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PARTIAL CANONICAL CORRESPONDENCE ANALYSIS
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Wageningen, The Netherlands

Canonical correspondence analysis is {(multiple) correspondence
analysis in which the ordination axes are constrained to be linear
combinations of external, explanatory variables. We consider the
case where the set of explanatory variables is subdivided in two
sets, a set of covariables and a set of variables-of-interest. This
leads to partial canonical correspondence analysis. Its ordination
diagram displays the unimodal relationships between a set of
response variables and the variables—-of~interest after the effects
of the covariables have been partialed out. The derivation shows
that the response data can be incidence data, count data,
compositional data or nominal data.

1. INTRODUCTION

Canonical correspondence analysis is a multivariate analysis technique to
display unimodal relationships between a set of response variables and a set
of explanatory variables in a low-dimensional space, called an ordination
diagram [20,21]. Canonical correspondence analysis has been used in _ecology
as a simple form of constrained multidimensional unfolding [N,10,12] to
relate the occurrences or abundances of a number of species to environmental
variables [22]. Applied to nominal variables, canonical correspondence
analysis is identical to redundancy analysis of qualitative variables [14]
used, for example, to relate nominal welfare variables to social background
variables. Here we consider the case where the set of explanatory variables
is subdivided in two sets, a set of p covariables and a set of q variables
in the effects of which one is particularly interested. Stated informally,
we want an ordination diagram of the unimodal relationships between the
response variables and the q variables of interest after eliminating the
effects of the p covariables. The object is thus to partial out the effects
of the covariables, hence the name partial canonical correspondence
analysis. Ter Braak [20] derived canonical correspondence analysis as an
approximation to canonical Gaussian ordination. Here we define partial
canonical Gaussian ordination, derive partial canonical correspondence
analysis as an approximation and give an example. Our derivation starts from
a constrained generalized linear model and shows that the technique can be
applied to nominal data (multi-way contingency data), compositional data,
count data and incidence data, with quantitative ‘or qualitative explanatory
variables. Related work on partial analysis is given in [3,15,25].

2. THEORY

Let Y and Z be real matrices of order nxm and nx(ptq), containing n
observations of m nonnegative response variables and p*q explanatory
variables, respectively. The p+q explanatory variables are subdivided in p
covariables (including the vector ln) and q variables of interest and

Z = (Z1, ZZ) is partitioned accordingly. The response variables can be
incidences (1/0) or counts of animals or plants in regions, or fractions of
constituents in a composition. For nominal variables, Y is a multivariate
indicator matrix [7,97 with as many columns as categories. The elements of a

matrix B are denoted by bij’ the j-th column of B by pj and the i-th row of
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B by b(i , a column vector, and a generalized inverse of B by B”. The symbol
E denotes expectation.

We now define partial canonical Gaussian ordination as a constrained,
generalized linear model.

Definition: For any integer r<q, the model of partial canonical Gaussian

ordination is
1

* *
link (Byy) = o3 * @ = 7 (2(q) ) ™Mz (5)"U0) S

where link is a natural link function (Table 1) [16:p.24] and M is

constrained to

M= DD' with D = (g g) (2)

with F, G and C parameter matrices of order pxp, pxr and axg,
respectively, and 0 is a matrix of order gxp with zeroes; Yk) is a
(p+q)-vector representing the optimum of response variable k, a, is a
scalar related to the maximum expected response, and ¢35 is an
incidental parameter for sampling unit i, which takes care of the
constant-sum constraint, if present [16:p. 106, p. 142].

Table 1 shows for various types of data the appropriate link function, error
distribution and ¢;. A statistical interpretation of partial canonical
Gaussian ordination is that the m response variables (in Y) are explained by
two sets of explanatory variables (in Z = (Z1, 22)) by a generalized linear
model (GLM) [16] with as predictor a quadratic form in the explanatory
variables. It is a unimodal regression model (Fig. 1) with constraints. The
difference with standard GLM, which is applied to each response variable
separately, is that the parameter matrix M is identical for all response
variables and that M is constrained to be positive semi-definite of rank at
most p+r, so as to allow an r—-dimensional representation of the partial
effects of the q variables of interest on the response variables. This
becomes clear by writing the model ag a constrained ordination model. By
setting X/:y = D'g(i) and Uy = D'g(k), the model is transformed to the
canonical form (Fig. 1)

1
link (Bys) = 63 * 3, = = (x(5)780)) " (X)) ) - (3

By this transformation, the nx(p+q) matrix Z is transformed to a nx(p+r)
matrix X, whose i-th row is X(1)- In terms of variables (the columns of Z
and X), the p+q explanatory varlables are transformed to p+r axes of a new
coordinate system, called ordination axes, by

