C.l)) 
is precisely the sum of all constrained eigenvalues. Each axis, again, explains part of this 
table and this information is reported cumulatively as the percentage variance of the 
species-environment relation. The correlations in the table, as approximated by two axes, 
can displayed in a two-dimensional biplot of species scores (adjusted for species variance) 
and the biplot scores of environmental variables. If the species scores are not adjusted 
for species variance (scaling of ordination scores < 0), the biplot displays covariance 
instead of correlation. (With covariables in the analysis, partial covariances are 
displayed.) In CNCCA!DCA, the entries in the table are weighted averages of species 
with respect to environmental variables instead of correlations, but for the rest the 
interpretation is the same. 

2.2 Summary of the ordination with covariables in the analysis 

An example summary for CCA of the Dunemeadow data with as covariables 
thickness of the Al horizon, moisture and quantity of manuring, is as follows 

**** Summary **** 
Axes 1 2 3 4 Total 

Eigenvalues .166 .096 .093 .070 
Species-environment correlations .940 .793 .803 . 771 
Cumulative percentage variance 

of species data 12.3 19.5 26.4 31.5 
of species-environment relation: 36.9 58.3 78.8 94.3 

Sum of all unconstrained eigenvalues (after fitting covariables) 
Sum of all canonical eigenvalues (after fitting covariables) 

Percentages are taken with respect to residual variances 
i.e. variances after fitting covariables 

inertia 

2.115 

1.346 
.450 

We see from the table that the sum of all unconstrained eigenvalues is no longer 
equal to the total inertia, because the covariables have already explained of some inertia 

6 



in species data, namely 2.115 - 1.346 = 0.769. In a CCA with thickness of the A1, 
moisture and manuring as only environmental variables, the sum of all constrained 
eigenvalues is indeed 0. 769. The additional inertia explained by the other variables, i.e. 
the environmental variables in the above summary, is 0.450. Note that the sum of 0.769 
+ 0.450 = 1.219, which is, apart from rounding error, equal to the sum of all constrained 
eigenvalues in our first CCA on all environmental variables. It is thus possible to 
decompose the total inertia as is usually done in the analysis of variance and regression 
analysis. The covariables explain 100 * 0.769/2.115 = 36% of the inertia and our current 
environmental variables (eliminating covariables) 100 * 0.450/2.115 = 21%. The 
remaining 43% of the total inertia is unexplained. The theory of decomposing variance 
is given in full by Whittaker (1984). 

The inertia in the species data after fitting the covariables is 1.346. Of this residual 
inertia, the first axis explains 0.166, i.e. 100 * 0.166/1.346 = 12.3%. That is 100 * 
0.166/0.450 = 36.9% of what can in total be explained by the current environmental 
variables. One finds these percentages in the summary table. 

3 Scaling of ordination scores 

3.1 Introduction 

CANOCO has six ways to scale ordination scores. This section gives guidelines to 
help making this choice. If you find the choice difficult, it may be a comfort that the 
different choices of scaling all yield the same ordering of ordination scores and the same 
Summary of the ordination. Although the scalings do not affect the main aspects of the 
ordination, they do affect the amount of scatter among axes of an ordination diagram. 
The scaling also influences some aspects of the interpretation of ordination diagrams. 
The differences in interpretation are minor if the ratios of eigenvalues are close to 1. 

In the long dialogue, the user is asked which scaling CANOCO must use. In the 
short dialogue, the default scaling is used; this default can be changed by using a 
CANOCO.INI file (see Initialization file). For the novice, it is probably best to stick to 
the default scaling. 

The default scaling (without Initialization file) has the following properties: 
In PCA!RDA, the species scores and biplot scores of environmental variables are 

correlations with the ordination axes (the 'eigenvector sample scores', see Glossary) and 
the eigenvector sample scores have variance 1. All three items can be displayed jointly. 
All pairs of these items (species + environmental variables, species + samples, samples 
+ environmental variables) can be interpreted according to the rules of a biplot 
(Jongman et a!, 1987: section 5.3.4). The biplot of species + environmental variables 
yields approximate correlation coefficients between species and environmental variables, 
and between species among themselves and between environmental variables among 
themselves. The biplot of species + samples yields approximates abundance values 
(standardized by species) and the biplot of samples + environmental variables yields 
approximate environmental values (standardized by environmental variables). However, 
the plot is not correctly scaled to look at inter-sample distances. If inferring inter-sample 
distances is the main use of the plot, use scaling 1, instead of the default scaling 2. (In 
analyses with covariables, the word correlation in the above description should formally 
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be replaced by covariance, but the values still lie between -1 and + 1 ). 
In CNCCA, the species scores are weighted averages of eigenvector sample 

scores, the biplot scores of environmental variables are correlations with the ordination 
axes and the eigenvector sample scores have variance 1. The species and environmental 
variables form a biplot which yields approximate weighted averages of species with 
respect to environmental variables, and the samples and environmental variables form 
a biplot of approximate environmental values. Thus, projection of samples on an 
environmental variable yield environmental values and the projection of a species on this 
variable gives a weighted average. Indeed, if we plot the sample scores on the same scale 
as the species, then the projection point of the species lies approximately at the centroid 
of the sample projection points. The weighted averaging principle is thus optimally 
present in this scaling. Moreover, distances between species are approximate chi-square 
distances and, from the environmental arrows, one obtains a biplot approximation of 
correlation among environmental variables (as in PCNRDA). In this scaling it is also 
possible to interpret the joint plot of species and samples as a biplot; the values that are 
approximated for a species are proportional to its relative abundance y;k/Yi+ (see 
Ordination diagnostics). 

In the default DCA!DCCA (i.e. with detrending-by-segments ), Hill's scaling is 
used, as in DECORANA, in which samples are weighted averages of species. It allows 
to make a joint plot of species and samples (Jongman eta!, 1987: section 5.2.5) and to 
make a biplot of species scores with biplot scores for environmental variables. 

In the above descriptions, the eigenvector sample scores were plotted, i.e. the 
sample scores derived from the species in indirect techniques (PCNCA!DCA) and the 
samples scores derived from the environmental variables in direct techniques 
(RDNCCA/DCCA). In direct techniques the species-sample plot approximates the fitted 
abundance values. Plotting the sample scores derived from the species will give a better 
fit of the original abundance values. (The two sets of sample scores will not differ much 
if the species-environment correlation is high). 

We discuss the scaling for linear methods (PCNRDA) and unimodal methods 
(CNCCA) separately. We assume that the analysis is without covariables. In a final 
section, it is described what happens with covariables. 

3.2PCNRDA 

In the long dialogue, the user is asked the question: 

*** Scaling of ordination scores *** 
1 ~ Euclidean distance biplot 
2 ~ correlation biplot 
3 ~ symmetric scaling 
Type corresponding negative number for covariance-based scores 
Range of valid answers: -3 [2] 3 

The six choices are grouped in two sets of three. We first discuss whether to use 
a negative value or a positive value for the scaling. 

