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Abstract

Caccamo, M. (2012). Management parameters from the random regressions
testday model to advice farmers on cow nutrition. PhD thesis, Wageningen
University, the Netherlands

Accurate monitoring and adequate planning of activities at modern dairy farms are
important to improve farm profitability. The aim of this study was to investigate
the use of test-day information to support farmers in management of Sicilian dairy
herds. To this purpose, a test-day random regression model was developed for the
analysis of production data of Sicilian dairy herds. Highest between-herd variation
found in the variance components analysis using the test day model showed clear
evidence of benefits in using a random regression TD model for management
improvement. To identify sources of variation able to explain differences between
herds in milk and milk components production herd curves, a field study was
conducted in Southern Italy (Ragusa province) where diets and chemical
composition of the diet was collected at herd level (every 3 months) and testday
milk yield records at individual cow level (every month). Data collection was
performed from March 2006 through December 2008 on 40 cooperating farms.
Animal breed, feeding system, and total mixed ration chemical composition were
identified to influence between-herd variation. At the individual cow level, test day
model was further used to investigate the production response to changes in
chemical and physical composition of diets in Ragusa province. Starch had the
greatest effect on milk, fat, and protein production when crude protein and neutral
detergent fiber contents were at a high and low value, respectively. Effects of a
nutrition component on production changed when the other nutrients were
included in the model, suggesting the confounding response one can have when
multiple nutrients are not accounted for.
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1 General introduction

1.1 INTRODUCTION

The competitiveness of the dairy sector varies between regions in Italy due to the
heterogeneity of production structures, types of farms and differences in
performance levels. In addition there is considerable diversity with respect to the
relationship and the role of dairy farming in relation to the environment. The latter
heterogeneity results from differences in natural, historical and cultural conditions
that have developed over long period of time. In Sicily approximately 125,000 dairy
cattle are raised, with relatively few very large farms because of space limits and a
specialization. Dairy cattle in Sicily are raised in concentrated areas of plains and
hills of the province of Syracuse, Messina, Palermo and Catania, particularly
flourishing in the northwestern part of the province of Ragusa. Compared to
Northern regions in Italy, smaller traditional and less modernized systems are
present, that have to deal with hot climate, higher costs of feed and energy. The
dairy industry in the Hyblean region of Sicily, which mostly consists of the
southeastern province of Ragusa, has two main production systems. Modest size
herds of dairy cows are generally managed under the traditional system based on
pasture and local produced fodder. Milk produced by these cows is mainly used to
produce native Ragusano, provola, and ricotta cheeses. Dairy producers on other
farms use a more input-intensive, specialized system on larger herds of higher
producing Holstein cows, with diets based on total mixed rations. For these herds,
milk is produced for fluid and manufacturing purposes. In areas with intensive
farming, where attention is paid to genetic improvement and adequate business
management based primarily on mechanization and control of environmental
parameters, farms are economically competitive.

In the two-year period 2010-2011, total milk production in Sicily was 177,671ton, of
which around 62% was produced in Ragusa province. In this area, 2,767 tons of
milk is used to produce Ragusano PDO cheese (year 2008-2009).In the Sicilian
region, there are 755 dairies with approved facilities for the processing of milk
(data provided by the Regional Health Department) and of these 25% are located in
the province of Ragusa, representing therefore the most important production pole
for the dairy sector in Sicily. The prospects for development of the dairy sector in
Ragusa are related to adoption of technical and business management practices,
cost reduction, meeting the future demand for quality products, implementation of
sanitary controls on farms for prevention of animal disease epidemics. The
enhancement of quality products is clearly linked to the protection of recognized
geographical factors that influence the type of production system within regions.
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1 General introduction

In 1996, the dairy research center "Consorzio Ricerca Filiera Lattiero-Casearia"
(CorFilac) was established to support the development of the dairy sector in
Ragusa. The overall goal of CoRFiLaC is to improve the net economic return to dairy
farmers and to improve the market competitiveness of Ragusano cheeses for the
300 dairy farms, producing more than 50% of Sicilian milk. To realize this, CoRFiLaC
aims to deliver scientific and technical information to producers in a timely fashion
to support management decisions for dairy farms and to support the production of

traditional Sicilian dairy products.

Improving farm management

Management is the decision making process in which limited resources are
allocated to a number of production alternatives in such a way that goals and
objectives are attained (Kay, 1986). Management is basically described by three
main functions (Huirne, 1989): planning, is the systematic design to direct future
activities based on available knowledge in order to accomplish the farm’s goals and
objectives; implementation, is the execution of planned activities; control, involves
measuring performance and comparing it with standards (actual of desired).
Modifications based on deviations between performance and standards are
implemented in the next management cycle. A simplified scheme of farm
management cycle is presented in Figure 1.

12



1 General introduction

Strategic planning

Long term (years)

Tactical planning
Medium term (year,

season)

Operational planning

Plans Analysis

Implementation

Control

Figure 1.1 - Farm management cycle. Adapted from (Huirne, 1989).

The information on farm productivity to support management on dairy farms is
often collected by Dairy Herd Improvements agencies (DHI). Dairy farmers who are
enrolled with a DHI are visited once per month, during a day called “test day”.
During this visit, the representative collects a large amount of information on the
herd such as breeding events (e.g., calving or mating dates) and sex and weight of
new-born calves. In addition, the milk production of each cow is measured and a
milk sample is collected to determine the fat content, protein content, and somatic
cell count. This information is then processed and analyzed centrally (i.e., on DHI
computers) by taking into account information generated during previous test days
at both local and national level. A few days after the test day, the producer receives
a report containing the information collected on test day. This report may also
contain management information on individual cows and the herd as a whole. The
management information provided to the farmers is highly variable from country to
country, and sometimes from region to region within the country. The information
contained in the report can then be used by the producer for making decisions for
the improvement of on-farm management practices. Although DHI data and
information can contribute to improved management practices, the benefits only
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1 General introduction

come about if the farm manager and/or the advisor spend a considerable amount
of time in analyzing the incoming information. This process can be time consuming
and complex due to the large amount of information. The number of information
increases rapidly with number of cows. The analyst needs to combine the DHI
information with information which is often not reported in summary sheets, such
as feed availability and health status of the herd. To extract all the information to
support management decisions is, therefore, not a trivial process. For this reason, it
is necessary to develop analytical tools which will accelerate and improve these
analyses. Such tools should not only filter and pre-process the data, but also
present the results in a way that they are easy to use by the producer. The tool
should allow the farmer and/or the advisor to determine rapidly management
decisions that will lead to improvement of performance in technical and financial
terms.

Using milk yield in management advice
Individual cow level

Random regression models that use test-day records for milk yield have been
implemented for the estimation of breeding values. The advantage of these models
is that (changes in) lactation curves, and variation around typical population or
herd lactation curves can be estimated, after adjustment for other factors like age
at calving that influence test-day records. Recent studies have investigated the
possibility to use a test-day model for management purposes (Koivula et al. 2006,
Halasa et al. 2009). Management information is crucial both for accurate
monitoring and for adequate planning of activities. The farmer can be supported by
advisors in interpreting the information and in making plans. Preferably,
interventions (revision of planning) can be applied in an early stage, e.g. before
clinical abnormalities have developed. At herd level the average production level is
a useful parameter to monitor the overall performance of the herd. At the
individual cow level, Interest lies not only in absolute performance level but also in
deviations from expected values. The farmer should focus attention on cows with
abnormally high or low deviation from expected production, unusual milk
composition or high somatic cell counts. As such abnormalities are usually rare this
is generally called management by exception (Ouweltjes and De Koning, 2004). The
test-day model gives very reliable predictions and is, therefore, very useful to
detect potential problem cows. Getting a warning is just a first step. Next is to
further diagnose whether it is not a false alarm, and if not what might be the cause
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1 General introduction

of the problem. For some abnormalities this can be more or less straightforward,
but for others more detailed follow-up by the farmer or specialist (e.g.
veterinarian) is needed to determine the cause of the abnormality. When the most
likely cause is found follow up action is implemented to correct the problem.

Herd level

Both herd test date effects and herd lactation curves are potentially useful for
management support at herd level. Koivula et al. (2006) developed a management
tool using a TD model that accounts for month-to-month short-term environmental
variation in production through the herd test date classification. Herd test date
effects are corrected for environmental and genetic parameters, and are very
useful to compare performance of the same herd over time. This management tool
can be useful to detect management problems or to determine consequences of
changes in herd management: significant changes in feeding, health and other
management factors will be reflected in these figures. In order to interpret
deviations it is required to have information on the variability of the estimates over
time. In The Netherlands, herd specific lactation curves were included in the test-
day model in order to model differences in lactation curve shape across herds (De
Roos et al., 2004). Herd curves were included in order to reduce abnormally high
deviations in genetic variation, but have not been considered for management
purposes. They can provide information on performance of the entire herd or
groups of animals within the herd, especially when they can be compared with a
suitable standard. Abnormalities in these curves can indicate specific problems that
deserve attention. However, as these figures are calculated on both historical and
new information, changes due to herd management factors might appear very
slowly. Opportunities to use test-day information at herd level have not been fully
exploited.

The effect of nutrition on lactation curves

It is recognized for a long time that lactation curves are very useful instruments to
monitor trends in milk production performance over time (Skidmore et al., 1996) at
herd or individual cow level. For proper interpretation of lactation curves, one has
to relate information from these curves to management practices and
environmental conditions that might impact lactation curves.

At the individual cow level, literature suggests greater production responses to
dietary changes are greater in cows with high potential milk production (Brun-
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1 General introduction

Lafleur et al. 2010). Furthermore, first lactation cows responded differently than
multiparous cows to dietary changes. This means that response in milk production
to dietary changes is dependent on production potential of the cows and parity. In
addition also stage of lactation and relative concentration of dietary nutrients
might have an effect. Therefore, a better understanding of the effects of diet on
production requires a methodology which takes into account the effects of parity,
production potential and lactation stage across multiple diets.

In a study aimed to analyze dairy production needs of cattle owners in
Southeastern Sicily, Licitra et al. (1998) observed increasing neutral detergent fiber
and decreasing crude protein content of forage as the growing season advanced
from early winter to early summer. Forage composition showed drastic undesirable
changes in NDF and CP content similar to tropical ecozones, which was correlated
with the cause of seasonal effects (P < 0.01) on milk production and composition.
Abnormal lactation curves (flat without discernible peak, or even convex) were
observed especially in spring-calving and in average- or lower-producing cows. A
potential cause was the low nutrient intake from reduced forage quality and
guantity, resulting in nutrient supplies inadequate to meet requirements. Licitra et
al. (1998), in conclusion, suggested a high-priority for Sicily was the need to
evaluate forages and other feedstuffs quantitatively in order to optimize forage
utilization in better formulated diets for all production system.

Raffrenato et al. (2003) observed differential genetic expression in low and high
opportunity Sicilian and Holstein and Brown Swiss herd environments. Low
opportunity herds were associated with peakless lactation curves and low
frequency of use of nutrition, milking, health, and animal handling. In that study,
compression in sire components of variance was translated into diminished genetic
gain (20% to 60%) from selection in low compared to high opportunity
environments. Environmental constraints were defined as: within herd-year
standard deviation for mature equivalent milk yield, detectable incidence of normal
vs. abnormal lactation, and causal relationships from high and low frequency use of
nutrition, milking, health and animal handling practices. From a management point
of view, besides unequal genetic progress caused by decisions altered by
diminished daughter milk response and environmental limitations, low producing
herds are characterized by low utilization of management practices that prevent
adequate expression of genetic potential. This would reinforce the importance of
using test day production data to provide farmers in Ragusa province with
management advice tools, especially for low producing herds.
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1 General introduction

1.2 OBJECTIVES AND THESIS OUTLINE

The general aim of this thesis is to exploit the opportunities offered by random
regression test-day models for milk recording data for the estimation of breeding
values and the development of management tools. For this purpose a random
regression test-day model was developed, and an experiment was set up that
collected information on diet composition on farms along with test-day records of
individual cows. The specific objectives of the research in this thesis are 1) to
develop the test-day random regression model for the analysis of production data
of Sicilian dairy herds, 2) to develop parameters from the random regression model
that that can be used to advise dairy farmers on nutritional management of their
dairy cows, and 3) to investigate the production response to changes in chemical
and physical composition of diets in Ragusa province.

The first step was to identify the most important sources of within- and between-
herd variation for the traits and population concerned. For this purpose, variance
components for test-day milk, fat and protein yield, and somatic cell score were
estimated using a random regression test-day model (Chapter 2). The second step
was to develop management parameters that can link differences in parameters of
the test-day model to differences in management practices between herds. This
variation was investigated by associating animal breed, feeding system, and total
mixed ration chemical composition with herd curve traits estimated using a
random regression test-day model (Chapter 3).

To assess production response to changes in chemical and physical composition of
diets, nutrient composition (Chapter 4) and particle size distribution (Chapter 5) of
the total mixed rations were associated with cow lactation curves for milk, fat, and
protein yield. Further, the estimates of a single component analysis were compared
with a model that takes into account all dietary components simultaneously. In the
final chapter, the opportunities to use the information to support management
decisions on the individual cows and the herd as a whole are discussed.
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Abstract

Test-day (TD) models are used in most countries to perform national genetic
evaluations for dairy cattle. The TD models estimate lactation curves and their
changes as well as variation in populations. Although potentially useful, little
attention has been given to the application of TD models for management
purposes. The potential of the TD model for management use depends on its ability
to describe within- or between-herd variation that can be linked to specific
management practices. The aim of this study was to estimate variance components
for milk yield, milk component yields, and somatic cell score (SCS) of dairy cows in
the Ragusa and Vicenza areas of lItaly, such that the most relevant sources of
variation can be identified for the development of management parameters. The
available data set contained 1,080,637 TD records of 42,817 cows in 471 herds.
Variance components were estimated with a multi-lactation, random-regression,
TD animal model by using the software adopted by NRS for the Dutch national
genetic evaluation. The model comprised 5 fixed effects [region x parity x days in
milk (DIM), parity x year of calving x season of calving x DIM, parity x age at calving
x year of calving, parity x calving interval x stage of pregnancy, and year of test x
calendar week of test] and random herd x test date, regressions for herd lactation
curve (HCUR), the animal additive genetic effect, and the permanent
environmental effect by using fourth-order Legendre polynomials. The HCUR
variances for milk and protein yields were highest around the time of peak yield
(DIM 50 to 150), whereas for fat yield the HCUR variance was relatively constant
throughout first lactation and decreased following the peak around 40 to 90 DIM
for lactations 2 and 3. For SCS, the HCUR variances were relatively small compared
with the genetic, permanent environmental, and residual variances. For all the
traits except SCS, the variance explained by random herd x test date was much
smaller than the HCUR variance, which indicates that the development of
management parameters should focus on between herd parameters during peak
lactation for milk and milk components. For SCS, the within-herd variance was
greater than the between-herd variance, suggesting that the focus should be on
management parameters explaining variances at the cow level. The present study
showed clear evidence for the benefits of using a random regression TD model for
management decisions.

Key words: dairy cattle, herd management, test-day yield



2 - Variance components analysis

2.1 INTRODUCTION

Test-day (TD) yield records from the milk recording system provide an important
source of information for both breeding and management. Herd management
improvement and breeding value estimation have been separate processes
historically, with different statistical methods and frequencies of data processing.
However, there are clear advantages to using the same data and statistical
procedures for both management purposes and genetic evaluation.

Test-day models are used in most countries to perform genetic evaluations for
dairy cattle by using TD observations instead of aggregated 305-d yield
observations (Ptak and Schaeffer, 1993; Reents et al., 1995; Jamrozik and Schaeffer,
1997; Schaeffer et al., 2000). By modeling the shape of the lactation curve and the
variability of yields around general shapes, TD models provide 4 to 8% more
accurate genetic evaluations of cows compared with evaluations from 305-d yields
(Schaeffer et al., 2000). Random regression TD models are an extension of TD
models that allow the shape of the lactation curve to differ for each cow by
including random regression coefficients for each animal (Schaeffer and Dekkers,
1994; Jamrozik et al., 1997).

Everett et al. (1994) suggested using the results of TD models for monitoring
genetics and management in dairy cattle, and several management applications
have been suggested. Mayeres et al. (2004) and Pool and Meuwissen (1999)
investigated the ability of a TD model to predict yield from TD records. The
inclusion of herd-TD (HTD) and herd curve (HCUR) effects is another important
aspect of TD models and would be applicable for management purposes. The HTD
effect accounts for month-to-month variability and is particularly informative with
regard to short-term management changes that affect the whole herd at a
particular TD, for instance, a change in feed ration. Koivula et al. (2007) described
the use of monthly herd-management effect solutions from a TD model in Finland.
Herd curves, which can be calculated from the random regression TD model,
describe differences in lactation curve shapes across herds (De Roos et al., 2004).
Those herd-specific lactation curves give information on how animals within a herd
perform compared with how they would have done under average management
circumstances. Abnormalities in these curves can indicate specific existing
problems that deserve extra attention. Variation in lactation peak or persistency
across herds can be caused by differences in feeding systems (Horan et al., 2004),
daily milking times (Rekik and Ben Gara, 2004), or pregnancy (Tekerli et al., 2000).
Therefore, HCUR variance is a good indicator of variability in lactation curve shapes
arising from herd management differences.
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2 - Variance components analysis

Given the many options in using the solutions or functions of the solutions of the
TD model for interpreting herd management, an important first step is to identify
the most important sources of within- and between-herd variation for the traits
and population concerned. The second step is to develop management parameters
that can link these sources of variation to differences in management practices.
The objective of this study was to estimate variance components for TD milk, fat,
and protein yield, and SCS by using a random regression TD model. Special focus is
given to HCUR and HTD variances, which are mainly related to between- and
within-herd management.

2.2 MATERIALS AND METHODS

Data

Test-day milk (kg), fat (g), and protein (g) yield, and somatic cell count (cells/mL)
records were available from 2 Italian regions: Ragusa in southeastern Sicily, and
Vicenza in the south of Veneto. The records were supplied by CoRFiLaC (Ragusa,
Italy) and APA Vicenza (Vicenza, Italy), respectively. In total, there were 4,088,505
TD records of 463,654 lactations of 154,678 cows in 1,303 herds over the period
from January 1992 to March 2006. Values for somatic cell count were transformed
into somatic cell score (SCS).

Data were edited to extract the more informative records and to ensure
connectedness in the data, such as for continuous TD. Data were edited to select:
1) records without missing values; 2) records with pedigree entry available, sire
known, and a minimum of 9 daughters per sire; 3) records for 5 to 450 DIM; 4) age
at calving in the range mean t 2 standard deviations; 5) records from HTD with at
least 5 TD records; 6) herds with more than 10 HTD; 7) lactations with at least 5 TD
records; and 8) lactations with a length of at least 150 d. Data edits 2 through 8
were repeated iteratively until convergence (i.e., until the number of records
deleted was negligible).

The resulting data included 2,183,322 TD records, 53% of the original. To reduce
the memory requirements and computing time, the data set was further reduced
by randomly deleting 50% of herds with animals belonging to the most common,
larger breeds (Holstein-Friesian and Brown Swiss). To fulfill the above criteria, the
editing procedure was repeated. The final data set used for parameter estimation
contained 1,080,637 TD records from 118,580 lactations of 42,817 cows in 471
herds (Table 2.1).
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2 - Variance components analysis

Table 2.1 Data characteristics of the dataset before and after data editing and random

selection of 50% of herds.

Before After Range
TDrecords 4,088,505 1,080,637 -
Cows 154,678 42,817 -
Herds 1,303 471 -
Test days 4,487 4,126 -
Cows/herd 120 91 10 to 999
TD records/cow 26 25 5to 98
Breeds 11 7 -

Unknown parents were assigned to 145 phantom pedigree groups based on their
selection path (SS = sires to breed sons, SD = sires to breed daughters, DS = dams to
breed sons, and DD = dams to breed daughters), breed, country of origin, and birth
year. Small phantom groups were combined within selection path and birth year
until reasonable size (>200). The final pedigree was composed of 79.4% Holstein-
Friesian and 15.1% Brown Swiss, with the remainder being small, crossbred, or
unknown breeds.

