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Abstract 

Weighted averaging regression and calibration form a simple, yet powerful method for reconstructing 
environmental variables from species assemblages. Based on the concepts of niche-space partitioning 
and ecological optima of species (indicator values), it performs well with noisy, species-rich data that 
cover a long ecological gradient ( > 3 SD units). Partial least squares regression is a linear method for 
multivariate calibration that is popular in chemometrics as a robust alternative to principal component 
regression. It successively selects linear components so as to maximize predictive power. In this paper 
the ideas of the two methods are combined. It is shown that the weighted averaging method is a form 
of partial least squares regression applied to transformed data that uses the first PLS-component only. 
The new combined method, weighted averaging partial least squares, consists of using further compo­
nents, namely as many as are useful in terms of predictive power. The further components utilize the 
residual structure in the species data to improve the species parameters ('optima') in the final weighted 
averaging predictor. Simulations show that the new method can give 70% reduction in prediction error 
in data sets with low noise, but only a small reduction in noisy data sets. In three real data sets of diatom 
assemblages collected for the reconstruction of acidity and salinity, the reduction in prediction error was 
zero, 19% and 32%. 

Introduction 

Current environmental problems, like acid rain 
and global warming, have increased interest in 
fossil species assemblages as indicators of the 
palaeo-environment (e.g. Battarbee & Charles, 
1987; COHMAP Members, 1988) and, thus, in 
quantitative methods for reconstructing environ­
mental variables from species assemblage data. 

In pollen-climate studies, popular methods in­
clude best modern analogue techniques (Over­
peck et al., 1985; Guiot, 1990; Prentice et al., 
1991) and multiple linear regression (Howe & 
Webb, 1983; Huntley & Prentice, 1988). In palaeo­
limnology, the weighted averaging method (Ter 
Braak & Van Dam, 1989) gained popularity, be­
cause it combines ecological plausibility (niche­
space partitioning) with simplicity and empirical 
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predictive power (Oksanen eta!., 1988; Birks 
eta!., 1990a, b; Line & Birks, 1990; Dixit eta!., 
1991; Walker eta!., 1991; Fritz eta!., 1991). The 
weighted averaging method seems less vulnerable 
to the curse of dimensionality (the high number of 
species) than the analogue method (cf Hastie & 
Tibshirani, 1990). It does not assume linearity as 
multiple regression does, is not hindered by mul­
ticollinearity and is less sensitive to outliers. 
Comparatively, weighted averaging is at its best 
with noisy, species rich, compositional data, with 
species that may be absent in many of the samples, 
and a long ecological gradient ( > 3 SD; Hill & 
Gauch, 1980; Ter Braak & Prentice, 1988). How­
ever, weighted averaging also has its weak points: 
it is known to be sensitive to the distribution of 
the environmental variable in the training set (Ter 
Braak & Looman, 1986), it considers each envi­
ronmental variable separately, and it disregards 
residual correlations among species (i.e. correla­
tions that remain after fitting the environmental 
variable and that are often caused by environ­
mental variables which are not taken into 
account). 

This paper presents an improvement of the 
weighted averaging method that utilizes the re­
sidual correlations in the species data. The im­
provement is based on partial least squares re­
gression (PLS; Wold eta!., 1984; Stone & Brook, 
1990). PLS is popular in chemometrics, in par­
ticular for extracting chemical information from 
near infra-red spectra (Martens & N aes, 1989). 
PLS gives often lower prediction error than the 
closely related method of principal component 
regression (PCAR). Both PLS and PCAR are 
biased regression methods that guard against 
multicollinearity among predictor variables 
through the selection of a limited number of or­
thogonal components, but PLS has a smarter way 
of selecting components as we will show. The 
number of components is estimated through 
cross-validation on the basis of empirical predic­
tive power (i.e. prediction error of sum of squares, 
PRESS). Two main versions of PLS are cur­
rently in use, namely a univariate and a multivari­
ate version, PLS 1 and PLS2, respectively. Here 
we restrict discussion to PLS 1, because the sta-

tistical benefit of PLS2 is limited for calibration 
(Martens & Naes, 1989). PLS has the same aim 
and about the same performance as ridge regres­
sion (Naes eta!., 1986). 

In this paper we show that the weighted aver­
aging method is equivalent to PLS regression on 
transformed data if the first component only is 
used. The improvement which we have termed 
Weighted Averaging Partial Least Squares regres­
sion (WA-PLS), consists of using further com­
ponents, namely as many as are useful in terms 
of predictive power. The further components uti­
lize the residual structure in the species data for 
improving the species parameters ('optima') in 
the final weighted averaging predictor. The math­
ematics is kept as simple as possible; mathemati­
cally oriented readers are referred to Ter Braak 
eta!. (1993 ). We show using simulated data that 
the new method can give up to 70% reduction in 
prediction error in data sets with low noise, but 
that little reduction can be achieved with noisy 
data sets. In three diatom data sets we found 
zero, 19%, and 32% reduction in prediction error. 

Theory 

Notation 

Let x denote the environmental variable to be 
calibrated on the basis of a (modern) training 
data set consisting of the environmental vector 
x = (xJ, with xi the value of the environmental 
variable (e.g. pH) in site i (e.g. a lake), and 
the n x m matrix Y = (yid with Yik the abundance 
of taxon k in site i (Yik 2: 0) (i = 1 ... n sites 
and k = 1 ... m taxa). A '+' replacing a sub­
script denotes summation over that subscript, 
e.g. Yi + = Yii + Yi2 + · · · + Yim· The estimated or 
inferred value of x in site i is denoted by .Xi. The 
index 0 indicates a (fossil) assemblage for which 
the environmental variable is to be inferred (x0 ). 