The negative values correspond to traditional scalings (the only ones possible in 
CANOCO v2.x). They use the raw species data, in which the species usually have 
different variances. The resulting species scores are covariances between species and 
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eigenvectors if the scaling = -2, and proportional to covariances if the scaling = 1 or 3 
(CAN21, p. 44, eq ( 4.3)). By contrast, the positive values adjust the species scores for 
species variance. They use data standardized by species. The resulting species scores are 
correlations between species and eigenvectors if the scaling = 2 and 
proportional to correlations if the scaling = 1 or 3. A biplot of species scores and 
samples displays the raw (centred) species data, for a scaling < 0, and the standardized 
(centred) species data for a scaling > 0. 

The new options are to counteract the effect of total abundance of a species on 
its score (e.g. Hill, 1973). The following considerations may clarify the situation. The 
more abundant species often have the larger variance (even after log-transformation) and 
thus tend to get the largest scores (when not adjusted). In the ordination diagram, the 
most abundant species thus usually have the longest arrows (they lie far from the origin). 
That conspicuous position often only says that the species is a dominant and does not say 
that the species correlates well with the axes. Less abundant species may correlate much 
better. Adjustment for species variance solves this problem. Another solution is to 
perform the PCA!RDA on standardized species data (through the option for 
centring/standardization by species in the long dialogue). But this solution has the 
disadvantage that it tends to give rare species unduly large weight (see J ongman et a!, 
1987, section 5.3.5). 

We now discuss the choice between scaling 1, 2, and 3 (or -1, -2, -3, which is 
analogous). See also Jongman et al (1987, section 5.3.4) and the section on biplots. 

Scaling 1 (Euclidean distance biplot) is the most appropriate when you are going to focus 
on the sample ordination, in particular, on the mutual position of samples in the 
ordination diagram. With this scaling, distances between samples in the diagram 
approximate Euclidean distances in species-space. 

Scaling 2 or -2 (correlation biplot) is the most appropriate when you are going to 
focus on the species ordination. Mutual correlations between species are best inferred 
from a diagram in this scaling. Species with arrows that make a sharp angle are inferred 
to be positively correlated, with a higher correlation the longer the arrows are. By 
contrast, obtuse angles reflect negative correlations. By projecting all species points on 
the arrow for a particular species, the order of the projection points orders their 
correlation with that particular species (if the scaling is 2; if the scaling is -2, an ordering 
of covariances is obtained). Scaling 2 also facilitates the quantitative interpretation of 
species-environment biplots. Both species scores and biplot scores for the environmental 
variables are correlations with the ordination axes in scaling 2. Thus, one can use the 
same scale unit in the diagram for both species and environmental variables. By adding 
a circle with radius 1 to the diagram, the diagram allows easy quantitative evaluation of 
the correlations between species and environmental variables. Scaling 2 or -2 is also 
appropriate when one wishes to study how the sample values of an environmental 
variable change over the ordination diagram (Jongman et al, 1987, Fig. 5.16, equation 
5.12). The biplot scores of the environmental variable gives the correct direction of 
maximum change across the diagram. If you wish this type of diagram with scaling 1, you 
must divide the biplot scores for environmental variables of that analysis by the 
corresponding eigenvalue. Although, in scaling 1, the biplot scores themselves are optimal 
in conjunction with the species, they need modification for use with samples. This 
unpleasant feature of scaling 1 is the reason why it is not any longer the default in 
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CANOCO. 
Scaling 3 is intermediate between 1 and 2. It does not have any extra 

mathematical optimality, but may be convenient as a compromise. 
If the analysis is centred and standardized by species (PCA!RDA on a correlation 

matrix), then one may conjecture that positive scalings give the same result as the 
corresponding negative scalings. However, that is not presently the case, because with this 
centring/standardization CANOCO sets the species variance internally to 1/m instead of 
to 1. 

3.3 CNCCA 

In the long dialogue for CA and CCA, the user is posed the question: 

*** Scaling of ordination scores '/(** 
1 = sample scores are weighted mean species scores 
2 =species ,, ,, weighted mean sample 
3 = symmetric scaling 
Type corresponding negative number for Hill's scaling 
Range of valid answers: -3 [21 3 

The positive scalings standardize the ordination scores to A •, whereas the negative 
values standardize the ordination scores to A •;(1-A), with a= 0, 0.5 or 1. The negative 
scalings were the only ones possible in CANOCO v2.x. Scaling -1 has the advantage that 
it equalizes the root mean square species tolerance among axes (Hill, 1979, CAN21 p.46 
and Jongman et a!, 1987, p. 103). Lebreton et a! (1987) use the positive scaling values, 
scaling 2 in particular. With the positive scalings, the ordination diagrams of CA and 
CCA can be interpreted as biplots that give approximate values of (transformed) species 
abundance values (e.g. ter Braak, 1985, eq. 2.4, see Section Ordination diagnostics) and 
also, more informally, as joint plots. By contrast, with the negative scaling the ordination 
diagrams can only be interpreted as a joint plot in which mutual distances yield 
approximate orderings of abundance values (Jongman et a!. 1987, section 5.2.5). The 
difference in appearance of the ordination diagram is small if the eigenvalues are low. 
The paradox noted in CAN21 (p. 68) is relevant here. A clear advantage of scaling 2 is 
that environmental biplot scores are correlations of environmental variables with the axes 
(Lebreton et a!, 1987). The resulting ordination diagram thus allows both a more easy 
intuitive and a more quantitative interpretation. 

We now discuss the choice between scaling 1, 2 and 3. Scaling 1 or -1 is more 
appropriate when the focus is on the configuration of the samples in the ordination: with 
scaling 1, inter-sample distance approximates their chi-square distance (J ongman et a!. 
1987, equation 5.15). Scaling 2 or -2 is more appropriate if the emphasis is on the species 
configuration: with scaling 2, inter-species distance approximates their chi square-distance. 
With both species points and biplot points for environmental variables in the diagram, 
scaling 2 or -2 fits well with the idea that this biplot approximates weighted averages of 
species with respect to environmental variables: the species points are namely at the 
centroid of the samples in which they occur and are thus also exactly the weighted 
average of the projection points of the samples on the environmental arrow. As in 
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PCA/RDA in scaling 2 or -2, the projection points approximate the sample values of the 
environmental variable. Scaling 2 has, again, the advantage that it yields correlations for 
environmental biplot scores. 

3.4 DCA (segments) 

In DCA (segments), there is only one scaling: the original scaling used in 
DECO RAN A (Hill, 1979) and also described in Jongman eta! (1987, p 106). This scaling 
is most akin to the above scaling -1 in CNCCA. In the short dialogue, CANOCO uses 
the default values for the number of segments (26), the number of rescaling to be done 
( 4) and the rescaling threshold (0.0). These defaults can be modified by using a 
CANOCO.INI file 

3.5 Scaling of ordination scores with covariables in the analysis 

Most of what has been said so far continues to hold, if there are covariab!es in the 
analysis, except that the correlations are, strictly speaking, not (partial) correlations, but 
partial covariances. In my opinion, partial correlations are more difficult to interpret, 
because the scale of species and environmental variables then depends on the covariables 
in the analysis. (To obtain partial correlations, one needs to divide the partial covariances 
by the square root of the residual variances for species and environmental variables after 
fitting covariables ). Especially if the residual variances are small, partial correlations are 
less stable than partial covariances. 
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4 Check on influence 

Constrained ordination is an extension of multiple regression. As in regression, 
samples that have extreme values in the explanatory variables, have more influence on 
the results than central samples. This influence can be measured by the leverage 
(Montgomery & Peck, 1982). The leverage is equal to the squared Mahalanobis distance 
of the sample plus 1/n and thus measures how extreme the position of the sample is in 
the space of the environmental variables. If the leverage of a sample is more than three 
times the average leverage, then CANOCO reports the sample number and how many 
times the average its leverage is. 