Model
Milk, fat, and protein yield, and SCS were analyzed by using a multiple-lactation,
single-trait random regression TD model, as described by De Roos et al. (2004):

Yijkimnopst = FPd; +pysd; +pay, +pcipr +yw, +htd, +
4 0, ifp<3
+ Zoq thS + agqst + peqst + Is pr >3 + eijklmnopst
a0 pas ' B =

where Vimnopst 1S Yield record (milk, fat or protein yield, or SCS) of cow t belonging
to region r on DIM d of parity p within HTD effect n; rpd; is region x parity x class of
DIM class i (3,470 classes); pysd; is parity x year of calving x season of calving x class
of DIM class j (1,656 classes); pay, is parity x age at calving x year of calving class k
(732 classes); pcipr, is parity x calving interval x stage of pregnancy class | (153
classes); ywp, is year of test x calendar week of test class m (312 classes); htd, is
herd x test date n (49,053 classes); and z,q is order g Legendre polynomial for DIM
o (Kirkpatrick et al., 1990), where o is min{d, 365}. In this way TD records with DIM
>365 were modeled as DIM = 365 with regard to the regression effects. hcy is the
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2 - Variance components analysis

herd curve effect of herd x year of test (8,007 classes) corresponding to polynomial
g of parity s, where s is min{p, 3}. In this manner, each herd gets a regression curve
for parity 1, 2, and 23. ag, is the additive genetic effect of cow t (59,882 classes)
corresponding to polynomial q of parity s; pegs is the permanent environmental
effect of cow t (42,821 classes) corresponding to polynomial q of parity s; and s, is
the lactation-specific permanent environmental effect of lactation p corresponding
to polynomial q (51,811 classes). Only TD records from lactations with parity 23 are
assigned to a lactation-specific permanent environmental effect. €jjumnopst is the
residual belonging to observation Yijmnopst-

Residuals were assumed to be uncorrelated between and within animals, with a
heterogeneous variance across 27 DIM classes (15-d classes from DIM 5 to 365,
plus classes 366 to 390, 391 to 420, and 421 to 450) within parities 1, 2, 3, 4, and
>5. Fourth-order Legendre polynomials were applied to model the random and
permanent environmental regression curves.

Estimation methods

Parameters were estimated by using a Bayesian analysis with Gibbs sampling
developed by NRS (De Roos et al., 2004). The algorithm was based on a Gauss-
Seidel iterative best linear unbiased prediction scheme, as described by Janss and
De Jong (1999) and was extended to the random regression model by Pool et al.
(2000). Uniform priors were assumed for all variance components. Residual
variances were sampled from an inverted chi-square distribution, whereas the
covariance matrices of the regression coefficients for the HTD, the additive genetic,
the permanent environment, the HCUR, and the lactation-specific permanent
environment effect were sampled from an inverted Wishart distribution. Burn-in
and effective chain length were computed from transition probabilities by using the
Gibanal software (Van Kaam, 1998). Estimates of the variance components were
calculated as posterior means of the stationary phase of the Gibbs chains.

2.3 RESULTS

Gibbs Chains

Based on the estimated burn-in for all chains and all parameters, a burn-in of 5,000
iterations was chosen for each chain and each parameter. Table 2.2 shows the
number of Gibbs chains, the total number of iterations in the chains, and the range
in effective chain size across all parameters for milk, fat, protein, and SCS, with 50
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being the minimum acceptable number for the effective chain size (Sorensen,
1997).

Table 2.2 Number of Gibbs chains, total number of iterations, and range of effective chain

size for the variance component estimation of test-day milk, fat and protein yield and SCS.

Trait Milk Fat Protein SCS
Chains, n 3 3 3 3
Iterations, n (total) 328,780 346,400 470,120 403,500
Iterations, n (excl. burn-in) 253,780 271,400 395,120 328,500
Range in effective chain size ~ Min Max Min  Max Min Max Min Max
Additive genetic 203 510 206 554 314 653 240 609
Permanent environment 58 627 66 700 72 782 50 801
Lactation-specific 938 10,940 449 16,341 1,111 15,652 709 13,441
permanent environment

Herd curve 455 1,819 310 2,645 445 3,674 253 2,797
Herd x test date 817 817 441 441 1,196 1,196 363 363
Residual 981 32,867 712 34,631 1,136 47,002 796 40,343

TD Variance Components

The estimated additive genetic, permanent environment, lactation-specific
permanent environment, HTD, HCUR, and residual variances in lactations 1, 2, and
3 for TD milk, fat, and protein yields, and SCS are given in Figures 2.1, 2.2, 2.3, and
2.4, respectively.

For all traits, except SCS, additive genetic variances increased slowly during the
lactation trajectory in all 3 parities. For milk and protein yields, the residual
variance was relatively small compared with the total phenotypic variance,
indicating a good fit of the model. The residual variance was larger for fat yield and
largest for SCS, indicating that the model could explain less variance and that
observations for these traits might therefore be less predictable.
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Figure 2.1 Additive genetic (GEN, ¢), permanent environmental (PERM, m), lactation specific
permanent environmental (LSPE, 1), herd x test date (HTD, x), herd curve (HCUR, +), and
residual (RES, ¢) variance of test-day milk yield in lactations 1, 2, and 3 (in kgz).
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Figure 2.2 Additive genetic (GEN, ¢), permanent environmental (PERM, m), lactation specific
permanent environmental (LSPE, 1), herd x test date (HTD, x), herd curve (HCUR, +), and
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Figure 2.3 Additive genetic (GEN, ¢), permanent environmental (PERM, m), lactation specific
permanent environmental (LSPE, 1), herd x test date (HTD, x), herd curve (HCUR, +), and
residual (RES, ¢) variance of test-day protein yield in lactation 1, 2 and 3 (in gz).
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Figure 2.4 Additive genetic (GEN, ¢), permanent environmental (PERM, m), lactation specific
permanent environmental (LSPE, 1), herd x test date (HTD, x), herd curve (HCUR, +), and
residual (RES, ¢) variance of test-day SCS in lactation 1, 2 and 3.

29



2 - Variance components analysis

Herd x test date variances for milk and milk components yields were much lower
than HCUR variances, which indicates that differences between herds are larger
than differences between test dates within a herd. Around peak yield (DIM 50 to
150), HCUR variances were greatest for milk and protein yield, whereas for SCS,
HCUR variances were relatively small compared with the other variance
components. This result indicates relatively small differences between herds for
SCS.

In Figure 2.5, the estimated ratio of HCUR over phenotypic variances in lactations 1,
2, and 3 across DIM is shown for TD milk, fat, and protein yields, and SCS. For all
traits except SCS, the ratio of HCUR to phenotypic variances peaked at around 50 to
150 DIM and decreased at the end of the lactation to approximately 0.15, except
for the first lactation, which did not decrease below 0.35. The greatest HCUR over
phenotypic variances were observed for protein yield.

1.00

A A

Ratio HCUR/PHEN

13
3
&

Figure 2.5 Ratio of the herd curve over phenotypic variance in lactation 1, 2 and 3 for test-
day milk (m), fat (#) and protein (o) yield and SCS (0).

Table 2.3 gives HCUR correlations among DIM 5, 65, 185, 305, and 365 for parities
1, 2, and 3. For all traits, HCUR correlations among DIM for parities 2 and 3 were
similar, and both were higher than during parity 1. Overall correlations for all
parities for milk, fat, and protein yields were high, ranging from 0.69 to 0.99. On
the other hand, correlations for SCS among DIM were low, with the lowest values
for DIM 5 in the first parity.
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Herd curves for second-parity protein yield for the 10 largest herds from Vicenza
and the 10 largest herds from Ragusa are shown in Figure 2.6. It is surprising to see
why there were such large differences in variation between the regions.
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Figure 2.6 Herd curve for protein yield in second lactation of the 10 largest herds of Vicenza
( memmmm ) and the 10 largest herds of Ragusa (smusu: ).

2.4 DISCUSSION

Variance components of TD milk, fat, and protein yields, and SCS were estimated
by applying a random regression animal model to a large data set with records of
dairy cows from the Ragusa and Vicenza areas of Italy. Estimated additive genetic,
permanent environmental, and residual variances are in line with other studies (De
Roos et al., 2004; Gengler et al., 2004).

The HCUR variances were highest around peak yield (DIM 50 to 150) for all traits
except SCS. This is in contrast with the variances found by De Roos et al. (2004) and
Gengler and Wiggans (2001). In those studies, variance of the random herd curves
was greatest at the borders of the lactation and negligible in midlactation. This is
surprising, and is probably an artifact of the missing data and the statistical model
used to extrapolate the data (Pool and Meuwissen, 1999). Herd lactation curves are
deviations from overall curves and can be compared between herds. They indicate
how the animals in the herd perform compared with how they would have done
under average management circumstances. Greater variability at the peak
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indicates that differences in management between herds are expected to have the
largest impact around the peak of the lactation. The ratio of HCUR over phenotypic
variance can be interpreted as the ratio between across-herd and across-animal
variation. This ratio was greatest for protein yield around the time of peak yield,
with values greater than 1 for the first and second lactation, showing that
variability between herds is greater than variability between animals. For this
reason, it could be argued that development of management parameters for milk,
fat, and protein yields around the peak should focus on between-herd parameters
rather than management parameters that compare individual cows. Therefore,
greater HCUR variances represent a promising opportunity for management
improvement between herds. As an example, positive herd curves for milk, fat, and
protein and negative herd curves for SCS could indicate that herd management is
better than average. Negative lactation herd curve traits (peak, mean, and
persistency) are highly correlated with low-energy diets and low starch content in
feeds. Because these curves are estimated for successive years and are not
primarily based on the most recent data, they indicate mid- to long-term
management effects.

The HCUR variability is even more extreme if we compare HCUR vs. HTD variance,
namely, between- vs. within-herd variation. Herd-TD is defined as a deviation from
the mean within each herd. Therefore, HTD estimates are not useful for comparing
farms. The HTD effect is especially informative for immediate management
changes that affect the whole herd at a precise TD. In particular, negative milk, fat,
and protein deviations and positive SCS deviations indicate that cows produced less
milk, fat, and protein and more cells than expected. A sudden drop in milk and fat
content yield at a particular test day could alert managers of insufficient effective
fiber in feeds that could lead to acidosis at the herd level. On the other hand, an
increase in fat content combined with a drop in milk and protein yield could alert
managers of an energy unbalance in the diets that could lead to ketosis. Positive
SCS deviations could be due to malfunctions of the milking system or to infectious
diseases. Higher variability in HCUR rather than an HTD effect would suggest that
the focus should be on management parameters that describe between-herd
variation; consequently, advice is needed mostly for long-term rather than short-
term changes.

For SCS, both HCUR and HTD variances were relatively small compared with the
other variance components. This would suggest that the focus should be on
management parameters that describe between animal variation; consequently,
management considerations are needed mostly at the cow level for this trait. The
HCUR correlations for SCS among DIM were also lower than for other traits and
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were very low between 5 and greater DIM, meaning that management practices
affecting early lactation do not have a directly related impact on somatic cell count
later on in the same lactation.

The ratio of HCUR over phenotypic variance was highest for protein yield in the
second lactation. The estimated herd curves of the 10 largest herds from Ragusa
and the 10 largest herds from Vicenza for protein yield in the second lactation
shown in Figure 2.6 clearly reveal much greater variation in the shape of the
lactation curve as well as in the deviation from the lactation curve of the
population for Ragusa than for Vicenza province. This greater variation is not simply
caused by differences in the mean region effects that were included in the model
as a fixed effect. A more likely option might be the lower and more variable feed
quality in the Ragusa region, leading to more variation between herds. Further
work will focus on identifying the sources of variation in these random herd curves
across herds, including the measured feed quality at the herd level.

Test-day variance components estimated in the present study showed clear
evidence of the benefits of using a random regression TD model for management
improvement, by improving both between- and within-herd management aspects.
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Abstract

Earlier studies identified large between-herd variation in estimated lactation curve
parameters from test-day milk yield and milk composition records collected in
Ragusa province, Italy. The objective of this study was to identify sources of
variation able to explain these between-herd differences in milk production curves,
by estimating associations of animal breed (Holstein Friesian vs. Brown Swiss),
feeding system [separate feeding vs. total mixed ration (TMR)], and TMR chemical
composition on milk and milk components herd curves. Data recorded from 1992
through 2007 for test-day (TD) milk, fat, and protein yields from 1,287,019 records
of 148,951 lactations of 51,489 cows in 427 herds were processed using a random
regression TD model. Random herd curves (HCUR) for milk, fat, and protein yields
were estimated from the model per herd, year, and parity (1, 2, and 3+) using 4-
order Legendre polynomials. From March 2006 through December 2007, samples
of TMR were collected every 3 mo from 37 farms in Ragusa province. Samples were
analyzed for dry matter, ash, crude protein, soluble nitrogen, acid detergent lignin,
neutral detergent fiber, acid detergent fiber, and starch. Traits used to describe
milk production curves were peak, days in milk at peak, persistency, and mean.
Association of feeding system and animal breed with HCUR traits was investigated
using a general mixed model procedure. Association of TMR chemical composition
with HCUR traits was investigated using multivariate analysis with regression and
stepwise model selection. Results were consistent for all traits and parities. Feeding
system was significantly associated with HCUR peak and mean, with higher values
for TMR. Animal breed was significantly associated with HCUR persistency, with
higher values for Brown Swiss herds. Furthermore, animal breed influenced HCUR
peak and mean, with higher values for Holstein Friesian herds. Crude protein had
the largest effect on HCUR peak and mean, whereas the interaction between crude
protein and dry matter mainly affected persistency. When provided by a national
evaluation system, HCUR can be used as an indicator of herd feeding management.

Key words: herd curve, feeding management, test-day model
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3.1 INTRODUCTION

Test-day (TD) models are used in most countries to perform genetic evaluations of
milk production for dairy cattle by using TD observations instead of aggregated
305-d yield observations (Ptak and Schaeffer, 1993; Reents et al., 1995; Jamrozik et
al.,, 1997a; Schaeffer et al., 2000). Because a milk recording system is also an
important source of information for management, clear advantages have been
reported by several authors to use the same data and statistical procedures for
management purposes and genetic evaluation. Everett et al. (1994) suggested
using results of TD models for monitoring genetics and management in dairy cattle.
Several management applications have been suggested. Mayeres et al. (2004) and
Pool and Meuwissen (1999) investigated the ability of a TD model to predict yield
from TD records, where information from national evaluation systems provided
information for individual farmers. Herd curves were included in the TD model used
for routine evaluation in the Netherlands to adjust abnormal additive genetic
variance at the extremes of lactations (De Roos et al., 2004). Caccamo et al. (2008)
investigated the possibility of using random regression TD model (RRTDM) outputs
to give advice about farm management, and these authors found that random
regression herd curves differed remarkably between herds. Their results showed
that herd curve variance for dairy cattle in Ragusa and Vicenza provinces was
extremely high for milk, fat, and protein yields, especially at the peak of the
lactation, suggesting that variation could be explained by differences in
management practices across herds that mainly influence peak production.

The advantages of using total mixed ration (TMR) instead of separate feeding
include eliminating choice among feeds, higher production, reduced digestive
upsets early in lactation, non-protein nitrogen fed multiple times with other feed
ingredients throughout the day, reduced labor, prevention of milk fat depression
by providing a specific forage-to-concentrate ratio, quantitative formulation of the
diet, and mechanization of the feeding procedure (Coppock, 1977). Several studies
have investigated the effect of using different feeding strategies on milk
production: some reported higher production when feeding TMR compared with
separate feeding (Gordon et al., 1995; Bargo et al., 2002), whereas others found no
(or very small) effects (Gordon et al., 1995; Yrjanen et al., 2003; Ferris et al., 2006).

The objective of this study was to identify sources of variation able to explain
differences between herds in milk and milk component production curves obtained
from routine evaluation software. This variation was explained by associating
animal breed, feeding system, and TMR chemical composition with herd curve
traits estimated using a RRTDM.
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3.2 MATERIALS AND METHODS

Data

To estimate random curves, a TD model on a full data set was run using a software
developed initially for the Dutch national genetic evaluation. Data were supplied by
the local milk-recording agency (APA, Ragusa, Italy) and included 1,287,019 TD
records of milk (kg), fat (g), and protein (g) of 148,951 lactations and collected on
51,489 cows in 427 herds from January 1992 to April 2008.

For a subset of these farms and years, information on feeding practices was
collected every 3 mo from 40 farms in Ragusa province in Southern lItaly from
March 2006 through December 2007. Selection of these farms was based on
farmers’ agreement to participate in the study and cooperate with data collection
requirements and based on a convenience sample of feeding system [separate
feeding (SF) vs. TMR], and breed of the animals (Holstein Friesian vs. Brown Swiss;
Table 3.1). During data collection, 2 farms withdrew and 1 farm changed feeding
system from SF to TMR. Therefore, those 3 farms were excluded from data
analysis. Out of the remaining farms, 28 (6 Brown Swiss and 22 Holstein Friesian)
fed their animals using a TMR system, whereas 9 farms (3 Brown Swiss and 6
Holstein Friesian) used a traditional SF system. Samples of TMR were analyzed for
dry matter (DM) at 100°C (AOAC, 1994), ash (AOAC, 1994), crude protein (CP,
AOAC, 1994), soluble nitrogen (SN, Licitra et al., 1996), acid detergent lignin (ADL,
Goering and Van Soest, 1970), neutral detergent fiber (NDF, Van Soest et al., 1991),
acid detergent fiber (ADF, Goering and Van Soest, 1970), and starch (AOAC 1998;
method 996.11). All chemical analyses were expressed on a DM basis. For both
feeding strategies, diets were evaluated using CPM Dairy (version 3.0.8, Cornell
University, Ithaca, NY; University of Pennsylvania, Kennett Square, PA; and Miner
Agricultural Research Institute, Chazy, NY).
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Table 3.1 Distribution of 37 herds per feeding system (TMR vs. separate feeding) and animal

breed (Holstein Friesian vs. Brown Swiss).

