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Introduction: Statistical Process Control

Consumer expectations on quality of food products are very high and tend to increase as

well as diversify to include flexible and fast delivery, health, safety and minimal

environmental impact. Assurance to conform or even exceed these expectations can no

longer come from mass inspection, but has to be founded on intelligent process control,

process and product design and continuous improvement. Statistical Process Control

(SPC) provides the sound basis for this. Although SPC used to be strongly associated

with the statistical tools applied, it is now regarded in general as an indispensable

approach to managing processes (Deming (1986), Snee (1990), Joiner (1994), Hare et al.

(1995), Hoerl (1995), Does et al. (1997), Roes and Dorr (1997) and Roes (1997)). In the

broader context this approach is based upon the principles that:

o all work is a series of interconnected processes;

¢ all processes vary;

¢ sources of variation can roughly be distinguished as arising from common causes
(inherent to the process as designed) and special causes;

¢ understanding the origin of each of these sources of variation is the key to reduction of
variation;

¢ reduction of variation is the key to quality improvement, productivity and profitability.

Statistical methods such as control charts, experimental design, data analysis are applied

to uncover causes of variation and thus control and improve the processes. SPC can be

implemented on the shop floor by cross-disciplinary teams, called Process Action Teams

(PATs). In production processes such teams consist of operators, foremen, process-

engineers, maintenance-engineers and other technical personnel involved with the process,

and a statistician. A PAT implements SPC for a specific process following a stepwise

approach, based on the Plan-Do-Check-Act cycle. This forms a close link between statistical

thinking and the scientific method. The main steps are:

I Definition of the process to be dealt with

Il Diagnosis of the process

i Actions and measurements

V. Design of feedback control loop

V. Implementation and further improvement (back to |)

The result of the phases | through V is usually twofold. The main purpose is to install a

control loop with control charts and accompanying out of control action plan (Figure 1). In this

control loop, deviations from the normal performance of the process are detected by means

of control charts. Subsequently, the shop floor operators follow the out of controt action plan

to identify and remove the cause as quickly as possible. Concurrently with establishing this

control loop, opportunities for improvement arise during process diagnosis and appropriate

action is taken or is planned to be taken once control is established.

The process diagnosis is a crucial step and includes describing processes using flow-charts

and performing a risk analysis based on the Failure Mode and Effect Analysis (FMEA)

technique (see Stamatis, 1995). Possible causes and effects critical quality characteristics
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are generated, and rated based on severity of the effect, frequency of the cause and
effectiveness of installed inspections. If necessary, these assessments can be substantiated
by performing designed experiments. Thus, this provides the basis for improvements and
identification of the critical product and process parameters to measure and control.
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Figure 1 SPC control loop.

SPC and SPC methods are implemented in several major (food) industries in the
Netherlands (Does, Roes and Trip, 1996), although not often with the above presented
strong involvement of the shop floor. Good examples include (parts of) Unilever and Sara
Lee/DE. There still are major gains in quality and costs to be made with more rigorous
implementation. This holds with respect to the involvement of the shop floor workers in
process control implementation as well as to the statistical methods applied. The latter
traditionally start form rather uncomplicated process models, which basically assume that
process quality characteristics vary randomly around a constant mean level. Extensions
that have been applied involve incorporating variance components (e.g., Roes and Does,
1995) and applying time-series modelling (see Box and Kramer (1992) and the recent
discussion by Montgomery and Woodall (1997)). Strikingly absent in most published
applications are monitoring and control schemes based on physical or chemical models
underlying process behaviour. These seem particularly relevant for processes in agro-
chains. In this paper we will briefly review current practices with respect to control charts
for SPC and underlying models, focusing on the basic models and incorporating additional
variance components. This will be illustrated with an example from the production of
butter, without elaborating on the statistical theory involved. Next we will discuss
application of an approximate model incorporating production settings for process yield in
a refinery. This is based on a real (agro-chain) example, which cannot be revealed in full
detail due to confidentiality agreements. It will be shown how proper monitoring schemes
can be derived from such a mode! and to what extent they are superior to more basic
models. Implications will be discussed as well as the direction of further modelling to be
developed.