CANOCO checks for each sample the leverage 
(1) in the space of the covariables 
(2) in the joint space of the covariables and environmental variables 
(3) for each separate environmental variable. 

Check (3) detects univariate outlier and uses a higher cut off point, namely five times the 
average leverage. This corresponds to samples that have a value that is more than 3 
standard deviations out of the mean. This check is skipped for indicator variables (Oil
variables). There is an easy formula to transform univariate leverages to standard 
deviation units: if the leverage is k times the average, the value is sqrt(2*k-1) standard 
deviations out of the mean. 

What to do if samples with high influence are detected? The first thing is to check 
that the cause is not a recording or typing error. If not, try to understand why the sample 
is an outlier and whether it really belongs to the population you want to describe. If it 
does, it may be instructive to check whether removal of the sample would modify your 
essential conclusion. But, always be hesitant to remove the sample in the analysis you 
report. More discussion on this topic can be found in every modern book on regression 
and on outliers. 
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5 Ordination diagnostics 

5.1 Introduction 

Usually, an ordination diagram is not an exact representation of the data. Overall 
measures of quality of the approximation are given in the 'Summary of the ordination' 
in terms of percentages of variance accounted for. But, neither all species nor all samples 
are equally well represented in the data. CANOCO has ordination diagnostics to find out 
which species and which samples are ill-represented and which are well represented. 
There are three types of statistics: measures of fit for species, residual distances for 
samples, tolerances for species ('niche widths') and heteregeneity for samples. Tolerance 
and sample heterogeniety are not defined in PCA/RDA. The fit measure and residual 
distance are not available in DCA (segments). 

Ordination diagnostics are also of interest to see whether passive samples (e.g., 
historic samples) fit into the structure found for the active samples (e.g., modern 
samples). 

5.2 Fit for species and residual distances 

In the long dialogue, CANOCO poses the question, in CNCCA, 

*** Species and sample diagnostics *** 
0 = no diagnostics 
1 = Chi-square- fit and residual distances 
2 = tolerances 
3 = both 1 and 2 
Range of valid answers: 0 [31 

Here we describe option 1. The corresponding question in PCA/RDA is: 

*** Species and sample diagnostics *** 
0 = no diagnostics 
1 = fit and residual distances 
Range of valid answers: 0 [3] 

(The default value of 3 yields the same result as the answer 1 ). 

Example output for CCA for species is: 
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DUNE MEADOW SPECIES DATA (M. BATTERINK AND G. WIJFFELS, 1983) 
CCA Canonical axes: 4 Covariables: 0 Scaling: 2 

No transformation 
CFit: Cumulative fit per species as fraction of variance of species 

N NAME AXl AX2 AX3 AX4 VAR(y) % EXPL 

FR FITTED .2180 .1409 .0757 .0632 

1 ACH MIL .3252 .3923 .3926 .4441 2.17 49.35 
2 AGR STO .5065 . 7199 . 7311 .7365 1.17 78.20 
3 AIR PRA .0383 .2624 .3437 .3635 14.26 37.32 

27 TRI REP .0009 .0222 .1816 .2091 .57 45.46 
28 VIC LAT .0416 .1904 .2050 .2718 6.93 66.67 
29 BRA RUT .0293 .1315 .1622 .2430 .63 34.95 
30 CAL GUS .3698 .3972 .4173 .4259 7.42 48.64 

The column headed V AR(y) contains the variances of each of the species. In 
CNCCA, this is the chi-square statistic (Greenacre, 1984, eq 2.4.2), divided by y +k• 

calculated for each species: 

var(y.) 

where e,.=y1+y +k/y ++· Note that 

total inertia = chi-square I y ++ = 2:• (y +k/y + +) var(y.) 

From the species scores (bt<.) and eigenvector sample scores (x1,) on axis s one can 
calculate the fitted value for Yik as follows, if the scaling < 0 (for CA: Greenacre, 1984, 
eq. (4.1.25); ter Braak, 1983; analogous for CCA) 

The fraction of the variance of a species fitted, in this way, by axis 1 is given under the 
heading AXl. (This fraction is sometimes termed the contribution of dimensions to the 
inertia of the species, or the relative contribution; Greenacre, 1984, p. 70). The fit by axes 
1 and 2 is given under the heading AX2, etc. The percentage fit by all q environmental 
variables together ( q axes) is given in the last column, headed % EXPL. 

Due to internal rescaling of the data (CAN21, p.30, pp. 70-72), the variance given in 
PCA;RDA is not the usual variance but proportional to it. The proportionality constant 
depends on the total sum of squares and the number of samples (CAN21, p.71). The 
cumulative fit for s axes is the coefficient of determination (R 2) in a regression model 
with the s axes as explanatory variables: it is the cumulative fraction of the variance 
explained by the first s axes. The percentage variance accounted for by all environmental 
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variables is given in the last column (% EXPL = 100*R2
). 

With covariables in the analysis, V AR(y) is unchanged. All fractions are therefore 
with respect to the original variance, rather than with respect to the residual variance. 
The fit due to the current environmental variables is shown. This fit is additional to the 
fit by the covariables. 

Species influence the ordination more the larger their variance and the larger their 
weight. In PCA/RDA, the weights are usually equal and it is sufficient to look at the 
species variance. Species with extreme variance may have an unduly large influence. A 
remedy is to transform the species data by, for example a log or square-root 
transformation. If that does not help enough, consider given a species less weight in the 
option for weights for species in the long dialogue. In CNCCA, species with a large value 
for weight*variance may have a large influence. 

Example output for samples is: 

SqRL: Squared residual length per sample with s axes (s=l. .. 4) 

N NAME AXl AX2 AX3 AX4 SQLENG % FIT 

FR FITTED .2180 .1409 .0757 .0632 

1 ...... 1 2.4239 2.3515 2.2302 2.1596 3.06 29.38 
2 ...... 2 .8389 .8579 .8270 .4398 1.17 62.37 
3 ...... 3 .9140 .6169 .4876 .4337 .96 54.69 

In CNCCA, SQLEN is the squared chi-square distance between the sample point 
and the centroid in m-dimensional species space (Greenacre, 1984, p. 35; the formula is 
analogous to that of the variance of species in CNCCA). After fittings axes, the squared 
distance between the sample point and the s-dimensional ordination space is given under 
the heading AXs (s=1, ... ,4). The percentage fit(% FIT) is (within rounding error) equal 
to 100 * (1 -entry AX4/SQLEN). 

In PCA/RDA, squared Euclidean distances are shown. These are proportional to 
the ones calculated from the raw data, because the total sum of squares in the species 
data is set to 1 in CANOCO (CAN21, p.30, pp. 70-72). 