Cows (n)
Herds (n) Mean SD Minimum  Maximum

TMR

Holstein Friesian 22 70.2 35.7 22 157
Brown Swiss 6 43.2 11.8 25 57
Subtotal 28 64.4 33.8 22 157
Separate feeding

Holstein Friesian 6 28.5 10.6 20 48
Brown Swiss 3 24.7 8.1 19 34
Subtotal 9 27.2 9.5 19 48
Total 37 55.4 33.8 19 157

Estimation of Herd Curve Traits

Production TD records for the full data set were processed using a multiple-
lactation, single-trait RRTDM. The software and model were adapted to this study
from the model used by NRS (Arnhem, the Netherlands) for the Dutch national
genetic evaluation (NRS, 2009), as described by Caccamo et al. (2008):

Ydijkimnopr =P +PYsd +pay, +pcipf+ywy, +htd, +
4

0, ifp<3
+Z:zOq heup +agqes +Peqgrs + Is,ifp =3 * Edijkimnopr

q=0

where ygiimnoprs = Yield record (milk, fat or protein yield, or SCS) of the cow s on
DIM d of parity p within herd test-day (HTD) effect n and belonging to fixed effect
class i, j, k, I, and m defined as follows; pd; = ith class of parity (7 levels) x class of
DIM (2,695 classes; 385 DIM classes); pysd; = jth class of parity x year of calving x
season of calving x class of DIM (1,680 classes; 14 DIM classes); pay, = kth class of
parity x age at calving x year of calving (368 classes); pcipr, = Ith class of parity x
calving interval x stage of pregnancy (270 classes); yw,, = mth class of year of test x
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calendar week of test (260 classes); htd, = random herd x test date n (42,481
classes); z,q = order q Legendre polynomial for DIM o (Kirkpatrick et al., 1990),
where o = min{d,365}. In this way, TD records with DIM >365 were modeled as DIM
= 365 with regard to the regression effects; hcurg = random herd curve (HCUR)
effect of herd x year of test (4,094 classes) corresponding to polynomial g of parity
r, where r = min{p,3}. In this manner, each herd gets a regression curve for parity 1,
2 and 23; agqs = random additive genetic effect of cow s (59,977 classes)
corresponding to polynomial q of parity r; pegs = random permanent
environmental effect of cow s (51,489 classes) corresponding to polynomial q of
parity r; Is,q = lactation-specific permanent environmental effect of lactation p
corresponding to polynomial q (76,571 classes). Only TD records from lactations
with parity 23 are assigned to a lactation specific permanent environmental effect.
In this manner, lactations with parity >3 have one common permanent
environmental curve and one specific curve for each lactation; egjxmnoprs = residual
belonging to observation ygjimnoprs-

Unknown parents were assigned to 259 phantom pedigree groups based on their
selection path (sires to breed sons, sires to breed daughters, dams to breed sons,
and dams to breed daughters), breed, country of origin, and birth year. Random
effects were HTD and HCUR, animal additive genetic effect, and permanent
environmental effect modeled using fourth-order Legendre polynomials. The
random and permanent environmental regression curves were modeled using
fourth-order Legendre polynomials.

Fixed and random effects included in the model run by NRS for the national genetic
evaluation were adapted to the data and the aim of this study. In particular,
differences occur in the inclusion of 2 fixed effects (parity x age at calving x year x
season of calving and parity x age at calving x year x season of calving x lactation
stage), that were replaced by pay and pysd, respectively. The fixed effect number
of days dry x lactation stage was removed from the NRS model and yw was added
in this study, whereas HTD was included as a random effect. Parities used in this
study were 7, whereas in NRS model only the first 3 parities are used. The decision
to include all parities in the model implementation described in this study was
primarily dictated by the need to use TD estimates coming out from the model for
all the cows for management purposes.

The traits used to describe HCUR were peak, DIM at peak (DIMP), persistency, and
mean. Depending on the shape of the lactation curve (convex or concave), the peak
was estimated as the maximum or the minimum of the curve respectively when it
does not occur at the beginning or at the end of the lactation.
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Persistency (P) was defined as

305

1
P = — -
245 ,zy' Yeo
i=61

(Kistemaker, 2003), where y; = yield at DIM i. Herd curve traits were estimated per
year during the study for parities 1, 2, and 3+ for each of the 37 farms involved in
data collection.

Statistical Analysis

To identify the variation sources, HCUR traits were associated with breed and
feeding system variables and TMR chemical components. The first analysis included
the traits of the curves estimated for each herd, parity, and year when
management information was collected (2006 and 2007), the feeding system (TMR
vs. SF), and the breed (Holstein Friesian vs. Brown Swiss). Using the data set with
37 herds, association of feeding system and breed with HCUR traits was
investigated using SAS MIXED procedure (version 9.1.3, SAS Institute Inc., Cary, NC)
applied to a linear mixed model having each curve trait (peak, DIMP, persistency,
and mean) per herd, parity (1, 2, or 3), and year (2006, 2007) as dependent
variables. Breed, feeding system, year, and their interactions were included in the
model as fixed effects, whereas farm within breed was treated as a repeated
observation. Means for breed and feeding system were tested using pairwise
Ismeans coupled with Bonferroni’s adjustment.

The second analysis included the traits of the curves estimated for the 28 herds
with TMR for each year (2006 and 2007) and the yearly average of the detailed
chemical composition of the TMR. Association of composition of the TMR
composition with the shape of lactation curve was investigated using the following
linear regression model:

tijk =U+ DMijk + ASH”k + CPIJk + SNijk + ADLIJk + NDFIJk + ADFIJk + STARCH”k + eijk

where ty is the curve trait (peak, DIMP, persistency, and mean) of the ith herd for
the jth parity in the kth year (2006, 2007); DMy, Ashyy, CPy, SN, ADLj, NDFy,
ADFy, and Starchy are the average chemical composition of TMR sampled for the
ith herd and jth parity within kth year. Interactions were also included in the model
but only reported when significant.
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To select the subset of independent variables that best explain each dependent
variable and to avoid inclusion of regressors correlated to one another, the
backward-forward elimination, stepwise selection option was used in PROC REG,
multi-regression procedure using SAS statistical software (SAS Institute Inc.). The
default significance level of 0.15 was used for the variables to enter in and remain
in the model as other variables entered the model.

3.3 RESULTS

Least squares means values for peak, DIMP, persistency, and mean for milk, fat,
and protein HCUR, grouped by feeding system and by breed are presented in Table
3.2. Feeding system had the largest effect (P < 0.05) on peak and mean for fat and
protein yields for all parities. Herds using a TMR had higher peak values compared
with those using SF for fat HCUR (0.23, 0.25, and 0.28 vs. 0.03, 0.11, and 0.12 g for
parities 1, 2, and 3+, respectively) and protein HCUR (0.18, 0.22, and 0.22 vs. 0.08,
0.11, and 0.11 g for parities 1, 2, and 3+, respectively).

Animal breed affected peak and mean for milk yield and persistency for all traits
and parities 2 and 3+. Holstein Friesian herds had higher values compared with
Brown Swiss herds for milk HCUR peak (5.32, 6.69, and 6.96 vs. 2.83, 3.26, and 3.62
kg for parities 1, 2, and 3+, respectively) and milk HCUR mean (4.63, 5.41, and 5.41
vs. 2.50, 2.96, and 3.00 kg for parities 1, 2, and 3+, respectively). Brown Swiss herds
had higher persistency values compared with Holstein Friesian herds for milk HCUR
(-0.17 and -0.23 vs. -1.21 and -1.21 kg for parities 2 and 3+, respectively), fat HCUR
(0.02, -0.01, and -0.02 vs. 0.00, -0.05, and -0.05 g for parities 1, 2, and 3+,
respectively), and protein HCUR (0.00 vs. -0.02 g for both parities 2 and 3+). A
significant effect of the interaction between animal breed and feeding system was
found only for DIMP in first lactation milk HCUR.
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Table 3.2 Least squares means values of peak, DIM at peak, persistency, and mean of

herd curves for milk (kg), fat (g), and protein (g)1

Feeding system

Animal Breed

Brown Holstein
Curve Trait Parity  Traditional TMR Swiss Friesian
Peak
Milk 1 2.57° 5.25° 2.42° 5.41°
2 2.57° 6.75° 2.56° 6.76°
3+ 3.18° 7.01° 3.15° 7.04°
Fat 1 0.02° 0.24° 0.09 0.17
2 0.07° 0.26° 0.14 0.19
3+ 0.08"° 0.28° 0.15 0.21
Protein 1 0.05° 0.19° 0.08 0.16
2 0.09° 0.23° 0.11 0.20
3+ 0.09° 0.23° 0.12 0.21
DIM at Peak
Milk 1 137.92  131.81 124.02 145.70°
2 89.67 93.19 98.93 83.93
3+ 93.25  106.63 105.00 94.88
Fat 1 141.25  157.25 174.50 124.00
2 131.13  112.45 95.33 148.25
3+ 114.96 96.14 89.88 121.22
Protein 1 17321  188.64 212.71° 149.14°
2 124.64  102.42 126.00 101.06
3+ 10203  107.50 106.50 103.03
Persistency3
Milk 1 0.02 -0.19 -0.10 -0.07
2 -0.51 -0.89 -0.16° -1.24°
3+ -0.50 -0.97 -0.22° -1.25°
Fat 1 0.00° 0.02° 0.02 0.00
2 -0.02 -0.04 -0.01° -0.05°
3+ -0.02 -0.05 -0.02° -0.05°
Protein 1 0.01° 0.03° 0.02 0.01
2 -0.01 -0.02 0.00° -0.02°
3+ -0.01 -0.02 0.00° -0.02°
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Table 3.2 Continued

Feeding system Animal Breed

Brown Holstein

Curve Trait Parity  Traditional TMR Swiss Friesian

Mean

Milk 1 2.20° 4.60° 2.14° 4.66°
2 2.55° 542° 2.53° 5.45°
3+  2.58° 5.44° 2.57° 5.45°
Fat 1 0.07° 0.19° 0.11 0.14
2 0.08" 0.23° 0.14 0.17
3+  0.08° 0.23° 0.14 0.17
Protein 1 0.07° 0.17° 0.09 0.15
2 0.08° 0.19° 0.11 0.17
3+  0.08° 0.19° 0.10 0.16

2 Means per parity within a trait for feeding system or breed not sharing the same superscript differ
significantly (P < 0.05).
! Means were estimated for feeding system and animal breed groups.

* The effect of the interaction between animal breed and feeding system was significant.
305

1
3 Persistency was estimated as P = EZyi —Ygo (Kistemaker, 2003), where y; = yield at DIM i.
i=61

Descriptive statistics for each chemical parameter of TMR samples collected from
the 28 farms involved in the project are shown in Table 3.3. Correlations among
chemical components are shown in Table 3.4. A negative correlation between DM
and SN was observed. This was possibly because of wet forages (silages) in the
TMR, which often have higher SN content than dry forages. However, some farms
also added water to their TMR, which also may have reduced DM and increased SN.
The significantly high (P = 0.001) positive correlation between SN and ADF
suggested the possible use of wet citrus products. Positive correlations among ADL,
ADF, and NDF, and negative correlations between starch and ADL, ADF, and NDF
were consistent: higher ADL content means higher content of both NDF and ADF,
but lower content of starch.
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Table 3.3 Mean chemical composition of TMR samples collected from 28 farms in Ragusa

province.

Mean SD  Minimum  Maximum
Dry matter (%) 93.40 1.24 90.74 95.30
Ash (% of DM) 7.83 0.69 6.67 9.54
Crude protein (% of DM) 15.44 1.78 11.95 24.40
Soluble nitrogen (% of DM) 3243 5.58 21.64 48.63
Acid detergent lignin (% of DM) 4.13 0.78 2.39 6.46
Neutral detergent fiber (% of DM) 40.47 4.00 25.97 48.60
Acid detergent fiber (% of DM) 22.57 2.39 17.00 29.97
Starch (% of DM) 20.93 2.88 14.18 28.46

Table 3.4 Pearson’s correlations among chemical properties of TMR samples collected

from 28 farms in Ragusa province.

Item Ash  SolubleN ADL ADF NDF cp Starch
Dry matter 0.19 -0.29* 0.10 -0.35 ** -0.01 0.07 0.11
Ash 1 -0.34*  0.21 0.25 0.25 -0.23 -0.31 *
Soluble Nitrogen 1 0.18 0.45  *** 0.19 0.15 -0.35 **
Acid Detergent Lignir 1 0.39 ** 0.52 *** -0.15 -0.32 *
Acid Detergent Fiber 1 0.53 *** -0.31 * -0.63  ***
Acid Detergent Fiber 1 -0.39 *** 040 ***
Crude Protein 1 0.03

* P<0.05; ** P<0.01; *** P<0.001.

Results of multiple regression analysis performed to estimate association of
average TMR chemical composition with HCUR traits are shown in Table 3.5. The CP
content of the TMR had the greatest effect of composition of TMR for all effects

(Table 3.5).
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Table 3.5 Values of R” and estimates (SE) for the regression parameters after using

multiregression with backward and forward elimination®

Parity R DM CP DMxCP NDFxstarch
Peak
Milk 1 0.24 0.277  ***
2 0.18 0.242 **
3+ 0.14 0.002 **
Fat 1 0.14 0.002 **
2 0.22 0.270  ***
3+ 0.15 0.232  **
Protein 1 0.17 0.243 **
2 0.14 0.218 **
3+ 0.12 0.002 *
DIM at Peak
Milk 1 0.2 -0.002 *
2 0.13 0.003 **
3+ n.s.
Fat 1 0.27
2 0.12 -0.201  **
3+ 0.22 -0.164 *
Protein 1 0.14 -0.236  *
2 n.s.
3+ 0.06
Persistency4
Milk 1 0.18 1526 * -0.019 **
2 0.33 -0.003  *** 0.002
3+ 0.30 -0.003  *** 0.002
Fat 1 0.14 -0.005 *
2 0.39 1.133 * -0.015 *
3+ 0.29 -0.003  ***
Protein 1 0.06 -0.226  *
2 0.32 1.575 ** -0.019 ** 0.002
3+ 0.27 1312 * -0.016 * 0.002 *
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Table 3.5 Contiued.

Mean

Milk 1 0.18 0.246  **
2 0.14 0.220 **
3+ 0.14 0.216 **

Fat 1 0.16 0.241  ***
2 0.13 0.217  **
3+ 0.12 0.211 **
Protein 1 0.16 0.228 **
2 0.12 0.204 **
3+ 0.11 0.196  **

! The regressions are in SD units for y per unit x, where y = herd curve traits for milk, fat, and protein
and x = average TMR chemical properties. Ash, soluble nitrogen, acid detergent lignin, NDF, ADF,
and all their interactions with all other variables were included in the set of regressors, but no

significant effect was found.
305

1
2 persistency was estimated as P = EZyi —Ygo (Kistemaker, 2003), where y; = yield at DIM i.
i=61

* P<0.05; ** P<0.01; *** P<0.001.

Crude protein had a significant effect (P < 0.05) on peak and mean HCUR for all
traits and for all parities. An interaction between CP and DM was significantly
associated with persistency for milk HCUR for all parities, but for fat and protein
HCUR for parities 2 and 3+ only. A significant effect was found for DM on fat and
protein HCUR persistency for parity 1. Mean values for each curve trait were
estimated for farms using a TMR with all the extreme values of CP (13.25 + 0.76 —
16.01 + 0.45) and DM (91.13 + 0.37 — 94.49 % 0.56). Figures 3.1 and 3.2 show
average (n = 3) HCUR of second-parity protein and fat yields for the combination of
extreme values of CP and DM; low CP-high DM farms had the lowest peak and
mean values for milk production HCUR (1.8 and 1.6 respectively) compared with
high CP-high DM farms (9.9 and 8.6, respectively).
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Figure 3.1 Average (n=3) herd curve of second-parity protein yield for combination of

extreme values of CP and DM (eLL = low content of both CP and DM, eLH = low content of

CP and high content of DM, AHL = high content of CP and low content of DM, and "HH =
high content of both CP and DM).
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Figure 3.2 Average (n=3) herd curve of second-parity fat yield for combination of extreme
values of CP and DM (eLL = low content of both CP and DM, eLH = low content of CP and

high content of DM, AHL = high content of CP and low content of DM, and "HH = high
content of both CP and DM).
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3.4 DISCUSSION

Animal breed

Previous research has reported differences in milk and milk component yields due
to breed (McDowell and McDaniel, 1968; Brandt et al., 1974; Dechow et al., 2007;
Walsh et al., 2008). In this study, the major differences were found between
Holstein Friesian and Brown Swiss farms in HCUR peak for milk yield and
persistency for milk, fat, and protein yields. In general, herd curves of Holstein
Friesian farms had higher milk peak but were less persistent for all traits compared
with Brown Swiss farms. Holstein Friesian cows have been chosen by farmers for
their greater milk productivity compared with other breeds. However, to some
extent the observation was surprising because breed effect is already accounted
for by the pedigree structure in the TD model and assigning unknown parents to
phantom groups that differed by breed. The effect observed here suggests that
there are more effects with breed than can be explained by the genetic makeup of
the individual animals alone. These are likely management effects that are
confounded with breed and were picked up in the random herd curves analyzed in
this study. Another reason could be that breed effect is adjusted at the TD level and
not as a random effect on overall herd production. One solution to adjust for these
effects in the RRTDM would be to include a random curve for breed. This would
remove breed differences, allowing advisors to give management advice
independent of breed. Walsh et al. (2008) explored the influence of breed and
feeding system on milk production, body weight, body condition score,
reproductive performance, and postpartum ovarian function. Holstein Friesian
animals produced the greatest yield of solids-corrected milk. As observed by Walsh
et al. (2008), differences observed between the different breeds were a likely
consequence of the selection criteria adopted for each breed. Similarly, Mc-Dowell
and McDaniel (1968), Brandt et al. (1974), and Dechow et al. (2007) found that
pure Holstein Friesian had the highest milk yield production compared with Brown
Swiss.

Milk HCUR persistencies presented in this research are consistent with those of
McDowell and McDaniel (1968). However, Brandt et al. (1974) found higher
persistency for milk produced by Holstein Friesian cows compared with Brown
Swiss. Although the definition of persistency was the same as in the McDowell and
McDaniel work, the difference in results could be due to the selection of animals in
the experiment.
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Feeding systems

Significant differences (P < 0.001) for peak and mean HCUR for all production traits
were found between feeding systems (SF vs. TMR) in this study. The TMR-fed cows
produced, on average, more milk, fat, and protein, and their curves had a higher
peak compared with animals fed with SF. The effect was consistent for all parities
in all traits except for milk in parities 2 and 3+. Several studies have compared TMR
feeding systems (often referred to as complete feed or complete diet) with SF
systems, where the forage and concentrate components of the diet are offered to
cows separately.

Bargo et al. (2002) compared 3 feeding systems combining pasture and TMR
(pasture plus concentrate, pasture plus partial TMR, and TMR) and found that the
TMR feeding system resulted in the highest total dry matter intake and milk
production: cows on the TMR treatment produced 6.1 kg/d more milk compared
with cows on a partial TMR treatment. Gordon et al. (1995) found that feeding a
complete diet resulted in 3.04 kg/d more milk than feeding concentrate separately
from silage without altering milk concentrations of fat and protein. In our study,
herds fed the TMR had 1.88, 2.17, and 2.17 kg/d greater HCUR mean for parities 1,
2, and 3+, respectively. Similarly for milk composition, Bargo et al. (2002) found
that the use of TMR increased milk fat percentage and true protein (0.35 and 0.34
more, respectively, than partial TMR). In our study we found that TMR herds
produced more mean HCUR fat (0.10, 0.13, and 0.12 g/d, for parities 1, 2, and 3+,
respectively) and protein (0.07, 0.09, and 0.09 g/d, for parities 1, 2, and 3+
respectively).

On the contrary, several studies have reported different results. In Gordon et al.
(1995), a review of 13 comparisons of TMR versus SF showed that in most of the
studies, feeding system had no or only a small effect on milk composition. Ferris et
al. (2006) conducted 2 experiments to examine performance of dairy cows
associated with 2 winter feeding systems (daily complete diet feeding vs. separate
feeding of the forage and concentrate components). Feeding system had no
significant effect on any aspect of performance of the dairy cows measured or on
nutrient utilization. Animal performance was measured as total milk output
throughout the experiments, milk per day, and milk composition (g/kg of milk).
Bargo et al. (2002) concluded that milk yield responses to TMR were most likely to
occur when studies involved high-yielding cows (>28 kg of milk per day) in early
lactation. Yrjanen et al. (2003) found that feeding concentrate with 2 different
strategies (SF vs. TMR) had no effect (P > 0.05) on milk production and milk
composition. However, differences over the lactation curve were found: cows fed
with SF produced more milk in early lactation, whereas cows fed TMR produced
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more milk later in the lactation period. As suggested by Yrjanen et al. (2003), the
lack of difference in milk production and better response to SF in early lactation
could be explained by the fact that cows were fed using a computerized self-feeder
that allowed them to consume moderate levels of concentrate as frequent meals
during the day. In classical SF strategies, feeding concentrates 2 or 3 times a day
can have detrimental effects on rumen environment because the amount of
concentrate is a major factor influencing rumen pH. All of these studies are based
on experiments where individual animals were fed somewhat constant nutritive
components, differing only in the strategies used to feed the animals. In the
current study, herds using different feeding strategies were selected randomly to
assess whether feeding management represents one source of variation in herd
mean milk rather than individual cow milk responses.

