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Abstract 
In this thesis, the degradation of dietary fibres in the gastrointestinal tract, especially in the 

large intestine, is monitored using in vitro and in vivo studies. First, an in vitro method to 

simulate the conditions in the mouth, stomach and small intestine was adapted for food 

products, which were used in an in vivo satiation study as well. Alginate, a dietary fibre that 

is able to form a gel under stomach conditions, was found to be more satiating than 

cellulose and guar gum. Next, in vitro fermentation were performed in addition to in vivo 

studies using pigs as models for humans. The rates and products of dietary fibre 

fermentation depend on the constituent monosaccharide and linkage compositions, degree 

of polymerisation and molecular conformation of the dietary fibres, as well as on the 

adaptability of the microbiota to the dietary fibres. The dietary fibres investigated in the in 

vivo pig studies included resistant starch, alginate and non-starch polysaccharides (NSPs) 

from other feed components. The large intestinal digesta and faecal samples were analysed 

to study how dietary fibres are degraded in the large intestine. Resistant starch was found to 

be preferred by the microbiota over NSPs. Hence, the utilisation of NSPs was delayed in 

the presence of resistant starch. The alginate used in the study was not fully utilised by the 

microbiota and more than 40 %(w/w) of the alginate intake was excreted in the faeces. The 

degradation products of alginate included an insoluble alginate fraction with increased 

guluronic acid content compared to the parental alginate. In addition, alginate 

oligosaccharides were formed. The time needed by the microbiota to adapt to different 

dietary fibres varied. For resistant starch, two weeks of adaptation was sufficient, but more 

than 39 days was required to adapt to alginate. The fermentability differences among 

diverse dietary fibres led to the conclusion that consumption of a changing diet containing 

various dietary fibres may ensure that fermentation occurs throughout the colon. 
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1.1. The project 

Amongst many other health benefits, dietary fibres are recognized to be potential for 

preventing obesity (1). Studies about dietary fibres related to obesity are conducted through 

epidemiological studies (2), or through experiments in which human subjects were given 

diets supplemented with dietary fibres (3). The observations during the supplementation 

include hunger or fullness feeling, body weight change, and food intake (3).  

One of the mechanisms by which dietary fibres can prevent obesity is by inducing earlier 

satiation (meal termination) and prolonging satiety (4). Some mechanisms by which dietary 

fibres affect satiation and satiety are known (5), but the experimental results with fibre 

supplementation are contradictory (3, 5). It is considered that the inconsistencies of the 

results obtained in experiments involving dietary fibres are partly caused by the diversity of 

dietary fibres used and the lack of detailed characterization of the fibres used in the 

experiments (3). 

A multidisciplinary project named ‘Food, fibre and health – an integrated approach’ was set 

up, which was aimed to explore the role and the mechanisms of dietary fibres in inducing 

satiation and prolonging satiety. This thesis is a part of the project, and aimed to investigate 

the changes undergone by different dietary fibres in the gastrointestinal tract (GIT) using in 

vitro and in vivo experiments.  

1.2. Definition of dietary fibres 

The definition of dietary fibres has changed over time, as new findings related to dietary 

fibres were revealed. The changes are recorded in detail in recent reviews (6, 7). In Europe, 

dietary fibres are currently defined as: ‘Carbohydrate polymers with three or more 

monomeric units, which are neither digested nor absorbed in the human small intestine and 

belong to the following categories: edible carbohydrate polymers naturally occurring in the 

food as consumed; edible carbohydrate polymers which have been obtained from food raw 

material by physical, enzymatic or chemical means and which have a beneficial 

physiological effect demonstrated by generally accepted scientific evidence; edible 

synthetic carbohydrate polymers which have a beneficial physiological effect demonstrated 

by generally accepted scientific evidence (8).’ 
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Although dietary fibres are defined as carbohydrate polymers, it was stated that lignin and 

other compounds can be included in dietary fibre, if they are closely associated with the 

carbohydrate polymers in plant cell walls and are analysed together with the dietary fibres. 

1.3. Classification of dietary fibres 

With the definition cited above, dietary fibres include a large variety of carbohydrates with 

various constituent monosaccharide compositions, molecular weights, physical properties 

and physiological effects. Dietary fibres are often classified based on their physical 

properties, especially based on their solubility in water and viscosity. Nevertheless, it has 

been pointed out that classification of carbohydrates based on the solubility in water is less 

functional, because solubility of dietary fibres can also be influenced by other factors, such 

as pH (9). It was suggested to classify carbohydrates based on their chemical structure or 

based on clear physiological properties (9). Figure 1–1 illustrates the classification of 

carbohydrates based on their digestibility in the upper GIT and their molecular size. It is 

shown in Figure 1–1 that dietary fibre consists of three groups: non-digestible 

oligosaccharides, resistant starch, and non-starch polysaccharides (NSPs). In the next 

paragraphs, these three main groups of dietary fibres are described in more detail. 

 

Figure 1–1. Chemical and physiological classification of carbohydrates. The classification is partially 
adapted from Cummings and Stephen (9). The grey box indicates the carbohydrates that are dietary 
fibres. 

1 
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1.3.1. Non-digestible oligosaccharides 

Oligosaccharides with degree of polymerisation (DP) 3-10 which are not digested in the 

upper GIT (NDOs) are explicitly included as dietary fibres in the definition stated by The 

American Association of Cereal Chemists (AACC) in 2001 (10). This AACC definition of 

dietary fibre coincides with the EC definition cited in Section 1.2, where it is stated that 

dietary fibres can have a degree of polymerisation (DP) of three or more. With such a broad 

definition, NDOs are very diverse, including degradation products of NSPs and some 

synthesized oligosaccharides (11), excluding mono-and disaccharides. Hence, non-

digestible disaccharides, such as lactulose, are not dietary fibres. 

The most well-known NDOs are fructo-oligosaccharides (FOS) and galacto-

oligosaccharides (GOS), which have been shown to have prebiotic activity (12). Currently, 

other NDOs, including those produced from enzymatic digestion of different NSPs are 

emerging, such as xylo-oligosaccharides, alginate oligosaccharides, manno-

oligosaccharides (11), and pectin oligosaccharides (13). Some of these oligosaccharides has 

already been commercialised (11, 14). 

1.3.2. Resistant starch 

Chemically, all starch is similar in having glucose residues linked by α-1,4 and α-1,6 

linkages. Although human α-amylase can split the α-1,4 linkages, some starch is not 

absorbed in the small intestine and end up in the large intestine. The portion of starch that is 

not digested in the small intestine is named resistant starch.  

Based on the causes why the starch is not digested in the upper gastrointestinal system, 

resistant starch is first divided into three groups (15): RS type 1, starch which is physically 

inaccessible because of entrapment in food; RS type 2, starch present in starch granules, 

and RS type 3: retrograded starch. The fourth group of resistant starch: RS type 4, 

chemically modified starches, was added later (16). Sources and properties of resistant 

starch have been reviewed in detail elsewhere (17, 18). 

1.3.3. Non-starch polysaccharides  

Non-starch polysaccharides (NSPs) are carbohydrates which are considered as dietary 

fibres ever since the term ‘dietary fibre’ was first introduced in 1953 (19, 20). Simply all 

polysaccharides besides starch belong to this group. NSPs, therefore, encompasses highly 



General introduction 

5 
 

diverse polysaccharides with various constituent monosaccharide composition and linkage 

types, as is exemplified in Table 1–1.  

Table 1–1. Examples of the diversity of non-starch polysaccharides. 
Dietary fibre class1 Examples of fibre 

variability 
Main constituents Sources 

Cellulose  glucose Plants 
Mixed-linkage β-
glucans (21) 

β-1,3-1,4-glucan glucose  Cereals 
β-1,3-1,6-glucan glucose Mushrooms, yeast 

Hemicelluloses (22) Arabinoxylans arabinose, xylose Cereals 
 Glucuronoarabinoxylan arabinose, xylose, glucuronic 

acid  
Vegetative parts of grasses 

 Xyloglucan glucose, xylose Plant cell wall of dicots and 
conifers  

 Glucomannan mannose, glucose Amorphophallus konjac 

 Galactoglucomannan mannose, glucose, galactose Plant cell wall of 
Gymnospermae  

Pectic substances (23) Homogalacturonan galacturonic acid 
methyl-esterified galacturonic 

acid 

Fruits and vegetables 

 Complex pectin 
(rhamnogalacturonan)  

galacturonic acid, rhamnose, 
arabinose, galactose 

 

Plant exudate gums Arabic gum arabinose, galactose, 
rhamnose, glucuronic acid 

Acacia senegal 

 Ghatti gum arabinose, galactose, mannose, 
xylose, glucuronic acid, 
rhamnose 

Anogeissus latifolia 

 Karaya gum galactose, rhamnose, 
galacturonic acid, 
glucuronic acid 

Sterculia spp. 

 Tragacanth gum arabinose, galactose, 
galacturonic acid, xylose, 
rhamnose, fucose 

Astragalus spp., especially 
A. gummifer 

Mucilages Ispaghula husk (24) xylose, arabinose, galacturonic 
acid, rhamnose 

Plantago ovata 

Endospermic 
leguminous seeds 

Guar gum  mannose, galactose  Guar plant (Cyamopsis 
tetragonolobus) 

 Locust bean gum  mannose, galactose  Carob tree (Ceratonia 
siliqua) 

Seaweed cell wall 
polysaccharides 

Alginate guluronic acid, mannuronic 
acid 

Brown seaweed 

 Carrageenan galactose, anhydro galactose Red seaweed 
 Agar galactose, anhydro galactose Red seaweed 
Chitin and chitosan 
(25) 

 glucosamine 
N-acetyl glucosamine 

Fungi, crustaceans, insects 

Microbial 
polysaccharides 

Xanthan gum  glucose, glucuronic acid, 
mannose 

Xanthomonas campestris 

 Gellan gum glucose, glucuronic acid, 
rhamnose  

Sphingomonas paucimobilis 
(formerly Pseudomonas 
elodea) (26) 

 Reuteran (27) glucose Lactobacillus reuteri 
1 The dietary fibre classes are adapted from Asp (28). 
If not indicated, the main constituents and sources are cited from Daniel, et al. (29). 

1 
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The classification of NSPs has similar challenges to that of dietary fibres, because the 

majority of dietary fibres are NSPs. The diversity in the chemical structures of NSPs leads 

to diverse physical properties and different physiological effects. NSPs are often 

categorised based on solubility in water (30). However, physical properties of NSPs can 

change depending on many factors, including how the NSPs are extracted (31). The 

classification based on chemical properties, however, is not always representative for the 

physiological activities (9). 

1.4. Analysis of dietary fibres 

With the inclusion of resistant starch and the non-digestible oligosaccharides in dietary 

fibre category, the analytical method for total dietary fibre was also adapted. The last 

adaptation of the method includes oligosaccharides as well as resistant starch and non-

starch polysaccharides as dietary fibre (32), and this method has been adopted as an official 

method (AOAC Method 2009.01 (33) and 2011.25 (34)).  

In the integrated total dietary fibre assay procedure (32), the polysaccharides are measured 

gravimetrically and the low molecular weight (LMW) dietary fibres are measured using 

HPLC. In this method, dietary fibres are measured as a group of compounds, and there is 

no elucidation of the components or the constituent monosaccharide compositions of the 

fibres. Also, lignin, which is closely associated with dietary fibres in plant cell wall 

material, is included in the gravimetric analysis (32). Although the results of the integrated 

assay comply with the definitions of dietary fibres, they do not give detailed information 

about the composition of the dietary fibres. 

Detailed compositions of dietary fibres can be obtained by measuring the main components 

of dietary fibres separately. Resistant starch can be measured by another official method 

(AOAC method 2002.02) (35). The principle of the analysis was based on removal of 

starch that can be digested by pancreatic α-amylase and amyloglucosidase, followed by 

enzymatic digestion of the remaining starch and analysis of the glucose from the resistant 

starch. The constituent monosaccharide composition of the NSPs can be analysed using the 

method previously developed for neutral monosaccharides (36), coupled with uronic acid 

analysis (37). The principle of this method is removal of the starch from the sample, 

followed by hydrolysis of the remaining NSPs and analysis of the monosaccharides 
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released by the hydrolysis. Alternatively, if the dietary fibres are soluble in water and 

different uronic acids are present, the method involving methanolysis combined with 

hydrolysis using trifluoroacetic acid (TFA), followed by High Performance Anion 

Exchange Chromatography (HPAEC) (38) can be used. For the LMW dietary fibres or 

oligosaccharides, if the constituent monosaccharide composition is needed, the approach 

used in the integrated total dietary fibre assay for LMW soluble dietary fibre can be 

extended by hydrolysis of the oligosaccharides followed by analysis of the resulting 

monosaccharides. For this purpose, the analysis method for soluble carbohydrates as 

mentioned above (38) can be used. In addition, there are methods available for analysing 

specific oligosaccharides such as FOS (39, 40) and GOS (41). 

1.5. Analysis of physiological effects of dietary fibres 

1.5.1. In vivo studies 

Experiments involving diet intervention studies of human subjects are irreplaceable for the 

research about dietary fibres. Nevertheless, research using human subjects is highly 

restricted because of ethical reasons. Consequently, in order to investigate the mechanisms 

behind the effects of dietary fibres, animal models are often used. 

Rodents, such as mice and rats, are often used as animal models for humans. Rodents have 

the advantage that they are small and have a rapid growth and reproduction cycle. It is also 

possible to modify the diet of rodents to contain only a single dietary fibre. Nevertheless, 

the digestive system of rodents, especially the colon, has been shown to be very different 

from human (42). Although more costly in time and resources, pigs are regarded as more 

representative than rodents for studies involving the large intestine, because their large 

intestine is more similar to humans (42, 43). Another advantage of using pigs as model 

animals is that pigs can also be equipped with cannulae. Samples from cannulated animals 

are valuable because samples can be taken from the same animal that received different 

diets at different periods. Moreover, the animals can be sacrificed to obtain samples that are 

rarely possible to be obtained from humans, such as tissue samples or digesta from different 

parts of the GIT. In addition, the results of dietary fibre research in pigs as models for 

human can also be applied in pig farming practices, and vice versa. 

1 
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In many studies, the digesta obtained from animals fed with diets containing dietary fibres 

were measured for contents of short chain fatty acids as fibre fermentation products (44, 

45). The digesta are also often analysed for microbiota composition (45-47). If an 

indigestible marker, such as TiO2 or Cr2O3, is added into the diets, the apparent 

digestibility, which is a measure of how much of the consumed dietary fibres are utilised by 

the microbiota in the GIT, can also be estimated (48-50). Results of dietary fibre 

digestibility estimations depend on the analysis method used to measure the dietary fibres 

in the samples. If gravimetric methods, which include lignin, are used, the digestibility 

result will also include the digestibility of lignin. More detailed results can be obtained if 

the dietary fibres are analysed for their constituent monosaccharide composition, and/or by 

analysis methods capable of analysing specific dietary fibres, such as cellulose and mixed-

linkage β-glucans (48, 49). Hence, the degradation of individual dietary fibres in the GIT 

can be monitored. 

For research on the degradation of dietary fibres in the GIT, samples from different parts of 

the colon are invaluable. Using such samples, fermentation of certain dietary fibres along 

the colon can be monitored. For example, it was revealed that mixed-linkage β-glucans are 

extensively utilised by the microbiota in the caecum (51). In another study, it was 

concluded that arabinoxylans from different parts of the rye kernel are degraded by the 

microbiota at different rates along the large intestine (52). Without taking samples from 

different parts of the large intestine, drawing these conclusions would not have been 

possible. 

Despite the many analyses done on the digesta from model animals, the degradation 

products of the dietary fibres were not much studied. During their utilisation by the 

microbiota, dietary fibres are degraded into lower molecular weight polysaccharides, 

oligosaccharides or monosaccharides. This was indicated by the presence of polysaccharide 

degrading enzymes and glycosidases in the fermentation medium after in vitro fermentation 

of various dietary fibres by human faecal microbiota (53). These degradation products may 

provide more information about the mechanisms of dietary fibre degradation in the GIT 

than the fermentation end products. However, dietary fibre degradation products have been 

monitored only in a few studies, and these studies were focused on the upper GIT (54, 55).  
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1.5.2. In vitro studies 

In vitro methods have often been used to predict how certain dietary fibres may behave in 

the body. In vitro experiments have the advantage that individual dietary fibres can be 

tested in pure form without the interference of other compounds. In vitro studies performed 

on dietary fibres include characterisation of the physical properties of dietary fibres and in 

vitro fermentation of dietary fibres. Also, in vitro methods have been used to study 

interactions between dietary fibres, their degradation products, and mammalian cells, such 

as immune cells and endothelial cells (56). 

Characterisation of the physical properties of dietary fibres is mainly related to the 

hydration properties, including solubility, swelling capacity and water binding capacity. 

Different methods for measuring water binding capacity have been reviewed (57). 

Hydration properties of dietary fibres depend on the chemical characteristics and on the 

particle size of the fibre (58). The mechanisms involved in water binding by dietary fibres 

have been described in detail elsewhere (59). 

In vitro fermentation has been used extensively to study the fermentation of different 

nutrients including dietary fibres by intestinal microbiota. In vitro fermentation has been 

performed in different ways, from the simple batch system (60) to the continuous system 

composed of three fermentors set at different pH to simulate the pH changes along the large 

intestine (61). During in vitro fermentation, the fermentation products of different dietary 

fibres and the substrate utilisation by the microbiota can be monitored (60, 62). 

In an attempt to simulate the human digestive system as much as possible, sophisticated 

models are developed. These models incorporate peristaltic movements, removal of small 

molecules and the addition of simulated digestive liquids. An example of such a model is 

the TNO intestinal model (TIM-1), which can simulate the stomach and the small intestine 

(63). Another model was also developed to simulate the large intestine (64). These models 

can simulate the in vivo conditions better than the simple ones, but they are more expensive 

and have low throughput (65). Hence, the simple models are still valuable when a lot of 

samples need to be analysed. 

Similar to the digesta from the in vivo studies, samples from in vitro fermentation are often 

analysed for gasses, SCFA content, substrate disappearance, and microbiota composition 

(65-70). However, the fate of the dietary fibre itself is seldom monitored during 

1 
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fermentation. In the few studies that did monitor the degradation of dietary fibres during in 

vitro fermentation, it was concluded that xylo-oligosaccharides (XOS) that are acetylated or 

substituted with 4-O-methyl glucuronic acid were more difficult to ferment by human 

faecal microbiota than unsubstituted XOS or arabinose-substituted XOS (71). In another 

study, it was shown that unsaturated pectin oligosaccharides were formed during in vitro 

fermentation of pectin by human faecal microbiota (72). Such conclusions are important in 

explaining the mechanisms of dietary fibre degradation by the intestinal microbiota. They 

may lead to an understanding on the types of oligosaccharides that can be expected to be 

present in the large intestine upon consumption of a dietary fibre.  

The oligosaccharides as degradation products of dietary fibres in the large intestine can be 

of special interest because oligosaccharides have been shown to have direct interaction with 

immune and endothelial cells (56). Using in vitro techniques, it could be revealed which 

oligosaccharides can interact with certain cells, and which part of the oligosaccharide is 

important for its recognition by the cell. As an example, it was shown that immune cells 

tend to react to oligosaccharides with helical conformation (73). 

1.6. Health effects of dietary fibres 

Dietary fibres have been claimed to have a role in regulating body weight (74), alleviate 

diabetes (75), prevent cardiovascular diseases (76), maintain colon health (77), and even 

prevent various cancers (78-80). In the description that follows, the mechanisms that are 

known about how dietary fibres can influence health at different sites in the gastrointestinal 

tract (GIT) are described. 

1.6.1. Dietary fibre in the upper gastrointestinal tract  

The presence of dietary fibres in food potentially reduce energy intake. This effect was 

mentioned as ‘intrinsic effects’ in the review of Slavin (1). In food, dietary fibres provide 

bulk volume with less energy compared to other nutrients, thus reducing the energy density 

of food (81).  

The effects of dietary fibres after consumption start in the mouth. Foods that are rich in 

dietary fibre are often regarded as less palatable (81), and they often require a lot of 

chewing. Foods with low palatibility (82) and chewy foods (83, 84) may reduce food 
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intake. Further along the upper gastrointestinal tract, the effects of dietary fibres in the 

stomach and in the small intestine are often assumed to be related to their physical 

characteristics, mainly viscosity and gelling ability (58). It was shown that a high viscosity 

meal may delay gastric emptying (85, 86) and induce satiety hormones (86). Gastric 

emptying is one of the many factors that have a role in satiation and regulation of food 

intake (87, 88).  

In the small intestine, increased viscosity of the digesta has been related to a decreased rate 

of nutrient absorption and reduction of glycemic response (89). Besides having a role in the 

regulation of food intake (87, 88), the reduction of the glycaemic index in food can prevent 

the onset of diabetes type 2 (90). The effects of viscous dietary fibres on glycemic response, 

blood lipids, intestinal enzymatic activity and nutrient digestibility have been documented 

in detail (91). 

The effects of dietary fibres described above are due to the increased viscosity of 

gastrointestinal liquid. Dietary fibres without viscous or gelling properties, therefore, are 

often found not having much effect in the upper GI tract. It was shown, however, that water 

insoluble dietary fibres with high water holding capacity can reduce the free water content 

and increase the viscosity of the digesta (92). Most oligosaccharides are soluble in water, 

but have a low viscosity. These oligosaccharides may have a different role in the upper 

GIT, because some dietary fibres, including oligosaccharides, are able to interact with 

immune cells (73, 93). 

1.6.2. Dietary fibres in the large intestine 

After passing the upper GIT, the dietary fibres enter the large intestine. In the large 

intestine, there is a large community of microbiota that utilises the dietary fibres as carbon 

sources for their growth. The colon microbiota, which may comprise of thousands of 

species (94), can compose more than 40 % of the total solids in human faeces (95). It was 

proposed that the fermentation of dietary fibres by the microbiota is one of the main 

mechanism by which dietary fibres can influence health (96). 

Dietary fibres that can be fermented by the gut microbiota potentially modify the 

composition of the microbiota. Some dietary fibres are shown to be able to increase the 

diversity of the microbiota. In addition, especially fructo-oligosaccharides and galacto-

1 
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oligosaccharides are reported to selectively stimulate the growth of Bifidobacteria and 

Lactobacilli (12), which are considered as beneficial for health (97). The term ‘prebiotic’ is 

used for dietary fibres which are able to selectively promote the growth of beneficial 

bacteria in the large intestine (97). 

The end products of dietary fibre fermentation in the large intestine are gasses, such as 

hydrogen or methane, next to short chain fatty acids (SCFA). The SCFA are mainly acetic 

acid, propionic acid and butyric acid. It has been shown that the amounts of these SCFA in 

human faeces increased when fermentable dietary fibres are consumed (96). The SCFA 

production was highest in the caecum (98). An increased amount of SCFA in the digesta is 

associated with a lower pH of the digesta, which inhibits the growth of pathogenic bacteria 

(99). More than 95 % of the SCFA produced by the microbiota was absorbed by the 

intestinal cells of the host (100). Acetic acid, propionic acid, and butyric acid have been 

shown to influence various processes in the body, including satiety, cholesterol metabolism, 

carcinogenesis, and insulin sensitivity (94). 

Dietary fibres and their degradation products that are not well fermented by the microbiota 

in the large intestine are beneficial in maintaining healthy stool output. It has been reported 

that one of the factors which determine the effects of dietary fibres to the stool output is the 

water holding capacity of the fibre (101). The unfermented dietary fibres and the water 

bound by the fibres increase the volume of digesta in the large intestine. With an increased 

digesta volume, the toxic substances that may be present in the digesta are diluted. Hence, 

the interactions between toxic substances and intestinal cells may be reduced (102). 

Increased digesta volume may also result in decreased transit time. Shorter transit time may 

reduce water absorption from the digesta and maintain the stool consistency within the 

healthy range. 

1.7. Thesis outline 

As was described above, the effects of dietary fibres in the large intestine is often related to 

the fermentation of the fibre and the fermentation products, especially SCFA. The 

degradation of the dietary fibres itself was seldom monitored. Hence, the intermediate 

products of dietary fibre degradation, which can be oligosaccharides, are usually ignored. 



General introduction 

13 
 

The aim of this thesis was to monitor the degradation of dietary fibres along the 

gastrointestinal system in in vitro simulation and in vivo experiments. 

First, the behaviour of three dietary fibres with different physicochemical properties in the 

upper GIT and their possible roles in satiation were studied (Chapter 2). In vitro 

experimental results were discussed in relation to the human satiation responses. Dietary 

fibres will eventually end up in the large intestine and being fermented by the microbiota. 

Hence, the fermentation of dietary fibres with a broad variation in their chemical properties 

was studied in vitro (Chapter 3). During fermentation, fermentation products and dietary 

fibre degradation products were monitored. A comparison was also made between 

fermentation by faecal microbiota from humans and that from pigs. 

Pigs were used in subsequent experiments as models for human (Chapters 4-6). In the in 

vivo studies, resistant starch was used as the main added fibre because it has been found to 

be a satiating fibre (103). In Chapter 4, the effects of resistant starch on the degradation of 

NSP from wheat and barley are described. In this study, polysaccharide degrading enzyme 

activity in the digesta along the large intestine was used for estimating the extent of fibre 

degradation. Chapter 5 focuses on the degradation of alginate, which is known as a slowly 

fermentable fibre, in the large intestine of pigs. The alginate was added into diets without or 

with resistant starch. Alginate and alginate degradation products, which resisted catabolism 

by the microbiota and were secreted in the faeces, were characterized. The method 

developed for analysing the alginate oligosaccharides and the animal to animal variation in 

alginate degradation are discussed in Chapter 6. The results gained from in vitro and in 

vivo studies, as well as the consequences of the insights gained in this thesis for dietary 

fibre research, as well as for the production and consumption of dietary fibres are discussed 

in the last chapter (Chapter 7). 
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Abstract 

The objective was to determine the effects of dietary fibre with bulking, viscous and gel-

forming properties on satiation, and to identify the underlying mechanisms. We conducted 

a randomised crossover study with 121 men and women. Subjects were healthy, non-

restrained eaters, aged 18–50 years and with normal BMI (18.5–25 kg/m2). Test products 

were cookies containing either: no added fibre (control), cellulose (bulking, 5 g/100 g), 

guar gum (viscous, 1.25 g/100 g and 2.5 g/100 g) or alginate (gel-forming, 2.5 g/100 g and 

5 g/100 g). Physico-chemical properties of the test products were confirmed in simulated 

upper gastrointestinal conditions. In a cinema setting, ad libitum intake of the test products 

was measured concurrently with oral exposure time per cookie by video recording. In a 

separate study with ten subjects, 4 h gastric emptying rate of a fixed amount of test 

products was assessed by 13C breath tests. Ad libitum energy intake was 22 % lower for the 

product with 5 g/100 g alginate (3.1 ±1.6 MJ) compared to control (4.0 ±2.2 MJ, P <0.001). 

Intake of the other four products did not differ from control. Oral exposure time for the 

product with 5 g/100 g alginate (2.3 ±1.9 min) was 48 % longer than for control (1.6 ±0.9 

min, P =0.01). Gastric emptying of the 5 g/100 g alginate product was faster compared to 

control (P <0.05). We concluded that the addition of 5 g/100 g alginate (i.e. gel-forming 

fibre) to a low fibre cookie results in earlier satiation. This effect might be due to an 

increased oral exposure time. 
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2.1. Introduction 

The consumption of dietary fibre has been associated with increased satiety and reduced 

energy intake (1-5). Satiety and satiation are part of a complex system of appetite control, 

including cognitive factors, sensory sensations and post-ingestive feedback mechanisms 

(6). Satiety is defined as the inhibition of appetite and occurs as a consequence of eating. 

Satiation is defined as the satisfaction of appetite that develops during the course of a meal, 

and results in meal termination. Numerous studies have been carried out to clarify the 

effects of dietary fibre on satiety (4, 5, 7). Studies on the effects of fibre on satiation are, 

however, limited and show inconsistent results. For example, Grimes and Gordon (8) found 

that the satiating capacity of wholemeal bread was higher than that for white bread. 

Opposing to this, Burley, et al. (9) did not find differences in ad libitum intake between a 

meal containing a meat replacer with chitin and insoluble β-glucan and a similar low fibre 

meal. Odunsi, et al. (10) also did not find differences in ad libitum intake after ingestion of 

capsules with cellulose and alginate compared to placebo capsules. 

Dietary fibre is a term that reflects a heterogeneous group of compounds that differ in their 

chemical structure and physico-chemical properties. Dietary fibres may affect satiation via 

diverse related mechanisms (7, 11). First, the metabolisable energy content of fibre is less 

than that for other nutrients (12) and, as meal intake volume is relatively constant (13), the 

inclusion of fibre in foods decreases total energy intake. Second, adding fibre to a meal can 

increase chewing activity or oral exposure time to foods, which may result in earlier 

satiation (14-16). Third, the addition of fibre can increase viscosity and water-holding 

capacity of digesta and induce formation of gels in the stomach (11, 17). These properties 

can slow down gastric emptying and concurrently increase stomach distension. Stomach 

distension, or fullness, is seen as a causal factor in the chain of events leading to satiation 

(18, 19). In response to the mechanical and physico-chemical properties of the ingested 

foods, a series of neural and humoral signals develop from the gut, which can result in 

satiation (20). 

