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Abstract 

The indicator value and ecological amplitude of a species with respect to a quantitative environmental vari
able can be estimated from data on species occurrence and environment. A simple weighted averaging (WA) 
method for estimating these parameters is compared by simulation with the more elaborate method of Gaus
sian logistic regression (GLR), a form of the generalized linear model which fits a Gaussian-like species re
sponse curve to presence-absence data. The indicator value and the ecological amplitude are expressed by 
two parameters of this curve, termed the optimum and the tolerance, respectively. When a species is rare and 
has a narrow ecological amplitude - or when the distribution of quadrats along the environmental variable 
is reasonably even over the species' range, and the number of quadrats is small - then WA is shown to ap
proach GLR in efficiency. Otherwise WA may give misleading results. GLR is therefore preferred as a practi
cal method for summarizing species' distributions along environmental gradients. Formulas are given to cal
culate species optima and tolerances (with their standard errors), and a confidence interval for the optimum 
from the GLR output of standard statistical packages. 

Introduction 

If the relationships between species occurrences 
and values of a quantitative environmental variable 
conform to bell-shaped curves, then each species' 
curve can conveniently be summarized by an indi
cator value and an ecological amplitude (Ellenberg, 
1979, 1982). The indicator values can subsequently 
be used to predict values of an environmental varia
ble from species composition, simply by averaging 
the indicator values of species that are present 
(Ellenberg, 1979). The average indicator value can 
be weighted, to take account of differences in spe-
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cies abundance and in ecological amplitude 
(Goff & Cottam, 1967; Ter Braak & Barendregt, in 
press). Weighted averaging can also be used to esti
mate the indicator values themselves (de Lange, 
1972; Salden, 1978). Values of the environmental 
variable are averaged over the samples in which a 
species occurs. (The average can be weighted by 
species abundance, but we consider only presence
absence data.) Weighted averaging is the basis of 
the ordination technique known as reciprocal aver
aging (Hill, 1973) and is implicit in Gasse & 
Tekaia's (1983) algorithm to establish a transfer 
function for estimating paleo-environmental condi
tions (pH) from fossil diatom assemblages. Horn
strom (1981) used medians, instead of averages, in 
a similar context. But there is a problem with aver
aging, or taking medians: namely that the result 
can depend on the distribution of the quadrats 
along the environmental variable. When the distri-
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bution is uneven, all weighted averaging methods 
may potentially give misleading results (Greig
Smith, 1983, p. 130). 

The estimation of indicator values is fundamen
tally a regression problem. Indicator values and 
ecological amplitudes can be estimated from 
presence-absence data by logistic regression, with a 
second-order polynomial in the environmental 
variable as linear predictor. This procedure, termed 
Gaussian logistic regression (GLR), fits a curve 
related to the Gaussian species response curve 
(Austin, 1980) but adapted for presence-absence 
data. The indicator value is then the 'optimum' 
(mode) of the curve. Logistic regression is a Gener
alized Linear Modelling technique (GLIM), and is 
the equivalent for presence-absence data of ordi
nary multiple and polynomial regression (Dobson, 
1983; McCullagh & Neider, 1983). Austin, Cun
ningham & Fleming (1984) showed the usefulness 
of GLM and GLR in their study of the occurrence 
of a range of eucalypt species in relation to temper
ature, rainfall, radiation and geology. There is no 
good evidence for the exact shape of a species re
sponse c11rve; we shall show that GLR is a practical 
method. 

We compare the performance of weighted aver
aging and logistic regression, using stimulation and 
practical examples. We know from theory that 
logistic regression must give more accurate esti
mates of species' optima in large datasets in which 
the number of presences is not too small and for 
which the logistic model holds. But is logistic re
gression also worthwhile when the number of pres
ences is small, say 10 or 20? There is no advantage 
in using an elaborate technique where a much sim
pler one would be equally good. Our simulations 
give some idea about the conditions under which 
weighted averaging compares reasonably well with 
logistic regression; but they also show that GLR is 
more generally applicable. Our results are also rele
vant in choosing between reciprocal averaging and 
Gaussian ordination (Ter Braak, in press). 