The percentage fit for samples (% FIT) can take negative values in constrained 
analyses. Then, the residual length is larger than the length, i.e. the sample point is 
farther from the ordination plane than from the centroid of the data. This can happen 
when there is a strong species-environment relation, but an odd sample couples an almost 
'average' species composition to marked environmental values. 
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5.3 Tolerance and sample heterogeneity 

CNCCNDCA are based on the assumption that the species 'distribution' (the 
response function) is unimodal. (That is at least one way of looking at CNCCAJDCA). 
The species score, which (proportional to) the weighted mean of the sample scores, 
indicates the centre of this distribution. The width of the distribution can, similarly, be 
quantified by the standard deviation (Chessel et a!, 1982), or as I prefer to term it, the 
tolerance (ter Braak and Barendregt, 1986; ter Braak and Looman, 1986; ter Braak and 
van Dam, 1989). The tolerance is a measure of niche width. Green (1971) proposed this 
niche measure in his variant of discriminant analysis. His analysis is equivalent with CCA 
applied to presence-absence data (Chessel et al, 1987; Lebreton et a!, 1988). Green 
(1971) is thus a precursor to CCA. After Green's paper appeared, a series of papers in 
Ecology discussed niche measures in canonical space (Dueser and Shugart, 1978; Dueser 
and Shugart, 1979; Carnes and Slade, 1982; Van Horne and Ford, 1982; Dueser and 
Shugart, 1982). CANOCO follows the round up by Carnes and Slade (1982) in providing 
standard deviations of scores per axes (see Green, 1971, Fig.2) and the root mean square 
standard deviation across the 4 axes (RMSTOL) as a summary niche breadth. The 
population standard deviation is used (divisor n instead of n-1 ). An example for the CCA 
is: 

Tol Species tolerance (root mean squared deviation for species) 

N NAME 

FR FITTED 

1 ACH MIL 
2 AGR STO 
3 AIR PRA 

A.Xl 

. 2180 

.3702 

.8635 

.5708 

AX2 

.1409 

. 7193 

.9474 

.2919 

AX3 

.0757 

.8210 
1.1364 

.4588 

AX4 

.0632 

1.0546 
.8557 
.0326 

RMSTOL 

78.11 
95.75 
39.45 

N2 

6.10 
9.14 
1. 92 

When the scaling is not 2 or -2, species scores are not weighted averages of 
sample scores. Then, CANOCO uses the species score instead of the weighted mean in 
calculating the standard deviation. CANOCO thus calculates the spread around the 
species point of its occurrences. When the scaling is 2 or -2, this is fine also for 
interpreting the ordination diagram in terms of where the species may occur. But, for a 
fair statistical comparison of the standard deviations, one should take into account the 
effective number of occurrences: if N2 is close to 1, then the standard deviation is always 
zero! One may account for this, by dividing the standard deviation by sqrt(1- 1/N2). For 
presence-absence data, one so obtains precisely the sample (instead of: population) 
standard deviation. 

The last column contains N2, which is the effective number of occurrences of the 
species. It is analogous to the N2-diversity measure of Hill (1973b ). N2 can be 
understood as follows. For presence-absence data, N2 is simply the number of 
occurrences. With abundance data, a species may occur with abundances 1000, 1, 1, say. 
CNCCNDCA are based on weighted averages. The weighted average for this species 
is effectively determined by the sample in which it occurs with abundance 1000 and the 
value of N2 is close to 1. 

For samples, one can calculate the same measures of spread as for species. One 
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obtains, for example, in our CCA, 

Het : Sample heterogeneity (root mean squared deviation for samples) 

N NAME AXl AX2 AX3 AX4 RMSTOL N2 

FR FITTED .2180 .1409 .0757 .0632 

1 ...... 1 .3524 .3640 1.1338 .1370 62.47 3. 77 
2 ...... 2 . 7291 .4110 .2346 1.4485 84.46 9.09 
3 ...... 3 .5317 .6950 .8218 .6445 68.13 8.25 

The measure N2 is now the inverse of the Simpson diversity measure. 

The numbers after FR FITTED are the fraction explained variance of the species 
data, which we given earlier cumulatively in the Summary of ordination. 

In the evaluation of ordination diagnostics of passive samples, one should be 
aware of the following. If a active and passive sample have the same species composition 
(as sample 17 and PAS 17 in DUNE.SPE), then their diagnostics will be identical only 
in an unconstrained analysis. This is because CANOCO will always use, for the active 
sample, the eigenvector sample scores, but, for the passive sample, the sample scores 
which are derived from the species. In a constrained analysis, the eigenvector sample 
scores are those derived from the environmental variables, whence the difference. With 
covariables in the analysis, an addition difference can be whether or not values for 
covariables were entered for the passive sample. 

Note: The 'eigenvector sample scores' are, in an unconstrained analysis, the sample 
scores (which are derived from the species) and, in a constrained analysis, the sample 
scores which are linear combinations of environmental variables. 
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6 Forward selection of environmental variables 

The purpose of selection of environmental variables is to find out a minimal set 
of variables that explain the species data about as well as the full set. Selection of 
variables is a standard topic in books on multiple regression, e.g. Montgomery and Peck 
(1982). CANOCO generalizes forward selection of variables from univariate regression 
to the multivariate case. See also Escoufier & Roberts (1979). At each step, the variable 
is selected that adds most to the explained variance of the species data. The explained 
variance is a straight sum of squares of regression in RDA and is inertia in CCA (see 
Summary of the ordination). With CANOCO, one can test at each step whether the 
variable to be added is statistically significant by means of a Monte Carlo permutation 
test. This test replaces the F- or t-test in forward selection in univariate multiple 
regression and shares the shortcomings of these tests: when applied stepwise, the tests 
do not control in any way the overall size of the test. In practical terms, this means that 
too many variables will be judged significant. 

Forward selection can be chosen in the long dialogue (or by setting this option in 
the CANOCO.INI file). 

Let us give an example using a CCA of the Dunemeadow data. At the point 
where CANOCO normally starts with the calculation of the eigenvalues, CANOCO now 
giVes: 

**** Start of forward selection of variables **** 
N Name Extra fit 
6 PASTURE .10 
5 HAYPASTU .13 
8 BF .14 
9 HF .15 
4 HAYFIELD .15 
7 SF .20 
1 Al .22 
3 MANURE .24 

10 NM .32 
2 MOISTURE .41 

Type number of variable to be selected 
" -number to test the variable 
" -999 to test the best variable 
" 0 to stop forward selection 

Range of valid answers: -999 [2] 10 

The environmental variables are shown in order of the 'Extra fit'. With no variable 
yet selected, the extra fit is equal to the eigenvalue of a CCA if the corresponding 
variable were the only environmental variable. The same list could thus be obtained 
manually in ten runs of CANOCO, each run with another environmental variable. If we 
press RETURN, CANOCO selects the variable with the highest extra fit, in our case, 
MOISTURE and reports: 

Variance explained by the variables selected: .41 
" " " all variables 1. 22 

The value 1.22 is the sum of all constrained eigenvalues (See summary of the ordination), 
which is the total variance (inertia) of the species data that is explained by all ten 
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environmental variables. Moisture alone explains an inertia of 0.41. CANOCO continues 
with: 

N Name 
8 BF 
6 PASTURE 
9 HF 
1 A1 
5 HAYPASTU 
4 HAYFIELD 
7 SF 
3 MANURE 

10 NM 

Extra fit 
.08 
.08 
.11 
.12 
.13 
.15 
.18 
.23 
.26 

Type number of variable to be selected 
-number to test the variable " 

" 
" 

-999 to test the best variable 
0 to stop forward selection 

Range of valid answers: -999 [10] 

With moisture already selected, the extra fit is the increase in explained inertia 
when the analysis with moisture alone is compared with the analysis with both moisture 
and the corresponding variable. The value of 0.23 for MANURE could thus be obtained 
manually by running a CCA with MOISTURE and MANURE. The explained inertia (the 
sum of all constrained eigenvalues) of this CCA is 0.64, which is 0.23 more than with 
MOISTURE alone. 

