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ABSTRACT:

In case of a nuclear accident, decision makersaelftigh resolution and accurate information atibatspatial distribution of the
radioactivity levels in the surroundings of the ideat site. Static nuclear monitoring networks tirerefore employed in many
countries in Europe. However, these networks wessgthed to cover the whole country and are ustiatiycourse to reach a high
density in the local environment around the acdickite. Therefore a strategy is considered in whitgh measurement density is
increased during emergencies by adding measurerfienismobile measuring devices. This raises thestioie where the mobile
devices should be placed. This paper proposes stagistical methodology to optimize the allocatminthe mobile devices, such
that the expected weighed sum of false negativefalsé positive areas, i.e., false classificatiotoisafe and unsafe zones is
minimized. The radioactivity concentration was mitateas the sum of a deterministic trend and a-megan spatially correlated
stochastic residual, whereby the deterministic drevas defined as the outcome of a spatially expftiysical atmospheric
dispersion model (NPK-PUFF model). The NPK-PUFF elagsed meteorological data and the characterisfithe radioactive
release as input. The residual was characterizeal $gmivariogram that was estimated from the diffees between outputs from
various NPK-PUFF runs with input settings reflegtiie uncertainty in the NPK-PUFF inputs (e.g.,dvgpeed, wind direction).
Spatial simulated annealing was used to obtairofienal monitoring design, whereby accessibilityl mpenness of sampling sites
was also included. The method was computationalyahding but results were promising and the contipunt speed may be
considerably improved to compute the optimal mampnetwork in nearly real-time.

1. INTRODUCTION devices at the static positions. From these measmnts, NRM
calculates hourly and daily averages and storesetlie the
database. In case of a large scale release ofactility in the
. environment, NRM plays an important role in the ftanng
After the Chernobyl nuclear accident, most Europeanrategy during the response phase of a nucleddestc(Van
governments increased efforts in operational systiemearly- Sonderen, 1997). In the early phase, the NRM pesvictal-
warning and monitoring of radioactivity in the eroriment. In e radiological information to support decisionsn
the Netherlands, the National Institute for Publialth and the o ntermeasures. In the early stage the populagiaifected
Environment  (RIVM)  operates The Dutch  National gjrectly by radioactive contaminants via the expespathways
Radioactivity Monitoring Network (NRM). The RIVM gt inhajation and external radiation. Protectivem@rmeasures
constantly makes efforts to maintain and upgragertétwork  shoy|d therefore be carried out in the contaminates where

and has recently implemented it§ generation network. The the radioactive plume passes and the dose levefsexezeed
static monitoring network consists of 153 ambieotel rateé  jhiervention levels.

monitors and 14/p air sampling monitors (Twenhdfel et al.,
2005).

1.1 Background

NRM measurements are converted into an effectivee dsing
dispersion and dose projection models. Dispersiodets are
also used to predict the spatial distribution afiagion levels
and make prognostic overviews of the radiologicalsel

The number and spatial distribution of the 153 @mbidose
rate monitors is designed to cover the whole cquntr

Prerequisite in any network design is that a sigaift release
of radioactive material should be detected in tifBace the
radiation level measurements are above a critivalsthold, the
NRM issues a warning to the national and local auities.
After confirmation and careful evaluation RIVM cactivate
the national emergency response plan for nucleaidets
(Twenhofel et al., 2005). In a routine monitoringuation,
measurements are carried out every 10 minutes lasumag

* corresponding author

integrated over a certain period of time, in theaasurrounding
the accident.

Since we are mainly concerned about momentary sabfiehe
radioactivity concentration in this study, we widlvaluate
possible areas of countermeasures in terms ofraldiels, i.e.,
deduced thresholds of momentary radioactivity cotre¢ions



related to intervention levels by means of timegnated dose
projections.

1.2 Problem Definition

The information derived from the static monitorimgtwork and
the dispersion model can be improved by adding ureagents
from mobile measuring devices. This requires a si@gi on
how to optimally allocate the mobile measuring desi such
that they provide maximum additional informationerel we
assume that decision makers are mainly interested
minimizing the chance and costs of making wrongsiecs on
protective countermeasures. Therefore, the opthoizaoal is
defined as minimizing the areas of false positijes., the
predicted concentration is greater than the ad&wel while the
real value is smaller) and false negatives (ilee, predicted
concentration is smaller than the action level athe real
value is greater). In practice, a weighed combamatif the false
positives and false negatives may be used, sineectsts
associated with each of the two may be different.