Basic models for control charts

Originated by Shewhart in 1924 (see Shewhart (1931)), the effectiveness of control charts
is due in part to their simplicity. They consist of a graph with time on the horizontal axis
and a control characteristic on the vertical axis. Control limits drawn provide easy checks
on the stability of the process: no special causes present. The charts are usually
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constructed using 20 to 30 initial samples of about 5 units from the process at hand. In
general, these samples are supposed to arise from pure random sampling, when chosen
‘rationally”: rational subgroups (see Nelson (1988)). Ideally, such a subgroup is chosen to
be a sample in which all items are produced under sufficiently similar conditions. This
ensures that only random effects are responsible for the observed variation. The variation
within a sample is supposed to represent all variation attributable to common causes. It
then follows that the within-subgroup variation can be used to determine the variability of
the subgroup quality characteristics, such as the sample mean or range. Control limits are
calculated using a measure of within-subgroup variation. Hence, the basic model in case
the process is in control for this standard situation is as follows:

Xtj = p + Etj, : (1)

where X; are the measurements of the quality characteristic, with t indexing time, and
j=1,..,n indexing the unit within the sample taken at time t. E; models the random variation
within a sample. It is usually assumed that the Ey are all mutually stochastically
independent variables, normally distributed with means 0 and variance c¢?, respectively.
Limits for the control charts on the mean level per sample are set at: Central Line (CL)= y,
Upper Control Limit (UCL) = p+ 30, /¥n and Lower Control Limit (LCL) = p - 3c./Vn. See
for more extensive discussion on setting limits in case parameters have to be estimated
Does and Schriever (1992) and Roes et al. (1993).

Example

In control of butter quality it is in the interest of both producer and consumer to control the
water content of the final product (in terms of relative weight percent) within tight limits
(van der Voet, 1996). European Union regulations require that this water content should
be demonstrably below 16%. In this example we examine data from the process form a
large dairy producer, taken during 1 month. The data consist of one sample per pallet on
16 days. The number of pallets
sampled varies between days,
depending on  production.
Based on the basic model (1),
a control chart for each
individual measurement was
drawn (i.e., n=1 in the above
model).

Limits were based on the first
76 samples (3 days of
production). The standard
deviation ¢, was estimated by
the mean moving range (see
Roes et. al. (1993)). T s 0o 5
Figure 2 clearly shows several Pallet sampled
out of control Qondltlons Figure 2 Control chart for individual measurements of % water
beyond the first period (after .gntentin butter.

76 pallets). These are around

the 100th pallet, the 155th and between the 200th and 250th. It is also obvious, that these
out of control conditions occur in clusters, suggesting either correlated observations over
time, or that the process control and adjustment frequency is not per pallet but more likely
per day.
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Correlation between consecutive observations (autocorrelation) suggests time-series
modelling. This has been developed in conjunction with SPC in recent years (see e.g.,
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Box and Kramer (1992), Box and Lucefio (1997) and Montgomery and Woodall(1997)). As
Box and Lucefio (1997) show, an Exponentially Weighted Moving Average (EWMA)
presents an optimal monitoring and adjustment instrument in case of a basic time series
model.

This model applies to the butter example as follows: from (1) X; = n + E, where X, are the
water content measurements and E; models random disturbances. In (1) these were
assumed independent. A basic time-series model assumes:

Ei- Evi = Ac- B0 A (2)

where A, is a series of statistically independent errors, with mean O and variance o,2. This
model can be interpreted as follows: the deviation from target at time t equals the
deviation form target at the previous observation plus a random shock A; and plus a
(proper) fraction 6, of the previous random shock. For the EWMA the following quantities
are charted:

Zo= A (Xe-m) + (1- 1) Zoq for t=1,2,3, ....... 3)

with Z, = 0. The X, are centred with a mean level m, estimated on the basis of an initial
sample, which in this example consists of the first 76 observations.

Limits can be set at +/- K o, V{A(2- 1)}, where A can be determined as estimate of (1- 6, )
in model (3) or according to certain optimality criteria of the EWMA chart. As stated in
Quesenberry (1995), A=0.25 and K=2.90 represent an acceptable balance between the in-
control and out-of-control performance of the procedure. The EWMA chart based on these
choices and the standard deviation and mean estimated from the first three days of
production (76 samples) is

shown in Figure 3. 34
The EWMA more powerfully
detects out of control
conditions, demonstrating the
same clustering of incidents.
As such, it is an improvement
on the previous model and
accompanying charts. The
time series of measurements

| Ll
T
ranaing from 0.97 benween & '] i UWW | W

consecutive observations to -2
practically zero  between
observations more than 5

apart). The fact that the I = 0 e =00 P
nature and cause of the auto- Pallet sampled

correlation is not revealed,

remains unsatisfactory.

water content

EWMA of percentage

Figure 3 EWMA chart of water content in butter data.