A PLS algorithm 

This section describes an algorithm for PLS and 
highlights the main differences from principal 
components analysis (PCA) and PCA followed 



by regression (PCAR). There are many algorithms 
for PLS (Helland, 1988), all of which result in the 
same technique. For better understanding ofPLS, 
the algorithm presented below is similar to the 
two-way weighted summation algorithm of PCA 
of Ter Braak (1987: Table 5.6) and Ter Braak & 
Prentice (1988). The algorithm proceeds by suc­
cessive extraction of components. The maximum 
number of components is equal to the minimum 
of m and n- 1. 

Step 0. Optionally preprocess the environment 
and species data (e.g. subtract means). 
Thereafter denote the data by (xJ and 
(Yik). 

Step 1. Take the environmental variable (xJ as 
initial site scores (rJ. 

Do Steps 2 to 7 for each component: 
Step 2. Calculate new species scores (bk) by 

weighted summation of the site scores, 
i.e. bk=I:iYik'i· 

Step 3. Calculate new site scores (rJ by weighted 
summation of the species scores, i.e. new 
ri = Lk Yik bk. 

Step 4. For the first component go to Step 5. For 
second and higher component, make the 
new site scores (rJ uncorrelated with the 
previous components by orthogonaliza­
tion (Ter Braak, 1987: Table 5.6b) 

Step 5. Standardize the new site scores (rJ (Ter 
Braak, 1987: Table 5.6c). 

Step 6. Take the standardized scores as the new 
component. 

Step 7. Regress the environmental variable (xJ 
on the components obtained so far and 
take the fitted values as current estimates 
of (xJ. Go to Step 2 with the residuals of 
the regression as the new site scores (rJ. 
(The stop-criterion, i.e. the choice of the 
number of components is discussed 
below). 

Comparison with Table 5.6 of Ter Braak (1987) 
reveals three small but important differences be­
tween the algorithms of PLS and PCA. (1) PCA 
uses arbitrary initial site scores whereas PLS uses 
the environmental scores xi or the current residu-
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als (Steps 1 and 7). (2) PCA requires an iterative 
process of Steps 2-5 to calculate each compo­
nent, whereas in PLS each single execution of 
Steps 2-5 yields a new component (Step 6). 
(3) The regression for fitting the (xJ is part of the 
PLS algorithm (Step 7), whereas the regression is 
carried after the extraction of the principal com­
ponents in principal component regression 
(PCAR). As a result of these differences, the com­
ponents in PCAR are calculated irrespective of 
their predictive value for the environmental var­
iable x, whereas they show maximum covariance 
with x in PLS (guaranteed by Steps 2 and 3; Stone 
& Brook, 1990). If we take as many PLS­
components as species, PLS reduces to a multiple 
regression of x on all species variables. The num­
ber of components is an essential ingredient of 
PLS: the choice number minimizes the pre­
diction error as estimated by cross-validation 
methods (Wold et a/., 1984; Martens & N aes, 
1989). An example of cross-validation is given 
later on. 

The weighted averaging method 

The weighted averaging method is based on the 
idea that species occupy different niches in envi­
ronment space (Shelford, 1911; Whittaker, 1956) 
and that the niches can be characterized by their 
centres (uk) and breadths (tk). This characteriza­
tion is particularly appropriate if the niches are 
closely packed along the environmental variable 
and follow unimodal, or even Gaussian, response 
curves, so that the centres and breadths are the 
optima and tolerances of these curves (Ter Braak 
& Barendregt, 1986). In practical applications of 
weighted averaging, it has rarely been found 
advantageous to use differential niche breadth 
estimates (Cumming et a/., 1991). Because it 
simplifies the formulae, niche breadths are dis­
regarded until the Discussion section. 

The weighted averaging (W A) method consists 
of three parts: WA regression, WA calibration 
and a deshrinking regression. The parts are mo­
tivated as follows. A species with a particular 
optimum will be most abundant in sites with 
x-values close to its optimum. This motivates 
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Part 1 (WA regression): Estimate species optima 
(uV by weighted averaging of the x-values of the 
sites, i.e. u~ = ~; Yik x;/y+k· 

Species present and abundant in a particular site 
will tend to have optima close to its x-value. This 
motivates 

Part 2 (W A calibration). Estimate the x-values of 
the sites by weighted averaging of the species 

. . *-"" *! optima, 1.e. X;- "-'k Yik uk Yi+. 

Because averages are taken twice, the range of the 
estimated x-values (xt) is shrunken. The amount 
of shrinking can be estimated from the training set 
by regressing either (xt) on (x;) or (x;) on (xt) 
proposed by Ter Braak (1988) and Ter Braak & 
Van Dam (1989), respectively. Birks eta/. (1990a) 
discuss the virtue of these two deshrinking meth­
ods. For establishing the link with PLS we need 
the latter, 'inverse' deshrinking regression. This 
method also has the attractive property of giving 
minimum root mean squared error in the training 
set. This motivates 

Part 3 (de shrinking regression). Regress the 
environmental variable (x;) on the preliminary 
estimates (xt) and take the fitted values as the 
estimates of (x; ). 

The final prediction formula for inferring the value 
of the environmental value from a fossil species 
assemblage is thus 

where a0 and a 1 are the coefficients of the de­
shrinking regression and ak = a0 + a 1 u~. The final 
prediction formula is thus again a weighted aver­
age, but one with updated species optima. 

Definition of WA-PLS 

It shown in the Appendix that, with a small 
amendment, the weighted averaging method is 

equivalent with PLS applied to transformed data, 
using the first component only. The amendment 
modifies the deshrinking regression to a weighted 
regression with weights proportional to the site 
total (y;+ ). This amendment is prudent because 
the variance of a weighted average tends to be 
inversely related to the site total (Ter Braak & 
Barendregt, 1986: equations (5.6) and (7.4)). For 
data with constant site totals it is of course im­
material. This weighting is used in all subsequent 
statistical calculations, such as means, variances, 
prediction error sums of squares, regression, 
standardization and orthogonalization. 