Logistic regression 

The 'presence-absence response curve' of a spe
cies describes the probability, p(x), that the species 
occurs (in a quadrat of fixed size) as a function of 
an environmental variable x. Whittaker (1956), and 

· others since, have observed that species typically 
show unimodal (bell-shaped) response curves. The 
'Gaussian response curve' (Austin, 1980) is a simple 
bell-shaped curve in which the logarithm of abun
dance is a quadratic function of the environmental 
variable. Presence-absence data are more conve
niently modelled with the Gaussian logit curve, in 
which the logit-transform of probability (Cox, 
1970) is a quadratic function, (Fig. 1): 

p(x) 
log [---] =bo+b1x+bzX2 =a- \12 (x-u)2/t2 (1) 

1-p(x) 

where u is the species optimum or indicator value 
(the value of x with highest probability of occur
rence) and tis its tolerance (a measure of ecological 
amplitude). The parameter a is related to the maxi
mum value of p(x), which we shall call Pmax· When 
Pmax is small the shape of p(x) is almost identical 
to that of a Gaussian curve; when Pmax is close to 
1 the Gaussian logit curve is flatter near the opti
mum (Fig. 1). The parameters bo, b1 and bz do not 
have a natural ecological meaning, but they can 
easily be estimated using logistic regression which 
is available in standard statistical packages includ
ing GENSTAT (Alvey eta!., 1977), GLIM (Baker & 
Neider, 1978), BMDP (Nixon, 1981) and SAS (Barr 
et a/., 1982), and interpretable parameters can be 
obtained from them as follows: 

optimum u= -b11(2bz) 
tolerance t= 11-J (- 2bz) 
maximum probability Pmax=p(u)= 

11[1 + exp(- b0 - b1u- b2u2)] 
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Fig. 1. Gaussian logit curves with u=O, t=l and Pmax=O.I (a), 
0.5 (b), 0.8 (c) and 0.95 (d) and a linear logit curve (e) (x: value 
for the environmental variable, p(x): probability of finding this 
species at a value x). 



(These formulas assume bz < 0. If bz > 0 the curve 
has a minimum instead of a maximum). Table 1 
gives a sample program in GLIM (Baker & Neider, 
1978) for artificial data and Figure 2 shows the 
fitted curve. The sample program shows that this 
procedure of GLR is a special case of the General
ized Linear Model (see Dobson, 1983 for an in
troduction): (1) response variable is a 1/0-variable, 
y, containing the presences and absences of the spe
cies in the quadrats; (2) error distribution is the 
binomial distribution with total 1, also termed the 
Bernoulli distribution; (3) link function is the logit
transform, which links the expected value of y (i.e. 
the probability of occurrence) to (4) the linear 

Table 1. Sample program for Gaussian logistic regression in 
GLIM, with output for artificial data (S.E.: standard error of es
timate). The program does not provide the estimate-s for Pmax• 
u and t automatically; these estimates were computed by use of 
Eqs. (2), (A.!) and (A.2). 

PROGRAM 

$UNIT 16 1 

$DATA X yz 

$READ 
20 0 23 0 26 0 30 0 
33 0 36 0 40 0 43 0 
46 0 50 53 56 0 
60 1 70 80 0 90 0 

$CALCULATE TOTAL= 
$CALCULATE XQUAD = X*X 
$YVARIATE Y' 
$ERROR BINOMIAL TOTAL 
$LINK LOGIP 
$FIT X+ XQUAD 5 

$DISPLAY E $6 

ESTIMATE S.E. 

