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ABSTRACT: 
 
In case of a nuclear accident, decision makers rely on high resolution and accurate information about the spatial distribution of the 
radioactivity levels in the surroundings of the accident site. Static nuclear monitoring networks are therefore employed in many 
countries in Europe. However, these networks were designed to cover the whole country and are usually too course to reach a high 
density in the local environment around the accident site. Therefore a strategy is considered in which the measurement density is 
increased during emergencies by adding measurements from mobile measuring devices. This raises the question where the mobile 
devices should be placed. This paper proposes a geostatistical methodology to optimize the allocation of the mobile devices, such 
that the expected weighed sum of false negative and false positive areas, i.e., false classification into safe and unsafe zones is 
minimized. The radioactivity concentration was modelled as the sum of a deterministic trend and a zero-mean spatially correlated 
stochastic residual, whereby the deterministic trend was defined as the outcome of a spatially explicit physical atmospheric 
dispersion model (NPK-PUFF model). The NPK-PUFF model used meteorological data and the characteristics of the radioactive 
release as input. The residual was characterized by a semivariogram that was estimated from the differences between outputs from 
various NPK-PUFF runs with input settings reflecting the uncertainty in the NPK-PUFF inputs (e.g., wind speed, wind direction). 
Spatial simulated annealing was used to obtain the optimal monitoring design, whereby accessibility and openness of sampling sites 
was also included. The method was computationally demanding but results were promising and the computational speed may be 
considerably improved to compute the optimal monitoring network in nearly real-time. 
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1. INTRODUCTION 

1.1 Background 

After the Chernobyl nuclear accident, most European 
governments increased efforts in operational systems for early-
warning and monitoring of radioactivity in the environment. In 
the Netherlands, the National Institute for Public Health and the 
Environment (RIVM) operates The Dutch National 
Radioactivity Monitoring Network (NRM). The RIVM 
constantly makes efforts to maintain and upgrade the network 
and has recently implemented its 3rd generation network. The 
static monitoring network consists of 153 ambient dose rate 
monitors and 14 α/β air sampling monitors (Twenhöfel et al., 
2005). 
 
The number and spatial distribution of the 153 ambient dose 
rate monitors is designed to cover the whole country. 
Prerequisite in any network design is that a significant release 
of radioactive material should be detected in time. Once the 
radiation level measurements are above a critical threshold, the 
NRM issues a warning to the national and local authorities. 
After confirmation and careful evaluation RIVM can activate 
the national emergency response plan for nuclear accidents 
(Twenhöfel et al., 2005). In a routine monitoring situation, 
measurements are carried out every 10 minutes by measuring 

devices at the static positions. From these measurements, NRM 
calculates hourly and daily averages and stores these in the 
database. In case of a large scale release of radioactivity in the 
environment, NRM plays an important role in the monitoring 
strategy during the response phase of a nuclear accident (Van 
Sonderen, 1997). In the early phase, the NRM provides real-
time radiological information to support decisions on 
countermeasures. In the early stage the population is affected 
directly by radioactive contaminants via the exposure pathways 
of inhalation and external radiation. Protective countermeasures 
should therefore be carried out in the contaminated area where 
the radioactive plume passes and the dose levels may exceed 
intervention levels.  
 
NRM measurements are converted into an effective dose using 
dispersion and dose projection models. Dispersion models are 
also used to predict the spatial distribution of radiation levels 
and make prognostic overviews of the radiological dose, 
integrated over a certain period of time, in the area surrounding 
the accident. 
 
Since we are mainly concerned about momentary values of the 
radioactivity concentration in this study, we will evaluate 
possible areas of countermeasures in terms of action levels, i.e., 
deduced thresholds of momentary radioactivity concentrations 



 

related to intervention levels by means of time integrated dose 
projections. 
 
1.2 Problem Definition 

The information derived from the static monitoring network and 
the dispersion model can be improved by adding measurements 
from mobile measuring devices. This requires a decision on 
how to optimally allocate the mobile measuring devices such 
that they provide maximum additional information. Here we 
assume that decision makers are mainly interested in 
minimizing the chance and costs of making wrong decisions on 
protective countermeasures. Therefore, the optimization goal is 
defined as minimizing the areas of false positives (i.e., the 
predicted concentration is greater than the action level while the 
real value is smaller) and false negatives (i.e., the predicted 
concentration is smaller than the action level while the real 
value is greater). In practice, a weighed combination of the false 
positives and false negatives may be used, since the costs 
associated with each of the two may be different. 
 
