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Lattice mean-field method for stationary polymer diffusion
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We present a method to study mean-field stationary diffudi®RSD) in polymer systems. When gradients
in chemical potentials vanish, our method reduces to the Scheutjens-Fleer self-consiste(8FRi€GH
method for inhomogeneous polymer systems in equilibrium. To illustrate the concept of our MFSD method, we
studied stationary diffusion between two different bulk mixtures, containing, for simplicity, noninteracting
homopolymers. Four alternatives for the diffusion equation are implemented. These alternatives are based on
two different theories for polymer diffusiotthe slow- and fast-mode theorjesnd on two different ways to
evaluate the driving forces for diffusion, one of which is in the spirit of the SF-SCF method. The diffusion
profiles are primarily determined by the diffusion theory and they are less sensitive to the evaluation of the
driving forces. The numerical stationary state results are in excellent agreement with analytical results, in spite
of a minor inconsistency at the system boundaries in the numerical method. Our extension of the equilibrium
SF method might be useful for the study of fluxes, steady state profiles and chain conformations in membranes
(e.g., during drug delivejy and for many other systems for which simulation techniques are too time con-
suming.
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[. INTRODUCTION tion layers[11] and, more relevant to our study, the interface
formation by polymer interdiffusiofil2]. Here we will not
Polymeric interfaceg1], brushes[2], vesicles[3], and consider the evolution towards a stationary state but focus on
individual polyelectrolyteg4] are examples of systems that a well-defined time-independent solution, that is, tbeac)
can be studied successfully by using the Scheutjens-Fleatationary state itself. Obviously, this restriction allows more
self-consistent-field SF-SCH method[5,6]. This is a nu- efficient computation algorithms than the dynamic methods
merical mean-field approach, yielding tkiehomogeneoys  that construct dynamical trajectories. Such methods need an
volume fractions and all thermodynamic properties for theadditional noise term in the diffusion equations to allow the
systemsat equilibrium However, thestationary statesof  system to escape from local minima of the free energy profile
such systems are of great interest in the context of, for eéf&lO]. The density functional theory has recently also been
ample, drug delivery over membranes, diffusion-controlledypplied to study just the stationary state, but only in the
reactions at catalyst surfaces or diffusion over teCh”'Ca&pplication to simple fluidg13]. As in the above-mentioned

membranes in separation processes. To study such stationg{ynamic mean-field theories, we do not consider hydrody-
polymer systems, the SF-SCF method needs to be extendﬁ mic interactions. At present, particle-based simulation

by dynamic equations and new boundary conditions. W‘?nethods, which are rather time consuming, are best suited to

implemented such an extension for a relatively simple sys- C .
tem, namely, the diffusion layer between two different homo—StUdy polymer dynamics in the presence of hydrodynamic

" - effects[14]. Our method cannot deal with these hydrody-
geneous mixtures, consisting of homopolymer blends or ho amic effects in full detail. However, the average effect of

mopolymer solutions. Such a system is of interest for am . :
polSmgr diffusion at long time sca)I/es. Our method to studychain entanglements may easily be modeled in the MFSD
the stationary polymer diffusion will be referred to as the Method by introducing effective mobility parameters.
mean-field stationary diffusiofMFSD) method. Equilibrium Polymer_ diffusion hz_is attracted attention due to its occur-
SCF methods have been extended to dynamic SCF metho&@Nce and importance in many processes, such as phase sepa-
before, but our focus is different. The objective of previousration and spinodal decomposition, bio-adhesion, stabiliza-
extensions was to follow the evolution of a system towarddion of polymer/polymer interfaces by copolymers, diffusion-
its equilibrium or any other stationary state. Specifically, itcontrolled reactions, etc. A large activity in theoretical work
was attempted by means of a dynamic version of the SF-SCH5-29 accompanies the experimental studj@§—37 in
method to follow polymer adsorption processes from nearthis field. The theoretical interest arises from the fundamen-
equilibrium towards equilibriuni7]. Two other method¢éan  tal problem of linking together thermodynamic and kinetic
off-lattice dynamic self-consistent-field meth®] and a dy- properties of polymer mixtures. The mutuabr inter-
namic density functional theof®,10]) were applied to study )diffusion coefficient, governing the relaxation of concentra-
the process of spinodal decomposition {no-)polymer tion gradients by the mechanism of particle exchange, is usu-
blends. The dynamic density functional theory was also usedlly written as a product of a thermodynamic facand a
to investigate the structure development of polymer adsorpkinetic factor K [15,16,20,23 Interdiffusion is a collective
process, in contrast to tracer or self-diffusion, which con-
cerns single-chain motions. The driving force for the latter is
*Electronic address: Sonja.Engels@wur.nl entropy and the mechanism may be described by the Rouse
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[33] or reptation [34,35 models. The tracer and self- <+—system—>»
diffusion coefficients are relatively easily obtained from ex-
periments. A major topic of research has been on the ques- q)/i ¢]I3I
tion whether the mutual diffusion coefficient can be written § P S
in terms of these tracer diffusion coefficients. .
Two (conflicting) attempts to find such a relation for bi- O < [
nary systems are the slow-mode thedip| and the fast- <> Rl 2
mode theory[16,17. The mutual diffusion coefficients of . . -
both theories have the same thermodynamic fagtdHow- o N
ever, the fast-mode theory predicts the kinetic fadtoto mixture I mixture II
depend linearly on the tracer diffusion coefficients, whereas
according to the slow-mode theory the inverse of the kinetic
factor depends linearly on the inverse of the tracer diffusion FiG. 1. Schematic representation of the system of study. Station-
coefficients. This discrepancy originates from different as-ary diffusion occurs between two infinitely large bulk mixtures |
sumptions concerning the compressibility of the system orand Il which are ideally stirred, so that the volume fractions in these
according to a statistical mechanical approgkdl, from dif-  mixtures are constant. The volume fraction profiles in the system
ferent assumptions concerning the friction coefficient be-are drawn as straight lines for simplicity.
tween the diffusing components. Some experiments are in
favor of the slow-mode theorf21,36, but most experiments of this choice is that the continuity equation can be solved
seem to be described best by the fast-mode theorgnalytically for some simple stationary systems. This allows
[27,30,31,37. However, it is stated in Ref24] that the ini-  the verification of the MFSD results. Using the MFSD
tial concentration relaxations as measured in the experimentgethod to solve the equation of continuity, the driving forces
may incorrectlyappearto be fast mode. Shearmwt al.  can be calculated exactly and the detailed conformations of
[28,29 suggest that the preference for the fast-mode theorghains may be studied. Moreover, MFSD calculations are
may arise from the fact that experiments are usually permuch cheaper than simulations: it takes only minutes to cal-
formed at temperatures far from the glass transition temperesulate all characteristics of the desired stationary state. The
ture. Their experiments follow slow-mode behavior at low equilibrium SF-SCF method, which is our starting point, has
temperatures and fast-mode behavior at high temperaturegroven its applicability to many situations in which station-
They find a transition region in which neither of these theo-ary diffusion may be of interest.
ries applies. A few theories for polymer diffusion have been This paper is organized as follows. In the theoretical sec-
derived which reproduce the slow- and fast-mode results ition (Sec. I) we first describe the diffusion system for which
some limiting cases. For example, a hybrid “fast-slow” we developed the MFSD method. We then outline the MFSD
theory was proposefll8]. According to this theory, there method itself, thereby showing that it is based upon the ideas
exists a critical diffusion distance beyond which the diffusionof the equilibrium SF-SCF method. Attention is paid to the
changes from fast-mode behavior to slow-mode behaviogvaluation of the driving forces for diffusioisegment
Jilge et al.[20] adopted an approach, which is similar to the chemical potential gradientand to the slow- and fast-mode
fast-mode theory, but they took into account cross coeffiflux expressions. These flux expressions were originally de-
cients and vacancy concentrations. The slow- and fast-modéed for binary mixtures, but they can easily be generalized
results were obtained by making some approximations, bu multicomponent systems, as we will demonstrate. We use
they concluded that, in general, no simple relation exists beeach flux equation in combination with two ways to calculate
tween the mutual diffusion and the tracer diffusions. Morethe driving forces for diffusion, so that we obtain four mod-
recently, Akcasu, Ngele, and KleinlANK) presented a sta- €ls for the polymer diffusion. Section Il presents the results
tistical mechanical theory that reduces to the slow- and fastef applying the MFSD method to these four diffusion mod-
mode models in the limits of, respectively, vanishing or largeels. We aim at showing the concept of the MFSD method.
vacancy concentration$§23,38. According to the ANK Therefore, we focus on the stationary diffusion profiles, al-
theory, a cooperative diffusion coefficient is involved in thethough much more information may be extracted from the
mutual diffusion. The conclusions of this theory and of MFSD calculations. In Sec. IV we discuss the performance
Shearmur’s observatiori29] are opposite to the predictions of the MFSD method by comparing its numerical results
of Brereton[21] who constructed a linear combination of the with analytical results. Moreover, we discuss the general
slow- and fast-mode theory. characteristics of the diffusion profiles in athermal binary
The above rseumeillustrates that the behavior of collec- and multicomponent systems. Section V summarizes our
tively diffusing polymers is still controversial. We do not aim conclusions.
at resolving this controversy. Instead, we show that it is pos-
sible to study stationary diffusion efficiently by our extension Il. THEORY
to the SF-SCF method. In principle, the flux equations that
are employed in our MFSD method can be chosen to con-
form any of the proposed theories in the literature. For our We developed the MFSD method for a setup, as shown in
flux equations, we have chosen the most widely used limitFig. 1. Two homogeneous polymer bulk mixtures, denoted |
ing cases: the slow- and fast-mode theories. The advantagad Il, are connected by a diffusion layer. Each of these two

