Equilibrium and non-equilibrium approaches in forest genetic
modelling:
Population- and individually based approaches
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Structure of the presentation

= Equilibrium approach in forest genetic modeling
e assumptions
e traits
e examples of eq. modeling

= Non-equilibrium approach in forest genetic modeling
e assumptions
o traits
e examples of impacts of climate change

m Discussion

e Pros and cons of eq. and non-eq. genetic modeling

e Future development in bridging ecophysiological and genetic of trees knowledge
by process-based models
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Equilibrium or demographic approach

= Assumption:

e Environment is stationary (no trends in space nor time) relative to the rate of recovery
after a perturbation

e => following a perturbation the population returns to a previous (thus know) stable state:
equilibrium

e => we can use current knowledge on dependency of stable state to environmental factors
to assess future stable states

= Traits to differentiate populations, e.g.:
e Fecundity, survival, competition, dispersal, biomass, height, bud burst
e i.e. usually phenotypic plastic traits (GxE interaction)
m Model parameters under study e.g:
e Demographic: carrying capacity (A), per capita growth rate (/)
o Genetic: optimal phenotype (Z,,), selection coeficient (w)
=  Model analyses, e.g.:

e Recovery time (# generations) to a known (future) stable state, depending on genetic
structure (dominance, epistacy) and / or spatial structure of the population

m Use:

e Provides insight in system dynamics
e Understanding of current patterns based on historic processes
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Presentatienotities
Assumption: we can use historically obtained stable states to assess future stable states. In context of climate change e.g. as function of temperature or precipitation
Traits: typically at population or whole tree level
Model parameters under study: whole population features


Demography in equilibrium model
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Classical population-genetic models — current situation
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Classical population-genetic models: future situation

optimum
[

0
|
|
|
|
|

ALTERRA F(Z):exp =
a WAGENINGEN[NGEH 20)




Non-equilibrium approach: individually-based genetic modeling
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Individual trees do not “perceive” (future) optimal phenotypic value, carrying capacity, not even selection pressure but rather:
Availability of resources, (micro-) meteorological conditions (light, water, nutrients)


=
Non-equilibrium or individualistic approach

= Assumption:
e Environment can be non-stationary in space and time relative to the rate of adaptation

e Population is always lagging behind changing biotic and abiotic conditions — both genetic
and demographic

e => History does not provide knowledge on future “stable states”
e => we have no information on future stable states

m [raits - broad sense, e.g.:
e Budburst, growth, WUE, NPP, biomass, height

= [raits — narrow sense, e.g.:
e Critical temperature thresholds, sensitivity of process to environmental driver

e i.e. parameters that determine phenotrpm plastic response but are assumed to be
invariant with respect to environmental conditions

= Model analyses e.g.:
e Determine processes and traits that are most under selection

e Study change in phenotypic plasticity in (future) environmental conditions and assess role
of spatial genetic structure, gene flow etc.
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Traits not used to derive a fitness function but play a role in resource acquisition and thereby survival and competition



Individually-based modelling: life- and annual cycle
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Light, water, nutrients, space
Reproduction: timing


(Gene flow by pollen dispersal

Fraction pollen at mother tree:

Wind direction and —speed
Number of flowers
Overlapping flowering
Self pollinatio
Pollen from outside
Compatibility

ALTERRA

ﬂ WAGENINGEN[NGEH


Presentator
Presentatienotities
Mother trees and father threes/ can be same or different. 


Genetic component of ForGEM: Marker-trait association
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spatial distribution of genotype Iin seeds

Most common genotype (aabbccddEe)
amoung seeds per pixel
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Spatial distribution phenotype in saplings

Phenotype (budburst) new individual
trees
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Evolution of critical state of chilling (S.,’)
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Example output ForGEM: tree density

Number of trees per Dbh-class (# ha-1)

Fagus sylvatica - 1. Mo Management

10000
8000

G000 1
4000
0
a0 100 150 200 250 300
tirme {yr)

Fagus sylvatica - 3. Group selection

10000
8000+
6000+
40004
2000
0

a0 100 150 200 260 300
time {yr)

Fagus sylvatica - 2. Mature oriented

10000
5000
G000
4000
2000+

50 100 150 200 250 300
time (yr)

Fagus sylvatica - 4. Sheltercut

15000
10000
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0
50 100 150 200 250 300
time (yr)

B Average of Dbh30-500 B Average of Dbh70-90 B Average of DbhS0-70
O Average of Dbh30-50 B Average of Dbh10-30 B Average of Dbha-10
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Example output ForGEM: Genetic diversity

Genetic diversity

1. Mo Management

2. Mature orientad

25
— 20
R’—_ahg 15_%—.—

10
5]

] a0 100 1450 200 250 300 0 a0 100 150 200 250 300

time {yr) time {yr)
3. Group selection 4. Sheltercut

25
20

E:--/A
e~

S S

_----'"-E—-_

15

— —, 0 L e el
5 i
0 50 100 150 200 250 300 0 50 100 150 200 250 300
tirmne (yr) tirmne {yr)
1. Meutral trait 2. Budburst day 3. Spiral grain 4 C7Hgh

WAGENINGEN[NGEH




What is the likely effect of climate change on the
geographic distribution of species

Which climatic factors are mainly responsible for this
change?

What is the impact on genetic diversity?

What is the adaptive potential?

What Is interaction between adaptive response to climate
change and forest management?
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Impacts of genetic diversity and adaptive response
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Source: Hampe and Petit, 2005




Adaptive responses at limits of species’ area

conductance./
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Probability density

Adaptive response of chilling requirement

Fagus sylvatica
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Response of bud burst to temperature

Phenotypic plastic response of bud burst to temperature at t=0yr + adaptive response at t=300yr
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Interaction temperature - pollen flow

Budburst day (DoY)
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Budburst day (DoY)

Interaction temperature-management
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Management and genetic diversity

Effect of management on genetic diversity at t=300
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response of stomatal conductance to relative soil water availability
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E.g. 2: Evolution of sensitivity of stomatal conductance to soil water

availability
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NPP (g C tree ‘1d?)
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=
Pros and cons of eq. and non-eq. genetic modeling

= Eq.
e Generic, suitable for analysis of past, long-term evolutionary processes
o Abstract traits related to whole tree fitness function

e Not suitable for shortterm future assessment because equilibrium states
and selection pressure are input to the model

= Non-eq.:
e Realistic, suitable for prediction at shortterm, also for future equilibriums

e Traits that have trade-off in resource use and fitness, that results in
phenotypic plastic responses (morphological / physiological)

e Not operational for long-term (>100s of generations) evolutionary
processes

e Future developments: include observed genetic information of adaptive
traits in non-eq. models & apply at the whole species’ area
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eq. and non-eq. models are complementary with particular domains of application
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