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Abstract

The objective of this thesis was to investigate the use of genetic markers in commercial
pig breeding, with a special emphasis on genomically imprinted genes. For the latter
purpose, an association study was undertaken to identify genomically imprinted QTL
related to sow fertility traits in two commercial pig populations. Furthermore, several
simulation studies were performed to evaluate methods to estimate breeding values
with marker data. Finally, a new method was designed to estimate the parental origin
of marker alleles in crossed populations when the pedigree is unknown.

The association study involved approximately 1700 sows from two commercial
pig populations. The sows were genotyped for 384 SNP markers, of which 309 were
finally used. The results revealed one SNP with a significant imprinting effect on the
trait litter size in one population. The imprinting effect of this SNP was not significant
in the other population but its effect was similar. The SNP was located close to the
gene DIO3, which has a known imprinting status. Furthermore, several SNP with
significant additive and dominance effects were found in both populations.

The simulation studies were designed to evaluate the effect of the number of genes
and the relative importance of these genes on the trait on performance of distinct
methods to estimate breeding values with markers. Results of the first study showed
that the performance of these methods is affected by gene number and size. Results of
the second study continued on these results and showed that genetic gain achievable
by selecting on breeding values estimated by these methods strongly depends on the
number of genes and their relative size.

Knowledge of parental origin of marker or gene alleles is of crucial importance
to study genomically imprinted genes. A method based on the Dirichlet Process was
designed to estimate the parental origin of SNP alleles in crossed populations. The
method performed better than methods that did not account crossbreeding, and the
performance of the method was strongly improved when some genotypes of some
parental individuals were available in the data.

The last chapter evaluated the influence of genomic imprinting on genetic param-
eters of genes. An important conclusion of this chapter is that genomically imprinted
genes have less variance compared to similar, non-imprinted genes. This lower vari-
ance leads to lower power of statistical methods to detect these genes and lower ge-
netic gain achievable in breeding programs. On the other hand, however, genomically
imprinted genes could be effectively used in crossbreeding programs.
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Chapter 1

Introduction



1.1 Animal breeding

Animal breeding aims to improve the genetic quality of animal populations by se-
lecting genetically superior parents. Since the genetic quality is not the only factor
determining the phenotype, breeders need to distinguish the genetic quality from the
other factors. The basic model in animal breeding is that the observed phenotype, p,
is the result of a genotype, g, and an environment, e. In general, it is assumed that
genotype and environment do not interact, p = g+ e, although ample evidence exists
for interactions between these factors (e.g. Lynch and Walsh (1998), ch. 22; Mulder
(2007)).

The genetic quality or value of an individual is the combination of distinct sources
of genetic variation (Lynch and Walsh (1998), ch. 4), including variation due to ge-
nomic imprinting (Hager et al., 2009). Of these sources of variation, only the additive
genetic variation is heritable, and hence useful for genetic improvement of populations
through breeding (Bijma, 2011). Consequently, animal breeders need to distinguish
the additive genetic value or breeding value of individuals, a, from the other sources
of genetic variation to achieve genetic improvement

The genetic value of an individual is the result of the contributions of a large
number of genes, which together give rise to an approximately normal distribution of
the genetic value in the population (Fisher, 1918; Falconer and Mackay, 1996). In this
context, the breeding value of an individual is defined as two times the regression of
the phenotypes of the offspring on the phenotype of the parents, where the factor two
is due to the fact that offspring inherit half of their breeding value from either one of
their parents.

On the level of individual genes it is more accurate to refer to additive genetic
value than to breeding value since the latter generally refers to the genetic background
of the complete individual while the former refers to individual genes. The additive
genetic value of a gene is the sum of the additive values of the two alleles for that
gene, hence the word additive. The additive value of an allele is the regression of the
phenotypic value on the number of a specific allele for a specific gene in the population
(Falconer and Mackay, 1996).

Consequently, by selecting individuals with the most favorable breeding values
as parents for the next generation, the proportion of alleles with a favorable additive
effect will be relatively high in the selected individuals compared to the whole popula-
tion. An important difficulty in breeding is that the breeding value for most traits can
not directly be measured but rather has to be estimated (then denoted as â) since the
relation between the breeding value and the phenotype is not one to one. Furthermore,
breeders generally are ignorant about the genes and alleles that contribute to the trait
of interest.

The success of animal breeding is measured as the selection response, R, which
is the increase of the average breeding value of the population per generation. The
selection response is calculated as (Falconer and Mackay (1996), ch. 11):

R = inρâ,aσa, (1.1)
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where in is the intensity of the selection program ; ρâ,a is the correlation between
the estimated and true breeding values; and σa is the standard deviation of the breeding
value.

Selection intensity in measures the strength of selection, and expresses the supe-
riority of the estimated breeding values of the selected parents relative to the standard
deviation of the estimated breeding values. Together with σa, these are population
characteristics which are unaffected by the breeders decision. Hence, to achieve high
response to selection, breeders attempt to estimate breeding values with high accuracy.

Until recently, breeding values were estimated based on phenotypic records of the
selection candidates and their relatives with methods as selection indices and BLUP
(Goddard, 2009). With these methods, the highest accuracies can be achieved using
phenotypes of offspring to estimate the breeding value of parents. This is because off-
spring information reveals the fundamental uncertainty in Mendelian inheritance due
to the random inheritance of parental chromosomes to offspring through meiosis. An
important disadvantage of the use of offspring information to estimate breeding values
of parents in breeding programs is the time required to obtain phenotype information
of offspring. In the case of pig breeding, for example, animals can only be selected
for reproductive traits after these traits have been recorded in their offspring, which
will take approximately 1 year.

Methods as BLUP assume that a large number of genes control the traits. However,
evidence suggests that a limited number of genes contribute a large proportion of the
variance of traits relevant for animal production (Hayes and Goddard, 2001), although
the complexity of genes is generally underestimated (see Pearson (2006) for an im-
pression of the overwhelming complexity of genes). The knowledge of genes and pos-
sibilities to detect new genes have increased substantially during the last decades due
to the increasing feasibility to genotype large numbers of genetic markers (Meuwissen
et al., 2001; Dekkers, 2004). Despite of this increased knowledge, relatively few of
these genes have been detected and used in animal breeding programs, due to a variety
of reasons (Meuwissen et al., 2001; Dekkers, 2004; Goddard, 2009).

Motivated by the availability of large numbers of markers, Meuwissen et al. (2001)
proposed to use markers without knowledge of genes to estimate breeding values. In
its essence, the method of Meuwissen et al. (2001) and following methods (e.g. Xu
(2003); ter Braak et al. (2005); Calus et al. (2008); Goddard (2009)) estimate the ad-
ditive effects of individual markers and calculate the breeding value as the sum of
these additive effects. A basic assumption behind these models is correlation between
genetic markers and genes, due to linkage disequilibrium (Sved, 1971; Fernando and
Grossman, 1989). The great advantage of these methods compared to earlier methods
as selection indices and BLUP is that they reduce to need to use phenotype information
of offspring to achieve accurate breeding values, by using marker information to infer
genetic relationships between animals instead of pedigree information. However, they
invariantly rely on the availability of phenotype data to achieve highly accurate breed-
ing values (Meuwissen et al., 2001). An interesting alternative method uses marker
information to estimate the matrix of additive genetic relationships between animals,
and uses this matrix to replace the relationship matrix calculated from the pedigree in
BLUP (Meuwissen et al., 2001; Goddard, 2009; VanRaden, 2008; Hayes et al., 2009).
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The use of markers to estimate breeding values is a new technique, of which many
aspects remain open for investigation. Simulation studies have shown a positive re-
lation between marker density and accuracy of breeding values (Meuwissen et al.,
2001; Muir, 2007; Solberg et al., 2008) due to increased linkage disequilibrium be-
tween markers and QTL (Goddard, 2009). The number and distribution of genes in
these simulation studies were based on the results of Hayes and Goddard (2001), who
fitted an inverted χ2 distribution to the size of gene effects for production traits in
farm animals. The distribution of gene effects can be expected to affect the accu-
racy of breeding values estimated with markers, and this effect was indeed shown by
Daetwyler et al. (2010). In two chapters of this thesis, we studied the effect of gene
number and distribution of gene effects on the accuracy of breeding values and on
the genetic gain obtained as the result of selection based on these breeding values, as
affected by distinct methods to estimate these breeding values.

Application of the technique of estimating breeding values with the use of mark-
ers in the pig breeding industry will require some adaptations. An important aspect
of the pig breeding industry is crossbreeding, where parents of divergent lines are
mated to produce crossbred offspring for production purposes (Bijma and van Aren-
donk, 1998; Dekkers, 2007a). Selection is performed in the divergent parental lines,
but performance of crossbred offspring is the objective of the breeding effort (Bijma
and van Arendonk, 1998), who showed that genetic gain in the crossbred population
can be improved when information of crossbred offspring performance is used in the
breeding values of parental selection candidates. Since marker alleles in crossbreds
originate from two divergent populations of parents, their effects should be estimated
for each population separately. This requires knowledge of the origin of alleles in
crossbred populations. In one chapter of this thesis, a statistical method to estimate
the origin of alleles in crossbred populations was developed.

1.2 Genomic imprinting
The additive genetic value is the heritable part of the genetic value (Bijma, 2011),
however, genetic variation is not limited to additive genetic variation only and does
also include variance due to genomic imprinting (Hager et al., 2009). Genomic im-
printing is an epigenetic phenomenon where the degree of transcription of an allele
into RNA is conditioned by the gender of the parent from which it is inherited (Wood
and Oakey, 2006). This leads from a situation of mono-allelic expression, where
transcription of one allele is completely inhibited, to a situation where one allele is
only partially transcribed into RNA (Spencer, 2002; Morison et al., 2005). Genomic
imprinting should not be confounded with parental effects (Wolf and Wade, 2009),
although the effects of genomic imprinting and parental effects can be statistically
confounded (Hager et al., 2008).

Genomic imprinting has been found in seeded plants and in mammals (Feil and
Berger, 2007). In plants, genomically imprinted genes are mainly organized as single
genes, whereas in mammals they are mainly organized in chromosomal clusters, con-
trolled by a single Imprinting Control Region (ICR) (Edwards and Ferguson-Smith,
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2007; Feil and Berger, 2007). The differential transcription of imprinted genes in
mammals is due to methylation of their ICR, which is established during gametogen-
esis and maintained during the later development (Wood and Oakey, 2006; Edwards
and Ferguson-Smith, 2007).

In mammals, imprinted genes play important roles in development of the placenta,
in fetal growth and development and in neurological development. Hence, aberrant
allele-specific expression of imprinted genes can disrupt prenatal development and is
associated with different genetic diseases including several forms of cancer and a num-
ber of neurological disorders (Verona et al., 2003; Butler, 2009). Comparative studies
indicate a marked difference in genomic imprinting among singleton and polytocous
species, particularly for genes imprinted in the placenta (Monk et al., 2006; Renfree
et al., 2008) and high expression of the majority of imprinted genes tested to date has
been demonstrated in extra embryonic tissues, suggesting a critical role for imprinted
genes in placental development (Coan et al., 2005).

Genomic imprinting contributes to the genetic variation through a contrast be-
tween the reciprocal heterozygote classes of a genotype (AB and BA, where the first
character represents the allele of maternal origin and the second character the allele of
paternal origin) (Spencer, 2002; Mantey et al., 2005; Hager et al., 2009). Since it is
known that genomic imprinting can silence alleles of maternal and of paternal origin
(Feil and Berger, 2007), the effects of two genomically imprinted genes with recip-
rocal imprinting patterns will at least partially annulate each other when analyzed on
the level of animals. Consequently, analyses for imprinting variance on the polygenic
scale as was done by Vries et al. (1994) and Meyer and Tier (2012) are expected to un-
derestimate the variance due to genomic imprinting and the contribution of genomic
imprinting can only be estimated correctly with knowledge of individual genomically
imprinted genes.

Genomically imprinted genes can be detected with genetic markers (de Koning
et al., 2000; Hager et al., 2009). Since imprinting is manifest through a contrast be-
tween the genetic value of reciprocal heterozygote classes of a gene, knowledge of the
parental origin of the marker alleles is required. In this thesis, a method to estimate al-
lele origin in crosses populations without knowledge of pedigree was developed which
can be used to estimate allele origin in commercial pig populations, where pedigree
information of crossbred animals is not always available.

Variation due to genomic imprinting is not heritable and the contribution of ge-
nomically imprinted genes to genetic improvement of populations is therefore limited
to their additive genetic variation. In crossbreeding schemes, however, genomically
imprinted genes could be utilized effectively, as hypothesized by (de Koning et al.,
2000). In the case of a paternally expressed gene, for example, changing allele fre-
quencies in the maternal line would not affect performance of crossbred offspring
since only the paternally inherited allele is transcribed into RNA. For effective ex-
ploitation of genomically imprinted genes in commercial breeding situations, knowl-
edge of these genes in the commercial populations is required. A disadvantage is
that the majority of genomically imprinted genes have been detected in experimental
crosses (de Koning et al., 2000; Sandor and Georges, 2008), while confirmation of
their effects in commercial population is still pending. One chapter of this thesis de-
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scribes an association study for genomically imprinted genes in two commercial pig
populations.

1.3 Aim and outline of this thesis
The objective of this thesis was to investigate the application of marker information
in pig breeding programs, with a special emphasis to genomic imprinting. A special
characteristic of commercial pig breeding is the crossbreeding scheme employed. In
this breeding scheme, sows of one population or line are mated to boars of another line
and the offspring piglets are used for production purposes only. A comparable breed-
ing scheme is used in poultry production and also for a commercial crop as maize.
Advantages of using a crossbreeding scheme include maximization of heterosis, the
possibility to breed for divergent traits in the two lines and product protection, since
crossbreds can not directly be used for further breeding.

Chapter 2 of this thesis describes an association study for genomically imprinted
genes in two commercial pig populations affecting maternal reproduction traits. In
this study, we identified one marker with a significant imprinting effect, located close
to the imprinted gene DIO3.

The two next chapters of this thesis deal with practical questions regarding the
implementation of the use of markers for estimation of breeding values. In both chap-
ters, conclusions were based on simulated data. Chapter 3 investigates the effect of
the number and type of genes on the accuracy of these breeding values, estimated by
several methods. Chapter 4 studies the effect of gene number and type on the response
to selection in a selection experiment, where the breeding values were again estimated
by the same methods as in Chapter 3.

For application of marker based techniques to estimate breeding values in cross-
bred populations, the parental origin of the marker alleles is required since a marker
allele can be associated to distinct gene alleles in the two populations. Chapter 5
of this thesis describes a method to estimate the parental origin of marker alleles in
crossbred populations when pedigree information is not available.

Chapter 6 is the general discussion of this thesis. Here, I use a deterministic ap-
proach to draw conclusions about genomically imprinted genes. The approach is fur-
thermore utilized to calculate the power of methods to detect genomically imprinted
genes in populations and the effect of selection on traits affected by genomic imprint-
ing.
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Abstract
Genomic imprinting is an important epigenetic phenomenon, which on the pheno-
typic level can be detected by the difference between the two heterozygote classes of
a gene. Imprinted genes are important in both the development of the placenta and
the embryo, and we hypothesized that imprinted genes might be involved in female
fertility traits. We therefore performed an association study for imprinted genes re-
lated to female fertility traits in two commercial pig populations. For this purpose,
309 SNPs in fifteen evolutionary conserved imprinted regions were genotyped on 689
and 1050 pigs from the two pig populations. A single SNP association study was used
to detect additive, dominant and imprinting effects related to four reproduction traits;
total number of piglets born, the number of piglets born alive, the total weight of
the piglets born and the total weight of the piglets born alive. Several SNPs showed
significant (q-value < 0.10) additive and dominant effects and one SNP showed a
significant imprinting effect. The SNP with a significant imprinting effect is closely
linked to DIO3, a gene involved in thyroid metabolism. The imprinting effect of this
SNP explained approximately 1.6 % of the phenotypic variance, which corresponded
to approximately 15.5 % of the additive genetic variance. In the other population, the
imprinting effect of this QTL was not significant (q-value > 0.10), but had a similar
effect as in the first population. The results of this study indicate a possible association
between the imprinted gene DIO3 and female fertility traits in pigs.

2.1 Introduction
Genomic imprinting is an epigenetic phenomenon where the degree of expression of
an allele depends on its parental origin. The parent-of-origin-dependent allele expres-
sion of genomically imprinted genes is controlled by epigenetic marks such as DNA
methylation and histone modifications which are established during gametogenesis
and mostly maintained during life (Wood and Oakey, 2006; Edwards and Ferguson-
Smith, 2007).

Genomic imprinting has been found in viviparous mammals and in seeded plants
(Morison et al., 2005; Feil and Berger, 2007). To date, more than 100 imprinted genes
have been experimentally identified in mammals (http://igc.otago.ac.nz
and http://www.geneimprint.com/site/genes-by-species), several
hundreds of genes have been predicted to be imprinted in human and mouse (Luedi
et al., 2005, 2007) and recently as many as 1300 loci with parent-of-origin-dependent
allele expression have been identified in the mouse brain (Gregg et al., 2010b,a).

The majority of genomically imprinted genes are found in clusters containing pro-
tein coding and non-coding genes (Verona et al., 2003; Royo and Cavaille, 2008).
Imprinted genes play important roles in development of the placenta, in fetal growth
and development and in neurological development. Hence, aberrant allele-specific ex-
pression of imprinted genes can disrupt prenatal development and is associated with
different genetic diseases including several forms of cancer and a number of neurolog-
ical disorders (Verona et al., 2003; Butler, 2009). Some imprinted genes are imprinted

12

http://igc.otago.ac.nz
http://www.geneimprint.com/site/genes-by-species


in all tissues throughout all stages of development whereas others are imprinted in a
tissue or sex specific manner, at a particular stage of development or display opposite
imprinting in different tissues (Ideraabdullah et al., 2008; Monk et al., 2009; Gregg
et al., 2010b,a; Garfield et al., 2011). Comparative studies indicate a marked differ-
ence in genomic imprinting among singleton and polytocous species, particularly for
genes imprinted in the placenta (Monk et al., 2006; Renfree et al., 2008) and high
expression of the majority of imprinted genes tested to date has been demonstrated
in extraembryonic tissues, suggesting a critical role for imprinted genes in placental
development (Coan et al., 2005).

At the phenotypic level, imprinting is manifested through a contrast between the
two heterozygote classes that exist for a genotype (AB and BA classes, in this no-
tation the first letter of the genotype indicates the allele inherited from the mother
and the second letter the allele inherited from the father) (Hager et al., 2009), which
both contribute to the total phenotypic variation of a trait. This variation has been
exploited in QTL (Quantitative Trait Loci) mapping studies, which associate marker
genotype classes to phenotypic variation. Adapting QTL-linkage mapping to imprint-
ing in livestock animals was first described by Knott et al. (Knott et al., 1998), and
shortly thereafter applied in a genome-wide scan for imprinted QTL by de Koning et
al. (de Koning et al., 2000). This stimulated a variety of imprinting QTL studies in
livestock animals, especially in pigs where ∼ 47 imprinted QTL, related to a broad
scale of phenotypic traits, have been described (Rohrer et al., 2006; Holl et al., 2004;
de Koning et al., 2000; Thomsen et al., 2004; Stearns et al., 2005a,b; Hirooka et al.,
2001). The reported imprinted QTL are scattered over all of the pig chromosomes
except one, and cover a variety of traits such as meat quality and reproduction (see
http://igc.otago.ac.nz for an overview).

A common denominator in genome screens for imprinted QTL in pigs is the use
of experimental crosses between divergent pig breeds or lines. When the lines are
not completely inbred, this incurs the risk of false positive detection of imprinted
QTL due to heterogeneity in the original purebred populations (Sandor and Georges,
2008). Further, this approach might detect QTL that are fixated within commercial
lines and hence have no value for selective breeding within those commercial lines.

One of the most intensively studied imprinted QTL in pigs is the paternally ex-
pressed QTL on chromosome 2, which affects heart muscle size, muscle growth and
fat deposition (Jeon et al., 1999; Nezer et al., 1999; de Koning et al., 2000). This im-
printed QTL maps to a region that includes the imprinted IGF2 gene. Sequencing of
the IGF2 gene in different pig breeds and wild boars showed that the QTL is caused
by a G to A nucleotide change in a CpG island in intron 3 of this gene (Van Laere
et al., 2003). This substitution increases the expression of IGF2 in postnatal muscle
and is responsible for the observed phenotypic effect.

Several hypotheses for the evolution of genomic imprinting have been formulated,
many related to allocation of resources from mother to offspring during the early
stages of development. These hypotheses include: the parental conflict hypothesis
that explains genomic imprinting by a parental conflict in allocation of resources to
the offspring (Haig, 2004); the intralocus sexual conflict hypothesis based on the idea
that natural selection should favor paternal expression in males and maternal expres-
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sion in females (Day and Bonduriansky, 2004) and the co-adaptation theory explain-
ing genomic imprinting as a result of the evolution of coadaptation between mother
and offspring traits (Wolf and Hager, 2006).

The presumption that genomically imprinted genes regulate the resource alloca-
tion between mother and offspring (Haig, 2004; Day and Bonduriansky, 2004; Wolf
and Hager, 2006), together with the important role of genomic imprinting in placen-
tal and embryonic development suggests a possible involvement of imprinted genes
in mammalian female fertility traits. Identification of genomically imprinted QTL in-
volved in these traits would therefore add to the knowledge of genomic imprinting and
would also disclose possibilities for animal breeding, especially if these traits could
be manageable in a sex specific manner.

The aim of this study was therefore to explore whether putative imprinted genes or
regions associate with fertility traits in commercial pigs. For this purpose, fifteen evo-
lutionary conserved imprinted regions were genotyped in two commercial pig breeds.
An association study was used to detect additive, dominant and imprinting effects
related to four reproduction traits (total number of piglets born (TB), the number of
piglets born alive (LB), the total weight of the piglets born (TW) and the total weight
of the piglets born alive (LW)). Several additive and dominant associations and one
imprinted association were detected. These results are discussed in relation to their
biological relevance.

2.2 Results

2.2.1 Description of data

The data of two commercial purebred pig populations were analyzed in this study.
Both populations were Large White dam lines which have been selected for several
generations for commercially important traits, including reproduction traits. The traits
analyzed in this study were reproductive performance of the sows, based on their
litters. Some of the litters were purebred and others were crossbreds. Phenotypes
considered were the total number of piglets born (TB), the number of piglets born
alive (LB), the total weight of the piglets born (TW) and the total weight of the piglets
born alive (LW). Table 2.1 summarizes the characteristics of the two pig populations.
In population C1, 736 individuals were genotyped, of which 490 had phenotypes for
at least one trait (Table 2.1). In population C2, 1078 individuals were genotyped, of
which 983 had phenotypes for at least one of the traits (Table 2.1). The number of
genotyped sows with observations for LW and TW was especially low in population
C1 (Table 2.1).

Table 2.2 shows the variance components and the heritability estimates for the four
traits in populations C1 and C2. In general, the additive genetic component (σ2

a ) con-
tributed more to the phenotypic variation than the permanent environmental (σ2

pe) or
maternal (σ2

v ) effects. The variance due to maternal effects was low for all traits. The
heritability estimates for the traits were moderate to low. The heritability estimates
for LW and TB differed between the population, however the confidence intervals for
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Table 2.1: Descriptive statistics for the populations C1 and C2. N. phenotypes =
number of sows with phenotypic data; N. genotypes = number of sows with genotypic
and phenotypic data; Mean parity n = mean parity number corresponding to the phe-
notypes in the data; Mean = mean of the phenotype data, averaged over all parities;
σ = (uncorrected) standard deviation of the phenotype data. The traits included in
the analyses were: LB = number of piglets born alive in a litter, LW = weight of the
liveborn piglets in a litter in kg; TB = number of piglets born in a litter; TW = weight
of the piglets born in a litter in kg.

Trait N. phenotypes. N. genotypes. Mean parity n. Mean σ

C1
LB 3995 489 2.35 13.07 2.85
LW 680 149 2.57 18.36 4.07
TB 4011 490 2.35 14.05 2.91
TW 679 148 2.57 19.86 4.06

C2
LB 3059 983 2.47 13.59 2.94
LW 1689 712 2.81 17.39 3.70
TB 3061 983 2.47 14.74 3.07
TW 1685 713 2.82 18.90 3.75

the heritability estimates overlap (Table 2.2)

2.2.2 Characteristics of the SNPs

The fifteen selected regions are located on ten different chromosomes with three re-
gions on chromosome 1, two regions on chromosomes 2, 9, and 17 and one region on
chromosomes 5, 6, 7, 8, 14 and 18 (Table 2.3). The size of the regions varied between
0.55 and 4 Mb and the smallest distance between two regions on one chromosome
was approximately 14.5 MB, making any linkage disequilibrium (LD) between two
regions unlikely. Between 20 to 38 SNPs were genotyped in the different regions (see
the Material and Methods section for details). After excluding monomorphic SNPs
and SNPs with parental errors and SNPs that failed during genotyping, the number of
polymorphic markers varied between 13 in region 9 2 to 32 in region 9 1 (Table 2.3)
with generally the same markers being polymorphic in both populations. The minor
allele frequency (MAF) of the SNPs was usually higher in population C1 than in C2
and the average LD between adjacent SNPs was lower in population C1 than in C2
(Table 2.3). This indicates that population C2 was genetically less variable in the
genotyped regions than population C1.

2.2.3 Marker effects

Single SNP association analyses were performed to detect additive, dominance and
imprinting effects related to the four traits. For each combination of trait and popula-
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Table 2.2: Variance components estimated for populations C1 and C2 Additive
variance (σ2

a ), permanent environment variance (σ2
pe), variance of the maternal effects

(σ2
v ), residual variance (σ2

e ) and heritability (h2 = σ2
a

σ2
a+σ2

pe+σ2
v +σ2

e
) (with standard er-

rors) estimated for the four traits in populations C1 and C2. The traits included in
the analyses were: LB = number of piglets born alive in a litter, LW = weight of the
liveborn piglets in a litter in kg; TB = number of piglets born in a litter; TW = weight
of the piglets born in a litter in kg.

Trait σ2
a σ2

pe σ2
v σ2

e h2

C1
LB 0.78 (0.14) 0.73 (0.13) 0.06 (0.06) 6.51 (0.11) 0.10 (0.02)
LW 3.13 (0.80) 0.87 (0.65) 0.18 (0.35) 10.03 (0.51) 0.22 (0.05)
TB 0.76 (0.14) 0.62 (0.12) 0.11 (0.06) 6.41 (0.11) 0.10 (0.02)
TW 3.51 (0.78) 0.68 (0.60) 0.09 (0.30) 8.70 (0.45) 0.27 (0.05)

C2
LB 1.02 (0.21) 0.48 (0.14) 0.08 (0.06) 6.73 (0.11) 0.12 (0.02)
LW 1.70 (0.55) 1.73 (0.38) 0.12 (0.18) 8.88 (0.25) 0.14 (0.04)
TB 1.48 (0.26) 0.60 (0.16) 0.09 (0.07) 6.90 (0.12) 0.16 (0.03)
TW 3.03 (0.58) 1.44 (0.41) 0.00 (0.00) 7.81 (0.22) 0.25 (0.04)

tion, several additive, dominant and imprinted effects had a p-value < 0.05 (see sup-
plemental file S1). The p-values for the imprinting effects of the markers are shown
in Figure 2.1.

Table 2.4 shows the number of markers in a region with a q-value < 0.10 for each
trait in each population. Significant effects were found in eight of the fifteen regions.
There were considerable differences in number and type of effects between the two
populations (Table 2.4). In population C1, three dominance and one imprinting effect
were found while in population C2 several additive effects and two dominance effects
were found (Table 2.4). The absence of effects with a q-value < 0.10 for traits LW
and TW in population C1 is probably a result of the small number of observations
for these traits in this population. Of the regions with a significant effect region 7 1
seems most interesting because it contained a significant imprinted effect for trait TB
in population C1 and for population C2 it contained several significant additive effects
for the four traits (Table 2.4).

The imprinting effect in population C1 with significant FDR in region 7 1 on
trait TB corresponded to SNP marker ASGA0037226. In this population, this region
contained several other markers with small p-values for imprinting effects on traits TB
and LB, but none of these effects had a q-value < 0.10.

The significant imprinting effect in region 7 1 on trait TB in population C1 ex-
plained 1.6 % of the phenotypic variance of trait TB (Table 2.5), which represents
approximately 15.5 % of the additive genetic variance of this trait (with h2 of 0.1, Ta-
ble 2.2). This marker explained a large percentage of the phenotypic variance of the
trait when it was compared to the percentage of the phenotypic variance explained
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Figure 2.1: Plot of the -log10(p-value) of imprinting effects for the four traits in
populations C1 and C2. The red squares ( ) correspond to population C1; the blue
triangles ( ) correspond to population C2. The vertical lines separate the regions.
The marker with a q-value < 0.1 in region 7 1 for trait TB is indicated. See the
supplemental file S1 for the corresponding p-values of individual markers.
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Table 2.4: Significant associations from the single marker analyses in populations
C1 and C2. Number of markers with q-value < 0.10 for the additive (A), dominance
(D), or imprinting (I) in each region and for each population. The traits included in
the analyses were: LB = number of piglets born alive in a litter, LW = weight of the
liveborn piglets in a litter in kg; TB = number of piglets born in a litter; TW = weight
of the piglets born in a litter in kg. See Table 2.3 for explanation of the regions. See
the supplemental file S1 for the corresponding p-values of individual markers.