0 z—» M

A. System
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mixtures has its own composition, expressed in terms of volwhole chain. The conformation of a chain is given by the
ume fractions ag, ¢y, P, - .., anddh , du, ¢, ..., Pposition of each segment. The SF-SCF method optimizes the
respective|y_ Heré\B,C, . . ., denote the various hom0p0|y_ partition functionQ for a lattice in which each lattice site is
mers or solvent molecules in the mixtures. It is assumed the@ccupied by a polymer segment, a monomer or a vacancy.
both mixtures are infinitely large and continuously stirred. AsConsider a 1D system described by lattice layers g

a result, these solutions or blends can be regarded as twol: - - - M). Then the optimization of the partition function
bulk mixtures with invariant compositions. The actual sys-Must be performed undév constraints:

tem of interest is the layer between the two bulk mixtures. At

each side of the system the volume fractions are known E da(z)=1 Vze[1M], («h)
(namely, ¢' and ¢'') and our MFSD method calculates the A

volume-fraction profiles in the diffusion layer for the station- _

ary state, resulting from diffusion of the molecules for whichWhere the sum oveA denotes summation over all compo-
u'# 1", where theu's are the chemical potentials. The sta- nents(or over all segments, which is identical in our system
tionary state is defined by constant material fluxes, ensuringf homodisperse homopolymer3hereforeM Lagrange pa-
that there is no accumulation of any component within thd @metersa(z) are introduced in the equilibrium SF-SCF
system:J(z,t) = constant inz and t. Note that the flux is method, WhICh are mterprg_ted as the space-filling potentials.
taken to be dependent on theoordinate only, whereis the 1 h€ requirements for equilibrium then become

direction along the diffusion layer. This means that we use a
one-dimensional(1D) mean-field method. The diffusion d
layer is divided inM lattice layers perpendicular s

At present, we model only homodisperse homopolymers i
and solvent moleculegregarded as monome@rsA system
containing copolymers would require a different approach 9
for the boundary conditions. In the results Sec. Il only ather- Ja(2) In Q+§ a(Z)[ ; ¢A_1] } =0 Vze[lM].
mal systems will be considerdile., all Flory-Huggins pa- (2b)
rametersy are). In the present theoretical section, we treat
the more general case of systems with interactions.

The calculation of the volume fractionas functions of
segment potentialds dictated by the stationarity condition.
The derivation of the desired equation follows the steps fro
equilibrium SF-SCF theory, but requires a different Lagrang
parameter, as shown in Sec. Il B. From the theory outlined i

that section, we find an expression for the exact segme ; . .

: : L : raction nd on th ntial h ntials are al
chemicl poentalec. 10, wich s nserted o the 1S60%0 ST 00 e PO P e ot e e
Smoluchowski equation that describes the diffusion of thefavrz)rable segment-segment conta;:ts The epqu'ilibrium SE-

olymers in an external potential fie(8ec. Il D). In our case ] . ) i ) )
poly P o ) SCF algorithm is an iterative procedure that leads to a fixed

the external potential comprises contributions from segmen=; . ) . ;
tal interactions and from the incompressibility constraint.POINt for which the potentials are consistent with the volume

The slow-mode and fast-mode theories are different in thérai:tlct)gs Itz]lgtSoney :Ee dc?rr:strallnts. fracti lculated
way they deal with the incompressibility constraint. They n the method, the volume lractions are calculate

thus yield different expressions for the segmental fluxes. Ir?'m'larly' Thus, the volume fractions in the stationary state

Sec. 11D these fluxes are derived in terms of chemical po_correspond to that conformation distribution of all molecules
tential gradients and concentration-independent diffusion cof-or which the free energy is minimal. We apply the SF-SCF

efficients. In Sec. Il H, we rewrite them in terms of concen-free energy functional, which is valid for equilibrium sys-

tration gradients and concentration-dependent diffusiofl€Ms: It Is common to use equilibrium funct|onals_, for off-
coefficients for analytical purposes. equilibria, since usually the true free energy functionals are

unknown[40]. We do not consider this as a serious approxi-
mation, since we are only interested in the steady state and
not in the evolution towards the steady state. We thus do not
The equilibrium SF-SCF metho[B9] provides an easy need to include a noise term as is usually done in the density
way to calculate volume fraction profiles for inhomogeneousfunctional theory. There is a small difference between the
(multicomponent systems at equilibrium. The polymers in calculation of¢ in SF-SCF and that in MFSD. This is due to
these systems are described as chains of segrfeongpa- the extended set of constraints for the stationary state. For
rable with Kuhn segmenksSince we are considering only the stationary state, we have the constraints
homodisperse homopolymers, the number of components is

InQ+§Z: a(Z)(ZA ¢A—1H=o vn?, (2a

The parametenjc denotes the number of moleculgsn a
specified conformatiorc. Obviously, Eq.(2b) ensures the
n§:onstraint of incompressibility to be fulfilled. Equatiof2a)
edictates the way in which the volume fractiogs must be
alculated from given segment potentials to obtain the con-
gprmation distribution with minimal free energy. The volume

