Korrelmaïsstro als biomassa

Voor energie of grondstof

M.P.J. van der Voort
Korrelmaïsstro als biomassa

Voor energie of grondstof

M.P.J. van der Voort
SAMENVATTING... 5

1 INLEIDING .. 7
1.1 Aanleiding .. 7
1.2 Doel rapport .. 7
1.3 Opbouw rapport ... 8

2 ACHTERGROND KORRELMAÏSTEELT .. 9
2.1 Arealen in Limburg en Noord-Brabant ... 9
2.2 Opbrengsten .. 9

3 KETENANALYSE ENERGIERENDEMENT .. 11
3.1 Toelichting per ketenstap .. 11
3.2 Analyse keten ... 11
3.3 Alternatieve droogtechniek ... 12

4 ECONOMISCHE RESULTATEN ... 13

5 CONCLUSIE EN AANBEVELING .. 15

LITERATUUR.. 17
Samenvatting

 Dit rapport gaat in op de eerdere rapportage binnen Energieboerderij van HAS KennisTransfer en de belangrijkste openstaande vragen naar aanleiding van die rapportage. De hoofdvragen nog nadere aandacht vroegen waren:
- wat is de energiebalans van benutting korrelmaisstro als energiebron?
- is het economische haalbaar?

De energiebalans blijkt positief uit te vallen (energierendement: 54%; ofwel het levert ruim 2x zoveel energie op als het gehele proces aan energie vraagt). De energiebalans kan door inzet van een drooginstallatie bij een vergister flink worden verbeterd. Het drogen van de maïsstro vóór pelletisering is veelal een energie-intensief proces. Het drogen bij een vergister heeft als belangrijk voordeel dat restwarmte nuttig kan worden gebruikt.

De saldoberekening geeft echter aan dat tegen de gehanteerde pellet prijzen meer kosten staan. In andere woorden: het saldo voor korrelmaïs inclusief energie uit maïsstro daalt ten opzichte van het bestaande korrelmaïssaldo.

Een belangrijk kanttekening is dat het verwerken van korrelmaisstro tot brandstofpellets op dit moment nog geen praktijk is. Op basis van eerdere ervaringen en rapportages kan worden geconstateerd dat vooral de oogst van maïsstro onzekerheden met zich meebrengt en verdere optimalisering behoeft. De aanbeveling is om de oogst en verwerking van maïsstro verder te optimaliseren door het doen van praktijkproeven in samenwerking met mechanisatiespecialisten.
1 Inleiding

1.1 Aanleiding

Deze rapportage is onderdeel van het project Energieboerderij. Het project Energieboerderij heeft als doel om de duurzaamheid van in Nederland geproduceerde biomassa inzichtelijk te maken en te verbeteren. In plaats van het rekenen met gegevens uit de literatuur worden op praktijkbedrijven gegevens verzameld en geanalyseerd. Deze informatie vormt de basis voor het berekenen van duurzaamheidskengetallen en het optimaliseren van energieteelt.

Achtergrond van het project is de discussie over de oplossingsrichtingen voor het energievraagstuk en de bijdrage die hernieuwbare grondstoffen (in het bijzonder energieteelt) daaraan kunnen leveren. De initiatiefnemers van Energieboerderij hanteren als uitgangspunt dat de energieteelt dient te voldoen aan de duurzaamheidscriteria zoals vastgelegd in de EU richtlijn voor energie uit hernieuwbare grondstoffen (RED). Ook de regionale impact van meer energieteelt dient inzichtelijk te zijn. Uitgangspunt daarbij is dat alle berekeningen en resultaten eenduidig en transparant zijn voor alle betrokkenen en geïnteresseerden.

Er is in Energieboerderij gewerkt met een drietal in de praktijk functionerende ketens. De ketens dienen als basis voor de verzameling van bruikbare praktijkcijfers. Het betreft de volgende ketens:

1. Maïsteelt – vergisting - elektriciteit
2. Suikerbietenteelt – vergisting – elektriciteit
3. Koolzaad - PPO/biodiesel

Per keten is een groep ondernemers betrokken waar een van de bovengenoemde gewassen is geteeld. In de keten zijn teelt en verwerking gevolgd (registratie) en de benodigde metingen uitgevoerd. Met deze gegevens is over een periode van 4 jaar de duurzaamheid van het energiegewas voor de totale keten bepaald.