Region
Trait 1 1 1 3 2 2 7 1 8 1 14 1 17 2 18 1

C1
LB 1D
LW
TB 1D 1I 1D
TW

C2
LB 1D 2A
LW 7A 1A
TB 1A 8A 1D 2A 1A
TW 3A 8A 8A 1A 1A 1A 1A

by the imprinting effects of other markers (Table 2.5). The most significant additive
effects in this region in population C2 explained 0.9 % and 2.3 % of the phenotypic
variance, corresponding to 3.8 % and 16.1 % of the additive genetic variance of these
traits (Table 2.5).

Estimates for LD in region 7 1 (Figure 2.2) revealed weak LD between marker
ASGA0037226 and other markers in this region, explaining why the markers neigh-
boring marker ASGA0037226 did not reach significance on trait TB in population
HG. Noteworthy is the strong LD of six to seven SNP markers in another part of re-
gion 7 1 (Figure 2.2), which was especially apparent in population C2 but could also
be observed in population C1. This block of SNPs corresponded to the SNPs with
significant additive effects in population C2 (Table 2.4).

2.2.4 Imprinted marker in region 7 1

Table 2.6 summarizes the unadjusted means for the ASGA0037226 genotype classes
and the additive, dominance and imprinting effects estimated using Equation 2.1. The
estimated imprinting effects were positive for litter size in both populations, thus con-
sistently pointing to the same mode of imprinting (although only the effect on trait
TB in population C1 was significant). In population C1, the positive imprinting ef-
fects for the four traits agreed with the unadjusted means of the two genotype classes;
heterozygote individuals with a maternal B allele had larger and heavier litters than
heterozygote individuals with a paternal B allele. Thus, the imprinting pattern for the
trait TB suggests maternal expression with the maternal B allele resulting in larger
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Table 2.5: Phenotypic variance (in %) explained by the most significant marker
in each region for the additive, dominance and imprinting effect. Variance of the
additive (A), dominance (D) and imprinting effect (I) of the most significant marker in
each region, expressed as percentage of the total phenotypic variance. The bold figures
indicate the effects with a q-value < 0.10. The traits included in the analyses were:
LB = number of piglets born alive in a litter, LW = weight of the liveborn piglets in a
litter in kg; TB = number of piglets born in a litter; TW = weight of the piglets born in
a litter in kg. ∗ region 2 1 was included in the table because it contains the imprinted
IGF2 gene, for which an effect on sow prolificacy was found (see Discussion). See
Table 2.3 for and explanation of the regions.

C1 C2
Region LB LW TB TW LB LW TB TW

A
1 1 0.36 2.81 0.60 3.70 0.49 0.64 0.48 1.00
1 3 0.61 2.40 0.90 5.65 0.46 0.77 0.52 1.76
2 1∗ 0.20 39.48 0.26 11.84 0.16 0.19 0.31 0.40
2 2 1.73 2.84 0.19 3.16 0.01 0.00 0.41 0.00
7 1 1.25 1.21 0.61 0.12 1.20 2.26 1.20 0.94
8 1 2.22 8.06 0.87 5.98 0.73 0.64 0.70 1.55
14 1 0.47 3.04 0.39 3.87 0.11 0.54 0.30 0.75
17 2 1.31 2.64 0.30 0.67 0.32 0.12 0.31 0.24
18 1 0.49 0.06 0.76 0.22 0.00 0.56 0.16 0.18

D
1 1 0.47 2.52 0.51 1.98 4.64 0.91 4.45 0.55
1 3 3.48 2.99 2.97 1.75 0.07 0.41 0.11 0.65
2 1∗ 0.30 24.91 0.56 1.84 1.65 0.25 1.69 0.22
2 2 0.73 1.15 0.37 2.67 0.58 0.46 0.67 0.33
7 1 0.44 3.65 1.46 3.34 0.18 0.30 0.23 1.01
8 1 0.76 1.42 1.07 1.73 0.31 1.10 0.13 0.30
14 1 1.08 4.84 1.45 4.40 0.56 1.48 0.43 1.14
17 2 1.38 2.38 1.23 0.42 0.10 0.61 0.19 0.49
18 1 2.95 0.45 0.33 0.85 0.39 1.04 0.63 2.76

I
1 1 0.37 3.13 0.42 2.02 0.12 0.57 0.21 0.39
1 3 0.57 2.26 0.45 1.87 0.24 0.76 0.05 0.78
2 1∗ 0.88 1.20 0.73 2.85 0.16 0.41 0.21 0.34
2 2 0.42 1.49 0.36 1.45 0.37 0.42 0.42 0.33
7 1 0.92 0.91 1.55 1.44 0.24 0.68 0.45 0.41
8 1 0.45 2.40 0.77 2.20 0.25 0.41 0.11 0.53
14 1 0.17 2.76 0.31 12.00 0.08 0.72 0.13 0.19
17 2 0.95 1.18 0.96 5.07 0.03 0.45 0.15 0.52
18 1 0.30 1.38 0.43 2.83 0.18 0.21 0.16 0.18
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litter size than the maternal A allele. Notably, the frequency of the BA genotype was
higher in both populations than that of the AB genotype and genotype frequencies
deviated from the expected frequencies under Hardy Weinberg Equilibrium.

To ensure that the observed imprinted effect was not an effect of a stochastic un-
equally assignment of parental alleles from heterozygotic parents, genotypic means
were also calculated based on matings that resulted in irrefutable allele origin in the
offspring (e.g a BA genotype from a AA mother and a BB father). In both popula-
tions, the means for LB and TB of the BA genotype where higher than those of the
AB genotype, validating the imprinting effect (results not shown). The deviation from
the expected Hardy-Weinberg equilibrium can be specific for the sampled populations
and therefore we also estimated these deviations for the other markers. For this pur-
pose, the χ2 test statistic for ASGA0037226 was compared to the distribution of χ2’s
test statistic of all markers. In population C1, 41 % of the markers had a higher χ2 test
statistic than ASGA0037226 and in population C2 this was 48 %. This indicated that
the genotype frequencies observed for marker ASGA0037226 were not significantly
different from genotype frequencies observed for other markers in the data.

2.3 Discussion
Fertility is an economically important trait in the pig breeding industry for which
considerable selection has been applied in the last decades. Many studies have been
conducted to find QTL and genes related to reproduction traits in pigs (see Onteru
et al. (2009) for a recent review), but imprinted effects were not taking into account in
the majority of these studies.

The developing placenta, together with the uterine environment, play critical roles
in prenatal growth and survival. The observation that many imprinted genes have high
expression in extraembryonic tissues (Coan et al., 2005), and the marked difference
in the number of placental imprinted genes among singleton and polytocous species
(Monk et al., 2006; Renfree et al., 2008), and the distinct hypotheses for the evo-
lution of genomic imprinting (Haig, 2004; Day and Bonduriansky, 2004; Wolf and
Hager, 2006), suggest a role for imprinted genes in placental development and in the
regulation of litter size. Thus, we hypothesized that imprinted genes may affect pig
reproduction traits such as litter size and/or litter weight. To test this hypothesis, fif-
teen evolutionary conserved imprinted regions were genotyped in two commercial pig
breeds, followed by an association study with the objective to detect imprinted QTL
affecting sow fertility traits.

We used a model similar to that of Hager et al. (2009) for the analysis of the data.
The model included additive and dominance effects in a addition to imprinting effects,
which effectively corrects the imprinting effects for these additive and dominance ef-
fects and thus reduces the risk of false positive imprinting effects. In addition, we
could estimate effects of the three genetic effects and thus compare the size of their
effects. The model included random terms accounting for maternal, permanent envi-
ronmental and polygenic effects. The inclusion of the maternal effects was motivated
by the study of Santure and Spencer (2006) and of Hager et al. (2008), who showed
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possible confounding between maternal effects and imprinting effects.
Knowledge of the parental origin of marker alleles is essential for detection of

genomic imprinting (de Koning et al., 2000; Wolf et al., 2008; Hager et al., 2009).
In our data, the parental origin of alleles was estimated using the program cvmhaplo
(Albers et al., 2007), which reconstructs marker haplotypes based on pedigree and
marker information. The accuracy of haplotypes reconstructed with this program was
expected to increase with the number of offspring. For this reason, paternal halfsib
groups of sows and their ancestors were selected for genotyping. By inferring the
parental origin of alleles, litter records of all available sows could be used in the anal-
yses without being limited to using sows of homozygous fathers or mothers only. The
sizes of both populations were aimed at 1000 individuals based on an initial power
study, which showed that the power to detect an imprinted QTL that explained 1 % of
the phenotypic variance was 0.65 (using a type I error of 0.05 and without accounting
for multiple testing).

To avoid a large number of false positive effects due to the large number of tests
performed, the false discovery rate (FDR) was calculated. A consequence was that
we used a stringent significance thresholds for our tests, leading to reduced power to
detect imprinting effect, but strengthening the confidence in the detected effects. The
fact that we only found significant evidence for one imprinted effect is partially due to
this reduced power, but does also illustrate the challenge of detecting imprinted effects
in association studies.

The proportion of phenotypic variance explained by this imprinted effect was
substantial, accounting for 1.6 % of the phenotypic variance (which is equivalent to
15.5 % of the additive genetic variance of this trait in this population). In population
C2, the imprinting effect of this marker was not significant, but the estimated imprint-
ing effect had the same sign as in population C1 (Table 2.6).

We performed additional analyses using haplotypes instead of single SNP and fit-
ting additive, dominance and imprinting effects as random effects. Results from this
analysis show that the variance explained by imprinting effects was approximately
equal to the imprinting variance based on the single SNP analysis. These results sug-
gest that the SNP ASGA0037226 is in weak LD with other SNPs in this region and
that the association between the QTL and these other SNPs is weak. This is in line
with the LD pattern in region 7 1 (Figure 2.2)

Region 7 1 corresponds to the DLK1-DIO3 imprinted domain which contains at
least three maternal imprinted protein coding genes (DLK1, RTL1 and DIO3) and
many paternal imprinted small and large ncRNA genes. The SNP marker with signifi-
cant imprinted effect (ASGA0037226) is located approximately 25 kb from the DIO3
gene and about 500kb from other known imprinted genes in this region. DIO3 codes
for type 3 deiodinase (D3), a selenoprotein that plays an important role in thyroid hor-
mone metabolism. Thyroid hormones influence a wide variety of biological processes
in vertebrates. Their importance is most evident during prenatal and early neonatal de-
velopment (for references see (Hernandez, 2005)). D3 enzymatic activity inactivates
T4 (a prohormone) and T3 (the biologically active thyroid hormone) into metabolites
which are biologically inactive (St Germain and Galton, 1997). D3 displays a marked
developmental pattern of expression. In both humans and rodents D3 is expressed
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at very high levels in the uterine decidual tissue in early pregnancy and in the uter-
ine wall and placenta(s) later in pregnancy (reviewed in (Hernandez, 2005)). Since
maternal levels of thyroid hormones are much higher during pregnancy than those in
the developing offspring, it is assumed that D3 in uterine and placental tissues have
a role in maintaining embryonic and fetal levels of thyroid hormones at an optimum
level for optimal development and survival. DIO3 is partially maternally imprinted
in mouse tissues (∼ 1 : 4 maternal:paternal expression) (Tsai et al., 2002; Hernandez
et al., 2002; Yevtodiyenko et al., 2002; Hagan et al., 2009) and was recently found to
be paternally expressed in several embryonic tissues and in 2-month-old pigs (Yang
et al., 2009; Qiao et al., 2012). Disruption of the imprinting status or knocking-out of
DIO3 in mice affects D3 enzyme activity and results in abnormal embryonic thyroid
hormone levels, abnormal embryonic development, lifetime marked growth retarda-
tion and low fertility rate (Tsai et al., 2002; Hernandez et al., 2002, 2006). In addition,
the number of DIO3 double knock-out (D3KO) offspring from heterozygous crosses
did not follow Mendelian expectations indicating partial embryonic lethality of D3KO
mice. Thus, based on the effects of this gene and on the strong and consistent indi-
cations of imprinting of SNP ASGA0037226, this SNP could be in strong LD with
DIO3 and hereby suggesting that DIO3 plays a role in the regulation of litter size in
pigs.

At current state it is only possible to hypothesize about possible biological mech-
anisms related to the imprinted (DIO3) QTL. The most plausible explanation is that
DIO3 could play a role in the regulation of female fertility and/or on the survival of
fertilized oocytes and embryos.

Limited studies have described the effect of imprinted genes on litter size. An
imprinted effect on litter size has been observed in mouse for the (predominantly) ma-
ternally expressed gene GRB10 (Charalambous et al., 2010). Larger litters, smaller
offspring and reduced placenta size was observed in female mice receiving an inac-
tive GRB10 allele from their mothers as compared to inheriting an inactive GRB10
allele from their fathers. For GRB10, the difference in mean mouse embryo weight /
offspring at day 17.5 was 6.8 % which is in line with the difference in mean TB birth
weight/offspring of the two heterozygotic classes for SNP ASGA0037226 in both C1
4.1 % and C2 9.6 %. Thus, the effect of the two imprinted genes GRB10 and DIO3
is remarkably concordant, suggesting a possible general role for imprinted genes in
litter size likely through regulation of placental and/or fetal growth.

The genotypic effects for the imprinted QTL suggest maternal expression (ac-
cording to the classification of Wolf et al. (2008)). This suggest maternal expression
of DIO3 which is opposite to the (partial) paternal gene expression observed for DIO3
in mouse and pig (Tsai et al., 2002; Hernandez et al., 2002; Yevtodiyenko et al., 2002;
Hagan et al., 2009; Yang et al., 2009; Qiao et al., 2012). Where the paternal expression
of DIO3 in mouse and pig was found in fetal/infant stages of development the imprint-
ing effect that we observe is likely to be expressed in the uterine tissue of the mother.
This suggest that DIO3 in pigs have different tissue-specific modes of parental expres-
sion. Such reciprocal imprinting has also been observed for GRB10 in both human
and mouse (Monk et al., 2009; Garfield et al., 2011), with reverse imprinting between
e.g. embryonic brain and placental tissue.
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The similarities in partial and reciprocal imprinting of both GRB10 and DIO3
is notable. Assuming that larger litters place a greater demand for resources on the
mother, these similarities may indicate that parental regulation of the imprinting level
of these genes are still under natural selection for optimal parental regulation of re-
sources to the offspring(s) as predicted by the parental-offspring conflict hypothesis
for genomic imprinting (Haig, 2004).

The higher than expected frequencies of the BA genotype of SNP marker
ASGA0037226 in both populations was of interest because this genotype class was
also favorable in terms of the traits studied in both populations (sows with a BA geno-
type had more offspring than sows with a AB genotype (Table 2.6)). The reason of the
relative excess of this genotype class is unknown, but it could be argued that, in addi-
tion to the imprinting effect of this marker on reproductive performance, this marker
may also have a direct effect on the individual itself on e.g. survival. To check this,
the relative frequency of the BA genotype class across parities was calculated for both
populations. Since the relative frequency remained constant across parities, it seems
unlikely that sows with a BA genotype have a better survival than sows with a AB
genotype.

Recent publications reported an effect of the paternally expressed IGF2 gene on
sow prolificacy traits (Muñoz et al., 2010; Stinckens et al., 2010). In the present study,
the significance of imprinting effects of SNP in IGF2 region did not pass the threshold
(q-value < 0.10): the most significant imprinting effect on TB in region 2 1 had a
p-value of 0.016 in population C1 and 0.045 in population C2 and the most significant
imprinting effect on LB was 0.011 in population C1 and 0.068 in population C2. The
percentage of the phenotypic variances explained by region 2 1 were also much lower
than the percentage of variance explained by region 7 1. These results clearly indicate
the importance of a possible imprinted gene located in region 7 1 on litter size traits.

2.4 Materials and Methods

2.4.1 Selection of imprinted regions and SNP markers

In this study, we only considered imprinted genes which have been experimentally
confirmed in human, mouse or other mammalian species. These more than 100 im-
printed genes are located in 40 regions on the human genome (based on information
available at the time the study was designed, i.e. December, 2008). Fifteen of these
regions were selected for genotyping (see supplemental file S1). The regions were
selected based on the following criteria. 1) An orthologous region should be present
in the pig genome (pig reference genome build 7 or 8) or on a pig BAC clone (NCBI
High throughput genomic sequence database). 2) Phylogenetic conservation of im-
printing; evidence for imprinting found in both human and mouse, and preferably also
in pig or in another cetartiodactyl. 3) Strength of imprinting evidence; imprinting
reported in more than one publication. 4) Number of imprinted genes in the region;
preferably more than one gene is imprinted in the region. 5) By tissue specific im-
printed genes; the imprinted gene should preferably be imprinted in a certain stage
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of reproduction and embryonic/fetal development. 6) Gene function of the imprinted
gene; the imprinted gene should play a role in reproduction or in embryonic or fetal
development.

The location of the regions in the pig genome, orthologous to the imprinted regions
in human plus 0.25 Mb at the 5’ and 3’ flanking sequence, were found by megaBLAST
searches (Zhang et al., 2000) against the pig reference genome (build 7 or 8) or pig
BAC clones. The megaBLAST searches were done with either pig mRNA/ESTs or-
thologous to the human genes present in the imprinted region or if no pig orthologous
was present with human and/or cow gene sequences. The regions were named accord-
ing to the chromosome on which they occur and to their order on each chromosome
(see Table 2.3).

A 384-plex Golden gate SNP assay was developed to cover the fifteen selected
regions. Twenty to 38 SNPs were allocated to each region. The number of SNPs
allocated to the different regions depended on the number of imprinted genes in each
region, on the size of the region and on the expected importance of the imprinted
genes in the region on reproduction. (see Table 2.3 for an overview of the regions).
The SNPs were selected from the SNP discovery panel which was used to design the
Illumina Porcine 60K-chip (Ramos et al., 2009). A number of criteria were used to
select the SNPs. 1) SNPs were as equally as possible dispersed over a region, based
on their position in the pig reference genome (version 8) or BAC clone. 2) SNPs with
high Illumina design score (> 0.8) were preferred, as were SNPs with a high minor
allele frequency in the SNP discovery panel.

2.4.2 Population and phenotypes

In the association study, sows from two purebred lines of the Dutch breeding com-
panies Hypor (further denoted as population C1) and Topigs (further denoted as pop-
ulation C2) were genotyped and their data were analyzed with the objective to de-
tect genomic imprinting affecting reproduction traits. These populations were chosen
because they had detailed information on fertility traits and because they were suffi-
ciently large to allow for optimization of the study design.

To enable accurate inference of allele origin, which involves inference of haplo-
types, a sow was only selected when her father and more than two of her paternal
halfsibs were available for genotyping. Available ancestors of a selected sow were
also selected for genotyping.

The pedigree of population C1 consisted of 6750 individuals, of which 4033 had
phenotypes and in total 689 individuals from this population were genotyped. The
pedigree of population C2 consisted of 10096 individuals, of which 3297 had pheno-
types and in total 1050 individuals from this population were genotyped. On average,
4 generations of pedigree were available for the genotyped individuals of population
C1 and 6 generations for the genotyped individuals of population C2.

The phenotypes considered in this analysis were the total number of piglets born
(TB), the number of piglets born alive (LB), the total weight of the piglets born in
kilograms (TW) and the total weight of the piglets born alive in kilograms (LW). The
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weight traits TW and LW were expressed in kilograms and fewer observations were
available for these traits than for the count traits TB and LB.

The records of litters until the fourth parity of a sow were used in the analyses.
A record of a specific trait was considered as outlier and excluded from the analyses
when it deviated more than three standard deviations from the mean of that population.
In population C1, 92 records for TB, 136 for LB, 10 for TW, and 8 for LW were
considered as outliers. In population C2, 97 records for TB, 97 for LB, 43 for TW,
and 35 for LW were considered as outliers. Outliers were removed because one outlier
can have a dramatic effect on the p-values, in case outliers occur in genotype classes
with only a few observations. On the other hand removing outliers might result in
missing interesting findings. Therefore we compared for each company if genotype
frequencies in the outliers and the data that was analyzed differed. This was not the
case suggesting that outliers were randomly distributed across genotype classes. In
addition, records for all four traits of a specific litter were excluded when TB or LB
of that litter were 0. In population C1, no records were excluded for this reason. In
population C2, the records of 712 litters were excluded for this reason.

2.4.3 Isolation of DNA and beadexpress genotyping
Samples from the two pig populations were supplied as hair or blood samples by the
two breeding companies. DNA was isolated either from hair with the NucleoSpin
tissue kits or from blood with the NucleoSpin blood kit, following the instructions of
the manufacturers. The DNA concentration was determined with a NanoDrop Spec-
trophotometer and diluted or concentrated by evaporation to a working concentration
of 50 ng µl−1 for genotyping. SNPs were genotyped with the Illumina GoldenGate as-
say and run on an Illumina BeadXpress according to the manufacturer’s protocols
(http://www.illumina.com). The Illumina’s GenomeStudio 2009.1 frame-
work Genotyping Module (v1.0) was used to score genotypes from the raw Bead-
Xpress data. A manually refined genotype clustering file, based on 192 samples, was
used for genotype scoring and the 384 SNPs were inspected to detect erroneous SNPs,
which were excluded from further analyses. After excluding erroneous and monorphic
SNPs, 309 SNPs remained for the association study.

2.4.4 Genotype correction and haplotype inference
Mendelian inconsistencies in the genotype data were identified using the program
Mendelsoft (de Givry et al., 2005; Sanchez et al., 2008) and the critical genotypes
suggested by this program were set as missing. The program Mendelsoft identifies
the genotypes which most likely are erroneous based on the genotype data of the
whole pedigree (de Givry et al., 2005; Sanchez et al., 2008). From population C1,
1759 of the 245088 genotypes were set to missing and from population C2 716 of the
358974 genotypes were set to missing.

The parental origin of alleles were estimated using the program cvmhaplo (Albers
et al., 2007). This program estimates the haplotype configuration of the genome seg-
ment of interest by optimizing the probability of this configuration given the complete
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pedigree, i.e. including non-genotyped individuals (Albers et al., 2007), and based on
the assumption that the recombination rate in a segment is proportional to the length.
Due to the computational limitations related to the large and complex pedigree, the
program was run on overlapping segments of at maximum six consecutive markers.
The program was run for each population separately.

2.4.5 Models
Statistical analyses

The univariate statistical analyses of the data were performed for each population and
each trait separately. The following mixed effects model was fitted to the data using
ASREML (Gilmour et al., 2002):

y =Xb+Qq+Za+Zpe+Mv+ e, (2.1)

where y is a vector of phenotypic observations, X is the design matrix of the fixed
effects, b is an unknown vector of fixed effects, Q is the design matrix of the effects
of a specific marker which is explained below, q is an unknown vector of additive,
dominance and imprinting effects of that marker. Matrix Z is the design matrix of
the random additive genetic effects a and of the permanent environmental effects pe.
A multivariate normal distribution with covariance matrix Aσ2

a was assumed for the
vector of additive genetic effects a, were A is the additive genetic relationship matrix
calculated from the pedigree. A multivariate normal distribution with covariance ma-
trix Iσ2

pe was assumed for the nongenetic permanent environment effects pe. Matrix
M is the design matrix for the maternal effects, i.e. the mothers of the sows in our
data. A multivariate normal distribution with covariance matrix Iσ2

v was assumed for
the unknown vector of maternal effects v. A multivariate normal distribution with
covariance matrix Iσ2

e was assumed for the vector of residuals e.
The fixed effects included in the model (apart from the marker effects) were a class

effect accounting for the breed of the litter (identical to the breed of the service father
since all sows within a population were from a single breed) (six levels in population
C1 and 13 levels in population C2); a class effect accounting for parity of the sow
(four levels in both populations); and a class effect accounting for the combination of
farm, year and season (135 levels in population C1 and 333 levels in population C2).

In an initial analysis, the model without the marker effects (the Qq term in Equa-
tion 2.1) was fitted separately to the data of populations C1 and C2 in order to estimate
variance components σ2

a , σ2
pe, and σ2

v .
In subsequent analyses, the model including the marker effects was fitted for each

marker separately while fixing the variance components to the obtained estimates.

Modeling marker effects

Design matrix Q in Equation 2.1 has dimensions equal to n rows, corresponding to
the number of observations in the data, and 3 columns, corresponding to the additive,
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dominance and imprinting effect of a specific marker. Matrix Q was calculated as Q=
GS, where G is a n by 4 matrix denoting the four genotype classes (AA,BA,AB,BB)
to which each genotype belonged. In this notation, the first letter of the genotype
indicates the allele inherited from the mother and the second letter the allele inherited
from the father. Matrix S is a 4 by 3 contrast matrix of the additive, dominance and
imprinting effect, as used by Hager et al. (2008):

S =


−1 0 0
0 1 1
0 1 −1
1 0 0


The first column of S corresponds to the additive effect, the second column of

S corresponds to the dominance effect and the third column of S corresponds to the
imprinting effect. The four rows of S correspond to the four genotype classes.

Incremental F-ratios were calculated for the additive, dominance and imprinting
effects of each marker, including the marker as the last fixed effect in the model.
Following the decomposition of genetic variance by Fisher (Lynch and Walsh, 1998),
the dominance effect was included after the additive effect, and the imprinting effect
was included after the dominance effect. This order corresponded with the order of
the columns of Q.

The significances of the marker effects where tested using the F-test statistic and
the Kenward and Roger approximation for the denominator degrees of freedom as
calculated by ASREML (Gilmour et al., 2002) using fixed variance components. To
avoid the large number of false positive test results due to the large number of tests
performed, the false discovery rates (FDR) were calculated, following the description
of Storey and Tibshirani (2003) and using the R-package qvalue (Dabney et al.,
2009). We used the term q-value to report the significance of an effect expressed as
its FDR.

The q-values were calculated separately for each combination of population, trait,
and genetic effect (additive, dominance, and imprinting). The strength of evidence
was expressed as the q-value of the test, following the notation of Storey and Tib-
shirani (Storey and Tibshirani, 2003). Tests with a q-value < 0.1 were considered
significant.
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2.6 Supporting Information
Supplemental File S1. Infomation of the markers and P-values for each marker.
The list of markers shows the markers included in the analysis, with their position
on the reference genome build 9, the region in which they were located and other
information. The list of P-values of the markers shows the P-value for the Additive
(A), Dominance (D) and Imprinting (I) effect of each marker in each analysis (four
traits x two breeding companies). The file can be found on http://dx.doi.org/
10.1371%2Fjournal.pone.0031825.
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Abstract
The objective of this simulation study was to compare the effect of the number of QTL
and distribution of QTL variance on the accuracy of breeding values estimated with
genomewide markers (MEBV). Three distinct methods were used to calculate MEBV:
a Bayesian Method (BM), Least Angle Regression (LARS) and Partial Least Square
Regression (PLSR). The accuracy of MEBV calculated with BM and LARS decreased
when the number of simulated QTL increased. The accuracy decreased more when
QTL had different variance values than when all QTL had an equal variance. The
accuracy of MEBV calculated with PLSR was affected neither by the number of QTL
nor by the distribution of QTL variance. Additional simulations and analyses showed
that these conclusions were not affected by the number of individuals in the training
population, by the number of markers and by the heritability of the trait. Results of
this study show that the effect of the number of QTL and distribution of QTL variance
on the accuracy of MEBV depends on the method that is used to calculate MEBV.

3.1 Background
In current breeding programs, estimation of breeding values is based on phenotypes of
selection candidates and their relatives, often measured after animals reach to a certain
age. This leads to a moderate to long generation interval, substantial costs and com-
plex logistics for phenotypic recording (Schaeffer, 2006). Comparatively, breeding
values estimated with genomewide distributed markers (MEBV) will increase annual
genetic gain due to a reduced generation interval and improved accuracy, at lower
costs (Meuwissen et al., 2001; Schaeffer, 2006).

Calculation of MEBV requires a population with information on genetic markers
and phenotypes, called the training population. Phenotypic performance of the train-
ing population is used to estimate effects for the genetic markers which can be used
to calculate MEBV of individuals with only marker information, called the evaluation
population. Accuracy of MEBV depends on the heritability of the trait, the size of
the training population, the method used to estimate marker effects and linkage dise-
quilibrium (LD) between markers and quantitative trait loci (QTL) (Meuwissen et al.,
2001; Calus and Veerkamp, 2007; Calus et al., 2008; Goddard, 2009; Solberg et al.,
2009a).

Linkage disequilibrium between markers and QTL is a function of the distance
between markers and QTL and of the effective population size (Sved, 1971). A large
number of markers, distributed over the whole genome, is required to achieve high
LD between markers and QTL when number and location of QTL on the genome are
unknown. Simulation studies have shown that accuracy of MEBV increases when
LD increases (Meuwissen et al., 2001; Muir, 2007; Solberg et al., 2008; Calus et al.,
2008).