B. The MFSD method

equal to the number of segment types and we can refer to a Ha(0)= ¢IA VA, (33
component just by referring to its constituent segment type

AB,C, . ... Thechain length of homopolymeX is given by

N,, i.e., the number of segments of typethat form the daAM+1)=¢p VA, (3b)
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S baz)=1 Vze[1M], (30) GA(Z)=exp{_l;A(z)], (8a)
A T

16u(2 GAZS|L=CA@)(G(zs-1IL), (D)
g0 vYAzelM (39 GAZSINA=GA(2(GAZS+IINY). (80

The first constraintfgiven by Eqs(3a) and(3b)] are treated  The quantityGa(z,s|1) is the weighting factor for the last
separately by the boundary conditiosee Sec. Il The  segment of a chain of lengt where segmergis in layerz,
next M constraint Eq. (3¢)] are obeyed by additional stop While segment 1 may be anywhere in the system. Similarly,
criteria for the iterations that must lead to the consistency3a(z.S|N,) is the weighting factor for the first segment of a
between the potentials and the volume fractiéese Sec. chain of lengthNy—s+1, where the first segmei) is in

Il F). The number of constraints left M* (number of seg- layerz while the last segmentN,) may be anywhere. The
ment types [Eq. (3d)]. We assume that there exists only onestarting conditions for Eqs(8b) and (8c) are Ga(z,1/1)
volume fraction profile, which obeys all constraints and has=Ga(z) and Ga(z,Na|Na)=Ga(2). In terms of these
the minimal free energy. If this profile is given bﬁtatz), weighting factors, the volume fraction of segmerdf com-

the constraints in Eq(3d) may be summarized by ponentA in layerz must be calculated according to E¢Sa)
and (5b) by
__ g stal
¢A(Z)_¢A tZ) VA,ZE[l,M]. (4) GA(Z,S|1)GA(Z,S|NA)
, | $a(5,2)=Ca : , ©)
The requirements for the stationary state become a(2)

where C, is a normalization constant. Referenet] con-
-0 Vn® siders different ways to normalize volume fractions in equi-
I librium SF-SCF, but the MFSD results are not influenced by
(59)  the choice ofC,, since the driving forces for diffusion are
gradients that are independent of the cons@unt Equation
(9) can also be derived intuitively: the volume fraction of
=0 segments in layer z is given by the normalized weighting
factor for the probability to finds in z, while both the first
and the last segment of the chain may be anywhere in the
lattice. The chain can be considered as consisting of two
We thus have the correct number of Lagrange parameters i’fggﬁ]’ e?]let;u,gzIlngl.g;or;ezﬁg;nsvrgzﬁtﬁ%nfag; %t:;? rﬂ:ré)smb e

we take #(z) to be dependent on the segment type. Thedecomposed into the end-segment weighting factors for these

volume fractions in the stationary state are calculated in thf)arts[as in the numerator in Eq9)]. The denominator of
same way as in equilibrium, but now by introducing the nequ_ (9) corrects for the double counting the effect of the

space filling potentialsap(z) in the segment potentials tential field felt b et that ts the two chai
Us(2). Following Ref.[41]. we have Bgrtesn ial field felt by segmerg that connects the two chain

J
an®

{In Q+ ;Z an(2){ PN 2)— pa(2)}

n;

J
m{ InQ+ AE’Z an(2){d(2) — pa(2)}

VA,ze[1M]. (5b)

Ua(z u'ef . .
ﬁ(-r) _ aA(Z)+% ol Ba(2)+ k_/_xr, © | C. -S?gment cr-1em|-cal potentléls
Since the partition function is known in the SF-SCF and

MFSD calculations, all desired thermodynamical quantities
where the reference potential’ can be chosen arbitrarily. may be calculated. We are interested in the diffusion of seg-
[In the case of copolymers all constraints should be writtemments due to imposed gradients in the chemical potentials.
in terms of ¢,;, the volume fraction of segmentswhich  The segment chemical potential is defined as the derivative
are part of moleculd. The Lagrange parametees (and  of the free energy with respect to the volume fraction of the
therefore also the segment potentiajswould be dependent segment under consideration. The resulting expressipr is
both on molecule type and on segment type. In SF-SCF, the cr

segment potentials are always independent of the types of ua-(2)  I(F—F"H/KkT A(InQ—In Q'
molecules[41]]. The angular brackets denote the contact- KT odalz) Ipa(2)
weighted average over three layers1, z, z+1:

_InNACp  ua(2)
(be(2))=\_1¢a(2—1) T hohp(2) T\, 1(z+1). . =N, kT T xas(¢s(2)

1
\’s account for the number of contacts between lattice, sites. 3 ; XAsdh (10
For a simple cubic latticag=4/6 and\ _;=\_,,=1/6. The
potentialsu,(z) determine the Boltzmann-weighting factors so that the gradient of the segment chemical potential is eas-
Ga(2), Ga(z,8]1), andGa(z,s|Np): ily calculated by
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uS(2) Ua(2) ten in terms of Onsager coefficients. Using this short nota-
\Y v -V T +V§ Xax Pe(2))=—Vau(z). tion, the fast-mode flux expression can readily be derived.
(11) 1. Slow-mode flux

By these expressions we take into account the inhomogene- The starting point is the Smoluchowski equat{@5]:
ity of the system. In the following, we will therefore refer to

these potentials as the “exact segment chemical potentials,” dpa 1

or the “SCF potentials.” Brocharfl15] and Kramef16], on - Y g—(kTV dat daVUL). (19
the contrary, approximate the segment chemical potentials by A

“gﬁgﬁl‘/c\hawm where N is the chain length and where pare /. s the monomer friction constant arid, is the
u""is obtained from the Flory-Huggins lattice thedA2].  otential field felt by segments of type Two contributions
This definition for the segment chemical potential is lessyy this potential can be distinguishedJ A(z) =E(2)
accurate when the compositions change significantly within, P(z). There is a contributiotE, arising from molecular
the region where the chain finds itself. Generalizing Bro-jyieractions with segments of other types:

chard’s and Kramer’s approach for binary systems to multi-

component homopolymer systems, we obtain for the seg-

ment chemical potential of segment type EA=kT; Xas{®s)- (16)
app
pi® Ings 1 ds 1 o
%z N A+N—— N_B_E E (pg— SaB) The other contributiorP is a pressure term due to the re-
A A B B < BC quirement of incompressibility, which causes the fluxes of
X xac(be— Sac). (12) different segment types to be coupled.

Comparing the Smoluchowski equation with Ed.4)
Here, Sag (dac) is the Kronecker delta, which is unity for yields for the flux of segmenta:
A=B (A=C) and 0 otherwise. The independent variables of
the segment chemical potentials are given by the volume s KT 1 P
fractions of all components except one that we denote as ‘JA__QV_AQSA EV¢A+V§ XAB<¢’B>+W . (1D
componentX. The volume fractionpy is of course equal to
1-Zpsxs- In order to write the flux in terms op gradi-  \here we have substituted E.6). The superscrips refers
ents instead of. gradients(for analytical purposgswe take g the slow-mode approach.
the total differential of the approximate segment chemical The derivative of¢g, is found by writing ¢(z,s)/Cy in

potential: EQ. (9) asGa(2){Ga(z,5— 1|1)){Ga(z,5+ 1|Np)):
u 1 (o v
VW_ KT 6% ( 07¢Bp) ¢C¢B’XV¢B CLLAZV(GA(Z)ESD (Ga(z,5—1]1)){Ga(z,5+ 1|NA)>)
) 1
:g (¢AAI\E;A_N_B+XAB_; dcxec| Ve ”ES: (Ga(z,5—=1[1)){Ga(Z,5+ 1|NA))VGA(2).