With the equality of the first component of PLS 
on transformed data and weighted averaging es­
tablished, the questions are what the further PLS­
components and the final predictor look like and, 
of course, whether it is an improvement. The latter 
question is answered later on by analyzing simu­
lated and real data. To answer the first question, 
an explicit algorithm for the new method is given 
by integrating all the necessary data transforma­
tions in the PLS-algorithm. This is the method 
that we term W A-PLS: 

Step 0. Centre the environmental variable by 
subtracting the weighted mean, i 
e. x;: =X;-~; Y; + x;/y+ +. This simplifies 
the formulae. 

Step 1. Take the centred environmental variable 
(x;) as initial site scores (r;). 

Do Steps 2 to 7 for each component: 
Step 2. Calculate new species scores (uV by 

weighted averaging of the site scores, 
i.e. u~ = ~; Y;kr;/y+k· 

Step 3. Calculate new site scores (r;) by weighted 
averaging of the species scores, i.e. new 
r; = ~k Yik utfyi+· 

Step 4. For the first axis go to Step 5. For second 
and higher components, make the new 
site scores (r;) uncorrelated with the pre­
vious components by orthogonalization 
(Ter Braak, 1987: Table 5.2b) 

Step 5. Standardize the new site scores (r;) (Ter 
Braak (1987: Table 5.2c). 

Step 6. Take the standardized scores as the new 
component. 



Step 7. Regress the environmental variable (xJ 
on the components obtained so far using 
weights (Yi+ jy+ +) in the regression and 
take the fitted values as current estimates 
(xi). Go to Step 2 with the residuals of 
the regression as the new site scores (rJ. 
(The stop-criterium, i.e. the choice of the 
number of components is discussed 
below). 

We see that the first component is a two-way 
weighted average for the original environmental 
variable. Further components are two-way 
weighted averages for the residual of this variable. 
In Step 7, a joint estimate xi is obtained as a 
linear combination of the components of W A­
PLS, each of which is a weighted average of spe­
cies scores. The final prediction formula is thus 
again a weighted average, but one with updated 
species optima (uk). Intuitively, from Step 2, the 
optima of species that are abundant in sites with 
large residuals are likely to be updated. 

As in PLS, the number of components is de­
termined by cross-validation on the basis of pre­
diction error sum of squares (see below). WA­
PLS is expected either to equal or to outperform 
the original weighted averaging method depend­
ing on whether the optimal number of compo­
nents is 1 or greater than 1. 

Table 1 demonstrates the need for cross­
validation on an artificial example with 100 sites 
and 131 species. With each additional W A-PLS 
component, the model fits the environmental var­
iable better as measured by the root mean square 
of the errors (RMSE). But, the RMSE is not 
corrected for degrees of freedom; it is like the 
coefficient of determination R2 in regression: the 
fit can be perfect (R2 = 1 and RMSE = 0), for 
example with n sites and n-1 species, even if there 
is no relation between the environmental variable 
and the species at all. How untrustworthy the 
RMSE is can be demonstrated by applying the 
resulting transfer functions to a test set of 1000 
sites. For each site in the test set a prediction of 
the environmental variable is made from its 
species data and compared with its known value 
of the environmental variable. The errors in the 
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Table I. Performance of W A-PLS in relation to the number 
of components (s): apparent error (RMSE) and prediction 
error (RMSEP) in simulated data (R = I from simulation se­
ries III). The estimated optimum number of components is 3 
because three components give the lowest RMSEP in the 
training set. The last column is not available for real data. For 
further explanation see text. 

s 

2 
3 
4 
5 
6 

Training set 

Apparent 

RMSE 

6.14 
3.37 
2.87 
2.22 
2.01 
1.82 

Test set 

Leave-one-out 

RMSEP RMSEP 

6.22 6.61 
4.24 4.40 
4.16* 4.57 
4.65 4.94 
4.65 5.11 
4.50 5.62 

prediction are accumulated and expressed as the 
root mean square of the errors of prediction, 
RMSEP for short, to distinguish it from the un­
trustworthy RMSE in the training set. Table 1 
shows that the RMSEP initially decreases but 
already starts to increase when more than two 
components are used. Thus, WA-PLS with many 
components fits the data perfectly, but has little 
predictive value. In other words, the optimum 
number of components should not be determined 
on the basis of the model fit or 'apparent' errors 
in the training set (RMSE), but on the prediction 
errors in a test set (RMSEP). But, in real appli­
cations large test sets are generally not available. 
Instead, the prediction errors in a test set are 
simulated by cross-validation. In the example 
with 100 sites, cross-validation by 'leave-one-out' 
means that W A-PLS is applied 100 times to a set 
of 99 sites, leaving out each site in tum. The 
transfer function based on these 99 sites is ap­
plied to the omitted site giving for this site a pre­
diction and, by subtraction of the measured 
x-value, a prediction error. The sites so take in 
tum the role of a test set, each time of size 1. The 
prediction errors are accumulated to a 'leave-one­
out' RMSE which is a consistent estimate of the 
true RMSEP. In the example, the 'leave-one-out' 
RMSE is least with three components (Table 1), 
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hence, the number of components to use is three. 
In the example, the optimum number is actually 
2 as judged from the RMSEP in the test set, but 
such a large test set is never available in real 
applications. The number of WA-PLS compo­
nents is therefore always based on cross­
validation. The final transfer function is based on 
all training sites. 