The aim of the present research was to determine the effects of three distinctive dietary 

fibres with different physico-chemical properties on satiation. Hence, we selected cellulose, 

a bulking fibre; guar gum, a viscous fibre; and alginate, a gel-forming fibre, and added the 

selected fibres to test products. Two dosages of guar gum and alginate were included to be 
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able to study effects of high fibre, but less palatable products. Physico-chemical properties 

of the test products were characterised in simulated upper gastrointestinal conditions. 

Satiation was determined by measuring ad libitum intake of the test products in a real-life 

setting. Furthermore, oral exposure time and gastric emptying rate were measured. 

2.2. Subjects and methods 

Two short-term intervention studies were conducted. Satiation and oral exposure time were 

determined in study one, and gastric emptying rate was assessed in study two. In both 

studies, the subjects participated in six test sessions with six different test products. 

2.2.1. Subjects 

For both studies, men and women, aged 18–50 years, were recruited in Wageningen and 

Ede, The Netherlands. Subjects had to have a normal BMI (18.5–25.0 kg/m2), and had to be 

healthy. Subjects were excluded if they were restrained eaters according to the Dutch 

Eating Behaviour Questionnaire (DEBQ) (score: men >2.89; women >3.39) (21). They 

were also excluded if they used an energy-restricted diet or lost or gained more than 5 kg 

body weight during the last 2 months, if they had a lack of appetite, had diabetes, 

gastrointestinal problems or were hypersensitive for any ingredient in the test products. The 

present study was conducted according to the guidelines laid down in the Declaration of 

Helsinki, and all procedures involving human subjects were approved by the Medical 

Ethics Committee of Wageningen University (registration no. NL 26703.081.09). Written 

informed consent was obtained from all subjects. The study was registered in the National 

Institutes of Health clinical trial database (ClinicalTrials.gov no. NCT00904124). 

Out of the 124 subjects in study one, three dropped out due to reasons unrelated to the 

intervention. We included 121 subjects in data analysis, of which 112 participated in six 

sessions, seven in five sessions and two in four sessions. The missed sessions were due to 

illness or problems with planning. The study population for study one consisted of forty-

five men and seventy-six women, aged 25 ±7 years, with a BMI of 22.0 ±1.9 kg/m2 and a 

DEBQ score of 2.1 ±0.6. The number of women in the menstrual phase did not differ (P 

=0.79) between treatments. 
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A total of ten subjects, six men and four women, participated in study two. All subjects 

were included in data analysis, of which nine participated in six sessions and one in five 

sessions. The missed session was due to problems with planning. Mean age of the 

participants was 21 ±3 years, mean BMI 21.8 ±1.9 kg/m2 and mean DEBQ score 1.8 ±0.7. 

2.2.2. Test products 

The six test products were one-bite-sised (6.8 ±0.3 g) chocolate cookies. The basic recipe of 

the cookies contained 36 % white flour, 27 % butter, 18 % sugar, 14 % chocolate chips, 4 

% egg, 2 % cacao powder and 0.1 % salt. Flour was exchanged for dietary fibre. Cellulose 

(Vitacel L 00, Rettenmaier & Söhne) was given in a dose of 5 %; guar gum (Viscogum™ 

MP 41 230, Cargill; molecular weight 60–1000 kDa) in doses of 1.25 and 2.5 % and 

alginate (Protanal LF 5/60, FMC BioPolymer; molecular weight 17–710 kDa; guluronic 

acid:mannuronic acid ratio of 1.9) in doses of 2.5 and 5 %. A professional bakery 

manufactured the cookies freshly on each test day. 

Duplicate portions of the products were collected on each test day and stored at −20°C 

pending measurements for macronutrients and physico-chemical properties. Before 

measurements, a homogenised mixture of cookies was ground until it passed a 2 mm sieve. 

Protein, total fat, total dietary fibre, moisture and ash were measured according to methods 

previously described (22). Available carbohydrate was estimated by subtracting moisture, 

ash, protein, fat and fibre from total weight. Atwater factors were used to calculate 

available energy: fat 37 kJ/g and protein and carbohydrate 17 kJ/g. For fibre, 0 kJ/g was 

used because of uncertainty about the availability of energy (12). This may have 

underestimated the available energy content. Macronutrient composition is shown in Table 

2–1. 

Physico-chemical properties were measured only for the high-dose products and the 

control. These properties included viscosity and water-holding capacity using three 

conditions to simulate the mouth, stomach and small intestine. Measurements were 

performed according to methods described by Turnbull, et al. (23), with modifications for 

the amount of samples and types of reagents. Reagents used included α-amylase from 

porcine pancreas (1.16.312.0001, Merck), pepsin from porcine gastric mucosa (P6887, 

Sigma-Aldrich), pancreatin from porcine pancreas (P1625, Sigma-Aldrich) and bile extract 

(B8631, Sigma-Aldrich). The amount of sample was increased by 4-fold, to compensate for 
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lower fibre levels. Furthermore, the volume for each simulation was set to 30 ml, and 

amounts of sample and reagents were adjusted comparatively. In addition, amounts of 

enzymes were adjusted to obtain similar activity. Bile was increased by 4-fold to ensure 

good emulsification of fat. After each simulation, samples were centrifuged at 4250 ×g for 

20 min. The supernatant was decanted and used for viscosity measurements. The tube with 

the remaining pellet was inverted to remove excess water. The pellet that contained 

insoluble material was weighed and the DM was measured. Water-holding capacity was 

expressed as the amount of water held after centrifugation by the insoluble material from 1 

g of cookie. 

Table 2–1. Available energy and macronutrient composition of the test products (per 100 g). 

  Control  Cellulose 
5 % 

 Guar gum 
1.25 % 

 Guar gum 
2.50 % 

 Alginate 
2.50 % 

 Alginate 
5 % 

Component g En%   g En%   g En%   g En%   g En%   g En% 

Fat 33.3 55  32.2 57  33.3 56  33.2 57  33.2 56  33.2 58 

Protein 6.4 5  5.9 5  6.3 5  6.2 5  6.5 5  5.8 5 

Available 
carbohydrate 

53.1 40  46.7 38  51.0 39  49.3 39  49.6 39  46.8 38 

Dietary fibre 3.6     10.6     5.6     6.9     6     9   

Available 
energy (kJ)1 

2241 
 

2087 
 

2204 
 

2171 
 

2180 
 

2122 

En%: percentage of energy, as derived from the specific nutrient compared to the total calculated energy 
content of the test product. 

1 Available energy was calculated based on chemical analysis of the macronutrient composition. Energy 
conversion factors used: fat 37 kJ/g, protein and carbohydrate 17 kJ/g. Energy content of fibre was set at 
0 kJ/g. 

The viscosity of the supernatant was measured at 37 °C, using a rheometer (MCR 501, 

Anton Paar) with double gap geometry. A shear sweep was performed at 1–1000 /s in 

logarithmic scale during 5 min. The data obtained at shear rate of 100 /s were used to 

compare between samples. 

2.2.3. Experimental procedure: study one 

Ad libitum intake was measured in a randomised single-blind cross-over study with six test 

sessions, separated by at least 2 d. Ad libitum intake was calculated from the weight of the 

test products before and after consumption. Products were weighed in duplicate on a digital 
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scale, with a precision of 0.1 g. Subjects were not aware that the primary outcome was ad 

libitum intake, as this could have affected the outcome of the study. 

The study was performed in a cinema (Cinemec) to create a real-life setting aimed to 

distract subjects from visual and weight cues (24). During each test session, subjects 

watched a movie in the genres romance or comedy. On each test day, the subjects arrived at 

18.00 hours. At 18.45 hours, they were seated in the theatre. Just before entering the 

theatre, 400 g of test product was served in a white carton box and a bottle with 500 ml 

water was provided. The subjects were instructed to eat as little or as much of the test 

product as they wanted until they felt comfortably full. The movie was divided in two parts 

of 45 min, with a 15 min break. During the break, subjects left the theatre and handed in the 

box with test product. At the restart, they received a new box with 400 g of test product. 

The participants were instructed to finish the bottle of water before the end of the movie. 

Before and after ad libitum intake, subjects rated five appetite questions on 100 mm visual 

analogue scales. Scales were anchored from ‘not at all’ to ‘very much’ and included 

feelings of hunger, fullness, desire to eat, prospective food consumption and thirst. Before 

ad libitum intake, the participants were also asked to rate palatability, expected satiation 

and sensory attributes (sweetness, bitterness, chocolate taste, freshness, dryness, stickiness 

and difficulty to swallow) of the test product on 100 mm visual analogue scales. 

To standardise the individual state of satiety, subjects were instructed to eat the same 

breakfast and lunch at all six test days and to record this in a diary. Individual state of 

satiety was further standardised by consuming a preload at 18.00 hours. The preload 

provided approximately 18 % of the daily energy requirements. This was chosen to 

correspond to half the energy content of a normal Dutch dinner (25). Individual energy 

requirements were calculated by the Schofield equation (26), and subjects were divided into 

one of three preload groups. Group one (estimated energy need ≤10 MJ, n 63) received 0.5 

pizza, group two (10–14 MJ, n 56) received 0.75 pizza and group three ( ≥14 MJ, n 2) 

received 1.0 pizza. 

2.2.4. Oral exposure time 

Oral exposure time of the test products was measured by means of video recording a 

random subgroup of eleven men and twenty-five women. To record eating time, five video 
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cameras were used (Sony Handycam DCR-HC51/DCR-SR55E; Sony). These were set at 

night shot mode and supported by two separate IR lights. Video analysis on oral exposure 

time over the first 45 min of the movie was done through The Observer®XT9 (Noldus). 

Oral exposure time was measured in seconds and defined as time spent on chewing, 

swallowing, cleaning the mouth and teeth with tongue or fingers. Breaks were considered 

as not eating. Two researchers coded the video recordings. Reliability analysis was carried 

out regularly, which resulted in an inter-observer agreement of κ =0.75 (P <0.01). Due to 

varying reasons (e.g. view blocked, poor quality of light) videos of twenty-one to twenty-

seven subjects per test product were suitable for quantifying oral exposure time. 

2.2.5. Experimental procedure: study two 

In a second randomised single-blind crossover trial, gastric emptying rate and appetite 

sensations were measured in six test sessions, separated by at least 7 d. Subjects consumed 

a fixed amount of the test products, which corresponded to approximately 20 % of daily 

energy requirements (25). This resulted in dosages varying from 80 to 100 g. Each portion 

was supplemented with 87.4 mg [1-13C] octanoic acid (Campro Scientific GmbH). Breath 

samples were collected by breathing into a 10 ml Exetainer tube (Labco) via a drinking 

straw and then closing the tube with a cap. Samples were stored at room temperature and 

were analysed for 13C enrichment in CO2 on a Finnigan Delta C continuous-flow isotope 

ratio mass spectrometer (Finnigan MAT). 

Subjects arrived at our research centre between 07.30 and 08.00 hours after a 10 h 

overnight fast. They were asked to consume a low fibre meal on evenings before test 

sessions. In addition, they should avoid unusual vigorous physical activity and consuming 

products naturally enriched in 13C (maize, millet, sorghum and cane sugar). Before 

ingestion of the test product, within 10 min together with 300 ml water, two baseline breath 

samples were taken. Subsequent breath samples were taken after exactly 15, 30, 45, 60, 75, 

90, 105, 120, 150, 180, 210 and 240 min. Appetite sensations were rated on 100 mm visual 

analogue scales, as described for study one, and measured at baseline and after 30, 60, 90, 

120, 150, 180, 210 and 240 min. Subjects were seated at a desk and allowed to do light 

desk work during the session. 
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2.2.6. Statistical analysis 

Data are presented as means and standard deviations. Statistical analyses were performed 

with SAS (version 9.2; SAS Institute, Inc.). Significance was set at P <0.05. One-way 

ANOVA was used to analyse differences between physico-chemical properties of the 

cookies. For study one, treatment effects on sensory ratings, palatability ratings, ad libitum 

intakes and eating time were analysed by means of a mixed-model ANOVA (proc mixed). 

Treatment, day and treatment × day interaction (=order) were included as fixed factors and 

subject was included as a random factor. For dose–response effects, orthogonal contrasts 

among control, low- and high-dose fibres were calculated. If the treatment effect was 

statistically significant, Dunnett's procedure was used to compare the fibre treatments with 

the control treatment, to control for multiple testing. The appetite ratings were analysed 

according to a similar procedure, with the addition of time (before and after ad libitum 

intake) and treatment × time as fixed factors in the model. Additionally, to control for 

differences in appetite ratings at baseline, baseline values were added to the model as a 

covariate. For study two, treatment effects were analysed according to a similar procedure, 

after calculation of total area under the curve (AUC) for appetite ratings and gastric 

emptying rate (proc expand). Time-to-peak data were not normally distributed and were 

therefore log-transformed for analysis and presented as back-transformed geometric means 

(95 %CI). Pearson's partial correlation coefficient, controlled for subject, was calculated to 

assess relations among sensory properties, palatability and ad libitum intake for the 

treatments separately and together. 

2.3. Results 

2.3.1. Physico-chemical properties 

Physico-chemical properties of the test products in simulated upper gastrointestinal 

conditions are presented in Table 2–2. Under mouth-like conditions, high-dose guar gum 

increased viscosity up to 24-fold compared to control (P <0.001). The increased viscosity 

for high-dose guar gum persisted under simulated conditions for stomach and small 

intestine (P <0.001). High-dose alginate increased water-holding capacity up to 3-fold in 

the stomach-like conditions compared to control (P <0.001). 
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Table 2–2. Viscosity and water-holding capacity of the test products in simulated upper 
gastrointestinal conditions. 

Properties 

Control  Cellulose 
5% 

 Guar gum 
2.5% 

 Alginate 
5% 

 

P1 
Mean SD   Mean SD   Mean  SD   Mean  SD   

Viscosity (mPa.s)2              

Mouth 1.4 0.2  1.3 0.3  34.5 *** 9.4  5.9  0.7  <0.001 

Stomach 1.2 0.3  1 0.1  8.4 *** 1.8  1.7  0.4  <0.001 

Small intestine 2.5 1.3  3.5 1.1  5.6 *** 0.9  4.1 * 0.8  <0.001 

Water holding capacity  
(g water/g cookie)3 

               

Mouth 0.41 0.02  0.47 0.06  0.7 *** 0.02  0.37  0.01  <0.001 

Stomach 0.47 0.06  0.53 0.06  0.48  0.02  1.51 *** 0.12  <0.001 

Small intestine 0.28 0.06   0.46 0.07   0.37   0.06   0.33   0.12   0.052 

Mean values were significantly different from control: * P <0.05, *** P <0.001. 
1 P-value from one-way ANOVA, subsequently all fibre treatments were compared to control with 

Dunnett's procedure. 
2 Viscosity in mPa.s at shear rate 100 /s; mean of six measurements. 
3 The amount of water held by the insoluble material from 1 g of cookie; mean of four measurements. 

2.3.2. Study one 

2.3.2.1. Palatability and sensory ratings of test products 

Mean palatability and sensory ratings of the test products are given in Table 2–3. Products 

with cellulose (P <0.001), high-dose guar gum (P =0.001) and high-dose alginate (P 

=0.023) were rated lower on palatability than control. Expected satiation was rated similar 

for all test products compared to control. All fibre-enriched products changed in texture 

ratings compared to the control product. The products with cellulose, high-dose guar gum 

and both dosages of alginate were rated to be more sticky (P <0.001) than control. 
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2.3.2.2. Appetite ratings 

After ad libitum intake, ratings for hunger, desire to eat and prospective consumption 

decreased (P <0.001) and ratings for fullness increased (P <0.001) for all test products 

compared to before ad libitum intake. The change in ratings compared to baseline did not 

differ between test products (data not shown). 

2.3.2.3. Ad libitum intake 

Figure 2–1 shows the total ad libitum intake of the test products. Before the break, at 45 

min, ad libitum intake represented 67–70 % of total intake for all test products. Intake of 

the products containing cellulose, both dosages of guar gum and the low-dose alginate did 

not change compared to the control product, regardless of the dimension used (i.e. g or MJ). 

Compared to the control product, high-dose alginate reduced ad libitum intake in grams by 

17 % (P <0.001), which corresponded to a reduction in MJ of 22 % (P <0.001). In addition, 

a dose–response effect of alginate was found; increasing fibre dose reduced ad libitum 

intake (P <0.05). 

 
Figure 2–1. Ad libitum intake of the test products in (a) MJ (sd) (n 121) and (b) g (sd) (n 121). 
Analysis with mixed-model ANOVA resulted in P <0.001, subsequently all fibre treatments were 
compared to control with Dunnett's procedure. Orthogonal contrasts among control, low- and high-
dose guar gum and alginate showed a dose–response effect of alginate (P <0.05). ***Values were 
significantly different from control (P <0.001). 

2.3.2.4. Low resolution version High resolution version 

Palatability scores were positively correlated with ad libitum intake (r 0.17; P <0.001). For 

the individual products, this correlation was only found for test products containing 

cellulose (r 0.18; P =0.045), low-dose guar gum (r 0.40; P <0.001) and high-dose guar gum 
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(r 0.19; P =0.041). Scores for stickiness were inversely correlated with ad libitum intake (r 

–0.10; P =0.008), but this was not found for the individual test products. Adjusting the 

results of ad libitum intake for palatability and stickiness of the test products, by including 

these variables as covariates in the model did not change the findings. 

2.3.2.5. Oral exposure time 

In the subgroup for video analysis (n 36), ad libitum intake of test products did not differ 

from the intake in the complete group. Although there was an effect of treatment on total 

oral exposure time (P =0.045), this effect could not be localised to specific test products 

compared to control (Table 2–4). Oral exposure time per cookie was only longer for the 

high-dose alginate, compared to control (P =0.01). 

2.3.3. Study two 

Table 2–5 shows the AUC and time to peak for gastric emptying. Compared to control, 

AUC for gastric emptying was larger after consumption of the products with cellulose (P 

=0.048), low-dose alginate (P =0.027) and high-dose alginate (P =0.004). Additionally, 

time to reach the peak percentage dose recovery of 13C per h was 27 % shorter for high-

dose alginate compared to control (P =0.03). AUC for 4 h ratings of hunger, fullness, desire 

to eat and prospective consumption did not differ between the test products and control 

(data not shown). 
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2.4. Discussion 

In the present study, we found that cookies supplemented with 5 % alginate (i.e. gel-

forming fibre) reduced ad libitum intake in energy by 22 %, compared to cookies without 

added fibre. Addition of guar gum (i.e. viscous fibre) and cellulose (i.e. bulking fibre) did 

not affect ad libitum intake. Cookies with 5 % alginate increased oral exposure time by 48 

%, but also increased the rate of gastric emptying. The present study was performed in a 

real-life setting to distract subjects from visual and weight cues. We included two different 

dosages of guar gum and alginate to be able to study effects of high fibre, but less palatable 

products.  

Selection of the types of fibre for the present study was based on anticipated working 

mechanisms of bulking, viscous and gelling fibres on satiation. By definition, all fibres 

have bulking properties, as inclusion of dietary fibre in food products reduces energy 

density (12). In the present study, ad libitum intake in weight remained unchanged after 

inclusion of cellulose compared to the control product without added fibre. The change in 

energy content after inclusion of cellulose was, however, not large enough to lead to 

significant decreases in energy intake. 

In addition to weight or volume of foods, palatability is an important determinant of meal 

size (27). A very pleasant-tasting meal may result in higher ad libitum intake. In the present 

study, palatability ratings for the high-dose fibre products were lower than that for the 

control product. However, adjusting for palatability did not explain the difference in ad 

libitum intake between high-dose alginate and control products. 

We hypothesised that addition of guar gum would reduce ad libitum intake (14, 28) by 

increasing oral exposure time (16, 29). The measurements of physico-chemical properties 

confirmed that guar gum was highly viscous in mouth conditions. However, in the satiation 

study, we showed that guar gum neither reduced ad libitum intake nor increased oral 

exposure time. Although there were texture differences, we speculate that these were not 

large enough to prolong oral exposure time (30). Previous studies showing effects on oral 

exposure time used liquid and semi-liquid test products with large differences in texture 

(14, 28). 
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While no effect of guar gum was observed, oral exposure time increased after high-dose 

alginate supplementation, although viscosity in the simulated mouth condition did not differ 

from control. Alginate forms a gel either at a low pH or in the presence of divalent cations 

(e.g. Ca2+ or Mg2+) (31). We postulate that alginate already started forming a gel in the oral 

cavity due to the presence of water and divalent cations from saliva (32). This is also in 

agreement with the sensory ratings, as alginate was rated the most sticky and difficult to 

swallow. 

We further hypothesised that increased viscosity of digesta as well as formation of gels 

would reduce gastric emptying rate, and as a result reduce ad libitum intake (11, 17, 19). 

The measurements of physico-chemical properties confirmed that guar gum increased 

viscosity in all three upper gastrointestinal conditions, and that alginate increased water-

holding capacity in stomach conditions. In the gastric emptying study, we found, however, 

that none of the test products reduced gastric emptying rate. Gastric emptying rate even 

increased for alginate. Previous findings on the effects of viscous fibre (29, 33, 34) and 

gelling fibre (10, 17) on gastric emptying have also been inconclusive. Despite this, 

increased viscosity as well as gel formation in digesta generally results in prolonged 

presence of nutrients in the small intestine, which in turn inhibits the absorption of glucose 

in blood and affects appetite-regulating peptides (35). This process may have contributed to 

the reduced intake of high-dose alginate cookies in the present study. 

The initial hypotheses on oral exposure time, gastric emptying rate and ad libitum intake 

could not be confirmed. This may be explained by the rate of hydration. When mixed with 

liquids (e.g. saliva and gastric secretion), viscous and gelling fibres are expected to be 

hydrated and induce thickening or form a gel. The thickening of a fibre depends not only on 

factors such as structure, dose and molecular weight, but also on the rate of hydration (35-

37). For gelling fibre, factors such as dose, pH, presence of Ca2+ and rate of hydration are 

crucial (31). In the simulation study, the test product was finely ground and the incubation 

time in mouth, stomach and small-intestinal conditions were relatively long, respectively, 

10, 60 and 180 min (23). In real life, oro-gastric transit time may be faster, so fibres may 

not have been fully hydrated before arriving in the stomach and therefore not behave 

according to the anticipated working mechanisms. 
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In the present study, we showed that physico-chemical properties of fibres can affect food 

intake and satiation-related mechanisms in the upper gastrointestinal tract. Apart from the 

physico-chemical properties, as determined in simulated conditions, it should be realised 

that intraluminal conditions in the upper gastrointestinal tract, such as interactions with the 

digesta matrix, pH, hydration status and passage rate, have an impact on fibre properties 

and post-meal effects in vivo. 

It is important to note that fibre properties associated with satiation (i.e. gel-forming in the 

present study) may not automatically be associated with a reduced energy intake or 

sustained satiety after repeated exposure. We previously showed that in the short term, 

viscous fibre increased satiety more than non-viscous fibre, whereas in the longer term, 

effects on energy intake and body weight were independent of viscosity (7). Other 

mechanisms related to specific fibre properties, such as secretion of appetite-regulating 

peptides, inhibited absorption of nutrients from the lumen, enhanced insulin sensitivity and 

enhanced prebiotic activity, may interplay and affect energy intake or sustained satiety (38, 

39). 

2.5. Conclusions 

Addition of 5 g/100 g alginate (i.e. gel-forming fibre) to a low fibre cookie resulted in 

earlier satiation in a real-life setting. This effect may be mediated by an increased oral 

exposure time. Guar gum (i.e. viscous fibre) and cellulose (i.e. bulking fibre) did not affect 

ad libitum intake. Fibre properties can change after interaction with the food matrix and the 

environment in the upper gastrointestinal tract, and as a result this can change the effect on 

satiation. 
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Abstract 

In vitro fermentation of 12 dietary fibres by faecal inocula from pigs and humans were 

performed. The fibres included homoglucans, mannans, fructans, polyuronides, and 

complex heteroglycans. Gas production, short chain fatty acid production and fibre 

degradation products were monitored during fermentation. Human inoculum has more 

ability to ferment resistant starch and fibres containing uronic acids. In contrast, pig 

inoculum is able to ferment cellulose, which is hardly fermented by human inoculum. The 

constituent monosaccharide and linkage composition of the fibres has an important 

influence on fibre fermentation patterns. Fibres containing uronic acids induced the 

production of acetate, whereas fibres containing neutral constituent monosaccharides 

induced the production of propionate or butyrate. Fermentation of the fructans showed that 

molecular size could be an influential factor, and fermentation of complex heteroglycans 

showed that the arrangement of constituent monosaccharides in the molecules may also 

affect the fermentation patterns. This experiment also shows that monitoring of fibre 

degradation products is important for understanding how fibres are degraded during 

fermentation. 
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3.1. Introduction 

Dietary fibres are resistant to digestion and absorption in the human small intestine, but 

they are fermented in the colon (1). The fermentation of dietary fibres results in gasses and 

short chain fatty acids (SCFA), such as acetate, propionate and butyrate (2). These SCFA 

are used by colonocytes as energy source or are absorbed and metabolised in the body (2, 

3). Acetate and propionate may influence, for example, lipid and cholesterol metabolism (3) 

and butyrate is claimed to have various beneficial health effects, including the prevention of 

cancer and induction of satiety (4). The extent of SCFA production and the ratio between 

individual SCFA varies between types of dietary fibre (2). 

The fermentation of dietary fibres in the colon is often simulated using in vitro fermentation 

methods. In vitro methods have the advantage over in vivo experiments that the methods are 

relatively simple (5). Moreover, a fibre can be tested without interference of other food 

components and low amounts of fibre are needed. These advantages outweigh the 

drawbacks of the method, such as the accumulation of fermentation products and the use of 

faecal inoculum, which might not be representative for the whole colon (6). 

Animal models may overcome the latter drawback because they may allow the collection of 

digesta from the ileum or proximal colon for analysis as well as for inoculum. Compared to 

other mammals, pigs are the most suitable model for human in fermentation studies because 

their colon is rather similar to human colon and most of the fermentation occurs in the 

colon (3). Pigs are monogastric omnivores, which allow their feed composition to be 

tailored to be similar to human food composition (7). Nevertheless, pigs may have a higher 

capability than humans to ferment dietary fibres because fermentation may already start in 

the terminal ileum and the colon microbiota includes many cellulolytic species (2, 8). 

In vitro fermentation by pig and human inocula have been conducted in a number of 

studies, but direct comparison of the results is complicated by the differences in fibre 

sources, fibre concentration and experimental setups (5, 9) and (10). Fermentation of 

dietary fibres by faecal inocula from human and various animals including pigs has been 

studied only for the isolated fibres cellulose and citrus pectin and the complete cell wall 

mixtures citrus pulp and sugar beet pulp (11). 
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The aim of this experiment is to compare fibre fermentability by faecal microbiota from 

human and pig, and to reveal fibre properties which may influence fermentation kinetics 

and the formation of fermentation end-products. In this experiment, faecal microbiota from 

humans and pigs were used as inocula in in vitro fermentation studies on 12 isolated dietary 

fibres. During fermentation, besides cumulative gas production and SCFA production, the 

size and oligomeric profile of fibre degradation products were also monitored. 

3.2.  Materials and methods 

3.2.1.  Materials 

Commercial grade dietary fibres were used in this experiment. Guar gum (Viscogum 

MP41230), alginate (Algogel 6020) and retrograded tapioca starch (C*Actistar 11700) were 

obtained from Cargill (Amsterdam, The Netherlands). Konjac glucomannan was from 

Kalys Agroalimentaire (Bernin, France). Cellulose (Vitacel® LC200) was from J. 

Rettenmaier & Söhne GmbH+Co (Rosenberg, Germany). Retrograded maize starch 

(Novelose 330) was from National Starch (Hamburg, Germany). Oat β-glucans 

(PromOat™) was from ScanOat™ (Kimstad, Sweden). Inulin (Orafti® HP) and 

oligofructose (Orafti® P95) were from Beneo-Orafti (Oreye, Belgium). High methyl 

esterified (HM) citrus pectin (C74) was from CP Kelco (Lille Skensved, Denmark). Soy 

pectin (Soyafibe-S-DA100) was from Fuji Oil Co. Ltd. (Ibaraki, Japan), and xanthan gum 

was purchased from Sigma–Aldrich (St. Louis, MN, USA). 

3.2.2. Faecal inoculum 

Pig faecal inoculum was prepared from the faeces of three multiparous sows (Dutch 

Landrace). The pigs received no antibiotics and their body weights were between 264 and 

368 kg. They were fed twice daily with a high fat (18.3 %(w/w)), low fibre (7.1 %(w/w)) 

diet (Table 3–1), that was composed to approximate the average composition of nutrient 

intake in adult humans according to the national food consumption survey in The 

Netherlands (12). The diet contained wheat (20 %(w/w)) and barley (20 %(w/w)) as fibre 

sources. Human inoculum was prepared from the faeces of three healthy donors. The diets 

of the donors were not controlled. 
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Table 3–1. Macronutrient composition of diet given to the pigs before faecal sampling. 
Nutrient Amount 

Dry matter (g/kg) 904 

Starch (g/kg) 416 

Crude fat (g/kg) 183 

Crude protein (g/kg) 147 

Non-starch polysaccharides (NSPs) (g/kg) 71 

Ash (g/kg) 69 

 Na (g/kg) 6.4 

K (g/kg) 6.7 

Cl (g/kg) 9.5 

Ca (g/kg) 11.2 

Digestible P (g/kg) 3.3 

 Gross energy (MJ/kg) 19.0 

Digestible energy (MJ/kg) 16.9 

The faeces were collected immediately after defecation in a plastic container previously 

flushed with CO2 to maintain anaerobic condition. After collection, extra CO2 was decanted 

over the container. Next, the container with faeces was closed and immediately put on ice. 