(13 (18

The gradients of the approximate and exact potentials arg the last line, we used the so-called local coupling approxi-
indistinguishable if only monomers are present or if the sysmation (LCA), in which the kinetic coupling between seg-

tem is homogeneous. ments is neglected: one segment of a chain is allowed to
move independently from the motions of its neighbor seg-
D. Flux equations ments. The LCA was also used by Fraaije in the density

functional theory[9]. It might be a serious approximation
ésee Ref[43] and references therginbut it allows efficient
computation and analytical comparisons. Pair correlation
functions or a completely different approach would be

One of the constraint sets for MFSD, namely, Egd),
can easily be translated in terms of material fluxes by th
equation of continuity

dPa(2) needed to avoid the LCM3]. Substitution of Eq(18) into
0=~ VIa(2), (14 the first term of Eq(17) yields
i - - - Véaz) 1
whereJ, is the flux of segments. Obviously, in the station- Pa(2) _ VGA(2)=V InGa(2). 19
ary state, the fluxes are independent of time and position. For da(z) Ga(2)

simplification, we do not explicitly write the dependence of

the quantities in the following. We first present the derivationBy inserting Eqg.(19) and the well-known Einstein relation
of the so-called slow-mode flux expression within the frame-for the diffusion coefficient D,=kT/{,) into Eq. (17) one
work of the MFSD method. These fluxes will then be rewrit- arrives at
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tanglement length, Rouse behavior may no longer be as-

sumed; the average mobility of the segments will decrease

due to the entanglements. According to Réb], this leads

to a correction factor Ng)a/Na so that Bp

: (200 =(Ng)a/(Nala), where (N,), is theeffectiveentanglement
length of A chains in the mixture. In purd, the entangle-

For the second version of E(RO), Eq. (8a) in the formu,  Mment length equaldley. If the chains are diluted by mono-

=—KkTInG, and Eq.(11) for u, were used. The last un- Meric solvents, the constraints to the segment motions are

known flux contributionV P is obtained by requiring less pronounced than in pu so that the effective en-

tanglement length may be approximated &k)a=Ngo[1

— D monomek2) 1, Where émonomeriS the total volume fraction

of all monomer components.

Alternative expressions for the Onsager coefficient might
which is the incompressibility constraint. From E¢&0) and  be obtained by including the effect of chain connectivity
(21) it is found that (nonlocal couplingg Such Onsager coefficients are propor-
tional to the pair-correlation functiof8].

. P
JA= —DadaV| INGa+ % Xae{®B) T

P

__ HFa T
= DadaV i T it

; JA(2)=0 Vze[1M], (21)

VP 1 Via
i EA: Dada - (22) 3. Fast-mode flux
; Dada

The difference between the slow-mode model and the
fast-mode model is the incorporation of vacancies. In the

Substituting this into Eq(20) results after some rearrange- fast-mode model it is assumed that there exists a drift flux by
ment in the final expression for the slow-mode flux of seg-the presence of vacancies

mentsA: .
Ja=—AAVuat dpadyac. (27
WL/ G o[ #a2)~ e(2)
Ia(2)=- - Deés(2) KT : To obey the condition of incompressibilifyEq. (21)], the
; Dcéc(2) flux of the vacancies is taken dg,.==gAgVug, SO that
(23)
=2 (¢eAaVia— daheVe). (28)

2. Onsager coefficients

The flux is conveniently written in terms of Onsager co- The superscripf indicates that it concerns the flux in the
efficients Ao(2), by which the single-chain dynamics enter fast-mode model. In Appendix A Onsager’s reciprocal rela-
the expressions for the collective dynamics. The Onsageions are verified.
coefficients as defined by Brochaf5] and Kramer[16]

relate the unconstrained fluxes to their driving forces: E. Four models

Ja=—AaViua. (29 The combination of the multicomponent slow-mode flux

[Eq. (26)] with the approximate segment chemical potentials

The superscript indicates that the incompressibility con- [Eq. (13)] is a generalization of the binary model developed
straint is not yet taken into account. The Onsager coefficientgy Brochard, Jouffroy and Levinsdr5]. We refer to this

are generally written in terms of segment mobilit®g: model as the BJL model. The combination of E26) with
A= 5 exact segment chemical potentidsq. (11)] is called the
A=Bada. (25) slow-mode SCF model or the SCF-BJL model. Combining

Eq. (28) with the approximate segment chemical potentials is
a generalization of the model developed by Kramer, Green
and Palmsttom [16]. We refer to this model as the KGP
model. The combination of Eq28) with exact segment
chemical potentials is called the fast-mode SCF model or the
SCF-KGP model.

Combining this with Eq(24) for the unconstrained flux and
comparing the result with Eq20) where the constraint is
given by the pressure term, it is found thBh=D /KT
=1/, . Using this relation for the mobility coefficient, the
slow mode flu{ Eqg. (23)] may be written in terms ol’s as

Aa
JZ: - EB: AgV(pua— ). (26) F. Procedure and Discretization

> Ac
C

The stationary diffusion profiles are obtained by the fol-
lowing procedure. Segment weighting factors are calculated
In Appendix A we show that this flux expression obeys On-for mixturesl andll in accordance with the desired volume
sager’s reciprocal relations. fractions in these bulk mixtures. Then the numerical itera-

The relationB,= 1/ is only valid for the Rouse regime. tions are started with an initial guess for the potentigl&z).
Other expressions for the mobility coefficients may also beThese are used to calculate the segment weighting factors
used in Eq.(26). If a polymer chain is longer than the en- within the diffusion layer. In this calculation the boundary
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conditions(Sec. Il G play a role. The weighting factors en- an inconsistency at the boundaries and some “forbidden”
able the computation of the volume fractidiiy. (9)]. These  chain conformations, which will be discussed in a future
volume fractions are needed to check if the stop criteria fopublication. All results presented in this paper are obtained
the stationary state are met. If not, a new iteration loop withfrom the “abrupt transition conditions.” We have used other
newly chosen potentiala,(z) is started. This is repeated boundary conditions as wele.g., mirrors for the calculation
until the the volume fractions obey the constraints. One conef ¢ combined with bulk conditions for the calculation of the
straint is a constant material flux for every compondd.  driving forces, or taking Ga(z<05s)=G) and Ga(z
(3d)]. Therefore, the flux equation needs to be written in<0,s|1) still depend onG,(z>0s* <s,1)], but the influ-
discrete form for use in the lattice model. The continuity ence on the resulting diffusion profiles are negligible.
equation for a lattice with a one-dimensional gradient reads

H. Diffusion coefficients
IPa(2)
=Ja(z—1—-2)+Jp(z+1—2). (29

An advantage of using the approximate segment chemical
_ potentials is that the flux-expressions in termswofradients
As an example, we take the slow-mode flux expression, Eccan easily be rewritten in terms ¢f gradients. This allows

ot

(26), and rewrite it for convenience as the analytical description of the stationary diffusion profiles
for some simple systems. Since we only consider athermal
JZ(Z)ZE Qas(2) V(A uap(2), (30)  Systemsin th_e foIIowm_g and since we wish to avoid unnec-
B essary multiline equations, we assume thag=0 for all