Test data 

Simulations 

The simulations focus on whether WA-PLS can 
improve on W A in data sets with a single under­
lying environmental variable. Simulations with 
two underlying variables are reported in Ter 
Braak eta!. (1993). 

The simulated training set consists of 100 sites 
with x sampled from a lognormal distribution lim­
ited to the interval [ 0, 100]. The sample mean and 
standard deviation are 32 and 25, respectively. 
The geometric mean is 22. The test set consists of 
1000 equidistant sites on the interval [0, 100]. 
The mean is thus 50. Because the mean in the 
training set is much lower, we can expect negative 
bias and bad performance in the upper range 
of x. 

There are three series of simulations which dif­
fer in the way the species abundance data are 
generated. In series I, 50 species respond to x 
according to Gaussian response curves (Ter 
Braak & Van Dam, 1989). The abundance value 
Yik is read off the Gaussian response curve for 
species kat the value xi. Series I has three parts. 
In series Ia, the Gaussian curves have equal 
maximum (10) and equal tolerance (t) and optima 
that are equidistant on the interval [ -3t, 100 + 3t], 
well embracing the sampling interval of the train­
ing set. Four values oft ( 100, 50, 25 and 12.5) are 
taken to assess the influence of beta-diversity 
(length of gradient) on the performance of WA­
PLS. These values correspond to gradient lengths 
of 1, 2, 4 and 8 Standard Deviation (SD) units 
(Hill & Gauch, 1980; SD =(sample range)/t). In 
parts lb and Ic, SD is 4, the optima are uniformly 
distributed (instead of being equidistant) and 

the maxima are lograndom between 5 and 20 
(i.e. their logarithm is uniform between ln(5) and 
ln(20)). In part lb, t = 25, whereas in part Ic, t is 
uniformly distributed between 10 and 35. The 
performance is measured by RMSE (weighted by 
the species total) of the estimated optima (ad and 
by the bias (estimated - true value) in a and x as 
a function of the true value. 

Simulation series II and III are more realistic. 
Species response curves vary randomly in shape 
among species, are skew and, compared to the 
Gaussian curve, longer-tailed and flatter topped. 
Moreover, qualitative and quantitative noise is 
added to generate the data. In series II the amount 
of qualitative noise (percentage absence) is varied 
and in series III the length of gradient. For these 
series the COMmunity PAttern Simulator (COM­
pAS; Minchin, 1987) is used. 

The details are as follows. In COMPAS, each 
species curve is a unimodal, generalized beta 
function with five parameters which can be var­
ied randomly between species. They are: the range 
(r) over which the curve rises and falls, the modal 
coordinate or optimum (u), the maximum (Au), 
and two shape parameters, rx and y, that govern 
the skewness and kurtosis. The length of gradient 
can then be defined in Range (R) units as (sample 
range )/r, where r is the mean range of the species 
curves. The gradient length was held constant in 
series II (R = 1, approximately 5 SD) and varied 
in series III (R = 0.5, 1, 2). The following settings 
are used: 150 species response curves are gener­
ated with r uniform between 50/R and 150/R, u 

uniform between -75/R and 175/R (thus well 
embracing the sampling interval), rx and y inde­
pendent and uniform between 0.5 and 3.5 (giving 
skew and flat-topped curves) and Au uniform be­
tween 10 and 50 (series II) and lograndom be­
tween 10 and 80 (series Ill). The abundance data 
are generated by sampling from the 150 response 
curves, with the addition of qualitative and quan­
titative noise. Quantitative noise is derived from 
the Poisson distribution. Qualitative noise is 
added by randomly replacing abundance values 
by zeroes. The probability that such a replace­
ment does not happen is specified by the same 
beta function in which Au is replaced by Pu the 



maximum probability of occurrence of the spe­
cies. In series II, the probability curves are made 
very flat-topped by also multiplying the shape pa­
rameters tX and y by 0.2; Puis held constant within 
a data set but varied between simulations to give 
a range of noise levels. The noise level is expressed 
as the complement of P u' i.e. the minimum per­
centage absence. In series III the qualitative noise 
is held constant: in each simulation, Puis logran­
dom between 0.25 and 1 (mean noise level 
ca. 0.5), and tX andy are those of the quantitative 
response curve. In summary, each abundance 
value Yik is thus a count that is Poisson distrib­
uted with an expected value specified by reading 
off its response curve at the value xi and an extra 
probability of absence determined by the comple­
ment of its probability of occurrence curve at the 
value xi. 

Real data 

W A-PLS is also applied to three surface sedi­
ment diatom/water chemistry data sets. Two data 
sets relate to lake-acidification studies. The first 
was developed as part of the Surface Waters 
Acidification Programme (SWAP) and was used 
to derive the weighted averaging-based transfer 
function that provided diatom-based pH recon­
structions for all sediment core studies in the 
SWAP project (Birks eta/. 1990a). The data set 
contains 167 samples from Norway, Sweden and 
the United Kingdom. pH values range from 4.3 
to 7.3 (mean 5.6). The distribution of pH is skew, 
with approximately 50% collected from lakes of 
pH 4.5-5.5. Further details of the data set can be 
found in Stevenson eta/. (1991). 

The second training set was developed at 
Bergen University by H. J. B. Birks, J. F. Boyle 
& F. Berge (unpublished), and consists of 92 
samples from lakes in southern and central 
Norway. The data set was developed to provide 
transfer functions for inferring pH, DOC and 
labile aluminium, and was designed to give an 
even coverage of samples along these gradients. 
Samples are more or less uniform over the range 
of pH 4.3-8.3 (mean 5.8), except for a concen­
tration of samples (34%) between pH 4.5-5.0. 
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The third training set was collected as part of 
a study into the palaeoecology of the Thames 
Estuary (UK) and was used to develop a weighted 
averaging based transfer function to provide 
salinity reconstructions for the estuary over the 
last 2000 years. The data set consists of 135 
samples collected from 17 sites evenly distributed 
along the salinity gradient from the tidal head to 
the lower estuary, 72 km downstream. Salinity 
(calculated as the annual mean half-tide value at 
each site) ranges from 0.081 to 17.1 g 1-t, and 
was log-transformed for all analyses, using the 
transformation log10 (salinity-0.08). The Thames 
data set is fully described by Juggins (1992). 