Optimization of spatial sampling designs is an important 
research topic in geostatistics (Journel, 1988; Rouhani and Hall, 
1988; Hudak and Loaiciga, 1992; Ridley et al., 1995). 
However, most of these studies adopt a simpler optimization 
criterion, namely to minimize the average kriging prediction 
error variance. Such a criterion is not helpful in our case of 
radioactivity monitoring and mapping, because uncertainty 
about the predicted radioactive concentration only affects 
decision making when the probability distribution of the 
prediction straddles the action level. Large uncertainties 
associated with predictions much below or much above the 
action level do no harm when it remains practically certain that 
the radioactivity is below or above the threshold. Therefore, 
existing geostatistical optimization methods need to be modified 
before used to address the problem in this work. Before 
presenting and applying a methodology for this, we first present 
the NPK-PUFF dispersion model and the geostatistical model 
that is used to characterize the spatial variability of radioactivity 
after a release. 
 

2. METHODOLOGY 

2.1 NPK-PUFF Dispersion Model 

The RIVM and the Royal Dutch Meteorological Institute 
(KNMI) developed the NPK-PUFF dispersion model by 
adapting the PUFF model developed in the 1980’s (Van 
Egmond and Kesseboom, 1983). The aim of the NPK-PUFF 
model is to calculate the concentration and deposition of 
radioactive materials that are released accidentally in the 
atmosphere. The NPK-PUFF model used in this work describes 
the atmospheric transport of gaseous and aerosol bounded 
radioactive nuclides from one or multiple point release sources 
up to distances of about 100 km. The model output can be used 
to estimate (time-integrated) air and ground radioactivity 
concentration directly and consequently used in a dose 
estimation model to calculate the exposure of the population 
(Verver and De Leeuw, 1992).  
 

NPK-PUFF uses hourly time steps and characterizes the mass 
distribution using Gaussian distributions. The mass is 
distributed over two vertical layers: a boundary layer and a 
reservoir layer. The path of the pollutant is determined either by 
analyzed or prognostic wind fields. These wind fields can be 
derived from data collected at meteorological stations or can be 
obtained from numerical weather prediction models. Every hour 
several meteorological parameters are updated by NPK-PUFF 
such as the boundary layer height, atmospheric stability and 
wind and rain field (Verver and De Leeuw, 1992). 
 
2.2 Geostatistical Model 

The dynamics of the radioactivity dispersion phenomenon in 
space and time can be reasonably well predicted with the NPK-
PUFF model, but model input and model structural error cause 
the model outputs to differ from the real phenomenon. 
Therefore, we propose a probabilistic model that treats the 
radiation as the sum of a deterministic trend (i.e., the NPK-
PUFF prediction) and a stochastic residual (Eq. (1)). It is 
assumed that the residual at any point in time is a normally 
distributed stationary random function with zero mean and 
variance and spatial correlation characterized by a 
semivariogram. 
 
 
True concentration(x, t) = NPK-PUFF(x, t) + residual(x, t)  (1) 
 
 
Thus, the distribution of the radioactive plume in space and 
time is largely explained by the NPK-PUFF physical dispersion 
model, which takes the influence of wind speed and direction 
and rainfall and other environmental factors into account. The 
underlying principles of assuming a spatially dependent residual 
are the First Law of Geography (Tobler, 1970) and 
Regionalized Variable (RV) theory (Matheron, 1971). The First 
Law of Geography states that "everything is related to 
everything else, but near things are more related than distant 
things". RV theory implements the first law of geography, by 
acknowledging that spatial correlation decreases with distance.  
 
2.3 Optimization Criterion 

As stated in the problem definition, the objective is to choose 
the mobile sampling locations such that the areas of false 
positives and false negatives are minimized. We now look into 
this issue in more detail and define the criterion to be 
minimized in mathematical forms. First, it should be noted that 
the areas of false positives and negatives change over time, 
meaning that some integrations over time would be needed to 
determine the optimal sampling scheme. Here, however, we 
have chosen to select a single time instant (typically several 
hours after the accident occurred) for which the criterion must 
be minimized. Secondly, we should also realise that since we 
have now assumed a stochastic model of reality, the incorrectly 
classified areas are uncertain, meaning that we must minimize 
the expected areas of false positives and negatives.  
 