The accuracy of MEBV also depends on the variance of individual QTL since the
ability to detect a QTL is related to its size. The size of a QTL, measured as the
proportion of the genetic variance explained by that QTL, depends on its variance and
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on the genetic variance. Genetic variance, in turn, is a function of the number of QTL
and of the variance of the individual QTL. Hayes and Goddard (2001) have estimated
parameters of a Gamma distribution describing the QTL effects found in published
QTL detection experiments. This gamma distribution has been used in simulation
studies to model the distribution of QTL effects (Meuwissen et al., 2001; Muir, 2007;
Calus and Veerkamp, 2007; Calus et al., 2008; Solberg et al., 2008, 2009a). Even
though the distribution of QTL effects can vary considerably between different traits,
the effect of the number of QTL on the accuracy of MEBV has been addressed only
by Daetwyler (2009) and the effect of distribution of QTL variance on the accuracy of
MEBV has not been studied.

An important problem when estimating marker effects is the large number of
markers relative to the number of phenotypes in the training data (Meuwissen et al.,
2001). Meuwissen et al. (2001) have solved this by using a Bayesian method (BM)
that uses a sampling algorithm to obtain a posterior distribution of the marker effects.
This Bayesian method is used in many simulation studies and in practical breeding
programs, e.g. De Roos et al. (2009). The Bayesian setup enables to incorporate a
prior for the number of QTL and for the distribution of QTL effects (Meuwissen et al.,
2001). Goddard (2009) has found higher accuracies when a prior distribution for QTL
effects reflecting the gamma (or exponential) distribution of QTL effects was used,
compared to using a normal prior distribution for QTL effects. For many quantitative
traits, however, the true distribution of the QTL effects is unknown.

Two other methods that might be suitable for estimating MEBV are Least Angle
Regression (LARS) and Partial Least Square Regression (PLSR). LARS is a penalized
regression method which identifies predictor variables that are highly correlated to the
response variable and includes these in a regression model (Efron et al., 2004). Park
and Casella (2008) have shown similarities between LASSO, a variant of LARS, and
Bayesian regression. They have shown that the posterior mode of a Bayesian model,
similar to that proposed by Meuwissen et al. (2001), and the regression coefficients
estimated using LASSO are equal. Thus, LARS is a nonbayesian alternative to BM.

Regardless of the number of genetic markers, the rank of the matrix of marker
data will be less or equal than the number of individuals in the training data. This
implies the existence of correlations between marker genotypes. These correlations
can be used to calculate MEBV by regressing the phenotypes on linear combinations
of the markers. Partial Least Square Regression (PLSR) is a method that builds or-
thogonal linear combinations of the markers that have a maximum correlation with
the phenotypes and regresses the phenotypes on these linear combinations, which are
also called components (de Jong, 1993). Since components are orthogonal, regression
coefficients of the components are independent. Datta et al. (2007) have used PLSR
in gene expression studies, Moser et al. (2009) and Solberg et al. (2009a) have used
PLSR to calculate MEBV.

Although BM and PLSR have been used independently to calculate MEBV, the
accuracy of these methods when the number of QTL and the distribution of QTL
variance varies is unknown. Therefore, the objective of this study is to investigate the
effect of number of QTL and distribution of QTL variance on the accuracy of MEBV
estimated with methods BM, LARS and PLSR.
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3.2 Method

3.2.1 Simulation of data

Each simulated genome consisted of four chromosomes of 1 Morgan each. Ten thou-
sand loci were equally distributed over each chromosome, there were thus 40000 loci
distributed over the whole genome. In the base population, 4000 of these loci, equally
distributed over the genome, were made biallelic with allele frequency equal to 0.50.
The remaining 36000 loci were monomorphic in the base population. Two hundred
gametes for the base population were simulated assuming linkage equilibrium and
were randomly combined to create 100 individuals.

Five thousand generations were simulated to generate LD between loci and to
reach a mutation-drift equilibrium. Each individual in each generation contributed
two gametes to the next generation with the objective of maintaining a population size
of 100 individuals with Ne equal to 199 (the simulated population structure was thus
different from a Wright-Fisher scenario). Each gamete transmitted to the offspring
was simulated as an independent meiotic event. The number of recombinations for
each chromosome was drawn from a Poisson(1) distribution, reflecting the size of the
chromosomes in Morgan. The positions of the recombinations were sampled assum-
ing no interference between recombinations.

Mutation rate for the 40000 loci was set at 10−5. A mutation switched the allelic
status; mutation of a 0 allele produced a 1 allele and mutation of a 1 allele produced a
0 allele.

Each individual in generation 5000 contributed 10 gametes to generation 5001,
resulting in 50 fullsib families of 10 individuals each. Each individual in generation
5001 contributed two offspring to generation 5002, resulting in 250 fullsib families
of 2 individuals each. Generation 5001 was used as the training population and gen-
eration 5002 was used as the evaluation population. Mutation rate was set to 0 in
generations 5001 and 5002 to avoid the introduction of a large number of new alleles
with a low Minor Allele Frequency (MAF). We simulated sixty replicates.

To simulate a range of QTL distributions, six scenarios were generated which
were combinations of three levels for number of QTL and two distributions of QTL
variance (Table 3.1). Depending on the scenario, up to fifty percent of the loci with
a MAF greater than 0.10 were selected to become QTL in generation 5001. QTL
scenarios were numbered from 1 to 6, with increasing number of QTL accounting
for 90 % of the total genetic variance. Biallelic loci that were not selected as QTL in
any scenario were used as biallelic markers. Within a replicate, this resulted in the
same marker set across all QTL scenarios. Each QTL scenario was applied to all 60
replicates.

The number of QTL contributing to the trait was changed by letting 5 % (low
number of QTL), 25 % (intermediate number of QTL) or 50 % (high number of QTL)
of all loci with a MAF greater than 0.10 contribute to the trait. QTL for the scenarios
with low and intermediate numbers of QTL were uniformly selected from the 50 % of
loci selected as QTL in the scenario with high number of QTL.

The variances of all QTL contributing to the trait were equal (equal QTL vari-
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ance), or unequal (unequal QTL variance). The additive effects of QTL were cal-
culated based on the specified QTL variance and the allele frequency of each QTL.
For the scenarios of equal QTL variance, variance of each QTL was set to 1. For the
scenarios of unequal QTL variance, variance of every tenth QTL was set to 81 and
variances of the other 9 QTL were set to 1. In this way 10 % of the QTL were respon-
sible for 90 % of the total additive genetic variance. The QTL effects were assigned
to each QTL after the QTL were selected and therefore the same QTL were present in
scenarios of equal and unequal QTL variance.

The true breeding value (TBV) of each individual was calculated as the sum of
the allelic effects. Additive genetic variance, σ2

a , was calculated as the variance of the
TBV in generation 5001. Deviates from a N(0,σ2

e ) distribution were added to TBV
and σ2

e was equal to σ2
a to simulate phenotypes with a heritability of 0.50.

In addition to the QTL scenarios, we studied the effect of heritability, pre-selection
of markers based on MAF, and size of the training population on the accuracy of the
MEBV calculated with the three methods. In the first alternative, heritability of the
trait was reduced from 0.50 to 0.25. In the second alternative, markers with a MAF
lower than 0.10 in the training population were excluded from the marker data. In
the third alternative, the size of the training population was increased from 500 to
1000 individuals by adding 10 fullsibs to each family while the size of the evaluation
population was maintained at 500 individuals. Each alternative was applied to all six
QTL scenarios and to the 60 replicates.

The simulations were performed with HaploSim (Coster and Bastiaansen, 2010), a
package for R (R Development Core Team, 2011) which is available from the R repos-
itory CRAN (http://cran.r-project.org/package=HaploSim). The
simulations and computations were run on a system with a dual core Intel 2.33 Ghz
processor and a Fedora Core 10 operating system.

3.2.2 Analysis of population data
To validate and characterize the simulations, we determined the number of biallelic
markers, heterozygosity of biallelic markers, linkage disequilibrium between adjacent
markers and coefficient of determination of QTL.

Heterozygosity of a population is the average number of heterozygous loci of an
individual. Expected heterozygosity in a situation of mutation-drift equilibrium, ex-
pressed as a fraction of the total number of loci, is a function of mutation rate (u) and
effective population size (Ne) (Crow and Kimura, 1970):

H =
4 ·Ne ·u

1+4 ·Ne ·u
. (3.1)

In our simulations, where effective population size was 199 (Equation 3.13.5 Crow
and Kimura (1970)) and mutation rate was 10−5, expected H is 7.90 · 10−3. For a
genome consisting of 40 loci, the expected number of heterozygous loci in an individ-
ual is 316.

Linkage disequilibrium between adjacent markers was calculated as the squared
correlation between adjacent markers and was expressed as r2.
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The coefficient of determination of a QTL, expressed as R2, is the proportion of
variance of that QTL explained by a set of markers. R2 was calculated using the equa-
tion R2 = c′K−1c, where c is a vector of correlation coefficients between the markers
and the QTL, and K is the matrix of pairwise correlations of the markers. When the
absolute correlation between a pair of markers exceeded 0.95, only one of these two
markers was used to avoid singularity of matrix K. R2 was calculated as the mean of
R2 between each QTL and the 50 markers in highest LD with that QTL and provided
an estimate of the upper limit of the accuracy of MEBV that could be obtained based
on this number of markers.

3.2.3 Calculation of breeding values
We used three methods to estimate marker effects in the training population. The
methods differed in how they estimated the additive effects of individual marker loci,
but used an identical approach to calculate MEBV after these effects were estimated:

MEBV = Xa, (3.2)

where MEBV is the vector of breeding values estimated with the marker geno-
types, X is an incidence matrix that relates genotypes to individuals, and a is the
vector of additive effects for the markers, which is estimated by each method.

BM

The Bayesian Model (BM) used was proposed by Meuwissen et al. (2001). In this
model, the additive effects of the markers are considered as independent random nor-
mal variables. The additive effect of markers which are considered to be associated
to a QTL are sampled from a N(0,σ2

l ) distribution. The additive effects of markers
with are considered not to be associated to a QTL are sampled from a N(0,σ2

l /100)
distribution, which has a lower variance. The method requires a prior for the number
of QTL and a prior for QTL variance σ2

l . The prior for the number of QTL was set at
50 in all scenarios, regardless of the true number of QTL in that simulation scenario.
The prior for QTL variance was set at 0.20, regardless of the simulation scenario.

BM uses Gibbs sampling to numerically integrate over the posterior distribution
of the model. The sampler was run for 10000 iterations and the first 1000 iterations
were discarded as burn-in. Regression coefficients of the markers were calculated as
the means of their posterior distributions.

LARS

Least Angle Regression is a penalized regression method where predictor variables
are included sequentially in the model (Efron et al., 2004). Regression coefficients of
all markers are zero at the start of the algorithm. LARS builds the model in sequential
steps, in each step the marker that has the highest correlation with the residual is added
to the model and the model proceeds in a direction of equal angle between all markers
included in the model and the sequentially added marker (Efron et al., 2004). After
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n steps, there are n markers in the model. We used the lars function in the lars
package (Hastie and Efron, 2007) of R and used cross validation on the training data
to find the number of markers that minimized prediction error.

PLSR

Partial Least Square regression reduces the dimensions of the regression model by
building orthogonal linear combinations of markers that have a maximal correlation
with the response variable (de Jong, 1993). The trait is subsequently regressed on the
linear combinations of markers, or components. Cross validation was used to find the
number of components that minimized the prediction error.

To reduce the computation time required to fit the PLSR models, the algorithm
to find the optimal number of components was modified as follows. In a first step, a
model was fitted with ten components. Cross validation was used to find the optimal
number of components. If the optimal number of components was below ten, this op-
timal number of components was used and the algorithm was stopped. If the optimal
number of components was ten, a next iteration was performed with 20 components.
If the optimal number of components, found by cross validation, was below 20, this
number of components was used. Otherwise, the procedure was repeated with 30
components, and so on, until the number of components was equal to the number of
observations or to the number of marker loci. The plsr function in the pls package
(Wehrens and Mevik, 2007) of R was used to fit and cross validate the models in each
iteration. Cross validation was performed on the training data.

3.2.4 Comparison of methods to calculate breeding values
The performance of each method was assessed based on the accuracy and the Mean
Square Error of Prediction (MSEP) of MEBV. Accuracy of MEBV is the correlation
between MEBV and TBV. Mean Square Error of Prediction is the average of the
squared prediction errors of MEBV. Accuracy and MSEP were calculated based on
individuals in the evaluation population.

Computation time of each method was recorded in all six QTL scenarios for ten
replicates. The time recorded included the time required to fit the model on the train-
ing population, the time required for cross validation when using LARS and PLSR,
and the time required to calculate MEBV for the evaluation population.

3.3 Results

3.3.1 Characteristics of simulated populations
Average heterozygosity was equal to 0.0110 in generation 1000 and stabilized af-
ter 4000 generation at 0.0076, corresponding to 304 heterozygous markers. This is
slightly below the expected number based on Equation 3.1. The average number of
biallelic markers in the data was 1431 (Table 3.2). Eighty percent of these markers
had a MAF below 0.10, reflecting an L-shaped distribution of MAF.
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Average LD between all adjacent markers, measured as r2, was 0.048 (Table 3.2).
Expected LD, based on Equation 7 of Sved (1971), is 0.31 (assuming an average dis-
tance between markers of 4/1431 Morgan). When markers with a MAF lower than
0.10 were excluded from the data, average LD between adjacent markers increased
to 0.146 (Table 3.2). The expected LD based on Sved (1971) is 0.11, however, does
not account for mutations. To compare the LD obtained in our simulations with its
expectation, we calculated the average LD between adjacent markers which were in-
troduced in generation 0 and remained polymorphic in generation 5000. On average,
there were 174 of these markers and average LD between these markers was 0.036
which is close to the expected LD of 0.052 (assuming an equal distance between
markers of 4/174 Morgan).

The average number of QTL was 35 in the scenarios with a low number of QTL
and increased to 343 in the scenarios with a high number of QTL (Table 3.2). The
average coefficient of determination of the QTL (R2) was 0.80 when all markers were
used and 0.71 when markers with a MAF above 0.10 were used to calculate R2 (Ta-
ble 3.2).

Based on the average number of QTL (Table 3.2), the estimated number of QTL
accounting for 90 % of the total genetic variance ranged from 3, in scenario 1 (low
number of QTL, unequal QTL variance), to 309, in scenario 6 (high number of QTL,
equal QTL variance). The number of QTL accounting for 90 % of the genetic variance
in scenario 3 (high number of QTL, unequal QTL variance, approx. 31 QTL) was
similar to that in scenario 4 (low number of QTL, equal QTL variance, approx. 35
QTL).

3.3.2 Characteristics of MEBV

The average accuracy of MEBV calculated with BM and LARS decreased when the
number of QTL increased and was stronger in the scenarios of unequal QTL distri-
bution than in the scenarios of equal QTL distribution (Table 3.3 and Figure 3.1).
The highest accuracies using BM and LARS were in scenario 1 (low number of QTL
and unequal distribution of QTL variance) (Table 3.3). The highest accuracy using
PLSR was in scenario 4, but with this method there was not a clear trend of accuracies
between scenarios (see Table 3.3 and Figure 3.1). Overall, accuracies of BM were
highest except in scenario 3 (Table 3.3).

Additional simulations were done with a number of QTL ranging between the
intermediate and high number of QTL and using an unequal distribution of QTL vari-
ance to investigate the strong decrease of accuracies of BM from scenario 2 to scenario
3 (Table 3.3). Results of these additional simulations, confirm the decrease of accu-
racy of MEBV with BM between scenarios 2 and 3 (Figure 3.1).

The accuracy of MEBV decreased when heritability was reduced from 0.50 to
0.25 in the three methods (Table 3.4). In the scenarios with a low number of QTL
(scenarios 1 and 4), BM was the most accurate (combining Table 3.3 and Table 3.4).
In the scenarios with an intermediate and high number of QTL, PLSR was the most
accurate (combining Table 3.3 and Table 3.4).

40



Table 3.1: Scenarios with different number of QTL and distribution of QTL variance.
Scenarios were numbered from 1 to 6, according to the number of QTL contributing
90 % of the genetic variance.

Scenario Number of QTL Distribution of QTL variance
1 low unequal
2 intermediate unequal
3 high unequal
4 low equal
5 intermediate equal
6 high equal

Table 3.2: Average (standard error) of number of polymorphic markers (nSNP), LD
between adjacent markers (r2), number of QTL (nQTL), and average coefficient of
determination of QTL (R2). The simulated number of QTL was low, intermediate
(int.) or high and markers with a MAF lower than 0.10 were either or not included in
the marker data. The table summarizes 60 replicated simulations.

Situation nSNP r2 nQTL R2

low nQTL 1431 (5.3) 0.048 (< 0.001) 35 (0.2) 0.806 (0.003)
low nQTL MAF > 0.10 374 (2.1) 0.145 (0.002) 35 (0.2) 0.715 (0.004)
int. nQTL 1431 (5.3) 0.048 (< 0.001) 172 (1.0) 0.811 (0.002)
int. nQTL MAF > 0.10 374 (2.1) 0.145 (0.002) 172 (1.0) 0.717 (0.002)
high nQTL 1431 (5.3) 0.048 (< 0.001) 343 (2.0) 0.811 (0.001)
high nQTL MAF > 0.10 374 (2.1) 0.145 (0.002) 343 (2.0) 0.717 (0.001)
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Figure 3.1: Plot of the accuracies of MEBV calculated with BM, LARS and PLSR
as affected by the simulated number of QTL. The plots display the accuracies of 60
replicated simulations for number of QTL around 35, 172 and 343 plus the accuracies
of 10 replicated simulation with number of QTL around 227 and 285 in the scenarios
of unequal QTL variance. The variance of every tenth QTL was 81 times larger than
variance of remaining QTL (unequal QTL variance) or equal for all QTL (equal QTL
variance). The line is a LOESS smoother through the accuracies.
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The accuracy of MEBV calculated with all methods increased when the size of the
training population was increased from 500 to 1000 individuals (Table 3.4) and BM
was the most accurate method in all scenarios (combining Table 3.3 and Table 3.4).

The accuracies of MEBV calculated with BM and PLSR decreased when markers
with a MAF lower than 0.10 were excluded from the data, except for BM in scenario
3 (Table 3.4). Accuracies of MEBV calculated with LARS were not clearly affected
by excluding markers with a MAF lower than 0.10. There was no clear effect of QTL
scenario on the change of accuracies due to this exclusion (Table 3.4). The decrease
of accuracies calculated with BM and PLSR when markers with a MAF lower than
0.10 were excluded was in line with the decrease of R2 (Table 3.2).

Mean Square Error of Prediction of MEBV calculated with the three methods
increased when the number of QTL increased (Table 3.5). The average MSEP of
MEBV calculated with BM were low in all scenarios, except in scenario 3 where it
was highest (Table 3.5).

The additive genetic variance increased when the number of QTL increased and
was higher in the scenarios with unequal distribution of QTL variance (Table 3.6).
This is due to the fact that the variance of 10 % of the QTL was made 81 times larger
than in the scenarios of equal QTL variance. The variance of MEBV calculated with
the three methods was lower than the simulated additive genetic variance in all sce-
narios. The variance of MEBV calculated with PLSR was highest in all scenarios
(Table 3.6). The variance of MEBV calculated with the three methods increased when
number of QTL increased, except for the variance of MEBV calculated with BM in
scenario 3 (Table 3.6).

If MEBV were unbiased, then the variance of MEBV would be equal to r2σ2
a ,

where r2 is the squared accuracy of MEBV (Table 3.3). The variance of MEBV cal-
culated with BM was lower than this expected variance in all scenarios (combining
Table 3.3 and Table 3.6). The variances of MEBV calculated with LARS and PLSR
were higher than the expected variance in all scenarios and this difference was greatest
for method PLSR (combining Table 3.3 and Table 3.6).

The average computation time required by the three methods increased when the
size of the training population increased and when the number of markers included
in the data increased (Table 3.7). In a normal situation, where the size of the training
population was 500 individuals, all the markers were included in the data, and the
heritability was equal to 0.50, PLSR required approximately 4 seconds to fit, cross
validate and evaluate the models. LARS required approximately 211 seconds and BM
required approximately 430 seconds (Table 3.7).

3.4 Discussion and conclusions
The accuracies of MEBV calculated with the BM method in this study were com-
pared to accuracies obtained by Calus et al. (2008) and by Solberg et al. (2009a).
The approximate number of QTL was 75 in the simulations of Calus et al. (2008),
and 55 in the simulations of Solberg et al. (2009a). Based on their descriptions, ap-
proximately seven QTL would account for 90 % of the total genetic variance in both
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Table 3.5: Average (standard error) of Mean Square Error of Prediction (MSEP) of
MEBV for individuals in the evaluation population. Methods BM, LARS and PLSR
were used to calculate the MEBV. The simulated number of QTL was low (low
nQTL), intermediate (int. nQTL) or high (high nQTL). The simulated variance of
every tenth QTL was 81 times larger than variance of remaining QTL (unequal QTL
variance) or equal for all QTL (equal QTL variance). The averages and standard de-
viations were calculated using 60 replicated simulations.

unequal QTL variance equal QTL variance
low nQTL int. nQTL high nQTL low nQTL int. nQTL high nQTL

sc. 1 sc. 2 sc. 3 sc. 4 sc. 5 sc. 6
BM 659 (26) 4049 (108) 10463 (343) 79 (2) 416 (6) 850 (12)
LARS 707 (24) 4019 (71) 8230 (124) 91 (2) 465 (6) 927 (12)
PLSR 993 (24) 4242 (73) 8405 (123) 93 (2) 458 (6) 922 (14)

Table 3.6: Average (standard error) of the simulated additive genetic variance (σ2
a )

in the evaluation population, and variance of MEBV calculated for individuals in the
evaluation population. The methods BM, LARS and PLSR were used to calculate
the MEBV. The simulated number of QTL was low (low nQTL), intermediate (int.
nQTL) or high (high nQTL). The simulated variance of every tenth QTL was 81 times
larger than variance of remaining QTL (unequal QTL variance) or equal for all QTL
(equal QTL variance). The averages and standard deviations were calculated using 60
replicated simulations.

unequal QTL variance equal QTL variance
low QTL int. QTL high QTL low QTL int. QTL high QTL

sc. 1 sc. 2 sc. 3 sc. 4 sc. 5 sc. 6
σ2

a 1623 (23) 7210 (88) 14193 (156) 158 (2) 767 (8) 1538 (18)
BM 890 (38) 2537 (168) 2032 (283) 81 (3) 327 (13) 575 (24)
LARS 914 (31) 3937 (164) 7017 (293) 75 (4) 344 (15) 715 (29)
PLSR 1249 (49) 5263 (198) 10747 (393) 129 (5) 618 (21) 1150 (46)
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studies. Therefore, the simulations of Calus et al. (2008) and Solberg et al. (2009a) are
most comparable to scenario 1 (low number of QTL, unequal QTL variance), where
an average of three QTL accounted for 90 % of the total genetic variance.

The average accuracy of MEBV for individuals without performance data of their
own by Calus et al. (2008) was 0.75. The accuracy reported by Solberg et al. (2009a)
in the scenario with a low number of markers was 0.69 with BM and 0.61 with PLSR.
Accuracies in both studies, but especially in Solberg et al. (2009a), were lower than
accuracies in scenario 1 of this study (Table 3.3). A lower LD between markers and
QTL in the study of Solberg et al. (2009a) might be the reason for this lower accuracy.

The average LD between adjacent markers provides an indication for LD between
markers and QTL because QTL are necessarily located somewhere between the mark-
ers. Average LD between adjacent markers can not be compared directly to expected
LD based on Equation 7 of Sved (1971) because mutations are expected to have a
very strong impact on this LD. This strong impact is expected because a mutation will
generally introduce a new marker between two markers which were previously con-
sidered adjacent. We calculated LD between adjacent markers that were polymorphic
in generation 0 and still polymorphic in generation 5001. This LD can be compared
to expected LD based on Sved (1971) because newly mutated markers are not used
and the effect of mutations on specific markers is negligible. Linkage disequilibrium,
calculated in this way, was very similar to expected LD, providing evidence for the
adequateness of our simulations.

Simulated QTL scenarios were numbered from 1 to 6, according to the number of
QTL accounting for 90 % of the genetic variance. The total number of biallelic QTL
in the data is often used to describe simulations (Calus and Veerkamp, 2007; Calus
et al., 2008; Solberg et al., 2008, 2009a); we think that the number of QTL accounting
for a specific proportion of the genetic variance is a more appropriate description of
the complexity of the genetic architecture underlying the trait. In this context, we
expected similar results in scenarios 3 and 4 since the number of QTL accounting
for 90 % of the genetic variance were similar (34 in scenario 3 and 31 in scenario
4). Average accuracies of MEBV calculated with LARS and PLSR confirmed this
expectation but accuracies with BM did not.

With method BM, higher accuracies were expected in QTL scenarios which more
closely resembled the prior distributions for QTL number and distribution of QTL ef-
fects. The high accuracies with BM in scenario 1 were in line with this expectation
but the stronger decrease of accuracies in scenarios 1 to 3 compared to the decrease
of accuracies in scenarios 4 to 6 was not. The consistency of the decline in scenarios
1 to 3 was confirmed by additional simulations, with a number of QTL ranging be-
tween that in scenario 2 and in scenario 3. Accuracies of MEBV in these simulations
confirmed this decrease (Figure 3.1).

To investigate whether accuracies of MEBV calculated with BM were affected
by the prior distribution for QTL effects, we reanalyzed the data using a prior that
more closely resembled the QTL scenarios that were simulated. In each scenario,
the prior for number of QTL was set equal to the average number of QTL in this
scenario (Table 3.2) and the prior for the variance of individual QTL was set equal to
the average simulated genetic variance divided by the average number of QTL in this
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scenario (Table 3.2 and Table 3.6). Comparison of these accuracies (Table 3.8) to the
accuracies in Table 3.3 and Table 3.4 shows that using a prior which is more correct
does not improve average accuracy of MEBV.

The accuracies of MEBV calculated with method BM in the different scenarios
indicate that the highest accuracies are obtained with this method in situations were
a small number of QTL accounts for a large proportion of the total genetic variance.
The results in Table 3.8 indicate that the accuracies with BM did not depend on the
correctness of the prior for QTL distribution and, furthermore, that a prior which was
closer to the actual QTL distribution even led to lower accuracies in scenarios with
a high number of QTL. These results contrast the results of Goddard (2009), who
found higher accuracies when a exponential prior for QTL effects was compared to a
normal prior for QTL effects when the QTL effects were exponentially distributed. In
this study, however, we compared accuracies obtained with different prior parameters,
while using the same kind of distribution. Combining the results of Goddard (2009)
and of this comparison, it can be stated that using a correct kind of distribution as prior
of QTL effects can be important for accuracy of BM but that the exact parametrization
of this prior is not important.

The number of QTL contributing to a trait is unknown in real situations. The
scenarios of unequal QTL variance were motivated by the real situation where a few
QTL contribute an important proportion of the total genetic variance. Examples of
these situations include the DGAT1 gene and the SCD gene on bovine chromosomes
14 and 26 which contribute a large proportion of the genetic variation of milk fat con-
tent (Grisart et al., 2002; Mele et al., 2007) and the IGF2 gene on porcine chromosome
2, which contributes a large proportion of the genetic variation of muscle mass in pigs
(Jeon et al., 1999). Simulations and analyses that use a distribution similar to the one
estimated by Hayes and Goddard (2001) implicitly assume this situation. The scenar-
ios with an equal QTL variance were motivated by the situations where many QTL
contribute a small proportion of the total genetic variation of an individual trait, e.g.
height in humans (Weedon et al., 2008; Gudbjartsson et al., 2008; Lettre et al., 2008).
This study shows that accuracy and MSEP of distinct methods to calculate MEBV
are affected by the distribution of QTL underlying a trait. Results of this study also
show that the good performance of a method in one specific QTL scenario does not
guarantee a good performance in other QTL scenarios.

Characteristics of the methods used to fit the MEBV models differed. Methods
BM and LARS attempt to identify markers highly correlated with QTL and estimate
effects for these markers. Results confirmed that the approach used by both BM and
LARS, was advantageous when few QTL accounted for a large proportion of the total
genetic variance. Method PLSR builds orthogonal, linear combinations of the predic-
tor data (marker genotypes) that are highly correlated with the response and regresses
the response on these components. The advantage of this method was that accuracies
were almost not affected by the QTL scenario that was simulated; this was especially
clear when comparing the decline of accuracies obtained with BM in scenarios 1 to 3
to the constant level of accuracies obtained with PLSR in scenarios 1 to 3 (Table 3.3).
In this study, PLSR was advantageous over BM and LARS in situations where a large
number of QTL contributed to the genetic variation of the trait of interest but methods
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BM and LARS performed better than PLSR in situations where few QTL contributed
to the trait. An alternative method, not evaluated in this study, is GBLUP (Meuwissen
et al., 2001; Hayes et al., 2009). In this method, markers are used to estimate the
relationship matrix of the individuals in the data and this relationship matrix is subse-
quently used to estimate breeding values with BLUP. Daetwyler (2009) have reported
that accuracy of GBLUP is not affected by the number of QTL in the data. In situa-
tions where few QTL contribute to the trait, accuracies obtained with BM are higher
than accuracies obtained with GBLUP but at high number of QTL these accuracies
are identical to (Daetwyler, 2009) suggesting that BM will always perform equally or
better than GBLUP. When (Goddard, 2009) derived accuracies for GBLUP and BM
he showed that higher accuracy can be obtained with BM because this method better
takes into account the variable contribution of individual QTL. Based on this, BM
should be preferred over GBLUP. Since the number of QTL contributing to the trait
is generally unknown, using the method PLSR can be a secure alternative for method
BM. A pragmatic solution to overcome the problem of ignoring the number of QTL is
cross validation (Moser et al., 2009). For cross validation, a subset of individuals with
highly reliable EBV can be used to evaluate the accuracy of MEBV obtained with BM,
LARS and PLSR. The method which gives the highest accuracies can subsequently
be used for the genetic evaluation of individuals with unknown breeding values.

