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Letter to the Editor 

Design-Based Versus Model-Based Sampling Strategies: 
Comment on R. J. Barnes' "Bounding the Required Sample 

Size for Geologic Site Characterization" 

Two fundamentally different sources of randomness exist on which design and inference in spatial 
sampling can be based: (a) variation that would occur on resampling the same spatial population 
with other sampling configurations generated by the same design, and (b) variation occurring on 
sampling other populations, hypothetically generated by the same spatial model, using the same 
sampling configuration. The former leads to the design-based approach, which uses classical sam­
pling theory; the latter leads to the model-based approach and uses geostatistical theory. Failure 
to recognize these two sources of randomness causes misunderstanding about dependence of vari­
ables and the role of randomization in sampling, unwarranted narrowing down the choice of 
sampling strategies to those that are model-based, and abuse in simulation experiments. This is 
exemplified in Barnes 'publication on the required sample size for geologic site characterization by 
nonparametric tolerance intervals. A basic design-based strategy like Simple Random Sampling is 
shown to require smaller sample sizes than the model-based strategy advocated by Barnes. In 
addition, Simple Random Sampling is completely robust against model errors and less complicated. 

KEY WORDS: nonparametric tolerance interval, design-based sampling, model-based sampling, 
spatial dependence, sampling strategy. 

INTRODUCTION 

Barnes (1988) suggested a heuristic method to calculate the required sample size 
when the objective of sampling lies not in estimating a spatial average across a 
geologic site, but in establishing a nonparametric tolerance interval. Tolerance 
intervals are useful in site characterization ''to minimize the chance of unknown 
and unexpected extremes" (Barnes, 1988). For independent, identically distrib­
uted random variables, the probability that a sample of size N covers the (3 
percentile is given by: 

Pr(maximum of N samples ;;:: (3 percentile) = 1 - (3N (1) 

This equation can be solved for the minimum sample size required to achieve 
a given acceptable probability of coverage P: 

Nlow = log (1 - P) /log((3) (2) 
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Barnes argued that (i) the classical formula (1) cannot be used for site charac­
terization, because spatial data are correlated, and that (ii) the required sample 
size exceeds the size required with independent data, because spatial data usually 
show positive correlation. 

We argue that the statements are not universally true. A counter example 
is as follows. If the site is sampled at completely random points, say X1 ••• 

XN, then the observed values, say z(X1) ••• z(XN), are independent and iden­
tically distributed random variables (because X1 ••• XN are independent), re­
gardless of the spatial variation of the property (De Gruijter and Ter Braak, 
1990). It follows that the classical sample size formula for independent, iden­
tically distributed random variables can validly be applied. Thus, the validity 
of application hinges on the sampling design; the spatial structure of the property 
is immaterial. This example counters both statements. It is even possible to 
devise sampling designs that require less sampling points, instead of requiring 
more as Barnes (1988) lets us believe. 

After summarizing Barnes' heuristic, we show that his experiment to test 
it is erratic in a way that illustrates the misunderstanding about the application 
of classical sampling theory to spatial samples as discussed by De Gruijter and 
Ter Braak (1990). 

BARNES' HEURISTIC METHOD 

To account for the effect of spatial correlation, Barnes defined the equiv­
alent number of uncorrelated samples, Neq• such that 

Pr(maximum of N correlated samples 2::: {3 percentile) = 1 - {3Neq (3) 

This yields the design requirement: 

Neq 2::: Nlow = log(l - P) /log ({3) 

Barnes established an upper bound for Neq: 

Neq ::;;: N 

(4) 

(6) 

The numbering of equations follows Barnes (1988). Further, he proposed a 
heuristic method to estimate Neq from the data. This method consists of two 
steps. First, an effective sample size is calculated according to 

(9) 

where C denotes the sample-to-sample correlation matrix and 1 denotes the 
N-vector of ones. Then the equivalent sample size is estimated via the empirical 
relationship 

(11) 
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established from simulated values of Neff and Neq. This equation actually fits the 
data not nearly as well as the curve in Barnes' Fig. 1 suggests; curiously, the 
curve drawn does not represent Eq. (11). 

COMMENT ON BARNES' CRITICAL EXPERIMENT 

Barnes (1988) tested his method to determine coverage probabilities via a 
simulation experiment with random subsampling from existing data sets. He 
described his experiment as follows: 

Step (I) Select a data set of interest, a percentile of interest ({3), and a subset size N 
(less than 10% of the original data set). (The data set must be large enough 
to enable accurate estimation of the variogram and the true (3 percentile of the 
underlying distribution.) 

Step (2) Randomly select a subset of size N from the original data set. 
Step (3) Using the "known" variogram, Eq. (9), Eq. (II), and Eq. (3) calculate and 

save p; for the current subset, where 

P; = I - (3N,, 

(The p;s are heuristic assessments of the probability that the largest of the N samples 
is greater than the (3 percentile of the distribution.) 

Step (4) Determine the largest value included in the selected subset and compare it to 
the "known" (3 percentile. Let T, equal I if the largest value is greater than 
the (3 percentile and 0 otherwise. 

Using the original data set, repeat Step (2) through Step (4) M times, counting the 
number of cases where the largest subset value is greater than the (3 percentile. 

Barnes tested his method on seven data sets, with (3 = 0.95 and M 
1000. He argued that, if the method is correct, the sum of the ~s follows an 
approximately normal distribution with known mean and variance, and calcu­
lated from this the expected counts and Z scores as reproduced in column 5 and 
6 of Table 1. Finally Barnes concluded: "The results (Table 1) demonstrate in 
all cases that the Neq concepts prove satisfactory; that is, they appear to comprise 
a useful tool." 