Application of variance components models

One phenomenon that may give rise to correlated observations, is the presence of several
(nested) components of variation actually present in the process. An alternative approach
to just modelling the autocorrelation, is to identify and quantify the components of variation
and use them as basis on which a useful distinction between special and common causes
can be made. Control charts should then be designed to control all relevant components
of the common cause system, on the basis of 'rational sampling": sampling plans that are
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purposely not random and aim to describe the important variance components (Palm
(1992)). Examples are: sampling from several (fixed) positions on a mould and several
(fixed) leads from the same equipment. A somewhat different example is sampling from
(chemical) batches, where there may be extra between-batch variation due to the fact that
raw materials, set-up and adjustments usually vary between batches. The sampied
subgroups for these processes will show systematic within-subgroup variation and
occasionally additional between-subgroup variation. The methodology to determine
control limits for appropriate subgroup statistics can be more involved, although plausible
simple alternatives have been recommended. Roes and Does (1995) describe a method
applicable to cases with both fixed differences within a sample (position on a silicon wafer
for integrated circuit manufacturing), and extra between-batch variation.

Example (continued)

To elaborate on the general ideas, we continue the example of dairy butter. We observed
out of control conditions occurring in clusters. Moreover, the process is such that
adjustments are not made continuously but periodically. Thus, it seemed more appropriate
to evaluate the process in ‘batches’ and consider each set of 6 pallets as a subgroup and
the individual pallets as samples within this subgroup (recall the fact that the auto-
correlation is practically 0 for measurements more than 6 apart). The model than
becomes:

Xtj = m + Bt + Ej, (4)

where Xy are the measurements of the percentage water content, with t indexing the
subgroup (batch), and j=1,..,n indexing the pallet within the subgroup taken at time t. E;
models the random variation within the sample (batch) of n pallets. It is assumed that the
Ey are all mutually stochastically independent variables, normally distributed with means 0
and variance c¢?, respectively. B, models the random between batch effects; the B, are
mutually independent, normally distributed with means 0 and variance oy2. As a conse-
quence of this model, X; ‘s from different batches are stochastically independent. X; ‘s
from the same batch, however, are correlated with correlation coefficient V{op2/(cp? + 02)}.
Control charts are now developed for the mean level per batch as well as the variance
within a batch. Limits for the control charts on the mean level per sample are set at:
Central Line (CL)= y, Upper Control Limit (UCL) = p+ 3 ¥{ op*+ c.2/n} and Lower Control
Limit (LCL) = p - 3¥{ o2+ o2 /vn} (Figure 4). See for more extensive discussion on setting
limits in case parameters have to be estimated Does and Schriever (1992) and Roes en
Does (1995).

Limits for the estimated standard deviation within a batch, s.2?, are based on the fact that
under model (4) s¢? is distributed as o, 2,/(n-1) times a chi-squared distribution with n-1
degrees of freedom (denoted by y%.1). Hence, the lower and upper limits are set at
SeV{x%001n1 /(N-1)} and seV{x%0ene/(N-1)}, respectively, where x% ... denotes the o-th
percentile of the cumulative 3., distribution.

In the example at hand the first three days of production yielded: s, = 0.118 %, s, = 0.064
and hence the correlation coefficient within a batch is 0.265. Thus, it is clear that there is
extra between batch variation (long term) in addition to the short term variation between
pallets. The corresponding control chart is shown in Figure 5.

The charts based on model (4) show a more concise picture of the process compared to
the ones displayed previously. Figure 4 indicates a jump in mean level of percent water
content at the 15th batch, which retrospectively probably started at batch 13. This jump
persists until beyond the 30th batch. The control chart for the within batch standard
deviation indicates batch 14 with excessive variation between pallets. Moreover, the within
batch standard deviation increases toward the end, leading to four out of control
conditions.
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The key issue is the fact that 16,4 4
these charts lead to a more
directed search for causes.
The persisting rise in mean
level indicates a lasting
change in settings, process 1591
conditions or raw materials.

The increased standard A

deviations relate to 158 "\/J ¥
operating conditions j \/—) V

changing at short notice.

Probably operator influence 1377

or shop floor incidents were

involved here. 15,6 -
In Roes and Does (1995) :
and Does, Roes and Trip 1 10 2 . 30 40
(1995) the general

methodology underlying this Figure 4 Control chart of mean water content in butter data.
type of charts  was Based on nested variance components.

developed and illustrated
with  several examples.
These also illustrated the
effectiveness of uncovering
causes based on the charts
signals. Their charts also
included fixed effects

between samples, which can 2 A A i A
be monitored with well-

chosen differences within

the samples. These are

determined based on the 47

model applied and the

physical and  chemical
nature of the process at 04
hand. This type of control ) 10 20 30 40
charts has been successfully Batch

applied in 'numerpus Figure § Control chart of within-batch standard deviation of water
processes and industries. . tentin butter data.

Building upon these general

variance components models, a natural refinement will include models relating quality
characteristics directly to process settings and conditions.