Given the action level, the predicted value at any location in the 
study area falls into any of four possible states: false positive, 
false negative, true positive and true negative (Fig. 1). The 
optimization criterion is to minimize a weighted sum of the 
expected area occupied by the two false states:   
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Here, E stands for mathematical expectation and C(S) is the 
expected total cost using sampling design S, caused by false 
decisions; α and β are the impact parameters of false positive 
prediction and false negative prediction respectively and A 
represents the area occupied. A differentiation between the cost 
associated with false positive and false negative areas is useful, 
because the associated costs are of a different nature and are 
unlikely to be equal (falsely assuming that an area is safe is 
presumably more ‘costly’ than falsely assuming that an area is 
unsafe, hence α<β). 
 

 
 

Figure 1.  Graphical illustration of false positive and false 
negative areas. The Solid line delineates the ‘true plume’; the 

dashed line delineates the ‘predicted plume’. 
 
The following step-by-step approach describes how the 
optimization objective is computed for a given sampling design 
(Fig. 2):  
 
(1) Compute the NPK-PUFF output for the research area of 
interest; 
(2) Define or estimate a semivariogram model of the stochastic 
residual; 
(3) Generate a large number (N≥100) of realizations of the 
stochastic residual using unconditional sequential Gaussian 
simulation (Deutsch and Journel, 1998), and add these to the 
NPK-PUFF output, thus creating a set of N possible true 
concentration fields;  
(4) For each of the N cases, compute the residual at the 
sampling locations and apply simple kriging to interpolate these 
into a map of the residual; 
(5) For each of the N cases, add the map of the interpolated 
residual to the NPK-PUFF output to obtain a predicted 
concentration map;  
(6) For each of the N cases, compare the predicted map with the 
‘true’ concentration map; compute the associated area false 
positives and negatives and their weighted average;  
(7) Compute the expected total costs by averaging the total 
costs over all simulations. 
 

    
Figure 2.  Flowchart of calculating the objective function 

 
2.4 Spatial Simulated Annealing 

Many algorithms have been developed for solving nonlinear 
optimization problems. Examples are as genetic algorithms, 
neural networks, tabu search and simulated annealing 
(Kunihiko, 1975; Schmitt, 2001; Glover, 1989). An empirical 
comparison of eight heuristic algorithms (Lee and Ellis,1996) 
showed that simulated annealing and tabu search exhibit 
superior performance. Simulated annealing (Kirkpatrick et al., 
1983) is a random search technique which exploits an analogy 
with the physical process of annealing. The optimization 
problem is addressed iteratively by using a sequence of 
combinations, where each new combination is generated by 
deriving a new combination from slightly and randomly 
changing the previous combination. Spatial simulated annealing 
(SSA) is a special case of simulated annealing which deals with 
the optimization of a spatial sampling design (Van Groenigen 
et al., 1999).  
 
The SSA steps are described as follows (see Van Groenigen 
et al. (1999) for details): 
(1) Start with a (random) initial sampling scheme S0 containing 
n sampling locations and compute objective function C(S0); 
(2) Given the design Sk, construct a candidate new sampling 
design by moving a randomly chosen location over a distance h, 
whereby the direction of h is random and its length is a random 
value between 0 and a maximum shift (the maximum shift is 
gradually decreased when the SSA iteration progresses);  
(3) Compute the objective function for the new scheme. If the 
new scheme produced an improvement (smaller value for the 
cost function) then accept the new design as Sk+1. If the new 
design produces a worse result, then accept it with a certain 
probability smaller than one (the probability is gradually 
decreased as the SSA iteration progresses, towards the end it is 
close to zero); 
(4) Return to step (2), using the new design Sk+1 as starting 
point if it was accepted and using the old design Sk otherwise; 
(5) Stop after a fixed number of iterations or using some other 
stopping criterion and store the design which had the smallest 
criterion value. 

 
In practice, the optimization of a sampling scheme must also 
consider certain spatial constraints. For instance, potential 
sampling locations must satisfy openness and accessibility 
conditions. The former is important in order to avoid 
measurement artefacts (Twenhöfel et al., 2005). The latter is 
important, because installing the measurement devices by van 
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must take place in a short time. These spatial constraints can be 
easily included by limiting the candidate sampling locations to a 
subset of the study area, namely the set of locations that satisfy 
the constraints. 
 