Nutritional Composition

In this study, a significant effect (P < 0.05) of CP on peak and mean HCUR for all
production traits was found. The interaction CP x DM had a significant effect (P <
0.01) on persistency for all traits and parities, except for fat and protein for first-
parity cows, whereas NDF x starch marginally affected (P < 0.1) persistency for milk
and protein HCUR in parities 2 and 3. These results confirmed those from other
studies. Wu and Satter (2000) investigated milk production response in high-
producing dairy cows to dietary supplementation with different amounts of
protein. Cows fed diets with greater CP content (18%) achieved greater peak
production, but had a decrease in milk production later in lactation almost identical
to that in cows fed lower protein, suggesting that the highest protein did not affect
the latter part of the lactation. Law et al. (2009) found that an increase in dietary
CP concentration significantly increased milk, fat, and protein vyields in early
lactation (d 1 to 150), arguing that thereafter, protein concentration can be
reduced with no detrimental effects on animal performance. Holter et al. (1997)
found high correlations of dietary CP with milk and milk protein yield (r = 42 and
38%, respectively). However, Broderick (2003) reported that increasing dietary
protein concentration above 167 g/kg of DM had only small positive effects on dry
matter intake and milk and protein yields. Similarly, Cunningham et al. (1996)
found that increasing the amount of CP in diets had only small effects on the
pattern of amino acids in duodenal digesta. Consequently, when diets contained
higher amounts of CP, the yields of milk and milk components improved, probably
because of higher flows of nitrogen and essential amino acids to the intestine. In
the same study, when dry matter intake of cows was higher, there appeared to be
little advantage in increasing the percentage of dietary CP, underscoring how dry
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matter intake can affect the response of lactating dairy cows to dietary
concentrations of CP. Hristov et al. (2002) performed a meta-analysis based on
nutritional studies published in the Journal of Dairy Science (volumes 73 through
82) to determine dietary factors affecting milk yield and milk protein yield in dairy
cows. Correlations between milk yield and milk protein yield and dietary
composition variables were poor.

Based on the meta-analysis performed by Hristov et al. (2002), higher effects of
energy (starch) and forage quality (ADL, ADF, and NDF) were expected on herd
curve traits. One reason could be that the association between yearly average diet
composition on the average herd curve for production was investigated. The
average chemical composition may have reduced the variability between TMR
within herd, some of the explored effects, in particular energy and forage quality,
might become more evident when combining the nutrition information with HCUR
at the corresponding stage of lactation (beginning, peak, or end). For example, the
TMR fed prior or during peak lactation might affect the shape of the curve more
than the TMR fed on average across the lactation. This requires further
investigations. It is also necessary to assess whether energy in the diet affects milk
production at the cow level by examining individual animal curves or deviations of
real from expected production estimated from the model.

3.4 CONCLUSION

Results from this analysis demonstrated that CP and DM content in the diet and
their interaction significantly influence HCUR traits, especially peak, mean, and
persistency. Herd curves therefore are useful to warn farmers about inappropriate
feeding. However, this advice cannot be given without correcting properly for
breed and feeding system, which are shown to be important sources of variation in
herd milk and milk component yield curves. When feeding a TMR it is important to
pay particular attention to DM and CP content in the diet. As a tool for farm
managers, HCUR can be considered a good indicator of herd management related
to feeding management by examining abnormal shapes or negative values of HCUR
traits.
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Abstract

The objective of this study was to examine the effect of the chemical composition
of a total mixed ration (TMR) tested quarterly from March 2006 through December
2008 for milk, fat, and protein yield curves for 27 herds in Ragusa, Sicily. Before this
study, standard yield curves were generated on data from 241,153 testday records
of 9,809 animals from 42 herds in Ragusa province collected from 1995 to 2008. A
random regression sire-maternal grandsire model was used to develop variance
components for yields. The model included parity, age at calving, year at calving,
and stage of pregnancy as fixed effects. Random effects were herd x test date, sire
and maternal grandsire additive genetic effect, and permanent environmental
effect modeled using third-order Legendre polynomials. Model fitting was carried
out using ASREML. Subsequently, the model with estimated variance components
was used to examine the influence of TMR crude protein, soluble nitrogen, acid
detergent lignin, neutral detergent fiber, acid detergent fiber, starch, and ash on
milk, fat, and protein yield curves. The data set contained 46,531 test-day milk yield
records from 3,554 cows in the 27 herds recorded during the study period. Initially,
an analysis was performed using one dietary component (one-component analysis)
within each model as a fixed effect associated with the test-day record closest to
the months the TMR was sampled within each herd. An interaction was included
with the nutrient component and days in milk. The effect of the TMR chemical
component(s) was modeled using a ninth-order Legendre polynomial. The
conditional Wald F-statistic for the fixed effects revealed significant effects (P <
0.001) for acid detergent fiber, neutral detergent fiber, crude protein, starch, and
their interactions with days in milk on milk, fat, and protein yield. On the basis of
these results, a multicomponent analysis was performed in which crude protein,
neutral detergent fiber, and starch were simultaneously included in the model with
days in milk interactions. Although both analyses revealed that diet composition
influenced production responses depending on lactation stage, the multiple-
component analysis showed more pronounced effects of starch and neutral
detergent fiber relative to crude protein for all traits throughout lactation.

Key words: lactation curve, total mixed ration, testday model



4 - Diet chemical composition effect on individual lactation curves

4.1 INTRODUCTION

Lactation curves for milk and milk components in dairy cattle show variation in
peak and persistency of yield, partially explained by dietary composition and
feeding management. It has long been recognized that the increase in milk
production decreases for each unit increase in crude protein (CP) with increased CP
content of the diet (Wu et al., 2000, Ipharraguerre and Clark, 2005). Source of
dietary protein influences rumen degradability and has a modifying effect on
production responses at moderate (around 16% CP) dietary CP concentrations
(Reynal and Broderick, 2003, Ipharraguerre and Clark, 2005). Furthermore, starch
and total energy content of the diet may modify responses to CP. Cabrita et al.
(2007) observed that low-protein, low-starch diets decreased dry matter intake and
milk production in mid-lactation cows, but milk production responded to increases
in dietary CP, starch, or both. Hristov et al. (2002) observed that starch (energy
content) and forage quality significantly affected herd curve traits, whereas Oba
and Allen (2003) observed that cows in early lactation fed high-starch diets (32% of
dry matter) versus low-starch diets (21% of dry matter) produced more milk and
protein. In addition, dry corn versus high-moisture corn was associated with higher
fat content and fat production in cows fed the high-starch diet.

High-starch diets typically have lower fiber content; therefore, it is difficult to
separate the effects of increased starch content from the effects of lower dietary
fiber. Weiss et al. (2009) observed that the major response in milk volume and milk
components was to changes in metabolizable CP supply and not to starch when
starch varied from 22.0 to 30.0% of DM. Brun-Lafleur et al. (2010) varied energy
and CP content across 9 diets fed to lactating dairy cows and observed that
production responses to increasing dietary energy were dependent on adequate CP
supply. Production responses to dietary content were greater for cows with high
milk production potential, and first-lactation cows responded differently from
multiparous cows. This means that the milk production response to changing the
diet is dependent on the production potential of the cows, the stage of lactation,
management, and the relative concentrations of dietary nutrients. Therefore, a
better understanding of the effects of diet on production requires a methodology
that controls for lactation stage, management, and cow factors across multiple
diets.

Test-day (TD) models provide insight into variation in lactation curves for individual
cows and herds and have been used to suggest management advice (Koivula et al.,
2007; Caccamo et al., 2008; Halasa et al., 2009). Caccamo et al. (2008) observed
that the variation between herd lactation curves for milk and protein yields was
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highest around the time of peak yield. Subsequently, in an analysis using the TD
model to examine factors influencing production at the herd level, Caccamo et al.
(2010) observed that animal breed (Holstein-Friesian vs. Brown Swiss) affected
peak, persistency, and mean lactation curves for all production traits. Furthermore,
the feeding system [total mixed ration (TMR) vs. separate feeding] influenced peak
and mean milk production for all traits and parities. When looking at the average
nutrient composition of TMR fed over the year, only CP and dry matter content in
the diet and their interaction significantly influenced herd curve traits, peak,
persistency, and mean milk yield. To be able to extrapolate dietary factors to
management advice for individual cows, it is necessary for the diet composition to
be linked with individual cow lactation curves. To do this at the field level requires
that the TD records be associated with the period that the known diet composition
was fed.

A possible reason that associations for other nutrient variables were not observed
in the previous study by Caccamo et al. (2010) was that yearly average diet
composition was assessed against yearly average herd curves for production. Using
the average chemical composition of sampled TMR across the year may have
reduced the variability between TMR within the herd over the course of a year and
masked some of the effects of nutrient composition, in particular starch and forage
quality. It was thought that an investigation of dietary content alighed more closely
to TD production might reveal more sensitive relationships between dietary
nutrients and milk production. The objective of this study was, therefore, to assess
the association of the nutrient composition of the TMR with cow lactation curves
for milk, fat, and protein yield and to compare the estimates of a single-component
analysis with a model that takes into account all dietary components
simultaneously. Using deviations from predictions of production from the TD model
for individual cows would control for the effects of herd, parity, stage of lactation,
season, and genetics and enable a more sensitive analysis of nutrient effects on
production across days in milk.

4.2 MATERIALS AND METHODS

Data

Production data for milk (kg), fat (g), and protein (g) and TMR information were
collected from 27 herds located in Ragusa province (ltaly) from 2006 through 2008,
forming a data set that included 46,531 TD records from 3,554 cows. This data set
was used to estimate the association of random individual curves for milk yield
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with chemical composition of the diets. To estimate variance components for the
genetic effects more precisely, a larger data set (full data set) with more animals
than the ones with known TMR was necessary. A full data set that included 241,153
TD records from 9,809 animals in 42 herds recorded from 1995 through 2008 was
supplied by the local milk recording agency (APA Ragusa, Ragusa, Italy) and used to
estimate variance components for milk (kg), fat (g), and protein (g) yield by using a
random regression TD model.

For the 27 herds included in the reduced data set, TMR samples were collected
every 3 mo from March 2006 through December 2008 and analyzed for ash (AOAC,
1994), crude protein (CP, AOAC, 1994), soluble nitrogen (Licitra et al., 1996), acid
detergent lignin (ADL, Goering and Van Soest, 1970), neutral detergent fiber (NDF,
Van Soest et al., 1991), acid detergent fiber (ADF, Goering and Van Soest, 1970),
and starch (AOAC, 1998; method 996.11). All chemical analyses were expressed on
a dry matter basis.

Diets were also evaluated using CPM Dairy (version 3.0.8; University of
Pennsylvania, Kennett Square, PA, Cornell University, Ithaca, NY, and Miner
Agricultural Research Institute, Chazy, NY).

Estimation of Variance Components
Production TD records for the full data set was processed using a multiple-
lactation, single-trait random regression TD model:

Y dkimnoprs = @Y k + PPr +pdd , +ym, +htd , +
2

2
+ Z Zq (as qs + %ams qs )+ Z Zq (pe qs )+ edklmnoprs

q=0 q=0

where Yaumnoprs is the yield record (milk, fat, or protein yield) of cow s on days in
milk (DIM) d of parity p in herd r within herd test date effect n and belonging to
fixed effect class k, I, m, and n defined as follows: ay, is the kth class of age at
calving x year of calving (23 classes); ppr is Ith class of the parity x stage of
pregnancy (135 classes); pdd,, is the mth class of parity x days dry (153 classes);
ym, is the nth class of year of test x month of test (55 classes); htd, is the random
herd x test date o (1,386 classes); z, is the g order Legendre polynomial (Kirkpatrick
et al, 1990); asy is the random additive genetic effect of sire of cow s
corresponding to polynomial g; ams, is the random additive genetic effect of the
maternal grandsire of cow s corresponding to polynomial q; pey is the random
permanent environmental effect of cow s corresponding to polynomial q; and
€akimnoprs IS the residual belonging to observation Ygjimnoprs-
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The pedigree file included 178 sires and 305 grandsires. Unknown parents were
assigned to 5 phantom pedigree groups based on their breed (Holstein-Friesian,
Brown Swiss, Simmenthal, Modicana, crossbreed, and unknown). Random effects
were herd test date, sire and maternal grandsire additive genetic effect, and
permanent environmental effect modeled using third-order Legendre polynomials.
This order was chosen based on the fit: higher order models gave converging
problems and did not explain more variance. Model fitting was carried out using
ASREML (Gilmour et al., 2009).

Association between TMR Chemical Composition and Lactation Curve

First, a one-component analysis for diet nutrition components (NutUni) was run, in
which the variables describing TMR chemical composition were included in the
above model one by one. Because TD records were collected monthly whereas
TMR were sampled every 3 mo, each TD record was associated with the closest
TMR analysis fed to animals immediately before or after the TD. The effect of TMR
chemical components was modeled as an interaction with DIM using a ninth-order
Legendre polynomial to increase the sensitivity to dietary effects across DIM. Based
on the results of the NutUni analysis, a multiple-component analysis (NutMulti)
was performed, in which CP, NDF, and starch and their interaction with DIM (fitted
as a ninth-order Legendre polynomial) were simultaneously included in the model.
The significance of effects was tested using the conditional Wald F-statistic in the
NutUni and NutMulti models (Gilmour et al., 2009).

Values of parameters estimated in the NutUni and NutMulti models were used to
generate lactation curves for milk, fat, and protein yield for the average nutrient
value(s) as well as plus and minus 2 standard deviations of nutrient values of the
TMR. For the prediction models, average values for fixed effects were held
constant, random effects were ignored, and curves were generated for each given
value(s) for TMR chemical content, varied as above, obtaining marginal prediction
curves between 5 and 305 DIM (Gilmour et al., 2004). In the NutMulti analysis,
prediction curves did not include the effects of interactions between chemical
nutrients and DIM.

4.3 RESULTS

Descriptive statistics of the chemical composition of TMR samples collected from
the 27 farms involved in the project are shown in Table 4.1, whereas pairwise
Pearson correlations among them are shown in Table 4.2. Mean content of TMR
(SD) as a percentage of dry matter for CP, NDF, ash, and starch were 15.5 (1.96),
40.4 (4.51), 8.0 (1.14), and 20.3 (3.72; Table 4.1). Positive correlations (P < 0.001)
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among ADL, ADF, and NDF, and negative correlations between starch and ADL,

ADF, and NDF were as expected: higher ADL content was associated with higher

content of both NDF and ADF but lower content of starch. In addition, increasing

the content of NDF was associated with a decreasing content of starch (r = -0.44)
and CP (r =-0.29) in TMR in this study (Table 4.2). In general, higher fiber content

meant less energy and CP in the diet.

Table 4.1 Mean composition of chemical properties of TMR samples collected from 27

farms in Ragusa province.

Range

Item (% of DM) Mean (minimum — maximum) SD

Ash 8.0 59-15.9 1.14
Crude protein 15.5 11.1-324 1.96
Soluble nitrogen 319 11.2-63.7 7.06
Acid detergent lignin 4.2 1.0-11.9 1.25
Acid detergent fiber 23.1 13.7-32.1 3.35
Neutral detergent fiber 40.4 24.2 -54.5 4.51
Starch 20.3 7.6-32.3 3.72

Table 4.2 Pearson correlations among chemical properties of TMR samples collected

from 27 farms in Ragusa province.

Item (% of DM)  CP Soluble N ADL ADF NDF Starch

Ash -0.06 0.05 0.11 0.20 ** 0.05 -0.25  **x
Crude protein - 0.02 -0.09 -0.29 *** -0.35  ¥*x* 0.16 *
Soluble nitrogen - 0.10 0.32 **x* 0.14 * -0.34 Hokx
Acid detergent ligin - 0.49 *** 0.35  *¥*x* -0.26 *Ex
Acid detergent fiber - 0.53  *x* -0.66 *kx
Neutral detergent fiber - -0.44 *Ak

Starch

*P <0.05; **P < 0.01; ***P < 0.001.

In the NutUni analysis, all chemical parameter values, except ash, and their
interactions with DIM influenced (P < 0.001) milk lactation curves (Table 4.3). The

main factors influencing fat and protein (P < 0.01) were ash, ADF, NDF, CP, and

starch (Table 4.3). Dietary nutrients were both negatively and positively correlated
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with each other, as expected. Production effects in NutUni for individual nutrients
may be confounded by correlated changes with other dietary concentrations of
nutrients. For example, an increase in ash content of the TMR was associated with
a reduction in starch content and an increase in ADF content of the TMR.
Therefore, production responses in the NutUni models may not be very revealing.
Other than CP, increases in dietary content of ash, ADF, NDF, and ADL were all
associated with significant decreases in starch content of the TMR (Table 4.2).
Therefore, to more closely examine production influences, multiple-component
models were also examined for dietary nutrients.

Lignin and ADF are subcomponents of NDF; NDF represents the main structural
carbohydrate in dairy rations. Starch is the major non-structural carbohydrate in
dairy rations, often comprising 60 to 75% of the non-fiber carbohydrate fraction,
with the remainder composed of sugars, soluble fibers, and silage acids. Protein
forms the other major fermentable organic component of dairy rations. Therefore,
NDF, starch, and CP were selected for inclusion in the multiple-component analysis
of dietary components on milk volume and content.