If we now for some reason wish to add MANURE to the model, we type 3 and 
press RETURN. CANOCO selects MANURE, instead of the variable with the highest 
extra fit, and reports: 

Variance explained by the variables selected: .64 
" " " all variables 1. 22 

The inertia explained by MOISTURE and MANURE is, indeed, 0.64 

N Name Extra fit 
5 HAYPASTU . 05 
7 SF . 06 
8 BF . 09 
6 PASTURE .09 
4 HAYFIELD . 10 

10 NM .11 
9 HF .11 
1 Al .13 

Type number of variable to be selected 
" -number to test the variable 
" -999 to test the best variable 
" 0 to stop forward selection 

Range of valid answers: -999 [11 10 

We see that NM is not the best variable to add at this point. This can be 
explained by noting that the Nature Management meadows do not receive manure, so 
that the variable NM is largely exchangeable with MANURE. The best variable to add 
is now Al. Let us test whether the additional effect of this variable on the species is 
statistically significant. We do this by typing either -1 or -999. The questions CANOCO 
asks now are described in the section on Monte Carlo testing. After the requested 99 
random permutations of the values of the variable A1, CANOCO summarizes the test 
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as follows: 

P-value .090 (variable 1; F-ratio= 1.55; number of permutations= 99) 

and asks again whether to select or test a variable or to stop. Because the additional 
effect of the best variable (Al) is not significant at the conventional 5%-level, we might 
wish to stop adding more variables. We do this by answering 0. If there is enough data 
space, CANOCO continues by performing a CCA on the selected variables (variables 2 
and 3). Before doing this, CANOCO reports that the other environmental variables are 
omitted. Variables that are multicollinear with the selected variables will not be omitted, 
because they do not harm the subsequent analysis. This feature of CANOCO guarantees 
that if 2 dummy variables of a nominal variable with 3 classes are selected, the third one 
is automatically included in the subsequent analysis. 

It is no problem for CANOCO, if there are covariables in the analysis at the start 
of the forward selection. The extra fit is calculated as usually. The results can be 
mimicked manually (without forward selection) by running CANOCO with the same 
covariables and the variable under consideration as environmental variable. The 
additional effect of the variable can then be tested also with a Monte Carlo permutation 
test (after a request for more analyses with the current data). The permutation results 
are not exactly the same, however, because the sequence of random permutation differs 
between the two ways of obtaining a Monte Carlo test with CANOCO. With forward 
selection, the Monte Carlo test is much quicker. 

Technical note 

Each time an environmental variable is selected, it is transferred to the 
covariables. The number of covariables may therefore be reported to be too small during 
forward selection, even if you did not enter yourself any covariable. 
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7 Monte Carlo permutation test 

The methods used for the Monte Carlo test have been changed. In CANOCO 
version 2.x, the method is based on the nuii hypothesis of exchangeability of sample 
values of the environmental variables (as used for example by Collins, 1987). In 
CANOCO version 3.10, the method uses exchangeability (whence permutation) of the 
residuals of the species after fitting covariables and environmental variables. The latter 
method is closely related to the bootstrap Monte Carlo tests proposed by the Hail & 
Titterington (1989). Instead of bootstrap samples from the residuals, CANOCO uses 
permutations of the residuals. It can be shown that this gives difference in results of the 
order 1/n (ter Braak, 1990b). For the rest, the methods are the same. The CANOCO 
method is based on the randomization model that Kempthorne (1952) poses in his 
"Design and analysis of experiments". The advantages of the version 3.x method are: 

- interactions effects (e.g. product variables) can be validly tested. 

- the correlation structure of the explanatory variables ( covariables and environmental 
variables) is not changed during permutation. 

- more power by permutation of residuals under the fuii model or, equivalently, the 
alternative hypothesis (Hail & Titterington, 1989). 

Furhter, the test statistics is changed from a sum of squares (eigenvalue or trace) to an 
F-type criterion by dividing by the residual error. The advantage of using an asymptotic 
pivotal statistic is shown by Hail & Titterington (1989). 

Permutation of residual under the nuii model (the null hypothesis) is optional. 
With this option, the old and new method yield equivalent results in simple situations 
such as overall tests without covariables and tests with a conditioning on ail covariables 
(randomized block designs). With permutation under the nuii model, the test is less 
dependent on the model being analyzed. For example, in a randomized block design with 
conditional permutation, no additive block effect needs to be assumed for validity of the 
test. On the negative side, the test is less powerful this way. 

Permutation under the null model is the default in tests of the first canonical axis 
only, i.e. when the overaii test is not required. This is because, with permutation under 
the full model, the alternative hypothesis is not one-dimensional, but q-dimensional. 

Technical note 

The F-ratio for the overaii test is defined as: 

F = (trace/q)/( rss/(n-p-q-1)) 
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with trace the sum of the canonical eigenvalues, rss the residual sum of squares, q the 
number of environmental variables and p the number of covariables and n the number 
of samples. The residual sum of squares is, for the data without permutation, 

rss = sum of all unconstrained eigenvalues - trace 

For tbe data after permutation, the rss is the residual sum of squares in the multivariate 
regression model: 

with y+ the permuted residuals. The trace is the sum of squares due to Z2, after fitting 
zl. 

The F-ratio for axis 1 is 

F = )../( rss/(n-p-q-1) ) 

with rss = the sum of all unconstrained eigenvalues - ).. 1• During permutation, the rss is 
that of the above multivariate regression model with a rank 1 restriction on the matrix 
of regression coefficients (M2). 