CONSTANT (bo) -55.5 34.5 
X (b,) 1.86 1.15 
X QUAD (bz) -0.015 0.009 

Pmax 0.90 
u 62 3.3 

5.8 1.8 

Comments 
1 16 data values. 
' (x,, y;) being read. 
3 The response variable is y containing independent 1/0 data. 
4 Link function is the logit-transform. 
5 x and x2 are the explanatory variables to be fitted. 
6 Displays the parameter estimates b0 , b 1 , b, with standard er

ror. 
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Fig. 2. Gaussian logit curve fitted by logistic regression to the 
artificial data ( o ) of Table 1. 

predictor specified in the FIT-statement. In GLR 
the linear predictor is a quadratic polynomial in x. 
The user does not need to provide initial values for 
the parameters. The approximate standard errors 
of the estimated optimum and tolerance can be de
rived from the variances and covariances of b1 and 
b2 that are provided as options by the statistical 
packages. A confidence interval for the optimum 
can also be calculated. Details of these additional 
calculations are given in the Appendix. 

The optimum cannot be estimated well if it lies 
outside or near the edge of the sampled range. In 
such cases the response curve is said to be truncated 
and bz in Eq. (1) could be set to zero; the effect is 
to fit a sigmoid curve, termed the linear logit curve 
(Fig. 1). Whether this simplification is acceptable 
statistically can be seen by a one-sided significance 
test on the value of b2 , in which b2 divided by its 
standard error is compared with the Student t-dis
tribution with n- 3 degrees of freedom (n is the 
number of quadrats). If the null hypothesis (b2 ?: 0) 
is rejected in favour of the alternative hypothesis 
(bz < 0), then the optimum is said to be significant. 

A more general approach to statistical testing in 
GLIM is to compare the residual deviance of a mod
el with that of an extended model (Austin et a!., 
1984; Dobson, 1983). The additional terms in the 
model are significant when the difference in re
sidual deviance is larger than the critical value of a 
chi-square distribution with k degrees of freedom, 
k being the number of additional parameters. (The 
residual deviance is defined by -2 log-likelihood 
and takes a similar role as the residual sum of 
squares in ordinary multiple regression). For exam
ple, to test the overall significance of GLR we also 
fit the model with both b1 and bz in Eq. (1) set to 
zero and we compare the difference in residual devi-
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ance with a chi-square with 2 degrees of freedom. 
The tests described in this paper are approximate; 
they are valid when the number of quadrats is large. 

Weighted averaging 

The weighted average for presence-absence data 
is simply the mean of the x-values over those quad
rats in which the species occurs. Figure 3 shows 
how the weighted average depends on the distribu
tion of sampled quadrats. Highly uneven distribu
tions can even scramble the order of the weighted 
averages for different species (Fig. 3c). Truncation 
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Fig. 3. The response curves of imaginary species A and B (a), 
the occurrence of these species in 80 samples, distributed evenly 
(b) or unevenly (c) along the environmental gradient. The 
weighted averages are indicated with arrows. The two sampling 
designs yield weighted averages that are in reversed order (p: 
probability of occurrence, N: number of quadrats, x: environ
mental variable). 

is an extreme form of uneven distribution, because 
the response curve is then not sampled over the 
whole range where the species can occur. Only in 
the special case of an even or uniform distribution 
over the whole range does the weighted average re
liably estimate the optimum. The sample standard 
deviation (SD) of the x-values of those quadrats in 
which the species occurs is a simplistic estimate of 
ecological amplitude. Assuming the Gaussian logit 
response curve (1) and an even distribution of the 
quadrats, SD overestimates the tolerance t; the dif
ference between the expected SD and t depends on 
the value of Pmax• but is less than 120Jo when Pmax 

is less than 0.5 (Looman, unpublished manuscript). 