After pooling, the faeces were diluted six times (w/v) with sterilised 0.9 % (w/v) NaCl 

solution and subsequently homogenised with a blender for one minute. Next, the inoculum 

was filtered through two layers of cheesecloth and added into a fermentation medium with 

a ratio of 5:82 (v:v). Inoculum and fermentation medium were prepared according to 

Williams, et al. (13). Anaerobic conditions were maintained by flushing the liquids with 

CO2. Liquids were kept at 39 °C. The inocula were prepared within 60 minutes after faeces 

collection. 

3.2.3.  In vitro fermentation 

Fibres (337 mg) were weighed in duplicates into 250 ml screw cap bottles and flushed with 

CO2. Fermentation medium with inoculum (60 ml) was added and the mixture was 

incubated in a waterbath at 39 °C. A blank sample without any fibre was used as a control 

of background fermentation. Gas production was measured continuously using a setup 

described by Cone, et al. (14). 

A pilot study was conducted using pig inoculum to determine the sampling times for 

analysis in subsequent studies with inoculum from pigs and humans. In the pilot study, gas 

production was measured for 72 h. No samples were taken. Sampling times were defined as 
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the time when the gas production reached 1/3 of the maximum gas production (T1), 2/3 of 

the maximum gas production (T2), and when the maximum gas production was reached 

(T3). The sampling times for each fibre are presented in Table 3–2. The experiments with 

pig inoculum and human inoculum were performed on separate days. At T1, T2, and T3 of 

each fibre, samples were taken for further analyses. 

Table 3–2. Sampling times for in vitro fermentation studies, as determined from a pilot study using a 
pig inoculum. 

Fibre name 
Fermentation time1 (h) 

 

T1 T2 T3 

Guar gum 14.2 15.7 22.5 

Konjac glucomannan 12.7 14.0 30.0 

Cellulose 23.5 30.0 64.0 

Retrograded tapioca starch 3.7 24.7 35.0 

Retrograded maize starch 12.8 31.5 44.0 

Oat β-glucan 3.4 5.1 15.3 

Inulin 10.5 11.7 17.5 

Oligofructose 5.5 7.0 17.5 

HM citrus pectin 14.2 15.6 19.8 

Alginate 22.9 25.6 42.0 

Xanthan gum 9.4 11.7 31.0 

Soy pectin 8.4 11.4 23.3 
1 T1: when 1/3 of the maximum cumulative gas production was reached.T2: when 2/3 of the maximum 

cumulative gas production was reached.T3: when the maximum cumulative gas production was reached. 

3.2.4. Analytical methods 

3.2.4.1. Dry matter and crude ash 

For all fibres, dry matter was determined by drying to a constant weight at 103 °C, and 

crude ash was determined by incineration to a constant weight at 550 °C. Organic matter 

(OM) was calculated by subtracting crude ash from dry matter. 

3.2.4.2. Short chain fatty acids (SCFA) 

Acetate, propionate, and butyrate were analysed using gas chromatography, following the 

method described by Bosch, et al. (15). 

3.2.4.3.  Lactate 

The samples were diluted with water (1:1 (v:v)) before analysis. The diluted samples (20 

µl) were injected into an Ultimate 3000 (Dionex Corporation, Sunnyvale, CA, USA) High 
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Performance Liquid Chromatography (HPLC) system coupled to a Shodex RI-101 

refractive index detector (Showa Denko KK, Kawasaki, Japan), equipped with an Aminex 

HPX-87 H column (300 × 7.8 mm; Bio-Rad, Richmond, VA, USA) and a guard column. 

The eluent was 5 mM H2SO4, eluted at 40 °C with a flow rate of 0.6 ml/min. 

3.2.4.4. Molecular mass distribution 

Molecular mass (MM) distribution of the polysaccharides were analysed by High 

Performance Size Exclusion Chromatography (HPSEC) on an Ultimate 3000 HPLC system 

coupled to a Shodex RI-101 refractive index detector. The samples were diluted with water 

(1:1 (v:v)) before analysis and 20 µl were injected into the system. The separation was 

conducted through a series of TSK gel Super AW4000, AW3000 and AW2500 columns 

(150 × 6 mm) preceded by a guard column (Super AW-L). All columns were from Tosoh 

Bioscience (Tokyo, Japan). The eluent was 0.2 M NaNO3, eluted at 40 °C with a flow rate 

of 0.6 ml/min. The molecular mass was estimated using a standard curve based on pullulan 

standards. 

3.2.4.5. Oligosaccharide profiling 

Oligosaccharide profiling was performed using an ICS 3000 High Performance Anion 

Exchange Chromatography (HPAEC) system (Dionex Corporation, Sunnyvale, CA, USA) 

with pulsed amperometric detection. The samples were diluted with water (1:1 (v:v)) before 

analysis and 20 µl was injected into the system. The separation was done using CarboPac 

PA-1 column (2 × 250 mm) preceded by a CarboPac PA-1 guard column (2 × 50 mm). 

The same gradient was used for all samples in order to be able to compare chromatograms 

from different fibres. The monomers in the samples were eluted with a linear gradient of 

0.02–0.05 M NaOH in 3 min and 0.05–0.075 M NaOH in 10 min, followed by isocratic 

elution of 0.1 M NaOH for 2 min. The oligomers were then eluted with a gradient of 0–1 M 

NaOAc in 0.1 M NaOH within 50 min. Subsequently, the column was washed with 1 M 

NaOAc in 0.1 M NaOH for 7 min, followed by 0.1 M NaOH for 3 min. Equilibration of the 

column was done by eluting 0.02 M NaOH for 20 min. The flow rate was 0.3 ml/min. 

3.2.4.6. Constituent monosaccharide composition 

Different methods were used for constituent monosaccharide composition analysis, 

depending on the type of fibre. Guar gum, konjac glucomannan, cellulose, retrograded 
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starch and β-glucan were prehydrolysed in 72 %(w/w) sulfuric acid at 30 °C for 1 h 

followed by hydrolysis in 1 M sulfuric acid at 100 °C for 3 h. The monosaccharides were 

subsequently derivatized into their alditol acetates and analysed using gas chromatography 

(16). Inositol was used as internal standard. 

Fibres containing uronic acids (alginate, HM pectin, soy pectin, and xanthan gum) were 

analysed using the methanolysis method followed by trifluoroacetic acid (TFA) hydrolysis 

(17). The monosaccharides were analysed using HPAEC with post column alkali addition 

(18). 

Inulin and oligofructose were hydrolysed using a commercial fructanase from Aspergillus 

niger (Fructozyme® L, Novozymes, Bagsvaerd, Denmark). The hydrolysis was performed 

at 1 mg/ml fibre solution, in 0.05 M sodium acetate buffer pH 4.7 at 50 °C for 18 h. For 1 

mg fibre, 10 µl of Fructozyme® L was used. The enzymes were inactivated by boiling for 

10 min. After 200 times dilution, 20 µl of the digest was injected into an HPAEC system 

with pulsed amperometric detection. Fructose, glucose, and sucrose were eluted using a 

gradient of 0–0.15 M NaOAc in 0.1 M NaOH in 15 min, followed by 9 min washing with 1 

M NaOAc in 0.1 M NaOH and 15 min equilibration with 0.1 M NaOH. Total fructan 

concentration (Cf) was calculated using the equation according to Stöber, et al. (19): 

�� = � ∙ 	
� + �� 

in which Ff is total fructose released from the fructans, and Gf is total glucose released from 

the fructans. k is a correction factor for water uptake during hydrolysis, which is based on 

the average degree of polymerisation (DP). For inulin, the average DP was 10, yielding a k 

of 0.910. For oligofructose the average DP was 4, yielding a k of 0.925. 

3.2.5. Statistical analysis 

Cumulative gas production (CV) of each fibre was fitted to either a monophasic or a 

biphasic model (20). The equations for both models are, respectively: 

�� = �
�����/���� �� and  �� = ��

������/���� �
�� + ��

������/���� �
��  
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in which A is the asymptotic gas production (ml/g OM), B is the switching characteristic of 

the curve, T1/2 is the time when half of the asymptotic gas production (A) is reached (h), and 

t is time (h). L in the monophasic model is lag time (h). The subscripts following the factors 

in the biphasic model described the first (A1, B1, (T1/2)1) and the second (A2, B2, (T1/2)2) 

phases of the model. The nonlinear least squares regression procedure (PROC NLIN, SAS 

Inst. Inc., Cary, NC, USA) was used for curve fitting.  

All parameters were analysed for effects of fibres and inocula by the GLM procedure in 

SAS using the following model: 

 = ! + "# + $% + &" × $( + )#%* 

in which Y is the dependent variable, µ is the mean, Ii is the effect of inoculum i, Sj is the 

effect of fibre j, I × S is the interaction between inoculum and fibre, and εijk is the residual 

error term. Minimum Significant Differences (MSD) between fibres were calculated using 

SAS program (SAS Inst. Inc., Cary, NC, USA). 

3.3. Results 

3.3.1. Fibre composition 

The 12 fibres used in this research were grouped as mannans, homoglucans, fructans, 

polyuronides and complex heteroglycans, based on their constituent monosaccharide 

composition, regardless of the linkages between the constituent monosaccharides (Table 3–

3). Soy pectin and xanthan gum were grouped as complex heteroglycans because they 

contained both uronic acids and neutral constituent monosaccharides. 

The constituent monosaccharide compositions of the commercial fibres (Table 3–3) 

generally corresponded with our expectations. However, the homoglucans were not pure. 

The commercial cellulose contained 15 %(w/w) xylose. Retrograded tapioca starch, 

retrograded maize starch, and oat β-glucan contained 47 %(w/w), 70 %(w/w) and 55 

%(w/w) easily digestible starch, respectively, according to the product information obtained 

from the suppliers. 
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Table 3–3. Analysed constituent monosaccharide composition (mol%) and total constituent 
monosaccharide levels of fibres used for the fermentation studies. 

Fibre 
(mol%) %(w/w) 

Rha Fuc Ara Xyl Man Gal Glc Fru UA Total 

Mannans 

Guar gum 0 0 2 1 60 32 2 na 2 92 

Konjac glucomannan 1 0 0 0 61 0 37 na 2 97 

Homoglucans 

Cellulose 0 0 0 15 1 0 81 na 1 99 

Retrograded tapioca starch 1 0 0 0 0 0 98 na 1 99 

Retrograded maize starch 1 0 0 0 0 0 98 na 1 96 

Oat β-glucan 1 0 1 2 0 1 94 na 1 87 

Fructans 

Inulin na na na na na na 4 96 na 77 

Oligofructose na na na na na na 10 90 na 77 

Polyuronides 
          

HM citrus pectin 3 1 5 0 0 9 1 na 81 68 

Alginate 0 1 0 0 0 0 0 na 99 1 78 

Complex heteroglycans 

Xanthan gum 0 0 0 0 31 0 52 na 16 60 

Soy pectin 5 3 26 7 0 39 3 na 17 101 

Rha: rhamnose, Fuc: fucose, Ara: arabinose, Xyl: xylose, Man: mannose, Gal: galactose, Glc: glucose, Fru: 
fructose, UA: uronic acids. 

na: not analysed. 
1 Quantified using a glucuronic acid standard, guluronic acid/mannuronic acid = 1.1. 

3.3.2. Cumulative gas production 

Cumulative gas production was measured continuously during fermentation. Gas 

production patterns were fitted to either a monophasic or a biphasic model, depending on 

which model fitted best. For each fibre, the same model was fitted for describing gas 

production kinetics by both inocula. Fibres in one group did not always fit to the same 

model, as was shown for homoglucans and complex heteroglycans (Table 3–4). For fibres 

with monophasic gas production, except for cellulose, the time to reach half of the 

asymptotic value (T1/2) or lag time (L) of pig inoculum tended to be higher than the T1/2 or L 

of human inoculum. 
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The mannans (guar gum and konjac glucomannan) were well fermented by both inocula 

(294–332 ml/g OM). Fermentation of these fibres by the same inoculum resulted in similar 

gas production parameters (Table 3–4). The fructans were also well fermented by both 

inocula, but oligofructose was fermented at a higher rate (lower T1/2) than inulin. 

The fermentability of fibres in the other groups differed between individual fibre sources, 

depending on the inoculum. Pig inoculum poorly fermented retrograded starches (166–182 

ml/g OM), polyuronides (121 and 148 ml/g OM) and xanthan gum (28 ml/g OM). In 

contrast, human inoculum well fermented these fibres (238–344 ml/g OM), but hardly 

fermented cellulose (4 ml/g OM). 

3.3.3. Short chain fatty acids (SCFA) and lactate 

Total SCFA, which is the sum of acetate, propionate, and butyrate, is often used as an 

indicator of fibre fermentability besides gas production. In this experiment, the pig 

inoculum tended to produce less SCFA than human inoculum for most of the fibres (Table 

3–5). The pig inoculum produced the least total SCFA from xanthan gum (3.01 mmol/g 

OM) and human inoculum produced the least total SCFA from cellulose (2.61 mmol/g 

OM). Both inocula produced the highest amount of total SCFA from soy pectin (9.06–

10.59 mmol/g OM). 

The SCFA composition obtained for the samples taken at the end of fermentation (T3) 

varied for individual fibres (Table 3–5). Fermentation of polyuronides resulted in high 

proportions of acetate (78–81 % (mol/mol total SCFA)), fermentation of mannans, fructans, 

soy pectin and cellulose resulted in relatively high proportions of propionate (30–46 % 

(mol/mol)), whereas fermentation retrograded starch, oat β-glucan, and fructans yielded 

10–19 % (mol/mol) butyrate. The SCFA composition was also influenced by the inoculum 

(Table 3–5). 
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During fermentation, the SCFA composition was not constant. Fermentation by pig 

inoculum is taken as an example. Figure 3–1 shows that for most of the fibres, SCFA 

production was dominated by acetate (69–84 %) during the initial stage of fermentation 

(T1). As the fermentation continued, the proportion of acetate decreased (Figure 3–1a) 

while propionate proportions generally increased (Figure 3–1b). Butyrate proportions 

increased only for oat β-glucan, retrograded tapioca starch and inulin (Figure 3–1c). 

Although its proportion decreased during fermentation, acetate was still the dominant 

SCFA (53–80 %) at the end of fermentation (T3). 

 
 

Figure 3–1. Levels of (a) acetate, (b) propionate, and (c) butyrate as a percentage of total short chain 
fatty acids (SCFA; acetate + propionate + butyrate) and (d) amount of lactate per gram organic matter 
in samples taken during the course of fermentation. T1, T2, and T3 represent sampling times, which 
were determined as the time when the gas production reached 1/3, 2/3, and 3/3 of the maximum 
cumulative gas production, respectively. Samples were fermented by a faecal inoculum from pigs. 
Cel: cellulose, Glu: oat β-glucan, RSM: retrograded maize starch, RST: retrograded tapioca starch, 
Gua: guar gum, KGM: konjac glucomannan, Inu: inulin, FOS: oligofructose, Pec: citrus pectin, Alg: 
alginate, SP: soy pectin, XG: xanthan gum. 

A B 

C D 
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Lactate concentration was also monitored during fermentation (Figure 3–1d). Lactate was 

detected only in the early stage of fermentation, except for oat β-glucans and inulin where 

lactate was still present at the end of fermentation. For most of the fibres, lactate levels 

decreased between T2 and T3, when propionate levels increased. 

3.3.4. Fibre degradation during fermentation 

For soluble fibres, the extent of fibre utilisation can be indicated by the amount of 

remaining soluble carbohydrates after fermentation. Except pectin and xanthan gum, the 

soluble fibres in this experiment were well fermented by both inocula with less than 5 

%(w/w) of the fibres remained after fermentation (Table 3–5). For xanthan gum, the 

analysis of constituent monosaccharide composition of the remaining soluble carbohydrates 

showed that human inoculum did not ferment 13 % of all glucose, 16 % of all mannose and 

14 % of all glucuronic acid. For pig inoculum, it was shown that 30 % of all glucose, 41 % 

of all mannose, and 54 % of all glucuronic acid were not fermented. 

 

Figure 3–2. High performance size exclusion chromatography (HPSEC) elution patterns of (a) soy 

pectin and (b) konjac glucomannan after in vitro fermentation using faecal inoculum from pigs. 

Fibre degradation products during fermentation were monitored for their MM distribution 

and oligomer profiles using HPSEC and HPAEC. The results for konjac glucomannan and 

soy pectin are presented as examples because they have different degradation patterns. The 

MM for both fibres at T0 was approximately 2 × 105 Da (Figure 3–2). The compounds 

smaller than 103 Da are molecules, which were already present in the fermentation medium. 

After 11.4 h, only ∼40 % of soy pectin molecules having a MM larger than 105 Da were 
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degraded. In a similar time span (12.7 h), all molecules of konjac glucomannan with MM 

higher than 105 Da were degraded. 

The oligomeric degradation products were monitored by HPAEC (Figure 3–3). For soy 

pectin, at T0, there were a lot of monomers and oligomers (0–35 min). After 11.4 h (T2), the 

amount of monomers and small oligomers declined, but a large variation of neutral and 

acidic oligomers was present (23–45 min). For konjac glucomannan, at T0 there were not 

many monomers, but oligomers were present (24–28 min). After 12.7 h (T1), the amount of 

oligomers increased. The poor resolution of the peaks showed that there were many 

different structures of similar sizes. At T3, nearly all oligomers from soy pectin and konjac 

glucomannan were utilised by the inoculum. 

 
Figure 3–3. High Performance Anion Exchange Chromatography (HPAEC) elution profiles of (a) 
soy pectin and (b) konjac glucomannan after in vitro fermentation using faecal inoculum from pigs. 

3.4. Discussion 

3.4.1. Gas and SCFA production as indicators for fibre fermentability 

In this experiment, the cumulative gas production and SCFA contents were monitored 

during fermentation. In general, both methods gave similar indications about the 

fermentability of the fibres. However, the fibres with the highest gas production were not 

always the highest in SCFA production and no strong correlation was found at the end of 

fermentation (T3). 

The low levels of SCFA, despite the high gas production for several fibres such as oat β-

glucan when fermented by pig inoculum, could be partially explained by the presence of 

remaining lactate in the final sample (T3). Lactate is an intermediate fermentation product, 
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which can be converted to propionate and butyrate (21). For oligofructose, however, there 

was very little (0.04 mmol/g OM) lactate in the sample. Another possibility for the lack of 

correlation between gas production and SCFA is that different fibres are fermented through 

different pathways, resulting in different proportions of gas and SCFA constituents. The 

latter hypothesis is supported by differences found in the SCFA composition upon 

fermentation of different fibres by both inocula. 

Different levels of fermentability indicated by the gas production and SCFA contents 

suggested that to evaluate the absolute fermentability of dietary fibres, the two 

measurements of fermentation end products should be combined and supported by other 

parameters, such as intermediate products, remaining soluble carbohydrates or analysis of 

fibre degradation products.  

3.4.2. Pig and human microbiota as inocula 

Cumulative gas production, SCFA production and remaining soluble carbohydrate after 

fermentation shows that human inoculum was able to extensively ferment a broader variety 

of fibres than pig inoculum. This can be partly explained by the human gut microbiota 

being adapted to a large variety of fibres as a result of a heterogeneous and uncontrolled 

diet. The human diet contains diverse fibres including retrograded starch and pectins (1). 

On the other hand, the pigs were adapted to a diet with wheat and barley as fibre sources. 

These cereals contain little uronic acids (22). Because the microbiota composition seemed 

to be optimised for the fibres present in the diet, the pig inoculum had limited ability to 

ferment fibres containing uronic acids. 

Interestingly, the human gut microbiota was not adapted to ferment cellulose although 

cellulose is present in various human food products. This agrees with the finding that even 

after two weeks of adaptation to cellulose, only 20 % of human respondents had faecal 

microbiota capable of degrading cellulose (23). It has also been reported that the pig 

microbiota contains more cellulolytic bacteria than human microbiota (8). Differences in 

the microbiota composition can also be caused by the genetic differences between the 

species, as well as between individuals (6). 
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3.4.3. Factors influencing the fermentation of dietary fibres 

Fermentation of dietary fibres by one inoculum varied depending on constituent 

monosaccharide and linkage composition, as shown for mannans and homoglucans. The 

mannans generally showed similar fermentation patterns in gas production and SCFA 

production, whereas the homoglucans had clearly different patterns. 

Both guar gum and konjac glucomannan could be degraded by the same (1,4)-β-D-

mannanase (24). Therefore, it is likely that analogous types of microbiota, which produce 

(1,4)-β-D-mannanase were stimulated by the presence of these fibres. On the other hand, 

differently linked homoglucans (cellulose, retrograded starches and oat β-glucan) require 

different enzymes for their degradation. Therefore, it could be anticipated that different 

populations of microbiota are stimulated, which may affect the fermentation patterns. 

Besides constituent monosaccharide and linkage composition, the DP also affects the 

fermentation, as exemplified by the fermentation of fructans. Although oligofructose (DP 

2-8) is produced by partial hydrolysis of inulin (DP 2-60) (25), human inoculum produced 

SCFA with different compositions from these two fibres, whereas pig inoculum had 

different gas production parameters and total SCFA contents (Table 3–3 and Table 3–4). 

The different fermentation patterns between oligofructose and inulin are supported by 

Stewart, et al. (26). Shorter fibres can be degraded easily by exoenzymes, whereas longer 

fibres need both endo- and exoenzymes for optimal degradation. Because different enzymes 

were needed to utilise the two fibres, different groups of microbiota might be stimulated. 

Contrary to the previously described fibres, which contain mostly neutral constituent 

monosaccharides, polyuronides are characterised by the presence of uronic acids (Table 3–

3). Despite the differences in the chemical structures of the fibres and in the gas production 

and total SCFA production by the two inocula, the acetate proportions after fermentation of 

HM pectin and alginate were similarly high (78–81 % (mol/mol)). This was supported by 

separate studies with HM pectin (27) and alginate (28), although (11) found lower acetate 

proportions (57–59 % (mol/mol)) for citrus pectin. 

The fermentation of complex heteroglycans (soy pectin and xanthan gum) was influenced 

not only by their constituent monosaccharide compositions, but also by the arrangement of 

the constituent monosaccharides in the molecule. Both fibres had comparable uronic acid 

contents (Table 3–3), but the fermentation patterns of soy pectin was similar to that of 
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neutral fibres, as shown by the gas production parameters and the relatively high (31–32 % 

(mol/mol)) propionate proportion. On the other hand, the fermentation of xanthan gum was 

more similar to that of polyuronides as shown by the high proportion (76 % (mol/mol)) of 

acetate produced. 

In soy pectin, the uronic acid is located in the pectic rhamnogalacturonan backbone, which 

is protected by the long side chains of arabinan and galactan (29). In xanthan gum, the 

uronic acid is located in the trisaccharide side chain consisting of mannose and glucuronic 

acid, which is linked to every other glucose unit in a cellulosic backbone (30). These 

trisaccharide side chains protect the cellulosic backbone from enzymatic degradation (31). 

In both cases, the microbiota has to degrade the side chains before they have access to the 

backbone of the polysaccharides. For xanthan gum, early exposure to uronic acid may 

stimulate specific microbiota, which is characterised by high production of acetate, 

resulting in fermentation patterns similar to that of polyuronides. The utilisation of 

glucuronic acid by pig inoculum (46 %) was less than the utilisation of glucose (30 %) and 

mannose (41 %). This result suggests that pig inoculum poorly fermented xanthan gum 

because it has low ability to ferment uronic acids, as was also shown for HM pectin. 

The fermentation of the 12 fibres revealed that constituent monosaccharide and linkage 

composition, DP and the arrangement of the constituent monosaccharides in the molecule 

affects how a fibre is degraded by a certain inocula and the composition of fermentation 

products. 

3.4.4. Monitoring of fibre degradation products during fermentation 

The structural changes of the fibre during degradation may influence fermentation patterns, 

including SCFA composition. In the early stages of fermentation, most of the fibres are 

present as polymers, which are not readily available as energy source. Therefore, the 

microbiota tended to produce acetate (Figure 3–1), because the conversion of constituent 

monosaccharides into acetate yields more energy than conversion into other SCFA (32). 

The example of soy pectin and konjac glucomannan shows that monitoring of fibre 

degradation products is valuable for a more complete understanding of fibre degradation 

during fermentation. For these fibres, changes in MM distribution showed that up to 11–12 

h of fermentation, soy pectin is more resistant to degradation than konjac glucomannan 
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(Figure 3–2). In contrast, the gas production results showed that soy pectin was fermented 

faster (lower T1/2) than konjac glucomannan (Table 3–4). 

Soy pectin is a highly branched polymer (29), which provides a lot of cleaving sites for 

exo-enzymes. Degradation by these enzymes results in monomers and dimers, which can be 

readily fermented by the microbiota. In contrast, konjac glucomannan is more linear, so that 

the microbiota needs to produce more endo-enzymes in the beginning of the fermentation. 

The degradation by endo-enzymes results in large oligomers, which cannot be used directly 

by the bacteria. Therefore, it is possible that the bacteria required more time to start 

fermenting konjac glucomannan than to start fermenting soy pectin, as indicated by the 

higher T1/2 of gas production for konjac glucomannan than for soy pectin. 

Our data allows the direct comparison of in vitro fermentation of 12 dietary fibres by faecal 

inocula from pigs and from humans. Human inoculum was able to ferment a broader 

variety of fibres than pig inoculum. The results also revealed that the fermentation of 

dietary fibres are influenced by the chemical characteristics of the fibre, which includes 

constituent monosaccharide and linkage composition, molecular size and the arrangements 

of the constituent monosaccharides in the molecule. 
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Abstract 

To investigate the effect of resistant starch to the degradation of other non-starch 

polysaccharides (NSPs) in the large intestine of pigs, two groups of pigs were fed either a 

diet containing digestible starch (DS) or a diet containing resistant starch (RS). Both diets 

contained NSPs from wheat and barley. Digesta from different parts of the large intestine 

were collected and analysed for constituent monosaccharide composition and carbohydrate-

degrading-enzyme activities. Resistant starch, as well as β-glucans and soluble 

arabinoxylan, was utilised mainly in the caecum. The utilisation of β-glucans and soluble 

arabinoxylan in the caecum was higher in DS-fed pigs than in RS-fed pigs. Analyses on 

carbohydrate-degrading-enzyme activities demonstrated that microbial enzyme production 

was stimulated according to the diet composition, and the enzyme profile throughout the 

large intestine of RS-fed pigs indicated that the presence of resistant starch shifted the 

utilisation of NSPs to more distal parts of the colon. 
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4.1. Introduction 

Dietary fibres include carbohydrates with diverse physico-chemical properties. The effects 

of one fibre, therefore, may not be the same as the effects of another fibre (1). Resistant 

starch is a dietary fibre that has various health benefits, including improving bowel health, 

acting as a prebiotic, and increasing satiety (2). 

The benefits of resistant starch are in general assumed to be caused mainly by its 

fermentation in the large intestine and the short chain fatty acids produced during the 

fermentation (3) although the effects of resistant starch may depend on the types (4-6). In 

order to understand the effects of resistant starch on various health aspects in the large 

intestine, animal models are often employed. Pigs are regarded as the most suitable model 

for human in relation to gastrointestinal system (7). In pigs, resistant starch has been shown 

to be able to increase the production of short chain fatty acids, especially butyrate, and 

bacterial diversity in the large intestine (8, 9), and to influence nutrient utilisation (10, 11). 

The intake of resistant starch is usually accompanied by the consumption of other dietary 

fibres, which are grouped as non-starch polysaccharides (NSPs). Despite the many studies 

about the effects of resistant starch to various aspects in the large intestine, the effect of 

resistant starch to the degradation of specific NSPs by the large intestinal microbiota has 

seldom been mentioned. The large intestinal microbiota produces enzymes to degrade 

polysaccharides (12). Resistant starch may modify the microbial composition in the large 

intestine. For example, resistant starch stimulated the growth of Bifidobacterium spp. in 

pigs (13) and increased the population of Ruminococcus bromii in humans (14, 15). Hence, 

it may also change the degradation of NSPs in the large intestine. In order to estimate the 

potential digestibility of various substrates by microbiota, an approach employing 

measurements of enzyme activities towards different polysaccharides has been developed 

(16, 17). 

In the present study, an in vivo experiment was performed, using pigs as models for 

humans, to assess the effect of resistant starch on the production and composition of short 

chain fatty acids, genetic expressions in the large intestinal tissue, and interaction between 

resistant starch and NSPs. This paper is focused on the interaction between resistant starch 

and NSPs, by measuring the constituent monosaccharide composition and enzyme activities 

in the large intestinal digesta. 
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4.2. Materials and methods 

4.2.1. Experimental 

The experimental procedures were approved by and conformed to the requirements of the 

Animal Care and Use Committee of Wageningen University, Wageningen, The 

Netherlands. 