Predicted production curves for milk and fat yields (kg/d) for TMR content of CP
(Figures 4.1 and 4.2, respectively), starch (Figures 4.3 and 4.4, respectively), and
NDF (Figures 4.5 and 4.6, respectively) are presented in Figures 4.1 through 4.6.
Two sets of curves are plotted within each figure. Production curves with dashed
lines represent the NutUni predictions for the effect of the main nutrient by DIM
with no other nutrients in the model; the production curves with solid lines present
the NutMulti predictions based on inclusion of CP, starch, and NDF. Production
curves were generated based on mean nutrient content of TMR (mean: 15.5% CP,
20.3% starch, 40.4% NDF), 2 standard deviations below the mean concentration of
TMR (low: 11.6% CP, 12.8% starch, 31.4% NDF), and 2 standard deviations above
the mean concentration of TMR (high: 19.4% CP, 27.7% starch, 49.5% NDF). In the
NutUni prediction models (dashed curves), no other nutrients were included in the
model; therefore, the curves represent the singular effects of changing the dietary
content of the nutrient of interest. The production curves predicted from the
NutMulti model (solid lines) present the effects of changing the concentration of
the nutrient of interest with the dietary concentration of the other 2 nutrients in
the model set to mean, high, or low. The change in production curves with other
nutrients included in the model (NutMulti) suggests the confounding response one
can have when multiple nutrients are not accounted for in the NutUni models.
Protein yield curves are not presented because they closely followed the milk
volume curves.
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Figure 4.1 Lactation curves estimated using the NutUni (dashed lines; one-
component analysis) and the NutMulti (solid lines; multiple-component-analysis)
model for milk (kg), predicted at different contents (minimum curve = average — 2
SD, light grey lines; average curve, dark grey lines; maximum curve = average + 2
SD, black lines) of CP in TMR at 3 different combinations with starch and NDF.
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Figure 4.2 Llactation curves estimated using the NutUni (dashed lines; one-
component analysis) and the NutMulti (solid lines; multiple-component-analysis)
model for fat (g), predicted at different contents (minimum curve = average — 2 SD,
light grey lines; average curve, dark grey lines; maximum curve = average + 2 SD,
black lines) of CP in TMR at 3 different combinations with starch and NDF.
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Figure 4.3 Lactation curves estimated using the NutUni (dashed lines; one-
component analysis) and the NutMulti (solid lines; multiple-component-analysis)
model for milk (kg), predicted at different contents (minimum curve = average — 2
SD, light grey lines; average curve, dark grey lines; maximum curve = average + 2
SD, black lines) of starch in TMR at 3 different combinations with CP and NDF.
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Figure 4.4 Lactation curves estimated using the NutUni (dashed lines; one-
component analysis) and the NutMulti (solid lines; multiple-component-analysis)
model for fat (g), predicted at different contents (minimum curve = average — 2 SD,
light grey lines; average curve, dark grey lines; maximum curve = average + 2 SD,
black lines) of starch in TMR at 3 different combinations with CP and NDF.
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Figure 4.5 Lactation curves estimated using the NutUni (dashed lines; one-
component analysis) and the NutMulti (solid lines; multiple-component-analysis)
model for milk (kg), predicted at different contents (minimum curve = average — 2
SD, light grey lines; average curve, dark grey lines; maximum curve = average + 2
SD, black lines) of NDF in TMR at 3 different combinations with CP and starch.
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Figure 4.6 Lactation curves estimated using the NutUni (dashed lines; one-
component analysis) and the NutMulti (solid lines; multiple-component-analysis)
model for fat (g), predicted at different contents (minimum curve = average — 2 SD,
light grey lines; average curve, dark grey lines; maximum curve = average + 2 SD,
black lines) of NDF in TMR at 3 different combinations with CP and starch.
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Figure 4.1 shows milk production responses by DIM for changes in CP content
(Figure 4.1). As expected CP, increased peak milk production (P < 0.001) in both the
NutUni and NutMulti analyses (Table 4.3, Figure 4.1). Further, increasing dietary CP
increased milk production in late lactation but had little effect in mid-lactation in
the NutUni curves (Figure 4.1). However, the effect of changing dietary CP on milk
production across all DIM was influenced by dietary starch and NDF content. With
the minimal starch (12.8% of DM) and maximal NDF concentration (49.5% of DM),
little production response to changing the CP concentration was observed (Figure
4.1c). Only small differences were observed in mid-lactation, and increased CP was
associated with slightly lower production. With mean starch (20.3% of DM) and
NDF (40.4% of DM) concentrations in TMR, increasing the CP content of diets
increased peak milk yield, but little production change was observed after 125 DIM
until small increases were apparent after 215 DIM (Figure 4.1a). With average
starch and NDF content, increasing CP from 11.6% of TMR to 15.5% increased peak
milk yield by approximately 0.5 kg/d (Figure 4.1a). When starch was 27.7% and NDF
was 31.4% of DM in the TMR, increasing CP from 11.6 to 15.5% increased peak milk
yield by approximately 0.9 kg/d (Figure 4.1b). When CP was increased to 19.4% of
TMR, with mean starch and NDF, peak milk yield increased by an additional 0.6
kg/d, whereas with the greater starch and lower NDF dietary concentrations, peak
yield increased by an additional 0.9 kg/d from the mean CP concentration. In
addition, CP increased production throughout lactation when starch was high and
NDF was low. When starch content was 27.7% and NDF was 31.4%, increasing
dietary CP increased peak milk yield and yield throughout lactation. For the optimal
production response to CP, starch must be high and NDF low.

Figure 4.2 shows the yield of fat (kg/d) for changing dietary CP. Increasing CP
content of the TMR in the NutUni prediction increased peak fat yield (fewer than
120 DIM), and then after 200 DIM to 305 DIM (Figure 4.2, dashed lines). Very early
in lactation, at fewer than 20 DIM, increasing dietary CP was associated with lower
fat yields (Figure 4.2, dashed line curves). In the NutMulti model, increasing TMR
CP increased fat yield throughout lactation; however, responses were greatest at
peak milk yield and after 200 DIM for all starch and NDF concentrations. However,
the yield increases in milk fat were greatest for high-starch and low-NDF TMR
content, with responses to increasing CP being intermediate with mean starch and
mean NDF content in the TMR (Figure 4.2, solid lines in panels a, b, and c). An
inverse effect of CP content on fat yield in the first 20 d of lactation was also
apparent in the NutMulti models. This maybe an artifact because few TD records
are collected from cows at fewer than 20 DIM; however, mobilization of tissue
reserves may also confound responses to dietary nutrients within this time period.
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Increasing dietary starch always increased milk yield throughout lactation DIM in
NutUni and NutMulti (Figure 4.3). When CP was 11.6% and NDF was 49.5%,
increasing dietary starch from 11.6 to 20.3% of DM increased milk yield by
approximately 0.4 kg/d. Further increasing starch to 27.7% of dry matter when CP
was low and NDF was high increased milk yield an additional 0.4 kg/d. When CP
and NDF were at the mean dietary concentrations, milk yield increased by 1.4 kg/d,
almost 3 times the response when CP was low and NDF was high, when starch was
increased from a low to mean concentration in the TMR. Further increasing starch
to 27.7% of DM increased milk yield by an additional 1.4 kg/d. When CP was high
and NDF was low, increasing dietary starch to 20.3% of dry matter from a low
concentration increased milk yield by 2.2 kg/d (Figure 4.3b). Increasing starch to a
high concentration increased milk yield by an additional 2.2 kg/d. Therefore, the
response to starch was enhanced by increased dietary CP and decreased dietary
NDF concentration in the TMR.

In the NutUni model, increasing dietary starch influenced milk fat yield in very early
lactation (Figure 4.4, dashed lines). The high concentration of dietary starch was
associated with low fat yields in the first month of lactation (Figure 4.4, dashed
lines). Low dietary starch was associated with greater fat yields in early lactation in
the NutUni model. However, these associations were removed in the NutMulti
model. Increasing dietary starch had little influence on milk fat yield with low CP
and high NDF in the TMR (Figure 4.4c, solid lines). When CP and NDF were included
in the model at mean concentrations, the response in milk fat yield to increasing
starch content was approximately 30 g when starch content increased from low
(12.8%) to mean (20.3%) and from mean to high (27.7%; Figure 4a), and peak fat
yield was approximately 30 DIM. When CP was high and NDF was low, the response
to increasing starch content from low (12.8%) to mean (20.3%) TMR concentration
was approximately 60 g of fat yield throughout lactation (Figure 4.4b). Further
increasing starch to high concentration (27.7%) increased fat yield by an additional
60 g/d throughout lactation (Figure 4.4b, solid lines). Peak fat yield to increasing
starch was approximately 50 DIM when CP was high and NDF was low (Figure 4.4b).
Increasing starch increased fat yield when CP and NDF were at least mean to high,
and low, respectively, in TMR.

In the NutUni model for NDF, low NDF was associated with greater milk yields than
mean and high-NDF TMR concentrations (Figure 4.5, dashed lines). The effect of
changing NDF content in the TMR was more apparent when CP and starch were
high in TMR (Figure 4.5b). The response to decreasing NDF was approximately 1
kg/d when reducing the concentration from 49.5 to 40.4% when CP and starch
were high in TMR (Figure 4.5b), whereas the milk response was approximately 0.5
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kg/d when CP and starch were mean in TMR (Figure 4.5a), and the milk response to
decreasing NDF content was less apparent when CP and starch were low in TMR
(Figure 4.5c). Milk yield increased by an additional 1 kg/d when NDF was reduced
from 40.4 to 31.4% when CP and starch were high in the TMR, whereas the
response was approximately 0.5 kg/d when the TMR had mean CP and NDF
concentrations (Figure 4.5a).

Low NDF content increased fat yield by approximately 9 g/d compared with mean
NDF TMR content and by approximately 18 g/d compared with high-NDF TMR
content throughout lactation in the NutUni model (Figure 4.6). In the NutMulti
model, the influence of changing TMR NDF content on fat yield was reversed when
responses for low TMR content of CP and starch were compared with high TMR
content of CP and starch (Figure 4.6, panels a, b, and c). When starch and CP were
low, decreasing the NDF from high to mean content increased fat yield by 30 g/d
throughout lactation (Figure 4.6c), and when NDF decreased from mean to low
content, fat yield increased by an additional 30 g/d (Figure 4.6c). The response to
altered NDF when starch and CP were at mean concentrations in the TMR was
interesting. Fat yields for the 3 NDF concentrations were almost superimposed
(Figure 4.6a), and yield had a peak at 20 to 30 d postcalving. When starch and CP
TMR concentrations were high, high NDF was associated with the greatest fat yield
(Figure 6b) and low NDF content was associated with the lowest fat yield relative to
the mean and high-NDF content (Figure 4.6b).

Dietary starch was the major dietary factor influencing all traits (P < 0.001)
throughout lactation in both the NutUni and NutMulti analyses (Table 4.3).
Increasing starch had a significant direct effect on milk production throughout
lactation. However, when also accounting for CP and NDF in the NutMulti analysis,
the effect of starch became much more pronounced when CP was high and NDF
was low. Taken together, increasing starch content of the TMR had approximately
twice the influence on milk volume compared with increasing CP (compare Figure
4.1, panels a and b, with Figure 4.3, panels a and b). The more pronounced effect of
starch on fat yield is also apparent when comparing Figure 4.2, panels a and b, with
Figure 4.4, panels a and b. The effect of dietary CP on milk yield and fat yield is fully
expressed when starch is high and NDF is low.

4.4 DISCUSSION

The effects of nutritional composition on lactation curves for milk, fat, and protein
yield have been investigated extensively in experiments with varying nutritional
quality (Wu and Satter, 2000; Ipharraguerre et al., 2005; Brun-Lafleur et al., 2010).

75



4 - Diet chemical composition effect on individual lactation curves

In this study, we used a different kind of approach, in which we retrospectively
explained the variation in the lactation curves attributable to diet composition. The
disadvantages of our approach was that the TMR composition was examined only 4
times a year for nutritional components, and these were associated with the
closest TD milk yield. However, the advantage was that a large number of herds
and animals were included in an analysis that controlled for genetic and herd-year-
season effects. We were also able to investigate many nutritional components
simultaneously by quantifying the substitution effect on production (i.e., the
change in production attributable to increasing or decreasing one diet component
when the other components were fixed at 3 dietary concentrations) under the
assumption that animals fed free choice eat to their maximal capacity. Several
experiments would have been needed to investigate these interactions between
components.

Nutritional Effects of Single Components

Results of responses in this study suggest that changes in milk yield attributable to
CP and NDF were dependent on dietary content of starch. When starch was high
and NDF was low, the response to increasing CP content of the TMR was most
prominent. Likewise, when starch and CP were high, the milk response to
decreasing dietary NDF was greatest. Overall, starch content of the TMR was the
most important element in determining increased milk and fat yields. Increasing
starch always increased milk and fat yields. Dietary CP was the second most
important factor. However, the response to CP was strongly dependent on starch
and NDF content of the TMR. Effects of CP on yield were dependent on mean to
high starch and mean and low NDF content of the TMR. Reducing the TMR NDF
content increased the yield of milk, but the effects were most pronounced when
starch and CP were high. Fat yields were increased by dietary starch, particularly
when CP and NDF concentrations were mean concentrations or CP was high and
NDF was low in the TMR. Likewise, increasing CP increased fat yield, but not to the
extent of starch, when NDF was mean or low and CP was mean or high. When
starch and CP were low in TMR, then decreasing NDF content increased fat yields,
but when CP and starch were high, then increasing NDF content increased fat yield.
Despite the difference in methodology, the effects of nutritional components on
lactation curves found in this study were consistent with the reported literature,
which lends credibility to the multiple-component models. Increasing CP content
increased peak milk yield and had small effects in late lactation. Responses to
changing concentrations of CP in the single-nutrient model and the multiple-
nutrient model under average conditions were similar. Wu and Satter (2000)
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observed that increasing dietary CP from 15 to 17 to 18% increased peak milk yield,
and 17% CP throughout lactation was recommended for maximizing total yield.
However, they found that after 14 wk of lactation, CP could be reduced to 16% of
the diet with only small reductions in yield and significant reductions in total
nitrogen excretion. The milk curves in this paper suggest dietary CP influences peak
milk production, and dietary concentration of CP in mid-lactation was not very
important until after 250 DIM, and even then effects on milk production were
small. Law et al. (2009) found that an increase in dietary CP concentration
increased milk, fat, and protein yield in early lactation (d 1 to 150), arguing that
thereafter, CP concentration can be reduced with no detrimental effects on animal
performance. Holter et al. (1997) found high correlations of dietary CP with milk
and milk protein yield (r = 42 and 38%, respectively). However, Broderick (2003)
reported that increasing dietary CP concentration above 167 g/kg of DM had only
small positive effects on dry matter intake, with no increases in milk, fat, or protein
yield. Similarly, Cunningham et al. (1996) found that increasing the amount of CP in
diets had only small effects on the pattern of amino acids in duodenal digesta
because of variable effects of rumen degradation of dietary CP. Consequently,
when diets contained amounts of CP above 16% of DM, compared with a diet of
14.5% CP, yields of milk and milk components improved. However, increasing
dietary CP to 18% of dry matter did not improve milk or milk component yields.
Milk production improved when dietary CP supplied higher flows of nitrogen and
essential amino acids to the intestine.

Flow of nonammonia nitrogen and essential amino acids to the small intestine is a
function of dry matter intake, CP content of the ration, rumen degradation of feed
protein, and the flow of microbial protein from the rumen. Ipharraguerre et al.
(2005) observed that cows consuming adequate energy and other nutrients
received sufficient amino acids flow to the small intestine when consuming 14 to
18% CP diets and observed no production response in cows consuming adequate
energy. Therefore, CP effects on milk production may be apparent only at peak milk
production, when energy intake is limiting, and may not be significantly apparent in
latter lactation, when energy intake is not limiting. Furthermore, because NDF and
starch content of the diet influence microbial growth, the influence of dietary CP
on small intestinal amino acids flow is dependent on these other dietary
constituents. In this study, dietary CP of 19.4% was associated with higher peak
milk yield compared with 15.5 and 11.6% dietary CP. However, it appeared
advantageous to feed this amount of CP only in early lactation, and responses to CP
were dependent on increasing starch and reducing NDF.
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Starch content of the TMR became the most significant factor influencing milk, fat,
and protein yield over the entire lactation. Increasing starch content of the TMR
elevated the entire lactation curve and increased fat yield throughout lactation.
Protein yield followed a pattern similar to fat yield (data not shown). Therefore,
starch content of the TMR is an important factor influencing milk volume and fat
and protein yields. Starch influences not only potential energy supply but also
metabolizable CP supply by association with rumen microbial synthesis.

Feeding more than 20% starch throughout lactation would be recommended,
based on the results of this study. Caution should be exercised in interpreting
27.7% as the optimum starch content to feed because only 3 dietary
concentrations of starch were explored in this study (12.8, 20.3, and 27.7%):
between 20 and 27% starch, contents that are intermediate and more economically
optimal may be available, although these were not explored in this paper.

Interactions between Components

It is impossible to alter one nutrient concentration because values need to sum to
100% of the diet. We chose to examine CP, starch, and NDF because these are the
more common nutrients nutritionists are attempting to control in dairy rations.
Responses to high concentrations of NDF, CP, and starch should be interpreted
cautiously because these values sum to 96.7% of dry matter, which is unlikely to be
observed in many herd situations. Mean ash was 8.0% and mean fat content was
4.4% of the TMR in this study (data not shown). The low end of the range of ash
was 5.9%, and fat was 2.2% (data not shown); therefore, the high TMR content for
CP, NDF, and starch could not exist together. Given the correlations in Table 4.2, as
NDF increases, starch and CP in the TMR would decrease (approximately at equal
magnitudes), whereas CP and starch (more weakly) would tend to change in
concert with each other (Table 4.2). Therefore, increases in NDF should be focused
on curves with reducing CP and starch content in the TMR.

Although increasing starch had a significant effect on milk production throughout
lactation in both analyses, a more pronounced effect for starch was found in the
NutMulti model than in the NutUni model. Brun-Lafleur et al. (2010) found similar
results when assessing the effect of the energy x protein interaction on milk yield:
this interaction resulted in a sharper response of milk yield to energy supply for
high levels than for low levels of CP supply. When CP is at an average concentration
in the diet, increasing starch had a slightly larger effect on increasing the peak yield
than did increasing CP when starch was at an average concentration. This could be
due to an effect of balancing of amino acids, glucose, and acetate: when CP content
is increased at the expense of starch, some of the amino acids can be used for
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glucose, but not vice versa. On a nutrient efficiency basis, increasing starch in
moderate-CP diets to increase peak milk yield would be a more attractive strategy
than increasing CP, and less nitrogen would be wasted in urinary excretion.
Reynolds et al. (2001) infused increasing amounts of starch into the duodenum and
observed decreases in urinary nitrogen output along with increases in milk
production and body tissue deposition. As lactation proceeds, increasing CP would
not benefit production unless starch is high. For example, at approximately 150
DIM, if starch and NDF are mean, milk yield is slightly greater than 32 kg of milk/d
for all CP concentrations (Figure 4.1a). However if starch is high and NDF is low,
then milk yield is slightly greater than 36 kg/d for high CP concentration, slightly
lower than 36 kg/d for mean CP concentration, and approximately 35 kg/d for low
CP concentration. Therefore, milk yield increased more by high starch and low NDF
than by changing CP (Figure 4.1b). Contrary to this study, Broderick (2003) found
no energy x protein interaction effect on milk production. Similarly, Cabrita et al.
(2007) observed that increasing CP from approximately 13.5% to approximately
15.5% when starch was 15% of dry matter resulted in production responses similar
to increasing starch to 23.9% of dry matter when CP was 13.5%. These studies were
designed to examine starch x CP interactions, whereas the present study is based
on an a priori decision to examine milk curves for diets fed to animals in
commercial herds.

Starch nutrient content of 27.7% appeared to have the greatest effect on milk, fat,
and protein yield. Starch has the dual effect not only of supplying energy, but also
of being a significant source of protein for the cow because of rumen utilization of
starch for microbial CP synthesis. As long as sufficient nitrogen is present in the
rumen, fermentation of starch can provide significant amounts of microbial CP. The
NRC (2001) uses a conversion of 130 g of bacterial CP/kg of total digestible
nutrients. Increasing starch from 20.3 to 27.7% would potentially increase bacterial
CP supply by 45 to 60 g/d if NDF remains 40% of dry matter. A confounding factor
in actual fact is that when starch is increased, some other dietary components must
change because these are expressed as a percentage of dry matter, which has to
add to 100%. However, in the responses in this paper, increasing starch to 27.7%
should be accompanied with a reduction in NDF to 31.4 from 40.4%. This change is
a trade-off of a more rumen fermentable carbohydrate (starch) for a less rumen
degradable carbohydrate (NDF). In this study, if NDF is 31.4% of dry matter in the
TMR, CP is 18.5%, and starch is 24%, if CP is increased to 19.5%, milk would
increase by approximately 0.2 kg/d. However, if starch were increased to 25% with
CP at 18.5%, milk would increase by 0.5 kg/d (combining responses in milk curves
from Figures 4.1 and 4.3). Fat yield would change very little with the increase in CP
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in this scenario, but increasing starch would increase fat yield by approximately 8
g/d (combining Figures 4.2 and 4.4). A unit increase in dietary starch content has a
greater effect on milk and fat yield than does a unit increase in CP. Reduction in
NDF typically means a reduction in forage in the ration, for which a limit exists
regarding how much forage can be reduced and still maintain rumination and a
rumen mat of long particles. A minimum NDF concentration of 31.4% should be
adequate because the NRC (2001) recommends a minimum of 25 to 33% dietary
NDF.