Assignment of QTL by giving additive effects to biallelic loci was deferred to
generation 5001. There were two reasons for not doing this earlier in the simulations.
The first reason was to control the number of QTL that contributed to the trait. With
QTL assigned in generation zero, the number of QTL will vary between replicates
due to drift and mutations. The second reason was to reduce computing resources
required for simulation. Simulating QTL is computationally more expensive than
simulating loci because QTL require handling the additive effects in addition to the
biallelic genotypes.

The six QTL scenarios were created after all generations were simulated, to ensure
that QTL variance was the only difference between scenarios of equal and unequal
QTL variance. The QTL scenarios were designed with the objective of identifying the
effect of number of QTL and distribution of QTL variance on accuracy of MEBV with
the distinct methods. A deterministic approach was used to assign the number of QTL
contributing to the trait and to calculate the additive effect of each QTL contributing to
the trait. This approach was very different from the random approach used to simulate
QTL in other simulation studies (for example Meuwissen et al. (2001); Grapes et al.
(2004); Calus and Veerkamp (2007); Calus et al. (2008); Solberg et al. (2008, 2009a))
where QTL effects were drawn from a distribution similar to the gamma distribution
for QTL effects estimated by Hayes and Goddard (2001). An important disadvantage
of drawing QTL effects from any distribution is that randomness is introduced in the
simulations that does not contribute to the research question because it is difficult to
control the resulting distribution of QTL effects. The research question in our study
concerned the effect of QTL distribution on the estimation of MEBV; hence distinct
QTL scenarios covering a range of QTL distributions were simulated.

Strength of LD between a pair of loci is constrained by the difference between
MAF of both loci (Wray, 2005). In addition, variance of QTL with a low MAF is
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likely to be low, because the variance of QTL is a function of the allele frequency (Fal-
coner and Mackay, 1996). Excluding markers with a MAF below a specific threshold
from the data, as done by Calus et al. (2008), therefore seems reasonable. Results of
this study, however, show that accuracy of MEBV was consistently lower when mark-
ers with a low MAF were excluded from the data (Table 3.4). These lower accuracies
were supported by the lower R2 when markers with a MAF below 0.10 were excluded
(Table 3.2). Based on results of this study, using all markers to calculate MEBV is
recommended.

This study reveals that method BM should be recommended in situations were
few QTL are expected to account for a large proportion of the total genetic variance.
When the number of QTL accounting for the genetic variance is larger or unknown,
method PLSR is recommended.
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Table 3.7: Average (standard error) computation time required for fitting the MEBV
models to the training population and calculating MEBV for the evaluation popula-
tion, measured in seconds. Situation normal: heritability equal to 0.5, size of the
training population equal to 500 individuals, and all markers included in the data. Sit-
uation h2 = 0.25: heritability was decreased from 0.50 to 0.25. Situation nTr = 1000:
size of training population was increased from 500 to 1000 individuals. Situation
MAF > 0.10: markers with a MAF below 0.10 were excluded from the data. The
table summarizes ten simulations for the scenario of intermediate number of QTL and
equal QTL variance.

Method Normal h2 = 0.25 nTr = 1000 MAF > 0.10
BM 423.25 (3.73) 429.57 (3.88) 820.75 (9.05) 109.49 (1.90)
LARS 211.75 (3.28) 210.92 (2.62) 1058.38 (9.34) 57.37 (1.80)
PLSR 4.05 (0.10) 4.10 (0.18) 6.47 (0.15) 0.81 (0.02)
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Abstract
Background: Genomic selection has become an important tool in the genetic im-
provement of animals and plants. The objective of this study was to investigate the
impacts of breeding value estimation method, reference population structure, and trait
genetic architecture, on long-term response to genomic selection without updating
marker effects.

Methods: Three methods were used to estimate genomic breeding values: a BLUP
method with relationships estimated from genome-wide markers (GBLUP), a Bayesian
method, and a partial least squares regression method (PLSR). A shallow (individuals
from one generation) or deep reference population (individuals from five generations)
was used with each method. The effects of the different selection approaches were
compared under four different genetic architectures for the trait under selection. Se-
lection was based on one of the three genomic breeding values, on pedigree BLUP
breeding values, or performed at random. Selection continued for ten generations.

Results: Differences in long-term selection response were small. For a genetic ar-
chitecture with a very small number of three to four quantitative trait loci (QTL), the
Bayesian method achieved a response that was 0.05 to 0.10 genetic standard deviations
higher than other methods in generation 10. For genetic architectures with approxi-
mately 30 to 300 QTL, PLSR (shallow reference) or GBLUP (deep reference) had
an average advantage of 0.2 genetic standard deviations over the Bayesian method in
generation 10. GBLUP resulted in 0.6 % and 0.9 % less inbreeding than PLSR and
BM and on average a one third smaller reduction of genetic variance. Responses in
early generations were greater with the shallow reference population while long-term
response was not affected by reference population structure.

Conclusions: The ranking of estimation methods was different with than without
selection. Under selection, applying GBLUP led to lower inbreeding and a smaller
reduction of genetic variance while a similar response to selection was achieved.
The reference population structure had a limited effect on long-term accuracy and
response. Use of a shallow reference population, most closely related to the selection
candidates, gave early benefits while in later generations, when marker effects were
not updated, the estimation of marker effects based on a deeper reference population
did not pay off.

4.1 Background
Genomic breeding values estimated with genetic markers distributed over the whole
genome (MEBV) have become important in dairy cattle breeding (VanRaden et al.,
2009; De Roos et al., 2009), and efforts are undertaken to implement this technology
in other animal species (Gonzalez-Recio et al., 2008; Nielsen et al., 2009) as well as
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in plants (Jannink, 2010; Heffner et al., 2008). The expected advantages of selection
based on MEBV over traditional selection methods, where the estimation of breeding
values is based solely on phenotypes and pedigree information, include an increased
accuracy of MEBV compared to traditionally estimated breeding values, in combina-
tion with a reduced generation interval and a lower rate of inbreeding, e.g. due to the
ability to distinguish between sibs (Meuwissen et al., 2001; Schaeffer, 2006; Dekkers,
2007a; Goddard and Hayes, 2007; Muir, 2007).

Calculation of MEBV requires a population with information on genetic markers
and phenotypes, called the reference population. Information on the relation between
markers and phenotypic information in the reference population is used to calculate
MEBV of individuals with only marker information, called the evaluation population.
Factors affecting the accuracy of MEBV include the heritability of the trait, the size
of the reference population, the method used to estimate allelic effects of the markers,
linkage disequilibrium (LD) between markers and quantitative trait loci (QTL), and
the distribution of QTL effects, i.e. the genetic architecture of the trait (Meuwissen
et al., 2001; Calus and Veerkamp, 2007; Calus et al., 2008; Goddard and Hayes, 2009;
Solberg et al., 2009a; Coster et al., 2010).

The accuracy of estimated breeding values, estimated either with traditional meth-
ods such as pedigree BLUP or with the use of markers, decreases when the num-
ber of generations separating the reference and the evaluation populations increases
(Meuwissen et al., 2001; Sonesson and Meuwissen, 2009). Using pedigree BLUP, this
decrease is mainly due to the inability of this method to predict the random segrega-
tion of genomic segments to the next generation. Using markers, this segregation can
be traced and, for the part of the genetic variance that is explained through LD with
the markers, the decrease in accuracy per generation is smaller than for the remaining
part of the genetic variance that is explained solely by family structure. The accuracy
that is due to LD with markers is only affected by the changing patterns of LD be-
tween markers and QTL. More persistent accuracies of MEBV are expected when the
average distance between markers and QTL decreases, as this leads to lower recom-
bination rates (Sved, 1971). The structure of the reference population is expected to
have an effect on the persistence of accuracies because it affects how well the genetic
variance of QTL can be assigned to markers near the QTL as opposed to markers that
are more distant. When individuals in the reference population are more related, they
will share longer stretches of chromosomes surrounding the QTL, allowing more dis-
tant markers to explain QTL variation within the reference population. Because the
recombination rates between these more distant markers and the QTL are higher, they
will loose their predictive value more quickly compared to markers near the QTL. Se-
lecting animals for the reference population across more generations will reduce the
average relationship within the reference population and is expected to lead to more
persistent accuracies of MEBV. Moreover, in populations under selection, LD is ex-
pected to change more rapidly compared to unselected populations, with the result
that accuracies of the MEBV decrease faster under selection (Muir, 2007; Jannink,
2010).

A variety of methods for estimating MEBV exist, including Bayesian methods
(BM) such as BayesA and BayesB proposed by Meuwissen et al. (2001), ridge re-
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gression (Meuwissen et al., 2001; Muir, 2007), BLUP methodology with the use of
a realized relationship matrix calculated from the markers (GBLUP) (Hayes et al.,
2009; VanRaden et al., 2009), principal component regression (PCR) (Solberg et al.,
2009a), and partial least square regression (PLSR) (Solberg et al., 2009a; Coster et al.,
2010).

Methods BM and PLSR deal with the high dimension of the marker data by assign-
ing different variances or weights to individual markers. After one generation, these
methods result in higher accuracies when genetic variance is due to a small number of
QTL compared to traits with more QTL of small effect (Coster et al., 2010; Daetwyler
et al., 2010). Pedigree BLUP and GBLUP estimate covariances between individuals
based on pedigree data or marker data, respectively and may be less dependent than
BM and PLSR on LD between individual markers and QTL (Goddard and Hayes,
2009).

The performance of estimation methods has been extensively evaluated in simu-
lations. Information on the performance of these methods when the MEBV are being
used for selection, however, is very limited. A few studies applying selection on
MEBV are the selection on MEBV estimated using GBLUP, in the studies of Muir
(2007), Jannink (2010) and Sonesson and Meuwissen (2009). A systematic compari-
son between methods to calculate MEBV is lacking concerning their ability to achieve
a selection response for more than one generation under a range of genetic architec-
tures (number of QTL and distribution of QTL variance).

The objective of this study was to evaluate the impact of choices that can be made,
in terms of evaluation methods and between reference population structures, on the
long-term selection response. The evaluation was done across a range of genetic ar-
chitectures to avoid conclusions that may hold only under specific circumstances. The
reference population structure was evaluated because a reference population made up
of multiple generations was expected to increase the long-term accuracy of MEBV
compared to a reference population made up of a single generation (Muir, 2007;
Sonesson and Meuwissen, 2009; Habier et al., 2007). Comparisons of methods and
reference structures were based on genetic progress, accuracy of MEBV, inbreeding
rate and reduction of genetic variance. Finally, accuracies of MEBV under directional
selection were compared to accuracies with random selection.

4.2 Methods

Simulation of data and estimation methods

The simulations were performed using the R-package HaploSim (Coster and Basti-
aansen, 2010), which is available from the R repository CRAN at http://cran.
r-project.org/package=HaploSim. We refer to Coster et al. (2010) for a
detailed description of the simulations to create the starting populations. Briefly,
the simulated genomes consisted of four chromosomes of 1 Morgan. The genome
contained 40000 equally distributed loci where mutations were allowed, most of the
40000 loci were monomorphic at any time. Random mating was simulated from gen-
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eration −5005 to generation −1 to generate LD between loci and to reach mutation-
drift equilibrium. The number of recombinations on each chromosome per meiosis
event was drawn from a Poisson distribution, and the mutation rate of the 40000 loci
was set at 10−5 per meiosis. The mutation rate was set to 0 after generation −1, to
avoid the introduction of a large number of markers with very low minor allele fre-
quency (MAF). All loci that were polymorphic in generation -1 were used as markers.

Each individual in generations −5005 to −2 contributed two gametes to the next
generation, which were randomly combined to form individuals. Consequently, a
constant population size of 100 individuals with an effective population size of 199
was maintained throughout these generations of random mating. In generation -1,
each individual contributed ten gametes to the next generation, with the objective to
increase the population size to 500 individuals. The individuals of this generation were
formed as pairs of random gametes from distinct parents to avoid selfing.

Thirty replicates of this population were simulated and stored. From the data of
each replicate, all four genetic architectures were created. Each of the five estimation
methods was then applied in combination with one or two selection approaches to each
population. In this way, identical base populations were used in a variety of simulation
and selection scenarios. The four genetic architectures, five estimation methods and
two selection approaches are explained below.

Four traits with different genetic architectures were created in each simulated pop-
ulation by combining a low or high number of QTL, with one of two distributions of
QTL variance, unequal and equal QTL variance (Table 4.1).

Scenario Number of QTL QTL variance reference population
1 Low Unequal 1 x 500
2 5 x 100
3 Equal 1 x 500
4 5 x 100
5 High Unequal 1 x 500
6 5 x 100
7 Equal 1 x 500
8 5 x 100

Table 4.1: Genomic selection scenarios. Combinations of genetic architecture (num-
ber of QTL and distribution of QTL variance) and structure of reference population.

The high number of QTL was simulated by selecting 50 % of the markers with a
MAF above 0.10 in generation−4 as QTL. The low number of QTL was simulated by
retaining every 10th QTL from the high QTL density and removing the remaining 90 %
from the data. QTL density and number of QTL are interchangeable measures because
the length of the genome is fixed and the distribution and number of polymorphic loci
are the same in all scenarios within a replicate.

The variance of all QTL was set to 1 in the equal distribution case and the allelic
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effect of a QTL was calculated as a =
√

1
2p q where p and q are the frequencies of the

two QTL alleles. In the unequal distribution case, the allelic effect of every 10th QTL
was multiplied by 9 to make its variance 81 times the variance of the other QTL. This
resulted in the unequal distribution, where 10 % of the QTL accounted for 90 % of the
total genetic variance.

All polymorphic loci that remained after selecting the QTL for the high QTL den-
sity were used as biallelic markers in all scenarios. Within a replicate, this resulted in
an identical set of markers for each genetic architecture.

The true breeding value of an individual was calculated as the sum of the effects
of the QTL alleles it received. The additive genetic variance, σ2

a , was calculated as the
variance of the breeding values of the individuals in generation -4. Random normal
deviates from a N(0,σ2

e ) distribution were added to the breeding values to simulate
phenotypes with a heritability of 0.25.

The reference population always consisted of 500 individuals with genotypes and
phenotypes but could have one of two structures. The reference population was either
shallow, consisting of all 500 individuals from generation 0 (1×500), or the reference
population was deep, consisting of 100 individuals from each of generations −4 to
0 (5×100). The deep reference population was an attempt to reduce the average
relationship between reference animals compared to the shallow reference population.
In generations following those of the reference population, no additional phenotypes
were recorded for methods BM, PLSR and GBLUP, and therefore the marker effects
were not updated after the initial analysis of the reference population.

Breeding values were estimated for all individuals from generation −4 onwards
using five different methods. The first two methods were a bayesian model (BM)
and partial least square regression (PLSR). BM and PLSR methods were similar in
that they estimated allelic effects for each individual marker using the phenotypes and
markers in the reference population. These estimated allelic effects were subsequently
used to calculate MEBV as follows:

MEBV = Xâ (4.1)

where MEBV was the vector of breeding values estimated with the marker geno-
types, X was an incidence matrix that related allele counts to individuals, and â was
the vector of allelic effects of the markers, estimated either with method BM or with
PLSR.

The next two methods applied the BLUP methodology. Genomic BLUP (GBLUP)
used a relationship matrix, G, estimated from marker data and pedigree BLUP (BLUP)
estimated the relationship matrix, A, from pedigree records. Both GBLUP and BLUP
used G or A as a covariance matrix among relatives in an animal model:

EBV = Zû (4.2)

û∼ N(0,Gσ
2
a ) or

û∼ N(0,Aσ
2
a )
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where EBV was a vector of estimated breeding values (EBV for estimates from
pedigree BLUP and MEBV for estimates from GBLUP which used the marker data),
Z was an incidence matrix relating each individual to its breeding value in vector û.

In the last method, RANDOM, random numbers were assigned to selection candi-
dates as estimated breeding values. This method was included as a baseline in which
changes in LD are only affected by drift and recombination. The RANDOM method
made it possible to compare changes in accuracies of MEBV over generations in situ-
ations with and without selection acting on LD and allele frequencies.

Bayesian method

The Bayesian method (BM) was used as implemented by Verbyla et al. (2009). In
this model, the allelic effects of the markers were considered independent random
normal variables. The allelic effects of markers were considered to be from a mix-
ture distribution. Effects were sampled from a wide N(0,σ2

l ) distribution or a more
narrow N(0,σ2

l /100) distribution. The prior for the probability of marker effect be-
ing sampled from the wide distribution was the ratio of the true number of QTL over
the number of markers. The true number of QTL was counted in the generations that
contributed to the reference population, generations -4 to 0. The prior for the QTL
variance σ2

l was set to the genetic variance resulting in generations -4 to 0, divided
by the true number of QTL. The priors were set separately for each scenario and each
replicate.

The BM method used Gibbs sampling to numerically integrate over the posterior
distribution of the model. The Gibbs sampler was run for 10000 iterations and the first
1000 iterations were discarded as burn-in. Estimates of allelic effects of the markers
were calculated as the mean of the posterior distributions.

Partial least square regression

Partial Least Square Regression (PLSR) reduces the dimensions of the regression
model by building orthogonal linear combinations of markers, or components, which
have a maximal correlation with the trait (de Jong, 1993). The trait was subsequently
regressed on these components. Cross-validation was used on the data in the reference
population to find the number of components that minimized the prediction error. We
used the plsr function in the package pls (Wehrens and Mevik, 2007) of R (R De-
velopment Core Team, 2011) to fit and cross-validate the models. The algorithm to fit
and cross-validate the PLSR models was modified according to Coster et al. (2010) to
reduce the computation time.

GBLUP method

GBLUP was performed by solving the mixed model equations of an animal model
using a relationship matrix estimated from the marker data as the covariance matrix
among relatives, following VanRaden (2008). The relationship matrix G was calcu-
lated as:
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G = MDMt, (4.3)

where matrix M was the genotype matrix, with -1 for one of the homozygous
genotypes, 0 for a heterozygous genotype and 1 for the alternative homozygous geno-
type. Matrix D was a diagonal matrix with the reciprocal of the expected variance of
each marker on the diagonal elements ( 1

2p q ) where p and q were the frequencies of
the two QTL alleles. We used the gblup function in the pedigree package (Coster,
2011) of R (R Development Core Team, 2011) to calculate these MEBV, using the
simulated heritability of 0.25.

Pedigree BLUP method

The simulated phenotypes of all 900 individuals in generations −4 to 0 were used to
estimate breeding values using pedigree BLUP. This represents 400 additional pheno-
types compared to the 500 used by all three genomic estimation methods. The inverted
genetic relationship matrix A−1 was calculated from the pedigree data with generation
−4 as the unrelated base population. The matrix A−1 was calculated using function
makeAinv of the pedigree package (Coster, 2011). The pedigree BLUP approach
only used phenotypes of the 900 individuals in generations −4 to 0. For the subse-
quent generations, only pedigree information was used to estimate breeding values.
We used the blup function of the pedigree package (Coster, 2011) to calculate the
EBV, with the simulated level of heritability of 0.25.

Selection
Selection started in generation 0, the last generation of the reference data, and was
continued for ten generations. In each generation, 100 individuals (50 males and
50 females) were selected from the 500 candidates. Selected individuals were mated
at random and each pair produced ten offspring, making the next generation consist
of 50 fullsib families of size ten.

The three methods to calculate MEBV (BM, PLSR, GBLUP) were applied to each
of the two reference population structures to form six genomic selection approaches.
Each genomic selection approach was applied to each of the four genetic architectures
(Table 4.1). Selection on pedigree BLUP EBV and RANDOM selection were also
applied to each of the four genetic architectures.

In the RANDOM scenarios, selection was performed by randomly sampling males
and females to produce the next generation. Breeding values of random selection
generations were estimated with each of the three genomic estimation methods BM,
PLSR and GBLUP. The random selection scenario was included to assess the impact
of selection on accuracies of MEBV. Accuracies of MEBV from selection scenarios
were compared to accuracies of MEBV in the RANDOM scenarios where there was
no selection that could cause changes in the LD between markers and QTL, changes
in the frequencies of QTL alleles, or reduction of σ2

G.
This resulted in 32 unique scenarios of genetic architecture by selection approach.

The results for each scenario were obtained from 30 replicates.
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Comparing selection approaches

The evaluation of simulation scenarios was based on genetic improvement, incurred
inbreeding, accuracy of the (M)EBV and loss of genetic variance over ten generations
of selection. Genetic improvement was calculated as the cumulative increase of the
average breeding value (G) in each generation. The average breeding value in each
generation was standardized and presented as a percentage of the genetic standard
deviation in generation 0.

The inbreeding coefficient was calculated for each individual in the pedigree using
the function calcInbreeding from the R-package pedigree (Coster, 2011). The
average increase in inbreeding was calculated for each generation, using generation 0
as the base population. The accuracy of the (M)EBV was calculated as the correla-
tion of these (M)EBV with the simulated breeding values of the individual from each
generation. The genetic variance was calculated in each generation as the variance of
the simulated breeding values and presented as a percentage of the genetic variance in
generation 0 or as the percentage reduction in genetic variance from generation 0.

4.3 Results

Characteristics of the simulated populations

For each replicate, all 36 scenarios started with the same number of markers in gener-
ation 0, which was on average 1429 across the 30 replicates (Table 4.2). The average
minor allele frequency (MAF) of markers was 0.09, reflecting a U-shaped distribution
of allele frequencies. Average LD between adjacent markers, measured as r2, was
0.05 (Table 4.2). This low r2 value was due to the high number of low frequency
alleles, which resulted from recent mutations. The average r2 between markers with
MAF above 0.1, was 0.15, which was in line with expectations based on Sved (1971).

Table 4.2: Average (standard error) of the number, minor allele frequency (MAF), and
linkage disequilibrium (r2) with flanking markers, of markers and QTL and average
maximum linkage disequilibrium between each QTL and the markers (R2); simulated
number of QTL was low or high; summary of 30 replicated simulations.

Scenario number MAF r2 R2

SNP
Low 1429.4 (2.6) 0.09 (0.00) 0.05 (0.01)
High 1429.2 (2.6) 0.09 (0.00) 0.05 (0.01)

QTL
Low 34.4 (0.1) 0.27 (0.02) 0.01 (0.00) 0.46 (0.05)
High 339.9 (1.2) 0.27 (0.01) 0.15 (0.01) 0.47 (0.02)

The average number of QTL was 34 for the low QTL density and 340 for the high
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QTL density architecture (Table 4.2). The average LD between QTL was 0.01 for
the low QTL density and 0.15 for the high QTL density architecture (Table 4.2). The
number of QTL that accounted for 90 % of the genetic variance ranged from only 3
for the low-unequal architecture to 306 for the high-equal architecture.

Linkage disequilibrium between markers and QTL (R2) was defined as the average
r2 between each QTL and the marker in highest LD with that QTL. The R2 was 0.46
for the low QTL and 0.47 for the high QTL density architecture, reflecting the fact
that the marker density was the same in both scenarios (Table 4.2).

Response to selection
The increases in average genetic value G and in the average inbreeding F were mea-
sured over ten generations of selection. The reductions in the accuracy of MEBV and
of σ2

G during selection were also measured because on the one hand they are affected
by past selection and on the other hand they affect the genetic progress that can be
obtained with future selection (i.e. ∆G = i ·ρ ·σG).

Genetic architecture had a strong impact on the maximum increase in G that was
reached after ten generations of selection. The maximum increase in G was 321 %
for the low-unequal architecture and between 372 and 384 % for the other three ar-
chitectures (Table 4.3). The pattern of much lower levels of G with the low-unequal
architecture, compared to the other three genetic architectures, was the same for all
estimation methods. The low-unequal architecture showed a fast reduction of genetic
variance, indicating that the few QTL were quickly moved towards small minor al-
lele frequencies. The order of the other three genetic architectures for final level of
G was not consistent across estimation methods, but differences between these three
genetic architectures were generally small. The response to the first generation of se-
lection was similar for the three genomic evaluation methods when compared within
a specific genetic architecture (Table 4.3). Increases of G declined over generations
for all selection approaches. For pedigree BLUP, G reached a plateau after about two
generations of selection.

The pattern of results differed between the low-unequal and the other three ge-
netic architectures. In the low-unequal architecture, the BM method was expected to
do well because it gives specific emphasis to big QTL. BM was indeed the best ge-
nomic selection approach, on average, across reference population structures, both in
generation 1 and after ten generations. The three other genetic architectures showed a
consistent but different pattern from the low-unequal architecture, with GBLUP per-
forming best in generation 1, while PLSR performed best in generation 10 for ap-
proaches that used a shallow reference population, and GBLUP performed best in
generation 10 for approaches that used a deep reference population (Table 4.3).

In generation 1, selection on MEBV from a shallow reference population always
resulted in a greater response in G compared to selection on MEBV from a deep
reference population (Table 4.3). Only in a few scenarios did we observe the expected
superiority in level of G from a deep reference population after long-term selection,
but the differences in levels of G between the deep and shallow reference populations
were small for all scenarios.
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Table 4.3: Cumulative response (standard deviation), after one and ten generations of
selection (as a percentage of the genetic standard deviation in the reference popula-
tion) in genetic architectures with a low number of QTL of unequal variance (column
3), a high number of QTL of unequal variance (column 4), a low number of QTL of
equal variance (column 5) and a high number of QTL of equal variance (column 6);
selection was on breeding values estimated with a Bayesian method (BM), partial least
square regression (PLSR), genomic BLUP (GBLUP) or pedigree BLUP (BLUP), or
selection was at random (RANDOM); numbers 1 and 5 behind estimation methods
indicate the number of generations used in the training population..

Gen. Unequal Equal
Model Low High Low High

1
BM 1 93.1 (3.6) 88.1 (1.5) 79.7 (2.0) 86.7 (1.9)
BM 5 85.4 (4.0) 74.8 (2.2) 66.9 (2.2) 74.4 (2.3)
PLSR 1 86.5 (2.4) 89.6 (1.9) 86.3 (1.8) 90.0 (1.8)
PLSR 5 78.5 (2.3) 80.2 (2.3) 76.2 (2.1) 77.0 (3.2)
GBLUP 1 91.2 (2.3) 93.9 (1.5) 89.0 (1.7) 91.0 (1.3)
GBLUP 5 75.9 (2.2) 79.4 (2.0) 78.2 (1.6) 77.3 (1.7)
BLUP 85.0 (1.6) 86.1 (1.1) 85.5 (1.3) 86.0 (1.4)
RANDOM -0.3 (1.7) -1.9 (2.0) -0.8 (1.4) 0.1 (1.8)

10
BM 1 312.6 (19.2) 354.3 (16.3) 346.8 (12.6) 366.7 (12.1)
BM 5 317.7 (17.6) 333.1 (13.8) 343.9 (14.1) 326.3 (14.3)
PLSR 1 305.0 (17.4) 384.0 (14.4) 379.8 (15.1) 372.4 (11.5)
PLSR 5 306.1 (15.7) 348.6 (14.4) 364.7 (13.0) 327.5 (19.4)
GBLUP 1 321.5 (18.2) 365.2 (12.1) 361.5 (13.1) 366.0 (9.6)
GBLUP 5 298.4 (15.9) 369.2 (11.4) 372.4 (12.4) 367.5 (9.9)
BLUP 129.9 (11.0) 131.2 (6.5) 136.1 (10.9) 132.9 (12.1)
RANDOM -2.1 (6.0) -9.2 (6.5) 4.4 (6.0) 4.2 (5.0)

63



Inbreeding

The accumulation of F was always below 1 % per generation, except for selection
on pedigree BLUP EBV for which the increase in F was 1.7 % per generation. No
differences in accumulation of F were seen between the different genetic architectures
(Table 4.4). Besides the high inbreeding with the pedigree BLUP selection method,
the highest levels of F were incurred with the PLSR and BM selection approaches
for all genetic architectures, with F after ten generation ranging from 7.0 % to 7.7 %
for PLSR and from 6.9 % to 7.6 % for BM. Random selection only incurred a F of
4.7 % to 4.9 % after ten generations. GBLUP incurred only 1.4 % to 1.7 % more
inbreeding after ten generations than random selection and incurred 0.6 % to 0.9 %,
or roughly one tenth, less inbreeding than PLSR and BM (Table 4.4). No effect on
the accumulation of inbreeding was observed from differences in reference population
structure or genetic architecture.