4.2.1.1. Animals and pens 

Twenty female pigs (22-month-old, Landrace, PIC Benelux B.V., Rosmalen, The 

Netherlands) with body weight 272.5 ±3.9 kg were housed in pens of 11 m2, each 

containing two pigs. Each pen was equipped with two drinking nipples and two feeding 

troughs. Artificial lights were on from 06:30 h until 22:00 h and dimmed during the night. 

4.2.1.2. Experimental diets 

The compositions of the experimental diets are presented in Table 4–1. The main source of 

starch in the digestible starch (DS) diet was pregelatinised potato starch (Paselli WA4, 

AVEBE, Foxhol, The Netherlands). In the resistant starch (RS) diet, the pregelatinised 

starch was replaced by retrograded tapioca starch (Actistar, Cargill, Amsterdam, The 

Netherlands) based on dry matter basis. According to the supplier, the starch was produced 

by enzymatic de-branching of tapioca starch, followed by retrogradation, resulting in RS 

type 3 which was at least 50 % resistant starch based on an assay using resistant starch kit 

(Megazyme, Bray, Ireland).  

Each experimental diet was given to 10 pigs. Siblings were equally distributed between the 

two diet groups. The pigs were fed about 1.13 times of their energy requirements for 

maintenance with half of the daily amount in the morning (07:00 h) and the other half in the 

afternoon (17:00 h). The pigs were fed the experimental diet for 2 weeks. In the third week, 

digesta were collected from the pigs. 
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Table 4–1. Composition of the experimental diets (g/100 g). 

Ingredients Digestible starch diet1 Resistant starch diet 

Pregelatinised potato starch 35.00 
 

Retrograded tapioca starch 
 

34.26 
Wheat 24.90 25.18 

Barley 15.00 15.17 

Maize gluten flour 10.00 10.11 

Potato protein 5.00 5.06 

CaCO3 1.70 1.72 

Soy oil 1.50 1.52 

Animal fat 1.50 1.52 

NaHCO3 1.50 1.52 

Mono calcium phosphate 1.10 1.11 

Pig premix for pigs >40 kg2 1.00 1.01 

KCl 1.00 1.01 

NaCl 0.50 0.51 

L-Lysine HCl 0.15 0.15 

Flavours 0.15 0.15 
1The amount of digestible starch diet given to the pigs was 1.12% higher than the amount of resistant starch 

diet, due to different moisture contents between the diets. 
2The premix provided the following per kg food (of the control diet): vitamin A: 10,000 IU; vitamin D3: 

2000 IU; vitamin E: 25 mg; vitamin K3: 1.0 mg; vitamin B1: 0.75 mg; vitamin B2: 4.0 mg; vitamin B6: 
1.0 mg; vitamin B12: 15 µg; niacin: 20 mg; D-panthothenic acid: 13 mg; choline chloride: 300 mg; folic 
acid: 2.5 mg; biotin: 0.1 mg; Fe: 80 mg (FeSO4•H2O); Cu: 10 mg (CuSO4•5H2O); Mn: 30 mg (MnO); Zn: 
60 mg (ZnSO4•H2O); Co: 0.20 mg (CoSO4•7H2O); I: 0.75 mg (KI); Se: 0.20 mg (Na2SeO3).  

4.2.1.3. Digesta collection from the large intestine 

The pigs were fed about 5 h prior section to ensure presence of fresh digesta. Stunning was 

done by head-only electrocution (electrodes placed below the base of the ears on either side 

of the head) followed by exsanguination within 15 s of initial stunning of the animal. 

Exsanguination was done by severance of the major blood vessels in the neck. 

Immediately after exsanguination, the abdominal cavity was opened and the gastrointestinal 

tract from stomach to anus was removed from the cavity. The large intestine was separated 

from the other parts of gastrointestinal tract, and was divided into caecum (Cae), proximal 

colon (pCol), proximal mid-colon (pmCol), distal mid-colon (dmCol), and distal colon 

(dCol). The digesta in every section of the large intestine was collected and immediately 

stored frozen (−20 °C). The samples were freeze-dried before further analyses. Samples 

from four pigs per experimental diet were analysed. The samples were taken from pairs of 

sisters, to minimise variation that might occur due to genetic background. 
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4.2.2. Sample fractionation 

The freeze-dried digesta was separated into soluble and insoluble fractions by suspending 

1.25 g of freeze-dried digesta in 150 mL water. The suspension was stirred for 20 min and 

subsequently centrifuged (10,000 ×g; 20 min). The supernatant was collected, and the pellet 

was suspended in 100 mL water and then stirred for 20 min. The suspension was 

centrifuged (10,000 ×g; 20 min) and the supernatant was combined with the first one. The 

whole procedure was performed at 4 °C. The combined supernatant was then boiled for 10 

min to inactivate enzymes and freeze-dried, prior to further analyses. 

4.2.3. Chemical and enzymatic analyses 

4.2.3.1. Extraction of non-starch polysaccharides 

Samples were defatted using acetone. After centrifugation and removal of the supernatant, 

the samples were pre-dried at 75 °C, followed by drying at 50 °C overnight. The defatted 

samples were then milled using a ball milling apparatus (MM2000, Retsch, Haan, 

Germany). 

Starch was gelatinised by mixing 300 ±5 mg of defatted sample with 2 mL DMSO followed 

by boiling for 30 min. Next, the starch was enzymatically degraded by adding 7.5 mL 

sodium phosphate buffer (0.08 M, pH 6.0) and 50 µL thermostable α-amylase (EC 3.2.1.1, 

Megazyme, Bray, Ireland) followed by incubation in boiling water bath for 30 min. After 

incubation, the pH was adjusted to 4.0–4.6 using 0.325 N HCl. Subsequently, 50 µL 

amyloglucosidase (Sigma–Aldrich, Schnelldorf, Germany) was added. The samples were 

subsequently incubated at 60 °C for 1.5 h. Following incubation, enzymes were inactivated 

by heating in a boiling water bath for 10 min. 

Precipitation and washing of the polysaccharides for total and insoluble NSPs were 

performed as described elsewhere (18), except that the overnight drying was performed at 

50 °C instead of 80 °C. The dried sample was further analysed for carbohydrate content and 

constituent monosaccharide composition. Soluble NSP content and composition were 

calculated from the difference between total and insoluble NSP contents. 
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4.2.3.2. Constituent monosaccharide composition 

Prehydrolysis was performed in 72 %(w/w) sulfuric acid at 30 °C for 1 h followed by 

hydrolysis in 1 M sulfuric acid at 100 °C for 3 h. After derivatisation into alditol acetates, 

monosaccharides were analysed using gas chromatography (19). Inositol was used as 

internal standard. 

4.2.3.3. Starch and mixed-linkage β-glucan content 

Starch content was analysed using total starch kit from Megazyme (Bray, Ireland). Glucose 

and maltodextrins were regarded as starch degradation products, and were included in the 

analysis. Mixed-linkage β-glucan content was analysed using mixed-linkage β-glucan kit  

(Megazyme). 

4.2.3.4. Protein extraction 

The proteins, including enzymes, in the digesta were extracted by first suspending 75 mg of 

the freeze-dried sample into 1.5 mL buffer A (25 mM MES buffer pH 6.5, 1 mM PMSF 

and 1 mM DTT). The suspensions were mixed intermittently for 15 min and centrifuged 

(20,000 ×g; 10 min; 4 °C). The supernatant, which contains easily extractable proteins, was 

collected. The pellet was washed with 1.5 mL buffer A and then suspended in 1.5 mL 

buffer B (25 mM MES buffer pH 6.5, 1 mM PMSF, 1 mM DTT, 1 mM EDTA and 50 mM 

NaCl). The cells in the suspension were disrupted by a digital sonifier (Branson, Danbury, 

CT, USA) which was set at 30 % amplitude, 4 times of 30 s intervals with 30 s periods 

between intervals. The cell debris was removed by centrifugation (20,000 ×g; 10 min; 4 

°C). The supernatant, containing pellet-associated proteins, was collected. During the 

extraction process, the samples were kept in ice-water bath. 

4.2.3.5. Protein content 

Protein content of the extracts was measured by mixing 20 µL of the sample or diluted 

sample with 200 µL of Bradford reagent (20) obtained from Sigma–Aldrich. After 10 min 

incubation at room temperature, the absorbance was measured at 595 nm. A standard curve 

was prepared using bovine serum albumin (Sigma–Aldrich) dissolved in buffer A with a 

concentration of 0–300 µg/mL. 
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4.2.3.6. Analyses of enzyme activities 

 Glycosidases 

To measure the activities of glycosidases, synthetic substrate p-nitrophenyl (PNP) 

glycosides were used. PNP-α-D-glucopyranoside, PNP-β-D-glucopyranoside, PNP-β-D-

xylopyranoside and PNP-α-L-arabinofuranoside were obtained from Sigma–Aldrich. 

Glycosidase activity was measured by mixing 20 µL of protein extracts and 200 µL of 1 

mM PNP-glycosides in a microtitre plate. The plate was incubated at 37 °C and the 

absorbance at 405 nm was measured every 3 min for 2 h. The concentration of p-

nitrophenol at every time point was quantified using a standard curve (0–500 µM p-

nitrophenol). The concentration of p-nitrophenol was then plotted against time, and the 

linear range was used to calculate enzyme activity, which was expressed in the amount of 

p-nitrophenol (nmol) released in 1 min by enzymes extracted from 1 mg dry digesta. 

Polysaccharide-degrading enzymes 

Some polysaccharides were treated before being used as substrates for analyses of enzyme 

activities. To be able to measure activities towards pectin backbone without the interference 

of the neutral side chains, high methyl esterified (HM) pectin and low methyl esterified 

(LM) pectin (C74 and C30, Copenhagen Pectin, Copenhagen, Denmark; (21)) were treated 

with single component enzyme preparations containing endoarabinanase, 

arabinofuranosidase and galactanase (Novozymes, Bagsvaerd, Denmark) to remove the 

neutral side chains (pH 5.0 ±0.1; 24 h; 35 °C). After incubation, the enzymes were 

inactivated by boiling for 10 min. The pectins were precipitated in 70 %(v/v) ethanol in 

water and filtered, followed by washing with 80 %(v/v) ethanol and subsequently with 

acetone. After drying, the pectins were milled (MM2000, Retsch) to obtain fine powder. 

Oat spelt xylan (Sigma–Aldrich) was washed with water to remove soluble materials. After 

centrifugation (1500 ×g; 5 min; room temperature), the insoluble part was washed in 96 

%(v/v) ethanol and dried. 

In total, 10 polysaccharides were used as substrates to analyse enzyme activities in the 

enzyme mixture. Soluble potato starch (Sigma–Aldrich), soluble wheat arabinoxylan 

(medium viscosity, Megazyme), barley mixed-linkage β-glucan (Megazyme), 

carboxymethyl cellulose (CMC, sodium salt, medium viscosity, Sigma–Aldrich), soluble 

soy polysaccharide (SSPS, Soyafibe-S-DA-100, Fuji Oil Co., Ibaraki, Japan), locust bean 
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gum (SKW Biosystems, Rubi, Spain), HM and LM pectins without side chains, were 

dissolved in 25 mM MES buffer pH 6.5 at 2 mg/mL. The substrate solutions were heated at 

100 °C for 5 min with occasional mixing for maximum dissolution. The pH of the solutions 

were adjusted to 6.5 ±0.1 if necessary using 4 N NaOH solution. The insoluble substrates 

oat spelt xylan and cellulose (Avicel PH105, Serva Feinbiochemica, Heidelberg, Germany) 

were weighed directly into the tubes and MES buffer (25 mM, pH 6.5) was added to reach 

a concentration of 2 mg/mL. 

Protein extracts were added into the substrate solution or suspension at a ratio of 1:10 (v:v). 

The mixture was incubated for 30 min at 37 °C, followed by enzyme inactivation by boiling 

for 5 min. Substrate blanks was prepared by substituting the enzyme extracts with MES 

buffer (25 mM, pH 6.5) and enzyme blanks was prepared by substituting the substrate with 

MES buffer (25 mM, pH 6.5). The amount of reducing carbohydrates in the enzyme digests 

and blanks was quantified using 4-hydroxybenzoic acid hydrazide (PAHBAH) method 

adapted for microtitre plate (22). Standard curves (0–250 µg/mL) of monosaccharides were 

used for quantification. Glucose was used as a standard for starch, mixed-linkage β-

glucans, CMC and cellulose digests; xylose was used as a standard for wheat arabinoxylan 

and oat spelt xylan digests; galactose, galacturonic acid and mannose were used as 

standards for SSPS, pectins and locust bean gum digests, respectively. The enzyme activity 

was expressed as the amount of reducing carbohydrates (nmol) released in 1 min by 

enzymes extracted from one mg dry digesta. 

4.2.4. Statistical analyses 

Statistical analyses were performed using SAS software (SAS Institute Inc., Cary, NC, 

USA). Comparison between the two treatments at different parts of the large intestine was 

performed using t-test (PROC TTEST). Comparison among the different parts of large 

intestine in one treatment was performed using mixed-effect model (PROC MIXED) with 

parts of the large intestine as a fixed effect and individual pigs as a random effect. 

Differences between different parts of the large intestine was analysed using LSMEANS 

with Tukey–Kramer adjustment for unbalanced data. The confidence level (alpha) was set 

at 0.10. In the clustering analysis (PROC CLUSTER), complete linkage method was used. 
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4.3. Results and discussion 

4.3.1. Constituent monosaccharide composition 

The main monosaccharides in the NSPs of both diets were arabinose, xylose, and glucose, 

which composed more than 80 % of the total NSPs (Table 4–2). The NSPs in the diet 

originated from wheat and barley. The main NSPs in both cereals are arabinoxylan, 

cellulose and mixed-linkage β-glucans (23). Only 25 % of NSPs in DS diet and 23 % of 

NSPs in RS diet were soluble. The glucose moieties in soluble NSPs were mainly from 

mixed-linkage β-glucans. 

Table 4–2. Constituent monosaccharide composition of total non-starch polysaccharides (NSPs) in 
the experimental diets. 

 
g/100 g dry weight 

 
Rha Fuc Ara Xyl Man Gal Glc UA Total 

Digestible starch diet 

Soluble NSPs 0.0 0.0 0.3 0.5 0.4 0.1 0.5 0.1 1.9 

Insoluble NSPs 0.0 0.0 0.9 2.1 0.3 0.1 2.0 0.2 5.6 

Total NSPs 0.0 0.0 1.2 2.5 0.7 0.2 
2.5 

(0.7)1 
0.3 7.5 

Resistant starch diet 

Soluble NSPs 0.0 0.0 0.3 0.3 0.4 0.1 0.4 0.1 1.6 

Insoluble NSPs 0.0 0.0 1.0 2.0 0.4 0.1 1.9 0.2 5.5 

Total NSPs 0.0 0.0 1.2 2.3 0.7 0.3 
2.3 

(0.7)1 
0.3 7.2 

NSPs: non-starch polysaccharides, Rha: rhamnose, Fuc: fucose, Ara: arabinose, Xyl: xylose, Man: 
mannose, Gal: galactose, Glc: glucose, UA: uronic acids. 

1Numbers in brackets are mixed-linkage β-glucans. 

For the large intestinal digesta, only results of arabinose, xylose, and glucose are presented 

(Table 4–3) as other constituent monosaccharides were present in minor amounts. Starch 

and mixed-linkage β-glucans were measured separately, and glucose moieties from 

cellulose and other glucose-containing NSPs were calculated from the total glucose content 

in the digesta. 
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In the Cae, the amount of starch and its degradation products was higher for RS-fed pigs 

than for DS-fed pigs (P-value <0.10). Starch and its degradation products that are not 

absorbed in the small intestine and were present in the caecum are considered as resistant 

starch. In the pCol of RS-fed pigs, the starch content was lower than that in Cae (P-value 

<0.10), and was not statistically different from the starch content in the pCol of DS-fed pigs 

(P-value =0.17). This indicated that resistant starch was mainly utilised in the Cae. Rapid 

utilisation of resistant starch in the caecum of pigs was also reported by Govers, et al. (24). 

β-Glucans in the Cae of DS-fed pigs and RS-fed pigs were 0.8 % and 5.7 % of total NSP 

glucose present, respectively. In the diet, β-glucans composed 28-30 % of the glucose from 

NSPs. The low percentages of β-glucans in the digesta show that β-glucans were utilised in 

the Cae for both diets. This result was in agreement with previous report which stated that 

β-glucans were utilised in the proximal parts of the large intestine (25). Nevertheless, the 

lower β-glucan content in the Cae of DS-fed pigs compared to that of RS-fed pigs indicated 

that the utilisation of β-glucans was slightly delayed when resistant starch was present in 

the diet. 

The content of cellulose and other glucose-containing NSPs were higher for RS-fed pigs in 

the distal parts of the large intestine. This might suggest higher utilisation of cellulose and 

glucose-containing NSPs in DS-fed pigs. On the other hand, it may also indicate higher 

microbial count in RS-fed pigs, because it has been reported that the bacterial fraction in 

human faeces contains considerable amount of glucose (26). 

Arabinose and xylose concentrations in the large intestine were not statistically different 

between the two treatments except for the distal parts of the colon. This may indicate that 

the utilisation of arabinoxylan is more extensive in the DS-fed pigs. Nonetheless, without 

an indigestible marker to calculate the apparent digestibility, this effect cannot be 

quantified. 

The composition of soluble carbohydrates in the digesta was measured separately (Table 4–

4). The glucose concentration in the soluble part of Cae was higher for RS-fed pigs than for 

DS-fed pigs (P-value <0.10). This was expected, because as resistant starch was utilised, it 

is degraded into smaller, soluble molecules, prior to full utilisation of the glucose. 

Solubilisation of feed components due to enzyme activity has been used for evaluating the 

total tract digestibility (27). It has also been reported that some gut microbes, such as 
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Bacteroides thethaiotamicron, has enzymes capable of degrading starch molecules to 

smaller molecules which are then absorbed into the cell for further utilisation (28). 

Table 4–4. Constituent monosaccharide composition of soluble fraction of digesta from different 
parts of pig large intestine. 

Diet Part 

g/100 g dry weight 

Arabinose  Xylose 
 

Glucose 
 

Total 

Mean  SD  Mean 
 

SD   Mean  SD  Mean 
 

SD 

DS Cae 0.03 a* 0.00  0.03 * 0.01  0.33 a* 0.12  0.64 a* 0.19 

 pCol 0.02 b 0.00  0.02  0.01  0.13 b 0.02  0.37 b 0.02 

 pmCol 0.02 ab* 0.00  0.02  0.00  0.07 b* 0.01  0.32 b* 0.03 

 dmCol 0.02 ab 0.00  0.02 * 0.00  0.06 b* 0.00  0.29 b* 0.01 

 dCol 0.02 ab 0.01  0.02  0.01  0.05 b* 0.01  0.29 b* 0.06 

                 

RS Cae 0.10 a* 0.06  0.17 a* 0.12  2.86 a* 0.80  3.69 a* 1.00 

 pCol 0.02 b 0.01  0.03 b 0.02  0.76 b 0.58  1.34 b 0.63 

 pmCol 0.01 b* 0.00  0.02 b 0.01  0.26 b* 0.08  0.76 b* 0.15 

 dmCol 0.01 b 0.00  0.01 b* 0.00  0.20 b* 0.06  0.70 b* 0.17 

  dCol 0.02 b 0.02  0.02 b 0.02  0.18 b* 0.04  0.61 b* 0.14 

Data with different superscripts within a column within a treatment are statistically different (P-value 
<0.10). DS: digestible starch, RS: resistant starch. Cae: caecum, pCol: proximal colon, pmCol: proximal 
mid-colon, dmCol: distal mid-colon, dCol: distal colon. 

*Statistically different (P-value <0.10) results between treatments. 

Along the large intestine, glucose concentration in the soluble part of the digesta was higher 

for RS-fed pigs than for DS-fed pigs. As discussed previously for total glucose content, 

soluble glucose in distal parts of the large intestine may originate from the content of 

microbial cells. This was also supported by the high amount of pellet-associated proteins, 

which is presented in Section 3.2. 

The concentrations of soluble arabinose and xylose in Cae were higher for RS-fed pigs than 

for DS-fed pigs (Table 4–4, P-value <0.10), although there was no difference in total 

arabinose and xylose contents between treatments (Table 4–3). However, the soluble 

arabinose and xylose represented only 0.5 % (DS) and 2.3 % (RS) of total arabinose and 

xylose present in Cae. Compared to the diets, in which 19.8 % (DS) and 17.2 % (RS) of the 

arabinose and xylose was soluble, the low percentages in the Cae shows that soluble 

arabinoxylan was utilised in Cae irrespective of the presence of resistant starch in the diet, 
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but the utilisation was lower in the presence of resistant starch. These results further 

substantiate a previous study (15), which did not present data on monosaccharide 

constituents. 

In summary, results of constituent monosaccharide composition showed that resistant 

starch was mainly fermented in Cae. When resistant starch was present in Cae, the 

utilisation of β-glucans and soluble arabinoxylan was delayed, indicating that the 

microbiota preferred to utilise resistant starch than the other dietary fibres. Preferred 

utilisation of one dietary fibre over the other by human microbiota was previously 

described for ispaghula husk over cellulose (29). The results also indicated that 

arabinoxylan was utilised more extensively in DS-fed pigs than in RS-fed pigs. However, 

without an indigestible marker in the diet, the apparent digestibility could not be quantified. 

For further assessment of the effect of resistant starch on the degradation of NSPs, enzymes 

in the digesta were extracted and their activities were measured. 

4.3.2. Extractable proteins 

Enzymatic proteins were extracted from the digesta, together with other proteins. The total 

extractable proteins consisted of easily extractable proteins and pellet-associated proteins, 

which was solubilised by ultrasonication (Table 4–5). Table 4–5 shows that more than 50 

% of the total protein was pellet-associated. Total extractable protein in the Cae did not 

differ between treatments, suggesting that the presence of resistant starch did not influence 

the digestion and absorption of proteins in the small intestine. In the colon, the level of 

these pellet-associated proteins was higher for the RS-fed pigs than for the DS-fed pigs (P-

value <0.10). These results suggest that the increase in pellet-associated proteins by 

resistant starch in the diet might be caused by the increase of microbial growth. Resistant 

starch is a fermentable fibre, and fermentable fibres have been shown to be able to increase 

faecal bacterial mass (30). 

Along the large intestine, total extractable protein content in the digesta of DS-fed pigs 

declined between Cae and pCol and between pCol and pmCol. In contrast, the total 

extractable protein content in the digesta of RS-fed pigs only declined in the distal parts of 

the colon. The decline of total extractable protein content could be caused by degradation 

and utilisation of enzymes and proteins from dead microbial cells. In vitro, it has been 

shown that when carbohydrate supply was limited, protein fermentation by human faecal 
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microbiota was more evident (31). Hence, it could be suggested that for RS-fed pigs, the 

stable level of the protein content in the digesta along the colon indicates that more 

microbiota colonised the distal colon than in DS-fed pigs. 

Table 4–5. Extractable protein content in the large-intestinal digesta of pigs (µg/mg dry weight). 

Diet Part 

Easily extracted 
proteins  

Pellet associated 
proteins  

Total extractable 
proteins 

Mean 
 

SD   Mean 
 

SD   Mean 
 

SD 

DS Cae 9.2 a* 0.9  20.7 a 1.6  29.9 a 2.4 

 pCol 7.2 b* 0.7  16.0 a* 3.2  23.2 b* 3.4 

 pmCol 5.3 c 1.4  7.3 b* 3.3  12.6 c* 4.6 

 dCol 2.4 d* 0.5  5.6 b* 3.2  8.0 c* 3.7 

             

RS Cae 10.6 a* 0.4  22.9  9.5  33.5 ab 9.2 

 pCol 10.5 a* 1.7  28.1 * 6.3  38.6 a* 5.1 

 pmCol 7.5 a 2.4  26.7 * 3.5  34.3 ab* 5.6 

  dCol 4.0 b* 0.5  20.1 * 2.4  24.1 b* 2.9 

Data with different superscripts within a column within a treatment are statistically different (P-value 
<0.10). DS: digestible starch, RS: resistant starch, Cae: caecum, pCol: proximal colon, pmCol: proximal 
mid-colon, dmCol: distal mid-colon, dCol: distal colon. 

*Statistically different (P-value <0.10) results between treatments. 

A part of the protein in the digesta will certainly be polysaccharide-degrading enzymes. 

Because most of the microbial polysaccharide-degrading enzymes are cell-associated (31), 

the amount of these enzymes was expected to increase as the microbial growth was 

stimulated by resistant starch in the diet. 

4.3.3. Enzyme activities in the digesta 

In an in vitro model, the enzymes produced by human faecal microbiota were influenced by 

the substrates present (31). Therefore, a wide spectrum of substrates was used, including 

those that were not present in the diet. The enzyme activities in the digesta towards 14 

different substrates are summarised in Table 4–6. 
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Total α-glucopyranosidase activity was not influenced by the presence of resistant starch in 

the diet (P-value =0.89), but the activity towards starch in the Cae was higher for RS-fed 

pigs than for DS-fed pigs. This may show that the presence of resistant starch in the Cae 

stimulated the growth of microbiota that can produce and maintain the level of starch-

degrading enzymes. 

Contrary to enzyme activities related to starch degradation, the activity of β-

glucopyranosidase as well as the activity towards barley mixed-linkage β-glucans in the 

Cae was higher for DS-fed pigs than for RS-fed pigs. This might show that due to the low 

level of starch in the Cae of DS-fed pigs, the microbiota used mixed-linkage β-glucans as 

an alternative substrate by producing β-glucanases and β-glycosidases. Mixed-linkage β-

glucan, therefore, was more extensively utilised in the Cae of DS-fed pigs than in RS-fed 

pigs (Section 4.3.1). Further along the large intestine, the activity towards mixed-linkage β-

glucans in DS-fed pigs declined steadily, whereas in RS-fed pigs the activity was 

maintained until the pmCol. In this location, the activity towards mixed-linkage β-glucans 

was slightly higher for RS-fed pigs than for DS-fed pigs (P-value =0.12). 

The activities of β-xylopyranosidase and α-arabinofuranosidase were higher in the Cae of 

DS-fed pigs than of RS-fed pigs. This may explain the higher utilisation of soluble 

arabinoxylan by the microbiota in DS-fed pigs than in RS-fed pigs (Section 4.3.1). The 

activity towards wheat arabinoxylan, which is an ensemble of endoxylanase, β-

xylopyranosidase and α-arabinofuranosidase activities, however, did not differ between 

treatments (P-value =0.27). 

It was observed that enzyme activities related to the degradation of starch, mixed-linkage β-

glucans and arabinoxylans, which represented polysaccharides in the diet, declined along 

the large intestine. This suggested that the production of these enzymes was stimulated in 

the Cae when the substrates were abundant. Further along the large intestine, the substrates 

were depleted, enzyme production was no longer stimulated, and the available enzymes 

were utilised by the microbiota together with other proteins. 

Unlike the activities towards starch and soluble NSPs, enzyme activities towards insoluble 

NSPs, such as xylan and cellulose, were low, and did not differ between diets (P-value 

>0.75). It was reported that faecal microbiota from pigs has a lower ability to utilise 

insoluble NSPs than soluble NSPs (32). It has also been reported that resistant starch did 
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not influence the digestibility of insoluble NSPs in humans (15), but in these studies the 

NSPs were not further specified. 

For other soluble NSPs that were not present in the diet, such as HM and LM pectins with 

removed side chains and locust bean gum, the degrading-enzyme activity along the large 

intestine was constantly low. There was no difference between diets and no difference 

between different parts of the large intestine. This may show that despite the absence of the 

substrates in the diet, the microbiota in the large intestine produced enzymes, which are 

able to degrade these substrates, in low amounts. If the substrate becomes available, the 

growth of substrate-specific bacteria might be stimulated, thereby the enzyme production 

might be increased to facilitate the utilisation of the substrates. 

SSPS is a substrate that was not present in the diet, but it was degraded at a similar level as 

wheat arabinoxylan. SSPS consist of pectic rhamnogalacturonan backbone, with side chains 

of α-arabinans and β-galactans (33). β-Galactans were known to be present in wheat 

endosperm in the form of arabinogalactan (34). Therefore, the capability of the enzyme 

mixture to degrade SSPS may indicate that the microbiota in the large intestine of pigs was 

able to utilise arabinogalactan present in the diet. 

At the distal part of the large intestine, total protein content was increased by three-fold 

when resistant starch was present. In contrast, there was no difference between treatments 

for most of the enzyme activities (P-value >0.35), except for starch-degrading enzymes. 

This might mean that resistant starch stimulated the growth of selective microbiota, and that 

the microbiota stimulated by resistant starch produced starch-degrading enzymes, but lack 

the ability to produce degrading enzymes for other polysaccharides. 

In order to summarise the findings on the enzyme activities, the results were compiled 

together and subjected to cluster analysis. The samples formed four clusters (Figure 4–1). 

All Cae samples from RS-fed pigs were in a distinct cluster, together with half of the Cae 

samples from DS-fed pigs (Cluster 4). Cluster 1 consists of samples from the pCol of RS-

fed pigs and the other half of the Cae samples from DS-fed pigs. Further, Cluster 2 consists 

of samples from the pmCol and some samples from the dCol of RS-fed pigs and samples 

from the pCol of DS-fed pigs. Cluster 3 consists of samples from the pmCol and dCol of 

DS-fed pigs and some samples from the dCol of RS-fed pigs. 
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Figure 4–1. Cluster analysis of pig digesta based on enzyme activities towards 14 substrates. DS: 
digestible starch diet, RS: resistant starch diet, Cae: caecum, pCol: proximal colon, pmCol: proximal 
mid-colon, dCol: distal colon. A–D: pigs fed with DS diet, E–H: pigs fed with RS diet. 