Optimization of spatial sampling designs is an inb@at
research topic in geostatistics (Journel, 1988;hHaauand Hall,
1988; Hudak and Loaiciga, 1992; Ridley et al.,
However, most of these studies adopt a simplemopdtion
criterion, namely to minimize the average krigingegiction
error variance. Such a criterion is not helpfuloar case of
radioactivity monitoring and mapping, because uiety
about the predicted radioactive concentration oafiects
decision making when the probability distributiorf the
prediction straddles the action level. Large uraisties
associated with predictions much below or much abthe
action level do no harm when it remains practicaliytain that
the radioactivity is below or above the threshaltherefore,
existing geostatistical optimization methods neeld modified
before used to address the problem in this workforige
presenting and applying a methodology for this fivet present
the NPK-PUFF dispersion model and the geostatisticadel
that is used to characterize the spatial varighalftradioactivity
after a release.

2. METHODOLOGY
2.1 NPK-PUFF Dispersion Model

The RIVM and the Royal Dutch Meteorological Instiu
(KNMI) developed the NPK-PUFF dispersion model

1995

NPK-PUFF uses hourly time steps and characterizesrtass
distribution using Gaussian distributions. The maiss
distributed over two vertical layers: a boundaryelaand a
reservoir layer. The path of the pollutant is defeed either by
analyzed or prognostic wind fields. These winddgekan be
derived from data collected at meteorological stetior can be
obtained from numerical weather prediction modgigery hour
several meteorological parameters are updated H-RBFF

such as the boundary layer height, atmospheridlisgabnd

wind and rain field (Verver and De Leeuw, 1992).
i

2.2 Geogtatistical M odel

The dynamics of the radioactivity dispersion pheapan in
space and time can be reasonably well predicteu tive NPK-
PUFF model, but model input and model structuredrecause
the model outputs to differ from the real phenonmeno
Therefore, we propose a probabilistic model thagts the
radiation as the sum of a deterministic trend ,(itke NPK-
PUFF prediction) and a stochastic residual (EQ. (1) is
assumed that the residual at any point in time rsoamally
distributed stationary random function with zero ameand
variance and spatial correlation characterized by
semivariogram.

True concentration(x, t) = NPK-PUFF(x, t) + residi¢g t) (1)

Thus, the distribution of the radioactive plumespace and
time is largely explained by the NPK-PUFF physidispersion
model, which takes the influence of wind speed dirdction

and rainfall and other environmental factors intcaunt. The
underlying principles of assuming a spatially defesnt residual
are the First Law of Geography (Tobler, 1970) and
Regionalized Variable (RV) theory (Matheron, 197The First
Law of Geography states that "everything is related
everything else, but near things are more relales distant
things". RV theory implements the first law of geapghy, by
acknowledging that spatial correlation decreasds distance.

2.3 Optimization Criterion

As stated in the problem definition, the objectiseto choose
the mobile sampling locations such that the areldalse
positives and false negatives are minimized. We tomk into

by this issue in more detail and define the criterit;m be

adapting the PUFF model developed in the 1980'sn(Va minimized in mathematical forms. First, it shoulel boted that
Egmond and Kesseboom, 1983). The aim of the NPKFPUFthe areas of false positives and negatives chamge time,

model is to calculate the concentration and dejoosibf
radioactive materials that are released accidgntall the
atmosphere. The NPK-PUFF model used in this wosciilees
the atmospheric transport of gaseous and aerosohdeal
radioactive nuclides from one or multiple pointeade sources
up to distances of about 100 km. The model outpothe used
to estimate (time-integrated) air and ground ractiviy
concentration directly and consequently used in ased
estimation model to calculate the exposure of tbpufation
(Verver and De Leeuw, 1992).

meaning that some integrations over time would beded to
determine the optimal sampling scheme. Here, howewe
have chosen to select a single time instant (tjlpiceveral
hours after the accident occurred) for which th&egon must
be minimized. Secondly, we should also realise #irate we
have now assumed a stochastic model of realityiniberrectly
classified areas are uncertain, meaning that we mirgmize
theexpectedareas of false positives and negatives.