Accuracy

Accuracies obtained within the reference population were similar for all the genomic
estimation methods, with an average of 0.63±0.03. For all scenarios, the accuracies
dropped steeply in the first generations of selection, after which the decline became
more or less linear. After ten generations of selection with the low-unequal genetic
architecture, all genomic selection approaches showed an accuracy between 0.07 and
0.10. For the three other genetic architectures, the accuracy after ten generations was
only slightly higher, with values between 0.12 and 0.16.

The shallow reference population structure resulted in higher accuracies (0.63±
0.03) in the first generation of selection candidates compared to the deep reference
population (0.55± 0.03). In the shallow reference structure, all selection candidates
were included in the reference population with own phenotypes while in the deep
reference structure, only 20 % of the selection candidates were included in the refer-
ence population with own phenotypes. In generation 10, however, accuracies were
no longer different between the two structures for a given genetic architecture and
estimation method (Table 4.5).

MEBV were also estimated in each generation of the RANDOM selection scenar-
ios based on training in the shallow reference population. Accuracies in the RAN-
DOM selection scenarios were well above accuracies from the same model when di-
rectional selection was applied (Figure 4.1). The largest difference was seen in the
low-unequal genetic architecture where accuracy decreased quickly with the applica-
tion of selection, primarily due to reduction of genetic variance. In the other three
genetic architectures, differences were smaller, but the accuracies for the RANDOM
selection scenarios were still 18 % higher, on average.

In the low-unequal architecture, accuracy was higher after ten generations of RAN-
DOM selection with BM compared to the two other genomic evaluation methods. In
this architecture with few QTL, BM could identify markers close to the QTL with a
good predictive ability for several generations because recombinations between these
markers and the QTL were rare, due to the short distance between them.
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Table 4.4: Cumulative change (standard deviation) in level of inbreeding, after one
and ten generations of selection (as a percentage) in genetic architectures with a low
number of QTL of unequal variance (column 3), a high number of QTL of unequal
variance (column 4), a low number of QTL of equal variance (column 5) and a high
number of QTL of equal variance (column 6); selection was on breeding values esti-
mated with a Bayesian method (BM), partial least square regression (PLSR), genomic
BLUP (GBLUP) or pedigree BLUP (BLUP), or selection was at random (RANDOM);
numbers 1 and 5 behind estimation methods indicate the number of generations used
in the training population.

Gen. Unequal Equal
Model Low High Low High

1
BM 1 0.8 (<0.1) 1.0 (<0.1) 0.8 (<0.1) 1.0 (<0.1)
BM 5 0.9 (<0.1) 0.9 (<0.1) 0.9 (<0.1) 0.8 (<0.1)
PLSR 1 1.0 (<0.1) 1.0 (<0.1) 1.0 (<0.1) 0.9 (<0.1)
PLSR 5 0.9 (<0.1) 0.9 (<0.1) 0.9 (<0.1) 0.9 (<0.1)
GBLUP 1 0.7 (<0.1) 0.8 (<0.1) 0.9 (<0.1) 0.8 (<0.1)
GBLUP 5 0.9 (<0.1) 0.8 (<0.1) 0.8 (<0.1) 0.9 (<0.1)
BLUP 0.8 (<0.1) 0.7 (<0.1) 0.8 (<0.1) 0.9 (<0.1)
RANDOM 0.4 (<0.1) 0.5 (<0.1) 0.4 (<0.1) 0.5 (<0.1)

10
BM 1 7.1 (<0.1) 7.6 (0.1) 7.1 (0.1) 7.2 (0.1)
BM 5 7.2 (0.1) 6.9 (0.1) 7.0 (0.1) 7.0 (0.1)
PLSR 1 7.4 (0.1) 7.7 (0.2) 7.4 (0.2) 7.6 (0.2)
PLSR 5 7.0 (0.1) 7.3 (0.1) 7.3 (0.1) 7.2 (0.2)
GBLUP 1 6.2 (<0.1) 6.5 (<0.1) 6.5 (<0.1) 6.4 (<0.1)
GBLUP 5 6.3 (<0.1) 6.6 (<0.1) 6.4 (<0.1) 6.6 (<0.1)
BLUP 16.6 (0.3) 17.2 (0.3) 17.1 (0.3) 16.9 (0.3)
RANDOM 4.9 (<0.1) 4.8 (<0.1) 4.8 (<0.1) 4.7 (<0.1)
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Table 4.5: Accuracy (standard deviation), after one and ten generations of selection
in genetic architectures with a low number of QTL of unequal variance (column 3), a
high number of QTL of unequal variance (column 4), a low number of QTL of equal
variance (column 5) and a high number of QTL of equal variance (column 6); selection
was on breeding values estimated with a Bayesian method (BM), partial least square
regression (PLSR), genomic BLUP (GBLUP) or pedigree BLUP (BLUP); numbers
1 and 5 behind estimation methods indicate the number of generations used in the
training population.

Gen. Unequal Equal
Model Low High Low High

1
BM 1 0.47 (0.04) 0.37 (0.01) 0.31 (0.02) 0.35 (0.02)
BM 5 0.48 (0.04) 0.32 (0.01) 0.31 (0.01) 0.33 (0.01)
PLSR 1 0.40 (0.02) 0.38 (0.01) 0.39 (0.01) 0.37 (0.02)
PLSR 5 0.37 (0.02) 0.35 (0.02) 0.35 (0.01) 0.35 (0.02)
GBLUP 1 0.38 (0.01) 0.37 (0.01) 0.35 (0.01) 0.36 (0.01)
GBLUP 5 0.35 (0.01) 0.35 (0.01) 0.32 (0.01) 0.35 (0.01)
BLUP 0.23 (0.02) 0.24 (0.02) 0.22 (0.01) 0.22 (0.01)

10
BM 1 0.08 (0.01) 0.12 (0.01) 0.15 (0.01) 0.14 (0.01)
BM 5 0.05 (0.02) 0.13 (0.02) 0.11 (0.01) 0.13 (0.01)
PLSR 1 0.08 (0.02) 0.11 (0.02) 0.15 (0.02) 0.15 (0.01)
PLSR 5 0.09 (0.01) 0.11 (0.02) 0.13 (0.02) 0.12 (<0.01)
GBLUP 1 0.08 (0.01) 0.14 (0.02) 0.14 (0.01) 0.14 (0.01)
GBLUP 5 0.08 (0.01) 0.13 (0.01) 0.15 (0.02) 0.15 (0.01)
BLUP 0.01 (0.02) 0.01 (0.03) 0.02 (0.03) 0.00 (0.03)
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Figure 4.1: Accuracy of MEBV in generations 0 to 10 averaged over 30 replicates;
panels show results from genetic architectures with a low number of QTL of unequal
variance (row 1), a low number of QTL of equal variance (row 2), a high number of
QTL of unequal variance (row 3) and a high number of QTL of equal variance (row 4);
estimation methods are BM (column 1), PLSR (column 2), GBLUP (column 3) and
pedigree BLUP (column 4); levels of accuracy are shown for selection with training
on phenotypes from one generation (shallow reference population, ) or from five
generations (deep reference population, ); accuracies of MEBV under RANDOM
selection are shown as ; symbols for some scenarios may be hidden if values overlap.
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Genetic variance

Similar to the results for accuracy, a much bigger reduction in genetic variance was
observed for the low-unequal architecture compared to the three other genetic archi-
tectures in all selection approaches. After the first generation of selection, an im-
portant reduction was seen in genetic variance for all selection methods (Table 4.6).
After the initial drop of genetic variance in the first generation of selection, a small
rebound in genetic variance was seen in some scenarios before variance started to de-
crease again. This rebound could be partially attributed to the reduced accuracy of
selection in later generations, as it was not observed with BM in the low-unequal sce-
nario, where accuracies in generation 1 were substantially higher. Genetic variance
can be increased by favorable QTL alleles moving to more intermediate frequencies.
In scenarios with lower accuracies, the balance of increasing genetic variance from
changing allele frequencies and decreasing variance from selection resulted in a small
increase of variance. Genetic variance steadily decreased over the next generations
of selection, except in the pedigree BLUP selection method, which became rather in-
effective after a few generations, therefore limiting the loss of genetic variance, even
though the inbreeding rate was high for this approach.

The final percentage of genetic variance remaining in generation 10 ranged from
29.4 % with BM in the low-unequal genetic architecture to 90.5 % with pedigree
BLUP in the low-equal genetic architecture. Comparing between the genomic se-
lection approaches, GBLUP was best, it retained the highest genetic variance 43.2 %
to 81.2 %, PLSR the worst 42.1 % to 66.2 % and BM 29.4 % to 69.4 % roughly in the
middle between GBLUP and PLSR, with the exception of the low-unequal architec-
ture for which the lowest genetic variance was retained by BM.

In summary, GBLUP could retain the highest genetic variance while PLSR re-
tained the lowest genetic variance, except in the low-unequal genetic architecture
where BM retained up to 15 % less genetic variance than GBLUP (Table 4.6). The
deep reference population resulted in a smaller reduction in genetic variance after one
generation of selection than the shallow reference population, but after ten genera-
tions, the differences in genetic variance were very small (Table 4.6).

4.4 Discussion

In this study, response to selection was determined over ten generations with different
selection approaches that combined one of the following estimation methods BM,
BLUP, GBLUP or PLSR with a deep or shallow reference population structure. It
has been found that accuracies of MEBV reduce with increasing distance between
reference and selection candidates (Meuwissen et al., 2001; Sonesson and Meuwissen,
2009) and that selection increases the effect of distance on accuracy and hence, on
response to selection (Muir, 2007; Jannink, 2010). The different selection approaches
were compared under four different genetic architectures to investigate the effects of
evaluation methods and reference population on accuracy of MEBV and selection
response. The results of this study can help to choose MEBV methods for distinct
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Table 4.6: Cumulative change (standard deviation) in genetic variance, after one and
ten generations of selection (as a percentage of the genetic variance in the reference
population) in genetic architectures with a low number of QTL of unequal variance
(column 3), a high number of QTL of unequal variance (column 4), a low number
of QTL of equal variance (column 5) and a high number of QTL of equal variance
(column 6); selection was on breeding values estimated with a Bayesian method (BM),
partial least square regression (PLSR), genomic BLUP (GBLUP) or pedigree BLUP
(BLUP), or selection was at random (RANDOM); numbers 1 and 5 behind estimation
methods indicate the number of generations used in the training population.

Gen. Unequal Equal
Model Low High Low High

1
BM 1 -11.4 (5.1) -14.5 (2.0) -11.9 (2.1) -15.0 (1.8)
BM 5 -7.2 (4.8) -6.8 (2.2) -9.5 (2.0) -8.7 (2.3)
PLSR 1 -13.6 (4.0) -14.8 (1.9) -16.3 (1.9) -15.6 (2.2)
PLSR 5 -12.2 (3.9) -9.6 (2.3) -11.9 (2.1) -8.0 (2.3)
GBLUP 1 -14.6 (4.3) -14.2 (1.7) -17.0 (1.5) -14.9 (2.2)
GBLUP 5 -10.5 (4.1) -9.7 (2.5) -14.8 (2.0) -11.6 (1.5)
BLUP -9.3 (4.4) -11.9 (1.8) -15.2 (1.9) -11.8 (1.6)
RANDOM 0.4 (2.4) -0.9 (1.7) -1.6 (1.9) 2.5 (2.4)

10
BM 1 -70.6 (4.1) -31.9 (2.6) -30.6 (2.7) -37.2 (2.4)
BM 5 -67.5 (4.7) -31.0 (2.5) -31.9 (1.9) -33.8 (2.4)
PLSR 1 -57.9 (5.2) -39.5 (3.2) -39.2 (2.4) -40.1 (2.3)
PLSR 5 -56.0 (7.3) -37.9 (3.0) -33.8 (2.9) -36.9 (2.4)
GBLUP 1 -56.8 (4.5) -19.2 (4.2) -20.0 (2.9) -26.4 (2.6)
GBLUP 5 -52.0 (5.2) -18.8 (3.0) -21.1 (3.1) -25.8 (2.1)
BLUP -18.7 (6.3) -13.0 (3.7) -9.5 (3.8) -13.5 (3.5)
RANDOM -7.4 (3.9) 2.1 (2.7) -5.4 (2.9) 0.2 (2.7)
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scenarios.

Breeding value estimation methods
Genetic architecture affects the comparison of methods to estimate genomic breeding
values. In the frequently simulated low-unequal architecture, which has a few QTL,
there is a clear benefit for the BM method. In the low-unequal scenario, BM appears to
be able to identify markers in LD with QTL, giving this method an advantage in early
generations and in long-term response. The increase in G with the PLSR method was
comparable to results obtained with GBLUP in the low-unequal scenario. This result
is different from the pattern observed in Pszczola et al. (2011), where PLSR showed
considerably lower accuracy than BM and GBLUP in a simulated dataset that was
very similar to the low-unequal architecture used here. A reason for this difference
could lie in the implementation of PLSR. The results in Pszczola et al. (2011) were
obtained by a two-step procedure where variable selection preceded model fitting,
which is suboptimal to the simultaneous selection and fitting of the model that was
applied to obtain the results presented here.

When the number of QTL increases, as for the three genetic architectures other
than low-unequal, the conclusions change. The three genomic methods performed
differently in terms of genetic improvement, with GBLUP performing best in gener-
ation 1 and PLSR or GBLUP performing best in generation 10 for approaches that
used a shallow or deep reference population, respectively (Table 4.3). GBLUP had a
clear advantage in generation 10, especially in comparison to PLSR and BM, with a
smaller increase in inbreeding and smaller reduction of genetic variance. The GBLUP
method combined a good response in G with a smaller increase in F.

Although the priors were set to the true values for genetic variance and number of
QTL, which would be difficult in practice, BM resulted in somewhat smaller increases
in G compared to the other genomic evaluation methods for all architectures except the
low-unequal one where BM resulted in an intermediate increase in G. Low-unequal
is an architecture that fits the approach of the BM model well, since having fewer
QTL improves the power to select the correct SNP into the model (Coster et al., 2010;
Daetwyler et al., 2010).

Selection is an important factor when comparing methods to estimate genomic
breeding values, especially for traits with a low-unequal architecture. In populations
under selection, the pattern of decrease in accuracy was not very different between
estimation methods. However, without selection in the RANDOM scenarios, BM
performed better to keep high accuracies up to ten generations past the reference pop-
ulation. It is important to realize that this advantage disappears when one is actually
selecting on the MEBV.

Genomic selection approaches are expected to incur less inbreeding than pedigree
BLUP selection (Muir, 2007; Daetwyler et al., 2007). When the estimation methods
BM, PLSR and GBLUP became inaccurate in later generations, they caused much
smaller increases in inbreeding compared to the pedigree BLUP method. The lower
inbreeding from genomic estimation compared to pedigree BLUP agreed with earlier
results that indicated that genomic estimation methods can track mendelian sampling
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within families (Daetwyler et al., 2007) and that pedigree BLUP tends to select family
members (Belonsky and Kennedy, 1988).

Accuracies of pedigree BLUP breeding values in generation 0, and hence the re-
sponse to selection on pedigree BLUP in generation 1 were at the same level as ac-
curacies and response for genomic selection methods. The pedigree BLUP accuracy
in generation 1, of approximately 0.60, was as expected with a heritability of 0.25
and phenotypes on the selection candidates and several of its sibs. The accuracies for
genomic evaluation methods depend, among other factors, on the size of the reference
population. The reference population size was chosen to yield an intermediate accu-
racy to allow for differences in accuracies from estimation method and/or reference
population structure to become evident. Accuracies that are obtained as an output of
the genetic evaluation model, i.e. obtained from the mixed model equations in pedi-
gree BLUP, can be biased if pre-selection occurs on for instance MEBV (Patry and
Ducrocq, 2009). Similarly, the estimated genetic progress can be affected by bias in
the accuracies of MEBV when they are obtained from the evaluation model. These
biases were not found in our simulation results because accuracies were obtained from
correlations of MEBV with the true breeding values and selection response was cal-
culated as the increase in average true breeding values.

Importance of reference population structure
Differences between reference populations with a deep or shallow structure were most
apparent in the first generations of selection. Methods to estimate MEBV used not
only the LD in the population but also any family structure within the reference pop-
ulation that was detectable by markers. When predicting MEBV in generation 1 with
data from the shallow reference population, a considerable contribution to the accu-
racy of those MEBV will originate from family structure detected by markers (Habier
et al., 2007). Especially in a small breeding population, individuals may need to be
included from multiple generations to make up a sizeable reference population. The
deep reference population that covered multiple generations increased the average ge-
netic distance of candidates with reference individuals and reduced the accuracy of
the MEBV and resulting selection response in generation 1. In later generations, the
advantage of the shallow reference population decreased and accuracies and levels of
response became similar to those obtained with a deep reference population. In these
later generations, the markers lost their ability to explain family structure, which ap-
peared to benefit the shallow reference structure more. In later generations the deep
reference structure probably benefited from having less focus on capturing family
structure and better use of LD information but it was concluded that the impact of ref-
erence population structure on long-term response was small. Only in a few scenarios
did we see the expected pattern where cumulative genetic gain from a deep reference
structure overtakes the accumulated gain from the shallow reference structure. Early
gains made by the shallow reference structure are difficult to overcome by the greater
gains made in later generations with the deep reference structure. One reason may be
that accuracy, and also genetic variance, declined over time, which made early gains
even more important.

71



In contrast to the small impact of reference population structure found in our re-
sults, Muir (2007) showed a large impact of reference population structure on accu-
racy of MEBV after one to eight generations of random selection. The result of Muir
(2007) was obtained in a simulated population in two-locus Hardy Weinberg equilib-
rium, which meant absence of LD between markers and between markers and QTL.
A deep reference population, named TG4, made up of generations 1 to 4, was com-
pared to a shallow reference population, named TG2, made up of generations 1 and 2.
TG2 resulted in an accuracy that was about 15 % lower compared to TG4 in the sixth
generation after training. We expect that in these results, the more persistent accuracy
from the deep reference population was due to the fact that TG4 had two more gener-
ations to build up LD after starting the population in linkage equilibrium. In addition,
the effect of building up more LD in the TG4 compared to the TG2 scenarios was
strenghtened by the smaller effective population size in TG4 (Ne = 64) compared to
TG2 (Ne = 128). In our simulations, we kept Ne equal and the same level of historic
LD was present in the deep and shallow reference population structures.

Selection strategy
In this study, we used information from a reference population with ten generations
of selection to evaluate the long-term impact of reference population structure and the
persistency of methods. Many other choices for genotyping and phenotyping strate-
gies could have been made and selecting on the same marker effects for ten gen-
erations is not a practical application, given the low accuracies that were obtained
after ten generations under all genetic architectures. One exception might be the
low-unequal architecture, where genomic selection resulted in a reduction of up to
71 % of genetic variance and re-training the model would not have much value. In
all other scenario’s, retraining the models after a number of generations is expected to
considerably improve response in later generations, as was shown by (Sonesson and
Meuwissen, 2009).

Selection without retraining can still be of practical value. Traits that are difficult
or expensive to measure can warrant the use of the same reference population for sev-
eral generations. To address our main questions, the impact of estimation methods
and reference population structure on long-term selection, we chose to simulate ge-
nomic selection scenarios without retraining. Retraining, or adding more generations
with phenotypes would have obscured the assessment of the persistency of methods
(i.e. the ability of a method to assign genetic variance to markers in close LD with the
QTL) and would have reduced the contrast between the deep and shallow reference
population by making both populations ”deeper” each generation. It should be real-
ized that without retraining, our results do not show the maximum potential of genetic
progress from genomic selection but that was not the aim of this study.

Inbreeding
Accumulation of inbreeding was calculated based on pedigree relationships. The pedi-
gree measure of inbreeding is supposed to capture genome-wide increase in homozy-
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gosity but this may not be the most relevant measure if genetic variance is due to a few
QTL, and selection changes allele frequencies at these specific genome positions. In
this case, average homozygosity may increase only a little although the favorable QTL
are (nearly) fixed. In this situation a direct measure of genetic variance may be more
valuable to describe the opportunities that remain for response to selection. For traits
that are not under selection, pedigree-estimated inbreeding will still be a reasonable
measure, assuming that loci that affect fitness are located away from the QTL with
allele frequencies rapidly changed by genomic selection.

Accuracy

A number of studies have described the accuracy of MEBV for individuals that are up
to six (Meuwissen et al., 2001; Solberg et al., 2009b; Nielsen et al., 2009), nine (Muir,
2007; Sonesson and Meuwissen, 2009), ten (Habier et al., 2007), or 19 (Jannink,
2010) generations away from the reference population. Of these studies, only Muir
(2007); Sonesson and Meuwissen (2009); Jannink (2010) applied selection based on
the MEBV, while random selection was applied in the other studies. In the study of
Muir (2007), accuracy of MEBV decreased quickly when the number of generations
between the reference and the evaluation population increased, because of the very
small number of QTL that were simulated, comparable to our low-unequal genetic
architecture. Therefore the resulting decrease in accuracy of the MEBV was largely
due to the reduction in genetic variance. Any change in LD patterns may have played
a minor role. In actual breeding programs, the reduction of genetic variance has been
relatively small (Brotherstone and Goddard, 2005) and therefore changes in LD, due
to drift and selection, are expected to play a much bigger role in reducing accuracy of
MEBV in breeding programs that apply GS. The study by Sonesson and Meuwissen
(2009) showed a pattern of the decrease in accuracy and genetic response from their
FIRST-GEN scenario, which is comparable to our results in the low-unequal scenario
with BM. Their FIRST-GEN scenario was similar to our approach because it did not
retrain the model. Their simulated genetic architecture was similar to our low-unequal
architecture because QTL effects were sampled from a Γ(0.4,1.66) distribution which
has a high density at low values. The study by Jannink (2010) applied genomic se-
lection to an inbred crop, and investigated the use of genomic breeding values prior
to phenotyping. An increase in early selection gains was shown, especially when
additional weight was placed on favorable alleles with low frequencies. The loss of
favorable alleles was not evaluated in our study. In future research, we will extend the
comparison of estimation methods and reference population structures for their effect
on genomic parameters such as LD and allele frequencies of QTL. The differences
seen in reductions of genetic variance for the different estimation methods indicate
that these genomic parameters of LD and allele frequencies of QTL may be affected
differently by different methods.
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4.5 Conclusions
Under selection, applying GBLUP leads to lower inbreeding and a smaller reduction
of genetic variance especially in comparison to PLSR but also to BM, while a similar
genetic improvement is achieved with these estimation methods for traits that have
a moderate to large number of QTL. With a small number of large QTL, BM and
PLSR were expected to result in greater response over ten generations of selection
but differences were small and most progress was made by one of the scenarios that
applied GBLUP. Without selection and with a small number of large QTL, accuracies
of MEBV from BM remained high for 10 generations past the reference population
and were always higher than accuracies from the other methods. When selection on
MEBV was applied however, no important differences were seen among the methods.
Response to selection on MEBV for traits with a small number of large QTL, a com-
mon simulation scenario in recent literature, was limited in the long-term by a rapid
reduction of accuracy over time, which was caused by a strong reduction in genetic
variance. When the trait was affected by more QTL, reduction of genetic variance was
limited and the decline in accuracy was smaller. The structure of the reference pop-
ulation had a limited effect on long-term accuracy and genetic gain. Based on these
results, use of a reference population made up of individuals that are most closely
related to the selection candidates is recommended. This approach gave early bene-
fits but in later generations, without updating marker effects, the estimation of marker
effects based on less related reference individuals did not pay off.
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Abstract
Background: Current methods for haplotype inference without pedigree informa-
tion assume random mating populations. In animal and plant breeding, however, mat-
ing is often not random. A particular form of nonrandom mating occurs when parental
individuals of opposite sex originate from distinct populations. In animal breeding this
is called crossbreeding and hybridization in plant breeding. In these situations, asso-
ciation between marker and putative gene alleles might differ between the founding
populations and origin of alleles should be accounted for in studies which estimate
breeding values with marker data. The sequence of alleles from one parent consti-
tutes one haplotype of an individual. Haplotypes thus reveal allele origin in data of
crossbred individuals.

Results: We introduce a new method for haplotype inference without pedigree that
allows nonrandom mating and that can use genotype data of the parental populations
and of a crossbred population. The aim of the method is to estimate line origin of
alleles. The method has a Bayesian set up with a Dirichlet Process as prior for the
haplotypes in the two parental populations. The basic idea is that only a subset of the
complete set of possible haplotypes is present in the population.

Conclusions: Line origin of approximately 95% of the alleles at heterozygous sites
was assessed correctly in both simulated and real data. Comparing accuracy of hap-
lotype frequencies inferred with the new algorithm to the accuracy of haplotype fre-
quencies inferred with PHASE, an existing algorithm for haplotype inference, showed
that the DP algorithm outperformed PHASE in situations of crossbreeding and that
PHASE performed better in situations of random mating.

5.1 Background
In general, marker genotypes of polyploid organisms are unordered, i.e. it is unknown
to which of the two homologous chromosomes each allele at each marker belongs.
The sequence of alleles at adjacent markers on one chromosome is called a haplotype;
in diploid organisms a genotype consists of two haplotypes. Haplotypes provide infor-
mation about the cosegregation of chromosomal segments and can be used to identify
relatives when pedigree information is unknown. The haplotypes that an individual
carries can be determined experimentally but this is expensive (Stephens et al., 2001).
Alternatively, haplotypes can be inferred, either with or without pedigree information.

When pedigree information is available, haplotypes can be inferred using genotype
data of relatives (e.g. Sobel and Lange (1996); Albers et al. (2006)). When pedigree
information is not available, haplotypes can be inferred from genotype data of the
population (e.g. Excoffier and Slatkin (1995); Stephens et al. (2001); Niu et al. (2002);
Qin et al. (2002); Xing et al. (2004); Stephens and Sheet (2005)).

Stephens et al. (2001) used a Bayesian model to obtain a posterior distribution of
haplotypes. Their prior distribution for haplotypes approximates a coancestry model
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by which distinct haplotypes originate from one common haplotype and can differ
due to mutations at specific locations. Due to this prior, new haplotypes are likely
to be equal or similar to haplotypes that already have been inferred. Stephens and
Sheet (2005) extended the prior in Stephens et al. (2001) with a recombination model
which explicitly accounts for linkage of loci on the genome. The whole algorithm is
implemented in the program PHASE.

The model of Xing et al. (2004) is comparable to the model of Stephens et al.
(2001) in assuming that haplotypes in the population originate from a latent set of
ancestral haplotypes. This model uses a Dirichlet Process as prior for the ancestral
haplotypes in the population and distinct haplotypes in the population can be associ-
ated to one ancestral haplotype due to a mutation rate.

Mentioned methods assume a random mating population where the probability of
an ordered genotype is the product of the population frequencies of the two contribut-
ing haplotypes (Weir, 1996). Random mating, however, is rarely accomplished in
reality. Departures from Hardy-Weinberg equilibrium that lead to increased heterozy-
gosity complicate haplotype inference, whereas departures that lead to increased ho-
mozygosity make haplotype inference easier Stephens et al. (2001). A common case
of nonrandom mating occurs when parental individuals of opposite sex originate from
divergent populations. In animal breeding this is referred to as crossbreeding and in
plant breeding as hybridization. In these applications, selection takes place in the
purebred population and crossed offspring are used for production purposes. This al-
lows the breeder to exploit heterosis and reduces the risk of sharing improved genetic
material with competitors. Pedigree of crossed individuals is generally not recorded
in commercial animal production situations because of logistics and costs (Dekkers,
2007b). Because of nonrandom mating, haplotypes of commercial crossed individuals
can generally not be inferred with the use of existing methods for haplotype inference
without pedigree.

During recent years, use of marker information for estimation of breeding values
has received ample attention (e.g.Meuwissen et al. (2001); Schaeffer (2006); Dekkers
(2007b); Calus and Veerkamp (2007); Muir (2007); Calus et al. (2008); Solberg et al.
(2008)). In general, methods for estimating breeding values with marker data estimate
effects the alleles of markers in the data with a specific regression technique and use
these effects to calculate breeding values of selection candidates. Direct application of
methods for estimating breeding values in crossbreeding situation can be problematic
when association phase between markers and QTL differ in the two parental lines,
which is increasingly likely when the distance between markers and QTL increases.
A secure approach is therefore to estimate separate marker effects for each purebred
population separately; this requires knowledge of the line origin of alleles.

Line origin of alleles can be estimated with the use of pedigree information. If
pedigree information is not available, line origin of alleles can be estimated based on
allele frequencies in the purebred populations, or alternatively, based on haplotype
frequencies in the purebred populations. Use of haplotype frequencies can be advan-
tageous to reveal line origin of allele when differences between allele frequencies in
both lines are relatively small.

In this article, we introduce a new method for inferring haplotypes in crossbred
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situations without pedigree information. The method uses marker information from
the two parental populations and from the crossbred offspring population. Joint in-
ference of haplotypes is expected to increase accuracy of haplotypes inferred for the
three populations. The main objective of our method, however, was to estimate line
origin of marker alleles in the crossbred population. The method uses an approach
similar to the approach used by Xing et al. (2004). The method can be applied to infer
haplotypes and estimate line origin of alleles in crossbred data and to infer haplotypes
in purebred data. Throughout this paper, we refer to the method as DP algorithm
because the algorithm uses a Dirichlet Process as prior distribution for the haplotype
frequencies in the parental populations.