This clustering analysis confirms and clearly visualises that the presence of resistant starch 

changed the enzyme profile in the large intestine. The enzyme profile in a certain part of the 

large intestine of RS-fed pigs resembles its more proximal counterpart of DS-fed pigs. 

These results suggest that in RS-fed pigs, the microbiota in the mid-colon was more active 

in degrading polysaccharides than in DS-fed pigs. Polysaccharide degradation at the distal 

parts of the large intestine is regarded as beneficial for health (3). This experiment, 

therefore, showed that although resistant starch itself is mainly utilised in the caecum, it 

might positively affect colon health by delaying the degradation of other dietary fibres. 
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Abstract 

This study aimed to investigate alginate degradation in the large intestine of pigs and the 

time required by the microbiota to adapt to alginate, in the presence and in the absence of 

retrograded starch. Experimental diets contained pregelatinised starch, retrograded starch, 

alginate, or a mix of retrograded starch and alginate. Faeces were collected at different time 

points. Up to day 39, the digestibility of alginate was limited (0.52 ±0.10), and was lower 

with the inclusion of retrograded starch in the diet (0.34 ±0.02). The digestibility of 

mannuronic acid (M) was 2-3 times higher than that of guluronic acid (G). Less than 10% 

of fecal alginate was water-soluble alginate oligosaccharides, whereas more than 90% of 

the fecal alginate had high molecular mass (~100 kDa) and was insoluble in water. The 

results show that the microbiota needed more than 39 days to adapt to alginate, thus 

adaptation time should be considered cautiously, especially when studying effects of 

dietary fibres at the distal parts of the colon.  
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5.1. Introduction 

Alginate is a dietary fibre, which can be extracted from various seaweed, with multiple 

potential benefits to colon and cardiovascular health (1). Chemically, alginate consists of 

linear molecules of α-(1,4)-L-guluronic acid (G) and β-(1,4)-D-mannuronic acid (M) (2). A 

molecule of alginate consists of G-blocks, M-blocks, and MG-blocks with alternating M 

and G residues (3). The MG-blocks of several seaweed species were found to be shorter 

than the G-blocks (degree of polymerization (DP) >100), and the M-blocks (DP ≥90) (4). 

The distribution of the different blocks in alginate determines its physical properties such as 

solubility (5), viscosity and gelling ability (6). Under acidic conditions (pH 2.85), G-rich 

alginate fraction are not soluble whereas M-rich alginate fraction is soluble (7). The G 

blocks in alginate may also interact with calcium and form a gel through an interaction that 

can be described by the ‘egg-box’ model (8). Detailed information on the chemical 

structure and physical properties of alginate is available in literature (9).  

The physico-chemical properties of alginate determine its behavior in the digestive system. 

In the upper digestive system, alginate was reported to increase viscosity in the intestine 

(10) and reduce the absorption rate of certain nutrients in pigs (11) and humans (12). In 

humans, alginate with a high G:M ratio has a role in appetite regulation and enhancing 

satiety, which is related to the gelation of the G-rich alginate in the acidic environment of 

the stomach (13). In the colon, the presence of alginate may increase water content and the 

amount of faeces in humans (14). Depolymerised alginate with an average molecular 

weight of ~2000 was also shown to be potentially a prebiotic (15).  

It has been reported that alginate was fermented slowly by human and pig fecal microbiota 

in vitro, resulting in an increased proportion of acetate compared to the fermentation 

products of other dietary fibres which contained neutral constituent monosaccharides (16). 

Among the many strains of microbiota present in the human colon that have been tested for 

their polysaccharide degrading activity, only Bacteroides ovatus has the ability to ferment 

alginate (17, 18). It was proposed that the ability of Bacteroides species to degrade various 

polysaccharides is inducible (19). Therefore, the rate of alginate fermentation of alginate 

might be higher when the microbiota is adapted to the substrate. When fermentation rate is 

increased, the caecum and proximal colon will become the more dominant sites of 

fermentation and less of the fibre will be available for fermentation in the distal part of the 
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colon. As a result, the fermentation at the distal colon can be lacking, depending on the 

amount and type of dietary fibres consumed. Lack of fermentation at the distal colon is 

unfavorable, because fermentation at the distal colon is considered beneficial for the 

prevention of various diseases (20). 

By combining alginate with other dietary fibres which are easily utilised by the microbiota 

in the proximal large intestine, alginate fermentation is expected to be maintained in the 

distal colon. Resistant starch is regarded as a potentially suitable complement for alginate 

because it is rapidly fermented both in pigs (21) and humans (22). Also, it has been shown 

to be able to shift the fermentation of arabinoxylan-rich non-starch polysaccharides (NSPs) 

from wheat and barley to more distal parts of the large intestine (23). In addition, resistant 

starch has many other advantages for health, including stimulating the growth of beneficial 

bacteria in the colon and maintaining colon health (24). 

The aim of the present experiment was to obtain more understanding on how alginate is 

degraded in the large intestine of pigs as models for human, and the time required by the 

microbiota to adapt to alginate, in the presence and in the absence of retrograded starch, as 

a source of resistant starch.  

5.2. Materials and methods 

5.2.1. Experimental setup 

This study is a part of a larger experiment conducted at the experimental pig farm of 

Nutreco Swine Research Centre (Sint Anthonis, The Netherlands). Experimental protocols 

describing the management, animal care and sampling procedures were reviewed and 

approved by the Ethical Committee of Wageningen University (Wageningen, The 

Netherlands; DEC nr. 2011088.c). 

The animals used for this experiment were growing gilts and barrows (Shade Duroc, 

Nutreco Swine Research Centre). Pigs were randomly assigned to dietary treatments 

balanced for body weight at birth and weaning, gender and litter. Initial body weight was 

approximately 25 kg and the body weight at the end of the experiment ranged between 82.8 

and 140.4 kg.  
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5.2.2. Diets 

The control diet (CON) contained carbohydrate from pregelatinised purified potato starch 

(Paselli™ WA5, AVEBE Food, Veendam, The Netherlands), wheat and soy meal. In the 

treatment diets, part of the pregelatinised starch was replaced with retrograded tapioca 

starch (C*Actistar 11700, Cargill, Amsterdam, The Netherlands) or with alginate (Pectacon 

M-5761, Acatris, Bunschoten, The Netherlands). The composition of the diets was 

calculated to be isoenergetic in gross energy (approximately 17 MJ GE/kg diet). The 

ingredient composition of the diets is presented in Table 5–1. 

Table 5–1. Composition of the experimental diets (g/100g). 
Ingredient CON RS ALG MIX 
Pregelatinised potato starch 40.00 5.10 34.95 0.00 

Retrograded tapioca starch 0.00 33.65 0.00 33.60 

Sodium alginate 0.00 0.00 5.14 5.24 

Soybean meal 35.00 35.73 34.95 35.67 

Wheat 7.95 8.11 7.94 8.10 

Wheat middlings 5.30 5.41 5.29 5.40 

Animal fat 7.00 7.15 6.99 7.13 

Vitamin and mineral premix1 1.00 1.02 1.00 1.02 

CaCO3 1.25 1.28 1.25 1.27 

Monocalcium phosphate 1.30 1.33 1.30 1.32 

Salt 0.35 0.36 0.35 0.36 

L-lysine HCL 0.15 0.15 0.15 0.15 

DL-Methionine 0.20 0.20 0.20 0.20 

L-threonine 0.10 0.10 0.10 0.10 

TiO2
2 0.25 0.26 0.25 0.25 

Flavour (Luctarom Advance Cherry Honey) 0.15 0.15 0.15 0.15 

Con: Control diet, RS: Retrograded starch diet, ALG: Alginate diet, MIX: Diet containing both resistant 
starch and alginate. 

1retinol, 6,000 IU; cholecalciferol, 1200 IU; DL-α-tocopherol, 40 mg; menadione, 1.5 mg; thiamin, 1 mg; 
riboflavin, 3 mg; D-pantothenic acid, 10 mg; niacin, 20 mg; cyanocobalamin, 15 µg; folic acid, 0.2 mg; 
pyridoxine hydrochloride, 1 mg; choline chloride, 150 mg; Fe as Fe2SO4·H2O, 80 mg; Cu as 
CuSO4·5H2O, 15 mg; Zn as ZnO4·H2O, 50 mg; Mn as MnO, 30 mg; Co as CoSO4·7H2O, 0.2 mg; I as KI, 
0.7 mg; Se as Na2SeO3, 0.2 mg. 

2TiO2 was added into the diets for week 2-8. 
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5.2.3. Feeding 

Before the experiment, all pigs were fed with a commercial basal diet. The pigs were then 

adapted to the pelleted experimental diets gradually within 5 days. Water and diets were 

available ad libitum. 

5.2.4. Sampling 

For every diet group, faeces were collected from two gilts. Rectal fecal “grab” samples 

were collected when the pigs were still fed with basal diet (day -7), followed by sampling 

on day 1, 3, 7, 14, 39 and 74 after they were fed solely with experimental diets. On day 39, 

the rectum of one of the CON-fed pigs was empty and no fecal sample could be collected. 

Samples were immediately stored at -20 °C until further analyses.  

Diet samples were taken every batch. For analysis of Ti, the diet samples were analysed 

individually for the batches containing Ti, whereas for other analyses, diet samples from 

different batches throughout the experiment were pooled. The diets which contained Ti 

corresponded to the faeces from day 14 and 39. 

5.2.5. Sample preparation 

The pH and short chain fatty acids (SCFA) were measured in fresh faeces. For other 

analyses, the samples were freeze-dried and milled using ball-milling apparatus (MM2000, 

Retsch, Haan, Germany). Samples of the pelleted diets were milled passing 0.5 mm sieve 

using a milling apparatus (ZM200, Retsch). 

5.2.6. Chemical analysis 

5.2.6.1. Dry matter and pH 

Dry matter was calculated from the weight of the sample before and after freeze-drying. 

The pH was measured after dilution of 500 ±5 mg of sample with 1 mL water.  

5.2.6.2. Short chain fatty acids  

Duplicate amounts of 500-600 mg sample were weighed and mixed with 5 mL 0.1 N 

sulfuric acid to inactivate enzymes and bacteria. An aliquot of the suspension was 

centrifuged (14,000 ×g, 5 min, 20 °C) and the supernatant was analyzed for SCFA using an 

Ultimate 3000 HPLC system (Dionex Corporation, Sunnyvale, CA, USA). The SCFA were 
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separated using an isocratic elution of 0.01 N sulfuric acid at 0.6 mL/min for 30 min 

through an Aminex HPX-87H column (300 × 7.8 mm; Bio-Rad, Richmond, VA, USA) 

with a guard column. The columns were thermostated at 40 °C. The eluted compounds 

were monitored by a Shodex RI-101 detector (Showa Denko KK, Kawasaki, Japan). Acetic 

acid (0.2-2 mg/mL), propionic acid (0.2-2 mg/mL), butyric acid (0.2-2 mg/mL), isobutyric 

acid (0.05-0.5 mg/mL) and isovaleric acid (0.05-0.5 mg/mL) solutions were used as 

quantification standards. Results were expressed as the amount (µmol) of SCFA per gram 

of faeces.  

5.2.6.3. Total starch 

Total starch and its degradation products in the diets and in the faeces were analysed using 

a Total Starch Assay kit (Megazyme, Bray, Ireland). The starch was gelatinised in DMSO 

before being hydrolyzed with thermostable α-amylase and amyloglucosidase.  

5.2.6.4. Constituent monosaccharide composition 

For diet samples, the NSP constituent monosaccharide composition analysis was preceded 

by removal of starch according to a method described elsewhere (23), without defatting. All 

other samples were analysed for their constituent monosaccharide composition without any 

pretreatment.  

Neutral constituent monosaccharides were measured by gas chromatography after pre-

hydrolysis of the samples in 72 %(w/w) sulfuric acid at 30 °C for 1 h, hydrolysis in 1 M 

sulfuric acid at 100 °C for 3 h, and derivatization of the monosaccharides to their alditol 

acetates with inositol as an internal standard (25). For samples of diet ingredients, uronic 

acids in the hydrolysate were analysed using an automated colorimetric m-hydroxydiphenyl 

assay (26). 

For analysis of alginate, the sample was treated in 80 %(w/w) sulfuric acid at 30 °C for 3 h. 

Hydrolysis was then performed in 2 N sulfuric acid at 100 °C for 2 h (27). The hydrolysate 

was diluted and injected into an ICS5000 High Performance Anion Exchange 

Chromatography system with Pulsed Amperometric Detection (HPAEC-PAD; Dionex 

Corporation, Sunnyvale, CA, USA) equipped with CarboPac PA-1 column (2 × 250 mm) 

and guard column (2 × 50 mm). The flow rate was 0.3 mL/min. The mobile phases were 

0.1 M NaOH (A) and 1 M NaOAc in 0.1 M NaOH (B). The uronic acids were eluted using 

an isocratic flow of 20 %B for 10 min. After cleaning (20-100 %B in 5 min and 100 %B for 
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5 min), the column was re-equilibrated with 20 %B for 10 min before injection of the next 

sample. Glucuronic acid was used as quantification standard because guluronic acid and 

mannuronic acid were not available commercially. 

Soluble carbohydrates were extracted by suspending 10 mg sample in 1 mL water followed 

by boiling for 15 min with frequent mixing. After centrifugation (14,000 ×g, 5 min, 20 °C), 

the soluble carbohydrates in the supernatant were subjected to methanolysis followed by 

hydrolysis in trifluoroacetic acid (28). The neutral monosaccharides in the hydrolysate were 

analysed using HPAEC-PAD with post-column addition (29), whereas the uronic acids 

were analysed using HPAEC-PAD using the gradient described above for alginate. 

5.2.6.5. Identification of alginate oligosaccharides 

The analysis of alginate oligosaccharides (AOS) in the soluble fraction of the faeces was 

conducted as described elsewhere (30). In short, the soluble AOS were extracted in boiling 

water and separated using a Thermo Accela UHPLC system (Thermo Scientific, San Jose, 

CA, USA) equipped with an Acquity UPLC BEH Amide column (Waters Corporation, 

Milford, MA, USA). Detection of the AOS was performed using an MSn detector.  

5.2.6.6. Extraction of insoluble alginate 

The water insoluble solid after extraction of the soluble fraction was freeze-dried. An 

aliquot of the freeze-dried water insoluble solid (60 mg) was mixed with 3 mL 50 mM 

NaOAc buffer pH 5.2 containing 50 mM EDTA and 50 mM ammonium oxalate. The 

extraction was conducted in a shaking water bath (70 °C, 2 h). After centrifugation (14,000 

×g, 5 min, 20 °C), the supernatant was collected and ethanol was added up to a final 

concentration of 80 %(v/v). The obtained suspension was centrifuged, and the pellet was 

subsequently washed with 80 %(v/v) ethanol and 96 %(v/v) ethanol, subsequently. After 

drying overnight in a vacuum oven at 50 °C, the extract was dissolved in water for analysis 

of molecular mass distribution. 

5.2.6.7. Molecular mass distribution 

Molecular mass distribution was analysed using an Ultimate 3000 (Dionex Corporation) 

HPLC system equipped with High Performance Size Exclusion Chromatography (HPSEC) 

columns (TSK gel Super AW4000, AW3000 and AW2500) and a Super AW-L guard 

column (Tosoh Bioscience, Tokyo, Japan). The temperature of the columns was kept at 55 
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°C. The elution was performed with an isocratic flow (0.6 mL/min) of 0.2 M NaNO3 for 25 

min. The eluted compounds were monitored by a Shodex RI-101 detector (Showa Denko 

KK) and by an Ultimate 3000 RS variable wavelength detector (Dionex Corporation) set at 

280 nm to detect proteins. Pullulan standards (Sigma-Aldrich) were used for estimating the 

molecular mass of the compounds eluted. 

5.2.6.8. Titanium 

Titanium in the diet samples and in the faeces was analysed according to a modified 

method based on the method described by Short, et al. (31) and Myers, et al. (32). In 

principle, the samples were digested in concentrated sulfuric acid at 420 °C. After addition 

of hydrogen peroxide (30 %(v/v)), the absorbance at 408 nm was measured. Aliquots of 

100 mg/L Ti were used as standards. 

5.2.7. Apparent digestibility 

The apparent digestibility (D) was calculated using the equation: 

, = 1 − �./0./1 ∙ �1�0� 

Where Ti is the concentration of titanium and C is the concentration of the compound. The 

subscript 0 refers to the diet, and the subscript t refers to the faeces being analysed. 

5.3. Results and discussion 

5.3.1. Carbohydrate composition in the diet 

The experimental diets contain carbohydrates from several sources. The main carbohydrate 

in the diets was starch and maltodextrins, which originated from the added pregelatinised 

and resistant starch sources (Table 5–1), as well as from wheat, wheat middlings, and 

soybean meal (Table 5–2). Wheat, wheat middlings, and soybean meal are also sources of 

non-starch polysaccharides (NSPs). Table 5–2 shows that the NSPs from these ingredients 

was dominated by neutral constituent monosaccharides. As a result, apart from alginate, 

more than 87 %(w/w) of the NSPs in the diet is composed of neutral constituent 

monosaccharides (Table 5–3). Only neutral NSPs will be discussed further in this paper. 
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Table 5–2. Constituent monosaccharide composition of the non-starch polysaccharide (NSP) sources 
in the diet (%(w/w)). 

Ingredient Starch 
Constituent monosaccharide composition of NSP Total 

NSP Rha Fuc Ara Xyl Man Gal Glc UA G M 

Soybean meal 4 0.3 0.3 2.2 1.2 1.5 7.7 8.3 2.7 n.a. n.a. 24 

Wheat 54 0.0 0.0 2.8 3.9 0.5 0.9 9.1 1.4 n.a. n.a. 19 

Wheat middlings 24 0.0 0.0 6.7 11.4 0.8 1.3 13.8 1.7 n.a. n.a. 36 

Alginate n.a. 0.0 0.1 0.0 0.0 0.3 0.0 0.0 n.a. 71 31 103 

Rha: rhamnose, Fuc: fucose, Ara: arabinose, Xyl: xylose, Man: mannose, Gal: galactose, Glc: glucose, UA: 
non-alginate uronic acids, G: guluronic acid, M: mannuronic acid. n.a.: not analysed. 

The alginate was composed of solely guluronic acid (G) and mannuronic acid (M). The 

G:M ratio was 2.3 with the assumption that the PAD responses of guluronic acid and 

mannuronic acid were similar. Analysis of alginate using glucuronic acid as a quantification 

standard resulted in an overestimation of alginate content (Table 5–2). The alginate in the 

diets, however, was underestimated (3.8 % and 4.2 % for ALG and MIX, respectively). 

Therefore, the amount and composition of alginate in the diet (Table 5–3) was calculated 

based on the ingredient composition of the diets (Table 5–1) and the constituent 

monosaccharide composition of alginate (Table 5–2). 

Table 5–3. Carbohydrate composition of the experimental diets (g/100g). 
Carbohydrate CON RS ALG  MIX  

Starch 42.1 41.5 38.0  36.6  

Neutral NSPs 7.8 8.0 7.9  8.4  

Non-alginate uronic acids 1.1 1.1 1.1 1 1.1 1 

Alginate2       

 Guluronic acid 0.0 0.0 3.7  3.7  

 Mannuronic acid 0.0 0.0 1.6  1.6  

CON: Control diet, RS: Retrograded starch diet, ALG: Alginate diet, MIX: Diet containing a combination 
of retrograded starch and alginate. 

1 Non-alginate uronic acids of alginate containing diets were assumed to be similar to the diets without 
alginate.  

2 The composition of alginate in the diet was estimated based on the ingredient composition of the diet and 
the constituent monosaccharide composition of the alginate.  
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Analysis results of the carbohydrate composition in the diet were used as a factor in 

calculating the apparent digestibility of the carbohydrates in the diet, which will be 

discussed in Sections 3.4 and 3.5. 

5.3.2. Fecal dry matter 

The fecal dry matter of all pigs fluctuated up to day 14 although they had been gradually 

adapted to the experimental diet for 5 days (Figure 5–1). It has been reported that mean 

total transit time of solid material in growing pigs (initial average body weight 30 kg) was 

50 h for low fibre diet, and 41 h for high fibre (wheat bran) diet (33). Therefore, the faeces 

on day 1 might be influenced by the adaptation diet, which still partly contained the basal 

diet. The fluctuation between day 3 and day 14 indicate that within this period, the pig 

microbiota was adapting to the experimental diets. Castillo, et al. (34) reported that pig 

microbiota composition was unstable up to 21 days after the diet was changed. 

 
Figure 5–1. Fecal dry matter of pigs fed with control diet (CON) or experimental diets containing 
retrograded starch (RS), alginate (ALG), or a combination of retrograded starch and alginate (MIX). 
Data points are averages from 2 pigs, except for CON on day 39 (n=1). Error bars represent the 
standard deviation. At day -7, all pigs were fed a basal diet, from day -4 to 0 pigs were gradually 
adapted to experimental diets and from day 0 onwards pigs were fed solely their experimental diet. 

From day 14 onwards, the CON-fed pigs had a relatively constant fecal DM content of 

approximately 30 %(w/w). Feeding the pigs with RS resulted in a fecal DM of 24 %(w/w) 

on day 14, which increased to similar (day 39) and slightly higher (day 74) values than 

CON. The ALG-fed pigs had a similar fecal DM (~22 %(w/w)) to RS-fed pigs on day 14, 

and the DM remained relatively constant up to 74 days. The MIX-fed pigs had the lowest 

fecal DM on day 14 (~16 %(w/w)), suggesting that the combined fibres had an 
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accumulative effect on fecal DM. After day 14, the fecal DM of MIX-fed pigs increased, 

and on day 74 it was similar to the fecal DM of ALG-fed pigs. The increasing fecal DM 

when resistant starch was present in the diets suggested that resistant starch influenced fecal 

DM only at early stage of adaptation, and that the effects of resistant starch on fecal DM 

diminished as the pigs became more adapted to the diets.  

5.3.3. Fecal pH and SCFA  

Changes in pH and SCFA concentration in the faeces are often used as indicators for 

fermentation of dietary fibres, especially when collection of the large intestinal digesta is 

not possible. The results of this experiment did not show prominent differences in fecal pH 

and SCFA between the treatments. The measured pH was 6.6 ±0.4 and the total acetic acid, 

propionic acid and butyric acid content was 118 ±23 µmol/g faeces for all diets, with large 

variation between animals. Some other studies also reported no significant differences in 

fecal pH and SCFA concentration with the inclusion of dietary fibres in the diet (35, 36), 

although the consumption of dietary fibres is usually associated with increased SCFA in the 

large intestine (37). 

It is possible that the effects on pH and SCFA were more pronounced in the proximal parts 

of the large intestine, and were not observed in the faeces, because up to 95 % of the SCFA 

produced by the microbiota can be taken up by the host (38). Moreover, It has been 

reported that the colon morphology of pigs changed after feeding with dietary fibres (39, 

40). The change in colon morphology may lead to increased SCFA absorption, resulting in 

similar SCFA levels in the faeces despite the different diets consumed.  

5.3.4. Degradation of starch and neutral NSPs 

Besides fermentation indicators such as pH and SCFA, degradation of carbohydrates was 

monitored. The concentration of starch and its degradation products in the faeces were less 

than 5 %(w/w), and the apparent digestibility on day 14 and day 39 was above 0.995 for all 

samples (Table 5–4). This suggests that the starch in the diets, including retrograded starch, 

was utilised before reaching the rectum regardless of the presence of alginate in the diet. 

The high digestibility of starch on day 14 also indicated that the microbiota was able to 

extensively utilise resistant starch without a long adaptation time. Referring to the results 
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above, the lower fecal dry matter content for RS than for CON and for MIX than for ALG 

on day 14 (Section 5.3.2.) was not due to the presence of resistant starch in the faeces.  

Table 5–4. Apparent digestibility1 of carbohydrates in growing pigs fed with experimental diets 
(n=2). 
Diets Day Starch  Neutral NSPs Guluronic acid Mannuronic acid Total alginate 

  Mean SD Mean SD Mean SD Mean SD Mean SD 

CON 14 0.998 0.00 0.75 0.03  n.a.  n.a.  n.a. 

 391 0.998  0.71   n.a.  n.a.  n.a. 

            

RS 14 0.996 0.00 0.53 0.14  n.a.  n.a.  n.a. 

 39 0.998 0.00 0.68 0.01  n.a.  n.a.  n.a. 

            

ALG 14 0.996 0.00 0.68 0.04 0.28 0.12 0.72 0.01 0.41 0.08 

 39 0.998 0.00 0.77 0.04 0.40 0.13 0.79 0.04 0.52 0.10 

            

MIX 14 0.997 0.00 0.61 0.01 0.13 0.04 0.55 0.03 0.26 0.04 

 39 0.999 0.00 0.72 0.01 0.22 0.02 0.61 0.00 0.34 0.02 

CON: diet containing digestible starch, RS: diet containing retrograded starch, ALG: diet containing 
alginate, MIX: diet containing retrograded starch and alginate, n.a.: not applicable because the diets did 
not contain alginate. 

1Range of apparent digestibility: 0–1. 
2n=1. 

The digestibility of neutral NSPs is also presented in Table 5–4. For CON-fed pigs, the 

digestibility of neutral NSPs was approximately 0.75 on day 14. The digestibility of neutral 

NSPs in RS-fed pigs was lower than that in CON-fed pigs on day 14, with more variation 

between pigs for RS. The lower digestibility resulted in higher concentrations of neutral 

NSP in the faeces of RS-fed pigs (24 %(w/w), dry matter basis (dmb)) compared to the 

concentration in the faeces of CON-fed pigs (17 %(w/w), dmb) (Figure 5–2). These results 

suggest that the effect of RS on fecal dry matter was due to the lower digestibility of NSPs. 

It was previously reported that resistant starch may increase fecal weight by lowering the 

digestibility of NSPs and increasing the microbial biomass (22). 

The fecal concentration of neutral NSPs seemed to be lowered by the presence of alginate 

in ALG and MIX (Figure 5–2), mainly because of the presence of alginate in the faeces, 

which diluted the other components. The neutral NSPs concentration in the faeces, 

therefore, was not indicative for the digestibility of neutral NSPs. The digestibility of 

neutral NSPs (Table 5–4) was lower for ALG-fed pigs than for CON-fed pigs on day 14, 
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but the effect was less than the effect found for RS. Alginate was not expected to be able to 

delay the utilisation of the neutral NSPs because it is known as a slowly fermented dietary 

fibre. Alginate has been reported to be able to inhibit proteases (1). It is possible, therefore, 

that some of the polysaccharide-degrading enzymes produced by the microbiota were 

inhibited by alginate, resulting in lower digestibility of neutral NSPs. With the inclusion of 

resistant starch in the diet, the digestibility of neutral NSPs for MIX-fed pigs on day 14 was 

lower than that for ALG-fed pigs, thus confirming that resistant starch was preferred by the 

microbiota over neutral NSPs and alginate.  

 
Figure 5–2. Concentration of neutral non-starch polysaccharides (NSPs) in the faeces of pigs fed with 
control diet (CON) or experimental diets containing retrograded starch (RS), alginate (ALG), or a 
combination of retrograded starch and alginate (MIX). Data points are averages from 2 pigs, except 
for CON on day 39 (n=1). Error bars represent the standard deviation. At day -7, all pigs were fed a 
basal diet, from day -4 to 0 pigs were gradually adapted to experimental diets and from day 0 onwards 
pigs were fed solely their experimental diet. 

Between day 14 and 39, the digestibility of neutral NSPs for one of the CON-fed pigs was 

rather constant. There was no sample obtained from the other CON-fed pig on day 39. In 

contrast, the digestibility increased for RS-, ALG- and MIX-fed pigs. These results indicate 

that the CON-fed pigs were already adapted to the diet after 14 days, whereas the pigs fed 

with RS, ALG and MIX were still adapting. Pig microbiota was previously reported to take 

up to 6 weeks to be adapted to corn-based diet containing sugar beet pulp or wheat bran 

(34).  

It was also observed that on day 39, the digestibility of neutral NSPs for RS-fed pigs was 

close to that of the CON-fed pigs. This substantiates the observation for fecal DM that the 

effects of RS on fecal parameters were limited to the early adaptation period, which 

probably occurred because after adaptation, resistant starch was fermented in the proximal 

part of the large intestine (23). In addition, the colon length of growing pigs might be 
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increased by resistant starch (41), so that the microbiota had enough opportunity to adapt to 

and utilise the remaining NSPs before it was excreted in the faeces.  

5.3.5. Degradation of alginate 

Alginate was present in significant amount (~20 %(w/w), dwb) in the faeces of both ALG-

fed and MIX-fed pigs even after 74 days of adaptation (Figure 5–3A). The presence of 

alginate in the faeces may be related to the high fecal water content (1), as was described 

previously (Section 5.3.2). The relatively high amount of alginate in the faeces also 

indicated that the fermentation of alginate in the large intestine was limited. This was 

supported by the alginate digestibility, which shows that up to day 39, less than 55 % of the 

alginate in the diet was utilised by the microbiota.  