X, = 2,0 (1 <s<p) (4a)
Xg = Lq8g * IS (p <'s < p*r) (4p)
Table 1. Types of response which can be analysed by model (1) which is the

basis of partial canonical correspondence analysis (¢ = incidental
parameter, 1 = index of the L nominal variables with, in total m,
categories, ref = references for related models).

type of response example link error* ¢ ref
incidence artifacts in graves logit Bernoulli 0 13,19
pick-any-out—-of-m data 2
abundance species in regions log Poisson 0 13,19
compositions pollen data log multinomial ¢ 13,16
electrophoresis data 23
nominal multiple-choice data log multinomial bi1 1,8

*¥) including extensions to quasi-likelihood models [16].
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i.e. the first p ordination axes are a linear combination of the p
covariables and the last r axes are a linear combination of all p+*q
explanatory variables. Model (3) without the constraints in (4) is the
Gaussian ordination model [6,11,19] and contains Ihm & Van Groenewoud's
[13] generalized logit model. If a, = a and ¢; = 0, the model shows shifted
single—-peakedness [11].

In the sequel we focus on the estimation of a basis for the column space of
the matrix D and on the estimation of the optima after transformation

u(k% = (UyqsUyps ==+ Uy(psp)) ' Under the assumption that the {yil are
elther independent Bernou?li variables when link(.) = logit(.), or
independent Poisson or multinomial variables when link(.) = log(.) (Table
1), with expectations defined by (1), the maximum likelihood equations for
u,q and the elements of D become, after some rearrangement [20

Ugs = Iy Vitis Ve T (T3 (57U (BY 1)V (5)
Ly Zij[zk Vik(Xisugs)) = I zij[zk (x; 5™Ug) Y 1] (6)
for k=1, ..., m; j=1, ..., p*q and s=1, ..., p*r, where y, = L Yike

We now derive partial canonical correspondence analysis as an approximation
to Eqs (5)-(6) under the following simplifying conditions:

C1. the maxima are equal (ak=a, k=1, ..., m), or random and independent of
the optima Uik)e

C2. the optima u() are uniformly distributed over a hypercube A with sides
parallel to the ordination axes and of length much larger than 1,

C3. the sampling points $(j) are uniformly distributed over a 'large’
hypercube B that is contained in A and that has the origin as
centroid,

Cl. m and n are large so that the optima and sampling points are densely
spaced. For nominal variables, the number of classes per variable
should be large.

Under these conditions, Eyik is approximately symmetric about Xjg and about
Upg for each s [19], so that we may use the approximations

L (X3g7uyg)EYyy = 0 (1)
*
Iy (xis—uks)Eyik = =AgUpgVey -+ (8)

Fig. 1. A unimodal relationship between a response variable y and two
regressors (Eq. (3) with p+r = 2 and link = log).
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The proportionality constant A; comes in because the unimodal response
surfaces are the more truncated the more their optima lie towards or beyond
the edge of the sgmpling region [19.20]. Using Approximation (8) and the
equation Ay = 1-As, we obtain from (5)

n
AgUs = Tjio1 YiXis/Yek - (9)

By inserting (4) in (6) and using Approximation (7) we obtain

]

*
Al
ZRx (1 <s<p) (10)

*
Z'Ryg (p < s < p+r) (11)

t
(Z1RZ1)§s

(Z'R2)dg

x * * *
where R = diag (y;,) with y;, = I yj and X5 = (Xqgs eeey Xjgr +ve xns)'
i

with

m
is T Ik=t Yiktks' Vi (12)

Equations (4) and (9)-(12) can be solved in a similar way as the transition
formulae of canonical correspondence analysis [20].

Because 22 contains the variables of interest, it would be convenient to
solve for the last r ordination axes without having to extract the first p
ordination axes. Fortunately, this can be achieved by making the
partitioning of Z in Z1 and Z2 explicit. By solving (11) for the component
¢g in dg = (gé,gé) and using the standard formula for the inverse of a
partitioned matrix [18,p.33 , Wwe obtain for s > p

- - — *
1 \
(ZZRZZ) ZZR‘)SS’ where (13)

(I—Z;’)Z2 (14)

]

¢
=8
Z2

]

and where the notation B° is used to denote B(B'RB) B'R, the projection
operator on V(B), the column space*of B, in the metric defined by R.
Further, x, is the projection of ¥g on Z = (21,22) as follows from {(4b) and
(11), so that

(15)
But, in canonical correspondence analysis the last r ordination axes are
required to be orthogonal to the first p ordination axes [20], so that

x,. =0 (p < s < p*r) (16)

ip)' Therefore,

=

]