The rest of this paper is organized as follows. We begin by describing the DP
algorithm, followed by describing the data which we used for evaluating the method.
We proceed by describing the results obtained with the method and compare these to
results obtained with PHASE (Stephens and Sheet, 2005). We finish the paper with a
discussion section.

5.2 Method
In this section we introduce the DP algorithm for haplotype inference. First, we in-
troduce the concepts involved in the method. Then, we proceed with the details of the
method starting with a model for a random mating situation followed by an extension
of this model to a situation of crossbreeding. For the implementation of the method,
a user can either assume random mating or crossbreeding. We finish the section by
describing the evaluation of the method and the data employed in this evaluation. The
DP algorithm is programmed in R (R Development Core Team, 2011) and available
as an R-package upon request from the authors.

5.2.1 Concepts
Consider a list of genotypes G of L biallelic loci. The genotype of individual i, Gi,
consists of two unknown haplotypes: the haplotype that the individual received from
its mother, Him, and the haplotype that it received from its father, Hi f . The pair of
haplotypes that the individual carries is one of the 22L possible haplotype pairs. The
probability for each pair is a function of the unknown population frequencies of the
two haplotypes.

Imagine that all haplotypes in a population are represented in a list of haplotype
classes, A, and that a haplotype is identical to the class to which it is associated.
Let ci j represent the class in A to which haplotype j of individual i is associated. The
associations of all haplotypes in the data to classes in A are in matrix C. The frequency
of a class is the number of haplotypes that are associated to that class.

When genotypes are unordered, neither A nor C are known. In our method, we
need to simultaneously infer the haplotype pair that correspond to a genotype because
one haplotype that corresponds to a genotype completely determines the other haplo-
type corresponding to that genotype.

80



The length of list A represents the haplotype count in the population. When n is
the number of genotyped individuals and for n is greater than 0, this count ranges from
1 to 2n. Similar as Xing et al. (2004), we formulate the distribution of haplotypes in
the population as a mixture model. The mixture components are the elements of A.
The mixture proportion of a class is proportional to its frequency, which is an estimate
of the frequency of that haplotype class in the population.

5.2.2 Model: random mating situation
We specify a Bayesian model where inference is based on the posterior probabilities
of the parameters. The posterior probability of the unknown parameters of our model,
A, and C, is p(A,C|G). Using Bayes’ theorem:

p(A,C|G) =
p(G|A,C)p(A,C)

p(G)
. (5.1)

The likelihood of the genotypes given the parameters is p(G|A,C). The prior is
p(A,C). We use Gibbs sampling to obtain samples from the marginal posterior distri-
butions of the parameters. For Gibbs sampling, we only need the posterior distribution
until proportionality and the normalizing constant p(G) is not required.

In the following, we describe the likelihood function and the prior distribution
for the haplotype classes and the correspondence parameters. We then combine the
likelihood and prior and describe our Gibbs sampler.

Likelihood function

The following model specifies the likelihood function of our model by describing the
relation between genotype i and the pair of haplotypes (Him,Hi f ):

p(Gi|Him,Hi f ,q) =
L

∏
l=1

qI(gil==himl+hi f l)(1−q)I(gil 6=himl+hi f l). (5.2)

Parameter q is an error rate between genotype i and pair of haplotypes (Him,Hi f )
′.

Indicator I(gil == himl +hi f l) has value 1 when the two alleles at locus l match with
the genotype on locus l and 0 otherwise. Indicator I(gil 6= himl + hi f l) has value 1
when the two haplotypes do not match with the genotype and 0 otherwise. Because
we do not allow for errors, q = 1 is in our model. The probability in Model 5.2 is
different from 0 only when a pair of haplotypes matches with the genotype on all loci.

Prior Distribution

We know that we have a large number K of possible haplotype classes (for biallelic
loci, K = 2L). For haplotype j of individual i, Hi j, parameter ci j indicates to which
class that haplotype is associated. Index j ∈ (m, f )′) indicates if the haplotype origi-
nated from the mother or from the father of individual i. For each class c, parameter φc
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describes the distribution of observations associated to that class and φφφ represents all
φc (Neal, 2000). For each class, this distribution only consists of haplotypes that are
identical to that class because we do not allow for errors between a haplotype and the
class to which that haplotype is associated. The φc are sampled from the base distribu-
tion of the Dirichlet Process, G0 (Neal, 2000), which in our case is a distribution the
K possible haplotype classes. The mixing proportions for the classes, p, have a sym-
metric Dirichlet prior distribution with concentration parameter α/K (Neal, 2000).
Following Neal (2000), this gives:

Hi j|ci j,φφφ ∼ F(φci j)

ci j = k|p∼ Discrete(p1, . . . , pK)

φAk ∼ G0

p∼ Dirichlet(α/K, . . . ,α/K). (5.3)

The first equation of expression 5.3 is the distribution of haplotype Hi j given pa-
rameter ci j and φφφ . The second equation is the prior distribution for ci j = k. The third
equation is the base distribution of the model and the fourth equation is the prior for
the mixing proportions. After integration over p, the prior for ci j = k is (Neal, 2000):

p(ci j = Ak|A) =
α/K +nAk

ns +α

p(ci j 6= A|A) =
α

ns +α
, (5.4)

where nAk is the frequency of haplotype class Ak and represents the number of
haplotypes associated to this class excluding current haplotype Hi j. ns is the number
of haplotypes excluding haplotype Hi j, i.e. ∑nAk = ns. The first equation is the prior
probability of sampling existing class Ak. The second equation is the prior probability
of sampling a new class, i.e. the haplotype is not associated to any haplotype class
that is already present in list A.

We modify distribution 5.3 to evaluate the prior probability of a pair of haplotypes.
Here, we integrate the prior for cim,ci f |p over p, because the association of a pair of
haplotypes to classes in A is unknown. Each haplotype is either associated to an
existing class Ak in A or to a new class which is not in A. Five situations can then
occur: a) Both haplotypes are associated to a different class in A; b) Both haplotypes
are associated to the same class in A; c) One haplotype is associated to a class in A
and the other haplotype is associated to a class which not in A; d) Both haplotypes are
associated to different haplotype classes which are not in A; e) Both haplotypes are
associated to the same class which is not in A. It can be shown that integration over p
gives the following prior probabilities for these five situations:
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p(cim = Ak,ci f = Ak′) =
(α/K +nAk)(α/K +nAk′ )

(α +ns)(α +ns +1)
(5.5a)

p(cim = ci f = Ak) =
(α/K +nAk)(α/K +nAk +1)

(α +ns)(α +ns +1)
(5.5b)

p(cim = Ak,ci f 6= A) = p(ci f = Ak,cim 6= A)

=
(α/K +nAk)α

(α +ns)(α +ns +1)
(5.5c)

p(cim 6= A,ci f 6= A) =
(K−1)/Kα2

(α +ns)(α +ns +1)
(5.5d)

p(cim = ci f 6= A) =
α(α/K +1)

(α +ns)(α +ns +1)
. (5.5e)

Here, nAk represents the number of haplotypes associated to class Ak, excluding the
two haplotypes corresponding to genotype i. The total number of haplotypes sampled
excluding the two haplotypes is ns; ∑nAk = ns.

Gibbs sampler

We use a Gibbs sampler to obtain samples from the posterior distribution p(c,A|G,q).
We follow algorithm 1 of Neal (2000) to derive the posterior probabilities correspond-
ing to the five situations described in the previous:

p(cim = Ak,ci f = Ak′ |Gi,A,q)

=
(α/K +nAk)(α/K +nAk′ )

(α +ns)(α +ns +1)
p(Gi|cim = Ak,ci f = Ak′ ,q) (5.6a)

p(cim = ci f = Ak|Gi,A,q)

=
(α/K +nAk)(α/K +nAk +1)

(α +ns)(α +nS +1)
p(Gi|cim = ci f = Ak,q) (5.6b)

p(cim = Ak,ci f 6= A|Gi,A,q)

=
(α/K +nAk)α

(α +ns)(α +ns +1)

K

∑
t=1

p(Gi|cim = Ak,ci f = t)/K (5.6c)

p(cim 6= A,ci f 6= A|Gi,A,q)

=
(K−1)/Kα2

(α +ns)(α +ns +1)

K

∑
t0=1

[
K

∑
t1=1,t1 6=t0

p(cim = t0,ci f = t1|q)
K(K−1)

]
(5.6d)

p(cim = ci f 6= A|Gi,A,q)

=
α(α/K +1)

(α +ns)(α +ns +1)

K

∑
t=1

p(G|cim = ci f = t,q)/K. (5.6e)
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The sums in expression 5.6 can be simplified. ∑
K
t=1 p(Gi|cim = Ak,ci f = t,q)/K =

1/K only if Ak is compatible with the genotype, i.e. p(Gi|ci f = Ak,q) = 1. Otherwise
it is 0 because one haplotype and a genotype completely determines the second haplo-
type. To evaluate the sums in the fourth and fifth equation, let nHet be the number of

heterozygous loci on the genotype. If nHet > 0,
K
∑

t0=1

[
K
∑

t1=1,t1 6=t0

p(Gi|ci f =t0,cim=t1,q)
K(K−1)

]
=

2nHet

4L , otherwise it is 0. If nHet = 0,
K
∑

t=1
p(Gi|cim = ci f = t,q)/K = 1/K2, otherwise it

is 0.
Now, conditional expression 5.6 for the five situations is:

p(cim = Ak,ci f = Ak′ |Gi,A)

=
(α/K +nAk)(α/K +nAk′ )

(α +ns)(α +ns +1)
p(Gi|cim = Ak,ci f = Ak′) (5.7a)

p(cim = ci f = Ak|Gi,A)

=
(α/K +nAk)(α/K +nAk +1)

(α +ns)(α +ns +1)
p(Gi|cim = ci f = Ak) (5.7b)

p(cim = Ak,ci f 6= A|Gi,A)

=
(α/K +nAk)α

(α +ns)(α +ns +1)
p(Gi|cim = Ak)/K (5.7c)

p(cim 6= A,ci f 6= A|Gi,A)

=
(K−1)/Kα2

(α +ns)(α +ns +1)
I(nHet > 0)

2nHet

4L (5.7d)

p(cim = ci f 6= A|Gi,A)

=
α(α/K +1)

(α +ns)(α +ns +1)
I(nHet == 0)

1
K2 . (5.7e)

5.2.3 Model: crossbred population

We extend the model to a crossbreeding situation. In this situation, we consider three
populations. Populations M and F are the purebred parental populations. Population
Cross is the crossbred offspring population, created by crossing individuals from pop-
ulation M to individuals of population F. Let AM denote the list of haplotype classes
for population M and AF denote the list of haplotype classes for population F. In
crossbred individuals, one haplotype originates from population M and the other hap-
lotype originates from population F, and haplotypes inferred for a crossbred genotype
thus estimate origin of heterozygous alleles of that genotype. Both haplotypes in a
purebred individual from population M or F originate from that population.

Figure 5.1 graphically represents this crossbreeding situation with the two list of
haplotype classes. Posterior probabilities for sampling haplotype pairs for purebred

84



AM

��

��

AF

��

��

GM GF

GCross

Figure 5.1: Graphical representation of the crossbreeding model. AM represents the
list of haplotype classes of population M and AF represents the list of haplotype
classes of population F. GM represents the genotypes in population M, GF represents
the genotypes in population F, and GCross represents the genotypes in the crossbred
population Cross. Haplotypes for GCross are associated to classes in AM and AF.

individuals in population M and F are in expression 5.7. A different posterior proba-
bility is required for sampling a haplotype pair for a crossbred individual.

Haplotype Him of a crossbred individual is associated to a class in AM and haplo-
type Hif is associated to a class in AF. Three situations can occur at the moment of
sampling a haplotype pair for a crossbred individual at a given step in the sampling
algorithm. a) Haplotype Him is associated to a class in AM and haplotype Hi f is asso-
ciated to a class in AF. b) One haplotype is associated to a class in A. and the other
haplotype is associated to a class not in the other list of haplotype classes. c) Both
haplotypes are associated to classes which are not in the lists. The prior probabilities
corresponding to these situations are:

p(cim = AMk,ci f = AFk′) =
(α/K +nAMk)(α/K +nAFk′ )

(nM +α)(nF +α)
(5.8a)

p(cim = AMk,ci f 6= AF) =
(α/K +nAMk)α

(nM +α)(nF +α)
(5.8b)

p(cim 6= AM,ci f 6= AF) =
α2

(nM +α)(nF +α)
. (5.8c)

The rationale for obtaining posterior probabilities is identical to the single popu-
lation case. Consequently, the posterior probability for the three situations is:
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p(cim = AMk,ci f = AFk′ |Gi,AM,AF)

=
(α/K +nAMk)(α/K +nAFk′ )

(nM +α)(nF +α)
p(Gi|cim = AMk,ci f = AFk′) (5.9a)

p(cim = AMk,ci f 6= AF|Gi,AM,AF)

=
(α/K +nAMk)α

(nM +α)(nF +α)

K

∑
Hi f =1

p(Gi|Him = AMk,Hi f )/K

=
(α/K +nAMk)α

(nM +α)(nF +α)
p(Gi|cim = AMk)/K (5.9b)

p(cim 6= AM,ci f 6= AF|Gi,AM,AF)

=
α2

(nM +α)(nF +α)

K

∑
t0=1

[
K

∑
t1=1

p(cim = t0,ci f = t1|q)
K2

]

=
α2

(nM +α)(nF +α)

2nHet

K2 . (5.9c)

5.2.4 Measures of algorithm performance

The goal of our algorithm was to accurately identify line origin of alleles at heterozy-
gous sites in crossbred individuals. For this purpose, the algorithm infers haplotypes
for both the purebred and crossbred individuals in the data.

Line origin accuracy of alleles at heterozygous sites in crossbred individuals was
assessed using the measure Allele Origin Accuracy (AOAc). AOAc could only be as-
sessed for crossbred individual because all alleles in a purebred individual originate
from a single line or population. AOAc was calculated as the number of alleles at
heterozygous sites whose origin is correctly estimated and is expressed as fraction
of the total number of heterozygous loci in that individual. AOAc ranges between
0, when origin of all alleles is inferred incorrectly to 1, when origin of all alleles at
heterozygous sites is inferred correctly.

For the purpose of estimating allele origin, the algorithm estimates frequencies of
haplotype classes in the distinct populations. We used a second measure of algorithm
performance to assess the accuracy of inferred haplotype frequencies. Following the
article of Excoffier and Slatkin (1995), we used similarity index, If, for this purpose.
If assesses similarity between the vector of true and estimated haplotype frequencies.
If was calculated as Excoffier and Slatkin (1995):

If = 1− 1
2

2L

∑
k=1
|p̂k− pk|, (5.10)

where the summation is over the 2L possible haplotypes in the population, p̂k is
the estimated frequency of haplotype k and pk is the true frequency of this haplotype.
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We compared If of haplotype frequencies inferred with the DP algorithm to If
of haplotype frequencies inferred with PHASE (Stephens and Sheet, 2005). We ran
PHASE for 1,000 iterations, with a burn-in of 100 iterations and a thinning period of
10 samples, which is the default used by PHASE. AOAc could not be compared be-
tween the two methods because PHASE assumes single, random mating populations.

Indices AOAc and If were recorded each 50th sample of the MCMC chain and
averaged over the whole length of the chain to obtain the mean of their posterior dis-
tributions. The length of the chain was made dependent on the number of genotypes
in the data. For the simulated data, the chain was run for 20,000 iterations when sin-
gle populations were assumed and for 40,000 iterations when a crossbreeding scheme
was assumed. The chain was run for 100,000 iterations for the data of the Wagenin-
gen Meishan cross (see below). The first 5,000 iterations were discarded as burn-in.
The number of iterations was determined after visual inspection of parameters If and
AOAc, which stabilized after approximately 10,000 iterations.

5.2.5 Data
We used two datasets to evaluate the algorithm.

Simulated data

Two independent populations were simulated (population M and population F). Genomes
consisted of one single chromosome of a length of 9 cM with 10 biallelic markers
equally distributed over the chromosome. In the base populations, Minor Allele fre-
quencies (MAF) were equal for all markers. In population M, the 1 allele was the
minor allele and the 0 allele was the minor allele in population F. For populations
M and F, 100 generations of random mating were simulated maintaining a popula-
tion size of 100 to establish Linkage Disequibrium between markers. Recombinations
were simulated according to the genetic distance and without interference. A hundred
crossed individuals were simulated by crossing generation 100 of population M to
generation 100 of population F.

Minor Allele Frequency in the simulated base population was varied between 0.01,
0.25, 0.40, and 0.49 to create a range of situations. In the MAF is 0.49 situation,
populations were highly similar, and populations were extremely different in the MAF
is 0.01 situation. Ten replicates were simulated for each MAF value.

Crossbreeding data

The second dataset was SNP data of the Wageningen Meishan-commercial line cross
and consisted of 294 genotyped crossbred F1 offspring individuals, 109 genotyped
dams from commercial lines, and 19 genotyped sires from the Meishan breed. The
genotypes consisted of 14 SNP loci covering approximately 5 cM on chromosome
2. Genotype data of the parental lines (commercial dams and Meishan sires) and
genotypes of the crossbred F1 offspring were used for analyses. Haplotypes were pre-
viously inferred using the known pedigree with the program CVM (which stands for
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Table 5.1: Average (standard deviation) of number of distinct haplotypes in (nHap),
the average fraction of heterozygous loci within individuals (% het) and fraction ob-
served recombinant haplotypes for the Cross population (% rec). nHap and %het in
populations M and F represent averages of these two populations. Minor Allele Fre-
quency (MAF) in the base populations was simulated between 0.01 and 0.49. Ten
replicates were simulated for each MAF.

MAF Populations M, F Cross populations
nHap % het nHap % het % rec

0.01 2 (1) 0.02 (0.02) 3 (1) 0.98 (0.02) 0.00 (0.00)
0.25 19 (9) 0.20 (0.07) 32 (6) 0.66 (0.08) 0.01 (0.01)
0.40 30 (9) 0.29 (0.06) 50 (12) 0.54 (0.07) 0.02 (0.01)
0.49 32 (8) 0.30 (0.06) 48 (8) 0.49 (0.07) 0.01 (0.01)

Cluster Variation Method) (Albers et al., 2006). The program CVM is an algorithm
for inferring haplotypes from unordered genotype data conditioning on marker infor-
mation of relatives, identified through pedigree information. Haplotypes inferred with
CVM were considered as correct and haplotypes inferred with DP were compared
with these.

5.3 Results
In the first part of this section, we validate the algorithm using the simulated data. In
the second part, we use the algorithm to estimate haplotypes in the real Wageningen-
Meishan cross data. For each dataset, we compare the performance of the DP algo-
rithm with the performance of PHASE.

5.3.1 Simulated data
Table 5.1 summarizes the simulated populations. Heterozygosity and the count of dis-
tinct haplotypes in the parental population increased when MAF in the base population
of M and F increased because MAF was set for reciprocal alleles in the two popula-
tions. Chromosome size was equal in all simulations but the number of observable re-
combinations in the crossbred population increased when MAF of the base population
increased because the probability that a haplotype originating from a recombination
was already present in the population decreased with increasing heterozygosity.

The number of haplotype classes increased when concentration parameter α of the
Dirichlet Process increased (Table 5.2). There was only a small effect of parameter α

on If of the parental and crossbred populations. Crossbreeding was assumed in these
analyses, enabling to calculate AOAc for the crossbred population, but the effect of α

on AOAc was only minimal (Table 5.2).
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Table 5.3: Average (standard deviation) Allele Origin Accuracy (AOAc) and Similar-
ity Index (If ) of haplotypes inferred for genotypes of simulated populations M and
Cross. Data were analysed assuming Random-Mating or Crossbreeding. Genotypes
of simulated population F were included in the analyses when Crossbreeding was as-
sumed. Analyses were run with α equal to 1. Ten replicates where simulated for each
scenario. Base populations for M and F were simulated with Minor Allele Frequency
equal to 0.40.

Population AOAc If
Random-Mating

M 0.84 (0.05)
Cross 0.30 (0.28)

Crossbreeding
M 0.88 (0.03)
Cross 0.95 (0.02) 0.87 (0.05)

Accuracy of estimated haplotype frequencies in the crossbred population was af-
fected by assuming random mating or crossbreeding. When random mating was (er-
roneously) assumed, there was only 30% agreement between the estimated and true
vector of haplotype frequencies in the crossbred population, reflected by If (Table 5.3).
If increased to 0.87 when crossbreeding was assumed and marker data of the parental
populations was included in the analyses (Table 5.3). Average If of haplotype fre-
quencies estimated for the parental M population increased from 0.84 when random
mating was assumed to 0.88 when crossbreeding was assumed (Table 5.3).

Allele Origin Accuracy was only calculated for crossbred individuals when cross-
breeding was assumed. In this case, AOAc was 0.95, reflecting that the origin of 95%
of the alleles at heterozygous sites in crossbred individuals was correctly assessed.

Including marker data of at least one parental population was crucial for AOAc and
If of haplotypes inferred for crossbred individuals (Table 5.4). A lower improvement
was achieved due to including the second population in the analyses.

Similarity Index and AOAc of haplotypes inferred for crossbred individuals with
DP increased when MAF of the parental populations were increasingly different (Ta-
ble 5.5). In contrast, If of haplotypes inferred for the same data with PHASE de-
creased when differences between MAF of parental populations increased (Table 5.5).
If of haplotypes inferred for purebred individuals were similar between DP and PHASE.

5.3.2 Wageningen Meishan-Commercial cross

The crossbred individuals in the Wageningen Meishan-Commercial cross data origi-
nated from 19 sires and 109 dams. Three analyses were performed using data of 19,
63 and 109 dams and only their offspring and the sires of these offspring in the anal-
yses. Data were analysed using the DP algorithm assuming crossbreeding, using the
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Table 5.4: Average Allele Origin Accuracy (AOAc) and Similarity Index (If ) of hap-
lotypes inferred for genotypes of simulated Cross population. Analyses were run as-
suming Crossbreeding and purebred populations M and F were either included or not
in the analyses. Analyses were run with α equal to 1. Populations were simulated
with Minor Allele Frequency in the base populations equal to 0.40. Ten replicates
were simulated for each scenario.

AOAc I f
100% Pop. M, F 0.95 (0.02) 0.87 (0.05)
100% Pop. M, 0% Pop. F 0.94 (0.01) 0.84 (0.03)
0% Pop. M, F 0.44 (0.19) 0.36 (0.21)

Table 5.5: Average (standard deviation) of Similarity Indices I f for haplotypes in-
ferred with PHASE and with the DP algorithm from genotypes of simulated popu-
lations M and Cross. Minor Allele Frequency in the base populations (MAF) was
simulated between 0.01 and 0.49, 10 replicates were simulated for each MAF. Geno-
types of simulated population F were included in the analyses with the DP algorithm.
Parameter α was set equal to 1 in the analyses with DP.

MAF PHASE DP
Pop. M Cross pop. Pop. M Cross pop.

0.01 1.00 (0.01) 0.00 (0.00) 1.00 (0.01) 1.00 (0.01)
0.25 0.93 (0.04) 0.12 (0.28) 0.93 (0.04) 0.92 (0.04)
0.40 0.86 (0.05) 0.42 (0.30) 0.88 (0.03) 0.87 (0.05)
0.49 0.90 (0.03) 0.55 (0.25) 0.90 (0.03) 0.89 (0.03)
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Table 5.6: Allele Origin Accuracy (AOAc) and Similarity Index (If ) for haplotypes
inferred with the DP algorithm assuming crossbreeding (DP), with the DP algorithm
assuming random mating (DP RM) and with PHASE. Parameter α of the DP algo-
rithm was set equal to 1. Data from the Commercial x Meishan crossbreeding data.
Indivuals in the Dam group were from the commercial breed and individuals in the
Sire group were from the Meishan breed. Parameter α was set equal to 1 in the anal-
yses with DP.

DP CB DP RM PHASE
AOAc If If If

19 Dams
Cross 0.97 0.93 0.09 0.93
Dams 0.92 0.90 0.86
Sires 0.75 0.78 0.80
63 Dams
Cross 0.94 0.87 0.69 0.86
Dams 0.84 0.80 0.83
Sires 0.76 0.77 0.77
109 Dams
Cross 0.95 0.91 0.10 0.91
Dams 0.84 0.82 0.81
Sires 0.76 0.77 0.77

DP algorithm assuming random mating and using PHASE, which assumes random
mating.

Similarity Indices obtained using the DP algorithm were substantially higher when
crossbreeding was assumed compared to when random mating was assumed (Ta-
ble 5.6). Similarity indices obtained with PHASE were very similar to If obtained
with DP assuming crossbreeding, despite that PHASE assumed random mating. There
was not a clear effect of the number of dams used on If .

Allele origin accuracies obtained with DP when crossbreeding was assumed were
approximately 0.95, without regard of the number of dams included in the data (Ta-
ble 5.6).

5.4 Discussion
Crossbreeding or hybridisation is a common case of nonrandom mating in animal and
in plant breeding. Inference of haplotypes in crossbred individuals is useful when line
origin of alleles is required because haplotypes provide information about cosegrega-
tion of chromosome segments. In this paper, we introduced and validated a method for
estimating line origin of alleles in crossbred individuals when pedigree information is
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unknown.
To our knowledge, no algorithms for estimating line origin of alleles in crossbred

individuals have been described. Comparison of results obtained with the DP algo-
rithm to results obtained with alternative methods was therefore not possible. For
comparison, we concentrated on the accuracy of haplotype frequencies, as indexed by
parameter Similarity Index, If and compared If obtained using the DP algorithm to If
obtained using PHASE.

PHASE was used to compare results obtained with the DP algorithm because
PHASE was used in several recent studies (e.g. Hvilsom et al. (2008); Xie et al.
(2008); The International HapMap Consortium (2005)). The prior distribution for
haplotypes used in PHASE is more realistic than that used in the DP algorithm. The
prior distribution in the DP algorithm assigns equal probability to all classes from the
2L possible haplotypes. The prior distribution in PHASE approximates a coancestry
model of the haplotypes and explicitly models linkage between markers (Stephens
et al., 2001; Stephens and Sheet, 2005). Haplotypes inferred with PHASE for the Wa-
geningen Meishan-Commercial cross data reflect the qualities of PHASE (Table 5.6).
In the situations which were simulated, however, haplotypes for crossbred individuals
inferred with PHASE were less accurate than haplotypes inferred with DP.

Complexity of haplotype inference is determined by the number of heterozygous
loci in a genotype because the number of possible haplotype configurations is 2nHet .
By design of the simulations, heterozygosity in the crossbred populations was high
when heterozygosity in the parental populations was low (Table 5.1). Consequently,
If of haplotype frequencies inferred with PHASE where low for the crossbred popula-
tions and high for the parental populations in these scenarios (Table 5.5). In contrast to
PHASE, the DP algorithm uses information from the two parental populations to infer
haplotypes in the crossbred population. Advantage of this approach was most appar-
ent in situations when If of haplotypes inferred with PHASE for crossbred individuals
were lowest.

Line origin of approximately 95% of the alleles at heterozygous sites in crossbred
individuals was correctly identified by the algorithm when genotypes of parental in-
dividuals were included in the analyses. Excluding genotypes of either one or both
parental populations from the analyses showed that including data of at least one
parental population was crucial for correct identification of line origin of alleles (Ta-
ble 5.3).

In the current DP algorithm, the prior distribution for haplotype classes does not
account for allele frequencies in each population. Clustering haplotypes based on
allele frequencies, following Huelsenbeck and Andolfatto (2007), could improve the
accuracy of the DP algorithm for crossbred individuals, especially in situations when
few data on the parental populations are available. In addition, it could facilitate
extension of the algorithm to situations where the data originated from more than
two parental populations. Currently, the algorithm can not easily be extended to more
than two population because of the large number of possible haplotype configurations
which would need to be evaluated for this because each haplotype could originate
from all populations.

The DP algorithm is similar to the algorithm of Xing et al. (2004) because it as-
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sumes the existence of a limited number of classes for the haplotypes in the population
and uses a Dirichlet Process as prior distribution for these classes. A feature of the
Dirichlet Process is that it clusters data without the need to specify the number of
clusters. In the context of haplotypes, this feature is especially attractive because the
haplotype diversity in the population usually is lower than the 2L possible haplotype
classes (L is the number of polymorphic loci in the data).

Apart from the ability to infer haplotypes in a situation of crossbreeding, the most
important difference between our model and that of Xing et al. (2004) is that our model
does not assume errors between a haplotype and the class to which it is associated nor
between a pair of haplotypes and the genotype to which they correspond. The first
consequence of this is that we need to update the pair of haplotypes corresponding
to a genotype simultaneously because the haplotypes corresponding to a genotype are
conditionally dependent. The second consequence is that the number of haplotype
classes required for a population is equal or larger than in the model of Xing et al.
(2004).