 
Figure 5–3. Concentration of insoluble and soluble alginate (A) and ratio of guluronic acid to 
mannuronic acid (G:M ratio) in the soluble and insoluble alginate (B) in the faeces of pigs fed with a 
diet containing alginate (ALG) or a combination of alginate and retrograded starch (MIX). Data 
points are averages from 2 pigs. Error bars represent the standard deviation. At day -7, all pigs were 
fed a basal diet, from day -4 to 0 pigs were gradually adapted to experimental diets and from day 0 
onwards pigs were fed solely their experimental diet. 
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Alginate is composed of guluronic acid and mannuronic acid. In order to investigate the 

extent of utilisation of the two uronic acids, apparent digestibility was calculated separately 

for these uronic acids. Table 5–4 shows that M was more easily utilised by the microbiota 

than G. The preference of the microbiota to use M over G was also supported by the G:M 

ratio of alginate in the faeces (Figure 5–3B), which was higher than the ratio in the diet 

already on day 1. This shows that the microbiota was able to utilise M early during the 

adaptation period. The preferred utilisation of M to G by pig gut microbiota has been 

previously indicated (10), but the extent of utilisation was not quantified. 

The digestibility of guluronic acid, mannuronic acid (Table 5–4), and the G:M ratio (Figure 

5–3B), increased between day 14 and day 39, suggesting that the microbiota was still 

adapting after 14 days. With longer feeding time up to day 74, the G:M ratio increased 

further (Figure 5–3B). The changes between day 39 and 74 suggest that the microbiota was 

still adapting to alginate, even after 39 days. This finding further substantiates the long 

adaptation time needed by the gut microbiota after a change in the diet (34).  

Comparison between the digestibility of alginate in ALG-fed pigs and in MIX-fed pigs 

indicated that the presence of resistant starch decreased the digestibility of both G and M in 

alginate at least up to day 39 (Table 5–4), and tended to increase the amount of soluble and 

insoluble alginate in the faeces (Figure 5–3A). Also, the G:M ratio for the insoluble 

alginate was lower when resistant starch was present (Figure 5–3B), indicating a less 

efficient utilisation of M in MIX-fed pigs compared to in ALG-fed pigs. These results point 

out that the inclusion of resistant starch in the diet altered the microbial composition, such 

that it had lower ability to utilise both soluble and insoluble alginate, as well as lower 

ability in utilizing M in the insoluble alginate.  

5.3.6.  Characterization of fecal alginate 

In order to characterise alginate and its degradation products which were present in the 

faeces, the compounds in the faeces was fractionated based on their solubility in hot water. 

5.3.6.1. Insoluble fecal alginate 

More than 90% of the fecal alginate was insoluble in hot water. The G:M ratio of the 

insoluble alginate was relatively high. Alginate G-blocks can be precipitated in the presence 

of calcium or other divalent cations (8), which may inhibit its degradation by alginate lyase 
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(42). Therefore, it was attempted to solubilise the insoluble alginate with the aid of EDTA 

as a chelating agent. Nevertheless, only 40-60 % of alginate was extracted, suggesting that 

the insoluble alginate might also be associated with other compounds, such as proteins (43) 

or phenolic compounds (44).  

The EDTA-extracted alginate had a molecular mass of ~100 kDa (DP >500; Figure 5–4). 

The alginate used in the diet had a molecular mass of approximately 225 kDa. It has been 

reported that the G-blocks from different species of algae can reach DP >100 (4). The 

EDTA-extracted alginate, therefore, was probably consisted of long G-blocks with short 

MG-blocks.  

The molecular mass of the extracted alginate did not differ significantly between adaptation 

times (data not shown) and between diets (Figure 5–4). Thus, the M part of the insoluble 

alginate which was utilised over time as shown by the increase of G:M ratio were mainly 

located at the extremities of the molecule.   

 
Figure 5–4. HPSEC elution pattern of extracted alginate from the faeces of pigs fed with a diet 
containing alginate (ALG) or a combination of alginate and retrograded starch (MIX) for 74 days. 
Data points are averages from 2 pigs. 

5.3.6.2. Soluble fecal alginate 

Less than 10% of the fecal alginate was soluble in water. Saturated and unsaturated AOS 

with different degree of polymerization (DP) could be identified using an UHPLC-MSn 

method (30). Isomers with DP 2–4 could also be partially separated and putatively 

identified with the aid of the MSn profile (45). Although quantification was not possible 
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due to the absence of standard AOS, the amount of AOS for the 2 treatments could be 

compared (Figure 5–5). 

 
Figure 5–5. Relative amount of alginate oligosaccharides (AOS) DP 2-8 in the faeces of pigs fed with 
alginate (ALG) or a combination of retrograded starch and alginate (MIX). Data points are averages 
from 2 pigs. Error bars represent the standard deviation. At day -7, all pigs were fed a basal diet, from 
day -4 to 0 pigs were gradually adapted to experimental diets and from day 0 onwards pigs were fed 
solely their experimental diet. 

The total AOS (DP 2–8) content in the faeces of MIX-fed pigs was higher that of ALG-fed 

pigs, especially on day 7. The accumulation of AOS in the faeces of MIX-fed pigs on day 7 

may suggest that the degradation of alginate took place in the distal colon and that the 

microbiota has not produced enough enzymes to utilise all of the AOS before they were 

excreted in the faeces. On day 74, the total AOS content of MIX-fed pigs was similar to 

that of the ALG-fed pigs, showing that between day 39 and 74 the microbiota was still 

adapting and utilizing AOS more efficiently in time. For MIX-fed pigs, individual 

variations were evident, shown by the large error bars. Detailed investigation on the 

individual variation is addressed elsewhere (30).  

In summary, this experiment demonstrated that fermentation of a dietary fibre in the large 

intestine depends not only on the properties of the fibre itself, but also on the other dietary 

fibres present in the diet. Adaptation time to dietary fibres also has an important influence 

on the extent of fibre utilisation by the microbiota. As a result of adaptation, the effects of a 

fibre that were observed in the faeces after 14 days of adaptation might diminish when the 

adaptation time was extended to 74 days. Thus, adaptation time should be considered 

cautiously for future experiments involving dietary fibres, especially those aimed to 

observe effects at the distal parts of the colon. 
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For alginate, it was evident that although alginate is known as a soluble fibre, the G-blocks 

of alginate could be precipitated in the large intestine, thus hindering its utilisation by the 

microbiota even after a long adaptation time. Considering the higher digestibility of M 

compared to G, the results could have been different if a high-M alginate was used in the 

experiment. Heterogeneous degradation among dietary fibres within one category is also 

possible for other dietary fibres such as pectin, arabinoxylan, β-glucans, etc. Future 

experiments involving dietary fibres, therefore, should provide more detailed information 

about the chemical characteristics of the fibre.  
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Abstract 

The research aimed to develop a method for analyzing specific alginate oligosaccharides 

(AOS) in a complex matrix such as pig faeces. The data obtained was used to study alginate 

degradation by the microbiota in the large intestine during adaptation, including the 

individual variation between pigs. A method using an UHPLC system with BEH amide 

column coupled with MSn detection was able to distinguish saturated and unsaturated AOS 

with DP 2–10. Isomers of unsaturated trimer and tetramer could be separated and 

annotated. In the faeces, saturated and unsaturated AOS were present. The presence of 

unsaturated AOS indicates that the microbiota produced alginate lyase. The microbiota 

utilised unsaturated AOS more than saturated AOS. The results also suggested that 

guluronic acid at the reducing end of AOS inhibit the utilisation by microbiota during the 

first weeks of adaptation. After adaptation, the microbiota was able to utilise a broader 

range of AOS. 
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6.1. Introduction 

Alginate is a linear polysaccharide that is composed of guluronic acid (G) and mannuronic 

acid (M) (1). As a dietary fibre, alginate is not absorbed in the small intestine and becomes 

a substrate for the microbiota, mainly in the large intestine (2). It has been shown that the 

digestibility of alginate by the microbiota in the large intestine of pigs (3) was limited 

compared to the digestibility of pectin (4), which is also mainly composed of uronic acids. 

Even after 39 days of adaptation to the alginate-containing diet, less than 60% of alginate 

was utilised by the microbiota in the large intestine (3). The remaining alginate was 

excreted in the faeces. Less than 10 % of the alginate in the faeces was soluble in hot water. 

This water-soluble fraction of alginate in the faeces may consist of alginate 

oligosaccharides (AOS).  

In vitro, AOS may have various physiological effects towards different cells, such as 

human keratinocyte (5), human endothelial cells (6), and neuron-like cells (7). It has also 

been shown that AOS were able to interact with the immune system of mice in vitro (8) and 

in vivo through oral administration (9). Moreover, AOS were demonstrated to have 

prebiotic activity in vitro (10) as well as in vivo in rats (11). Additionally, AOS was able to 

inhibit colonization of the large intestine of chickens by the pathogen Salmonella enteritidis 

(12). 

In most experiments, AOS used in the study were a mixture of unsaturated AOS produced 

from enzymatic degradation of alginate by alginate lyase. Such mixtures contain AOS with 

various degree of polymerization (DP) as well as isomers of AOS with the same DP. It was 

found that some effects were exerted by AOS with specific chemical structures (5, 6, 13). 

Therefore, it is of interest to develop analytical methodology for quantification of specific 

AOS in in vivo samples, such as intestinal digesta or faeces. 

AOS resulting from alginate degradation in the large intestine are present in a complex 

matrix. Hence, to be able to investigate which specific AOS are present in digesta or faecal 

samples, a method that can analyse specific AOS in complex matrices is necessary. Ideally, 

the method should be able to separate AOS based on the degree of polymerization (DP) as 

well as separate isomers of the same DP. 
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Current methods for analyzing specific AOS often involve tedious purification of the 

specific isomers before analyzing those using MS and NMR (14, 15). Although this method 

provides the highest accuracy, it may not be applicable for biological samples because the 

amount of sample available for analysis is often limited and the concentration of AOS in 

the sample might not allow purification to single isomers.  

Separation techniques, such as high performance anion exchange chromatography with 

pulsed amperometric detection (HPAEC-PAD) and capillary electrophoresis (CE) were 

able to separate AOS with different DP and isomers (16-20). Nevertheless, purified 

standards are necessary to be able to identify the compounds, and some compounds co-

eluted (17). To overcome the need of purified standards and the interference by co-elution 

of different compounds, the separation methods can be coupled with mass spectrometry 

detection (MSn). The MSn detection allows identification of the compounds based on their 

molecular mass and fragmentation pattern. Hence, the use of MS enables the detection of 

compounds that co-elute, if they have different molecular masses. Unfortunately, the 

HPAEC methods used, which could separate AOS based on DP and isomers (17), are not 

compatible with the MSn detector due to the high salt concentration used during analysis. 

Other LC-MSn methods that has been applied for AOS includes the use of MSn-compatible 

AEC (21), and reversed-phase liquid chromatography (RP-LC) (22), but the isomers were 

not separated (21) or were not identified (22). 

Recently, LC-MSn with porous graphitised carbon column (23) or with Ultrahigh 

Performance Liquid Chromatography (UHPLC) Ethylene Bridged Hybrid (BEH) amide 

column (24, 25) have been used to separate and identify various neutral and acidic 

oligosaccharides. For acidic oligosaccharides, such as pectins, the UHPLC-BEH amide 

column, which separates compounds based on the principle of hydrophilic interaction 

chromatography (HILIC), was able to separate unsaturated and saturated pectin 

oligosaccharides, as well as pectin oligosaccharides with different degree of methylation or 

acetylation (24, 25). The method used for pectins is assumed to be applicable for alginate, 

because both pectins and alginate have a backbone of uronic acids. 

Hence, the present research aimed to develop an LC-MSn method using an UHPLC-BEH 

amide column to separate and identify specific AOS in a complex matrix. It was also aimed 
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to analyse AOS present in the faeces of alginate-fed pigs, to understand how alginate is 

degraded by the microbiota in the large intestine of the pigs during adaptation. 

6.2. Materials and methods 

6.2.1. Preparation of alginate standards  

A G-rich alginate and an M-rich alginate were obtained from SKW Biosystems (Rubi, 

Spain). The alginate (Pectacon M-5761) that was used for the in vivo study (3) was from 

Acatris (Bunschoten, The Netherlands).  

The alginates were fractionated to obtain M-rich and G-rich alginate fractions using the 

method described by Haug, et al. (26). In short, the alginates were partially hydrolyzed in 1 

M oxalic acid at 100 °C for 10 h. The fraction insoluble in the acid was solubilised at 

neutral pH, followed by pH adjustment to 2.85. At pH 2.85, the insoluble fraction (G-rich 

fraction) was subsequently separated from the soluble fraction (M-rich fraction) by 

centrifugation (1500 ×g, 10 min, 25 °C). After neutralization to pH 7.0, the alginate 

fractions were precipitated in 80 %(v/v) ethanol and dried overnight in a vacuum oven at 50 

°C. 

Unsaturated AOS were prepared by dissolving alginate or alginate fractions in water (5 

mg/mL) and adjusting the pH to 7.0 ±0.2. Alginate lyase from Sphingomonas sp. 

(Megazyme, Bray, Ireland) was diluted to 500 µg protein/mL using 100 mM Tris buffer pH 

7.2 containing 1 mg/mL BSA as was recommended by the supplier. An aliquot of 10 µL 

enzyme was added to 1 mL substrate solution. After incubation in a shaking incubator (40 

°C, 24 h), the enzyme was inactivated by boiling for 10 min.  

Saturated AOS were prepared by dissolving alginate or alginate fractions in water at 5 

mg/mL. After adjusting the pH of the solution to 4.0 ±0.2 using HCl solution, the alginate 

was partially hydrolyzed at 120 °C for 3 h (27). 

For analyses using UHPLC-MSn, 100 µL of the 5 mg/mL solutions of AOS were diluted to 

1 mg/mL by adding 25 µL ammonium formate buffer (eluent C in Section 2.3), 125 µL 

water, and 250 µL acetonitrile. After mixing, the mixture was centrifuged (14,000 ×g, 5 

min, 20 °C), and the supernatant was used for analysis. 
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6.2.2. Extraction of AOS from pig faeces 

Freeze-dried faeces were obtained from pigs fed with a diet containing retrograded starch 

and alginate. The experimental setup has been described elsewhere (3). The experimental 

protocols were reviewed and approved by the Ethical Committee of Wageningen University 

(Wageningen, The Netherlands; DEC nr. 2011088.c).  

AOS were extracted by suspending 500 mg of freeze-dried faeces in 5 mL water, followed 

by boiling for 15 min with frequent mixing. After centrifugation (14,000 ×g, 5 min, 20 °C), 

the supernatant was collected, and the pellet was washed with 3 mL water. The supernatant 

from the washing was combined with the first supernatant, as crude extract of soluble 

materials. 

The hydrophobic compounds in the extract were removed using Sep-Pak C18 cartridges 

(Waters Corporation, Milford, MA, USA), which had been activated with methanol and 

washed with water. The flow-through of the sample was collected, and cartridge was 

washed once with water. The washing was combined with the flow-through of the sample. 

After drying under a stream of air, the dried soluble compounds was re-solubilised in 4 mL 

of water. 

An aliquot (225 µL) of this solution was mixed with 250 µL acetonitrile and 25 µL 

ammonium formate buffer (eluent C in Section 2.3). After centrifugation (14,000 ×g, 5 min, 

20 °C), the supernatant was used for analysis using UHPLC-MSn.  

6.2.3. Analysis of AOS 

The samples were analysed using an Accela UHPLC system (Thermo Fisher Scientific, San 

Jose, CA, USA) coupled with a Velos Pro ESI-Ion Trap-MSn (Thermo Fisher Scientific). 

The separation was performed  using an Acquity UPLC BEH Amide column (1.7 µm, 2.1 

mm × 150 mm; Waters Corporation) preceded by a VanGuard BEH Amide precolumn (1.7 

µm, 2.1 mm × 50 mm), which was kept at 35 °C. An aliquot of 5 µL sample was injected 

onto the column using an autosampler, while the sample tray was kept at 20 °C. Before 

injecting the sample, the needle was washed with 20 %(v/v) and 75 %(v/v) acetonitrile 

solution, as strong and weak wash, respectively (24).  

The eluents used were water containing 1 %(v/v) acetonitrile (A), acetonitrile (B), and a 

buffer solution containing 200 mM ammonium formate, 2 %(v/v) formic acid, and 2 %(v/v) 
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acetonitrile (C). A gradient elution was used for analyzing the AOS. The buffer (eluent C) 

was constantly used at 5 %(v/v) of total eluent. The elution started with isocratic elution of 

20 %A for 1 min, followed by a 50 min gradient from 20 %A to 45 %A to elute the AOS. 

The column was then cleaned from the remaining compounds using a gradient to 55 %A 

within 4 min and isocratic elution of 55 %A for 1 min. Re-equilibration of the column with 

20 %A was performed for 14 min before injection of the next sample. The flow rate was 

constant at 500 µL/min, and a 1:9 ASI flow splitter (Analytical Scientific Instruments, El 

Sobrante, CA, USA) was used so that only 50 µL/min of eluent went into the MSn system 

for detection. 

The MS detection was in negative mode, with source heater temperature at 225 °C and 

capillary temperature at 350 °C. The ion source voltage was -4.5 kV. The sheath gas, 

auxiliary gas and sweep gas flow were 33, 10 and 2, respectively (arbitrary units). The MSn 

collection parameters was set according to the parameters described elsewhere (24), with 

the scan range of the MS set at m/z 300–2000. The data were processed using Xcalibur 

version 2.1.0 SP1 (Thermo Fisher Scientific).  

6.2.4. Molecular mass distribution 

Molecular mass distribution of alginate or alginate fractions were analysed using High 

Performance Size Exclusion Chromatography (HPSEC) as described elsewhere (3).  

6.2.5. Alginate content, uronic acid composition, and apparent 

digestibility of alginate in pigs 

The analyses of uronic acid composition of alginate, alginate content in pig faeces, and the 

calculation of the apparent digestibility were performed as described elsewhere (3). 

6.3. Results and discussion 

6.3.1. Uronic acid composition of reference alginate materials  

The uronic acid compositions of alginate fractions obtained after partial hydrolysis in 1 M 

oxalic acid and precipitation at pH 2.85 of G-rich alginate, M-rich alginate and Pectacon 

alginate is presented in Table 6–1. The G-rich fraction with the highest G:M ratio (18.6) 

was obtained from G-rich alginate, and the M-rich fraction with the lowest G:M ratio (0.2) 
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was obtained from M-rich alginate. These fractions were used further as sources of AOS, to 

assist in the identification of AOS isomers produced from Pectacon alginate, which was the 

alginate used in the in vivo study (Section 6.3.3).  

Table 6–1. Uronic acid composition of alginate and alginate fractions obtained from partial acid 
hydrolysis and separation by precipitation at pH 2.85. 
Sample mol% 

G:M 
G M 

M-rich alginate 49 51 1.0 
 Insoluble at pH 2.85 92 8 12.0 

 Soluble at pH 2.85
1
 13 87 0.2 

    G-rich alginate 78 22 3.5 

 Insoluble at pH 2.85
2
 95 5 18.6 

 Soluble at pH 2.85 22 78 0.3 
    Pectacon M-5761 70 30 2.3 
 Insoluble at pH 2.85 95 5 17.9 
 Soluble at pH 2.85 18 82 0.2 
G: guluronic acid, M: mannuronic acid. 
1 and 2: Fractions used for further analyses; 1M-rich fraction; 2G-rich fraction. 

6.3.2. Separation of specific alginate oligosaccharides 

In order to obtain unsaturated AOS, the G- and M-rich alginate fractions and Pectacon 

alginate were degraded using alginate lyase. Saturated AOS were obtained by partial 

hydrolysis of alginates in HCl solution at pH 4.0. The extent of alginate degradation by the 

two depolymerization methods is illustrated by the change in molecular mass as analysed 

by HPSEC (Figure 6–1). The alginate and alginate fractions were degraded by acid, as 

shown by the lower molecular masses of the molecules in the acid hydrolysates compared 

to the molecular mass of the starting material. It was also shown that the extent of 

depolymerization by acid was similar for the three alginate and alginate fractions.  
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Figure 6–1. HPSEC elution patterns of M-rich alginate fraction (A), G-rich alginate fraction (B), and 
Pectacon alginate (C) before (blank) and after partial hydrolysis in acid at pH 4.0 (hydrolysate) or 
after digestion with alginate lyase (lyase digest). The upper x-axis shows the molecular mass based on 
calibration using pullulan standards. 

Figure 6–1 also demonstrates that the alginate and alginate fractions were considerably 

degraded by alginate lyase. Pectacon alginate and M-rich alginate fraction was more 

degraded by alginate lyase than the G-rich alginate fraction (Figure 6–1B). This can be 

explained by the specificity of the commercial alginate lyase towards poly-β-D-

mannuronate, as was described by the supplier. Nevertheless, the enzyme was not strictly 

specific, and part of the lyase digest of the G-rich alginate fraction had similar molecular 

mass with the hydrolysate. Therefore, AOS are expected to be present in lyase digests and 

hydrolysates of the alginate and alginate fractions. 
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The unsaturated AOS in the lyase digests and saturated AOS in the hydrolysates were then 

analysed by UHPLC-MSn. The elution gradient that was previously developed for 

galacturonic acid oligomers (24) was modified to obtain a better separation between AOS 

isomers. Unsaturated and saturated AOS with DP 2-10 were identified based on the m/z 

values of the parent ions (Figure 6–2). Clusters of peaks with similar m/z values are 

isomers of AOS with the same DP. Figure 6–2 showed that unsaturated AOS eluted before 

saturated AOS with the same DP. This has also been found for unsaturated and saturated 

pectin oligomers analysed using BEH amide column, and was assumed to be due to the lack 

of the hydroxyl group at C4 position of the uronic acid residue at the non-reducing end of 

unsaturated pectin oligomers (24).  

 

Figure 6–2. Elution patterns of unsaturated (A) and saturated (B) alginate oligosaccharide (AOS) 
separated by UPLC BEH Amide column coupled with MS detection. The AOS were obtained from 
Pectacon alginate after digestion by alginate lyase and after partial acid hydrolysis, respectively. The 
numbers denote the degree of polymerization of the AOS. 
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6.3.3. Building an alginate oligosaccharide UHPLC-MS
n
 library 

The elution gradient used for AOS was able to partially separate isomers, especially those 

with DP 2-4, as indicated by the clusters of peaks with similar m/z values (Figure 6–2). Due 

to the unavailability of purified standards for each isomer, the isomers were identified 

based on the paper of Zhang, et al. (27), in which MS2 spectra of different purified AOS 

were described. The MS2 fragments were annotated according to the nomenclature 

described by Domon and Costello (28). 

Identification of isomers was first attempted for the unsaturated trimers (Figure 6–3). 

Unsaturated AOS have a uniform non-reducing ends because 4-deoxy-L-erythro-hex-4-

enopyranosyluronate (∆; ‘unsaturated uronic acid residue’) is formed at the non-reducing 

end regardless of the type of the uronic acid (29). Hence, there are 4 possible isomers of 

unsaturated trimer: ∆GG, ∆GM, ∆MG, and ∆MM. In the Pectacon alginate lyase digest, 

there seemed to be two isomers of unsaturated trimer, as shown by the two peaks in Figure 

6–3A.  

 
Figure 6–3. Zoomed-in UHPLC-MSn patterns of unsaturated trimer isomers from Pectacon alginate 
and alginate fraction rich in mannuronic acid (M-rich fraction). The internal residues were identified 
based on the patterns of d-Z2 (m/z=307; A,B). The reducing end was annotated based on the 
[2,5A3]/[

0,4A3] intensity ratio (C,D).  ∆: 4-deoxy-L-erythro-hex-4-enopyranosyluronate, G: guluronic 
acid residue, M: mannuronic acid residue, X: unknown uronic acid residue. 
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The identification of the internal residues was based on the presence of decarboxylated Zn 

ions (d-Zn) in the MS2 spectra. It has been reported that an AOS with an M internal residue 

produced a fragment of decarboxylated Zn ions (d-Zn), whereas an isomer with a G internal 

residue did not produce this fragment (27). For unsaturated trimer, the respective ion is d-Z2 

(m/z 307). Figure 6–3A showed that the trimer eluting at 16.53 min had the d-Z2 fragment 

in its MS2 spectra. Hence, it could be concluded that this trimer contained an internal M 

residue. In the MS2 spectra of the other trimer, which was eluting at 15.47 min, the d-Z2 

fragment in its MS2 spectra was also present, although the intensity was low. Nevertheless, 

the highest intensity was reached at a slightly lower retention time (15.24 min), indicating 

that there was co-elution of different isomers. By comparing the results with those of the 

lyase digest of M-rich alginate fraction (Figure 6–3B), it became clear that there is another 

trimer with an M internal residue eluting at around 15.02 min. As the retention times of the 

same compounds from the same sample can shift up to 0.3 min due to analytical variations, 

it is possible that the isomer in Pectacon digest that eluted at 15.24 min is the same as the 

isomer in the digest of M-rich alginate fraction that eluted at 15.02 min. Therefore, it could 

be concluded that the Pectacon alginate lyase digest contained 3 isomers of unsaturated 

trimer: two isomers with an M internal residue, one of which was present in low amount 

and partly co-eluted with the isomer containing a G-internal residue. The results illustrate 

that an overlay of the full MS base peak chromatogram for m/z 527 and the MS2 base peak 

chromatogram for d-Z2 (m/z 307) can assist the identification of co-eluting isomers when 

they have different internal residues.  

After the internal residues were recognised, the reducing ends of the unsaturated trimers 

were annotated by comparing the intensities of internal fragmentation products [2,5A3] and 

[0,4A3], which have m/z values of 449 and 453, respectively. Zhang, et al. (27) reported that 

the ratio would be lower when the reducing end was G than when the reducing end was M. 

As the ratio is also influenced by the internal uronic acid residues, the method is best 

applicable for annotating isomers that differ only at the reducing end. By overlaying the 

ratio obtained at every time point with the Full MS base peak chromatogram for DP 3 (m/z 

527), the reducing ends of the unsaturated trimer with M internal residue could be 

identified (Figure 6–3C, D). For the isomer with G internal residue (retention time 15.47 

min), the [2,5A3]/[
0,4A3] ratio was low. Hence, the reducing end was annotated as G, 

representing an isomer of ∆GG (Figure 6–3C). Using this method, the 3 isomers of 
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unsaturated trimer could be identified. ∆MG eluted before ∆MM, suggesting that isomers 

with G at the reducing end elute earlier than similar isomers with M at the reducing end, as 

is summarised in Figure 6–4A. 

A similar approach was used to annotate the isomers of unsaturated tetramer 

(Supplementary information, Figure 6–S1), but the annotation of the reducing end was 

more complicated because of the large overlap between the peaks (Figure 6–S1C,D). In this 

case, the information obtained from the trimers, that isomers with G at the reducing end 

may elute earlier, was used to annotate the reducing ends. As a result, four isomers of 

unsaturated tetramer were putatively identified (Figure 6–4B). 

 
Figure 6–4. Summarised overview of the UHPLC-MSn elution patterns of isomers of unsaturated 
alginate trimers, m/z 527 (A), unsaturated alginate tetramers, m/z 703 (B), and saturated alginate 
trimers, m/z 545 (C) separated on UPLC BEH Amide column with online MSn detection. ∆: 4-deoxy-
L-erythro-hex-4-enopyranosyluronate, G: guluronic acid, M: mannuronic acid. The brackets indicate 
putative annotation of the uronic acid residue. 
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For isomers of saturated AOS trimer, the annotation was more challenging, because the 

non-reducing end can be either a G or an M residue.  As a consequence, theoretically there 

can be 8 isomers for a trimer: GGG, GGM, GMG, MGG, MGM, MMG, GMM and MMM. 

Following the described approach, the internal residues were identified from the d-Z2 

fragment, and the reducing end as well as the non-reducing end was annotated putatively by 

comparing the [2,5A3]/[
0,4A3] ratio, combined with the assumption that the presence of G 

decreases the retention time. In addition, the abundance of the isomers in G-rich alginate 

fraction or M-rich alginate fraction (Supplementary information, Figure 6–S2) was also 

taken into account. For example, an isomer of saturated AOS trimer that is abundant in G-

rich fraction (G:M ratio 18.6) was expected to be rich in G. As a result, seven isomers in 

the acid hydrolysate of Pectacon alginate were putatively annotated. The elution behavior 

as well as the annotation of isomers of saturated trimer is summarised in Figure 6–4C.  

Figure 6–4 shows that part of the peak clusters illustrated in Figure 6–2 was formed by 

isomers of AOS. Despite the inability to absolutely annotate each isomer peak, the analysis 

method described above was proven to be useful for analyzing specific AOS in complex 

mixtures. The information obtained and the AOS UHPLC-MSn library was then applied for 

analyzing AOS in pig faeces, in order to understand the mechanism of alginate degradation 

in the large intestine of pigs.  