Design of simulations 

Presence-absence data were generated using a 
Gaussian logit response curve with u and t arbitrar
ily set to 0 and 1, respectively. We further need to 
specify Pmax• the number of quadrats per dataset 
and the distribution of the quadrats along the gra
dient. Table 2 shows the tested combinations and, 
for each combination, the expected number of 
presences per dataset. In case 1 of the distributions 
the x-values of the quadrats are equispaced on the 
interval from -5 to 5. In all the other cases the 
x-values are random. In cases 2- 5 their distribu
tion is uniform with different degrees of trunca
tion, negligible in case 2, asymmetric in cases 3 and 
4 and symmetric in case 5. Another six cases were 
run with Pmax = 0.5 and 125 quadrats only (Ta
ble 3). In case 6 (Table 3) the curve is unevenly 
sampled with on average three times more quadrats 
in the interval [1, 5] than in the interval [- 5, 1], but 

Table 2. Expected number of occurrences per dataset in the 
simulations specified by maximum probability of occurrence 
(pmaxl, number of quadrats and distribution of quadrats (case). 
(U[a, b]: uniform distribution of quadrats on the interval a to 
b). 

Pmax 0.1 0.5 0.9 0.5 0.9 

no. of QUADRATS 375 65 25 125 50 

c I EQUAL SPACING 10 10 10 19 19 
A 2 U[-5, 5] 10 10 10 19 19 
s 3 U[-1, 5] 13 13 12 25 23 
E 4 U[ 0, 5] 10 10 10 19 19 

5 U[-1, 1] 32 30 22 57 44 



with quadrats uniform within both intervals. 
Case 7 consists of quadrats uniformly distributed 
in the interval [- 2, 5] but with quadrats from the 
interval [ -1.5, 0.5] removed, giving a case with 
moderate truncation and an internal gap. For the 
remaining cases (8 -11) we used normal (Gaussian) 
distributions of quadrats with different means and 
standard deviations; case 8 gives symmetric and 
cases 9 and 10 asymmetric truncation. In case 11 
the curve is sampled over a short range with 95o/o 
of the quadrats in the interval [ -0.5, 1.5]. 

Weighted averaging (WA) and Gaussian logistic 
regression (GLR) were obtained for each dataset 
using GENSTAT (Alvey et at., 1977). For each com
bination in Tables 2 and 3 we simulated 100 data
sets and summarized the results as means, medians 
and standard deviations of the weighted average 
and GLR-estimates calculated for each dataset. In 
cases where no optimum could be calculated 
(b2 ;:::: 0), we treated the regression estimates as miss
ing values. Estimated optima are also unreliable 
when b2 is negative but close to zero; we therefore 
discarded simulations in which the estimated opti
mum lay more than ten times the tolerance outside 
the sampled interval. We also calculated means and 
standard deviations of the regression estimates over 
the cases in which the optimum was significant at 
the 10%-level. This selection summarizes the sig
nificantly non-monotone curves. No such selection 
was applied to weighted averaging, because in prac
tice the weighted average is calculated irrespective 
of such evidence for unimodality. The efficiency of 
the weighted average with respect to the regression 
estimate for the optimum was then expressed as 
MSE(GLR)IMSE(WA) where MSE is the mean 
squared error, i.e. variance plus squared bias. 

Comparison of WA and GLR 

Equal spacing and uniform distribution without 
truncation 

WA is as efficient as GLR when the x-values are 
equispaced (case 1). However, when the x-values are 
randomly distributed on a large interval (case 2), 
the efficiency of the weighted average is less. The 
efficiencies calculated from the runs of case 2 with, 
on average, 10 occurrences per simulated dataset 
(Table 2) were 1.0, 0.84 and 0.54 for Pmax=O.l, 

eff. 
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Fig. 4. The efficiency (ordinate) of weighted averaging with re
spect to Gaussian logistic regression to estimate the optimum for 
uniformly distributed quadrats without truncation (case 2, Ta
ble 2) decreases with increasing maximum probability of occur
rence (abscissa). 