In CCA, the regression model is slightly different. The data Y are the residuals 
under the independence model in a contingency table 

and the regression uses sample (row) weights Y;+ and, for sums of squares over species, 
species (column) weights y +k· 

22 



8 Permutation types 

8.1 Introduction 

The validity of permutation test hinges on the validity of the type of permutation 
for the particular research design at hand. For completely randomized designed 
experiments (Cox, 1958), completely random perputation is appropriate, whereas for 
randomized block design the permutation must be conditioned on the blocks. Data from 
line transects, time series, rectangular grids and repeated measurement studies (e.g, 
BACI-designs) require specialized permutation types. CANOCO 3.10 can automatically 
generate valid permutation types for such data, when recorded at equal intervals. If your 
data require another type, you can feed permutations from an external file into 
CANOCO. For example, Legendre eta! (1990) propose, for one-way (M)ANOVA tests, 
a permutation type for data from an unregular grid. Permutations generated with their 
program COCOPAN can be fed into CANOCO. Permutation tests for time series data 
and spatial data as performed by CANOCO, form a nonparametric way to overcome the 
difficulty of statistical tests in the presence of autocorrelation or spatial correlation 
(Besag & Clifford, 1990: section 5; Ter Braak, 1980: part II, chapter 3). They thus form 
a viable alternative for traditional parametric tests based on precise modelling of the 
autocorrelation structure. 

8.2 Without covariables 

Without covariables in the analysis, CANOCO poses the question: 

*** Type of permutation *** 
0 = permutations read from file 
1 = unrestricted 
2 =restricted permutation for time series, line transects or grids 
Range of valid answers: 0 [1] 2 

Unrestricted permutation yields completely random permutations. If the data are 
from a time series, line transect or a rectangular spatial grid, CANOCO can generate 
more appropriate permutations. The idea is as follows. For stationary time series (with 
the sample points at equal time intervals), two series are unrelated if the starting point 
of the one serie is randomly linked to a time point of the other serie. So, the null 
hypothesis is rejected if the observed correlation is extreme in the distribution of 
correlations generated by such random links. We still need to face the problem that, 
after random linking, the start of the second serie has no first serie's points linked to it. 
Similarly, the end of the first serie has no linked points. Rather than using the linked 
points only, we use the tric of bending the time series into a circle, so that start and end 
meet. This mathematical tric works fine, provided there is no trend; it only corrupts the 
autocorrelation structure of each series at beginning and end of each series. For line 
transects, the dependence stucture is not unidirectional as in time series. Usually, a point 
is related to its neighbours at both sides. Therefore, each observation serie along the 
transect can also be mirrored (the series of points 1, 2, 3, 4 and 4, 3, 2, 1 are statistically 
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equivalent). However, the distinction between line transects and time series is not 
essential here. The test statistic used in CANOCO is correlation-based and the 
autocorrelation at lag h is equal to that at lag -h. Under the null-hypothesis, a trend-free 
time series can therefore be mirrored also. The general idea is that, with a correlation
based test statistic as is used CANOCO, the test of association must use permutations 
which preserve marginal correlations, but change cross-correlations (Ripley, pers. comm.). 

The general idea can be applied to data on a rectangular grid (with equal 
horizontal and vertical spacing). Data on a rectangular grid are wrapped around a torus 
(so that opposite sides meet) and the points on the torus for the species data set are 
randomly shifted with respect to the points on the torus for the environment data. If 
there is no trend, the grid can be rotated 180 degrees without changing the 
autocovariance function (i.e the autocovariance function c(h) equals c(-h), where his the 
shift h = (h~>h2) ). Therefore, both sides of the grid can also be mirrored before the shift 
(grid D below). If the autocovariance function is symmetric (c(hhh2)=c(-h1,h2)), we may 
mirror either one of the sides. Then, the following four grids have the same correlation 
structure and random shifts can be made, starting from each of the four equivalent grids: 

A B c D 

1 2 3 4 17 18 19 20 4 3 2 1 20 19 18 17 
5 6 7 8 13 14 15 16 8 7 6 5 16 15 14 13 
9 10 11 12 9 10 11 12 12 11 10 9 12 11 10 9 

13 14 15 16 5 6 7 8 16 15 14 13 8 7 6 5 
17 18 19 20 1 2 3 4 20 19 18 17 4 3 2 1 

Isotropic spatial processes have a symmetric covariance function. 
The question that CANOCO poses to choose among these possibilities is: 

Type number of rows of the rectangular grid 
type 1 for time series and line transects 

-number to disable random shifts of the mirror image 
Range of valid answers: -10 [1] 10 

For time series and line transects, the appropriate answer is 1. If the data are from a 
grid, e.g. with sample numbers and layout as in the left most grid above, the answer must 
be the number of rows (5). The general rule for determining what CANOCO considers 
rows, is that consecutive samples in the same row must have consecutive sample 
numbers. By default, CANOCO assumes that the autocovariance function is asymmetric 
and generates random shifts starting from grid A and D only. This default can be 
changed in the CANOCO.INI file (option 23). If this option is set to one, shifts starting 
from all four grids are used. 

For the above tests to work, the series need to be trend-free. It is therefore wise 
to linearly detrend the series before the test is applied. This is done in CANOCO by 
using covariables. For time series, use the time as covariable, for line transects the 
position and for grids both spatial coordinates of the sample (i.e. two covariables: one 
for the horizontal and the other for the vertical position). 
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8.3 With covariables 

With covariables in the analysis, CANOCO poses the question: 

*** Type of permutation *** 
0 permutations read from file 
1 = unrestricted 
2 =restricted permutation for time series, line transects or grids 
3 = permutation within blocks 
4 =permutation for repeated measurements, e.g. BACI designs 
Range of valid answers: 0 [1] 4 

When there are covariables, there are two more possibilities. Type 3 was available 
in CANOCO 2.x as well (CAN21, section 4.11). After choosing the types 2 or 3, the next 
question is: 

*** Specification of blocks *** 
Type the number of covariables 
onto which the permutation must be conditioned 
Range of valid answers: [OJ 3 

With the type of farms as covariables (SF, BF, HF, NM), the answer 3 garantees 
that farm type as treated as a block. CANOCO reports which samples belong to each 
permutation group (block), so you can check whether CANOCO does what you wished. 
If the permutation type is 2 (time series, line transects or spatial grids) and the only 
covariables are time/spatial coordinate(s), answer 0 here. With a nonzero answer, 
CANOCO continues to ask, for each group, for the number of rows in the layout of the 
samples, as above. To avoid confusion, number samples of the same time series, line 
transect or grid consecutively. 

In repeated measurement designs (type 4), each unit must have been recorded the 
same number of times. Consecutive samples in time must be given consecutive numbers 
in the input files. After choosing type 4 (repeated measurement designs), CANOCO asks: 

*** Specification of block + time variables *** 
Type the number of covariables 
onto which the permutation must be conditioned 
Range of valid answers: 1 [3] 

CANOCO reports (with answer 3), for example: 

Permutation class 
1 6 11 

1 (block 
16 

1, time 1) contains the samples numbered: 

Type number of times these units are sampled 
Range of valid answers: [11 5 

If we answer 5, then the design is fully specified: there were 4 units, each sampled 5 
times. The units belonging to time 2, 3, 4, and 5 will be reported by CANOCO. With the 
answer 2, CANOCO will notice that there are remaining samples. There must therefore 
be a block 2 in the design and CANOCO will ask how many times the units of that block 
were sampled. 

With type 4, CANOCO randomly permutes the labels of the units: the samples 
at different time points of a unit are hold together. Permuting the statistical units (instead 
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of the individual time samples) garantees valid statistical inference. 