The diatom data for all 3 training sets are ex­
pressed as percentages of the total valve count. 
Rare taxa were excluded from each set by retain­
ing only those which achieved a relative abun­
dance of greater than 1.0 percent in any single 
sample. This gave totals of 277, 150 and 110 taxa 
for the SWAP, Bergen and Thames data sets, 
respectively. 

Data analysis 

The number of species present in a site was usu­
ally below 50, except in the simulations with­
out qualitative noise. For weighted averaging 
methods, the number of species in a site is not 
very important. For example, if there are three 
species present with abundances 100, 1, and 1, 
respectively, the first species takes nearly all the 
weight so that the effective number of species is 
close to 1. A good measure for the effective num­
ber is Hill's ( 1973) N 2 measure of diversity, which 
is the reciprocal of Simpson's diversity index 
(cf. Hill, 1979: 28 and Ter Braak, 1990). We 
report the median and range of the effective 
numbers of species per site and of the effective 
number of occurrences per species (defined 
analogously). To further characterize the training 
sets in data-analytical terms, a detrended canoni­
cal correspondence analysis was carried out using 
the program CANOCO 3.1 (Ter Braak, 
1986; 1990) with x as the only environmental var­
iable. Detrending-by-segments was used. The 
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length of gradient of the first axis of this analysis 
is the gradient length of x in SD-units. We also 
report the gradient length of the second, uncon­
strained axis, and the first two eigenvalues. 

W A and W A-PLS were applied to the training 
sets. For comparison, standard PLS was also 
applied in series III. We report the results of PLS 
on standardized log-transformed abundance data 
(ln(yik + 1)), which tended to give better results 
than PLS without standardization or without log­
transformation. The calculations were carried out 
by using the program CALIBRATE (Juggins & 
Ter Braak, 1992). The number of components 
was determined by leave-one-out. Up to six com­
ponents were tried, since initial trials showed that 
the optimal number of components was always 
less than six. The resulting transfer function was 
applied to the test set. The performance of W A, 
WA-PLS and, in series III, PLS was measured 
by the root mean squared error of prediction of 
x (RMSEP). For the training set, RMSEP was 
estimated by leave-one-out. The gain ofWA-PLS 
over W A was expressed as 1 - RMSEP(W A­
PLS)/RMSEP(WA). Further aspects of perform­
ance were the average bias and maximum bias in 
the prediction in the test set. For estimation of the 
maximum bias, the sampling interval (0, 100) was 
subdivided into 10 equal intervals, the bias per 
interval calculated and the (signed) maximum of 
the 10 values calculated. The 5% and 95% en­
velopes of the error (estimated - true value) were 
also calculated for each of the 10 intervals. 

Results 

Simulated data 

Series Ia concerns data sets in which weighted 
averaging of true optima of Gaussian curves is 
fully efficient compared to maximum likelihood 
(Ter Braak & Barendregt, 1986). However, the 
true optima are not available, they must be esti­
mated. The full W A method does not estimate 
them reliably (Table 2a, component 1), especially 
when the gradient is short. For both long and 
short gradients, further components of W A-PLS 

Table 2. Simulation series 1: effect of the length of gradient in 
SD-units (Ia), differential heights (Ib and Ic) and widths (lc) 
of the Gaussian response curves on the RMSE of the optima 
(u) estimated by WA-PLS with 1 to 4 components for noise­
less data. For further details see text. 

(a) Part Ia 

SD Components 

2 3 4 

1 13.4 3.5 3.6 3.8 
2 11.7 5.4 1.3 0.9 
4 8.5 5.5 2.2 1.2 
8 4.8 3.1 2.2 1.4 

(b) SD=4 

Part Components 

2 3 4 

Ib 7.9 6.0 4.5 7.5 
Ic 10.5 9.6 9.6 10.0 

achieved a substantial decrease in the error in 
estimating the optima (Table 2a). Figure 1a shows 
that W A (component 1) overestimates the small 
optima and underestimates the large ones. Fur­
ther components ofWA-PLS remove this bias. In 
plots of a against u (not shown), the further com­
ponents are seen to 'stretch out the ends'. 
Figure 1 b shows that W A (component 1) gives 
biased predictions of x. Further components of 
WA-PLS decrease this bias. In simulations with 
other distributions of x in the training set, simi­
lar patterns of bias were found for a. The patterns 
of bias in :X were different, but all bias vanished 
when more components were added. 

In parts lb and Ic of series I the Gaussian re­
sponse curves are more variable. W A of true 
optima is not efficient then and does not give 
perfect predictions, not even for noiseless data. In 
these cases WA-PLS does not recover the true 
optima (Table 2b): after an initial decrease, the 
error in a starts to increase when component 4 is 
added. Although the bias in the optima does not 
vanish with higher components (Fig. 1c, e), the 
bias in the prediction of x does (Fig. 1d, f). 