6.3.4. Alginate oligosaccharides in pig faeces 

In previous research, it was shown that the faeces of alginate-fed pigs contained 15-20 % 

alginate based on dry matter, even after 74 days of adaptation; with less than 10 %(w/w) of 

the alginate being water-soluble (3). An example of the elution patterns obtained from the 

water-soluble faecal extract is presented in Figure 6–5. In the base peak chromatogram 

(Figure 6–5A), a number of AOS could already be recognised. By filtering the base peak 

chromatogram for m/z values specific for AOS parent masses, it was shown that both 

unsaturated AOS (Figure 6–5B) and saturated AOS (Figure 6–5C) were present in the 

faeces.  
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Figure 6–5. Elution patterns of alginate oligosaccharides (AOS) extracted from the faeces of an 
alginate-fed pig (Pig E, day 7), after separation by UPLC BEH Amide column coupled with MS 
detection. The base peak chromatogram (m/z 300–2000) (A) was filtered for the m/z values of 
unsaturated AOS (B) and saturated AOS (C) as necessary. The numbers denote the degree of 
polymerization of the AOS. 

Assuming that the MS signal intensities are similar for DP 2-8, the total amount of AOS is 

reflected by the peak area of the AOS. For the comparison between samples from the same 

pig, the AOS peak area for a faecal sample from a given pig was compared relatively to the 

highest AOS peak area achieved for the same pig (Figure 6–6). For both pigs, the highest 

total AOS content in the faeces was achieved on day 7. The increase of total AOS content 

in the faeces on the first days of adaptation suggested that the microbiota was adapting to 

alginate, and alginate-degrading enzymes were produced. Nevertheless, after 74 days the 

total AOS content in the faeces of both pigs were similarly low, suggesting besides being 

able to degrade alginate to AOS, the microbiota was also able to utilise the AOS efficiently. 

Between day 7 and 74, there was individual variation between the pigs in alginate 

degradation, which will be addressed in more detail in Section 6.3.5. 
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Figure 6–6. Relative amounts of AOS in the faeces of pigs during 74 days feeding with alginate-
containing diet. The total AOS content in the faeces of a given pig is expressed in comparison to the 
highest total AOS content reached for the same pig, based on total AOS peak area as analysed by 
UHPLC-MSn. 

The same data obtained from the UHPLC-MSn that was used to determine the total AOS 

content, was also used to quantify unsaturated and saturated AOS of different DP. Early in 

the adaptation period (day 1-3), the relative amount of unsaturated AOS was lower (pig E), 

or similar (pig V) to the amount of saturated AOS (Figure 6–7). As the pigs adapted to the 

diet, the proportion of the unsaturated AOS increased, with individual differences between 

pigs. The highest proportion of unsaturated AOS was reached on day 39 for Pig E, whereas 

it was reached on day 7 for pig V. After reaching its maximum, the proportion of 

unsaturated AOS declined gradually along the feeding period.  

The increasing amounts of unsaturated AOS during the early period of adaptation (Figure 

6–7) showed that the inclusion of alginate in the diet stimulated the production of alginate 

lyase by the microbiota in the large intestine of pigs. It has been reported that alginate 

lyase, which comprises the majority of alginate degrading enzymes (29), is also produced 

by rumen microbiota (30) and human large intestinal microbiota (31).  

With the assumption that alginate lyases were the main alginate-degrading enzymes 

produced by the microbiota, the saturated AOS were formed only from the non-reducing 

end of every alginate molecule. Hence, saturated AOS were expected to be present in small 

amounts compared to unsaturated AOS. In contrast, on day 1-3 the amounts of saturated 

AOS were relatively high compared to unsaturated AOS (Figure 6–7). This indicates that 

before the microbiota was adapted to alginate, saturated AOS accumulated. With longer 
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adaptation period, the microbiota has more ability in utilizing saturated AOS, but the 

utilisation of saturated AOS was still lower than the utilisation of unsaturated AOS, as was 

shown by the increasing proportion of saturated AOS relative to that of unsaturated AOS 

between day 39 and day 74 for both pigs.  

 
Figure 6–7. Proportions of unsaturated and saturated alginate oligosaccharides (AOS) with different 
degree of polymerization (DP) in the faeces of pigs during 74 days feeding with alginate-containing 
diet. The proportions are based on the total AOS peak area based on UHPLC-MSn elution patterns. 

By zooming in on the AOS elution patterns for the faecal samples (Figure 6–5) and 

comparing the retention times and the MSn spectra of the AOS isomers that were present in 

the faeces with the retention times of putatively identified AOS (Section 6.3.3), the 

different isomers of saturated trimer, unsaturated trimer, and unsaturated tetramer of the 

AOS in the faecal samples could be annotated. Figure 6–8 depicted the identified AOS, 

which were present in the faecal samples on day 7. For both pigs, the dominant unsaturated 

trimer was ∆GG, followed by ∆MG (Figure 6–8A). The dominant unsaturated tetramers 

were ∆GG(G) and ∆MM(G) (Figure 6–8B). AOS composed of only M residues (∆MM and 

∆MMM) were present in very low amounts. From the results of the apparent digestibility 

(Table 6–2), it is shown that M was utilised more than G. Hence, it is concluded that the 

low amount of ∆MM and ∆MMM was a result of extensive utilisation and not because of a 

low digestibility of M by the microbiota. 

The preferential utilisation of ∆MM and ∆MM(M) over ∆MG and ∆MM(G) up to day 7 

indicates that the presence of G at the reducing end inhibits the utilisation of the AOS in a 

non-adapted situation. This was also supported by the remaining saturated trimers (Figure 
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6–8C). Nevertheless, after a longer adaptation period up to 74 days, there was no 

accumulation of specific AOS (results not shown), which means that after adaptation the 

microbiota was able to utilise a broad variation of AOS.  

 

Figure 6–8. Zoomed-in UHPLC-MSn elution patterns of unsaturated alginate oligosaccharides (AOS) 
timer (A), unsaturated AOS tetramer (B), and saturated AOS trimer (C) in the faeces of two alginate-
fed pigs 7 days after the pigs were fed solely with experimental diets. ∆: 4-deoxy-L-erythro-hex-4-
enopyranosyluronate, G: guluronic acid, M: mannuronic acid. The brackets indicate putative 
annotation of the uronic acid residue. The complete elution pattern of the AOS in the faeces of Pig E 
can be viewed in Figure 6–5. 

6.3.5. Individual variation between pigs in alginate degradation 

The AOS composition in the faeces was also used for investigating individual variation 

between the two pigs used in this study, specifically on alginate degradation in the large 

intestine. Figure 6–7 shows that the highest proportion of unsaturated AOS was achieved 

faster for pig V than for pig E. This result seemed to indicate that pig V adapted to alginate 

more quickly than pig E. This hypothesis was supported by the comparison of the total 
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AOS content of the samples (Figure 6–6). Although both pigs reached the highest total 

AOS content on day 7, for pig V it decreased sharply between day 7 and day 14. On the 

contrary, the total AOS content for pig E was about constant up to day 39. The steep 

decline of total AOS content for pig V indicated rapid utilisation of AOS, which signifies 

quick adaptation to alginate. 

Table 6–2. Total and soluble alginate contents and apparent digestibility of alginate in the faeces of 
alginate-fed pigs during a feeding period up to 74 days. 

Time (days) Soluble alginate Total alginate Apparent digestibility 

%(w/w) G:M ratio %(w/w) G:M ratio G M 

Pig E 

14 1.8 2.2 21.8 4.5 0.10 0.54 

39 1.7 1.9 23.6 4.8 0.21 0.61 

74 0.5 2.7 17.0 9.4 n.a. n.a. 

Pig V  

14 0.9 2.0 21.2 4.6 0.16 0.57 

39 0.9 1.6 23.9 4.5 0.24 0.61 

74 0.4 1.9 19.1 6.1 n.a. n.a. 

G: guluronic acid, M: mannuronic acid, n.a.: apparent digestibility for day 74 could not be calculated 
because the sample did not contain any indigestible marker. 

Individual variation between pigs is also evident from the apparent digestibility data (Table 

6–2). On day 14, the digestibility of G for pig E (0.10) was lower than that for pig V (0.16). 

This again supports the assumption of rapid adaptation of pig V compared to pig E. After 

adaptation for 39 days, the digestibility of G and M were similar for the two pigs, but the 

faeces of pig E contained more soluble alginate compared to pig V. On day 74, despite 

having similar soluble alginate levels, pig E had a lower total alginate content with a higher 

G:M ratio than that of pig V. The soluble alginate content in the faeces of pig E also had a 

higher G:M ratio than in the faeces of pig V. With a high G:M ratio for soluble alginate, it 

was expected that there would be relatively more G-containing AOS in the faeces of pig E 

on day 74. However, this difference was not observed in the AOS profile due to the very 

low amounts of AOS with DP 2-4, and the inability to identify isomers larger than DP 4, 

which were present in higher amounts than the smaller AOS (Figure 6–7). Nevertheless, the 

lower total alginate content and higher G:M ratio on day 74 suggest that the microbiota in 

pig E may have a higher ability to solubilise and utilise G than the microbiota in pig V. 

These results show that the microbiota composition in the large intestine was not influenced 
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only by diet, but also by other factors. Individual genetic variation may also have an 

important role, as has been reported before (32).  

In summary, the presence of AOS in the faeces of alginate-fed pigs demonstrated that 

oligosaccharides are present in the large intestine as results of polysaccharide degradation. 

The ability to identify these oligosaccharides, such as demonstrated in this paper for AOS, 

is essential to be able to assess the presence of certain oligosaccharides once they are shown 

to be potentially physiologically active through metabolic processes in the large intestine.  

6.4. Supplementary information 

Figures for putative annotation of unsaturated tetramer, and saturated trimers are available 

as supplementary information (Section 6.7). 
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6.6. Supplementary information 

 

Figure 6–S1. Zoomed-in UHPLC-MSn patterns of unsaturated tetramer isomers from Pectacon 
alginate and alginate fraction rich in mannuronic acid (M-rich fraction). The internal residues were 
identified based on the patterns of d-Z2 (m/z=307) and d-Z3 (m/z=483) (A,B). The reducing end could 
not be annotated based on the [2,5A4]/[

0,4A4] intensity ratio (C,D). Annotation of the reducing end was 
based on the assumption that the presence of G at the reducing end will decrease the retention time. 
Brackets indicate putative annotation. ∆: 4-deoxy-L-erythro-hex-4-enopyranosyluronate, G: guluronic 
acid residue, M: mannuronic acid residue, X: unknown uronic acid residue. 
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Figure 6–S2. Zoomed-in UHPLC-MSn patterns of saturated trimer isomers from Pectacon alginate, 
alginate fraction rich in mannuronic acid (M-rich fraction) and alginate fraction rich in guluronic acid 
(G-rich fraction). The internal residues were identified based on the patterns of d-Z2 (m/z 307; A–C). 
The reducing end and the non-reducing end were putatively annotated based on the [2,5A3]/[

0,4A3] 
intensity ratio (D–F) and the presence of the isomer in M-rich and G-rich fractions. Brackets indicate 
putative annotation. G: guluronic acid residue, M: mannuronic acid residue, X: unknown uronic acid 
residue. 
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7.1. Motivation and aim of the research 

The research described in this PhD thesis was part of a larger project entitled ‘Food, fibre 

and health - an integrated approach’. The project aimed to study the role of dietary fibres in 

inducing satiation and prolonging satiety. As a part of the project, this research was aimed 

to investigate the changes undergone by different dietary fibres in the gastrointestinal tract 

(GIT). The approach used was characterisation of the dietary fibres used in in vitro and in 

vivo experiments, followed by characterisation of the remaining dietary fibres in the digesta 

obtained from the experiments. Hence, the degradation of individual dietary fibres and the 

formation of the degradation products could be monitored. The knowledge gained is 

expected to provide a basis for further research, which can be focused on the interaction of 

dietary fibres and its degradation products with the gut microbiota or with the cells of the 

host, including interactions which may lead to the feeling of satiety. 

7.2. Dietary fibres in the upper gastrointestinal tract 

Dietary fibres are not degraded in the upper GIT (1). The effects of dietary fibre in the 

upper GIT are mainly exerted by their physical properties, such as solubility, viscosity, and 

hydration properties (2). In vitro, these properties are often tested on isolated dietary fibres 

(3, 4) or crude fibre mixtures (5, 6). The physical properties of dietary fibres are determined 

by their chemical characteristics (2) and particle size (7), and are greatly influenced by 

various factors, such as thermal (8-10) or physical processing (7) during food preparation 

and interactions with other components in food (2, 11). Upon consumption, the physical 

properties of dietary fibres can also be influenced by gastrointestinal conditions (12) as well 

as by the way of consumption. The same dietary fibre may give different effects when it is 

supplied in hydrated form in liquid food or in its dehydrated form in capsules (13).  

In order to have an estimation of dietary fibre properties in the upper GIT, a simulation of 

mouth, stomach and small intestinal conditions, which was applied for lupin kernel fibre 

(5), was adapted for food products. The food products were also used for a human study 

(Chapter 2). The method includes treatment of the food product by α-amylase to mimic the 

condition in the mouth, acidification and protein digestion by pepsin to simulate the 

stomach, followed by neutralisation and digestion by pancreatic enzymes in the presence of 

bile. It was demonstrated that this relatively simple method could show how the dietary 
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fibres in cookies could influence the physical conditions in the upper GIT. With a small 

modification to adjust the volume of the food product, the method was also used for 

predicting the properties of pectin-containing liquid products in the mouth and in the 

stomach (13).  

The upper GIT simulation described in Chapter 2 is relatively simple. Hence, it can be used 

for screening for the type and dose of fibres in food products before performing in vivo 

studies related to dietary fibre properties in the upper GIT tract. The results of the 

simulation were able to partially explain the results of the in vivo study. It was found that 

alginate, which was gelling under the stomach condition, was more satiating than other 

fibres which were not gelling (Chapter 2). The gelling of alginate in the stomach has been 

shown in vivo, using MRI imaging (12). MRI imaging, however, is costly and cannot be 

used for screening purposes. 

The weak point of the method is that the possible interactions of the dietary fibres with 

other compounds, such as mucin and calcium, which are secreted by the gastrointestinal 

glands, were not included in the assessment. This might be the reason why the alginate-

containing cookies, which had a relatively low viscosity in the simulated mouth condition, 

were perceived as sticky by the participants of the in vivo study (Chapter 2). This 

discrepancy might be minimized using a more complex mixture of simulated saliva, gastric 

juice and small intestinal liquid as developed for analysing the bioavailability of 

mycotoxins (14).  

7.3. Dietary fibres in the large intestine 

7.3.1. In vitro fermentation 

In vitro fermentation is a method, which is often used to predict the fate of dietary fibres in 

the large intestine and to investigate the products of dietary fibre degradation by the 

microbiota (15). The results of in vitro fermentation of a broad variety of isolated dietary 

fibres (Chapter 3) showed that dietary fibres were fermented differently by the microbiota 

from both humans and pigs. The fermentation depended on the constituent monosaccharide 

and linkage composition, degree of polymerization, and the molecular conformation of the 

dietary fibres. It was concluded that the fermentation of fibres rich in uronic acids, such as 

pectin and alginate, results in higher proportions of acetate compared to the fermentation of 
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fibres rich in neutral constituent monosaccharides, such as guar gum and soy pectin. 

Although pigs are considered to be one of the most suitable model animals for dietary fibre 

degradation (16, 17), pig faecal microbiota fermented some fibres very differently 

compared to human faecal microbiota. For example, cellulose was well fermented by pig 

faecal microbiota, but it was hardly fermented by human faecal microbiota. On the 

contrary, the pig faecal microbiota hardly fermented xanthan gum, which was well 

fermented by human faecal microbiota. 

In vitro fermentation of single dietary fibre isolates is useful to unravel how the dietary 

fibre is fermented by the microbiota and to quantify the fermentation products. However, it 

does not represent the in vivo conditions (15). In vivo, dietary fibres are embedded in a 

complex matrix containing other dietary fibres, other food components, and secreted 

effluents. Also, in a regular diet, different dietary fibres may be consumed at different 

times, so that the microbiota is stimulated to adapt to a new source of dietary fibre.  

In order to simulate the presence of multiple fibres in the large intestine, an in vitro 

fermentation was performed in which two dietary fibres were supplied simultaneously as 

well as subsequently to human faecal microbiota (unpublished). As a comparison, the two 

dietary fibres were also fermented individually. The selected dietary fibres were resistant 

starch and soy pectin. Resistant starch was selected because it is a commonly consumed 

dietary fibre during meals (17). The other fibre selected for the study was soy pectin, 

representing complex pectin as present in fruits and vegetables, with branched molecular 

structures composed of different monosaccharide residues (18). During in vitro 

fermentation, resistant starch and soy pectin was degraded rapidly by human faecal 

microbiota (Chapter 3). 

The degradation of resistant starch and soy pectin was monitored using HPSEC and 

HPAEC. Resistant starch was practically insoluble in the fermentation medium and there 

was no significant solubilisation of high molecular weight starch during in vitro 

fermentation, whereas soy pectin was soluble in the fermentation medium. Therefore, 

HPSEC was used to monitor the degradation of soy pectin and HPAEC was used to 

monitor the formation of oligosaccharides from the degradation of resistant starch and soy 

pectin. The oligosaccharides from resistant starch were identified using maltodextrins as 
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reference. For soy pectin, although it was not possible to identify the individual 

oligosaccharides, the HPAEC patterns provided an indication of their presence. 

Individual, simultaneous, and sequential in vitro fermentation of resistant starch and soy pectin 

Materials 

Retrograded tapioca starch and soy pectin, as described in Chapter 3. 

Inoculum 

Faecal microbiota from three human subjects. 

Methods 

In vitro fermentation was performed as was described (19), with the buffer modified according to 

Sunvold, et al. (20). For simultaneous in vitro fermentation, soy pectin and resistant starch was added 

at a ratio 1:1 in the beginning of the fermentation. For sequential in vitro fermentation, the 

fermentation was started with the first dietary fibre, and after 8 h of fernentation, the other dietary 

fibre was added. The fermentation was then continued up to 48 h. 

The results of this experiment (Figure 7–1) showed that when microbiota was exposed to a 

single dietary fibre, it adapted to the fibre and was able to utilise the fibre completely within 

48 h (Figure 7–1A,B), shown by the disappearance of peaks in HPSEC patterns for soy 

pectin, and in HPAEC patterns for resistant starch. The microbiota was also able to adapt to 

the two fibres simultaneously, shown by the disappearance of the two substrates within 48 

h (Figure 7–1C). The simultaneous utilisation of the two dietary fibres substantiates similar 

results obtained elsewhere for the fermentation of starch and dietary fibres (21). 

Adaptation of the microbiota to the changes in dietary fibre sources in the large intestine is 

analogous to an ecological succession, for which it was stated that the diversity at an 

adapted condition can be lower than at other stages (22). This statement was substantiated 

by the experimental results, which showed that when resistant starch and soy pectin were 

supplied sequentialy with an 8 h interval, the utilisation of both substrates after 48 h was 

lower than that when the substrates were added simulteaneously or as single substrates 

(Figure 7–1D, E). This suggests that during the first 8 h, the microbial diversity decreased 

due to adaptation to the first substrate. 
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Figure 7–1. HPSEC and HPAEC patterns of fermentation liquid during in vitro fermentation of 
resistant starch (RS) and soy pectin (SP) added to the fermentation medium separately (A, B), 
simultaneously (C), or sequentially (D, E). The sequential in vitro fermentation was performed by 
adding the second dietary fibre after the first one was fermented for 8 h. 

The in vitro fermentation results described above demonstrate that the fate of different 

dietary fibres with different solubilities in the fermentation medium can be monitored 

individually during fermentation. This individual monitoring of dietary fibres in a mixture 
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is not possible using the conventional approach, in which the final fermentation products, 

such as gasses and SCFA, are measured. The approach using HPSEC and HPAEC can also 

be extended by identifying the remaining oligosaccharides using LC-MS methods. 

Furthermore, analysis of the constituent monosaccharide composition of the remaining 

dietary fibres can be conducted if more quantitative results are required, as was exemplified 

in Chapter 3 for xanthan gum and soy pectin. 

7.3.2. In vivo studies 

The in vivo studies described in this thesis were integrated experiments, from which 

observations and samples were taken and analysed for different aspects: chemical, 

microbiological, physiological, and behavioural. The latter aspects are parts of other PhD 

theses belonging to the same overall project. This thesis focused on the chemical aspect, by 

monitoring the degradation of the various dietary fibres during fermentation in the large 

intestine. 

In this thesis, the degradation of dietary fibres in vivo was monitored in various ways. In the 

study described in Chapter 4, which was designed for another PhD project, an indigestible 

marker was not included in the diets. Hence, the digestibility was estimated based on 

polysaccharide degrading enzyme activities as well as on the carbohydrate content and 

constituent monosaccharide composition of the digesta. Subsequently, another experiment 

(Exp. 4’) was conducted, in which TiO2 was added into the diets as an indigestible marker. 

As a result, the apparent digestibility of the dietary fibres could be calculated. The 

experimental setup of Exp. 4’ is described in the box below. 

Cross-over pig study (Exp. 4’) 

This pig study was a cross-over experiment, in which the same pigs received both experimental diets. 

Growing male pigs were fitted with a cannula at the proximal colon. The basal diet contains 50% of 

control diet (CON’) and 50% of resistant starch diet (RS’). The composition of carbohydrate sources 

in the experimental diets is presented in Table 7–1. The complete experimental setup and diet 

composition is described elsewhere (23). The calculation of the digestibility was performed as 

described in Chapter 5. 

In short, after two-weeks fed with the basal diet, one group of pigs (n =5) were fed with CON’, and 

the other group (n =5) was fed with RS’. After 2 weeks, samples were taken from the cannula, and the 

diet of the pigs was changed to the other diet. After another 2 week period, samples were again taken 

7 



CHAPTER 7 

144 
 

Cross-over pig study (Exp. 4’, continued) 

from the cannula, and the pigs were sacrificed. Digesta were collected from the caecum and 3 

different parts of the colon. Samples from 4 pigs were selected to be analysed. 

Table 7–1. Carbohydrate composition and indigestible marker (%(w/w)) in the diet for the cross-over 
pig experiment (Exp. 4’). 
 Ingredient CON’ RS’  

 Pregelatinized starch  
(Paselli WA4, Avebe Food, Veendam, The Netherlands) 

35.00 0.00  

 Retrograded tapioca starch, ~50% resistant starch 
(C*Actistar 11700, Cargill, Amsterdam, The Netherlands) 

0.00 34.26  

 Wheat 20.00 20.23  

 Beet pulp 5.00 5.06  

 Barley 15.00 15.17  

 TiO2 0.20 0.20  

     

In the in vivo studies described in Chapter 4 and Exp. 4’, the main experimental fibre was 

resistant starch. In a subsequent experiment (Chapter 5), not only resistant starch, but also 

alginate was added into the diets. This experiment was focused on monitoring alginate 

degradation during adaptation. Hence, the feeding time was longer than that in the previous 

experiments and only faecal samples were taken (Table 7–2). In addition, the alginate 

excreted in the faeces, including alginate oligosaccharides (AOS), was characterised 

(Chapter 6). 

Table 7–2. Overview presenting main carbohydrate sources, the presence of indigestible marker, 
feeding time and samples taken during different in vivo studies. 

Experiment TiO2 Resistant 
starch 

Alginate Other 
carbohydrate 
sources 

Feeding 
time 

Samples 

Chapter 4 - + - Wheat  
Barley  

2 weeks Digesta from different 
parts of the large intestine 
after slaughter 

Exp. 4’ + + - Wheat 
Barley 
Sugar beet pulp 

2 weeks1 Colon digesta and faeces 
after each treatment, 
digesta from different parts 
of the large intestine  after 
slaughter 

Chapter 5 
Chapter 6 

+ + + Wheat  
Wheat middlings 
Soybean meal 

74 days Faeces at different time 
points 

-: not present, +: present. 
1 cross-over experimental design, 2 weeks per diet. 
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Table 7–2 shows that in the three pig studies, the pig diets also contained dietary fibres 

from other carbohydrate sources than the added dietary fibres (Table 7–2). These additional 

carbohydrate sources contain NSPs. In the next sections, the degradation of resistant starch, 

alginate and other NSPs are discussed and compared with the results obtained from in vitro 

fermentation.  

7.3.2.1. Resistant starch 

In vivo, resistant starch was rapidly fermented in the caecum, as was shown by the low 

amount of starch in the proximal colon (Chapter 4). This was supported by the results of the 

cross-over pig study (Exp. 4’; Figure 7–2), in which the digestibility of starch at the caecum 

and at the proximal colon was higher than the estimated value if resistant starch had not 

been utilised (~0.66). 

The immediate utilisation of resistant starch by the microbiota in the caecum is not 

reflected in the in vitro fermentation results of the same resistant starch by pig faecal 

microbiota (Chapter 3). This discrepancy could be caused by several factors. First, the pig 

faecal microbiota used for in vitro fermentation (Chapter 3) might not be adapted to 

resistant starch. Second, the composition of pig faecal microbiota might be different from 

pig caecal microbiota (24). Third, the resistant starch supplied to the microbiota in the in 

vitro fermentation still contained some digestible starch. This condition does not represent 

the in vivo condition, in which only the resistant starch will reach the large intestine. 

 

Figure 7-2. Apparent digestibility of starch at different parts of the large intestine of pigs fed with a 
control diet (CON’) and pigs fed with resistant starch rich diet (RS’) after 2 weeks of feeding (Exp. 
4’). pcolon: proximal colon, mcolon: middle colon, dcolon: distal colon. 
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The pig caecal microbiota needed less than two weeks to adapt to resistant starch. This was 

shown by the utilisation of resistant starch in the caecum after only 2 weeks of feeding with 

RS-containing diet (Chapter 4, Exp. 4’). The adaptation of the microbiota to resistant starch 

may include a change in microbial composition and stimulation of the production of the 

enzymes necessary for the utilisation of the dietary fibre (25, 26). The latter was confirmed 

by the increase of α-amylase and amyloglucosidase enzyme activities, especially at the 

proximal parts of the large intestine (Chapter 4). 

It was also shown that the presence of resistant starch in the diet delayed the degradation of 

NSPs (Chapter 4). This effect of resistant starch on NSPs will be discussed in more detail in 

Section 7.3.2.3. The effects of resistant starch described in this thesis, however, might be 

specific for retrograded tapioca starch. It has been reported that different types of resistant 

starch (27), as well as different forms of retrograded starch (28) have different effects on 

human microbiota composition and the resulting SCFA composition.  

7.3.2.2. Non-starch polysaccharides (NSPs) 

As stated before, besides resistant starch, the pig diets in Chapter 4 and in Exp. 4’ contained 

carbohydrates from other ingredients (Table 7–2). These carbohydrate sources contain 

NSPs with different compositions (Table 7–3). Except mixed-linkage β-glucan, most of the 

dietary fibres in these ingredients are insoluble in water. 

Table 7–3. Constituent monosaccharide composition of non-starch polysaccharides in the 
carbohydrate sources and in the diets used in in vivo pig studies. 
Ingredient monosaccharide composition1 (mol%) Main  

dietary fibres 
Ref 

Rha Fuc Ara Xyl Man Gal Glc UA 

Wheat t t 31 45 t 2 21 1 arabinoxylan 
mixed-linkage 

β-glucans 
cellulose 

(29) 

Barley t t 21 32 2 1 43 1 mixed-linkage 
β-glucans 

arabinoxylan 
cellulose 

(29) 

Sugar beet pulp 2 n.a. 31 3 2 6 31 25 pectins 
cellulose 
arabinan 

(30) 

t: detected in trace amounts, n.a. : not mentioned in the reference. 
1 calculated based on the %(w/w) as presented in the references. 
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The NSP constituent monosaccharide composition of the diets can then be used as a means 

to calculate the digestibility of dietary fibres, if an indigestible marker is included in the 

diet. Results from Exp. 4’ (Figure 7–3) demonstrated that the digestiblity of NSPs in the 

colon was lower for RS’-fed pigs than for CON’-fed pigs. The digestibility of NSPs in the 

faeces was also different between diets, but the difference was less than that in the colon, 

suggesting a delayed degradation of NSPs in the presence of resistant starch. Hence, the 

conclusion drawn in Chapter 4 based on the carbohydrate content, constituent 

monosaccharide composition and activities of polysaccharide degrading enzymes are 

confirmed. 

 
Figure 7-3. Apparent digestibility of non-starch polysaccharide (NSP) constituent monosaccharides 
in the proximal colon and in the faeces of cannulated pigs after feeding with control diet (CON’) or 
resistant starch rich diet (RS’) in Exp. 4’. 

The delayed utilisation of NSPs in the presence of resistant starch is not in accordance with 

the simultaneous in vitro fermentation of resistant starch and soy pectin (Section 7.3.1). In 

addition to the reasons given in the discussion of the difference between in vitro and in vivo 

resistant starch degradation (Section 7.3.2.1), this discrepancy can be caused by the 

different NSPs used. It might also be caused by the different ratios of resistant starch to 

NSP in the in vitro fermentation as compared to the ratio in the in vivo pig study. 

Figure 7–3 illustrates the digestibility of individual NSP constituent monosaccharides. The 

lower digestibility of NSPs with the inclusion of resistant starch in the diet seems to be 

most prominent for galactose and glucose, both in the colon and in the faeces. These 
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monosaccharides are also present in microbial cells in human faeces (31, 32) and those in 

the rumen of sheep (33). In addition, resistant starch was reported to be able to increase 

microbial mass in the large intestine (34). Therefore, the digestibility of glucose- and 

galactose might be underestimated. 