Daarnaast zijn van elk gewas jaarlijks proefvelden en zogenaamde ‘best practice’ demo’s aangelegd waarin teeltvarianten zijn vergeleken en de invloed op de duurzaamheid is bepaald. De verzamelde praktijkcijfers en de cijfers van de proefvelden en de demo’s zijn met de verschillende telersgroepen besproken, met als doel vast te stellen waar de verbeterpunten liggen.

De duurzaamheid is bepaald met een, in het project ontwikkelde, meetlat voor energie-efficiency en broeikasgasemissiereductie.

Energieboerderij is een initiatief van Vereniging Innovatief Platteland. De uitvoering is in handen van Praktijkonderzoek Plant & Omgeving (Wageningen UR), IRS en Cultus Agro advis.

1.2 Doel rapport

Dit rapport is een aanvulling op de rapportage rond verwerking van maïstro van HAS Kennistransfer (Kuilenburg, 2010). Het rapport van HAS Kennistransfer beantwoordde een aantal vragen in de zoektocht naar het gebruik van korrelmaïs voor energieopassing. De resterende vragen worden in dit rapport verder uitgewerkt. De energetische en economische balans zijn hierbij de belangrijkste aandachtsgebieden.
1.3 Opbouw rapport

Dit rapport is een aanvulling op een eerdere rapportage. Het benoemt kort de achtergrond van de maïsteelt in Limburg en Brabant. Hoofdstuk drie gaat in op de energiebalans van maisstro als brandstofpellets. Hoofdstuk vier gaat in op de economische analyse van de ketenstappen. Hierna volgt de conclusie en aanbevelingen.
2 Achtergrond korrelmaïsteelt

2.1 Arealen in Limburg en Noord-Brabant

Om het perspectief te schetsen van benutting van maisstro is beoordeeld hoeveel mais er regionaal beschikbaar is. De afbakening is gemaakt op Limburg en Noord-Brabant.

Tabel 1: Arealen korrel- en CCM-maïs in Limburg en Noord-Brabant per 2009

<table>
<thead>
<tr>
<th>Regio</th>
<th>Korrelmaïs (in ha)</th>
<th>CCM (in ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noord-Brabant</td>
<td>6.769</td>
<td>4.036</td>
</tr>
<tr>
<td>Limburg</td>
<td>5.659</td>
<td>641</td>
</tr>
<tr>
<td>Totaal</td>
<td>12.428</td>
<td>4.667</td>
</tr>
</tbody>
</table>

Bron: Kuilenburg, 2010

2.2 Opbrengsten

Tabel 2: Opbrengst korrel- en CCM-maïs per plantdeel per hectare in ton droge stof

<table>
<thead>
<tr>
<th>Plantdeel</th>
<th>Korrelmaïs</th>
<th>CCM</th>
<th>Gemiddeld</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korrel</td>
<td>8</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Spil/stro</td>
<td>6</td>
<td>7</td>
<td>6,5</td>
</tr>
</tbody>
</table>

Bron: Groten, 2004

Voor de deze studie wordt verder gerekend met 6,5 ton drogestof (ds) van de spil/stro. Als droge stof percentage wordt 33% gehanteerd (Groten, 2004). Hiermee komt de volgende beschikbaarheid van maisstro voor Noord-Brabant en Limburg in beeld.

In de regio is 111.183 ton ds spil/stro beschikbaar. In vers gewicht uitgedrukt is dit 336.917 ton vers.

Voor bepaling van de energie-inhoud is binnen het project Energieboerderij een proef uitgevoerd bij ECN. Hieruit bleek een energie-inhoud van 17 GJ per ton ds. Dit ligt in lijn met eerdere studies zoals Groten, 2004. Hierin is 17,8 GJ per ton ds gemeld. De door ECN gemeten energie-inhoud wordt in deze rapportage verder gebruikt. Hiermee is de energieopbrengst per hectare 110,5 GJ. Voor de regio Noord-Brabant en Limburg komt dit op een totale potentiële energieopbrengst van 1.890.100 GJ.

Voor berekening van de financiële opbrengst is met een prijs van € 0,14 per kg ds gerekend.
3 Ketenanalyse energierendement

De ketenanalyse is bedoeld om helder te krijgen of verwerking van maisstro energetisch interessant is. Per ketenstap worden derhalve energiebehoefte en economie behandeld. De ketenanalyse start vanaf het boerenerf en eindigt bij het eindproduct. In dit geval biomassapellets op basis van maisstro. Veel van de informatie is overgenomen uit Kuilenburg et al., 2010. Deze informatie is waar nodig aangevuld.