Not not allowing for errors had several benefits. Implementation of the model of
Xing et al. (2004) showed that controlling the error rate through the hyperparameters
of their model was very difficult. Errors were either sampled between haplotypes and
their classes or between haplotypes and the genotypes to which they corresponded.
Not allowing for errors between haplotypes and genotypes made simultaneously up-
dating the pair of haplotype corresponding to a genotype necessary. For simultaneous
updating, however, all pairs of haplotypes that are possible for a genotype need to be
considered in each sampling step of the algorithm. Not allowing for errors between
haplotypes and the classes to which they correspond is then advantageous because it
reduces the number of possible haplotype pairs for a genotype from 22L to 2nHet (nHet
is the number of heterozygous loci at a genotype).

The number of markers used in both the simulated and the real data is low com-
pared to number of markers that are currently used. Two problems are expected when
the number of markers in the data increases. The first and most trivial one is the size
of the data which obviously increases. The second problem is that haplotypes become
increasingly unique when markers are located on regions more distant on the genome
due to occurrence of recombinations and random sampling of independent chromo-
somes. Performance of the DP algorithm can be expected to be low when the number
of haplotypes unique in the crossbred population increases. A practical solution could
be to split the data into subsets of adjacent markers on single chromosomes or to use
a sliding window approach over chromosomes.

The algorithm could be adapted to allow for missing marker data. Let m be the
number of missing markers for a specific individual. The likelihood in Expression
5.2 should then only be evaluated for the L−m non missing markers, since the other
markers always match. The summations in Expressions 5.6, 5.7 and 5.9 should only
account for the number of non missing markers, L−m. In essence, the model would
need to evaluate the non missing markers in each individual, since individuals are
sampled independently.

In the present article, we introduced a new algorithm for inference of line origin of
alleles in crossbred populations. Analyses with both simulated and real data showed
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that origin of approximately 95% of the alleles at heterozygous sites was inferred
correctly. Application of the algorithm to realistic data will require extension of the
algorithm with methods to deal with large numbers of markers and with missing data.
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Chapter 6

General discussion



In this thesis, I studied the application of genetic markers in pig breeding pro-
grams. First, we used genetic markers in an association study for genomically im-
printed genes in two commercial pig populations (Chapter 2), where we identified one
QTL with an imprinting effect on litter size. Since the QTL was located close to the
gene DIO3, a gene known to be imprinted, we suggested that the association is due to
the gene DIO3. In Chapter 3 and Chapter 4 we applied and compared four methods
to estimate breeding values with marker data. These chapters show that the effective-
ness of the methods is affected by the number of genes and the variance of individual
genes affecting the trait. This is relevant for the application of the technique of using
marker information to estimate breeding values to animal breeding. In Chapter 5, we
developed a new method to estimate the parental origin of alleles in crossbred data.
Knowledge of the parental origin of alleles is important to estimate breeding values
with markers in crossbred populations since the linkage phase between markers and
genes might differ between populations. Furthermore, knowledge of allele origin is
important to detect genomically imprinted genes since the test depends on the contrast
between the reciprocal heterozygote classes of the genotype.

In this chapter, I use a quantitative genetic model to calculate the variance of im-
printed genes and evaluate the power of tests for imprinted genes in general popula-
tions. These results are used to evaluate the results obtained in Chapter 2. The model is
extended to evaluate confounding between maternal effects and genomic imprinting.

The model is subsequently used to evaluate the possibilities to use genomically
imprinted genes for genetic improvement through breeding. Subsequently, I will dis-
cuss possibilities to apply methods to estimate breeding values with markers, as where
used in Chapters 4 and 3 of this thesis, for detection and use of genomically imprinted
genes in pig breeding.

6.1 A genetic and statistical model for genomically im-
printed genes

Quantitative genetic aspects of genomic imprinting have been studied with determinis-
tic models (e.g. Spencer (2002); Santure and Spencer (2006); Spencer (2009)). These
models allowed a detailed study of genomic imprinting, but their algebraic complexity
is an important disadvantage for their application. In this section, I use a genetic and
statistical model which can be applied to study non-imprinted and imprinted genes
using matrix algebra, which enables to avoid the complex algebra of the models of
Spencer (2002); Santure and Spencer (2006); Spencer (2009). The model is used to
calculate the variance of genes, as affected by genomic imprinting and the power of
tests for these genes.

Genomic imprinting is an epigenetic phenomenon defined as a parent-of-origin
dependent transcription of alleles at a specific gene into RNA (Feil and Berger, 2007;
Wolf et al., 2008; Hager et al., 2009). This differential transcription of alleles into
RNA is controlled by epigenetic marks such as DNA methylation and histone modifi-
cations which are established during gametogenesis and mostly maintained through-
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out lifetime (Wood and Oakey, 2006; Edwards and Ferguson-Smith, 2007) and results
in a parent-of-origin dependent expression of the gene Wolf et al. (2008).

At the phenotypic level, genomic imprinting is manifested through a contrast be-
tween the reciprocal heterozygote classes of a gene. Consequently, the genotype val-
ues of a genomically imprinted biallelic gene classify into the levels associated with
the 0/0, 0/1, 1/0 and 1/1 genotype, where the first digit represents the maternally inher-
ited allele and the second digit the paternally inherited allele (Spencer, 2002; Santure
and Spencer, 2006).

Here, I distinguish between the genetic model and the statistical model. The ob-
jective of the genetic model is to accurately reflect a biological mechanism of single
genes, whereas the statistical model provides insight in the identifiability of the model
terms and the relation between the model terms and the underlying biological reality.

6.1.1 Genetic model
First, I introduce the genetic model for a biallelic gene, and use 0 and 1 to denote the
two alleles (note that this notation differs from the notation in Chapter 2). Figure 6.1
gives a graphical representation of the genetic values of the four genotypes. Note that
the allele count for both heterozygote genotype classes is 1, which is why they share
the same location on the x-axis of the Figure 6.1.

The allele effect a is the increase of the genetic value due to the presence of the 1
allele compared to the 0 allele. In absence of dominance and imprinting, the genetic
value of the four genotype classes is 0, a, a, and 2a for genotypes 0/0, 0/1, 1/0 and 1/1
respectively (the genetic value of the 0/0 genotype class is the reference). The domi-
nance effect d is the deviation of the average genotype value of the two heterozygote
classes from a. The imprinting effects classify into the maternal imprinting effect im,
being the deviation between the genetic value of the 1/0 genotype and a+d, and the
paternal imprinting effect ip, being the deviation between the genetic value of the 0/1
genotype and a+d.

It is important to distinguish between imprinting and expression: genomic imprint-
ing reduces the expression of one allele while the other allele remains fully expressed.
Wolf et al. (2008) classified the effects of genomic imprinting into two main patterns:
parental imprinting and dominance imprinting. In the pattern of parental imprinting,
expression of either the paternal or maternal allele is reduced, leading to situations of
maternal or paternal expressions. In the pattern of dominance imprinting, the genetic
values of the two homozygote classes are equal and the genetic values of the het-
erozygote classes are different from each other. This pattern of dominance imprinting
is attributed to the presence of two, tightly linked, genomically imprinted genes with
opposite expression patterns (maternal or paternal). Despite of using the term dom-
inance, this expression pattern does not refer to the interaction between two alleles
but to the effects of linkage between two genomically imprinted genes on the genetic
value.

Figure 6.1 shows a maternally expressed gene, where the allele of paternal origin
is completely silenced due to genomic imprinting. Since dominance was not modeled
(d = 0), it is not displayed in the figure. Note that dominance and imprinting create
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Figure 6.1: Schematic model for a maternallly expressed biallelic gene. The genotype
classes are 0/0 ( ), 0/1 ( ), 1/0 ( ), and 1/1 ( ) , where the first digit corresponds to
the allele of maternal origin and the second to the allele of paternal origin. The allele
effect is a = 1, the dominance effect is d = 0, the imprinting effect of the maternal
allele is im = 0 and the imprinting effect of the paternal allele is ip = 1.

biologically complex effects: dominance is defined as the interaction between alleles
of a gene while genomic imprinting reduces the expression of alleles. Hence, domi-
nance can be expected to be lower when there is genomic imprinting, and to be zero
when one allele is completely silenced due to genomic imprinting (im = 0 or ip = 0).
The genetic model also allows for situations where both 0 < im ≤ a and 0 < ip ≤ a,
but these situations are biologically unrealistic, since the value of a should then be
reduced to a∗ = max(a− im,a− ip).

As shown in Figure 6.1, the genetic value of a genotype is the sum of the allele
effect a, the dominance effect d, minus the imprinting effects im and ip; g = a+ d−
im− ip. This model can be written as the product of matrix Qg and a vector with
the parameters of the model qg = (a,d, im, ip)

′ (subscript g indicates that this model
matrix and vector correspond to the genetic model):

g = Qgqg. (6.1)

Matrix Qg is calculated as the product of the incidence matrix of genotype classes
X and contrast matrix Sg, XSg. The columns of contrast matrix S correspond to the
four parameters of the genetic model:
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Sg =


a d im ip

0/0 0 0 0 0
0/1 1 1 0 −1
1/0 1 1 −1 0
1/1 2 0 −1 −1

.

6.1.2 Statistical model
Since the true values of a, d, im and ip of genes are unknown, we need to estimate
them. Estimating parameters with the model introduced above is not possible because
the columns of Sg are linearly dependent. For this reason, I use a statistical model for
analysis of the data:

g = Qq, (6.2)

where g is the vector of the genetic values of the four genotype classes, obtained
with the genetic model described previously. The vector of unknown model param-
eters is is q = (µ,α,δ , ι)′ and the model matrix is Q, calculated as XS, where X is
the incidence matrix of genotype classes. Note that matrix Q differs from matrix Qg,
and vector q from vector qg, as indicated by the absence of subscript g. The contrast
matrix S is:

S =


µ α δ ι

0/0 1 −1 −0.5 0
0/1 1 0 0.5 −1
1/0 1 0 0.5 1
1/1 1 1 −0.5 0

.
The first column of S corresponds to µ , the overall mean. Parameter α is the

additive effect of the 1 allele, defined as the mean contrast due to addition of one
1 allele. Parameter δ is the dominance effect, defined as the contrast between the
average genotype value of the two heterozygote classes and α . Parameter ι is the
imprinting effect, defined as the contrast between the genotypic values of the two
heterozygote genotype classes. Note that this model has only one parameter for the
imprinting effect whereas the genetic model had two parameters.

The relation between the genetic and statistical model is important for a correct
interpretation of the parameters estimated with the statistical model and is shown in
Table 6.1. From this comparison, it can be concluded that positive values for ι suggest
paternal imprinting (maternal expression) and negative values for ι suggest maternal
imprinting (paternal expression).

The estimator of vector q, q̂ is calculated with least squares:

q̂ =
(
Q′Q

)−1 Q′g. (6.3)

The aim is now to obtain an expression for the expected vector of q̂, E(q̂) = q:
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Table 6.1: Relation between the genetic and statistical model.

Genotype Genetic model Statistical model
0/0 0 µ−α−0.5δ

0/1 a+d− ip µ +0.5δ − ι

1/0 a+d− im µ +0.5δ + ι

1/1 a− ip− im µ +α−0.5δ

E(q̂) = E(
(
Q′Q

)−1
)E(Q′g)

E(Q′Q) = S′E(X′X)S = nS′PS
E(Q′g) = nS′Pg

E(q̂) =
(
S′PS

)−1 S′Pg, (6.4)

where P is a diagonal matrix with the genotype frequencies as diagonal elements
and the equality of (Q′Q) to nS′PS follows from Equation C3 in Álvarez-Castro and
Carlborg (2007).

The expected variance explained by the genetic effects is calculated from the ex-
pected regression coefficients of the three effects:

var(α) = E(Qα q̂α)
2− (E(Qα q̂α))

2

var(δ ) = E(Qδ q̂δ )
2− (E(Qδ q̂δ ))

2

var(ι) = E(Qι q̂ι)
2− (E(Qι q̂ι))

2 ,

(6.5)

where Q. and q̂. are the column of Q and the element of q̂ that correspond to the
effect of interest. Following a similar procedure as in expressions 6.4:

E(Q.q̂.)
2 = nq̂′.S.

′PS.q̂.

(E(Q.q̂.))
2 =

(
nq̂′.S

′
.P
′1
)2
, (6.6)

where 1 is a vector of ones of length four, corresponding to the four genotype
classes of the data.

Application of Equation 6.4 to different matrices P will yield identical results
for q, and Equation 6.4 can be rewritten as E(q̂) = (S′S)−1 S′g. Since the model is
extended to more complex situations in a following section, the two P matrices were
retained in Equation 6.4 to allow for a general model definition.
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6.1.3 Evaluation of the statistical model

Figure 6.2 shows the additive effects for distinct combinations of a, d and ip (im was
set to 0), the slope of the dashed line corresponds to the additive effect α in each
situation and the intercept of the line corresponds to the population mean minus the
additive effect α . The results show that the additive effect of a gene is independent
of d, and that genomic imprinting will decrease the additive effect of a gene. Note
that dominance was included in combination with a fully silenced paternal allele in
the one situation, despite of corresponding to a biologically strange combination.
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Figure 6.2: Estimated additive effects in situations with and without dominance and
with and without genomic imprinting. The dots correspond to the genetic values for
each genotype count; when genomic imprinting was present (ip = 1), the dot with the
highest value in the heterozygote class corresponds to the 1/0 genotype and the lowest
dot to the 0/1 genotype. The slope of the dashed line is the additive effect.
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The statistical model was applied to calculate the variance of the additive, dom-
inance and imprinting effects and the total genetic variance for four scenarios. The
results are displayed in Figure 6.3. In absence of dominance and genomic imprint-
ing, the variance of the genetic effects as function of the allele frequency are identical
to the variances displayed on page 128 of Falconer and Mackay (1996) (Figure 6.3).
When there is dominance, however, σ2

α and σ2
δ

differ from Falconer and Mackay
(1996) because dominance is explicitly included as a model parameter in the current
statistical model. Note that the statistical model can be modified by adapting contrast
matrix S; applying a model including only the mean and additive effects gives results
identical to those in Falconer and Mackay (1996). As was pointed out above, genomic
imprinting reduces the additive effect of a gene, and the results in Figure 6.3 show
that genomic imprinting reduces the total genetic variance because the reduction in
additive genetic variance is not compensated by the variance of the imprinting effect.
Hence, the total genetic variance of a genomically imprinted gene is smaller than the
total genetic variance of a non-imprinted gene, when other characteristics of the gene
(allele frequency, allele effects) are the same. Consequently, genomic imprinting re-
duces the variance of genes, to the extreme where the variance is halved when one
allele is completely silenced.
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Figure 6.3: Genetic variance components under variable degrees of imprinting and
dominance with frequency of the 1 allele p(1). correspond to situations where
dominance was 0, correspond to situations where dominance was 1. σ2G is the
total genetic variance.
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6.2 Genomic imprinting and maternal effects
Recent publications showed confounding between genetic maternal and imprinting
effects (Santure and Spencer, 2006; Hager et al., 2008) because genetic maternal ef-
fects correlate with effects of genomic imprinting when they are due to the same gene.
This confounding is very relevant in association studies for imprinted QTL, since it
might lead to false positive imprinted QTL. The concern about maternal effects on fe-
male fertility traits is relevant since maternal effects affect female fertility traits in pigs
(van der Steen, 1983). For this reason, a maternal effect was included in the statistical
model in Chapter 2 (Equation 2.1) to correct for maternal effects and to avoid false
positive QTL. In this section, the genetic model introduced in Section 6.1 is extended
to situations where genetic maternal effects influence the trait to confirm the results
obtained in the study of Hager et al. (2008) and to reflect on the results obtained in
Chapter 2 of this thesis. In the definition of maternal effects, I follow Wolf and Wade
(2009) who defined maternal effects as the causal influence of the maternal genotype
or phenotype on the offspring phenotype.

Here, I will consider a situation where the maternal effect and the direct genetic
effect are due to single biallelic genes. In this situation, the phenotype of an individual
is due to the alleles of the gene with a direct effect in the focal individual and due to
the alleles of the gene with a maternal effect in its mother.

6.2.1 Genetic model
The genetic component of the phenotype of individual j, g j, is the sum of the genetic
value of the focal individual for the gene with a direct effect, referred to as the direct
genetic value gD j , and the genetic value of its mother for the gene with a maternal
effect, referred to as the maternal genetic value gMm j

:

g j = gD j +gMm j
.

When both the direct and maternal genetic effects are due to single biallelic genes,
g j takes one of 16 possible values (the combinations of the four genotype classes for
the gene with a direct effect and the four genotype classes for the gene with a maternal
effect):

g =
[

gD0/0 +gM0/0 gD0/0 +gM0/1 gD0/0 +gM1/0 gD0/0 +gM1/1 gD0/1 +gM0/0

. . . gD1/1 +gM1/0 gD1/1 +gM1/1

]′
(6.7)

The probabilities of the 16 genotype values follow from the allele frequencies of
the two genes and from the linkage disequilibrium (LD) between the two genes. Each
probability is the joint probability of an individual with genotype GD./.

for the gene
with direct effect whose mother has genotype GM./.

for the gene with maternal effect,
denoted as p(GD./.

,GM./.
). Three matrices are required to calculate the probabilities

for the 16 genotype values.
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The first is the matrix of haplotype frequencies in the population, H. A haplotype
is the combination of alleles on a single chromosome (Schaid, 2004), and their fre-
quencies follow from linkage disequilibrium between the genes under random mating.
The matrix of haplotype frequencies for two biallelic genes is:

H =

[
P00 P01
P10 P11

]
, (6.8)

where P.. is the population frequency of a haplotype (the first digit corresponds to
an allele of the first gene and the second digit corresponds to an allele of the second
gene). The rows of H correspond to the alleles of the gene with direct effect and the
columns of H correspond to the alleles of the gene with maternal effect. In general,
matrix H follows from the allele frequencies for the two genes and from LD between
these two genes (Lynch and Walsh, 1998), here I assume a known matrix of haplotype
frequencies.

The second matrix required is the matrix of joint genotype probabilities, U. Under
random mating, this matrix is the Kronecker product of two matrices H:

U = H⊗H =


P00/00 P00/01 P01/00 P01/01
P00/10 P00/11 P01/10 P01/11
P10/00 P10/01 P11/00 P11/01
P10/10 P10/11 P11/10 P11/11

 , (6.9)

where P../.. is the frequency of a combination of haplotypes, often denoted as
diplotype. The first two digits denote the haplotype of maternal origin and the last
two digits denote the haplotype of paternal origin. The first digit of each haplotype
corresponds to an allele of the direct gene and the second digit to an allele of the
maternal gene. The rows of U correspond to the genotypes for the gene with direct
effect, the columns of U correspond to the genotypes for the gene with maternal effect.

The third matrix required is a matrix of transmission probabilities, T, which con-
tains the probability of a specific genotype for the gene with direct effect conditional
on the genotype for this gene in the mother:

T =


p(0D) 0.5p(0D) 0.5p(0D) 0

0 0.5p(0D) 0.5p(0D) p(0D)
p(1D) 0.5p(1D) 0.5p(1D) 0

0 0.5p(1D) 0.5p(1D) p(1D)

 ,
where p(.D) is the frequency of allele. for the gene with direct effect. The matrix

of the probabilities of the 16 genotype combinations, PM is calculated as PM = TU.
According to the matrices, it can be seen that the rows of matrix PM correspond to the
genotypes of the gene with direct effect and the columns of PM to the genotypes of
the gene with maternal effect in the mothers. Consequently, the first element of PM ,
which corresponds to the probability of an individual with genotype 0/0 for the direct
gene whose mother has genotype 0/0 for the maternal gene, is p(0D) ·P00/00 + 0.5 ·
p(0D) · (P00/10 +P10/00)+0 ·P10/10.
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6.2.2 Statistical model
Here, I use the statistical model developed in Section 6.1.3 to evaluate confounding
between maternal genetic effects and genomically imprinted genes deterministically.
The model is identical to model 6.2, but the vector of genetic values now has 16
elements (Equation 6.7) and matrix X has 16 rows and 4 columns. The estimator of
q, q̂ is calculated with least squares:

q̂ =
(
Q′Q

)−1 Q′g, (6.10)

where matrix Q is calculated as XS (Equation 6.2). The expected value of q̂, E(q̂)
is obtained as in Equation 6.4:

E(q̂) = E(
(
Q′Q

)−1
)E(Q′g)

E(Q′Q) = S′E(X′X)S = nS′PS
E(Q′g) = nS′Pmg

E(q̂) =
(
S′PS

)−1 S′Pmg, (6.11)

As previously, I follow Equation C3 in Álvarez-Castro and Carlborg (2007) to
obtain the expression (Q′Q) = nS′PS, which is identical to the expression in Equa-
tion 6.4. This is because although matrix X now has 16 rows and 4 columns, the expec-
tation of X′X under random mating is still nP. The expression for E(Q′g) = nS′Pmg,
however, differs from the expression in Equation 6.4, as indicated by matrix Pm. The
size of matrix Pm is 16 by 4, corresponding to the 16 genotype values in g and the
four columns of S and the matrix contains the joint genotype probabilities calculated
in PM in Section 6.2.1. Each row of Pm corresponds to a genotype of the gene with
direct action, and each column corresponds to a combination of the direct and mater-
nal gene. In this, I could not develop an expression to obtain matrix Pm from PM , but
matrix Pm is displayed in Equation 6.12.

The model is used to calculate the variance of the additive and imprinting effects
and the total genetic variance as in Equation 6.6. Linkage disequilibrium, expressed
as r2, between the gene with direct effect and that with maternal effect varied between
0 and 1, the allele frequencies of the two genes varied between 0 and 1 but where
maintained equal for both genes. The additive effect of the gene with direct effect was
maintained at 1, and the gene was not imprinted to ensure that any imprinting variance
found was due to the gene with maternal effect. The additive effect of the gene with
maternal effect was 1. The paternal imprinting effect of the maternal gene, ip, varied
between 0 and 1 to evaluate the effect of a genomic imprinted maternal gene on the
degree of confounding with imprinting effects of the direct gene. The results of the
evaluation are displayed in Figure 6.4.

The results in Figure 6.4 show that the presence of a gene with maternal effects
will lead to overestimation of the additive and imprinting effects of a gene with direct

108



P′m =



0/0 1/0 0/1 1/1

gD0/0
+gM0/0

p(GD0/0 ,GM0/0) 0 0 0
gD0/0

+gM0/1
p(GD0/0 ,GM0/1) 0 0 0

gD0/0
+gM1/0

p(GD0/0 ,GM1/0) 0 0 0
gD0/0

+gM1/1
p(GD0/0 ,GM1/1) 0 0 0

gD0/1
+gM0/0

0 p(GD0/1 ,GM0/0) 0 0
gD0/1

+gM0/1
0 p(GD0/1 ,GM0/1) 0 0

gD0/1
+gM1/0

0 p(GD0/1 ,GM1/0) 0 0
gD0/1

+gM1/1
0 p(GD0/1 ,GM1/1) 0 0

gD1/0
+gM0/0

0 0 p(GD1/0 ,GM0/0) 0
gD1/0

+gM0/1
0 0 p(GD1/0 ,GM0/1) 0

gD1/0
+gM1/0

0 0 p(GD1/0 ,GM1/0) 0
gD1/0

+gM1/1
0 0 p(GD1/0 ,GM1/1) 0

gD1/1
+gM0/0

0 0 0 p(GD1/1 ,GM0/0)

gD1/1
+gM0/1

0 0 0 p(GD1/1 ,GM0/1)

gD1/1
+gM1/0

0 0 0 p(GD1/1 ,GM1/0)

gD1/1
+gM1/1

0 0 0 p(GD1/1 ,GM1/1)



.

(6.12)

effects when LD is larger than zero. For the imprinting effects, this overestimation can
be deduced from the fact that the variance of this effect estimated for the direct gene
was not zero at LD > 0, despite of being zero. For the additive effect of the direct
gene, this overestimation can be deduced from the increase of the additive genetic
variance observed at LD > 0 was larger than when LD was zero.

The model used in Chapter 2 included a term to correct for maternal effects, the
effect of including this term is not evaluated here, but the results show that mater-
nal effects lead to overestimation of variance attributed to the imprinting effect, when
there is covariance between maternal effects and imprinting effects. In this section,
this covariance was due to LD and disappeared when LD between the two genes was
zero. Hence, it follows that non-genetic maternal effects will not be confounded with
effects attributed to genomic imprinting. Since only few genes have been effectively
mapped in animal populations (e.g.Dekkers (2004)), the extend of LD between genes
affecting maternal effects and genes affecting fertility traits in commercial pig popula-
tions is unknown in pig populations until today. In this context, the term to correct for
maternal effects in the statistical model of Chapter 2 was included to avoid detection
of false positive imprinted QTL.
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Figure 6.4: Genetic variance (σ2
g , ), additive variance (σ2

α , ) and imprinting
variance (σ2

ι , ) in a situation where the trait value is affected by a gene with direct
action mode and a gene with maternal action mode. The additive effect of the direct
gene was 1 and its imprinting effect was 0. The additive effect of the maternal gene
am was 1 and its imprinting effect im was 0 or 1. Linkage disequilibrium (r2) between
the two genes varied between 0 and 1. The allele frequency of the 0 allele of both
genes (p(0)) varied between 0 and 1.
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6.3 Power to detect imprinted QTL
The genomic location of genes affecting a trait is generally unknown and can be esti-
mated with the use of genetic markers, as was done in the association study described
in Chapter 2 of this thesis. The principle of association studies is based on the increase
of linkage disequilibrium between a gene and a marker when the physical distance
between the gene and the marker decreases (Sved, 1971). Due to this inverse rela-
tionship, the probability to detect a gene with markers is proportional to the physical
proximity of the marker to the gene. Hence, the experimental design determines the
power to detect QTL in an association study.

In this section, I use the genetic and statistical models introduced in Section 6.1
to calculate the power to detect genomically imprinted QTL in an association study.
In this, there are two steps taken. The first step considers the power to detect a ge-
nomically imprinted QTL, regardless of its expression status. As shown in Figure 6.3,
genomic imprinting reduces the variance of genes, and, hence a lower power to detect
genomically imprinted genes can be expected. The second step considers the power
to detect the expression status of genes.

Detection of QTL is based on markers and the model therefore deals with two
loci: one being the marker and the the gene or QTL. Here, I assume that both loci are
biallelic. The loci are linked to each other with a certain LD. Two basic matrices are
required for the development of this model. The first is a matrix of haplotype frequen-
cies. The second matrix required is U, which contains the population frequencies of
the 16 combinations of haplotypes. Both matrices were described in Section 6.2.1.

6.3.1 Power to detect a gene
The first concern regards the presence of a gene or QTL, for which a one-way anova
test is used. The model for this test is:

gi j = µ +qi

g = Qq, (6.13)

where Q is the product of the incidence matrix of marker genotype classes X and
contrast matrix S (Equation 6.2).

In the previous section, the genotype classes in the regression model 6.2 had a
direct relation to the genotype values. Here, however, we observe genotype classes
for a marker but we want to infer about genotype classes of the gene. Since the model
will deal with situations of incomplete LD between marker and gene, the genotype
values for each marker genotype class are a mixture of the genotype values for each
genotype class of the gene. I use matrix U (see Equation 6.9) in the regression model
as a transition matrix between the genotype classes of the marker and the genotype
classes of the gene:

q = (Q′Q)−1Q′g = (S′PS)−1S′Ug. (6.14)
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The test is based on the F-ratio:

F =
MSg

MSe
=

∑
1/1
m=0/0 nm(ḡm− ḡ)2/3

∑
1/1
m=0/0 ∑

1/1
q=0/0 nmq(ḡm−gq)2/(n−4)

.

Under H0, when there is no association between the marker and the gene, test
statistic F has a central F3,n−3 distribution. Under H1, test statistic F has a non-central

F3,n−3,λ distribution with non-centrality parameter λ =
∑

1/1
m=0/0 nm(ḡm−ḡ)2

σ2
ε

.
The numerator of λ is:

1/1

∑
m=0/0

nm(ḡ−g)2 = n(ḡ− ḡ)′P(ḡ− ḡ)

ḡ− ḡ = P−1Ug−1Pg

where ḡ is the vector of average genotype value for each marker genotype class,
ḡ is the average genotype value of the gene, U is the matrix of marker/gene genotype
probabilities introduced above and 1 is a four by four matrix of ones.

The error variance σ2
ε is the sum of the environmental variance σ2

e and the residual
genetic variance σ2

r (Abdi, 2010):

σ
2
r = g′Pg−q′S′Ug. (6.15)

The power of the test is the probability that the non-central F-distribution under
H1 exceeds the critical value of the central F-distribution under the null hypothesis
with significance threshold α:

P(F3,n−4,λ > F3,n−4,[α]).

Figure 6.5 displays the power of a one way anova test for the presence of a QTL.
Linkage disequilibrium (r2) between the marker and the QTL varied between 0.05
and 0.95, the minor allele frequency of the marker and QTL were equal and varied
between 0.1 and 0.5 and imprinting (im) varied between 0 and 1.

The results in Figure 6.5 show that the number of individuals in the data, the
allele frequency of the gene and the LD between marker and gene determine a large
proportion of the power to detect genes with markers. Comparing a non-imprinted
to an imprinted gene shows that the power to detect the imprinted gene is lower than
that to detect the non-imprinted gene. This is due to the lower genetic variance of the
imprinted gene (see Figure 6.3).