] A,B in the present paragraph. Generally, the flux expression
where A g is shorthand foru,— ug. ThenJa(z—1—2) in terms of ¢ gradients reads
in the lattice can be calculated as

1 Ia=—2 D3V e (34
Az=122)=5 2 [Qap(2- 1)+ Qag(2)] 2
Appp(2) —Apap(z—1) by which the mutual diffusion coefficients are defined. The

—(=1) (3D superscripiX indicates that all volume fractions, except that
for the component containing segment tyYeare taken as

The stop criteria for the stationary diffusion become for allthe independent variables for the flux. For example, the flux

layers and for all components except dsay X): of segmentsA in a binary (A/B) system can be written in
two ways:
Q -1)+Q A —-A -1 ~ -

2 [0ne(z= 1)+ Qpa(2) 1A pa(2) ~ Apag(z—1)] Iam— B sz — B . -
TL0as(2)+ Qap(z+1)] Brochard[15] derived for the mutual diffusion coefficient
X[Auas(z+1)—Auas(2)]=0. (328 D for athermal binary systems:

The stop criterion for componeit is for all lattice layers: = <B)
Daa)  Aag [ 1 . 1 ) @9
$x(D)=1-3 (). (32b) KT AatAsiéaNa  deNs/
B

As discussed in Sec. IDE®) ! is proportional to (1A
G. Boundary conditions +1/Ag) " L. By substituting Eq(13) into the slow-mode flux
The boundaries of the diffusion layer deserve some extr&duation(26) and after some rearrangement, the mutual dif-
attention. Behind the boundarieg<0 andz=M+1) are fusion coefficients for multicomponent systems in the BJL
bulk mixtures with specified volume fractions, and¢!! . A~ Model are found to be
property of any bulk system is the condition th@ﬁ(z)

— constant (G.(2)). As a result,G8(z,s/1)=(G2)® and  Daa’  Aa [ Ax  Ag Aq
G2(z,5|Na)=(GR)Na~s™1 For homopolymers or mono- kT éxNy  ¢sNg 5 ¢ANA(5AX_ Ong) |-
mersG3 is known: ; Ac
b\ UNa (37)
S i (33
A ;ff It is easily shown that for binary systems Brochard’s mutual

diffusion coefficient is recovered.
We choose to have an abrupt transition between the bulk The mutual diffusion coefficients for the Kramer model
mixtures and the system; #=1 is the first layer in the are obtained by inserting Eq13) into the fast-mode flux
system, therz=0 represents a true bulk. The consequence igquation(28):
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0 20 40 60 80 100 0 20 40 60 80 100
z z

FIG. 2. Stationary diffusion profiles in a binary system calcu- FIG. 3. Stationary diffusion profiles in two binary systems cal-
lated with four different modelsNy=Ng=N, =100, B,=Bg culated with four different modeld$\N,=500, Ng=100 or 2, 1{,

=1. All four models give the same result, with linear profiles. =5, 1{g=1, Ng=100 so thaB,=Bg=1. Solid lines correspond
to calculations with SCF-potentialéSCF-BJL and SCF-KGR
i\(é() 1 1 dashed lines correspond to approximate potentBs and KGB.
T :(¢A2 Ac AA) N _N_) _ L . .
C B X these simple systems give rise to linear volume fraction pro-
files in the stationary state, independent of the model used.
Ae _ Ax | Aa he i i i files if th
— a — _ (Sax— Oap) The linear profiles turn into convex profiles if the compo-
#eNg  dxNx/  ¢daN h ither diff iff hown in Fi
BNB xNx aNA nents have either differeid or differentB, as shown in Figs.

(39) 3 and 4, respectively.
In Fig. 3 we have plotted the stationary diffusion profiles
so thatD ¥ is a linear combination oA’s. for two systems: one system hbk /Ng=5, and the other

Obviously, if ¢y is not an independent variable of the haS'TltA(/é\lsizgo- TZ)IS fl_gur_z SthtVF\I’S that the B»l'— anld *;?P
=X) Apd ) , e o results(dashed curvescoincide if the components only dif-
flux, B andg?)z() _ShOUId vamsh., ,WhICh Is satisfied _by Eas. fer in their chain lengths. The SCF-BJL and SCF-KGP mod-
(37) and(38). D is always positive foX#A. For binary g5 (solid curves also yield indistinguishable profiles for
systemsV gx=—V g, thus according to Eq35), we must  gch systems. However, the exact calculation of segment
find thatD{&=—DYY, which can also be verified by Egs. chemical potentials yields profiles which slightly differ from
(37) and (38). those calculated by approximated segment chemical poten-
tials, in particular, for increasing gradients and decreasing
IIl. RESULTS Na/Ng. The discrepancy at largé¢ is a result of the as-
. sumption of homogeneous mixtures in the Flory-Huggins ex-
We illustrate the concepts of the MFSD method by show-yression for the approximated chemical potential. It is seen
ing the stationary diffusion profiles for various athermal sys-that the larger the ratio between the chain lengths, the more
tems. Stationary diffusion profiles are the volume fractionsconyex the profiles. The volume fractions change rapidly
for each component as a function of the spatial paran®gter near the bulk mixture that contains a large amount of short

SUCh that the two bulk miXtureS haVe the desired CompOSitiOI@and therefore’ for given Segment mob”itieS, more mob”e
and such that there is no accumulation of material anywhergnpains.

between these bulk mixtures. We stress again that the station- |f the chain lengths are the same, while the segment mo-
ary solution is the only solution of the MFSD method. We doyjjities are different, the profiles no longer coincide for any
not obtain the stationary profiles by following the physical of the four models, as shown in Fig. 4. For these systems, it
trajectories towards the steady state, but directly by computs the diffusion mechanisrtslow- or fast-modgthat mainly
ing the volume fraction profiles that obey all conditions for getermines the stationary diffusion profiles; it is less impor-
the steady state. As outlined before, the method has beggnt whether the segment chemical potentials are calculated
applied for four different diffusion models. We treat binary exactly or not: KGP profiles compare very well with SCF-
and multicomponent systems separately. All binary systemgGp profiles|Fig. 4(a)], and BJL profiles are similar to SCF-
considered in this study have the boundary conditigs  BJL profiles[Fig. 4(b)]. Since we have combined the profiles
=0.99 and¢>'A'=O.01. First, the results are presented. Afterfor two different systems in Figs.(d) and 4b) (namely, for
that, an attempt to rationalize them is given. Bg/BA=5 andBg/B,=250), it can directly be seen that the
The most simple systems to study stationary diffusion ar&low-mode expression is more sensitive to the segment mo-
those for which all components have the same chain leNgth bilities than the fast-mode expression. The volume fractions
and the same mobilit3. Figure 2 presents the MFSD sta- change rapidly near the bulk mixture that contains a large
tionary diffusion profile for such a system. It is seen thatamount of components consisting of relatively mobile seg-
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%2) N/N =B /B
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0 20 40 60 80 100
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FIG. 4. Stationary diffusion profiles in two binary systems cal- FIG. 5. Stationary diffusion profiles in a binary system calcu-
culated with four different modeldN,=Ng=N,=100, Bp,=1, lated with four different modelaN,=10, Ng=Ng =500, B,=1,
and Bg=5 or 250. Solid curves correspond to SCF potentials,Bg=50, so thatN,/Ng=B,/Bg. Solid curves are calculated by
dashed ones correspond to approximate potentials.(8ais ob- the fast-mode models and dashed ones are calculated by the slow-
tained by the two fast-mode models, pén) by the slow-mode mode models. For parta) SCF-potentials are used, for pdt)
models. approximate potentials.