It cannot be denied that the expected counts are close to the observed 
counts. Our criticism is different. We claim that the observed counts are incon­
sistent with the supposed sampling design used. The crucial point is that subsets 
of size N are said to be randomly selected from the original data set (Step 2). 
With no other qualification this has to be interpreted as Simple Random Sam­
pling with or without replacement (the difference is immaterial here because the 
sample size (N) is less than 10% of the original data set). However, under 
Simple Random Sampling with replacement the observed values, say z(X1), ••• 

z(XN), are independent and identically distributed random variables (because the 
locations X1, ••• XN are independent), regardless of the spatial variation of the 
property. This follows, for instance, from Theorem 6A in Parzen (1960, p. 
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Case 

A 
B 
c 
D 
E 
F 
G 

Sample 
size 

250 
203 
248 
305 
154 
186 
109 

Table 1. Barnes' Experiment Re-examined 

Barnes (1988) 

Subsample Actual Exp. 
size count" count Z score 

25 546 547 -0.08 
20 467 474 -0.46 
24 514 535 -1.42 
30 605 600 +0.34 
15 415 401 +0.96 
18 465 444 +1.30 
10 267 286 -1.34 
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Simple random 
sampling 

Exp. 
count Z scoreh 

723 -12.5 
642 -11.5 
708 -13.5 
785 -13.9 
537 -7.7 
603 -8.9 
401 -8.7 

a Number of times out of 1000 tbat the maximum in the subsample is greater than the 95-percentile 
of the sample. 

b Z score = (actual - expected)/(standard deviation). 

295): "Let the random variables Y1 and Y2 be obtained from the random vari­
ables X1 and X2 by some functional transformation, so that Y1 = g1 (X1) and Y2 

= g2 (X2) for some Borel functions g1(.) and gi.) of a real variable. Indepen­
dence of the random variables X1 and X2 implies independence of the random 
variables Y1 and Y2." See also Theorem 2 in Ash (1970, p. 84). 

It follows that the classical formula for independent, identically distributed 
random variables (Eq. 1) can validly be applied. The last two columns of Table 
1 show the expected counts and Z scores on the basis of formula (1). Clearly, 
Barnes' observed counts are inconsistent with the counts expected under random 
sampling (all Z-scores are less than -8), hence the results of the experiment 
are inconsistent with the description of the experiment. Said simply, Barnes did 
not use Simple Random Sampling. We emphasize that if, for instance, a special 
purposive or cluster sampling technique was used this should have been men­
tioned explicitly and specified in detail, in view of the large effect this apparently 
has on the results and on the conclusion cited before. 

COMMENT ON BARNES' PROPOSED SAMPLING STRATEGY 

Barnes incorporated his method to estimate Neq in a two-phase model-based 
sampling strategy, described as follows: 

Step (1) Considering the risk economics of the question at hand, select an appropriate 
percentile {3 and probability of coverage P. 

Step (2) Using Eqs. (6) and (4), calculate the lower bound on the number of samples 
required, N1ow· 
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Step (3) Using all available information, locate and collect N1ow samples. This will be 
called Phase I sampling. 

Step (4) Using the N1ow samples collected during Phase I, estimate the variogram for 
the site. 

Step (5) Solicit Phase II candidate sampling plans in an ordinary manner but, using the 
estimated variogram Eqs. (9) and (11), select only from the plans which satisfy 
Eq. (4). 
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This strategy is inferior to the basic design-based strategy of Simple Ran­
dom Sampling combined with Eq. (1), for the following reasons. 

1. Barnes' strategy would normally require a considerably larger sample 
size for the same coverage probability. Under Simple Random Sampling not 
more than log(l - P) /log({j) samples are needed (Eq. 2), where P denotes the 
required probability of coverage. This is the lower bound of the number required 
by Barnes' strategy. 

2. Barnes' strategy is approximative only and liable to impairment by model 
errors, whereas Simple Random Sampling with Eq. (1) is exact and independent 
of any model. 

3. Barnes' strategy is much more complicated. 
In the class of design-based strategies it is possible to reduce the sample 

size as required with Simple Random Sampling even further by employing 
stratification, grid sampling, and other variance-reduction techniques. Sedransk 
and Smith (1988) discuss this for the related problem of quantile estimation. 
Classical papers on the sample size problem for distribution-free tolerance limits 
are those of Wilks (1941), Scheffe and Tukey (1944), and Murphy (1948). 
Sample size for other types of tolerance limits has been discussed by Faulken­
berry and Weeks (1968), Miller (1989), and Odeh et al. (1989). 

CONCLUDING REMARKS 

It is worth noting that interpretation of the coverage probability in design­
based strategies differs from that in model-based strategies. The former is the 
probability that the largest sample value exceeds a given population percentile 
under repeated sampling according to given design. The latter is the probability 
of exceeding the percentile in a set of fixed sample points, for a random real­
ization of the postulated spatial model. We feel that in the context of site char­
acterization the design-type of coverage probability may be more valuable than 
the model type. In addition, is seems appropriate to have statistical control over 
selection of sample locations by a suitable form of randomization. Without this 
precaution even unconscious personal preferences may lead to significantly biased 
results, as has been repeatedly demonstrated (Yates, 1935). 
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