Given the action level, the predicted value at lacgtion in the
study area falls into any of four possible stafatse positive,
false negative, true positive and true negativey.(F). The
optimization criterion is to minimize a weightednswf the
expected area occupied by the two false states:



C(S) = E[O’ X Afalsepositive + ﬁ X AfalsenegativJ 2

Here, E stands for mathematical expectation &(@8) is the
expected total cost using sampling des§ncaused by false

decisions;a and g are the impact parameters of false positive

prediction and false negative prediction respebtivend A

represents the area occupied. A differentiationvbeh the cost
associated with false positive and false negatieasis useful,
because the associated costs are of a differentenand are
unlikely to be equal (falsely assuming that an dseaafe is
presumably more ‘costly’ than falsely assuming thatarea is
unsafe, henca<f).

correctly classified

" false positive

o

o

Figure 1. Graphical illustration of false positaed false
negative areas. The Solid line delineates the plume’; the
dashed line delineates the ‘predicted plume’.

The following step-by-step approach describes hdve t
optimization objective is computed for a given singpdesign

(Fig. 2):

(1) Compute the NPK-PUFF output for the researcs aof

interest;

(2) Define or estimate a semivariogram model ofdtoehastic
residual;

(3) Generate a large number>200) of realizations of the
stochastic residual using unconditional sequenBGalussian
simulation (Deutsch and Journel, 1998), and addette the
NPK-PUFF output, thus creating a set of N possitoiee

concentration fields;

(4) For each of the N cases, compute the residuahe

sampling locations and apply simple kriging to iptdate these
into a map of the residual;

(5) For each of the N cases, add the map of therpotated

residual to the NPK-PUFF output to obtain a presict
concentration map;

(6) For each of the N cases, compare the predimgalwith the

‘true’ concentration map; compute the associatesh galse

positives and negatives and their weighted average;

(7) Compute the expected total costs by averadirg total

costs over all simulations.

Compute NPK-PUFF model output

Estimate semi-variogram model

of residuals usina Gaussian Simion

%7 Move to
next

realization

| Generate

| Get Sampling locations and compute correspondisiguels |
>
A 4 A
| Interpolate a map of residuals using Simple Kriging|
A 4

“True’ concentration map: NPK-PUFF plume plus siateti residuals;
Predicted concentration map: NPK-PUFF plume pliigdst residuals;

A 4

Determine cell status by comparing the ‘true’ anetiicted
concentration with the intervention level

A 4

Count the different states that each cell falls and store
the cost for this realizatic

: —

| Compute total cost by averaging the costs for zasibns |

Figure 2. Flowchart of calculating the objective function

2.4 Spatial Simulated Annealing

Many algorithms have been developed for solvinglinear
optimization problems. Examples are as genetic rilgos,
neural networks, tabu search and simulated anmealin
(Kunihiko, 1975; Schmitt, 2001; Glover, 1989). Amgrical
comparison of eight heuristic algorithms (Lee arlisH996)
showed that simulated annealing and tabu searchibiexh
superior performance. Simulated annealing (Kirkpktet al.,
1983) is a random search technique which explaitarealogy
with the physical process of annealing. The opttiin
problem is addressed iteratively by using a sequent
combinations, where each new combination is geeérdly
deriving a new combination from slightly and randpm
changing the previous combination. Spatial simdlatenealing
(SSA) is a special case of simulated annealing lwH&als with
the optimization of a spatial sampling design (M@roenigen
etal., 1999).

The SSA steps are described as follows (see Vamrn@yen
et al. (1999) for details):

(1) Start with a (random) initial sampling scheBecontaining
n sampling locations and compute objective func@¢8));

(2) Given the desigrg,, construct a candidate new sampling
design by moving a randomly chosen location ovéistanceh,
whereby the direction df is random and its length is a random
value between 0 and a maximum shift (the maximuifi &h
gradually decreased when the SSA iteration progess

(3) Compute the objective function for the new sobelf the
new scheme produced an improvement (smaller valughte
cost function) then accept the new designSas. If the new
design produces a worse result, then accept it wittertain
probability smaller than one (the probability isadually
decreased as the SSA iteration progresses, towaedsnd it is
close to zero);

(4) Return to step (2), using the new desfyn as starting
point if it was accepted and using the old deSigotherwise;
(5) Stop after a fixed number of iterations or gssome other
stopping criterion and store the design which Hea dmallest
criterion value.

In practice, the optimization of a sampling schemeast also
consider certain spatial constraints. For instanpetential
sampling locations must satisfy openness and abdégs
conditions. The former is important in order to iavo
measurement artefacts (Twenhofel et al., 2005). [alter is
important, because installing the measurement deviry van



must take place in a short time. These spatialtcainss can be
easily included by limiting the candidate sampliogations to a
subset of the study area, namely the set of latatibat satisfy
the constraints.