BN
~~ !
N~

(p < s < p+r) . “n

The last r ordination axes can thus be obtained from (9), (12), (13) and
(17). These equations form the transition formulae of partial canonical
correspondence analysis and define an eigenvalue problem akin to that of
canonical correspondence analysis [20]. This can be verified by inserting
consecutively in (13) the equations (12), (9) and (17), giving
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(S51K7*Sy, = ASppleq = 0 (18)
where 321 = Zz'Y, S12 = Y'Zz, 522 = ZéRZZ and K = diag(Y+k)-

In summary, partial canonical correspondence is a canonical correspondence
analysis technique whereby p+r orthogonal axes are constructed. The first p
axes are linear combinations of the p covariables only and the subsequent r
axes are 1linear combinations of the p covariables and the g variables of
interest. As the covariables are of less interest in the analysis, the
first p axes are usually ignored. The subsequent r axes are considered as
the first r ordination axes of partial canonical correspondence analysis.
They give a low-dimensional representation of the unimodal relationships
according to model (1) with constraint (2) between the variables of
interest and the response variables after partialing out the effects of the
covariables. Technically, the only difference with canonical correspondence
analysis is that the matrix of explanatory variables is replaced by the
matrix 22 of residuals of a multivariate multiple regression of Z, on Z4
().

Special cases of partial canonical correspondence analysis are:

1. Canonical correspondence analysis [1“,20] if 2 is a nx1 matrix of 1's
(a single trivial covariable only).

2. Partial correspondence analysis if 22 is a nxn identity matrix (no
variables of interest) or any arbitrary nx(n-1) matrix of rank n-1 (too
many variables of interest [21]).

3. Multiple correspondence analysis [7,9] if 21 and 22 are as specified in
1 and 2 above (no explanatory variables or too many of them).

4, Weighted averaging ordination [6,21] if p=0and q =1 (a single
variable of interest).

Our definition of partial correspondence analysis differs from that by
Yanai [25].

3. ORDINATION DIAGRAM

As in correspondence analysis, the results can be presented in an
ordination diagram in which the rows and columns of Y are represented by
points at locations Xy and Uik)e To the extent that the analysis
approximates the fitting of Gaussian surfaces (1), the points for response
variables are approximately the optima of these surfaces; hence, the
estimated value of Eyik decreases with the distance between the points of
sampling unit i and response variable ¥ (Fig. 1). The estimated values are,

of course, conditional on the values of the covariables.

In partial canonical correspondence analysis the ordination diagram can be
supplemented with arrows for the variables of interest (Fig. 2). This is
done in such a way that, in conjunction with the points for response
variables, the arrows give a weighted least squares approximation of the
elements of the mxq matrix W = K™'Y'Z,. The (k, j)-th element of W is the
weighted average of response variable k with respect to variable of
interest j, after this variable is adjusted for the covariables. In a
unimodal model, the weighted average indicates the centre of a response
curve. So the matrix W summarizes unimodal relationships, like a matrix of
partial correlation coefficients summarizes linear relationships. In the
approximation of W, response variables are given weights proportional to
their total y,, . The coordinates of the supplementary arrows can be
obtained by a multivariate regession of W on U = {uks}, i.e. by

C, = W'KU(U'KU)™Y, (19)
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The approximation to W is then given by the bilinear model UC;. The plot of
points for response variables and arrows for variables of interest is thus
a biplot [5], termed the species—environment biplot in [20]. This plot is
not just supplementary, as it can be made central to (partial) canonical
correspondence analysis [22].

4, EXAMPLE

The example is taken from H. Smit (in prep.). Smit studied the abundances
of diatom species in dykes in the province of Zuid Holland (The
Netherlands), with special reference to the effects of water pollution. A
sample of 402 dykes was taken, which contained in total 330 species.
Variables that indicate pollution were compounds with phosphorus (P) and
nitrogen (N), and biological oxygen demand (BOD). Apart from variation in
pollution, the sample showed strong natural variation due to the season of
sampling and due to a gradient from fresh to brackish water. This natural
variation was partialed out by specifying a season indicator variable and
the chloride concentration (Cl) as covariables. Partial canonical
correspondence analysis on diatom species with 24 variables-of-interest
showed a first axis (A1 = 0.10) that was a clear pollution gradient as
indicated by the arrows for P, BOD and N in the ordination diagram (Fig.
2). The second axis (X, = 0.05) revealed the importance of other natural
variation, notably soil type and dyke width. Species of polluted waters are
represented on the right hand side of the diagram (Fig. 2), e.g. Navicula
accomoda and N. subminuscula, whereas species of unpolluted waters lie on
the left hand side, e.g. Eunotia pectinalis. Species in the middle have
their optimum at intermediate pollution levels or are indifferent [20].
Which possibility is most likely can be decided upon by plotting the
abundance values on the ordination diagram. Despite their occurrence at
high values of P and BOD, two species of brackish waters, Melosira
jurgensii and Navicula diserta, are displayed on the left hand side of the
diagram, because brackish waters naturally have high P- and BOD-values.
This illustrates that Fig. 2 displays partial effects.