In Exp. 4’, the main fibres in the NSPs included arabinoxylan, sugar beet pectin, mixed-

linkage β-glucans, and cellulose. The digestibility of arabinoxylan could only be estimated 

from the digestibility of xylose because arabinose is also present in sugar beet pectin. 

Figure 7-3 shows that the digestibility of xylose tended to be lower than that of arabinose. 

Most of the arabinoxylan in the diet was insoluble in water. It was expected that the 

digestibility of xylose would be higher than that of arabinose because for insoluble 

arabinoxylan, it has been reported that the digestibility of highly substituted arabinoxylan 

was lower than that of less substituted arabinoxylan (35). Hence, the higher digestibility of 

arabinose compared to xylose in Exp. 4’ may indicate that arabinose from sugar beet pectin 

was utilised more easily by the microbiota than arabinose from wheat arabinoxylan.  

Using a similar approach, the digestibility of sugar beet pectin can be roughly estimated 

from the digestibility of uronic acid. However, uronic acids are also present in the 

arabinoxylan from wheat and barley. In general, in the presence of resistant starch, the 

uronic acid digestibility in the colon was lowered more than the digestibility of arabinose 

and xylose. This may show that the microbiota which is responsible for uronic acid 

utilisation is different from those responsible for the utilisation of arabinose or xylose. 

However, in the faeces, the difference between diets disappeared, which may show that 

after the resistant starch was depleted, the microbiota which is able to utilise uronic acids 

was able to grow and compete with the other microbiota. 

Although not measured separately in Exp. 4’, the digestibility of mixed-linkage β-glucans 

can be assumed to be near to 1.0, based on results from the previous experiment (Chapter 4) 

and available literature (36). Mixed-linkage β-glucans was also fermented rapidly during in 

vitro fermentation (Chapter 3). The digestibility of cellulose can be estimated from the 

digestibility of insoluble NSP glucose (0.58 ±0.07 and 0.45 ±0.12 for faecal samples from 

Control and RS, respectively). These values are higher than the digestibility of cellulose 

from wheat bran (0.30; (36)) and are similar to the digestibility of cellulose from barley 

(0.56; (37)). 
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7.3.2.3. Alginate 

Alginate was selected for the in vivo pig study described in Chapter 5 because it was shown 

to be more satiating than other polysaccharides, such as guar gum and cellulose (Chapter 

2). Alginate is composed of guluronic acid (G) and mannuronic acid (M), which are 

arranged in a linear molecule. The alginate used in the pig study (Chapter 5) was rich in G, 

similar to the one used in the in vivo human study (Chapter 2). 

In vitro, alginate was fermented slowly by faecal microbiota from humans and pigs 

(Chapter 3). In vivo, it was shown that more than 40 %(w/w) of the alginate consumed by 

the pigs was excreted in the faeces (Chapter 5). Also, the microbiota needed a long time to 

be adapted to alginate (>39 days). The slow adaptation of the microbiota to alginate, as well 

as the slow fermentation of alginate in vitro could be explained by the time needed for the 

stimulation of the microbiota capable of producing alginate-degrading enzymes, as shown 

in Table 7-4. The table presents results of another unpublished in vitro fermentation, in 

which four substrates were fermented by human faecal microflora. The substrates were high 

methylated (HM) pectin, guar gum, soy pectin, and alginate. These substrates were selected 

because of their solubility in the fermentation medium and their diverse constituent 

monosaccharide composition and molecular structure. The fermentation medium was 

formulated as described earlier (Section 7.3.1).  

It was hypothesized that after fermentation, the fermentation liquid contains polysaccharide 

degrading enzymes with an optimal composition to degrade the substrates. Therefore, the 

cell-free fermentation liquids were tested for polysaccharide degrading enzyme activities. 

The incubation of the enzyme-substrate mixture was performed at 37 °C for 24 h. The 

ability of the enzymes to degrade the substrates was then monitored using HPSEC and 

compared with each other. The activity of the enzymes were then classified based on the 

extent of substrate degradation as shown by the shift in the retention times in the HPSEC 

patterns.  

Table 7–4 shows that alginate degrading enzymes were present only in the fermentation 

liquid of alginate. This result shows that the growth of the microbiota able to produce 

alginate degrading enzymes had to be stimulated or that the production of alginate-

degrading enzymes in the microbiota had to be induced. This result demonstrates that the 

microbiota composition as well as the metabolic pathways of some bacteria might be 
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altered as a result of dietary fibre fermentation, in accordance with the results described 

elsewhere (38).  

Table 7–4. Polysaccharide degrading activities found in fermentation liquid obtained by in vitro 
fermentation of alginate, pectin, soy pectin and guar gum. 
Fermentation liquid 
from the 
fermentation of: 

Enzyme activity towards: 

Alginate Pectin Soy pectin Guar gum Galactan Arabinan 

Alginate ++ + ++ ++ + + 

HM Pectin  - ++ +++ +++ ++ ++ 

Soy pectin - + +++ ++ ++ + 

Guar gum - - + ++ + - 

-: no activity, +: little activity, ++: moderate activity, +++: high activity. 

The alginate degrading enzymes in the in vitro fermentation described above were not 

investigated further. However, from the in vivo study (Chapter 5, 6), it was shown that the 

alginate degrading enzymes in the large intestine of pigs were mainly alginate lyases. The 

results strongly indicate that mannuronate lyase was present, because the digestibility of M 

was higher than that of G. Guluronate lyase could also be present, as indicated by the 

presence of alginate oligosaccharides (AOS) containing only guluronates. The digestibility 

of G, however, was low, resulting in a high G:M ratio in the indigestible alginate. The 

indigestible alginate was mostly insoluble, probably because of interaction with calcium or 

other compounds such as polyphenols and proteins. Interactions of alginate with calcium 

(39) and polyphenols (40) have been shown to inhibit alginate degradation by enzymes. 

The higher utilisation of M compared to that of G leads to the hypothesis that if the high G 

alginate in the diet is replaced by M-rich alginate, the outcome of the study could be 

different. The digestibility of M-rich alginate can be higher than that of G-rich alginate. As 

a consequence, alginate degradation might take place in more proximal parts of the large 

intestine. There can also be variations in alginate degradation depending on the distribution 

of the uronic acid residues. Due to these possible variations, the chemical properties of 

alginate, including the composition of the uronic acids, should be described whenever an 

alginate is used in a study. 
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7.3.2.4. Fibre degradation products in the large intestine 

During utilization of dietary fibres, some microbiota produces extracellular enzymes to 

degrade polysaccharides, yielding oligosaccharides and monosaccharides (41). The 

oligosaccharides produced may have other physiological effects than the polysaccharides. 

For example, the oligosaccharides can have a prebiotic activity whereas the polymer does 

not have such an activity, through a cross-feeding mechanism (41). Oligosaccharides, 

including those which are not prebiotic, can also be physiologically active through contact 

with mammalian cells, such as immune cells and endothelial cells. The effects may include 

modification of the immune system and anti-tumor activity (42). Interactions between 

oligosaccharides and the cells, as mediated by cell receptors, can be highly specific 

depending on the molecular structure and the conformation of the oligosaccharides (42). 

Therefore, it was attempted to identify oligosaccharides from the degradation of dietary 

fibres by the microbiota in the large intestine of pigs.  

Oligomeric degradation products from non-starch polysaccharides (NSPs) 

The first attempt to identify oligosaccharides in the digesta was performed on the samples 

from Exp. 4’, in which pigs were fed with resistant starch and NSPs from wheat, barley and 

sugar beet pulp. The methods used were HPAEC and UHPLC-MSn. Only hexose 

oligosaccharides, which were mostly maltodextrins, were detected in the samples. The 

difficulty in the detection and identification of oligosaccharides in the digesta might be 

explained by the low amounts of soluble carbohydrates present in the samples. The NSPs in 

the diets for Exp 4’ was mostly insoluble. It has been reported that some bacteria have the 

ability to attach to the surface of insoluble substrates and they have polysaccharide 

degrading enzymes attached to their cell wall (41). In this case the monosaccharides and 

oligosaccharides produced from the degradation can be transported into the cell 

immediately for further utilisation. As a result, there may be no accumulation of 

oligosaccharides in the digesta.  

Alginate oligosaccharides (AOS) 

In the study with alginate-containing diets (Chapter 5, 6), AOS were detected in the faeces, 

although the alginate level in the diet (5 %(w/w)) was in the same order of magnitude as the 

NSP level in Exp. 4’ (7.7 %(w/w)). The higher level of AOS in the faeces compared to the 

level of oligosaccharides from other NSPs in Exp. 4’ described above shows that the 
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microbiota utilised AOS less rapidly than it utilised oligosaccharides from other NSPs in 

Exp. 4’. The presence AOS in the faeces also indicates that AOS were also present in the 

large intestine. Saturated and unsaturated AOS were present, and some specific AOS in the 

faeces were successfully identified using UHPLC-MSn (Chapter 6). The utilization of the 

AOS was shown to be affected by the presence of a G residue at the reducing end, and the 

microbiota preferred to utilise AOS that are composed of solely M residues over other 

AOS. After 74 days, however, the the microbiota adapted to the alginate and became less 

selective in AOS utilisation, as shown by the low amount of soluble alginate degradation 

products in the sample.  

7.3.2.5. Individual variation in in vivo studies 

Within the in vivo studies (Chapter 4-6) it was evident that variation between animals has 

an important role in fibre degradation in the large intestine. The individual variation 

includes the rate of fibre degradation and the adaptation time needed for a new fibre. The 

variations may result in different sites of fermentation of a dietary fibre in the large 

intestine of different individuals. In addition, the fermentation pathways might also be 

different; resulting in formation of different oligosaccharides from the same parental 

polysaccharides. As a consequence, the individual variation may therefore cause different 

responses of the animal towards the same dietary fibre. All of these individual variations 

can be attributed to the microbial composition in the large intestine, which is influenced by 

environmental as well as by host genetic factor (43, 44). 

7.4. Future perspectives 

7.4.1. Fibre classification 

The studies described in this thesis substantiated the notion that dietary fibres should be 

classified based on their chemical structures rather than on their physical or physiological 

properties, such as solubility in water or fermentability. Solubility in water does not always 

reflect solubility in the GIT (Chapter 2, 5). The solubility of dietary fibres in water also 

depends on specific molecular structure and interaction with other compounds, such as 

calcium, proteins, or polyphenols. Classification of dietary fibres based on their 

fermentability is also ambiguous. As an example, for alginate, the digestibility of M was 
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higher than that of G (Chapter 5). Hence, it is hypothesized that an M-rich alginate would 

be more fermentable than a G-rich alginate.  

7.4.2. Dietary fibre research 

The diversity of dietary fibres suggests that in future studies using dietary fibres, either in 

vitro or in vivo, the information about the fibre should include detailed information on the 

chemical characteristics of the fibre. The processing conditions and the presence of other 

components, which may interact with the dietary fibres, have to be considered as well. It 

has been pointed out that the lack of information about the chemical characteristics of the 

dietary fibre may complicate comparisons of experimental data and may even lead to 

contradicting information for the same type of fibre (45, 46). 

Besides the chemical characteristics of the fibres, the adaptation time to the fibres has to be 

considered carefully during an in vivo study. Adaptation to the dietary fibre may include 

changes in microbiota composition or in microbial enzyme expression (38) and changes in 

intestinal morphology (47). Due to these changes, an effect that is observed after a short 

time of feeding may disappear after continuous feeding of the same fibre (Chapter 5). For 

in vitro fermentation, the adaptation state of the faecal microbiota to the fibre of interest 

should also be considered, mainly by assessing the diets of the donors before the sampling 

for faecal microbiota. Microbiota that is adapted to a certain fibre can also be obtained by 

performing a pre-fermentation, in which the inoculum is grown on the selected fibre before 

it is used for the main in vitro fermentation. 

Another factor that has to be taken into account is individual variation between subjects, 

either animals or humans, in in vivo studies or faecal microbiota donors for in vitro 

fermentations. The individual variation may cause a fibre to give the desired effects to an 

individual, whereas it does not have any effect on other individuals. 

7.4.3. Monitoring degradation of individual dietary fibres 

This thesis demonstrated that monitoring the degradation of individual dietary fibres in in 

vitro and in vivo studies is possible with the help of separation techniques, such as HPSEC 

for molecular mass, HPAEC for monosaccharide and oligosaccharide profiling, and 

UHPLC-MSn for identification of oligosaccharides. Nevertheless, these techniques can only 

be applied for dietary fibres and degradation products that are soluble in water. 
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Insoluble dietary fibres cannot be characterised using these methods. Nevertheless, it was 

demonstrated in Section 7.3.2.3 that the degradation of insoluble dietary fibres can be 

monitored by carefully analysing the digestibility of individual constituent 

monosaccharides. More detailed results for insoluble dietary fibres can be obtained by 

following the extraction methods using chelating agents and alkali that are often used for 

characterisation of plant cell wall materials (48). 

Another issue that needs to be considered in monitoring the degradation of dietary fibres by 

microbiota is the presence of microbial cells. These cells also contain carbohydrates, which 

may interfere with the analyses of the constituent monosaccharide composition of dietary 

fibres, as shown in Section 7.3.2.3. Methods to fractionate digesta into soluble compounds, 

plant-derived compounds and bacterial cells are available (31, 32, 49), but these methods 

are tedious and not applicable for high throughput analyses. 

7.4.4. Production of dietary fibres: the potential of oligosaccharides 

Most of dietary fibres are initially produced to be used as thickeners, stabilisers, or bulking 

agents in food. The same polysaccharides may also be added into food as dietary fibres: an 

ingredient with health functionality. In addition to the polysaccharides, oligosaccharides 

that are not digested or absorbed in the small intestine are recently also included as dietary 

fibres. These oligosaccharides, although lacking the gelling ability and viscosity, can also 

be physiologically active by having a prebiotic activity (50, 51). Specific oligosaccharides 

can also interact with immune or endothelial cells (42). 

The production of specific oligosaccharides or mixtures enriched with specific 

oligosaccharides will probably be costly. Moreover, upon consumption, the 

oligosaccharides might be rapidly utilised by the microbiota before they reach the targeted 

site in the colon. As an alternative, oligosaccharides can be produced from polysaccharides 

by the microbiota present in the large intestine (Chapter 6). Nevertheless, the ‘on-site’ 

production of specific oligosaccharides largely depends on the microbiota composition of 

the individuals. In order to obtain the desired specific oligosaccharide for every individual, 

the synbiotic concept in which living microbiota and the substrate are delivered 

simultaneously (52) can be explored. To ensure that the microbiota and the substrate reach 

the targeted site in the colon, specific colon delivery systems as known for drug 

administration delivery (53, 54), can be considered. 
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7.4.5. Consumption of dietary fibres 

The results of this thesis show that the diet should contain sufficient amounts of dietary 

fibres to ensure fermentation occurs in the entire large intestine. The current 

recommendation for dietary fibre consumption is 25 g a day (55). This recommendation 

does not take into account the diversity of dietary fibres and does not distinguish between 

dietary fibres in native form or isolated dietary fibres in supplements. 

Consumption of diverse dietary fibres with different fermentabilities is also important to 

ensure that fermentation occurs in the entire large intestine. The results of this thesis 

suggest that consumption of the same dietary fibre for a long period might reduce the 

microbial diversity and lower the capability of the microbiota to quickly adapt to another 

fibre. In addition, if the microbiota is highly adapted to a certain dietary fibre, the fibre may 

be fermented very rapidly at the proximal large intestine, which may result in a lack of 

fermentable carbohydrates at the distal parts of the colon. Hence, the composition of the 

diet should not be constant over time. 

A broad diversity of dietary fibres can easily be obtained from the consumption of edible 

plants, such as fruits, vegetables and cereals. Consuming natural sources of dietary fibres 

may also have additional advantage because other compounds that are beneficial for health 

are often associated with the dietary fibre in the plant cell wall. For example, it has been 

reported that alginate-containing seaweed extract may inhibit the activity of α-amylase. 

This may reduce the glycemic index of carbohyrate-rich food. On the contrary, isolated 

alginate did not give similar effect (56). 

7.5. Concluding remarks 

Degradation of dietary fibres in the large intestine is usually monitored by establishing the 

apparent digestibility and measuring fermentation end-products. The results of this study 

demonstrated that the conventional approach can be complemented with monitoring of the 

polysaccharide degrading enzyme activities and dietary fibre degradation products in the 

digesta. Various separation techniques were shown to be useful for monitoring the 

degradation of individual dietary fibres, especially if the fibres and their degradation 

products are soluble in water. 
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It was shown that different dietary fibres exhibited different physical characteristics in the 

upper GIT and the physical characteristics of one fibre can change between the different 

parts of the GIT. In the large intestine, diverse dietary fibres are fermented differently by 

the microbiota, which may affect the health effects of the dietary fibres. In addition, it was 

demonstrated that the large intestinal microbiota needed different adaptation times for the 

different fibres they encountered. 

This study also raises the awareness that oligosaccharides can be present in the large 

intestine as a result of NSP degradation. These oligosaccharides may have a role in the 

mechanism by which dietary fibres are physiologically beneficial. However, the bio-

functionality of these oligosaccharides in vivo has yet to be revealed. Further research 

aiming to unravel the working mechanisms of dietary fibres, therefore, should consider the 

presence of these oligosaccharides and their possible biofunctionalities. In addition, the 

location of oligosaccharide formation, the type of microbiota involved and the factors 

influencing the formation of specific oligosaccharides in the large intestine still need to be 

investigated.  
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Summary 

Consumption of dietary fibres is thought to be beneficial for health. Dietary fibres are very 

diverse in chemical structure and hence they may have diverse biofunctionalities. In 

Chapter 1 it is described that dietary fibres in the upper gastrointestinal tract (GIT) mainly 

function through their physical properties, such as viscosity and water holding capacity. In 

the large intestine, part of the functionality of dietary fibres is mediated through the fibre 

fermentation by the gut microbiota. Many in vitro and in vivo studies have been performed 

in relation to the effects of dietary fibres in the upper GIT and the fermentation of dietary 

fibres in the large intestine. However, the dietary fibres and their degradation products in 

the GIT were not often monitored in detail. Hence, the aim of this study was to investigate 

the fate of dietary fibres in the gastrointestinal tract (GIT), especially in the large intestine 

where most of the degradation of dietary fibres occurs. 

First, the effects of dietary fibres with different physical properties (cellulose, guar gum and 

alginate) to the induction of satiation in humans are described in Chapter 2. The use of a 

simple in vitro simulation of the upper GIT for analysing the physical properties of dietary 

fibre in food is also described. It was shown that alginate is more satiating than cellulose or 

guar gum. The satiating effect of alginate is partially explained by the ability of alginate to 

form a gel under the acidic condition in the stomach, as shown by the in vitro upper GIT 

simulation. 

The investigation of the fate of dietary fibre in the GIT was continued with an in vitro 

fermentation of a number of dietary fibres having different chemical characteristics, as 

described in Chapter 3. Faecal microbiota from humans and pigs were used as inoculum. It 

was concluded that dietary fibres are fermented differently depending on their constituent 

monosaccharide and linkage compositions, degree of polymerization and molecular 

conformation of the polysaccharides, yielding different amounts of gasses and short chain 

fatty acids. It was also shown that cellulose was hardly fermented by human faecal 

microbiota, but was fermented by the pig faecal microbiota. On the other hand, human 

faecal microbiota had more ability to ferment xanthan gum than the pig faecal microbiota. 

In Chapter 4, the effects of resistant starch, a dietary fibre that was found to be satiating, 

on the degradation of non-starch polysaccharides (NSPs) in the large intestine of pigs are 

described. The NSPs were mainly cellulose, arabinoxylan and mixed-linkage β-glucans 
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from wheat and barley. Resistant starch, which was rapidly utilised by the microbiota in the 

caecum, was shown to delay the degradation of the arabinoxylan and mixed-linkage β-

glucans in the large intestine. In this experiment, indigestible marker was not available for 

quantification of the digestibility of the dietary fibres. Therefore, the conclusions were 

drawn based on the constituent monosaccharides and content of NSPs, as well as the 

polysaccharide degrading enzyme activities in the digesta from the large intestine. These 

conclusions were further supported by the results of an additional experiment in which TiO2 

was added as an indigestible marker to the diets, as described in the General Discussion 

section. 

The in vivo pig study was followed up by another study, which included alginate in the diet, 

besides resistant starch and other NSPs from the other carbohydrate sources, as described in 

Chapter 5. Alginate is a linear polysaccharide from seaweed, composed of guluronic acid 

(G) and mannuronic acid (M). This study was focused on the alginate degradation in pigs 

during a feeding period up to 74 days. Results of this study show that the G-rich alginate 

that was used in this study was only partly utilised by the microbiota in pigs, with more 

than 40 %(w/w) of the alginate intake excreted in the faeces. This resistant alginate was 

enriched in G, showing that the microbiota prefers to utilise M rather than G. It was also 

shown that the microbiota in the large intestine of the pigs needed more than 39 days to be 

adapted to the alginate. 

In Chapter 6, the alginate oligosaccharides (AOS) in pig faeces were analysed using 

UHPLC-MSn. Both unsaturated and saturated AOS were present in the faeces of the 

alginate-fed pigs. The presence and the increasing amounts of unsaturated AOS during the 

adaptation period indicate that the microbiota produced alginate lyases. Various isomers of 

AOS trimers and tetramers were detected and identified. In combination with the results 

from Chapter 5, it was concluded that the presence of G at the reducing end of AOS affects 

the AOS utilisation by the microbiota that was not adapted to alginate. After adaptation, the 

microbiota was able to utilise a broader range of AOS. In this chapter, individual variation 

between pigs is also addressed, with the conclusion that the microbiota in one pig had a 

different ability to utilise G-rich alginate compared to the mirobiota in the other pig. 

In Chapter 7, the in vitro results related to the fate of dietary fibres in the GIT are 

discussed in relation to the results of the in vivo studies. The degradation of resistant starch, 
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alginate and other NSPs in the large intestine are addressed separately. This is done by 

combining results obtained from the experiments as described in previous chapters as well 

as results from additional experiments. The additional experiments include a pig study in 

which the digestibility of starch and dietary fibres could be calculated. Results of this 

additional pig study support the conclusions drawn in Chapter 4. An individual, 

simultaneous, and sequential in vitro fermentation of resistant starch and soy pectin is 

described as well, which gives an insight that intestinal microbiota that is adapted to a 

single source of dietary fibre may have a reduced adaptability to other fibres. Finally, the 

possible impact of this study to dietary fibre research, production, and consumption is also 

discussed.
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Samenvatting 

Het consumeren van voedingsvezels wordt gunstig geacht voor de gezondheid. 

Voedingsvezels zijn qua chemische structuur zeer divers en kunnen daardoor diverse 

biofunctionaliteiten bezitten. In Hoofdstuk 1 wordt beschreven dat voedingsvezels in het 

bovenste deel van het maag-darmkanaal vooral functioneren middels hun fysische 

eigenschappen als viscositeit en water bindend vermogen. In de dikke darm wordt de 

functionaliteit van voedingsvezels deels bewerkstelligd door vezelfermentatie door 

darmbacteriën. Vele in vitro en in vivo studies zijn uitgevoerd om de effecten van 

voedingsvezels op het bovenste deel van het maag-darmkanaal en fermentatie in de dikke 

darm te onderzoeken. De voedingsvezels zelf en hun afbraakproducten in het maag-

darmkanaal worden echter niet vaak in detail onderzocht. Daarom is het doel van deze 

studie het onderzoeken van het lot van voedingsvezels in het maag-darmkanaal, met name 

in de dikke darm waar de meeste afbraak van voedingsvezels plaatsvindt. 

Allereerst worden de effecten van voedingsvezels met verschillende fysische 

eigenschappen (cellulose, guar gum en alginaat) op het induceren van verzadiging in 

mensen beschreven in Hoofdstuk 2. Ook het gebruik van een simpele in vitro simulatie van 

de bovenste delen van het maag-darmkanaal voor het analyseren van fysische 

eigenschappen van voedingsvezel wordt beschreven. Het verzadigende effect van alginaat 

kan deels worden verklaard doordat alginaat een gel kan vormen onder de zure 

omstandigheden in de maag. 

Het onderzoeken van het lot van voedingsvezels in het maag-darmkanaal werd vervolgd 

met een in vitro fermentatie van een aantal voedingsvezels met verschillende chemische 

kenmerken, zoals beschreven in Hoofdstuk 3. Fecale microbiota van mensen en varkens 

werden als inoculum gebruikt. De conclusie is dat voedingsvezels op verschillende wijze 

gefermenteerd worden, afhankelijk van hun monosaccharide- en bindingstype 

samenstelling, polymerisatie graad en moleculaire conformatie van de polysaccharide, 

waardoor ook verschillende hoeveelheden gassen en kortketenige vetzuren geproduceerd 

werden. Ook werd aangetoond dat cellulose nauwelijks gefermenteerd wordt door 

menselijk microbiota, maar wel gefermenteerd wordt door de fecale microbiota van 

varkens. Aan de andere kant zijn menselijke fecale microbiota beter in staat om xanthaan 

gum te fermenteren dan de fecale microbiota van varkens. 
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In Hoofdstuk 4 worden de effecten van resistent zetmeel op de afbreekbaarheid van niet-

zetmeel polysacchariden in de dikke darm van varkens beschreven. Resistent zetmeel is een 

voedingsvezel die een verzadigend effect lijkt te hebben. Aanwezige niet-zetmeel 

polysacchariden waren voornamelijk cellulose, arabinoxylaan en β-glucanen uit tarwe en 

gerst. Aangetoond werd dat resistent zetmeel, dat snel verbruikt wordt door de microbiota 

in de blinde darm, de afbraak van arabinoxylanen en β-glucanen in de dikke darm 

vertraagd. In dit experiment was de onverteerbare markeerstof niet beschikbaar voor het 

kwantificeren van de verteerbaarheid van voedingsvezels. Daardoor zijn de conclusies 

zowel gebaseerd op monosaccharide samenstelling en gehalte van niet-zetmeel 

polysacchariden, en op de activiteit van polysacchariden afbrekenede enzymen in de 

digesta uit de dikke darm. Deze conclusies worden onderbouwd door een extra experiment 

waarin titanium oxide werd toegevoegd als een onverteerbare markeerstof in het voer, zoals 

beschreven in de algemene discussie. 

De in vivo studie in varkens werd vervolgd met een andere studie, waarbij ook alginaat aan 

het voer werd toegevoegd, naast resistent zetmeel en andere niet-zetmeel polysacchariden 

uit andere bronnen, zoals beschreven in Hoofdstuk 5. Alginaat is een lineaire 

polysaccharide uit zeewier, bestaande uit guluronzuur (G) en mannuronzuur (M). De focus 

van deze studie was de afbreekbaarheid van alginaat in varkens gedurende een voerperiode 

van 74 dagen. Resultaten uit deze studie laten zien dat het G-rijke alginaat, die in deze 

studie gebruikt is, slechts deels verbruikt kon worden door de microbiota in varkens, 

waarbij meer dan 40 % van het opgenomen alginaat uitgescheiden werd in de feces. Dit 

resistente alginaat was verrijkt in G, wat laat zien dat microbiota het gebruik van M 

verkiezen boven het gebruik van G. Aangetoond werd dat microbiota in de dikke darm van 

varkens meer dan 39 dagen nodig heeft om zich aan te passen aan het alginaat dieet. 

In Hoofdstuk 6 werden de alginaat oligosacchariden (AOS) in varkensfeces met UHPLC-

MSn geanalyseerd. Zowel onverzadigde als verzadigde AOS waren aanwezig in de feces 

van varkens die alginaat gevoerd kregen. De aanwezigheid van en toename in onverzadigde 

AOS gedurende de aanpassingsfase duiden erop dat de microbiota alginaat lyase enzymen 

produceren. Verschillende isomeren van AOS trimeren en tetrameren werden 

geïdentificeerd. In combinatie met de resultaten uit Hoofdstuk 5 kon worden geconcludeerd 

dat de aanwezigheid van G aan het reducerende uiteinde van de AOS het gebruik van AOS 

door de niet aangepaste microbiota beinvloed. Na aanpassing is de microbiota in staat om 
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een breder scala aan AOS te gebruiken. In dit hoofdstuk wordt de individuele variatie 

tussen varkens besproken, met als conclusie dat de microbiota in het ene varken op een 

andere manier G-rijk alginaat gebruikten vergeleken met de microbiota in een ander varken. 

In Hoofdstuk 7 worden de resultaten van in vitro studies naar het effect van voedingsvezels 

in het maag-darmkanaal gerelateerd aan de resultaten van de in vivo studies. De afbraak van 

resistent zetmeel, alginaat en andere niet-zetmeel polysacchariden in de dikke darm worden 

apart besproken, en in combinatie met resultaten die verkregen zijn in extra experimenten. 

Deze extra experimenten omvatten ook een studie met varkens waarbij de verteerbaarheid 

van zetmeel en voedingsvezels kon worden berekend. De resultaten ondersteunen de 

conclusies uit Hoofdstuk 4. Een individuele, simultane of opeenvolgende in vitro 

fermentatie van resistent zetmeel en soya pectine wordt beschreven en geeft inzicht in het 

feit dat darmmicrobiota die aan een enkele bron van voedingsvezels aangepast zijn, zich 

mogelijk minder goed aan andere vezels kunnen aanpassen. Ten slotte word de mogelijke 

invloed van deze studie op onderzoek, productie en consumptie van voedingsvezels 

beschreven. 
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