ments. This behavior is more pronounced when the ratio betals are replaced by approximate ones. The discrepancy does
tween segment mobilities increases. not only occur for the largesp gradients. The comparison
Comparing Figs. 3 with @), it appears that longer chains between the models for other choices of parameters generally
act like less mobile components. In particular, the stationaryields the same conclusions as derived from Fig. 5: usually
diffusion profiles calculated by the KGP model were foundthe slow-mode results are less affected by the way to calcu-
to be exactly the same for two binary systenag @nd (8) late the segment chemical potentials than the fast-mode re-
if (NA/Ng)@=(Bg/Bp)® while (Bg/Ba)(®=1=(N,/  sults.
Ng) ). In other words, a system containing two components The four variants of the MFSD method were also used to
with different chain lengths but equal segment mobilitiescalculate the stationary diffusion profiles for ternary systems:
may be simulated by a system containing two monon@rs two equally long polymers in a solvent. The differences be-
two polymers of the same lengtlwith different segment tween the models are too small to be observed in the systems
mobilities. This is only true for the KGP model. This may presented in Fig. 6. This figure shows three systems that
suggest that the lower mobility of longer chains might bediffer only slightly in the imposed volume fractions at the
compensated by a higher mobility of its constituting seg-left-hand boundary =0): ¢g(0)=0.1 in all cases and
ments. It would then be expected that the components woulgh,(0)=0.75 (top), 0.8 (middle), and 0.85(bottom). It is
act as mutually indistinguishable if the system parameterseen that these small differences result in very different pro-
were chosen such thad,/Ng=B,/Bg. Indistinguishable files. The solven{monomey has a rather flat and approxi-
components would result in linear profilesf. Fig. 2. Figure  mately linear profile in all cases. The largestgradients of
5 shows that this is true for the two slow-mode models, buthe polymers are found at the highest monomer concentra-
not for the fast-mode models. Note that the fast-mode resultson.
differ significantly when the exact segment chemical poten- Another striking example of a ternary system is presented
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o(2) N=N>N
08l A B (¢} |
: q)A B,=B, =B,
06 \ |
04} _
0.2 ¢B
2 ¢o .
0 0 20 40 80 80 100
a) 7
1
o(2) 0 ‘ ‘ ‘ ‘ ‘
osL % | 0 20 40 60 80 100
z
0.6 - 1 FIG. 7. Stationary diffusion profiles in a ternary system contain-
ing one monome(C) and two homopolymersA andB) with equal
04 ] chain lengths and segment mobilities, and eggialbut different
o ¢g at the boundaries. Note thaba(0)= da(M+1). Na=Npg
021 g ¢C T =Ng=100, Nc=1, B,=Bg=Bc=1. Solid curves are obtained
by the SCF potentials and dashed ones are obtained by approximate
b) 05 20 20 80 30 100 potentials. No difference is found between the fast- or slow-mode
z mechanism.
1
%2) system ifM~N, whereN is the length of the longest poly-
08 mer chains. Note that we find oscillating volume fraction
06 profiles if the chains are long compared to the system size
' (N=400, M=100) and when the driving forces are calcu-
04 lated exactly. Using the approximate segment chemical po-
' tentials does not give oscillating profiles.
0.2
IV. DISCUSSION
0 . . . . .
c) 0 20 a _, €0 80 100 From Egs.(26) and (28) it is easily concluded that the

slow-mode and fast-mode models are indistinguishable for
FIG. 6. Stationary diffusion profiles in a ternary system contain-A ,(z)/ pa(2) = Ag(2)/ pg(z) YA,B,z, which meansB,(z)

ing two homopolymers A and B) and one monomerQ). Np =Bg(z)=B(z) YA,B,z. This can only be true iB is inde-
=Ng=Ng=100, Nc=1, Bp=Bg=Bc=1. The only parameters
that were varied in systenta)—(c) are »(0) and¢(0). All mod- 06 ‘ ‘
els give essentially the same results. (2) ‘ N, =N_=N_ =400 ‘
05

in Fig. 7. Despite the fact that the imposed valuesdgrare

the same at both sides of the systpin(0)= pa(M+1)], 0.4
this component has large gradients within the system. The
profiles are the same for the fast- and slow-mode calcula-
tions, as was the case for binary systems in which all seg-
ments had the same mobilities. Small differences occur if the
segment chemical potentials are not calculated exactly. How-
ever, the longer the polymer chains, the larger the differences
(not shown.

As explained in Sec. Il G, our boundary conditions are
such that in the vicinity of the bulk mixtures some chain 00 02 oa 06 0B 1
conformations could not occur. The stationary diffusion pro- ' .z/(M+1). '
files do not suffer from these boundary conditions; the pro-
files scale accordingly with the system size as long as the FiG. 8. The same system as in Fig. 7 for longer chaiNg (
system is not too small in comparison with the chain lengths=N,=N,,=400) and for various system sizkk calculated by the
This is shown in Fig. 8, where we plotted the diffusion pro- SCF potentials. Volume fractions are now plotted vs the normalized
files versus the normalized distance parametéM +1).  zvariable. Increasing the system size abbe: N does not change
The diffusion profiles are not influenced by the size of thethe shape of the profiles significantly.

0.3

0.2

0.1
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TABLE |. Stationary binary systemsp derivatives of the diffusion coefficients anl gradients. The

expressions foD{E) were obtained from Eq¥36)—(38) after insertingA,=Bad and Ag=Bgeg [Eq.
(29)].

NA:NB:N NA*XNB NA:NB:N
BA: BB:B BA BB B BB:XBA
(Fig. 2 (Fig. 3 (Fig. 4
~ BKT BKT BgkT 1
BE) = = (putx —_—
AA N NA (¢B ¢A) N (¢A+X¢B)
BJL model[15] DB o BKT ) BgkT (x—1)
__AA —(x-1 —
N Na N (patxep)’
av
Vet 0 <0 for Ny>Ng <0 for B,<Bg
2N
>0 for No<Ng >0 for B,>Bg
~ BKT BKT KT
D,(ABK ~N N_A(¢B+X¢A) T(¢B+X¢A)
KGP mode[16] DB BKT BAkT
__A 0 —(x—1) (x—1)
8¢A NA
av
M 0 <0 for Na>Ng <0 for Bo<Bg
2N

>0 for Na<Npg

>0 for BA>Bg

pendent ofz. Figures 2, 3, 7, and 8 show that this exactcondition thatN,>Ng, the sign of the square root term is
agreement between the slow- and fast-mode models is intnambiguously determined. The volume fraction profile of
deed found. In the remainder of this discussion, we first disthe short-chain component simply follows frorpg=1
cuss some analytical descriptions and then focus on the ger-¢, .

eral characteristics of binary and multicomponent systems. In case of equal chain lengths bBi# Bg, we find for
the BJL modelD{E)=a/(cpp+Bg), with a=B,BgkT/N

andc=B,—Bg. Thus forBg>B,, the stationary volume
fraction profile is

A. Comparison with analytical results

Due to our choice of simple systems, we can compare the
MFSD results with analytical results. Analytical expressions
for ¢A(z) are obtained by solving E¢34) in combination
with the diffusion coefficients of either the BJL model or the
KGP model.

