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Structure of the presentation 
 Equilibrium approach in forest genetic modeling 

 assumptions 
 traits 
 examples of eq. modeling 
 

 Non-equilibrium approach in forest genetic modeling 
 assumptions 
 traits 
 examples of impacts of climate change 
 

 Discussion 
 Pros and cons of eq. and non-eq. genetic modeling  
 Future development in bridging ecophysiological and genetic of trees knowledge 

by process-based models 
 

 

 



Equilibrium or demographic approach 
  Assumption: 

 Environment is stationary (no trends in space nor time) relative to the rate of recovery 
after a perturbation 

 => following a perturbation the population returns to a previous (thus know) stable state: 
equilibrium 

 => we can use current knowledge on dependency of stable state to environmental factors 
to assess future stable states 

 Traits to differentiate populations, e.g.: 
 Fecundity, survival, competition, dispersal, biomass, height, bud burst 
 i.e. usually phenotypic plastic traits (GxE interaction) 

 Model parameters under study e.g: 
 Demographic: carrying capacity (K), per capita growth rate (r) 
 Genetic: optimal phenotype (Zopt), selection coeficient (ω) 

 Model analyses, e.g.: 
 Recovery time (# generations) to a known (future) stable state, depending on genetic 

structure (dominance, epistacy) and / or spatial structure of the population 
 Use: 

 Provides  insight in system dynamics 
 Understanding of current patterns based on historic processes 
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Assumption: we can use historically obtained stable states to assess future stable states. In context of climate change e.g. as function of temperature or precipitation
Traits: typically at population or whole tree level
Model parameters under study: whole population features



Demography in equilibrium model 
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Classical population-genetic models – current  situation 
- 2 populations 
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Classical population-genetic models: future situation 
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Non-equilibrium approach: individually-based genetic modeling 

Presentator
Presentatienotities
Individual trees do not “perceive” (future) optimal phenotypic value, carrying capacity, not even selection pressure but rather:
Availability of resources, (micro-) meteorological conditions (light, water, nutrients)



Non-equilibrium or individualistic approach 
  Assumption: 

 Environment can be non-stationary in space and time relative to the rate of adaptation 
 Population is always lagging behind changing biotic and abiotic conditions – both genetic 

and demographic 
 => History does not provide knowledge on future “stable states” 
 => we have no information on future stable states 

 
 Traits - broad sense, e.g.: 

 Budburst, growth, WUE, NPP, biomass, height 
 

 Traits – narrow sense, e.g.: 
 Critical temperature thresholds, sensitivity of process to environmental driver 
 i.e. parameters that determine phenotypic plastic response but are assumed to be 

invariant with respect to environmental conditions 
 

 Model analyses e.g.: 
 Determine processes and traits that are most under selection 
 Study change in phenotypic plasticity in (future) environmental conditions and assess role 

of spatial genetic structure, gene flow etc. 
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Traits not used to derive a fitness function but play a role in resource acquisition and thereby survival and competition




Individually-based modelling: life- and annual cycle 
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Light, water, nutrients, space
Reproduction: timing



Gene flow by pollen dispersal 

Fraction pollen at mother tree: 
 Wind direction and –speed 
 Number of flowers 
 Overlapping flowering period 
 Self pollination 
 Pollen from outside 
 Compatibility 

Wind

Presentator
Presentatienotities
Mother trees and father threes/ can be same or different. 



Genetic component of ForGEM: Marker-trait association 

Allele 
 

Allelic frequency 
(p, q) 

dose 
a 

A 0.01 +1 
a 0.99 -1 
B 0.05 +1 
b 0.95 -1 
C 0.15 +1 
c 0.85 -1 
D 0.30 +1 
d 0.70 -1 
E 0.50 +1 
e 0.50 -1 

 

Theoretical distribution of allelic 
frequencies (Nei) 

Allele frequency 

- µ  = 5.96; σ2 =5.16 

- transform a to match observed mean and variance for any model parameter / trait 

- use observed h2 to introduce initial environmental variance 
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spatial distribution of genotype in seeds 



Spatial distribution phenotype in saplings 



 

 

Evolution of critical state of chilling (Schl
*) 

 



 

Example output ForGEM: tree density 



EU-5FW: QLRT 1 CT99-1210 

Example output ForGEM: Genetic diversity 

 

 
 



Potential climate change related issues: 

Which climatic factors are mainly responsible for this 
change? 

 
What is the impact on genetic diversity? 
 
What is the adaptive potential? 
 
What is interaction between adaptive response to climate 

change and forest management? 
 

What is the likely effect of climate change on the 
geographic distribution of species 



Impacts of genetic diversity and adaptive response 

 

Source: Hampe and Petit, 2005 



Adaptive responses at limits of species’ area 
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Adaptive response of chilling requirement 

Fagus sylvatica
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Response of bud burst to temperature 



Interaction temperature - pollen flow 



Interaction temperature-management 



Management and genetic diversity 



Adaptive response of stomatal conductance to drought 
response of stomatal conductance to relative soil water availability
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E.g. 2: Evolution of sensitivity of stomatal conductance to soil water 
availability 
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Pros and cons of eq. and non-eq. genetic modeling 
 
 Eq.:   

 Generic, suitable for analysis of past, long-term evolutionary processes 
 Abstract traits related to whole tree fitness function 
 Not suitable for short-term future assessment because equilibrium states 

and selection pressure are input to the model 
 

 Non-eq.:  
 Realistic, suitable for prediction at short-term, also for future equilibriums 
 Traits that have trade-off in resource use and fitness, that results in 

phenotypic plastic responses (morphological / physiological) 
 Not operational for long-term (>100s of generations) evolutionary 

processes 
 Future developments: include observed genetic information of adaptive 

traits in non-eq. models & apply at the whole species’ area 
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eq. and non-eq. models are complementary with particular domains of application
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