The change in production effect when the other nutrients are included in the
model found in this study suggests the confounding response one can have when
multiple nutrients are not accounted for. The integration of information from the
NutMulti curves for CP, starch, and NDF suggests that diets should contain
moderate CP, high starch, and low NDF content in the first 150 DIM to maximize
milk volume and fat and protein yields. In this study, those nutrient concentrations
would be 19.4% CP, 27.7% starch, and 31.4% NDF. After 150 DIM, production was
always higher with the 27.7% starch diet. Fat and protein yields were not
influenced by CP content in late lactation, and milk volume was influenced only to a
modest extent. Combined, after 150 DIM it appears that diets with 27.7% starch,
40.4% NDF, and 11.5 to 15.5% CP content would maintain yields of milk, fat, and
protein. In any case, this study has developed a statistical model able to describe
variation in milk and milk component yields when the diet composition of the TMR
changes. Results from extreme conditions have to be carefully interpreted because
only 3 dietary conditions for each component were examined: intermediate values
(not explored in this study) would be more appropriate in terms of feed costs and
production response while preventing metabolic disorders.

4.4 CONCLUSION

Using data collected at farms in a field study with a modeling approach, effects of
CP, NDF, and starch on individual lactation curves for milk, fat, and protein could be
reproduced. Fitting the interaction between the diet components showed that
starch had the greatest effect on milk, fat, and protein production when CP and
NDF contents were at a high and low value, respectively. To accomplish feeding the
appropriate ration based on DIM and production, farms should group cows
accordingly to minimize under- and overfeeding.
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Abstract

As part of a larger project aiming to develop management evaluation tools based
on results from test-day (TD) models, the objective of this study was to examine
the effect of physical composition of total mixed ration (TMR) tested quarterly
from March, 2006 through December, 2008 on milk, fat, and protein yield curves
for 25 herds in Ragusa, Sicily. A random regression sire — maternal grandsire model
was used to estimate variance components for milk, fat, and protein yields fitted
on a full dataset including 241,153 TD records from 9,809 animals in 42 herds
recorded from 1995 through 2008. The model included parity, age at calving, year
at calving, and stage of pregnancy as fixed effects. Random effects were herd x test
date, sire and maternal grandsire additive genetic effect, and permanent
environmental effect modeled using third-order Legendre polynomials. Model
fitting was carried out using ASREML. Afterwards, for the 25 herds involved in the
study, 9 particle size classes were defined based on the proportions of TMR
particles on the top and middle screen of the Penn State Particle Separator (PSPS).
Subsequently, the model with estimated variance components was used to
examine the influence of TMR particle size class on milk, fat, and protein yield
curves. An interaction was included with the particle size class and DIM. The effect
of the TMR particle size class was modeled using a ninth-order Legendre
polynomial. Lactation curves were predicted from the model while controlling for
TMR chemical composition (crude protein content of 15.5%, neutral detergent
fiber content of 40.7% and starch of 19.7% for all classes), in order to have purely
estimates of particle distribution not confounded by nutrient content of TMR. Little
effect of class of particle proportions on milk yield and fat yield curves was found.
Surprisingly, protein yield was significantly greater for sieve classes with 10.4 to
17.4% of TMR particles retained on the upper PSPS 19 mm sieve. Optimal
distributions different than those recommended may reflect regional differences
based on types of forages fed.

Key words: lactation curve, particle size, TMR, test day model
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5.1 INTRODUCTION

Adequate fiber [plant residues insoluble in neutral detergent after Van Soest et al.
(1991), NDF] is important in dairy rations to support normal rumen activity and
prevent milk fat depression and health problems associated with rumen acidosis.
However, NDF alone is an insufficient measure of adequacy of fiber in dairy rations,
as it does not account for the physical form. Rations may contain adequate NDF,
but be processed so finely that normal rumen activity cannot be maintained.
Mertens (1997) combined the concept of adequate chemical NDF with physical
form to define physically effective NDF (peNDF) as a measure that captures the
physical characteristics of fiber by accounting for particle length and NDF content.
Physically effective NDF promotes chewing and the flow of salivary buffers to the
rumen to maintain a normal rumen milieu (Mertens, 1997). As mean particle size
decreases, chewing time and rumen pH decline due to a reduction in saliva
production and its buffering action (Woodford and Murphy, 1988; Grant and
Colenbrander, 1990a, 1990b).

Physically effective fiber is the fraction of the diet that stimulates chewing (NRC,
2001). To ensure adequate fiber, the NRC (2001) recommends that diets comprised
primarily of corn silage and alfalfa haylage as forage sources and dry corn as the
main concentrate source contain a minimum of 25% NDF on a dry matter (DM)
basis and 76% of the NDF should be from forage NDF. The dietary concentration of
NDF can be increased based on alterations in amounts of forage in the ration and
particle size of the ration, but standard guidelines are qualitative in nature. Typical
values for NDF in corn silage and alfalfa haylage may range from 38 to 46% of DM
and 36 to 45% of DM, respectively. Thus forage content of diets may vary from 43%
to 58% of total DM consumed to meet these guidelines. However, these guidelines
don’t specify a particle size, which can vary greatly depending on the chop length
set at harvest and mixing of forages within a TMR, which may ultimately influence
the effectiveness of the NDF to maintain a rumen mat and adequate chewing
activity.

A challenge has been establishing a method to define peNDF in dairy rations.
Lammers et al. (1996) developed a simple field usable device to estimate particle
size of forages and TMR (Penn State Particle Separator, PSPS). The PSPS was
designed to allow separation of feed particles by a shaking motion duplicating
vertical sieving. Initially two screens, 19.0 mm and 8.0 mm, and a pan were used to
estimate mean particle size. Since that publication, the PSPS has been modified to
include a third screen, 1.18 mm in size (Kononoff et al. 2003a). Guidelines
published by Penn State Extension recommends that adequate chewing is
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maintained when a TMR contains 2 to 8% of material on the top screen (19.0 mm),
30 to 50% of material on the middle screen (8 mm), 30 to 50% of material on the
lower screen (1.18 mm) and <20% of material in the pan. Most authors have
focused on the total feed material retained on the top two screens as physically
effective material in dairy rations. In fact Schadt et al. (2012) found that masticates
from hay particles retained on the top two screens contained particles sufficiently
long enough to contribute to long particles in the rumen. Particles retained on the
1.18 mm screen when masticated were too fine to contribute to formation of the
rumen mat.

Various estimates have been used to estimate peNDF from particle distribution in
the PSPS. The simplest is based on as fed distribution of feed particles, with the
proportion retained on the top two screens as an estimate of the peNDF. Further
refinements include DM retained on the top two screens times the NDF content of
the entire diet, NDF retained on the top two screens as a proportion of total NDF,
and other modifications. In addition, mean geometric particle size has been
calculated based on proportions retained on the three screens and pan and this has
been used to evaluate chewing activity and mean rumen pH. A consistent method
to estimate peNDF in dairy rations on dairy farms is still to be determined.

It is generally recognized that rumen particles larger than 1.18 mm are large
particles and are retained in the rumen. However, Kononoff and Heinrichs
(2003a,b) and Maulfair and Heinrichs (2010) found particles larger than those
retained on a 1.18 mm screen consistently in cows consuming various forage NDF
sources. It may be that cows consuming higher dry matter amounts from wet
forages will pass larger particles than observed by Poppi (1980) who investigated
fecal particles in cattle consuming dry hay diets at lower dry matter intakes. In
point of fact, fecal particles correspond to the size of particles leaving the rumen as
little reduction in size occurs in the distal gastro-intestinal tract. Possibly fecal
particle size should be included in an assessment of dietary particle size to more
accurately characterize peNDF for dairy cattle.

Most studies investigating particle size have used silages with chopped hay as
forage components. In Sicily forages on farms typically are a mixture of long hay
and silage, either triticale or corn silage. The hay is usually mature, greater than
60% NDF and 10% or less in CP, and is harvested once in May. In herds that feed a
TMR, hay is added into the mixer wagon as long material, resulting in longer
particle size than typical for chopped or ground hays. Concentrate mixes are usually
a composite of ground corn and at times some barley grain, soybean meal (44%) or
sunflower meal, beet pulp, a rumen protected fat, and minerals and vitamins.
Some farms will supplement with fresh citrus pulp, but this is only available January
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through April. Flaked soy beans and wheat bran may also be included in
concentrate mixes but these are not used routinely. Particle size of TMR tends to
be coarse and total NDF tends to be higher than observed on US dairy farms.

The objective of this study was to assess the association of particle size in TMR
estimated using the PSPS with production of milk, fat and protein on a convenience
sample of Ragusa dairy farms, while controlling for nutrient content.

5.2 MATERIALS AND METHODS

Data

Production data for milk (kg), fat (g), and protein (g) and TMR information were
collected from 25 herds located in Ragusa province (Italy) from 2006 through 2008
and formed a dataset including 46,531 test-day (TD) records from 3,554 cows. This
dataset was used to estimate association of random individual curves for milk yield
with particle size distribution of the diets. To estimate variance components for the
genetic effects more precisely, a larger dataset (full dataset) with more animals
than the ones with known TMR was necessary. A full dataset including 241,153 TD
records from 9,809 animals in 42 herds recorded from 1995 through 2008 was
supplied by the local milk recording agency (APA Ragusa, Italy) and used to
estimate variance components for milk (kg), fat (g), and protein (g) yield using a
random regression TD model.

For the 25 herds included in the reduced dataset, TMR samples were collected
every 3 months from March 2006 through December 2008, sieved through the
PSPS according to the procedure described by Heinrichs and Kononoff (2002), and
analyzed for ash (AOAC, 1994), crude protein (CP, AOAC, 1994), soluble nitrogen
(SN, Licitra et al., 1996), acid detergent lignin (ADL, Goering and Van Soest, 1970),
neutral detergent fiber (NDF, Van Soest et al., 1991), acid detergent fiber (ADF,
Goering and Van Soest, 1970), and starch (AOAC 1998, method 996.11). All
chemical analyses were expressed on a DM basis. Diets were also evaluated using
CPM Dairy (version 3.0.8, University of Pennsylvania, Kennett Square, PA, Cornell
University, Ithaca, NY and Miner Agricultural Research Institute, Chazy, NY).
Residues on the 3 sieves (19 mm, upper; 8 mm, middle; 1.18 mm, lower) and the
bottom content were weighed and proportions on total weight were calculated on
as fed basis. Afterwards, peNDF was calculated as the proportion of TMR retained
on the top (19 mm) and middle (8 mm) screen times the ration NDF content (Yang
et al., 2001). The mean geometric particle length was calculated based on the
proportion of particles greater than 8 mm in size (Armentano and Tayson, 2005).
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Particle Size Classes Identification

Overall means and standard deviations for particle distribution on the four PSPS
sieves and nutrient content were calculated (Table 5.1). In addition, ranges for
nutrient content and particles on the upper and middle PSPS sieves were plotted
and examined for uniformity of distribution. Penn State recommends <= 8% of TMR
particles be collected on the upper screen of the particle separator. Due to the
distribution of upper sieve particles in this data set, categories of <10.4%, 10.4 to
17.4%, and >17.4% were made. Secondly, peNDF recommendations are based on
the sum of the top two screens and PSU recommends that 30 to 50% of particles be
on the middle and lower sieves and up to 20% of particles be on the bottom sieve.
Given an upper maximum of 10.4% and a bottom maximum of 20%, then 34.9% for
the middle and lower screen are allowable solutions. Therefore the middle screen
was classified based on <30.1, 30.1 to 35.6, and >35.7. This resulted in nine classes
of sieve categories based on top screen and middle screen classifications.

Table 5.1 Mean dietary composition and Penn State Particle distribution for 25 farms in the
Ragusa region of Sicily.

Item, % DM SD Min Max

Crude protein 15.16 1.53 11.05 18.57
Soluble protein, % CP  32.75 6.84 11.17 60.55
Neutral Detergent Fiber 40.69 4.26 25.01 50.07
Acid Detergent Fiber 23.78 3.16 13.71 32.07
Starch 19.69 3.56 7.58 32.26
Nonfiber carbohydrate1 32.01 4.02 22.07 49.89
Acid Detergent Lignin 4.21 1.05 1.04 8.43
Ether Extract 4.28 1.21 2.70 7.27
Ash 7.99 0.85 6.08 11.11

Proportion on Penn State Particle Separator, %

Top Screen 19.0 mm 14.70 8.05 1.36 38.77
Middle Screen 9.0 mm 33.66 7.78 13.07 58.50
Lower Screen 1.6 mm  35.45 6.00 20.42 49.07
Bottom pan 16.19 5.02 191 28.08
peNDF? 19.79 4.88 10.81 33.50
GmpL? 6.27 1.11 3.89 9.32

!Calculated as 100 — CP — NDF — EE - Ash
2peNDF calculated as material retained on top two screens times NDF in ration (Yang et
al., 2001)
*GMPL = geometric mean particle length (Armentano and Tayson, 2005)
GMPL =0.54 + 11.84 * (proportion > 9mm in TMR)
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Association of Particle Size Classes with Feed Compositions and Production

To examine differences in CP, NDF, starch, ash, acid detergent lignin (ADL), ADF,
and ether extract (EE) across particle size classes, the following mixed model, with
herd nested within class as the repeated term with covariance matrix set to
autoregressive(1), was applied using SAS statistical software (version 9.1.3, SAS
Institute, Inc., Cary, NC):

Y; = u; + class; + herdi(class;)+ ej

where:

Y; = mean of interest for PSPS, CP, NDF, starch, ash, ADL, ADF and EE;
u; = overall mean for the ith item;

class; = jth class based on upper and middle sieve categories (1 to 9);
herd,(class;) = kth herd nested in the jth particle size class (25 herds);
e; = residual, random error.

Actual test day records for milk and milk component yields across particle size
classes were examined using the above model with cow nested within herd as a
repeated effect.

Association of Particle Size Classes with Individual Lactation Curves

In order to estimate particle size class effect on individual lactation curves, a multiple-
lactation, single-trait random regression TD model was fitted to the production data
combined with the TMR particle size information coming from the 25 farms involved in the
study. Since TD records were collected monthly whereas TMR were sampled every 3
months, each TD record was associated to the closest TMR fed to animals immediately
before or after the test day. Prior to this analysis, variance components for the genetic
effects were estimated using a larger full dataset of production data from 9,809 animals in
42 herds. Production TD records for the full dataset were processed using a multiple-
lactation, single-trait random regression TD model, with age at calving x year of calving,
parity x stage of pregnancy, year of test x month of test set as fixed effects, and herd x test
date, sire and maternal grandsire additive genetic effect, and permanent environmental
effect set as random effects modeled using third-order Legendre polynomials (Caccamo et
al. 2012). Model fitting was carried out using ASREML (Gilmour et al. 2009). Estimated
variance components were then used to investigate the effect of TMR particle size classes on

milk, fat, and protein yield lactation curves. An extension of the model used for variance
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components estimation was fitted, including TMR particle size class effect modeled as an
interaction with DIM using a ninth-order Legendre polynomial to increase the sensitivity to
dietary effects across DIM. To account for TMR chemical composition, CP, NDF, and starch
and their interaction with DIM (fitted as a ninth-order Legendre polynomial) were also
included in the model. Significance of effects was tested using the conditional Wald F-
statistic (Gilmour et al. 2009).

Parameters estimated in the model were used to generate lactation curves for milk, fat, and
protein yield for each class of TMR particle size (Gilmour et al. 2004). In order to have purely
estimates of particle distribution not confounded by nutrient content of TMR, predictions of
lactation curves per particle size class were controlled for TMR chemical composition. As the
range in nutrient content of the TMR within class overlapped sufficiently, it was determined
that production data could be controlled for CP content of 15.5%, NDF of 40.7% and starch
of 19.7% for all classes. Mean production values for predicted lactation curves were tested

for differences across particle size classes.

5.3 RESULTS AND DISCUSSION

Chemical Characteristics of Diets

A total of 148 TMR samples with sieve and composition analysis were available
from 25 farms. Table 5.1 presents the mean ration composition and PSPS
distributions for the 25 farms. Across all TMR samples, mean CP, NDF, and starch
content were 15.16%, 40.69%, and 19.69%, respectively (Table 5.1). Although there
were differences in the mean CP, starch, and NDF content between the classes, the
range in nutrient content of the TMR within class overlapped sufficiently that it was
determined that prediction of individual production curves could be controlled for
CP content of 15.5%, NDF of 40.7% and starch of 19.7% for all classes to assess the
influence of particle distribution on milk production. Therefore the production
effects in the paper are purely estimates of particle distribution not confounded by
nutrient content of TMR.

As seen in Table 5.2, there were differences in the least square mean nutrient
content and particle distributions for the classes. Of all major nutrients, CP varied
the most across the particle size classes and there were only trends for differences
in NDF and starch content (P<0.09). In general, the diets which had the greatest
proportion of TMR on the upper sieve had the greatest mean values for NDF, the
lowest CP and starch content of the TMR samples. The content of NDF and starch
would be expected to only support a moderate level of milk production, 25 to 35 kg
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of milk, depending on dry matter intake. With NDF content of 40.69% and given
estimates of maximal NDF intake of 1.3% of body weight, maximal dry matter
intake would be 19.2 to 20.8 kg/d for body sizes of 600 to 650 kg. Approximate
intake on Ragusa dairy farms is approximately 20 to 21 kg/d (G. Azzaro, personal
observation), so this seems to be reasonable given the NDF content of the diets.
Mertens (1997) suggests a maximal intake of 1.05% of peNDF, but given the peNDF
estimate of 19.79 based on the PSPS particle distribution, this would correspond to
maximal intakes of 31 to 35 kg/d, an amount unlikely in Ragusa. Of course milk
production also influences dry matter intake, as does body size and days in milk
(NRC, 2001), therefore milk production may also be a factor limiting intakes in
Ragusa.

Physical Characteristics of Diets

The partitioning of diets into classes based on the top two PSPS screens in
presented in Table 5.2. Yang and Beauchemin (2007) observed that chewing
activity most correlated with the proportion of material retained on the top two
sieves of the PSPS. The proportion of the TMR on the upper, middle, lower and
bottom differed across the classes, as expected by the classification scheme. Penn
State extension recommends that the upper screen contain 2 — 8% of TMR, which
was the basis of choosing <10.4 as the first cut-off for the TMR classes. Secondly it
is recommended that the middle sieve contain 30 to 50% of the TMR. We chose to
categorize the middle screen based on less than 30.1%, the too short
recommendation in the PSU classification, and by 30 to 35.3%, an intermediate
range, and >35.6%. Since it recommended that the bottom pan contain up to 20%
feed material and the middle and lower screens contain 30% to 50% of feed
material, when the top screen cut point is set to 10%, to meet these guidelines, the
middle and lower sieves must each retain 35% of the feed material. Thus 35.6%
was chosen as the boundary for defining the middle screen categories.

For classes 1 to 3 the lower and bottom sieve proportions were fixed at 39.0% and
18.1%, respectively. For classes 4 to 6, the lower and bottom sieve values were set
to 35.0% and 16.2% and for classes 7 to 8 the lower and bottom sieve proportions
were set to 32.2% and 14.3%. These were mean values for the sieve proportions
within these classes.