Suppose that all components have the same mokiliso
that the BJL and KGP models are identicahd the same
chain lengthN. The flux is then simply given byia(z) =
—(BKT/N)V ¢a(2z) VA,z. To satisfy the condition of con-
stant fluxes, the analytical expressions #oare linear func-
tions ofz. The MFSD result obeys this linear behavior for all
four models, as shown in Fig. 2.

For binary systemsp,(z) can be obtained by solving for
—[D®dpa=Jaz+k;. Expressions forD{E) for various
simple cases are given in Table |. Whén=Bgz and N,
#Ng, D&) is given byD&)=a—bg, with a=BkT/N, and
b=BkT(1/Nao—1/Ng). The result forNo>Ng is

ca ] Ba (40)

ka
da(2)= ?exp{ 2 4G

a

with k,=exp{—ck,/a}. The same system has for the KGP
model D&)=a—c¢, with a=B,kT/N and c=(B,
BB)kT/N so that

a 1
da(2)= . E\/a2+ 2¢(kg+Jaz). (41)

It is not possible to find analytically an explicit expression
$a(2) if both the chain lengths and the segment mobili-
ties are chosen arbitrarily. In Fig. 9 analytical expressions
(39—(41) are plotted together with the corresponding results
from the MFSD method. They match each other exactly.

In Appendix B, we show that for the three-component
system in Fig. 7 withBo=Bg=Bc, Ny=Ng, and Np
(39) >Ndc, the analytical expressions for the volume fractions

rea

oa(2)=—— —Ja +2b(k;+Ja2).

The integration constark; and the fluxJ, can be found

Z =
from the known values of,(0) andp,(M +1). Due to the A=

[d(Z) 1]+ksexp{ —d(2)},
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Given thatD(®) is positive, it is concluded that for binary

systemsaD &/ 9, and 9|V pall/ddh, must have opposite
signs. In Table | different classes of binary systems are dis-
tinguished by different combinations of parameters. For each
class and for both approximate models the sign of
9|V @alldd, is evaluated by first writing the general expres-
sion for D& and then calculating its derivative with respect
to ¢5. We first note that the KGP model yields the same
stationary diffusion profiles for the secofiéig. 3) and third
(Fig. 4) classes if Na/Ng)equais = (Bg/Ba)equain » @S can be
seen from the diffusion coefficients in the second and third
; , . . Y columns of Table I. This implies that the mobility of a chain
0 20 40 60 80 100 can effectively be changed by either its chain length or the
4 segment mobility. The general conclusion that can be drawn
FIG. 9. Comparison of results from the MFSD metHooark- from Table | is that the larger the fraction of relative mobile
ers with the corresponding analytical resulisurves in different ~ component, the steeper the volume fraction profiles for sta-
binary systems. In all casdd =100, Ng=100, andB,=1. The tionary diffusion: it is observed thal|V ¢ |/ d¢, is positive
circles are for the BJL and KGP model witli,/Ng=5 and B, if ¢a is the relative mobile component. The first column
=Bg. The squares are for the BJL model withy=Ng and  shows that if both components have the same mobilities, the
Bg/Ba=250. The crosses are for the KGP model witk=Ng and  gradients of the volume fractions are constant. The second
Bg/Ba=250. column implies an increasin§|¢| for increasing volume
fraction of the shorter, and therefore more mobile, ho-
alg mopolymer. These columns refer to classes of systems for
$8(2)= i3 [d(2)~ 1] - ksexp{ —d(2)}, (42 which the slow-mode and the fast-mode fluxes are the same,
c in accordance with previous statements. The third column in
Table | refers to systems for which the slow-mode and fast-
a mode models no longer coincide, but the general conclusion
bc(2)=[d(2)-1]+1, remains valid for both models.
Barrer[44] and Crank{45] also present stationary diffu-
sion profiles for concentration-dependent diffusion coeffi-
where a= BkT/NZA, b=BkT(1NA—1/Nc), d(2)  cients. Their general conclusion is that the concentration pro-
=llaysttz, s=a’+2bk,, t=—2bJc and Jc=-Ja fies are convex towards the axis if 9DE)/dca<0, and

—Jg. Ja, Jg and the integration constanks and ks are e = (B)
given by the compositions of the bulk mixtures. These equa(_:onvex away from the axis if JDya/dea>0. Our results

tions reproduce the profiles in Fig.(iicluding the minimum are in agreement with their conclusion, but we can state more

in with the same accuracy as shown for binarv s Stem§pecifically that th_e profiles are convex towards ¢hexis _if
in gilgl)- 9. Y Y SYSIEMS, 4125 42< 0 and vice versa, wherg™ refers to the relative

The exact agreement between the analytical profiles angrobile component. This general behavior can be understood
the MFSD results proves the proper performance of th&Y c_:o_n_S|der|n_g how these_sta_tlonary profiles de_velop_from
MFSD method. In addition, they show that the abrupt tranthe |n|t|allproflle att.=0, which is assumed to .be discontinu-
sition between the system and the bulk mixtures in the?US az=3zM [see Fig. 1(8)]. Suppose the major component
MFSD method does not disturb the diffusion profiles. How-2t the left side of the system consists of relative mobile
ever, if the system is small compared to the longest chain$€dments, whereas at the right side mainly low-mokile
small discrepancies may occur between the analytical resul@89ments are present. From Table | it follows that
and the MFSD results. dD/9¢™<0 so that the diffusion coefficient is smaller at
the left than at the right. Segmensstart diffusing to the
right by exchanging their positions with segmeBtsAt first
instance, the¢ gradients at both sides will be similar:

We now focus on general characteristics of the diffusionV ¢a(z=3M — €)~V ¢a(z=3M + €) [Fig. 1ab)]. However,
profiles for binary systems. It is convenient to analyze howthe gradient az=3M + € vanishes more rapidly than at
V ¢ should change withp according to the flux expressions =3M — e due to the larger diffusion coefficieffig. 10c)].
for the approximate models, since this behavioVaf can  This results in flatter profiles at low concentration of mobile
readily be checked by plots of diffusion profiles. Since component.

B. General characteristics of binary systems

Vpa=—Ja/DB) andJ,=constant, we have Comparing the approximate models with the exact mod-
els, we found two situations in which discrepancies may oc-

IV da Ve, aDE cur. First, discrepancies occurred if the system was small

=~ =35 . (43 compared to the chain lengths. The oscillations in Fig. 8

IPa Dax IPa were only found if the driving forces are calculated by the
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t=0 t=1 =2

FIG. 10. Schematic picture of the developing diffusion profiles for fast component diffusing to the right and slow component to the left.