5. DISCUSSION

In this paper partial canonical correspondence analysis is derived as an
approximation to maximum likelihood estimation of a particular unimodal
model. But it does not maximize a likelihood. What is being maximized is
the least-squares criterion of multiple correspondence analysis
[7,11,12,21,2“] with the additional constraints (a) that the axes are
linear combinations of all explanatory variables and (b) that the axes are
orthogonal to the covariables. We note that the orthogonality constraints
do not follow necessarily from the maximum likelihood approach (see below
Eq. (15)). They are not sufficient either; we conjecture that when the
Guttman effect [9,19] crops up, the transition formulae have solutions
close to solutions of the maximum likelihood equations that correspond to
local maxima. Such solutions can be excluded by "detrending" [6,19,23] or
by feleting ?xplanatory variables [21]. Other loss-functions are considered
in {10,12,17].

In the dual scaling approach to correspondence analysis [9], category
scores form the optimal quantification [7] of the corresponding nominal
variables. This paper gives reason to interpret category scores as optima
of underlying response curves (termed trace lines in [2“]). The properties
of correspondence analysis in terms of a unimodal model were explored
earlier by Torgerson [2“: point items], Heiser [10,11} and IThm & Van
Groenewoud [13 .
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For data with a constant-sum constraint (¢i # 0 in Table 1), model (1)
can be rewritten as

log (Eyj) = of + ag * 2y M uk) (20)

where ¢; and a: have absorbed the quadratic forms in Z(y) and Q?k) in Eq.
(1), respectively. Model (20) with p=1 and r=1 is the qualitative logistic
regression model, from which Anderson f1] developed his regression method
for ordinal response variables (cf. [8]). The results of this paper can be
used to show that his method can be approximated by canonical
correspondence analysis with ordinal constraints, as in Gifi f7], on the
category scores. It is surprising that for nominal and compositional data
the unimodal unfolding model (1) can be reexpressed as a generalized
bilinear model (20)!

. PEAT o
Nit bre %
®
A
Eun fun
» Eun pec
Fe Ach hun N
AMe‘ jur ‘Nav sem
e Aphcas g .
A o Nit pal o aNavper Navcus 80D
WELL . A .
i 2 4 Nav acc
Ach min ® Gom par
. 4 Nav dis P
. Nav gre . axis 1
Cocpla a . . . . Nav sub
i *
Nav exi ol Aph Iyb N
4 Rho cur
A .
Nit dis » Ca ‘NII amp
a WIDTH
0O, Gei oli
CLAY

Fig. 2. Ordination diagram of a partial canonical correpondence analysis
of diatom species (A) in dykes with as explanatory variables 24 variables-
of-interest (arrows) and 2 covariables (chloride concentration and season).
The diagram is symmetrically scaled [23] and shows selected species and
standardized variables and, instead of individual dykes, centroids (o) of
dyke-clusters. The variables-of-interest shown are: BOD = biclogical oxygen
demand, Ca = calcium, Fe = ferrous compounds, N = Kjeldahl-nitrogen, 0, =
oxygen, P = ortho-phosphate, Si = silicium-compounds, WIDTH = dyke width,
and soil types (CLAY, PEAT). All variables except BOD, WIDTH, CLAY and PEAT
were transformed to logarithms because of their skew distribution. The
diatoms shown are: Ach hun = Achnanthes hungarica, Ach min = A.
minutissima, Aph cas = Amphora castellata Giffen, Aph 1lyb = Af—lybica, Aph
ven = A. veneta, Coc pla = Cocconeis placentula, Eun lun = Eunotia lunaris,
Eun pec = E. pectinalis, Gei oli = Gomphoneis olivaceum, Gom par =
Gomphonema parvulum, Mel jur = Melosira jlrgensii, Nav acc = Navicula
accomoda, Nav cus = N. cuspidata, Nav dis = N. diserta, Nav exi = N.
exilis, Nav gre = N. gregaria, Nav per = N. permitis, Nav sem = N.
seminulum, Nav sub = N. subminuscula, Nit amp = Nitzschia amphibia, Nit bre
- N. bremensis v. (brunsvigensis, Nit dis = N. dissipata, Nit pal = N.
palea, Rho cur = Rhoicosphenia curvata.

(Adapted from H. Smit, province of Zuid Holland, in prep.)
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