0.5 and 0.9, respectively, in agreement with theoret
ical values (Fig. 4) derived by Ter Braak & Baren
dregt (in press). The variance of the regression esti
mate in the simulation was slightly ( < 10%) larger 
than its theoretical value of P/(no. of occurrences) 
(cf. Ter Braak & Barendregt, in press), with the ex
ception of the runs with only 25 quadrats (Table 2) 
where the difference was 50%. 

Effect of distribution of quadrats 

Table 3 summarizes the results of cases with 
125 quadrats and Pmax = 0.5 and confirms that WA 
is sensitive to the distribution of the quadrats along 
the gradient, showing significant bias (t-test, 
P< 0.05) in 7 cases. The optimum could not be 
estimated by GLR in 1% of the simulated datasets 
of Table 3, except in the cases 4 and 11 where this 
percentage was about 15%. GLR removes the bias 
of WA when the truncation is not too severe 
(cases 6-10). When it is severe (cases 3, 4 and 11) 
the regression estimate of the optimum shows a 
large bias in the opposite direction, but this bias is 
small in a statistical sense, as the standard error is 
high. The medians of the estimates show small bias 
in the same direction as WA. When the estimated 
curves are first tested for unimodality against 
monotonicity at the 10%-level, the remaining opti
ma (u-sig) show selection bias; they are biased be
cause an optimum is more likely to be significant 
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Table 3. Weighted averaging and Gaussian logistic regression compared on simulated datasets with eleven distributions of 
125 quadrats along the environmental variable. Shown are means ± standard deviations and medians (md), multiplied by 100. The 
entries in the table must be compared with the true values: 0 for u, 100 fort, 50 for Pmax• 112 for SD. The cases are explained in the 
text. m: average number of occurrences; N-sig: number out of 100 datasets showing a significant optimum and summarized under 
the headings u-sig and t-sig; N a± b: normal distribution of quadrats with mean a and standard deviation b). For further symbols 
see text and Table 2. 

CASE m WA u md-u 

I EQUAL SPACING 19 2±21 2± 21 0 
2 U[-5, 5] 19 3±28 3± 25 2 
3 U[-1, 5] 25 39± 14 -22± 76 0 
4 U[ 0, 5] 19 91 ± 14 -88±403 33 
5 U[-1, 1] 58 I± 8 -3±116 2 
6 UNEVEN 15 51± 33 6± 30 7 
7 GAP 15 80±29 3± 35 
8NO ±2 33 1 ± 19 0± 22 1 
9N2 ±2 22 50± 19 -2± 37 4 

10 N 3 ±2 14 72±24 0± 62 9 
11 N0.5±0.5 55 44± 6 -70±488 14 

when it lies inside than when it lies outside the sam
pled interval. This bias is less than with WA. The 
efficiency of WA compared to GLR after the sig
nificance test lies between 0.2 and 0.6 except in the 
cases 1 and 2 and the unnatural cases 5 and 8 in 
which the quadrats lie symmetrically with respect 
to the true optimum. 

The sampled SD underestimated the true SD in 
cases 3, 4, 5 and 11 with severe truncation (Table 3). 
Overestimation was never pronounced. GLR esti
mated the tolerance well; the bias shown in Table 3 
is not significant (P> 0.05). The median of the esti
mated tolerance is slightly biased downwards. After 
the significance test for unimodality the bias is 
downwards, but less than with the sample SD. GLR 
slightly overestimates the maximum probability 
with and without selection, the mean and median 
of the estimates being close together. WA provides 
no estimate for this probability. The remaining 
simulations of the cases 1- 5 (Table 2) showed 
qualitatively similar features as reported here for 
Pmax=0.5 and 125 quadrats. 