93



76

0>d 18 SpuaJ} peY 4N PUE UII.IS JO S109)J3 UlR|A
50'0>d AqQ Jayyp uwN|od UIYIM 1d1IDSIaANS JUBIBYIP YUM SUBDIA
€00T '[e 12 JJououoy ‘10jeledas d|aed LIS UUdd = SdSd ,

ssep = [0,

T 256 A 29'6C [ LJLTY T ,Tet €60 ,V0LT ET'T  SPeEv Ly'0  OEVT €T 9'9E< V'LI< 6
0T  LoL€T 7T 0 TT 9T 0T 8T 180 qSS6T  SOT Ty  OF0 o80T ST 9SETOE bLI< 8
60 ql'91 1T 8 EE 0T N 74 0T ,6'SC 70 LES98T L8°0 98Ty LEO (TEVT [44 ToE> VLI L
60 6Tl TT ,6°€€ 0T Srov 60 L'CT TL0  41S0C S8'0 ,.S0°01 9€0  9C'ST €T 9'SE<VLI-VOT 9
TT  l'8T vl lSE €1 a4l T LET L6'0 ,,C8'8T 8T'T ,.lT'6E 87’0 0191 ¢l 9'SETOEVLI-VOT S
[ 30T 7’1 q0'6€ T £8'5C €T (v'v1 68'0 .60 90T ,eLSOV 87’0  OY'YI ST ToE>V'LT-VOT Vv
60 qC 9T 0T ,qC'9¢ 60 SUTY 60 S9 0L'0  49T0C S8'0 ,.£86¢€ 87’0 SO0'ST €T 9'9€< V01> €
TT €61 €T L O0F 7T 9EE T 9 880 V96T 90T ,S08E  SYO S6ST ST 9'SET0E ¥OI> ¢
€1 9'TC ST 0P 7’1 LT €T L 90T IT'C¢C 6C'T ,.9L'6¢E ¢SS0 0C91 0 ToE> ¥O1> T
was woyog Wwas  JaMoT was  3|ppIAN was 4addn was  youels was 4aN was PR N appIN doL D
paule1ay % dA3IS SdSd 6INQ % ‘WW U3a.Ids

.>_U_‘;m SIY3 ul pasn sasse|d azis w_u_tmn {ulu 3y} Joj uo 1sodwod jo sagueds pue juaju0d JuslINU 104 sueaw aienbs jsea] g'g 9|qeL

S3AIND UOIIBIOE| [ENPIAIPUI UO 1I3)4d 3zIs 3di1ed 1310 - §



5 — Diet particle size effect on individual lactation curves

In general nutritionists are concerned when the upper sieve contains more than
10% material due to sorting that may occur when this is excessive. Maulfair et al.
(2010) observed that cows ate less of chopped grass hay when 11.7% of the
particles were retained on 26.9 mm sieve compared with 8.61% or lower. Thus
cows were very selective with just a small increment in particle size. If intake of
longer particles decreased then intake of shorter particles increased, particularly of
particles in the bottom pan (Maulfair et al., 2010). The effect due to sorting was
that cows ate less NDF and more starch than offered in the TMR when more long
particles were present in the diet.

PSU recommends that less than 20% of the TMR be in the bottom pan. Classes 1
and 4 (Table 5.2) had least square mean values of more than 20% in the bottom
pan. Class 1 diets had the lowest least square mean GMPL, 4.64 mm (sem 0.19)
whereas class 2 (5.28 mm, sem 0.17) and class 4 (5.32 mm, sem 0.18) had the next
lowest mean GMPL estimates. All other class had least square mean GMPL from
6.00 to 8.22 mm (data not shown). The authors are not aware of a
recommendation for a mean GMPL score for a TMR. General recommendations are
that the diet contains 19% to 21% peNDF on a DM basis or that forage NDF
comprises 75% or more of total NDF (NRC, 2001). The overall mean value for
peNDF was 19.78 within NRC (2001) ranges. However, peNDF for class 1 TMR was
13.67 (sem 0.93) and only over 21% for classes 6 through 9 (Table 5.3). Least
square means for GMPL are presented in table 5.3. As for peNDF the lowest mean
GMPL was for diets of class 1 and the longest mean GMPL was for diets from class 6
and greater. Class 3 and class 5 diets were intermediate in length between the
shortest three classes, class 1, 2 and 4, and the longest classes, class 6 and higher
(Table 5.3).
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Table 5.3 Least square mean values for geometric mean particle length and peNDF based
on particle size classes for the top two PSPS sieves.

Screen mm, PSPS'%

Class Top Middle peNDF2 sem GMPL>  sem
1 <10.4 <30.1 13.66° 1.08 461° 0.23
2 <10.4 30.1-35.6 15.41° 0.94 527°  0.19
3 <10.4 >35.6 18.88° 0.75 6.17° 0.15
4 10.4-17.4 <30.1 16.23" 0.98 5.29°  0.20
5 10.4-17.4 30.1-35.6 18.04™ 1.02 6.00° 0.21
6 10.4-17.4 >35.6 21.46° 076  6.84™ 0.16
7 >17.4 <30.1 2155° 078 6.47° 0.16
8 >17.4 30.1-35.6 22.99°  0.86 6.97° 0.17
9 >17.4 >35.6 28.18° 0.99 820"  0.20

! PSPS = Penn State Particle Separator, Kononoff et al. 2003

2 peNDF = sum of TMR particles collected on the upper (19 mm) and middle (9 mm)
sieves times the NDF content of the TMR (Yang et al, 2001)

*GMPL = geometric mean particle length calculated based on Armentano and Tayson
(2005) as GMPL, mm = 0.54 + 11.84 x (proportion particles of TMR retained > 9mm)
Means with different superscript within column differ by P<0.05

Particle size class effect on herd level milk and milk components yield

Mean herd level production for milk, fat, and protein of the 25 herds included in
this study are presented in Table 5.4. In general, for all traits, production was
lowest for middle screen proportion >35.6 within each top screen proportion class
(Classes 3, 6, 9 in Table 5.4). Differences were not significantly different, but within
the three groupings based on the retention of material on the top screen, peNDF
was greatest when material retained on the middle screen was >35.6% of the TMR.
Within each class more material retained on the middle screen resulted in less fine
material retained on the lower screen and passing to the pan. These rations had
longer mean GMPL and were coarser than the other diets within each class.
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Table 5.4 Least square means for milk, fat and protein yield for the nine particle size
classes used in this study.

Screen mm, %

Class Top Middle Milk sem Fat sem Protein sem
1 <10.4 <30.1 29.30° 0.10 1102.47° 3.98 1032.74>4.45
2 <10.4 30.1-35.6 34.59°  0.14 1179.82° 5.57 1056.95° 4.71
3 <10.4 >35.6 27.58° 0.21 1008.00" 8.13 990.90° 6.5

4 10.4-17.4 <30.1 35.69° 0.10 1241.33% 4.00 1017.84" 4.46
5 10.4-17.4 30.1-35.6 32.65° 0.14  1109.11°5.43 1009.74° 4.85
6 10.4-17.4 >35.6 32.93° 0.15 1139.50° 6.06 1013.55% 6.82
7 >17.4 <30.1 3045 0.15 1065.56° 5.73 1054.46° 5.39
8 >17.4 30.1-35.6 30.18° 0.14 1074.07° 5.58 1034.08° 4.46
9 >17.4 >35.6 27.35°  0.12 964.00% 4.86 1020.39%5.08

Means with different superscript within column differ by P<0.05

Particle size class effect on individual lactation curves

Figures 5.1, 5.2 and 5.3 present the influence of particle proportion classes on milk
yield (kg/d, Figure 5.1), fat yield (g/d, Figure 5.2), and protein yield (g/d, Figure 5.3).
There was little effect of class of particle proportions on the top two sieves and
peNDF on milk yield and fat yield. In general, as seen in table 5.5, milk yield and fat
yield tended to be slightly greater as class increased from class 1 to class 9.
Proportion of particles retained on the top two PSPS sieves that were associated
with peNDF greater than 21.0% of dry matter had the highest milk and fat yields.
However, class 4, with particle retention on the upper sieve of 10.4% to 17.4% and
middle screen of <30.1%, and a peNDF of 15.95 had high milk yield and fat yield
compared to other yields in classes 1 to 3 and classes 4 and 5 (Table 5.5). Overall
effects were minor on milk yield and fat yield so trends should be viewed
cautiously.

Of interest is the effect of sieve classes on protein yield. Protein yield was
significantly greater for sieve classes 4, 5, and 6, all sieve classes with 10.4 to 17.4%
of TMR particles retained on the upper PSPS 19 mm sieve (Table 5.5, and Figure
5.3). Sieve classes which retained more than 17.4% of particles on the upper sieve
had the lowest protein yields. In this data, protein yields were enhanced when the
upper sieve contained 10.4 to 17.4% particles irrespective of the middle sieve
proportions. Dietary CP was 15.5%, starch was 19.7% and NDF was 40.7% for the
analysis. This result was surprising. Only Kononoff and Heinrichs (2003a, 3003b)
have observed an influence of particle size on protein content in milk. Most studies
examining particle size have not found an effect on milk protein yield or content
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(Krause, 2002; Beauchemin et al., 2003; Krause and Combs, 2003; Bhandari et al.,
2007; Bhandari et al., 2008). Since nutrient content was controlled in the analysis,
we may speculate that sieve classes with 10.4% to 17.4% particles on the top
screen, were associated with the most uniform intake of nutrients resulting in an
influence on protein yield in milk. Within this class of particle sizes (Class 4, 5, and
6; Table 5.2), the lower screen and pan had approximately 59.8%, 53.8% and 46.8%
of TMR material. TMR in classes 1, 2, and 3 had 65.6%, 60.0% and 52.0% of material
on the lower screen and pan, whereas classes 7, 8 and 9 had 49.9%, 45.7% and
35.1% of material on the lower screen and pan. Therefore, the middle classes, 4, 5
and 6, had the most consistent distribution of fine particles relative to the PSU
recommendations of 30 to 50% of material on the lower screen and 20% of
material in the pan. This may have resulted in the most uniform intake of nutrients

of the three classes.
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Figure 5.1 Milk production curves for classes of TMR categorized by particle retention on the
Penn State Particle Separator. Diets are categorized into nine classes based on proportion of
particles retained on the upper sieve, 19 mm, and the middle sieve, 9 mm. Dashed curves
are for one-component model for classes of particle separation, solid curves multi-
component models including covariates for mean CP concentration of TMR, 15.5%, starch,
19.7% and NDF, 40.7% and their interaction with days in milk.
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Figure 5.2 Fat production curves for classes of TMR categorized by particle retention on the
Penn State Particle Separator. Diets are categorized into nine classes based on proportion of
particles retained on the upper sieve, 19 mm, and the middle sieve, 9 mm. Dashed curves
are for one-component model for classes of particle separation, solid curves multi-
component models including covariates for mean CP concentration of TMR, 15.5%, starch,
19.7% and NDF, 40.7% and their interaction with days in milk.
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Figure 5.3 Protein production curves for classes of TMR categorized by particle retention on
the Penn State Particle Separator. Diets are categorized into nine classes based on
proportion of particles retained on the upper sieve, 19 mm, and the middle sieve, 9 mm.
Dashed curves are for one-component model for classes of particle separation, solid curves
multi-component models including covariates for mean CP concentration of TMR, 15.5%,
starch, 19.7% and NDF, 40.7% and their interaction with days in milk.
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Table 5.5 Mean production values based on curves in figures 5.1, 5.2, and 5.3 for outputs
from the test day model controlling for 9 classes of particle size based on particles in
TMRs retained on the top two Penn State Particle Separator sieves (19 mm and 8 mm).

Class peNDF Milk, kg/d sem Fat, g/d sem Protein, g/d sem
1 13.67 38.04 0.02 12445 1.3 1165.2 1.8
2 15.91 38.00 0.02 12414 1.3 1162.1 1.8
3 18.73 37.96 0.02 12382 1.3 1159.0 1.8
4 15.95 38.22 0.02 12481 1.3 1248.1%* 1.8
5 18.00 38.18 0.02 12450 1.3 1245.0* 1.8
6 21.88 38.15 0.02 12419 13 1241.9* 1.8
7 21.20 38.35 0.02 12496 1.3 1158.2 1.8
8 23.35 38.31 0.02 1246.5 1.3 1155.2 1.8
9 28.15 38.27 0.02 12434 13 1152.1 1.8

Class 1 Upper Sieve Proportion Particles: <10.4, Middle Sieve <30.1

Class 2 Upper Sieve Proportion Particles: <10.4, Middle Sieve 30.1 —35.6
Class 3 Upper Sieve Proportion Particles: <10.4, Middle Sieve > 35.6

Class 4 Upper Sieve Proportion Particles: 10.4 — 17.4, Middle Sieve <30.1
Class 5 Upper Sieve Proportion Particles: 10.4 — 17.4, Middle Sieve 30.1 — 35.6
Class 6 Upper Sieve Proportion Particles: 10.4 — 17.4, Middle Sieve > 35.6
Class 7 Upper Sieve Proportion Particles: >17.4, Middle Sieve <30.1

Class 8 Upper Sieve Proportion Particles: >17.4, Middle Sieve 30.1 - 35.6
Class 9 Upper Sieve Proportion Particles: >17.4, Middle Sieve > 35.6

5.4 CONCLUSION

In conclusion, based on this study, particle size distribution in Ragusa dairy farms
TMR were associated with small but significant effects on milk protein yield. The
distribution most associated with increased protein yield was when the top PSPS
screen contained 10.4% to 17.4% of TMR particles and the lower screen and pan
contained 45% to 59% of TMR particles. Optimal distributions were different than
those recommended by PSU extension and may reflect regional differences based
on types of forages fed.
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6.1 INTRODUCTION

Milk recording is recognized as a valuable tool for herd management worldwide.
However, proper analyses and data handling are necessary to derive accurate and
unbiased information to analyze herd/cow performance. An accurate unbiased
analysis of milk production data can provide farmers with a tool that support them
in managing their herds to improve milk production and quality.

To evaluate management practices and to develop management tools, a field study
was conducted in Southern Italy (Ragusa province) to collect information at herd
level (every 3 months) and test records at individual cow level (every month). Data
collection was performed from March 2006 through December 2008 on 40
cooperating farms.

In this thesis, first, benefits of using a random regression test-day (TD) model for
management improvement (Chapter 2) are clearly shown. Higher variance of the
lactation curves at herd level (between herds) compared to the phenotypic
variance (between animals) around lactation peak, suggest that development of
management parameters for milk, fat, and protein yield around the peak should
focus on between herd parameters rather than management parameters that
compare individual cows, arguing the possibility to use herd curves as a tool to
evaluate and improve management between herds. In Chapter 3 sources of
variation that explain herd curve were explored, and breed, feeding systems and
total-mixed-ration (TMR) chemical composition were shown to influence herd
curve peak, mean and persistency. Herd curves therefore are useful to inform
farmers about inappropriate feeding, after correcting properly for breed and
feeding system. The response in milk and milk components production to varying
diet composition was then investigated at individual cow level. The analyses were
performed by combining TD information with chemical composition (Chapter 4)
and particle size (Chapter 5) of TMR fed to animals. A different approach compared
to most experiments investigating production responses to varying nutritional
quality was developed: the field study approach allowed a retrospective
explanation of variation in lactation curves due to diet chemical and physical
composition on a very large dataset including a large number of herds and animals.
In this chapter, the contribution of the analyses performed in this thesis to
development of management parameters derived from milk recording system
information is discussed. First, an evaluation of the value of using random
regression TD models to analyze milk and milk components data for management
purposes will be given. Second, the use of field data in a multi-component analysis
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approach to assess cow production response to nutrition will be discussed. Finally,
potential applications of research findings described in this thesis are discussed to
support technicians as well as farmers in their decision-making strategies.

6.2 Management Information system using test-day model

From a production perspective, the dairy sector today is characterized by narrower
profit margins than in the past especially for capital-intensive farming systems due
to increasing economic pressure: small changes in production or efficiency,
therefore, can have a major impact on profitability (Huirne, 1990; van Asseldonk et
al., 1999). The adoption of on-farm use of management information systems has
been proven to increase herd average production and return on investments
(Tomaszewski et al., 2000). Realized benefits from computer use are anticipated to
be higher for larger (>300 cows) herds (Lazarus et al., 1990). Furthermore, the
progress in information and communication technology in the last decade has
made it possible to capture, store and process vast amounts of data from sources
on the farm as well as from external organizations. The challenge for dairy
producers is to interpret and utilize this information properly to improve decision-
making.

Data collected in DHI agencies represent the main source of information on farm
productivity that can be used to support management decisions. This information is
processed and analyzed by DHI agencies to provide farmers with reports that can
be used as a basis to make appropriate decisions for the improvement of on-farm
management practices. Although DHI data and information can contribute to
improved management practices, the benefits are only realized when the farm
manager and/or the advisor spend a considerable amount of time in analyzing the
information. It is, therefore, necessary to develop analytical tools which will
accelerate these analyzes. Such tools would filter and pre-process the data, and
would present them under a form and in a way which would predispose them to
the analytical process.

In this study a model that exploits test day information (TD model) for
management purposes was developed for Sicilian dairy herds. Everett et al. (1994)
suggested using results of TD models for monitoring genetics and management in
dairy cattle. TD models have been further improved and today represent one of the
most advanced and sophisticated mathematical tools to process DHI data with very
high reliability. Test-day models are used in most countries to perform genetic
evaluations for dairy cattle by using test-day observations instead of aggregated
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305-d yield observations (Ptak and Schaeffer, 1993; Reents et al., 1995; Jamrozik et
al., 1997a; Schaeffer et al., 2000). By modeling the shape of the lactation curve and
the variability of yields around general shapes, TD models provide 4 to 8% more
accurate genetic evaluations of cows compared to evaluations from 305-d yields
(Schaeffer et al., 2000). For management purposes, several solutions based on TD
models have been proposed in the literature also. As an example, estimation of
fixed, genetic, environmental and herd effects can be used to predict future
productions of individual cows. Deviations between predicted and actual
production could be used to detect a disease at an early stage, i.e. before the cow
shows clinical signs. Mayeres et al. (2004) and Pool and Meuwissen (1999)
investigated the ability of a TD model to predict yield from TD records. Halasa et al.
(2009) used the difference between actual and predicted production to model
production loss due to subclinical mastitis. Records from cows with clinical mastitis
were excluded in order to use predicted production based only on healthy cows. A
multiple-trait mixture model was successfully applied to TD milk yield, fat-to-
protein ratio and somatic cell score to detect sub-clinical mastitis in dairy cattle
(Jamrozik and Schaeffer, 2012). Fat-to-protein ratio, easily available, highly
heritable and relatively independent from milk and somatic cell score, could serve
as an additional indicator for indirect selection against mastitis in dairy cattle. The
above applications refer to tools to support management decisions at the level of
the individual cow. However, TD models can also be used to determine time-
dependent herd effects, such as herd-test-day or herd-lactation curves effects,
which can be used to support management decision at herd level. The herd-test-
day effect accounts for month-to-month variability and is particularly informative
with regard to short-term management changes that affect the whole herd at a
particular TD such as a change in feed ration. Koivula et al. (2007) developed a dairy
herd management Web application “Maitoisa” (in English, “Milky”) to help farmers
to recognize systematic patterns and single unusual test days, based on the analysis
of monthly herd-management effect solutions from a TD model in Finland. Monthly
herd-management effect is defined as a deviation from the mean within each herd.
The herd-management effect is especially informative for immediate management
changes that affect the whole herd at a precise TD.

In this study we focused on using herd curves (HCUR) from a random regression
model to develop management parameters. The difference between our models
and management parameters developed in other studies is that we focused on
herd curves rather than individual cow information.

From a management perspective, those herd specific lactation curves give
information on how a herd of animals performed compared to how they would
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have done under average management circumstances. The HCUR variances for milk
production traits were highest around peak yield (DIM 50 to 150; Chapter 2).
Higher variability at the peak indicates that differences in management between
herds are expected to have the largest impact around the peak of the lactation. The
ratio of HCUR over phenotypic variance was highest for protein yield around the
time of peak yield, with values greater than 1 for first and second lactation,
showing that variability between herds is bigger than between animals. For this
reason, we decided to develop management parameters for milk, fat, and protein
yield at between-herd level rather than at cow level, or rather than within-herds,
for example among herd test days.