8.4 Example of BACI-design 

An application of this type of permutation is given in the files BACI. * on the 
distribution disks (Data from Manger and Schouten, 1989). A liming experiment is 
carried out in three forests. In each forest, there are six plot, each recorded four times 
(one time before and three times after the treatments are applied). Recorded are 
percentage abundance of nematodes in four food-groups (data in BACI.SPE). The 
treatment is the application of three doses of lime: 0, 3 and 9 ton/ha lime. The 
experiment is thus of the BACI-design: Before-After-Control-Impact design (Green, 
1979). Not all BACI-experiments are repeated measurement studies, but probably many 
are, because often the same locations are resampled instead of that a new random 
sample is drawn from each area. The model for statistical analysis is: 

abundance = plot effect + time effect + lime effect + error 

We are interested in the lime effect. Plot and time must therefore be eliminated from the 
analysis by making them covariables (file BACI.COV), and lime must be in the 
environmental data (file BACI.ENV). For the Monte Carlo test, it is important to note 
that, under the null hypothesis of no lime effect, only the plots within each forest are 
exchangeable among each other. Forests thus comprise blocks. That is why the forest 
indicator variables are added in the file BACI.COV. Block and time variables are the 
first 7 covariables. CANOCO will note some dependencies among the covariables; one 
forest and one time variable will be removed, leaving 5 independent block and time 
variables. (Also three plot indicators will found dependent). After choosing permutation 
type 4, we specify to condition the permutation on the first five covariables. For the 
number of times each sample of the first block is sampled we answer 4. For the second 
and third block we answer the same (see file BACI.CON). Neither an analysis with CCA 
nor with RDA on double centred log-data shows a significant lime effect. By contrast, 
there seems to be a time effect, which is easily mistaken to be a liming effect! 

If your design requires a more specialized permutation type than provided by 
CANOCO, you can enter the permutations from file. After choosing permatution type 
0, CANOCO asks for the file with the permutations. An example file is DUNE.PER. The 
permutations can be in free format, each one starting at a new line. If there are n active 
samples, the numbers 1 to n must be permuted. The numbers correspond to the first n 
samples listed in the samples scores on, for example, the solution file (even if these 
samples have other identifying numbers). To avoid confusion it is therefore safe to make 
samples numbers consecutive. It is NOT permitted to specify a bootstrap sample from 
the numbers 1 to n; the CANOCO algorithms do not allow this. CANOCO will detect 
an error if the values read do not form a permutation. 
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9 Redundancy analysis with a statistical weighting of species 

In the long dialogue for RDA, CANOCO poses the question: 

*** Centring/standardization by species *** 
0 ~ none (non-centred PCA) 
1 ~ centring (for PCA/RDA on a covariance matrix) 
2 ~ standardization by species norm 
3 ~ both 1 and 2 (for PCA/RDA on a correlation matrix) 
4 = standardization using error variance 
Range of valid answers: 0 [11 4 

The fourth option is new in CANOCO version 3. A disadvantage of RDA 
compared to canonical correlation analysis is that the result depends on the particular 
units of scale of measurement for each response variable (species). On the other hand, 
canonical correlation analysis is unattractive when the number of species is of the same 
order of magnitude as the number of samples. An intermediate solution, proposed in the 
discussion of Ter Braak (1990a), is to weight each species inversely to its error variance. 
CANOCO now incorporates this and reports the relative weights given to species on the 
output file, in the solution file (as weight for species alongside the species scores) and, 
if requested, CANOCO.PUN. If the R2 of a species exceeds 0.9, than its weight is 
truncated as were the R2 equal to 0.9. This is done to avoid extreme weights (larger than 
10) for species that happen to fit extremely well. 

Technical details 

If standardization using error variance is requested, CANOCO first centres and 
standardizes the species as if option 3 was chosen. For the species data so standardized, 
CANOCO regresses each species on to the environmental variables to obtain the error 
variance. The reported variances of species are therefore all equal with this option. 

The weights given to species are not reestimated in permutations for a Monte 
Carlo test. 

CANOCO uses the error variance in the full rank model. By contrast, Van der 
Leeden (1990) uses the error variance from the reduced rank model. The advantage of 
the CANOCO approach is that it does not depend on the reduced rank assumption and 
that the CANOCO solution is much simpler, in casu non-iterative. 
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10 Biplot of !-values of multivariate regression coefficients 

RDA is a form of multivariate multiple regression (CAN21, section 7.3). To the 
principal results of a regression analysis belong regression coefficients and associated !
values (Jongman et al, 1987, chapter 3). RDA attempts to represent the regressions of 
all species jointly in a low-dimensional space. RDA can thus yield not only low
dimensional approximations to fitted values (see Summary of ordination and Ordination 
diagnostics), but also low-dimensional approximations to the regression coefficients 
(CAN21, section 7.3) and their !-value (Ter Braak, 1990a, Fig. 2). 

An example result for an RDA on the Dunemeadow data is as follows: 

DUNE MEADOW SPECIES DATA (M. BATTERINK AND G. WIJFFELS, 1983) 
RDA Canonical axes: 4 Covariables: 0 Scaling: 2 

Cent.jstand. by samples: 0 0 by species: 1 0 
No transformation 

StBi: Species coordinates for t-value biplot 

N NAME AXl AX2 AX3 AX4 VAR(y) 

1 ACH MIL 
2 AGR STO 
3 AIR PRA 

EIG .2644 

-.5379 
.3124 
.4829 

DUNE MEADOW SPECIES DATA 
RDA Canonical axes: 4 

Cent.jstand. by samples: 
No transformation 

.1701 .0671 .0413 

.0969 .0000 .0000 
-.2560 .0000 .0000 

.8740 .0000 .0000 

(M. BATTERINK AND G. WIJFFELS, 
Covariables: 0 Scaling: 2 
0 0 by species: 1 0 

EtBi: Environmental coordinates for t-value biplot 

N NAME AXl AX2 AX3 AX4 

EIG .2644 .1701 .0671 .0413 

1 Al .0234 -.0789 .0000 .0000 
2 MOISTURE .4490 -.3396 .0000 .0000 
3 MANURE -.0738 -.1661 .0000 .0000 

.55 
2.57 

.22 

1983) 

% EXPL 

59.88 
69.59 
43.11 

The output is tailored to a biplot in two dimensions. The dimension is set in the 
CANOCO.INI file (the default dimension is 2). These biplot scores are given by 
CANOCO when the user asks for output of the t-values. (The !-values of the 
regression/canonical coefficients (CAN21, Table 4.7) of the species axes on to the 
environmental variables are given together with the regression coefficients). The scores 
given for species and environmental variables must be plotted on the same scale. The 
interpretation of the plot is as Fig 2 in Ter Braak (1990a) and can be summarized as 
follows. 

The points for the environmental variables can be projected on the arrow for a 
species. If the projection point falls precisely on the head of the species' arrow the 
approximated !-value is 2. If it falls on other side of the origin of the coordinate system 
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at the same distance, the t-value is -2. If the projection points fall closer to the origin, the 
t-value is less than 2 in absolute value. Points farther away indicate t-values that are 
larger than 2. The regression coefficients of the corresponding environmental variables 
are inferred to be significantly different from 0. 