The effect of number of quadrats 

The efficiency of WA can be expected to decrease 
to zero with increasing numbers of quadrats in 
those cases in which WA is biased. This is because 
estimates by GLR are consistent, i.e. the bias in the 
estimates becomes smaller as the number of quad
rats increases, and the variances become negligible 

u-sig SD md-t t-sig Pmax N-sig 

2±21 108± 16 94± 16 91 94± 16 52± 10 100 
3 ±25 111±16 99± 16 98 99± 16 51± 10 100 
3 ±31 86± II 104± 31 98 96± 19 53± 8 84 

60±21 63± 11 104± 67 80 71 ± 16 57± 19 52 
2± 11 55± 3 120± 80 89 67± 8 54± 7 30 
6±30 114±21 94± 17 95 94± 17 54± 13 100 
2±35 106 ± 29 93± 22 93 93±22 55± 13 98 
0±22 98± 11 99± 15 100 99± 15 51± 7 100 
0±32 97± 14 99± 21 96 99±20 51± 8 99 

11 ±40 91± 18 94± 28 91 91 ±21 54± 12 94 
27 ± 18 45± 4 133 ± 154 90 66± 11 55± 13 34 

with respect to the bias in WA. However, in our 
simulations with only 10-13 occurrences per data
set (Table 2) the variances are appreciable; conse
quently the efficiencies for estimating the opti
mum, after the significance test, were high ( > 0.9 in 
10 out of the 12 simulations). Even 375 samples are 
not enough to get markedly better estimates with 
GLR than with WA, when Pmax = 0.1! 

Standard errors and confidence interval 

First, the standard errors found in the simula
tions are compared with the approximate standard 
errors provided by GLR for each estimated opti
mum and tolerance (see Appendix for the formulas 
used). The latter standard errors showed often a 
skew distribution with large outliers. As a result the 
average and the median of the estimated standard 
errors differed enormously, the average being much 
higher and the median slightly lower than the 
standard error found by simulation. Clearly the es
timated optimum or tolerance is unreliable when 
the estimated standard error is huge, but when it is 
low, it may be over optimistic about the precision 
achieved. Secondly, in 1 085 ("" 400Jo) of all simula
tions a 95%-confidence interval could be calculat
ed (see Appendix). The true optimum lay outside 
the 95%-confidence interval in 3.9% of these 
1 085 simulations, hence the interval gives higher 
confidence than its nominal value of 95%. 



Examples with real data 

The first real dataset concerns soil acidity (pH) 
and the occurrences of 15 species in 100 meadow 
samples, selected at random from the study of 
Kruijne et at. (1967). Figure 5 shows the fitted 
Gaussian logit curves for seven contrasting species. 
The Spearman rank correlation between the opti
ma as estimated by GLR and the weighted averages 
was 0.93. (The optima for two species for which bz 
was positive, but non-significantly different from 
zero, were set to + oo or - oo, depending on wheth
er the value of b1 in the fit or the linear logit curve 
was positive or negative, respectively). However, the 
range of the weighted averages was much smaller 
than the range of the estimated optima (1.0 against 
more than 4.0 pH-units). A 90o/o-confidence inter
val for the optimum could be calculated for five 
species. For one of these species (Bellis perennis) 
the weighted average lies outside this confidence in
terval. 

In the second example we used a much larger set 
of data, taken from Reijnen et at. (1981) and 
Gremmen et at. (1983). This dataset concerns the 
relation between species occurrence and soil mois
ture supply capacity in the Pleistocene part of 
West-Brabant (The Netherlands) with sandy to 
loamy soils. The distribution of soil moisture sup
ply capacity in the 994 samples was markedly 

BP 

0. 5 ~ GH 

4.8 5.2 5.6 6.0 6.4 6.8 7.2soilpH 

13 28 24 10 10 

Number of sites in each class 

Fig. 5. Probability of occurrence of seven contrasting species in 
relation to soil acidity (pH) in meadows, as fitted with logistic 
regression. The curves can be identified by the code near their 
optimum indicated by dotted lines. The species arranged in or
der of their optima are: Agrostis canina (AC); Stellaria grami
nea (SG); Alopecurus geniculatus (AG); Plantago major (PM); 
Bellis perennis (BP); Hordeum secalinum (HS); Glechoma 
hederacea (GH). 
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skewed, with many more 'wet' than 'dry' samples. 
For 121 of the 221 species that occurred in more 
than five samples, a 90%-confidence interval for 
the optimum could be calculated. The weighted 
average lies outside this interval for about half (65) 
of these species, always being on the wetter side of 
the confidence interval. Although Pmax was less 
than 0.1 for about 75% of the species, WA is un
reliable for estimating indicator values in this large 
dataset. 