In practical situations, we should account for errors in the data, including geno-
typing errors, the fact that heritability is lower than 1, and for multiple testing. Con-
sequently, the population size used in the association study described in Chapter 2
allowed for a reasonable power to detect imprinted QTL with the use of markers.
However, QTL with small effects and in low LD with the markers were probably not
detected, and their detection requires more data, especially if they are imprinted.
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Figure 6.5: Power to detect the presence of a QTL in a one way anova test with
the use of a marker in partial LD, with increasing number of individuals. Linkage
disequilibrium between the marker and the QTL (r2) was 0.05 in the left panels and
0.95 in the right panels; the marker and the QTL had equal allele frequencies (p) of
0.1, 0.25 and 0.5; imprinting of the QTL (im) was 0 ( ), 0.5 ( ), and 1 ( ); the
additive effect of the QTL was 1; the dominance effect of the QTL was 0.
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6.3.2 Power to detect the expression mode of QTL
The objective of an association study for genomically imprinted QTL is not merely to
detect QTL with significant effects but also to estimate the expression mode of these
QTL. In this section, I use the imprinting model to calculate the power to estimate
additive, dominance and imprinting regression coefficients.

The method uses a t-test to test the significance of the three regression coefficients.
Therefore, we need the expected test statistics of the regression coefficients α , δ and
ι . The test statistic for each effect is β−β0

σ(β ) , where β is α , δ , or ι ; β0 is the value
of this regression coefficient under H0; σ(β ) is the standard error of this regression
coefficient.

The variance matrix of the estimated regression coefficients is ∑ = σ2
ε (QtQ)−1

(Neter et al., 1990). The diagonal elements of matrix ∑ are the variances of the three
regression coefficients. Following Álvarez-Castro and Carlborg (2007):

QtQ = (XS)tXS = StXtXS = nStPS,

where n is the number of observations and σ2
ε is the error variance of the model

(Equation 6.15).
Under the null-hypothesis, the test statistic t follows a t-distribution with n-3 de-

grees of freedom. Critical values are obtained from this distribution, assuming a two-
sided test, because the regression coefficients can take positive and negative values.

Under the alternative hypothesis, the test statistic t follows a non-central t-distribution
with n-3 degrees of freedom and non-centrality parameters ncp equal to ncp = |β |

σ(b) ,
where β is the value of regression coefficient α , δ or ι , and σ(β ) is its standard
deviation.

Figure 6.6 shows the power to detect additive and imprinting effects in distinct
scenarios. The power was equal to the significance level of the test when the effect
was absent or when LD between the marker and the QTL was 0. The power to detect
both effects increased when LD increased. When imprinting was 1, the power of the
additive effect and that of the imprinting effect were equal, which is expected since
the variance of both effects is equal when allele frequency is 0.5 (see Figure 6.3). The
power of the additive effect decreased when imprinting increased and the power of the
imprinting effect increased with increased magnitude of imprinting effects.

The results in Figure 6.6 show that the power to detect additive and imprinting
effects increased with the number of individuals in the data, but LD between marker
and QTL is the most important factor determining the power. This demonstrates the
importance of using large numbers of markers in association studies, to reduce the
average distance between markers and QTL, despite of the increased probability of
false positive results due to multiple testing (Storey and Tibshirani, 2003). In the
association study described in Chapter 2 of this thesis, correcting for multiple testing
implied that effects were declared significant when their −log10P-value exceeded 3,
corresponding to a P-value of 0.001. The power to detect QTL in an association
study is therefore considerable lower that the power calculated in this section, due to
correction for multiple testing.
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Figure 6.6: Power to detect additive effects, power(α), and imprinting effects,
power(ι), with increasing number of individuals. The degree of imprinting (ip) was
0, 0.5 and 1. LD between the marker and the QTL (r2) was 0 ( ), 0.5 ( ), and
1 ( ). The significance level of the test was 0.05. The additive effect was 1, the
environmental variance was 1, the allele frequency was 0.5.
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Results furthermore indicate that power to detect additive and imprinting effect in
absence of these effects (when i = 0, or when R2 = 0) was equal to the significance
threshold of the test (α = 0.05). Combined with the results in Section 6.2, however,
we know that the presence of genes with maternal effects in LD with the QTL of
interest will increase the power of the imprinting effects.

Given these results, and the results of Section 6.3.1, it can be concluded that an ap-
proach as used by Hager et al. (2009), where QTL where first detected using a model
as described in Section 6.3.1 and QTL with significant effects where subsequently
tested for the mode of expression gives a higher power than the direct approach de-
scribed in this section and used in Chapter 2. Assume the following QTL: a = 1,
d = 0, ip = 1, p = 0.5, R2 = 0.5. The power of the ANOVA model for this QTL in a
population of 100 individuals is 0.87, while the power is 0.64 for α and for ι . Hence, a
simple model should be used to detect QTL and significant QTL should subsequently
be tested for their mode of expression to maximize the power of an association study.
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6.4 Genomic imprinting and genetic improvement of
populations

The purpose of animal breeding is genetic improvement through selection of parental
individuals for the next generation. This selection of parental individuals for the next
generation will change the allele frequencies , and, consequently, the population mean
for the trait of interest. In this section I will explore the effect of selection on genom-
ically imprinted genes. The objective is to study the influence of genomically im-
printed genes on response to selection and to evaluate the potential to use these genes
in commercial breeding programs

I will use the term absolute fitness (w) from population genetics theory (Hartl
and Clark, 1997) to denote the probability of an individual to reproduce. Since we
deal with a biallelic, genomically imprinted, gene with four genotype classes, four
different fitnesses are required (w0/0,w1/0,w0/1,w1/1). The fitness of a genotype class
is 1 minus the cumulative distribution function of that genotype class at the selection
threshold t: w./. = 1−FX (t) = 1−P(X ≤ t). The selection threshold t is the point
where the joint cumulative distribution function of the four genotype classes equals
the selection intensity, denoted as in to avoid confusion with the imprinting effects im
and ip:

find t where FX (t) = in.

Figure 6.7 shows the effect of selection for two generations in a situation where the
trait is determined by a single, imprinted biallelic gene. The environmental variance
was 0.5. The allele frequency was 0.5 in the first generation, selection intensity (de-
noted as in) was 0.25, and selection was based on the phenotypic value of individuals,
obtained as p = g+ e, where e is a vector of random values from a N(0,σ2

e ) distri-
bution. The black vertical lines in the plots indicate the selection threshold in each
generation; phenotypes above the threshold are selected as parents for the next gen-
eration whereas phenotypes below the threshold are not selected. The figure clearly
indicates that the proportions of individuals selected from each genotype class differed
according to their fitnesses: w0/0 < w0/1 < w1/0 < w1/1.

Due to selection, the frequency of the favorable 1 allele and the phenotypic mean
increased in generation 1 compared to generation 0. Note that although the fitness of
the reciprocal heterozygotes differed in each generation, their frequencies in the next
generation were identical due to random mating and to the fact that fitness was not
sex dependent but rather depended on the origin of alleles, due to genomic imprinting.
If selection would continue after generation 1, the selection threshold would also be
increased, as shown in the right panel of the Figure 6.7.

Selection is an iterative process and we need to calculate the fitness of the genotype
classes in each generation again. Response to phenotypic selection in three situations
of genomic imprinting is displayed in Figure 6.8, where response to selection is ex-
pressed as the mean genetic value of the population. Increasing levels of genomic
imprinting lead to lower response to selection due to a lower accuracy and additive
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Figure 6.7: Distribution of the phenotypes of the four genotype classes of a biallelic
imprinted gene; genotype 0/0 ( ), 0/1 ( ), 1/0 ( ), 1/1 ( ) and overall ( ).
The frequency of the 0 allele in generation 0 was 0.5, the additive effect was 1, the
dominance effect was 0, the paternal imprinting effect ip was 0.5, the environmental
variance was 0.5, and selection intensity was 0.25.
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Figure 6.8: Effect three levels of genomic imprinting (ip = 0, ; ip = 0.5, ;
ip = 1, ) on response to selection, expressed as mean genetic value of the popu-
lation (µ(G)). The frequency of favourable allele 1 was 0.01 in generation 0. The
additive effect of allele 1 was 1 and there was no dominance. Selection intensity was
maintained as 0.25.

genetic variation (Figure 6.3). Due to the lower accuracy in presence of genomic
imprinting, response to selection will continue for longer.
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6.5 Genomic imprinting and crossbreeding
Genomic imprinting is often studied in experimental crosses between (inbred) popu-
lations (de Koning et al., 2000; Hager et al., 2009), although the risk of false positive
imprinted QTL due to non-homogeneous parental lines should be taken into account
(Sandor and Georges, 2008). In commercial crossbreeding situations, the crossbred
offspring are generally used as end-products (Lo et al., 1993; Bijma and van Aren-
donk, 1998; Lutaaya et al., 2001), although in plants the hybrids can be used to create
new lines (Schrag et al., 2007).

The genetic model to study genomic imprinting presented in this chapter can be
easily extended to situations of crossbreeding by changing the matrix of genotype fre-
quencies P. In a situation of crossbreeding, the matrix of genotype frequencies P is a
function of the genotype frequencies in two divergent populations, p0 and p1. When
we assume that individuals from both populations are randomly mated, the diago-
nal elements of the matrix of hybrid genotype frequencies Phybrid are the Kronecker
product of the vectors of allele frequencies in both populations:

Phybrid =


(1− p0)(1− p1) 0 0 0

0 (1− p0)p1 0 0
0 0 p0(1− p1) 0
0 0 0 p0 p1

 ,
and matrix Phybrid will substitute matrix P in the expressions 6.4 and 6.6 to calcu-

late expected regression coefficients and variances in the hybrid offspring population.
The application of genomically imprinted genes in crossbreeding situations is il-

lustrated. Consider a situation where genomic imprinting affects the allele of paternal
origin, as illustrated in Figure 6.1. Parents of two divergent lines are mated to produce
crossbred offspring for production purposes. Selection is performed with an inten-
sity of 0.25 in the paternal line and is only based on their own phenotypes. As in the
previous section, response to selection is shown as the mean genetic value in the popu-
lation. Results of selection are displayed in Figure 6.9 for several degrees of genomic
imprinting.

Genetic improvement in the crossbred population hence critically depends on the
imprinting status of the selected trait in the selected population. As shown in the
example, when ip is 1 (implying that the allele of paternal origin has no effect on the
genetic value of the offspring), response to selection in the crossbred population will
be 0 when selection is performed in the paternal population. Obviously, imprinting
would not affect response to selection when genomic imprinting affected the allele of
maternal origin.

Genomically imprinted genes can be useful in crossbreeding programs to improve
traits in one of the two parental populations without affecting the crossbred offspring
(de Koning et al., 2000). Specifically, the trait back-fat thickness studied by de Koning
et al. (2000) is desirable in dam populations but undesirable in crossbred offspring,
where lean meat production is preferred. Changing the frequency of a maternally
imprinted QTL for this trait would affect the performance of dams, from the dam
line, but would not affect the performance of crossbred offspring. For their effective
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Figure 6.9: Effect of three levels of genomic imprinting (ip = 0, ; ip = 0.5, ;
ip = 1, ) on response to selection in the crossbred population to selection in the
crossbred population. The frequency of the favourable allele 1 in the paternal popu-
lation was 0.01 in generation 0 and 0.5 in the maternal population, the additive allele
effect of the allele was 1. Selection was only performed in the paternal population and
selection intensity was 0.25. The environmental variance was maintained at 0.5.

utilization, knowledge of genomically imprinted genes and their imprinting status is
required in commercial breeding populations.
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6.6 Genomic imprinting and estimating genetic values
with markers

Two chapters of this thesis focused on the use of genetic markers to estimate breeding
values (Chapters 3 and 4). In this section, I will consider possibilities to use these
techniques to detect and utilize genomically imprinted QTL in commercial popula-
tions.

Since genomic imprinting is manifest through a contrast between the reciprocal
heterozygote genotype classes, knowledge of allele origin is always required to detect
genomically imprinted QTL. Methods for estimating the origin of alleles in popula-
tions are available, as described in Chapter 5. Once the allelic origins are known, a
model should be fitted to the data that accounts for the origin of alleles. One possibil-
ity would be by extending the model of Meuwissen et al. (2001) to fit a maternal and
a paternal allele of each marker:

MEGV = Xmam +Xpap, (6.16)

where MEGV is the vector of genetic values estimated with markers, Xm and
Xp are the incidence matrices for the alleles of maternal and paternal origin, and
am, ap are the vectors of effects for the alleles of maternal and paternal origin. A
technique similar to the techniques used by Meuwissen et al. (2001) and following
papers can subsequently be used to fit the model to the data. Note that I use the term
MEGV and not breeding values estimated with markers, MEBV, since the relation
between genetic value of genomically imprinted genes and their breeding value is less
straightforward than under Mendelian expression only.

Other models could be imagined, including haplotype models (Schaid, 2004). It is
very straightforward to move from a model fitting alleles by their origin to model that
fit haplotypes. An advantage of haplotype models is that they use blocks of alleles
originating from a single parents, which are the units of inheritance since haplotypes
are inherited from parents to offspring. It is expected that using blocks of several
markers will increase the accuracy of MEGV since LD between haplotypes and genes
within these haplotypes will be higher than LD between individual markers and genes.
Calus et al. (2008) describe a simulation study where haplotypes where defined using
distinct criteria, and found that these haplotype models were beneficial over mod-
els using single markers at low marker densities but loose their advantages at higher
marker densities. These simulations, however, where performed without accounting
for imprinting.

Using imprinting information in breeding programs is less straightforward than fit-
ting models to estimate allele effects. This is because the genetic value for imprinted
genes in an individual is not only due to the alleles it possesses but also to the origin
of these alleles. Consequently, if breeders want to estimate the value of an individual
for the next generation, they should fit a model as described above to the data and
consecutively, estimate the value of an individual as the sum of its allele effect con-
ditional on its sex. For females, the value for genomically imprinted genes would be
Xmam +Xpam and for males Xmap +Xpap, where the incidence matrix Xm and Xp
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are identical to those in Equation 6.16. This approach would give valuable results in
a single generations, as for example in crossbreeding programs. To obtain long term
genetic progress, however, this approach does not offer advantages over approaches
which do not account for the origin of alleles.

6.7 Concluding
The initial objective objective of this thesis was to find and use genomically imprinted
genes in breeding programs, but due to the revolution due to the article of Meuwissen
et al. (2001), estimation of breeding values with the use of large numbers of markers
was also extensively considered in the thesis. In this chapter, I used a genetic and
statistical model to evaluate the results obtained in Chapter 2 of this thesis.

Results showed that the probability to find genomically imprinted genes in an
association study is lower than the probability to find non-imprinted genes due to the
fact that genomic imprinting reduced the genetic variance of these genes. Evaluation
of the power of the method used in Chapter 2 of this thesis and comparing this to the
power of other methods showed that the power of the direct method used in Chapter 2
was lower than the power of the other method.

Extension of the genetic and statistical model to include maternal effects con-
firmed that the effects of genes with maternal effects are confounded with the effects
of genomically imprinted genes when both genes are in LD. Since the existence and
mode of action of many genes affecting complex traits in livestock is still unknown,
researchers should be cautious about these confounding factors in association studies
for genomically imprinted QTL, and we recommend to correct for maternal effects in
the statistical models, as was done in the association study described in Chapter 2.

For their effective implementation in animal breeding programs, genomically im-
printed genes should be identified in commercial populations. Adapted statistical
methods which are now used for estimating breeding values with marker data might
be useful for their detection, but the computationally most difficult task is to estimate
the parental origin of marker alleles. After their identification, use of genomically
imprinted genes is especially promising in crossbreeding situations, since they would
allow to change traits within parental lines without affecting crossbred offspring per-
formance.

Results in this chapter showed that genomic imprinting reduces the additive ge-
netic variance of traits. Their effect on the genetic variance of a trait involving a large
number of genes, as is usual for most of the traits of interest in livestock populations,
was not evaluated in this chapter. Adaption of models utilizing markers for estimating
breeding values to allow for genomically imprinted genes might improve the accuracy
of their predictions and allow to estimate the relative importance of genomic imprint-
ing on the total genetic variance in a livestock population.
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Summary

The phenotype of animals (and other species) is determined by a combination of ge-
netic and environmental factors. The genetic factor is due to the contributions of
genes, but only a fraction of this genetic component is heritable. The heritable ge-
netic component, usually called breeding value, is used by animal breeders to obtain
genetic progress through selection of the best ranking animals as parents for the next
generation. The non heritable genetic component can represent a substantial fraction
of the total genetic variation and includes variance due to dominance effects, epistatic
effects and genomic imprinting. Genomic imprinting is a genetic phenomenon where
the degree of expression of alleles into RNA is dependent upon their parental origin.
There is growing evidence for the implication of genomic imprinting in traits related
to early live development of mammals and also in some production related traits in
livestock species. In pig breeding, genomically imprinted genes could be effectively
utilized to improve the efficiency of the crossbreeding scheme.

Genomic imprinting occurs on the level of individual genes. Consequently, knowl-
edge of the imprinting status of individual genes is required for their subsequent uti-
lization in breeding programs. In the crossbreeding structure of the pig industry, ge-
nomically imprinted genes could be utilized to improve traits in a parental population
without affecting the crossbred offspring. This might be beneficial for genes whose
effects are desirable for the parental population but undesirable for the crossbred off-
spring population, as effects on reproductive performance. Detection of these genes in
commercial pig populations is required, and detection of these genes requires methods
similar to the methods used to estimate breeding values with genotype data.

Chapter 2 describes an association study for genomically imprinted genes related
to female reproduction traits (litter size and litter weight). The data were obtained
from 1739 sows in two commercial pig populations. The sows and their available
ancestors were genotyped for 309 single nucleotide polymorphisms (SNP). The SNP
were located in 15 regions located on chromosomes 5, 6, 7, 8, 14, and 18 which
were selected based on criteria with the aim to optimize the probability to contain
genomically imprinted genes in pigs. Statistical association between SNP and traits
was estimated with an animal model including effects for the SNP and the results were
corrected for multiple testing. Several SNP showed significant SNP effects and one
of these SNP had a significant imprinting effect on litter size. The imprinting effect of
this SNP explained approximately 1.6% of the phenotypic variance for the trait litter
size, which corresponded to approximately 15.5% of the genetic variance for this trait.
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The SNP with significant imprinting effect was located close to the DIO3 gene, which
indicates a possible relation between this gene and female fertility traits in pigs.

Animal breeders aim to improve the genetic quality of specific traits, mainly pro-
duction related, by selecting parents with the highest breeding value. An important
difficulty in the breeding enterprise is that the breeding values can not directly be
observed on individuals, and have to be estimated with statistical methods and large
amounts of data. Since the accuracy of this estimation process is crucial for the po-
tential genetic progress, important efforts have been made to estimate the heritable
genetic merit with high accuracy. The recent progress of the technology to genotype
individuals for large numbers of genetic markers opened new possibilities to estimate
the genetic quality of animals with these marker data. Since the techniques were very
new, research was required to evaluate the technique in distinct circumstances with
the use of simulated data.

Chapter 3 describes a simulation study to investigate the effect of the genetic ar-
chitecture of traits on the accuracy of breeding values estimated with marker data. The
genetic architecture was simulated by varying the number of genes affecting the trait
and by varying the distribution of the genetic variance over the genes. The breeding
values were estimated with three distinct methods, the accuracy of breeding values
estimated with two of the three methods were affected by the genetic architecture of
the traits while the accuracies of the third method remained relatively constant. The
results of this study showed important differences between the three methods.

Chapter 4 describes a simulation study which continued on the results obtained
in Chapter 3. This simulation study evaluated the response and inbreeding after ten
generations of selection based on breeding values estimated with three methods using
marker information: a Bayesian method (BM), partial least square regression (PLSR)
and a method that used relationships based on marker data (GBLUP). As in Chap-
ter 3, the simulated data differed in the number of genes and distribution of gene vari-
ance. Differences in long-term selection response were small between methods using
marker data. For a genetic architecture with a small number of genes, the Bayesian
method achieved a response that was 0.05 to 0.10 genetic standard deviations higher
than other methods in generation 10. For genetic architectures with more markers,
PLSR and GBLUP performed better after ten generations of selection. Inbreeding
after ten generations of selection was lower when selection was based on breeding
values estimated with GBLUP than with the other two methods.

Chapter 5 describes a new method to estimate allele origin in crossed populations
when pedigree information is unavailable. The method uses the Dirichlet process
to model the haplotypes in the two parental populations and was based on the fact
that both haplotypes in purebred individuals originate from the same population while
the haplotypes of crossed individuals originate from two populations. The use of
the Dirichlet process enabled to model the unknown number of haplotypes in each
population. The method was tested using simulated and real data. The results showed
that in situations of crossbreeding the method performed better than a method that did
not account for crossbreeding. The method can be used to estimate the parental origin
of alleles in crossbred populations which are required to study genomic imprinting
and to estimate breeding values in these data.
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In the general discussion (Chapter 6), I developed a deterministic model to study
genomic imprinting. The results showed that genomic imprinting reduces the variance
of a gene compared to when it is not imprinted. This lower variance does also lead to
a lower power to detect genomically imprinted genes. It was also shown that maternal
effects are confounded with the effects due to genomic imprinting when the genes
responsible for both effects are linked, this was important to evaluate the results of
Chapter 2, where the results were corrected for maternal effects. The model was
finally used to study the effects of genomic imprinting on selection and results showed
a lower response to selection when the trait was affected by genomic imprinting.
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Samenvatting (in Dutch)

De kenmerken van dieren (en van de andere levende wezens) worden bepaald door
combinatie van genetische factoren en omgevingsfactoren. De genetische factoren
worden bepaald door de bijdragen van genen, en een deel van deze genetische fac-
toren zijn erfelijk. De erfelijke genetische factor wordt gewoonlijk de fokwaarde van
een dier genoemd en wordt door fokkers gebruik om genetische vooruitgang mee te
bereiken door selectie van de dieren met de beste fokwaardes als ouders voor de vol-
gende generatie. De niet-erfelijke genetische factoren kunnen een aanzienlijk deel
van de totale genetische variatie vertegenwoordigen en variatie door dominantie ef-
fecten, epistatische effecten en genomic imprinting effecten dragen aan deze variatie
bij. Genomic imprinting is een genetisch fenomeen waar de mate van expressie van
allelen naar RNA wordt bepaald door de oorsprong van deze allelen (het maakt uit
of een allel van de moeder of van de vader komt). Er is toenemend bewijs voor het
belang van het fenomeen genomic imprinting op kenmerken die zijn betrokken bij
de vroege ontwikkeling van zoogdieren en ook op sommige productiekenmerken van
landbouwhuisdieren. In de varkensfokkerij zouden ingeprente genen kunnen worden
gebruikt in kruisingsschemas.

Genomic imprinting treedt op individuele genen op, daarom is het belangrijk om
de imprinting status van individuele genen te weten om genomic imprinting in fokpro-
grammas te kunnen gebruiken. In kruisingsschemas die in varkensfokkerij worden
gebruikt kan genomic imprinting worden gebruikt om kenmerken in een ouderlijn te
verbeteren zonder dat dit invloed heeft op de prestaties van de gekruiste nakomelin-
gen die voor productiedoeleinden worden gebruikt. Dit kan nuttig zijn bij pleiotrope
genen met een positief effect op bijvoorbeeld reproductiekenmerken en een negatief
effect op vleesproductie. Deze genen moeten in de commerciële populaties worden
gezocht en toegepast, en hiervoor zijn methodes nodig die gebruik maken van grote
hoeveelheden merkergegevens.

Hoofdstuk 2 beschrijft een associatiestudie naar ingeprente genen die betrokken
zijn bij reproductiekenmerken in in zeugen (worpgrootte en worpgewicht). De gegevens
zijn van 1739 zeugen uit twee commerciële varkenspopulaties zijn hiervoor gebruikt.
De zeugen en hun beschikbare voorouders zijn gegenotypeerd voor 309 single nu-
cleotyde polymorphims (SNP). De SNP lagen op chromosomen 5, 6, 7, 8, 14, en 18 en
waren geselecteerd om de kans op ingeprente genen te optimaliseren. Het statistische
verband tussen de SNP en de kenmerken is geschat met een diermodel dat effecten
voor individuele SNP bevatte en de resultaten zijn gecorrigeerd voor vals positieve re-
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sultaten door het grote aantal testen. Verschillende SNP hadden significante effecten
en een van deze SNP had een significant imprinting effect op het kenmerk worpg-
rootte. Dit imprinting effect verklaarde ongeveer 1.6 % van de fenotypische variatie
van dit kenmerk en dit kwam overeen met ongeveer 15.5 % van de additief genetis-
che variatie van dit kenmerk. De SNP met dit significante imprinting effect lag dicht
bij het DIO3 gen en dit duidt op een mogelijk verband tussen dit gen en het vrucht-
baarheidskenmerken in het varken.

Fokkers proberen de genetische eigenschappen voor specifieke kenmerken te ver-
beteren door selectie van ouders met de hoogste fokwaarde. Een belangrijk punt in
dit proces is dat fokwaardes niet direct aan het dier kunnen worden gemeten maar
dat ze moeten worden geschat met statische methodes en aan grote aantallen dieren.
Omdat de nauwkeurigheid van de fokwaardes van cruciaal belang is voor de mogeli-
jke genetische vooruitgang wordt veel aandacht besteed aan methodes om fokwaardes
met hoge nauwkeurigheid te schatten. De recente vooruitgang van de techniek om in-
dividuen voor een groot aantal SNP te genotyperen heeft de mogelijkheid geopend om
fokwaardes te schatten met gebruik van SNP gegevens. Omdat het een nieuwe tech-
niek betrof was het belangrijk om deze techniek van fokwaardeschatting te evalueren
in verschillende gesimuleerde omstandigheden.

Hoofdstuk 3 beschrijft een simulatiestudie die het effect van genetische archi-
tectuur van een kenmerk op de nauwkeurigheid van fokwaardes geschat met SNP
gegevens evalueert. Verschillende genetische architecturen zijn gesimuleerd door het
aantal genen en de genetische variantie per gen te variëren. De fokwaardes zijn in deze
studie geschat met drie verschillende statistische methodes en de resultaten wezen
uit dat de nauwkeurigheid van fokwaardes geschat met twee van de drie methodes
gevoelig was voor de genetische architectuur van kenmerken. Daarnaast waren er
belangrijke verschillen tussen de drie methodes.

Hoofdstuk 4 is een simulatiestudie in het vervolg op de simulaties in Hoofdstuk 3.
In dit hoofdstuk wordt de genetische vooruitgang en toename van inteelt geëvalueerd
na tien generaties van selectie gebaseerd op fokwaardes geschat met drie verschillende
methodes die gebruik maken van SNP gegevens: een Bayesiaans model (BM), partial
least square regressie (PLSR) en een methode die de genetische relaties tussen indi-
viduen schat met gebruik van SNP gegevens en vervolgens fokwaardes schat met een
BLUP model (GBLUP). De gesimuleerde scenario’s verschilden in het aantal genen
en de genetische variantie per gen. De genetische vooruitgang verschilde tussen de
verschillende methodes voor fokwaardeschatting; bij een laag aantal genen was de
genetische vooruitgang met BM 0.05 tot 0.10 genetische standaard deviaties hoger dan
met de andere methodes in generatie 10. Bij hogere aantallen genen gaven PLSR
en GBLUP betere resultaten na tien generaties selectie. Selectie gebaseerd op fok-
waardes geschat met GBLUP gaf lagere inteelt na tien generaties selectie dan met de
andere twee methodes.

Hoofdstuk 5 beschrijft een nieuwe methode om de oorsprong van allelen in gekruiste
populaties te schatten als stamboom gegevens onbekend zijn. De methode maakt ge-
bruik van het Dirichlet Process om de haplotypes in de twee ouderlijnen te modelleren
en is gebaseerd op het feit dat beide haplotypes in dieren in de ouderlijnen uit dezelfde
populatie komen terwijl in gekruiste dieren n haplotype uit de maternale lijn komt en
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het andere haplotype uit de paternale lijn. De methode is getest met werkelijke en
gesimuleerde gegevens en de resultaten wezen uit dat in de methode in kruisingssi-
tuaties de oorsprong van allelen beter inschatte dan in methodes die geen rekening
houden met dit feit. De methode kan worden gebruikt om de oorsprong van allelen in
kruisingsgegevens te schatten, dit is bijvoorbeeld van belang om genomic imprinting
te bestuderen.

In de algemene discussie (Chapter 6) heb ik een deterministisch model ontwikkeld
om genomic imprinting te bestuderen. Evaluatie van dit model wees uit dat de genetis-
che variantie van genen daalt door genomic imprinting. Verder heb ik het model
gebruikt om te bewijzen dat de effecten van genomic imprinting verward zijn met
genetische maternale effecten als de genen voor deze effecten met elkaar in LD zijn,
dit resultaat was belangrijk voor evaluatie van Hoofdstuk 2 waar gecorrigeerd is voor
deze maternale effecten. Uiteindelijk is het model gebruikt om de effecten van ge-
nomic imprinting op genetische vooruitgang door selectie te bestuderen en de resul-
taten wezen uit dat de genetische vooruitgang door selectie lager was als onder de
aanwezigheid van genomic imprinting.
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