Tabel 3: Energiebalans van maisstro verwerking tot brandstofpellets, op basis van grasdroging (per hectare)

<table>
<thead>
<tr>
<th></th>
<th>Energiebalans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energieopbrengst</td>
<td>110,5 GJ/ha</td>
</tr>
<tr>
<td>Energieverbruik:</td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td>0,38 GJ/ha</td>
</tr>
<tr>
<td>Drogen</td>
<td>38,77 GJ/ha</td>
</tr>
<tr>
<td>Hamermolen</td>
<td>7,64 GJ/ha</td>
</tr>
<tr>
<td>Pelletiseren</td>
<td>4,34 GJ/ha</td>
</tr>
<tr>
<td>Totaal energieverbruik</td>
<td>51,12 GJ/ha</td>
</tr>
</tbody>
</table>

De energiebalans is positief en het energierendement is 54%.

3.1 Toelichting per ketenstap

Transport
Als transport wordt gemiddeld 10 kilometer gehanteerd als uitgangspunt. Op basis van de duurzaamheidsbeoordeling van energiemaïstelers is 25 kilometer de grootste afstand van waarover energiemaïs wordt aangevoerd. Voor verwerking van maisstro tot brandstofpellets wordt een vergelijkbare keten voorzien.

Drogen
Maisstro kent een 33% droge stof gehalte en dient tot minimaal 80% droge stof te worden terug gedroogd. Voor het drogen is informatie opgevraagd bij twee grasdrogers. Op basis van deze informatie wordt 3,35 GJ per ton vocht als uitgangspunt gehanteerd.

Hamermolen
Het uit de proef beschikbare maisstro is met een MATEC hamermolen verwerkt. De technische gegevens van deze installatie zijn als uitgangspunt gehanteerd. De hamermolen heeft een capaciteit van 40-100 kilogram per uur en wordt aangedreven door een elektromotor van 4 kW.

Pelletiseren
Het uit de proef beschikbare maisstro is tevens met een MATEC pelletiseer-installatie verwerkt. De technische gegevens van deze installatie zijn als uitgangspunt gehanteerd. De pelletiseer-installatie heeft een capaciteit van 40-120 kilogram per uur en wordt aangedreven door een elektromotor van 5,5 kW.

3.2 Analyse keten

De energiebalans toont aan dat droging veel energie vergt. Hier is voor het verwerken van maisstro een potentiële besparing te halen. Alternatieve droogtechnieken zijn voorhanden om dit knelpunt op te lossen. Derhalve is tevens beoordeeld of droging met restwarmte van een vergister een optie is.
3.3 Alternatieve droogtechniek

De vergisting van mest met coproducten kent twee producten, nl. elektriciteit en warmte. Er worden drooginstallaties aanboden om de warmte in te zetten voor het drogen van producten. In veel gevallen worden de drooginstallaties ingezet om de dikke fractie na scheiding van digestaat verder in te drogen. Dit zorgt voor minder mest en hiermee voor minder afvoerkosten en transport van mest.

Een drooginstallatie kan ook worden ingezet voor het drogen van korrelmaïsstro. Een aantal vergisters in het landelijke gebied kent geen warmtetoepassing. De warmte is hiermee ‘gratis’ beschikbaar. De energie voor droging met restwarmte bestaat derhalve uit alleen de benodigde elektriciteit.

Tabel 4: Energiebalans van maïsstro verwerking tot brandstofpellets, op basis van restwarmte (per hectare)

<table>
<thead>
<tr>
<th>Energieopbrengst</th>
<th>Energiebalans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport</td>
<td>0,38 GJ/ha</td>
</tr>
<tr>
<td>Drogen</td>
<td>0,05 GJ/ha</td>
</tr>
<tr>
<td>Hamermolen</td>
<td>7,64 GJ/ha</td>
</tr>
<tr>
<td>Pelletiseren</td>
<td>4,34 GJ/ha</td>
</tr>
<tr>
<td>Totaal energieverbruik</td>
<td>12,41 GJ/ha</td>
</tr>
<tr>
<td>Totaal energieverbruik</td>
<td>98,09 GJ/ha</td>
</tr>
</tbody>
</table>

Het totale energieverbruik is maar een kwart van wat het in de opzet met grasdroogtechniek was. Hiermee komt tevens het energierendement op een interessante 89% uit.