The training sets of simulation series II are 
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Fig. 1. Simulation series I (SD = 4): Bias in a (a, c, e) and .X (b, d, f) as a function of the true value of u and x, respectively, for 
an increasing number of components (s = 1, 2 ... 5) in W A-PLS. From top to bottom, the variability among the Gaussian response 
curves increases: equal maxima and tolerance in (a) and (b), random maxima and equal tolerance (Table 2b: Part lb) in (c) and 
(d) and random maxima and tolerances (Table 2b: Part Ic) in (e) and (f). 

summarized in Table 3. With an increase in noise 
level, the percentage absence increases and, thus, 
the effective number of species per sample and the 
effective number of occurrences per species de­
crease. The gradient length of the second axis of 
a detrended canonical correspondence analysis 
increases with the noise level from ca 1 to 5 SD. 
This is remarkable because the data sets are one­
dimensional by simulation. Table 4a shows that, 
compared with W A, W A-PLS greatly reduces the 

prediction error in low noise data sets (up to 
72% ), but the reduction decreases with noise 
level. For very high noise levels (p = 7 5 in Table 4) 
WA-PLS actually performs slightly worse than 
W A on the test set ( -3% ). The gain as estimated 
by leave-one-out in the training set is somewhat 
over-optimistic, when compared with the gain 
achieved in the test set. 

Table 4b shows that the average bias in WA 
and W A-PLS reconstructions is small in view of 
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Table 3. Data summary of the training sets in simulation se­
ries II. (p: level of qualitative noise; N2 for samples: effective 
number of species per sample; N2 for species: effective num­
ber of occurrences per species; .ic 1, .ic2 and SD 1, SD2 : eigen­
value (.!c) and length of gradient (SD) of detrended canonical 
correspondence analysis). 

p 0 10 25 50 75 

N2 for samples 
Minimum 41 30 25 12 4 
Median 46 38 31 21 10 
Maximum 50 43 38 28 20 

N2 for species 
Minimum 1 1 
Median 35 28 25 15 9 
Maximum 92 80 68 48 23 

AI 0.62 0.65 0.65 0.64 0.66 
.ic2 0.03 0.06 0.07 0.17 0.36 

SDI 4.7 5.0 5.0 4.9 5.0 
SD2 0.9 1.1 1.5 4.9 4.5 

the difference in mean of -18 between the train­
ing and the test sets. The maximum bias 
(Table 4c) tends to be smaller in WA-PLS than 
in W A, except at the highest noise level. 

In applications, the amount of noise in the fos­
sil data may differ from that in the modern train­
ing set. Table 5 shows that if the training set has 
a low noise level, the error depends strongly on 
the noise in the test set. 

The training sets of simulation series III are 
summarized in Table 6. Again, detrended canoni­
cal correspondence analysis detects a strong 
second gradient. Table 7 compares W A, W A­
PLS and standard PLS for this series. Over the 
tested range of gradient lengths, WA-PLS out­
performs both W A and PLS in terms of RMSE 
and maximum bias. If the gradient is long (R = 2, 
SD = 11), standard PLS is clearly inappropriate 
as judged by the error in the test set. Figure 2 
shows the case of intermediate gradient length 
(R = 1, SD = 5.6) in more detail. As the bias and 
error bands in Fig. 2a show, W A overestimates 
for low values of x, underestimates for interme­
diate values and overestimates for high values. 
WA-PLS also gives biased predictions, but the 

Table 4. Simulation series II: effect oflevel of qualitative noise 
(p) on the RMSEP (a) and the average (b) and maximum bias 
(c) in WA and WA-PLS in the training set of 100 lognormal 
distributed sites (t) and the test set of 1000 equidistant samples 
(e). Between brackets is the estimated optimal number of 
components in the training set. This number is used in the test 
set. For further details see text. 

p Set WA WA-PLS Gain 

(a) RMSEP 

0 1.89 0.53 (4) 72% 
e 1.91 0.65 66% 

10 2.48 1.42 (3) 42% 
e . 2.32 1.43 38% 

25 t 2.81 1.97 (3) 30% 
e 2.56 2.14 16% 

50 2.98 2.61 (3) 12% 
e 3.44 3.26 5% 

75 4.88 4.69 (2) 5% 
e 5.24 5.41 -3% 

(b) Average bias 

0 e 0.35 0.09 
10 e 0.17 -0.23 
25 e -0.16 -0.48 
50 e -0.05 -0.25 
75 e - 1.86 -2.05 

(c) Maximum bias over the range (0, !00) 

0 e 2.81 -0.45 
10 e 3.22 -0.83 
25 e 3.81 -2.06 
50 e 2.90 -2.06 
75 e -5.01 -9.10 

bias and error are less. In the middle of the train­
ing set (x between 15 and 50) PLS gives predic­
tion errors that are comparable or somewhat 
larger than WA-PLS. However, the error bands 

Table 5. Simulation series II: effect of! eve! of qualitative noise 
(p) in the test set on the RMSEP in WA and WA-PLS. The 
training set has noise level 10. 

p WA WA-PLS Gain 

0 1.80 0.92 49% 
10 2.32 1.43 38% 
25 2.61 1.97 24% 
50 3.46 3.01 13% 



Table 6. Data sumary of the training sets in simulation series 
III. (R: Range unit). For legend see Table 3. 

R 0.5 1.0 2.0 

N2 for samples 
Minimum 13 6 5 
Median 21 14 10 
Maximum 29 26 14 

N2 for species 
Minimum 
Median 17 9 8 
Maximum 84 57 48 

AI 0.38 0.72 0.92 
A2 0.18 0.29 0.36 

SDI 2.9 5.6 11.5 
SD2 2.6 4.0 3.6 

widen at the ends of the scale, most notably the 
upper end. This error pattern in PLS is also 
present in similar graphs (not shown) for R = 0.5 
and R = 2. The example of Table 1 is case 'R = 1' 

Table 7. Simulation series III: effect of the length of gradient 
(in R-units) on the RMSEP (a), average (b) and maximum (c) 
bias in WA, WA-PLS and standard PLS. For legend see 
Table4. 