exact segment chemical potentials and if the chains are longients diffuse against a concentration gradient. This phenom-
compared to the system size. The smaller the system or thenon is called “uphill diffusion.” It is found only in multi-
longer the chains, the larger the gradients in the region imomponent systems and must be due to either diffusive
which the chains find themselves. In other words, the aSgoupling of Componentéargelﬁgxgl for A#B) or negative

sumption of local homogeneity, as used for the approximatg . diffusi Hicients” BX<0). |
segment chemical potentials, is incorrect for such small sys- M diffusion  coefficients” ©xx<0). In our system,

tems with long chains. Second, discrepancies between apis’ =DAs’ = pal INc+ da/($aNa) 1~ pa>0 and D3’
proximate and exadast-modecalculations occurred if the =5L(§)=¢A[1/NC—1/NB]~¢A [see Eqs.(37) and (39)].
components had both dissimilar chain lengths and dissimil
segment mobilitiege.g., Fig. 5. In general, agreement was

found between BJL and SCF-BJL for such systems. In oth

words. the fast-mode model seems to be more sensitive .L%erimental evidence for uphill diffusion has been reported
the calculation of the driving force than the slow-mode frequently for metallic systems and in the context of geologi-

model. Probably, the error i u, is compensated by the €@l Studied46-48 in which all diffusing components have
error inV ug in calculations applying the slow-mode fluxes, nearly equal sizes. Negative main d|ﬁu5|qn coeff|C|ent§ have
since the driving forces appear ¥§u,— ug) in these flux ~ been measured in ternary surfactant mixtu4s]. Uphill
expressiongcf. Eq. (26)]. On the contrary, in the KGp diffusion has been found in theoretical studies as well
model, the errors itV u are weighted by segment mobilities [50,13, for example, as a result of interparticle interactions.
due to the term8B,Vus—BgVug in the flux expressions We are not aware of any reports on uphill diffusion only due
[Eq. (28)]. to chain-length effects(Remind that we consider athermal
systems. Note thatA segments havep,(0)= pp(M+1),
but u5""(0)< " (M+1), as a result of the different
] ] monomer contents at both sides.

Figure 6 can now be understood from Table I. Since the The profile of the monomer can be understood by consid-
homopolymer components in Fig(l§ are indistinguishable, gring the system as a binary mixture, since the polymers are
the chemical potential of the monomer component is coningjstinguishable. The monomer concentration must there-

stant. Effectively, this system refers to binary diffusion of fore change rapidly at the left side, where its concentration is
two homopolymers with equal chain lengths and mobilities,aximal.

for which the profiles must be linear. At first instance, Figs.
6_(a) and _E(c) may glso be !nterpreted as the stationary diffu- V. CONCLUSIONS
sion profiles for binary mixtures, one component being the
monomer, the other the combination of both polymers. In- The equilibrium Scheutjens-Fleer method has been ex-
deed, as predicted by Table I, the profiles change rapidly aended to create a new framework for the modeling of sta-
high monomer concentrations. This is true not only for thetionary diffusion in polymer systems. The numerical algo-
monomer and the total of the two polymers, but also for therithm converges fast and smoothly to stationary volume
individual polymer components. This can be understoodraction profiles that obey the imposed volume fractions at
from the observation that the polymers are identical and theyhe system boundaries. It is important to note that, although
have a similar absolute difference betwegnand¢''. Asa  we implemented the transition between the bulk mixtures
result, they must behave similarly and with opposite gradi-and the gradients in a rather rough way, the diffusion profiles
ents. did not suffer from it. Two theories, presented in the litera-
A first remark for the three-component system in Fig. 7ture for binary homopolymer diffusion and referred to as
concerns the behavior of polymér Despite the equal vol- “slow mode” and “fast mode,” respectively, were combined
ume fractions in both bulk mixtures, its volume fraction with two methods to calculate the segment chemical poten-
within the system is not constant. Due to the requirement ofials. This yielded four models for the fluxes. The parameters
stationary diffusion, the flux of segmemsneeds to be con- for the flux equations are the Flory-Huggins interaction pa-
stant throughout the system. For this particular systepis  rametersy, the chain lengths of the components,, the
found to be negativeA segments diffuse from the right to entanglement length of the components, and the mobili-
the left. This implies that for small values afthe A seg- ties of the constituent segmentg 4/ In general, the diffu-

Mhe relatively large cross diffusion coefficieBt!S) drives
epwe flux of A segments towards the region of loys. Ex-

C. General characteristics of multicomponent systems

011802-13
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sion profiles were more sensitive to the applied thestyw < AaAg
mode or fast modethan to the calculation of segment Lag= ' (A2b)
chemical potentials. However, results from the two slow- > Ac

C

mode models are more similar than those from the two fast-

mode models. By analytical analysis of diffusion coeffi-

cients, we were able to verify the usually asymmetricso that Onsager’s reciprocal relations are obeyed.
diffusion profiles. We have thereby verified the MFSD  Before we rewrite the fast-mode flux of E@8) we may
method since the analytical results matched exactly the rdirst add the term\ ,Zg¢gV ug . This term equals 0 accord-
sults from the MFSD method. It has been found for stationing to Gibbs-Duhem relatio g¢gdug=0. Rewriting the
ary diffusion profiles that the volume fractions change moreextended Eq(28) in the form of Eq.(Al) yields for the
rapidly at the location where the amount of mobile compo-fast-mode transport coefficients,

nents is larger. The mobility of components is determined

both by the segment mobilities and by their chain lengths. Laa=Aa(2¢a— 1), (A3a)
We only studied athermal systems, but mutually interacting
components might be studied as well by the MFSD method. LLB: dalg+ dgAa, (A3b)

It is, therefore, possible to study interfaces in the presence of

concentration gradients, as well as diffusion through pores of, that again Onsager’s reciprocal relations are obeyed.
membranes that energetically interact with some compo-

nents. Another interesting aspect of the MFSD method is that

it provides information about the chain conformations; this APPENDIX B: DERIVATION OF EQUATION  (42)

information was not discussed in the present paper and will o, 5 three-component system witi,=Ng and B,

be presented elsewhere. =Bg=B., we have a set of two independent fluxes, which

may be written by the help of Eg&34) and either Eq(37) or
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APPENDIX A: ONSAGER’'S RECIPROCAL RELATIONS wherea=BKkT/N, andb=BkT(1/N5—1/Nc). We want to
solve this set forpa(z) and ¢g(z) with 0< pa(2) + Pg(2)

Mass transport driven by chemical potential gradients<1 for ze[OM+1]. The values for ¢A(0), ¢g(0),
may be written in the standard form of Onsager’s phenom«,(M+1), and¢g(M +1) are known.

enological equations Summation of the differential equations and defining
da(2) + ¢pg(z)=h(z), we find forh(z),
JIa= _EB LagVue, (AL)
a 1,
where L, are the main transport coefficients ahgdg are h(z)= B—B\/a +2b(ks—Jc2). (B3)

the cross coefficients describing the coupling between the

fluxes. According to Onsager's reciprocal relations wetpe integration constaii, and the flux)c= — (J5+Jg) can
should havel \g=Lga VA,B. be calculated fronh(0) andh(M+1). h(z) must be posi-

The slow-mode flux of Eq(26) may be written in the e and for our specific casdNg>N¢) we havea>0 and
form of Eq. (A1) by realizing that the summation in E@®6) o Therefore, we must select the minus sign in E&g).

may also be taken over all segment types exdepind by Usin

i < ; g h(z), we can now solvep,(z) from Eq. (B1) by
Us'nngiAAB_EBAE}_,AA' We then obtain for the slow- ¢ gtandard procedures of separation of variables and varia-
mode transport coefficients, tion of parameters. This introduces a new constant ks

A2 andJ, may be calculated fronp, in z=0 andz=M +1. Jg
LS A= A —Ap, (A2a) is then known from the values fa¥: and J5. &g(2) is
2 Ac simply the difference betweeln(z) and ¢A(z), and ¢c(2)
C =1-h(2).
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