 

3. APPLICATION 

3.1 Description of the case 

To demonstrate the proposed approach, we now present an 
example application following a hypothetical and, for the 
purpose of this work, greatly simplified accident, which is at 
time t = 0 and at the nuclear power plant of Borssele in the 
Netherlands. A south-west wind (speed 3-4 ms-1) moves a 
plume of released Cs-137 in north-east direction. Our problem 
concerns optimal allocation of 25 mobile devices measuring 
ambient dose rates and whose measurements are used in 
combination with output from the NPK-PUFF dispersion model 
to assess the location and extent of the radioactive plume with a 
concentration above a certain action level at t = 5 hours. 
 
The candidate sampling locations in our example are confined 
to a discrete set of accessible locations, i.e. we consider points 
on a 400m square grid that are in open terrain and are within 
300m distance from the road network. The size of the study area 
is 100 × 100 km2 and completely covers the plume five hours 
after the accident. (Fig. 3).  
 
Rather than attempting to compute total costs C(S) as defined in 
equation 3, we use a relative cost in our optimization criterion. 
This relative cost is based on an assumed ratio between α (false 
positive impact parameter) and β (false negative impact 
parameter) of α/β = 1/5. Accordingly, our optimization of 
sampling locations at t = 5 hours concerns minimization of the 
expected relative cost of the two erroneous states. 
 
3.2 NPK-PUFF model output 

Figure 3 shows the reference Cs-137 plume for t = 5 hours as 
predicted by the NPK-PUFF model. In addition 30 alternative 
NPK-PUFF outputs were produced by slightly changing some 
of the model parameters and model input values. The changes 
of model input values represent the expected uncertainty on the 
release parameters and meteorological conditions and are 
generally based on expert judgement (Kok, 2004). The model 
results were used only for parameterisation of the error model 
(see below).  

 

 
 

Figure 3.  Plume predicted by the NPK-PUFF model, 5 hours 
after the hypothetical accident. 

 
3.3 Experimental semivariogram and model 

Thirty error fields were computed as the differences between the 
reference and the alternative NPK-PUFF model outputs. These 
error fields were randomly sampled and GSTAT (Pebsma and 
Wesseling, 1999) was used to compute 30 experimental 
semivariograms (Fig. 4). After observing these semivariograms, 
a spherical model (Eq. 3) was chosen to represent a scenario 
with medium variability of the differences between the NPK-
PUFF model output and reality and, hence, the measurements 
from the mobile devices. 
 

γ (h) = 5.0×107 Sph (3.0×104)                 (3) 
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Figure 4.  The 30 experimental semivariograms derived from 30 

error fields. 
 
3.4 SSA optimization  

The example application was based on 100 simulated residual 
fields. Because of computational and time constraints, we 
stopped the SSA after 2000 steps. The initial probability of 
accepting a worsening design was set at 0.2 and it decreased 
exponentially as the SSA evolved.  



 

 
Figure 5 showed how the total cost associated with the sampling 
design decreased from 22264 for the initial design to 17942 for 
the final design, which is shown in Figure 6.  
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Figure 5. Cost criterion against spatial simulated annealing 
iteration steps 

 
Figure 6 showed the initial sampling design and final sampling 
design respectively. The dots represented the mobile measuring 
devices, and they were selected from the discretized suitable 
area which meets the geographical constraints. The 
discretization was done by intersecting suitable area with the 
“fishnet” (a set of 1200m *1200m square vectors that cover the 
whole study area). The solid line inside the plume delineated the 
threshold value of action level. 
 

 
Initial sampling design  

 

 
Final sampling design  

 
Figure 6.  Initial and final sampling designs 

 
As we can see from Fig. 6, the initial and randomly generated 
configuration was somewhat clustered and poorly covered the 
entire study area so that it resulted in a relatively high cost in 
objective function. For example, 10 points are clustered in the 
middle of the plume, which performed poorly in interpolation. 
In contrast, the final configuration selected by SSA algorithm 
presented a uniform coverage of study area. 13 observations 
were distributed along the plume internal border where became 
sensitive to threshold value by adding simulated or interpolated 
residuals and corresponded to the area of maximum uncertainty 
so that the observations effectively reduce the value of objective 
function. The rest of observations were spread over the area to 
control the variation brought by the limited 100 realizations. 
 