R Set WA WA-PLS PLS 

(a) RMSEP 

0.5 7.19 5.66 (2) 6.99 (1) 
e 7.82 6.12 7.03 

1.0 6.22 4.16 (3) 5.01 (2) 
e 6.61 4.57 6.15 

2.0 3.68 2.92 (3) 6.25 (2) 
e 2.82 2.70 8.09 

(b) Average bias 

0.5 e -0.50 - 1.44 0.41 
1.0 e 1.06 0.08 0.83 
2.0 e 0.52 0.51 1.13 

(c) Maximum bias over the range of (0, 100) 

0.5 e 9.21 4.19 7.58 
1.0 e -9.26 -5.00 4.58 
2.0 e 3.33 2.78 6.83 
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in Table 7. The RMSEP's quoted in Table 7 for 
WA and WA-PLS are easily retraceable in 
Table 1. 

Real data 

Table 8 summarizes the three diatom/chemistry 
data sets. Despite the large total number of taxa 
(ca 100-300) individual samples are generally 
species poor in comparison with the simulated 
data sets of series II and III. The median N 2 of 
8-13 species per sample, indicates, as expected, 
a high degree of noise. The SWAP and Bergen 
pH-related data sets have large secondary 
gradients, as revealed by detrended canonical 
correspondence analysis. For the SWAP data set 
the second unconstrained DCCA axis is larger 
than the first, reflecting its greater diversity oflake 

Table 8. Data summary for the real-data training sets. For 
legend see Table 3. 

N samples 
Ntaxa 

N2 for samples 
Minimum 
Median 
Maximum 

N 2 for species 

SWAP 

167 
277 

1.6 
11.3 
29.7 

Minimum 1.0 
Median 7.8 
Maximum 82.6 

AI 0.50 
A2 0.39 

Variable pH 
Minimum 4.3 
Mean 5.6 
Median 5.3 
Maximum 7.3 
Stand. dev. 0.77 

* S = salinity in g 1- 1
• 

Bergen 

92 
150 

1.4 
8.1 

21.6 

1.0 
6.1 

51.0 

0.73 
0.33 

4.3 
2.9 

pH 
4.3 
5.8 
5.4 
8.3 
1.15 

Thames 

135 
110 

3.4 
12.5 
32.3 

1.1 
26.1 
99.4 

0.44 
0.13 

2.7 
1.9 

log S * - 0.08) 
-3.0 
-1.1 
- 1.2 

1.2 
1.31 
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Fig. 2. Simulation series III (R = 1.0): Bias in x (solid line) and 5%- and 95%-envelopes (dashed) of prediction error (x-x) as 
function of the true value (x) for WA-PLS (open circles) compared to WA (squares) in (a) and to PLS (solid circles) in (b). 

types and corresponding non-pH related varia­
tion in diatom composition. The Thames Estuary 
data, by comparison, are essentially one-dimen­
sional, reflecting their collection from an ecologi­
cal system dominated by a single strong environ­
mental gradient. 

Table 9 summanzes the results of WA-PLS. 
For the SWAP data set the prediction error, as 
judged by the leave-one-out RMSEP, is minimal 
for the second W A-PLS component. However, 
the reduction in prediction error from the first to 
second component is small (0.310 to 0.302 pH 

Table 9. The performance of WA-PLS applied to the three diatom data sets in relation to the number of components (s) in terms 
of apparent RMSE and leave-one-out RMSEP. (*=selected model). 

Dataset SWAP Bergen Thames 
s 

RMSE RMSEP RMSE RMSEP RMSE RMSEP 

1 0.276 0.310* 0.353 0.394 0.341 0.354 
2 0.232 0.302 0.256 0.318* 0.238 0.279 
3 0.194 0.315 0.213 0.330 0.196 0.239* 
4 0.173 0.327 0.192 0.335 0.166 0.224 
5 0.153 0.344 0.174 0.359 0.153 0.219 
6 0.134 0.369 0.164 0.374 0.140 0.219 

Reduction in 0 19 32 
prediction 
error(%) 



units). Therefore we would use the first compo­
nent only for reconstruction. For the SWAP data 
set W A-PLS offers no improvement over W A. 

For the Bergen data set the second W A-PLS 
component yields the lowest RMSEP (Table 9), 
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so a two-component model is selected, gtvmg 
a 19% reduction in prediction error over WA. 
Figure 3 shows that the first component (i.e. WA) 
overestimates low values of pH, and underesti­
mates high values (compare Fig. lb). The second 
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Fig. 3. Bergen data set: predicted pH and bias as a function of observed pH for components 1 and 2 in WA-PLS. Solid lines 
represent Cleveland's Loess scatterplot smooth (1979). 
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component removes some bias, and 'straightens 
out' the predicted values, although there is still a 
tendency to overestimate at low pH. 

For the Thames data the prediction error 
is minimal with five components of WA-PLS. 
Because reduction in error is small after three 
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components, we decided to retain three compo­
nents only, giving a reduction in prediction error 
over W A of 32%. W A overestimates at low val­
ues of salinity (Fig. 4), except for some samples 
that are at the head of the estuary. These samples 
have a entirely freshwater diatom flora and many 
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lines represent Cleveland's Loess scatterplot smooth (1979). Salinity in g 1- 1 and transformed as log1o (salinity- 0.08). 



of the taxa are poorly represented elsewhere in the 
estuary. The salinity optima of the constituent 
taxa are well estimated by W A regression but the 
subsequent deshrinking is somewhat overzealous 
for these samples. Figure 4 shows that the reduc­
tion in prediction error is largely due to the 
improved fit at the lower values of salinity. 