3. APPLICATION
3.1 Description of the case

To demonstrate the proposed approach, we now presen
example application following a hypothetical andyr fthe
purpose of this work, greatly simplified accidemtyich is at
time t = 0 and at the nuclear power plant of Bdesse the
Netherlands. A south-west wind (speed 3-4'mmoves a
plume of released Cs-137 in north-east directiom: @roblem
concerns optimal allocation of 25 mobile devicesasuging
ambient dose rates and whose measurements are inised
combination with output from the NPK-PUFF dispersinodel
to assess the location and extent of the radiaaglivme with a
concentration above a certain action level at tvobrs.

The candidate sampling locations in our examplecardined

to a discrete set of accessible locations, i.ecarsider points
on a 400m square grid that are in open terrain @aedwithin
300m distance from the road network. The size efstudy area
is 100 x 100 krhand completely covers the plume five hours
after the accident. (Fig. 3).

Rather than attempting to compute total c€{& as defined in
equation 3, we use a relative cost in our optinoratriterion.
This relative cost is based on an assumed rativeesio. (false
positive impact parameter) anfl (false negative impact
parameter) ofo/f = 1/5. Accordingly, our optimization of
sampling locations at t = 5 hours concerns minitioraof the
expectedelative cost of the two erroneous states.

3.2 NPK-PUFF model output

Figure 3 shows the reference Cs-137 plume for thors as
predicted by the NPK-PUFF model. In addition 3Crative
NPK-PUFF outputs were produced by slightly changioge
of the model parameters and model input values. chaages
of model input values represent the expected usiogyton the
release parameters and meteorological conditiond are
generally based on expert judgement (Kok, 2004¢ irodel
results were used only for parameterisation ofetrer model
(see below).

Predicted Plume
Bg/m*3

. 84023
0

Figure 3. Plume predicted by the NPK-PUFF model, 5 hours
after the hypothetical accident.

3.3 Experimental semivariogram and model

Thirty error fields were computed as the differenbetween the
reference and the alternative NPK-PUFF model ostplitese
error fields were randomly sampled aG&TAT(Pebsma and

Wesseling, 1999) was used to compute 30 experiinenta

semivariograms (Fig. 4). After observing these sanbgrams,
a spherical model (Eq. 3) was chosen to represestenario
with medium variability of the differences betwethre NPK-
PUFF model output and reality and, hence, the neamnts
from the mobile devices.

y(h) = 5.0x10° Sph (3.61.0% @)

Experimental Semivariogram
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Figure 4. The 30 experimental semivariograms @erfvom 30
error fields.

3.4 SSA optimization

The example application was based on 100 simulasidual
fields. Because of computational and time condsainwve
stopped the SSA after 2000 steps. The initial podipa of
accepting a worsening design was set at 0.2 adecteased
exponentially as the SSA evolved.



Figure 5 showed how the total cost associated thagtsampling :'7‘“'3;*" (Al
q/m*

design decreased from 22264 for the initial desigh7942 for 0025
the final design, which is shown in Figure 6. .
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Figure 5.Cost criterion against spatial simulated annealing

8 - Figure 6. Initial and final sampling designs
iteration steps

) L ) ) ) ) As we can see from Fig. 6, the initial and randoggyerated
Figure 6 showed the initial sampling design andlfsampling  configuration was somewhat clustered and poorlyeney the
design respectively. The dots represented the mab#asuring  entire study area so that it resulted in a relgtivagh cost in
devices, and they were selected from the discieti@étable  gpjective function. For example, 10 points are telted in the
area which meets the geographical constraints. Thgjiddle of the plume, which performed poorly in itelation.
discretization was done by intersecting suitableaawith the | contrast, the final configuration selected byAS8gorithm
“fishnet” (a set of 1200m *1200m square vectord dwver the  presented a uniform coverage of study area. 13rodtiens
whole study area). The solid line inside the plutebneated the  \yere distributed along the plume internal bordéere became
threshold value of action level. sensitive to threshold value by adding simulateihterpolated
residuals and corresponded to the area of maximmoartainty
so that the observations effectively reduce thaevalf objective
function. The rest of observations were spread tiverarea to
control the variation brought by the limited 10@lizations.