The heads of the species arrow thus determine a natural unit of measure 
measurement for t-values, namely 2 (the critical t-value at the 5% significance level, 
provided the number of degrees of freedom exceeds 20). 

The species scores and the 'regression/canonical coefficients for standardized 
variables' can be added to the plot (see Fig. 2 inTer Braak 1990a) in the same unit of 
scale (at least with scaling 2). Jointly they approximate the regression coefficients for 
standardized variables (CAN21, section 7.3). 

With PCA, the same plots can be made. The fit to the regression coefficients and 
t-values is, however, worse in PCA than in RDA. 

With CNCCA, the regression coefficients and t-values are those from the 
weighted regression described at the end of the section on the Monte Carlo permutation 
test. 

With covariables in the analysis, the regression coefficients are partial regression 
coefficients (given in the matrix M2 in the Monte Carlo Section). 
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11 Detrending 

The promise of detrending-by-polynomials was shown to be false by Knox (1989) 
and Ter Braak (unpublished conference contribution). For the artificial data sets 
generated and analyzed by Minchin (1987), detrending-by-segments performed 
consistently better than detrending-by-polynomials. (For a reasonable performance of 
DCA for these data sets, a log-transformation was essential). As a result, detrending-by
segments is again the default in DCA. In DCCA, detrending-by-segments may cause 
numerical problems. If so, remember that detrending is not needed in a constrained 
analysis if the set of environmental variables is reduced to the essential ones (Ter Braak 
& Prentice, 1988). 

12 Choice of method 

In addition to what is said about this on page 17-18 of the manual, an important 
aspect is also that in CA!DCNCCA the focus is on relative abundance (given the sample 
total), whereas in PCAJRDA is focus is on absolute abundance. If an environmental 
variable influences the total biomass, but leaves the species composition (relative 
abundance) unchanged, the variable will be important in PCAJRDA, but not important 
at all in CA!DCNCCA. An idea for analysis is to analyze total biomass separately by 
regression. A completely different aspect of the data, namely the species composition, is 
subsequently analyzed by CCA. The analyses are fully complementary. By contrast, a 
default PCA/RDA would probably yield much the same results as the regression analysis 
on total biomass. CNCCA are not unique in analyzing composition, as shown in the 
manual in section 7.1: double centred PCAJRDA on log transformed values also analyzes 
composition, but only if there are no zero values. 
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13 CANOPLOT 

CANOPLOT makes print plots from the solution file produced by CANOCO. It is much 
less sophisticated than CANODRA W. It does, for example, not produce graphical output 
on the screen. But it may still be of interest to you for routine plots with many names. 

Most of the questions speak for themselves, so after running CANOCO (and producing 
a solution file, e.g. CANOCO.SOL) you can just try to run this program. 

A question that may give some difficulties is the question about the scaling of the plots: 
In most cases the defaults will do, so pressing RETURN in answer to the questions about 
the scaling is the easiest way to obtain reasonable plots. The scale of the plots is defined 
by the maximum range of scores to be plotted. Usually, this range is set different for each 
set of scores (each indicated by a scale number, e.g. 1 = range of species scores). There 
are a number of cases in which plots can be best superimposed if they have the same 
scaling: 
1. Species and samples in DCA, CA and CCA. This is termed the joint plot scaling in 

CANOPLOT (scale number 8). 
2. Centroids of nominal environmental variables superimposed on sample scores. (That 

is because the centroids are average sample scores). 
3. Species scores and biplot scores for environmental variables in scaling 2 of PCA/RDA. 

In this scaling the scores are correlations (without covariables) and always lie 
between -1 and + 1. By default, the plot is scaled to these limits. 

4. A plot for advanced users with regression coefficients, species and environmental 
scores for the t-value biplot. The projections of species on to environmental 
vectors that end precisely on the environmental point indicate that the t-ratio of 
the regression coefficient of that variable for that species is approx. equal to 2. 
For this to be true, the scores must of course be in the same scaling. In scaling 2, 
the scaling is from -1 to + 1 to enable the plot to be combined with the plot of the 
previous point. Regression coefficients might fall outside these limits. If they do, 
there is probably a high multicollinearity among the environmental variables 
(check the variance inflation factors) so that this plot is useless. 

By default CANOPLOT uses all 8 letters of a name in the solution file, but the user may 
choose to use only a few letters, e.g. 3. CANOPLOT then uses the first 3 letters of the 
name. This is useful if the plot is crowded or, if the first few letters of a name represent 
a higher grouping, to highlight this grouping in the plot. 

You can manually delete lines with axes scores from the solution file without affecting 
the working of CANOPLOT, for example to delete rare species or species with a low fit. 
If all scores are positive (say), which may happen sometimes, CANOPLOT does not draw 
axes. For producing a plot with axes lines (i.e. with an origin), it suffices to add a item 
with a blank name field with negative scores. 

CANOPLOT attempts to read a CANOCO.CON in the current directory to fetch the 
name of a solution file. This name then becomes the default solution file instead of 
CANOCO.SOL. Next, CANOPLOT searches for a CANOCO INI-file in the same way 
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as CANOCO does. In this file, CANOPLOT searches for a CANOPLOT paragraph. This 
paragraph looks like the following: 

*CANOPLOT (values start in position 2) 
1 =range [0,1] = (01) pagemode of screen 
25 = range [10,100]= (02) number of lines on a screen 
8 = range [1,81 = (03) number of characters of names to plot 
12 =range [0,999] = (04) characternumber so that CHAR(no) yields a newpage 
118 = number of characters per line (maximum: print line length) 
0.145 =width of print character in em 
0.423 = height of print character in em 
CANOPLOT.PLT =output file for print plot 

*ENDCANOPLOT 

The width and height of a printed character require special attention. Ordination 
diagrams should have the same scale on the horizontal and the vertical axis. To ensure 
that this results in the same scale unit on paper on your printer you may have to adapt 
the width and height values. The default values of 0.145 and 0.423 are appropriate for 
an EPSON condensed mode print with noncondensed line spacing. CANOPLOT 
automatically initializes your printer in the way (in the DOS-version). In the V AX-version 
of CANOPLOT, for example, the default width and height are set to 0.25 and 0.420, 
respectively, and the number of characters on a line is set 108 (to avoid problems with 
too many lines per page). The newpage number is 49 (a one) on the VAX. 

Technical notes 

Determination of the range in the uniform scaling. 

CANOCO Scaling: Extremes of axes are extremes of: 
1 Species scores 
2 Sample scores (SAMS+SAME) 
3 Species scores + Sample scores 

Installation note 

The width and height of a character are set in line 81 and 83 of the main program 
(SIZEl and SIZE2). The value of NCHAR on line 86 is 18 less than the number of 
characters on a line noted in the INI file. For MS-DOS, CANOPLOT.FOR has been 
compiled using Microsoft FORTRAN 5.0. 
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13 Glossary 

See Table 1.1 in the CANOCO manual 

Additions: 

Eigenvector sample scores 
The 'eigenvector sample scores' are, in an unconstrained analysis, the sample 

scores (which are derived from the species) and, in a constrained analysis, the sample 
scores which are linear combinations of environmental variables. 
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