Discussion 

This is the first paper to test the W A method by 
simulation. The simulations and real data show 
that WA can give biased predictions. The pat­
terns of error apparent in Figs 3 and 4 have been 
noticed in other applications of W A with inverse 
de shrinking (e.g. Birks eta/., 1990b; Hall & Smol, 
1992). In WA with classical deshrinking the ini­
tial inferred values (xt} are regressed on observed 
(xJ, so the residuals are orthogonal to the pre­
dicted values (xJ, and so uncorrelated with the 
original observed values. With inverse deshrink­
ing the residuals are orthogonal to the original 
inferred values (xt}, not the observed ones, and 
plots of (final) inferred against observed reveal 
this bias. Since, by comparison with classical de­
shrinking, inverse deshrinking 'pulls' the pre­
dicted values towards the mean of the training 
set, this inevitably leads to overestimation at low, 
and underestimation at high values. Our improved 
method, WA-PLS, exploits the patterns in the 
error to update the transfer function, so reducing 
the error and the pattern in the bias. However, 
since inverse de shrinking is implicit in the method, 
it does not remove this source of bias completely. 
We plan to investigate the use of smoothing 
splines (cf Wold, 1992) to improve the deshrink­
ing. The simulations also point out that noise may 
prevent the method from achieving a real 
improvement. So far, application of the method 
to real data showed either no improvement or a 
modest reduction in prediction error ( 19-32% ), 
but never a large improvement. The new method 
is worth trying, especially when W A gives suspect 
patterns in the error in the training set. 

The W A method was designed as an approxi­
mation to maximum likelihood calibration using 
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a Gaussian model (Ter Braak & Van Dam, 1989). 
Nevertheless W A can be improved for two rea­
sons. The first is that the approximation is not an 
ideal one: WA regression and WA calibration are 
fraught with edge effects giving nonlinear distor­
tions that are well known from correspondence 
analysis (Hill & Gauch, 1980). The linear de­
shrinking regression does not solve these prob­
lems but WA-PLS does (Fig. 1). The second 
reason is that there are likely to be additional 
environmental variables that govern the species 
assemblage. The structure that results from these 
variables is not used at all in W A. W A thus 
assumes that environmental variables other than 
the one of interest have negligible influence (Ter 
Braak, 1988; Birks eta/., 1990a). WA-PLS does 
use the additional structure in a similar way as the 
multiple linear regression approach to calibration 
(see Lorber eta/., 1987). Consequently, in WA­
PLS environmental variables other than the one 
of interest may influence the species assemblage 
but for optimal performance their joint distribu­
tion in the fossil set should be the same as in the 
training set (Brown, 1979). 

Although W A tends to perform less well than 
W A-PLS, both methods perform reasonably with 
the simulated data, despite the complexity of and 
variability in the underlying response curves. The 
magnitude of the error should be compared to the 
sampling range of 100. In all simulations, the cor­
relation between the W A reconstruction and the 
true value exceeds 0.95. The bias is small com­
pared to difference in mean ( -18) between the 
training set and the test set. 

Because WA-PLS uses the residual structure 
in the species data to improve upon W A, we had 
hoped that W A-PLS would improve more over 
WA the noisier the data. However, Table 4 shows 
otherwise. An explanation might be that in the 
simulations unstructured noise is added. If the 
noise is due to other environmental gradients, it 
has more structure for WA-PLS to use. Ter Braak 
eta/. (1993) confirmed this conjecture by simula­
tion of data sets with two underlying gradients. In 
these simulations WA-PLS halved the prediction 
error ofWA! 

Table 5 shows in terms of practical reconstruc-
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tion that even with a reliable training set, the re­
construction error may be high if the fossil data 
set is noisy. Conversely, if the training set is very 
noisy, a reliable fossil set can, however, not give 
precise reconstructions. 

So far we have disregarded differential niche 
breadths. The weighted averaging method can, 
however, be modified to take account of differ­
ential niche breadths (tk) (Ter Braak & Baren­
dregt, 1986; Ter Braak & Van Dam, 1989). The 
modification requires estimation of the (td 
(e.g. Ter Braak & Van Dam, 1989), but no new 
algorithm. It is sufficient to transform the species 
data to (Yikftt). The same modification is open 
for use in W A-PLS. 

Perhaps in hindsight it is not surprising that the 
algorithm for WA-PLS is as similar to the two­
way weighted averaging algorithm of correspon­
dence analysis (CA) (Ter Braak, 1987: Table 5.2) 
as the PLS-algorithm is to the two-way summa­
tion algorithm of PCA. The comparison justifies 
the assertion that WA-PLS relates to CA as PLS 
does to PCA. As such WA-PLS is the natural 
extension of transfer function methods based on 
CA regression (Roux, 1979; Rousseau, 1991), ca­
nonical CA of environmental classes (Gasse & 
Tekaia, 1983; Roux eta!., 1991), as well as those 
based on WA. 
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Appendix 

In this Appendix it is shown that the amended weighted av­
eraging method is equivalent with a PLS on transformed data 
using the first component only. The amendment is that Part 3 
of W A uses a weighted regression with weights proportional 
to (Yi+) rather than an unweighted regression. The data trans­
formation consists of a transformation of the environmental 
variable and of the species data in Step 0 of the PLS-algorithm: 

xi= Yif2 xi and Yik = Yik(Yi+Y+k)- 112
• 

The proof is by elementary algebra, as follows. Step 1 sets 
ri = xi =YiP xi. By insertion in Step 2 of PLS, 

which shows the equivalence of Step 2 and W A regression. 
Step 3 gives 

which shows the equivalence with W A calibration. Step 4 is 
skipped for the first component. Step 5 is a rescaling that, in 
this simple case, can more easily be taken care of by the 
regression of Step 7. Then, Step 7 is a regression of YiP xi on 
YiP xf. This is equivalent to a deshrinking regression of xi on 
xtwith weights Yi+. This concludes the proof. 
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