Toelichting drogen

Maisstro kent een 33% droge stof gehalte en dient tot minimaal 80% droge stof te worden terug gedroogd. Voor het drogen is informatie opgevraagd bij de heer Waanders van BiogasPlus. Op basis van deze informatie wordt 0,00432 GJ per ton vocht als uitgangspunt gehanteerd.
4 Economische resultaten

Tabel 5.: Saldoberekening korrelmaïs, bij 33% droge stof

<table>
<thead>
<tr>
<th>Korrelmaïs</th>
<th>Hoeveelheid</th>
<th>Eenheid</th>
<th>Prijs in EUR</th>
<th>Bedrag in EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoofdproduct (korrel)</td>
<td>8.750</td>
<td>Kg</td>
<td>0,16</td>
<td>1.400,00</td>
</tr>
<tr>
<td>Bijproduct (stro)</td>
<td>6.500</td>
<td>Kg ds</td>
<td>0,14</td>
<td>910,00</td>
</tr>
<tr>
<td>Bruto geldopbrengst</td>
<td></td>
<td></td>
<td></td>
<td>2.310,00</td>
</tr>
</tbody>
</table>

Uitgangsmateriaal

Zaaizaad 2,2 Eenh. 85,00 187,00

Bemesting

Kalkammonsalpeter 185 Kg N 0,94 173,90
Tripelsuperfosfaat 30 Kg P2O5 1,07 32,10
Kali 60 (chloroërrohdend) 150 Kg K2O 0,51 76,50

Gewasbeschermingsmiddelen

Terbutylazin(330), mesotrione(70) 1.5 Ltr 41,50 62,25
Nicosulfuron(40) 1 Ltr 47,10 47,10

Energie

Brandstof, smeermiddelen 68 Ltr 1,00 68,00

Overige productgebonden kosten

Berekende rente 223 EUR 5,30% 11,82
Verzekering 1.450 EUR 0,40% 5,80
Productschapsheffing 1 Ha 4,18 4,80
N-mineraalmonster 0,5 stuk 34,00 17,00

Toegerekende kosten 686,27
Saldo eigen mechanisatie 1.623,73

Loonwerk

Maiszaaien, incl. fosfaatbemesting 1 Ha 90,00 90,00
Oogst mais 1 Ha 365,00 365,00
Wiersen 1 Ha 20,00 20,00
Transport (>10 km) 1 Ha 89,33 89,33
Drogen 1 Ha 393,94 393,94
Hamermolen 1 Ha 393,94 393,94
Pelleteren 1 Ha 178,75 178,75

Totaal loonwerk (incl. rente) 1.530,96
Saldo loonwerk 92,77

Het saldo wanneer alle kosten tot en met pelleteren worden meegenomen in het saldo is nog wel positief. Het saldo van € 92,77 is wel lager als het saldo van de ‘reguliere’ korrelmaïsteelt € 279.73 (KWIN, 2009).
5 Conclusie en aanbeveling

De energiebalans blijkt positief uit te vallen 54%. De energiebalans kan door inzet van een drooginstallatie bij een vergister snel aanzienlijk worden verbeterd, tot 89%. Het drogen bij een vergister heeft tevens als belangrijk voordeel dat restwarmte nuttig kan worden gebruikt.

De saldoberekening geeft echter aan dat tegen de gehanteerde pellet prijzen meer kosten staan. In andere woorden het saldo voor korrelmaïs daalt ten opzichte van het bestaande korrelmaïssaldo. Het saldo daalt van € 279,73 per hectare naar € 92,77 per hectare.

Een belangrijk kanttekening is dat het verwerken van korrelmaïsstro tot brandstofpellets op dit moment nog geen praktijk is. Op basis van eerdere ervaringen en rapportages kan worden geconstateerd dat vooral de oogst van maïsstro onzekerheden met zich meebrengt en verdere optimalisering behoeft. De aanbeveling is om de oogst en verwerking van maïsstro verder te optimaliseren door het doen van praktijkproeven in samenwerking met mechanisatiespecialisten.

Een andere aanbeveling is het op het eigen bedrijf/regio uitvoeren van alle extra stappen. Het hameren en pellete ren van maïsstro is relatief eenvoudig. Dit zou dus goed op een agrarisch bedrijf kunnen worden uitgevoerd.
Literatuur

- Kuilenburg, Alex van, Klaver, Cor, Mogelijkheden en beperkingen van toepassing van korrelmaïssstro voor energieproductie, HAS KennisTransfer, Den Bosch, februari 2010