Discussion 

WA disregards species absences. Ashby (1936) 
pointed out that disregarding species absences may 
lead to erroneous conclusions, for instance that 
telegraph poles show an optimal pH-value (see 
Greig-Smith, 1983, p. 130). This effect is due to the 
distribution of quadrats. Nevertheless, WA is still 
being used (see Introduction), perhaps because of 
its simplicity. Our simulations provide a better rea
son; they suggest that WA performs reasonably well 
when the distribution of the quadrats along the en
vironmental variable is not too uneven and when 
the response curve is not severely truncated. For 
rare species (species with low maximum probability 
of occurrence and/or narrow tolerance) WA is 
nearly as efficient as GLR in most situations. This 
result is irrespective of the distribution of the quad
rats, provided the variance of the estimated opti
mum is large compared to the potential bias of the 
weighted average. In other cases WA can give mis
leading results. It is therefore safest always to use 
GLR. 

To estimate optima and tolerances of species, the 
optima should ideally lie well within the range of 
environmental values of the samples. Further sam
pling considerations are provided by Mohler (1983). 
Attention should also be paid to confounding vari
ables, i.e. variables that are influential and show a 
relation with the variable under consideration (see 
e.g. Breslow & Day, 1980). Ignoring confounding 
variables may give, for example, spuriously bimo
dal response curves (Austin et at., 1984). The real 
power of logistic regression lies in the simultaneous 
analysis of the effect of several environmental vari
ables, including potentially confounding variables 
(see Appendix). The Gaussian logit response curve 
is then just a convenient starting point in the proc
ess of model building. 
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Appendix 

Standard errors for estimated u and t; confidence interval 
for u. 

Denote the variance of the estimates of b 1 and b2 in model(!) 
by v11 and v,, and their covariance by v12 • Using Taylor expan
sion we obtain that the variance of the estimated optimum and 
tolerance are approximately 

var(u)= (v11 +4uv" +4u2v,)/(4bn (A.l) 

var(t)=v22/( -8M) (A.2) 

An approximate 100(1- a)Olo-confidence interval for the opti
mum is derived from Fiellers theorem (see Finney, 1964, 
p. 27- 29). Let ta be the ordinary Student t-deviate at chosen 
probability level a and with n- 3 degrees of freedom (n is the 
number of quadrats). For example, ta=2.00 for a 
95%-confidence interval and 63 quadrats. Calculate 
g=(t~v,)!M and. 

D=4M var(u)-g(v,,-vf,/v,) (A.3) 

where the symbol ± is used to indicate addition and substrac
tion in order to obtain the lower and upper limits of the confi
dence interval, respectively. If b2 is not significantly different 
from zero (g> 1), then the confidence interval is of infinite 
length and, taken alone, the data must be regarded as valueless 
for estimating the optimum. 

If model (1) is extended with another explanatory variable z 
to, for example (Austin et a/., 1984: Table 2) 

(A.5) 

then the coefficients bo, b 1, b,, c 1 and c2 can, again, be estimat
ed with the mentioned statistical packages, together with vari
ances and covariances. This model can easily be summarized by 
optima and tolerances with respect to x and z, because there is 
no interaction term, like x.z, in the model. To calculate the confi
dence interval for the optimum of respect to x (or z) from this 
model, the given formulas are still valid, apart from the number 
of degrees of freedom in ta which must now be n-5. 
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