Predicted Plume
Bg/m*3

. 84023

Figures 7 and 8 showed the probabilities of falegative and
positive predicted states under the initial andfihal sampling
design respectively.

initial_false_negative
probability

. High : 0.330000

Low : 0.000000

[ =g~y s

Initial sampling design

False negative area (initial)



final_false_negative
probability

. High : 0.330000

Low : 0.000000

False negative area (final)

Figure 7. Probability maps of false negative areas
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Figure 8. Probability maps of false positive areas

As we can see in Fig. 7 and Fig. 8, the probabditdf false
prediction were decreased moderately. The maximum
probability of false negative prediction was rediideom 0.33

to 0.20 and that of false positive prediction waduced from
0.37 to 0.24. The differences between initial witimal
probability maps accounted for the reason why geitzation
was selected. For instance, the probability of ldwer right
corner area decreased to 0, after placed 5 addition
observations.

Table 1 compared the situation that only the NPK-PU
prediction was used with the one where NPK-PUFHlipt®n
plus additional mobile measurements are used.dhbiified the
improvement after added mobile measuring devices.

Expected | Expected Total cost

false false
positive negative
NPK-PUFF 25725 978 26703
prediction (without
observations)
NPK-PUFF 16861 1081 17942

prediction +
Mobile measuring
devices(final
design)

Table 1.The comparison showed the improvement brought by
the additional mobile measuring devices.

Program implementation: the SSA procedure was coded and
implemented in MATLAB (version: R2006b). On a PentilV
computer with a CPU speed of 1.7 GHz and 512 MB RAM
took 20 hours to finish 2000 SSA iterations.

4. DISCUSSION AND CONCLUSIONS

This study demonstrated that the objective to mizgnmthe
expected area of false predictions can be achieyediopting a
stochastic simulation approach and spatial simdlatenealing.
The computational effort is large, but results loé texample
application show that satisfactory results can beioed with
moderate effort. The objective function improveohir22264 to
17942 by replacing the randomly selected initiadigie with a
final design that avoids clustering and concengrateservation
points near the boundary of the NPK-PUFF plume s&hiritial
results need to be further explored and analyshsoef various
model settings (semivariogram of stochastic regjddio of
false negative and positive costs, time lag, nundfemobile
measurement stations) influence the resulting sagmlesign
will provide valuable insight.

The results can be further improved by using mesdizations
and spatial simulated annealing iterations. Becaudg 100
realizations were incorporated, some random efféatsto the
limited number of simulated realities are visittethe resulting
maps of false positives and negatives. Also, bexaok
computational constraints we used only 2000 spatrallated
annealing iterations. We anticipate that the coats be further
reduced by increasing the number of iterations famel tuning
the simulated annealing parameters.



We computed the predicted area of concentratioas #ne
above the action level by adding the interpolaesidual to the
NPK-PUFF output and comparing at each location refsailt
with the action level. However, when the costs afsd

Kok, Y.S., Eleveld, H, Twenhofel, C.J.W., 2004. Siénity
and uncertainty analysis of the atmospheric dispersodel
NPK-PUFF. In: Proceedings of the '™ International
Conference on Harmonisation within Atmospheric Brspon

negatives are much more expensive than those ak fal Modelling for Regulatory Purposes&Garmisch Partenkirchen.

positives, it may be sensible to take a risk-avergipproach
and classify a location positive when the probgabibf the

concentration being above the action level is gredttan a
given number (e.g., 5, 10 or 25 %). This risk-awersapproach
will decrease the expected area of false negatatebe expense
of an increased expected area of false positivesrdl, this

may pay off when the costs of a false negative sitati are

greater than those of a false positive decision.

The geostatistical model used in this work assuthes the
difference between the NPK-PUFF model output ardityeis

characterized with a zero-mean stationary stoahessidual. In
future work, more elaborate representations of #reor

associated with the model output could be used.ifsiance,
one possibility is to impose realistic uncertaist@ the inputs
to the NPK-PUFF model (e.g., wind speed and wirrdatiion)

and analyse how these propagate to uncertainthenNiPK-

PUFF output (Heuvelink, 1998).

In this paper, we have chosen one time instantMuch the
weighted expected area of false positives and ivegatis
minimized. An extension of the approach used wduddto
integrate the criterion over time so that a dedgymbtained
which minimizes the expected false areas over angime
period. Integrating the criterion over time will terd the
method to optimisation of the assessment of intéiwe levels
instead of action levels. It is however somewhateatifficult
because it will increase computing time and reguiteat the
temporal correlation of the stochastic residuaimisdelled as
well.
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