Figures 7 and 8 showed the probabilities of false negative and 
positive predicted states under the initial and the final sampling 
design respectively. 
 

 
False negative area (initial) 

 



 

 
False negative area (final) 

Figure 7.  Probability maps of false negative areas 
 

 
False positive area (initial) 

 

 
False positive area (final) 

Figure 8.  Probability maps of false positive areas 

 
As we can see in Fig. 7 and Fig. 8, the probabilities of false 
prediction were decreased moderately. The maximum 
probability of false negative prediction was reduced from 0.33 
to 0.20 and that of false positive prediction was reduced from 
0.37 to 0.24. The differences between initial with final 
probability maps accounted for the reason why certain location 
was selected. For instance, the probability of the lower right 
corner area decreased to 0, after placed 5 additional 
observations. 
 
Table 1 compared the situation that only the NPK-PUFF 
prediction was used with the one where NPK-PUFF prediction 
plus additional mobile measurements are used. It quantified the 
improvement after added mobile measuring devices. 
 

 Expected 
false 

positive 

Expected 
false 

negative 

Total cost 

NPK-PUFF  
prediction (without 

observations) 

25725 978 26703 

NPK-PUFF   
prediction + 

Mobile measuring 
devices(final 

design) 

16861 1081 17942 

 
Table 1. The comparison showed the improvement brought by 

the additional mobile measuring devices. 
 
Program implementation: the SSA procedure was coded and 
implemented in MATLAB (version: R2006b). On a Pentium IV 
computer with a CPU speed of 1.7 GHz and 512 MB RAM, it 
took 20 hours to finish 2000 SSA iterations. 
 
 

4. DISCUSSION AND CONCLUSIONS 

 
This study demonstrated that the objective to minimize the 
expected area of false predictions can be achieved by adopting a 
stochastic simulation approach and spatial simulated annealing. 
The computational effort is large, but results of the example 
application show that satisfactory results can be obtained with 
moderate effort. The objective function improved from 22264 to 
17942 by replacing the randomly selected initial design with a 
final design that avoids clustering and concentrates observation 
points near the boundary of the NPK-PUFF plume. These initial 
results need to be further explored and analysis of how various 
model settings (semivariogram of stochastic residual, ratio of 
false negative and positive costs, time lag, number of mobile 
measurement stations) influence the resulting sampling design 
will provide valuable insight. 
 
The results can be further improved by using more realizations 
and spatial simulated annealing iterations. Because only 100 
realizations were incorporated, some random effects due to the 
limited number of simulated realities are visible in the resulting 
maps of false positives and negatives. Also, because of 
computational constraints we used only 2000 spatial simulated 
annealing iterations. We anticipate that the costs can be further 
reduced by increasing the number of iterations and fine tuning 
the simulated annealing parameters. 
 



 

We computed the predicted area of concentrations that are 
above the action level by adding the interpolated residual to the 
NPK-PUFF output and comparing at each location the result 
with the action level. However, when the costs of false 
negatives are much more expensive than those of false 
positives, it may be sensible to take a risk-aversive approach 
and classify a location positive when the probability of the 
concentration being above the action level is greater than a 
given number (e.g., 5, 10 or 25 %). This risk-aversive approach 
will decrease the expected area of false negatives, at the expense 
of an increased expected area of false positives. Overall, this 
may pay off when the costs of a false negative decision are 
greater than those of a false positive decision. 
 
The geostatistical model used in this work assumes that the 
difference between the NPK-PUFF model output and reality is 
characterized with a zero-mean stationary stochastic residual. In 
future work, more elaborate representations of the error 
associated with the model output could be used. For instance, 
one possibility is to impose realistic uncertainties on the inputs 
to the NPK-PUFF model (e.g., wind speed and wind direction) 
and analyse how these propagate to uncertainty in the NPK-
PUFF output (Heuvelink, 1998). 
 
In this paper, we have chosen one time instant for which the 
weighted expected area of false positives and negatives is 
minimized. An extension of the approach used would be to 
integrate the criterion over time so that a design is obtained 
which minimizes the expected false areas over a given time 
period. Integrating the criterion over time will extend the 
method to optimisation of the assessment of intervention levels 
instead of action levels. It is however somewhat more difficult 
because it will increase computing time and requires that the 
temporal correlation of the stochastic residual is modelled as 
well. 
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