16

A/

Mean percentage water content

A4

3

Standard deviation
Percent water content

Modelling dependence on influence factors

In the previous section SPC models did not include any factors or process settings directly
influencing the quality characteristic under consideration. These may very well be known
in practice and may also be known to vary during production. Factors and settings could
include temperature, pressure or flow of equipment used as well as concentration of
chemicals applied or present in the raw material. If the quality characteristic can be
modelled as function of these factors and settings, this may improve the efficiency of the
SPC control loop in several ways:

+ the factors and settings can possibly be controlled tightly, thus eliminating sources of
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variation; .
¢ if factors and settings vary, their actual value may be measured precisely and control
can be aimed at monitoring the difference between the quality characteristic as
measured and as predicted by the model; this will increase the power of detecting
special causes.
The model applied can be derived from chemical and physical models as well as through
experimentation and empirical model! building (Box and Draper (1987)).
To illustrate the general principles, an example derived from a large food industry is
presented. Due to confidentiality agreements, details of the process and actual outcomes
cannot be presented.

Example
In a chemical process to purify raw materials to be used in food applications, final yield is
of major importance. From an initial large amount of factors and settings, four production
settings and two raw material characteristics were shown to influence yield. The
production settings involved concentration of two chemicals A and B, flow (F) and
pressure (P). The raw material characteristics involved concentrations of chemical
substances to be removed (C and D). Response surface experiments were run to
determine a second degree polynomial approximating yield as function of these six factors
(Box and Draper (1987), Box, Hunter and Hunter (1978)). This empirical road was chosen,
since no valid theoretical models predicting yield as function of these factors could be
posed. The experiments resulted in the following model for the yield (as measured in
averages over 15 minutes, from continuous measurements):
Yield(%) = Co

-2.0(C-4.3)-13.0(D - 0.23)

-0.18A + 0.16B +0.05B? - 0.12F - 0.15P + 0.07AF +0.08FP

+E (5)
In (5), Co is the standard yield (93.2% in this case). The second line corresponds to raw
material characteristics, the third to process settings and finally random variation (E) is
present. A, B, P and F are coded between (-2,2) as standardised deviations from their
nominal setting. (C - 4.3) and (D - 0.23) represent true deviations from their average
values. E is considered to be normally distributed with mean 0 and standard deviation
0.12%, as estimated from the experiments.

Model (5) can be used to

optimise the process; in this 93.8 7
paper we will focus on control. 93.7 1
To illustrate the advantage of 3.6 -
the model, two possible
control chart options are
presented: g 9344
1. Directly charting the yield &2
over time. € g3a-
2. Estimating the yield using £*= )
model (5) and the true =
{measured) values of A, B, 93
P, F and C and D.
Subsequently, the
residuals: residual = (yield 5287
- estimated yield) are 92.7 1 : : : : :
monitored with a control 1 10 2 30 40 50
chart. Tine

Figure 6 Control chart for process yield.
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In this comparison it s 36 4

assumed that the process 3

factors in fact will show small ’

variations over time, despite 2

the fact that their settings may

be fixed. This corresponds to e

the actual situation in many ﬂ

processes - ikl

Figure 6 shows the control
chart for the yield directly,

-.3_
~.36

Residuals (%)
yield - estimated yield

based on simulated data.
Apart form one out of control
signal, no specific trends or
shifts are visible. As these are

simulated data, it is known T . T , T T
that the one out of control ! 10 A e X “© 0
signal is in fact false alarm. Figure 7 Control chart for residuals: process yield - estimated
The control chart for the process yield.

residuals (yield - estimated

yield) in Figure 7 does show up a clear feature: from the twenty-fifth observation onwards,
the residuals are shifted upwards. The fact that 11 consecutive points are above the
central line strongly indicates this (Nelson (1984)). Hence, the actual process yield is
demonstrably larger than predicted with the current model. This means that a factor is at
work, which may very well help to improve the process. From directly monitoring the yield,
this would have gone unnoticed.

In the actual process studied, such a factor is most likely related to characteristics of the
raw material. This fact was used in the simulations, which mimicked a change in raw
material at the 26th observation having a different effect as modelled. In practice, model
(5) can also be used and extended to fine tune the process as quickly as possible to such
changes in batches raw material.

Summary and conclusion

In this paper Statistical Process Control was briefly introduced, emphasising the
importance of proper implementation in addition to statistical proficiency. A review of basic
models applied in Statistical Process Control was given, illustrated by an example.
Important extensions for many real life applications include modelling of variance
components and modelling dependence on known influence factors. In both cases it was
shown here, as well as in previous papers, that these models lead to more efficient
detection of out of control conditions and more directed search for special causes.
Specifically the methodology that includes modelling influence factors is new and under
development. It is expected to be particularly beneficial to processes in agro-food
production.
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