The high variation in HCUR indicates a promising opportunity to improve
management of herds, which should lead to a reduction of variation in HCUR. To
explain HCUR variability found in this study, an experiment was performed where
routinely information was collected on management practices and nutrition at herd
level (every 3 months) and information was collected on production and health
status at cow level (every month) on 40 farms in Ragusa province from March 2006
through December 2007. In chapter 3 yearly HCUR traits (peak, mean and
persistency) were associated to animal breed and feeding system (separate feeding
vs. TMR) variables and to TMR chemical composition. Results from this analysis
demonstrated that breed, feeding management, and crude protein and dry matter
content in the diet and their interaction influenced significantly HCUR, especially
peak, mean, and persistency. In general, HCUR of Holstein Friesian farms had
higher milk peak but were less persistent for all traits compared to Brown Swiss
farms. TMR fed cows produced on average more milk, fat, and protein, and their
curves had a higher peak compared to animals fed with separate feeding. Looking
at TMR chemical composition, a significant impact (P<0.05) of crude protein on
peak and mean HCUR for all production traits was found. The interaction crude
protein x dry matter had a significant effect (P<0.01) on persistency for all traits
and parities, except for fat and protein for first parity cows, whereas neutral
detergent fiber x Starch marginally affected (P<0.1) persistency for milk and
protein HCUR in parity 2 and 3. These results illustrate the power of random
regression TD models to process TD milk production data for management advice.
Apart from simply processing that data, TD model also allow proper correction for
breed and feeding system. The analyses revealed that herd curves parameters
derived from the data were highly variable across herds, and the variability turned
out to be associated to nutritional management of the farm. These results can be
used to advice farmers about (in-)appropriate nutrition: adequate CP content in the
diet, as an example.
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6.3 Multi-component analysis of field data to assess milk
production response to dietary changes

6.3.1 Data analysis for nutrition experiments

In Chapter 3, the production response to dietary chemical and physical changes
was estimated using a retrospective analysis of field data. In literature, dairy cow
experiments to assess nutrition effects can be classified in two main categories:
continuous and change-over trials. In continuous trials, a cow, once placed on the
experimental diet, remains on that diet during the whole trial. In change-over trials,
a cow receives two or more treatments during the course of the trial. In a meta-
analysis comparing feed intake and milk production responses in continuous vs.
change-over design dairy cow experiments, Huhtanen and Hetta (2012) showed
that in continuous trials, the high variability between cows often did not allow to
detect economically important differences with a realistic number of cows per
treatment. In change-over trials, residual errors were smaller compared with the
continuous trials, since the variation between cows was excluded from the residual
variance. Another advantage of using change-over design was that with a given
number of cows more treatments can be designed into the trial. However, the
disadvantage of using such experimental design was represented by the so called
‘carry-over’ or residual effect, and a possible bias in estimating experimental error
(Lucas, 1960). Furthermore, the short-term production responses may not reflect
the whole lactation responses (e.g. Morris, 1999). Results showed that when the
expected differences between the diets in feed intake were large, production
responses could be underestimated in change-over designs. Under these
circumstances continuous trials may result in more accurate estimates of the
differences between the diets, although at the expense of reduced precision.
However, when the expected differences between the diets were from small to
moderate, change-over designs were more precise and economical requiring less
animals, and most likely, as accurate as continuous experiments also for estimating
long-term effects.

In this thesis, a different approach to determine the impact of diet composition was
used. Existing data were used to explain in retrospect the variation in the lactation
curves due to diet composition. A disadvantage of our approach is that the
nutritional components were only examined four times a year. However, an
advantage was that a large number of herds and animals were included in the
analysis. The large dataset enabled correction for genetic and herd-year-season
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effects. We were also able to investigate many nutritional components
simultaneously by quantifying the substitution effect on production, i.e. the change
in production due to increasing/decreasing of one diet component when other
components were fixed at three dietary concentrations, under the assumption that
animals fed free choice eat to their maximal capacity. However, to handle field data
particular attention has to be paid to statistical analysis. TMR were sampled every 3
months, whereas production data are collected on a monthly basis. To associate
TMR chemical composition to lactation curves, each TD record was associated to
the closest TMR analysis fed to animals immediately before or after the TD. A
random regression sire — maternal grandsire model was used to assess this
association. To examine the influence of TMR, model fitting included TMR chemical
and physical composition, in a one-component analysis, modeled as an interaction
with DIM using a ninth-order Legendre polynomial to increase the sensitivity to
dietary effects across DIM. These effects were fitted as fixed regressions, to ensure
that the random herd test date effect only accounts for the residual that is left
after the main effect of main composition. Based on the results of the one-
component analysis, a multi-component analysis was performed where crude
protein, neutral detergent fiber, and starch and their interaction with DIM (fitted as
a ninth-order Legendre polynomial) were simultaneously included in the model.

The models presented in Chapter 4 and 5 allowed a retrospective analysis to
explain variation in the lactation curves due to diet composition. Selection of
animals in homogeneous groups for known variables affecting milk and milk
components production (breed, DIM, age at calving, stage of pregnancy) was not
necessary, as these variables were included in the TD model as fixed effects.
Adjusting for these effects is necessary to avoid misinterpretation of results due to
partial confounded by other variables different from the ones under investigation.
Also, adaptation period was not needed as cows at time of testing were already
under the experimental diet regime. In feeding trials, adaptation time (10 to 14
days recommended, Cochran and Gaylean, 1994) is required as rumen microbes
need to adapt to the new diet under evaluation to reach the full and unbiased
responses in milk and milk component production. The relatively easy and low-cost
access to a large amount of data was, however, counterbalanced by the necessity
of collecting TMR for a long period (3 years) on a large number of farms (40). TMR
were collected for each farm every 3 months and chemical composition was
associated to the closest TD milk test. Data collection did not take into account diet
changes and time when a component of the diet was replaced (hay, silage,
concentrate), and, as an example, this did not allow the cows to adapt to the new
diet changes when and if they occurred a few days before the TMR was collected.
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However, the TD model accounts for the correction for this effect, as it quite
presumably reflects in the HTD effect, but further investigations are needed to
verify this hypothesis.

Although there are obvious caveats to this retrospective analysis of nutritional
effects, for example, when only limited data are available, other (unknown)
management effects might be confounded with the nutritional parameters and
lead to spurious associations, Also, caution has to be paid when interpreting results
from this study, as this model was developed based on variation in diets found in
Sicily. Association within this environment may not work for other regions, e.g.
Northern Italy or even Northern Europe due to differences in the diets found in
these regions. Diets in Sicilian herds are characterized by high fiber content of
forages due to subtropical climate (Van Soest 1994); different forage sources
(limited use of corn silage because of restricted water availability); use of specific
by-products such as citrus pulp and carob. Hence, despite these cautions, the
results demonstrate that these are out weighted by the advantage of using data
from practical circumstances investigating the associations with many nutritional
components simultaneously. Several expensive experiments would have been
needed to investigate all interactions between components.

6.3.2 Effects of nutrition on lactation curves

Based on results found in the literature, greater impact of energy (starch) and
forage quality (lignin and acid and neutral detergent fiber) was expected on herd
curve traits (Hristov et al., 2002). One reason for this discrepancy could be that
energy in the diet affects milk production at cow level: examination of individual
animal curves or deviations of real from expected production estimated from the
model is thus needed.

To this purpose, data collected at 27 farms located in Ragusa province (Sicily, Italy)
in a field study from 2006 through 2008 were analyzed, using a modeling approach,
to assess the effects of crude protein (CP), neutral detergent fiber (NDF) and starch
(Chapter 4) and particle size (Chapter 5) on individual lactation curves for milk, fat
and protein. Two analyses were performed to assess these effects: a one-
component analysis (NutUni), where each chemical and physical parameter was
included in the model one by one; a multi-component analysis (NutMulti), where
the main chemical component effects where included simultaneously in the model.
Results of responses in this study suggest that changes in milk yield to CP and NDF
were dependent on dietary content of starch. Dietary CP was the second most
important factor. However, the response to CP was strongly dependent in starch
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and NDF content of the TMR as well. Responses resulting from the one-component
analysis confirmed the literature. However, more specifically, although increasing
starch had a significant impact on milk production throughout lactation in both
analyses, a more pronounced effect was found in the NutMulti model than in the
NutUni model for starch. Brun-Lafleur et al. (2010) found similar results when
assessing the effect of energy x protein interaction on milk yield: this interaction
resulted in a sharper response of milk yield to energy supply for high levels than for
low levels of CP supply. When CP is at an average concentration in the diet,
increasing starch had a slightly larger impact on increasing peak yield than
increasing CP when starch was at an average concentration.

Despite the difference in methodology, the effects of nutritional components on
lactation curves found in this study were consistent with reported literature which
lends credibility to the multiple component models. The change of production
effects when the other nutrients are included in the model found in this study
suggest the confounding response one can have when multiple nutrients are not
accounted for.

Looking at the effect of physical characteristics of TMR on lactation curves, only
little effect of class of particle proportions on the top two sieves of Penn State
Particle Separator and peNDF on milk yield and fat yield was found (Chapter 5). Of
interest is the effect of sieve classes on protein yield. In this data, protein yields
were enhanced when the upper sieve contained 10.4 to 17.4% particles
irrespective of the middle sieve proportions (dietary CP was 15.5%, starch was
19.7% and NDF was 40.7% for the analysis). This result was surprising. Only
Kononoff and Heinrichs (2003a, 2003b) have observed an influence of particle size
on protein content in milk. Most studies examining particle size have not found an
effect on milk protein yield or content (Krause, 2002; Krause and Combs, 2003;
Yang and Beauchemin, 2005; Bhandari et al., 2007; Bhandari et al., 2008). The
distribution most associated with increased protein yield was when the top screen
contained 10.4% to 17.4% of TMR particles and the lower screen and pan
contained 45% to 59% of TMR particles. Optimal distributions were different than
those recommended and may reflect regional differences based on types of forages
fed.

6.4 Towards implementation

We have developed a TD model that allows estimation of herd curves and herd
curves parameters. Development of management parameters at herd and cow
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level is necessary to provide farmers with tools to interpret production data and
support them in their decision making task. In this thesis, management parameters
focused on herd level development, as variance components of production data
collected in Ragusa province, estimated with TD models, showed highest variation
in herd curves. Sources of variation of herd curves were identified by breed,
feeding system and chemical composition of the diet. Herd curves are therefore a
useful tool that can be used to detect the management problem at herd level.
However, a proper management information system (MIS) that supports farmers in
translating the detection of a problem from herd curves with abnormal patterns
into planning of activities (from strategic to operational through tactical) is still
missing.

A MIS, according to Davis and Olson (1985), is an integrated, user-machine system
for providing information to support operations, management, and decision
making functions in an organization and two derivations of MIS have been
developed: decision support systems, that support the decision maker to retrieve
data and test alternative solutions during the process of problem solving (Devir et
al., 1993); or expert systems, that use expert knowledge to attain high levels of
performance in a narrow problem area (Hogeveen et al, 1991; Pellerin et al., 1994;
Schmisseur and Gamroth, 1993).

As a further evolution of the data processing system presented in this thesis, here
we aim to develop a combination of both kinds of MIS, where the random
regression TD model is used to retrieve the data and estimate the curves and the
results of the management and nutritional associations are used to train the
knowledge systems after validation by experts. These results can be used to expand
the current information system of CoRFiLaC into a full MIS.

The first step to expand the current system of Corfilac taken was by providing dairy
farmers with overviews of their herd curve parameters (figures 6.1 and 6.2)
through a restricted-area web-based service.
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Herd no.: 08710440; Report type: MRM; Date: 01/10/2008

|Down|oad the excel file|

HE R D MANAGEMENT CURVES
f e
— ——Lattaz. 1
Milk Lattaz. 1 Fat
———lataz. 2 ———Lataz. 2
Lattaz. 3 Lattaz. 3
6.9 0.26
55 0.21
41 0.16
28 o 010
= 14 & o005
= g0 G 000
[¢] ¥
¥ 14 -0.05 R
28 -0.10
41 = o -0.16 \_ —
55 +— = 0.21 4= =
69 -0.26
mwmgmov\wv—com(\lmco LT o S < ) B T T e <o B =) S T T - L 0 }
©w FEILe2]qIKRBES8 PRIl &E8Rs
DIM DIM
J
e ™
. = Lattaz. 1 ——Lattaz. 1
Protein .
Lataz. 2 Somatic Cell Score Lataz. 2
Lattaz. 3 Latiaz. 3
022 0.8 '
0.18 0.6
0.13 0.5 —
c 0.09 0.3 _/9*
Q004 0.2 +—
5 /[ 7
& 000 c_‘no.o
g -0.04 0.2 / /
-0.09 \\ 0.3 / /
L — —— os L
018 > ——— 0.6 ,/
022 0.8
DIM DIM
(& 2N J

Figure 6.1 - Herd curves for first, second, and third parity for milk, protein, and fat yield,
and somatic cell score associated to “bad management”

116



6 - General discussion

Herd no.: 08700455; Report type: MRM; Date: 01/10/2008

|Down|oad the excel filel

HERD MANAGEMENT CURVES
4 i — lattaz. 1 Lattaz. 1
Milk Fat
——lataz.2 Lataz. 2
Lattaz. 3 Lattaz. 3
9.1 0.19
e
73 +— = 0.15
54 /72% o1
36 P == o 007
~
= 18 & o004 =
= o0 G o0.00
[&] ¥
¥ -18 -0.04
36 -0.07
54 -0.11
73 -0.15
-0.19
DIM DIM
J /
( Protein = lattaz.1 1 ( : —Lattaz. 1
Lataz. 2 Somatic Cell Score Lataz. 2
g — az.
Lattaz. 3 Latiaz. 3
022 19 -
017 7/ s
g 0.09 0.7
o 0% 0.4
2
S o000 oo
& 004 -
o o 0.4
X 009 07
013 1.1 PN
\ — g
017 15 -
S ————
022 . . 1.9
n - n M - o n ™ -
Bea8-3"R8k&s53 8BRS REFEIEE55 8
DIM DIM
- J J

Figure 6.2 - Herd curves for first, second, and third parity for milk, protein, and fat yield,

and somatic cell score associated to “good management”

The herd curves of these 2 farms clearly show differences in production level as
well as in curve shapes for all traits. Farm 08710440 (A, Figure 6.1) has a negative
production level, around 4 kg milk, 200 g fat, and 150 g protein yield below the
average of the population average (Ragusa province in its context). The somatic cell
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score for this herd is positive, which means a higher content of somatic cell count
compared to the average. Farm 08700455 (B, Figure 6.2), on the contrary, shows a
positive deviation for all traits: around 5 kg milk, 110 g fat, and 150 g protein yield
higher than the baseline. Somatic cell score deviation is accordingly negative. In
both herds, first-parity cows produce less milk, fat, and protein yield, compared to
multiparous cows, but are more persistent. Looking at the management
characteristics of these 2 herds, farm A has 25 Brown Swiss cows in lactation,
housed in tie stall and fed with separate feeding system, whereas farm B has 30
Holstein lactating cows, housed in free stalls and fed with traditional separate
feeding system as well. Differences in housing systems may have influenced
production at herd level (Simensen et al., 2010). The 2 herds adopted the same
feeding systems, however after evaluation of the diets through CPM Dairy (version
3.0.8, University of Pennsylvania, Kennett Square, PA, Cornell University, Ithaca, NY
and Miner Agricultural Research Institute, Chazy, NY), also diets adopted by the 2
herds are substantially different. Estimated average (t st dev) CP levels from 1-year
diets are 14.1 (+1.66) vs. 16.2 (+ 0.31) for farm A and B, respectively. As starch and
NDF are correlated nutrition parameters in the diets, estimated average starch
levels are 15.7 (+ 3.02) vs. 24.8 (£1.24) for farm A and B, respectively, and NDF
levels are 40.5 (+2.25) vs. 34.2 (+0.33) for farm A and B, respectively. Diet
composition might have the most important effect on lactation herd curves,
however caution has to be paid in interpreting such results. Known factors, such as
breed, influencing HCUR should be included in the model in order to reduce
potential score of variation.

There are examples of MIS in the literature aimed to help farmers managing their
herds. A knowledge-based system developed for dairy managers to automatically
download through a Direct Access to Records by Telephone (DART) program,
inspect and interpret lactation curves for his herd relative to an average of
comparable herds in the DHIA, to diagnose potential problems in their herd, and to
recommend appropriate strategies for amelioration (Whittaker et al., 1989). Also, a
case-acquisition and decision-support system was developed to support the
analysis of group-average lactation curves and to acquire example cases from
domain specialists (Pietersma et al. 2001). The system, at first step, consisted of
interpretation rules derived from scientific literature written by nutritionists and
extension specialists. The knowledge base was then submitted to the attention of
dairy consultants to refine and enhance the justifications and recommendations of
the rules. This set could be expanded by a set of prototype rules consisting of
causal dependencies, justifications and recommendations. For example, the
nutritional associations found in Chapter 3 could be used to instruct the system.
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Also, further investigations of other management parameters (e.g., housing
systems, diets evaluation) that may affect production curves at herd level are
needed. The rules derived in the learning phase are then used to interpret
abnormal deviations of herd average production from the population base.
However, knowledge acquisition through interviews has proven to be time-
consuming and difficult. Experts often have difficulty expressing how they make
their decisions and, in addition, it is not easy to structure and encode the
knowledge expressed through interviews into a representation that can be used as
part of a KBS. Alternatively, knowledge acquisition can be partially automated with
machine learning (Langley and Simon, 1995; Dhar and Stein, 1997). With this
approach, a domain expert first classifies example cases of a particular problem. A
machine-learning technique, such as decision-tree induction, is then used to learn
how to classify new cases based on these examples. In our case, the system would
be trained using the equations resulting from the associations found in this thesis
between breed, feeding systems and chemical and physical characteristics of the
diets with lactation curves, combined with validation performed by experts in
management and nutrition.
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Summary

Management information is crucial both for accurate monitoring and for
adequate planning of activities at modern dairy farms. Milk recording is
recognized as a valuable tool for herd management world-wide, and milk
recording provides an important source of information for estimation of
breeding values. Analyses of data for management and for genetic evaluation
have long been separate processes with different statistical procedures and
frequencies of data processing. Random regression models that use test-day
records for milk yield have been implemented for the estimation of breeding
values. Recent studies have investigated the possibility to use a test-day model
for management purposes. The aim of this study was to investigate the use of
test-day information to support farmers in management of Sicilian dairy herds.
The specific objectives of this thesis were 1) to develop the test-day random
regression model for the analysis of production data of Sicilian dairy herds, 2) to
develop parameters from the random regression model that that can be used
to advise dairy farmers on nutritional management of their dairy cows, and 3)
to investigate the production response to changes in chemical and physical
composition of diets in Ragusa province (Sicily, Italy). For objective 2 to 3 a field
study was conducted in Southern Italy (Ragusa province) where diet and
chemical composition of the diet was collected at herd level (every 3 months)
and testday milk yield records at individual cow level (every month). Data
collection was performed from March 2006 through December 2008 on 40
cooperating farms.

First, benefits in using a random regression TD model for management
improvement (Chapter 2) were investigated. Variance components for milk, fat,
and protein yield, and somatic cell score of dairy cows in Ragusa province were
estimated. Higher variance of the lactation curves at herd level (between herds)
compared to the phenotypic variance (between animals) around lactation peak
were found, suggesting that development of management parameters for milk,
fat, and protein yield around the peak should focus on herd level rather than
cow level parameters, to evaluate and improve management between herds in
Ragusa province.

Sources of variation that explain herd curves were explored in Chapter 3.
Random herd curves for milk, fat, and protein yields were estimated from a
random regression test-day model per herd, year, and parity (1, 2, and 3+) using
4-order Legendre polynomials. Traits describing herd curves (peak, days in milk
at peak, mean, and persistency) were associated to breed of animals (Holstein
Friesian vs. Brown Swiss), feeding system (total mixed ration vs. traditional
separate feeding) and total-mixed-ration chemical composition (dry matter,
ash, crude protein, soluble nitrogen, acid detergent lignin, neutral detergent
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fiber, acid detergent fiber, and starch). Feeding system affected significantly
herd curve peak and mean. Brown Swiss herds showed significantly higher
persistency, whereas Holstein Friesian showed higher herd curve peak and
mean. Crude protein had the largest effect on herd curve peak and mean,
whereas the interaction between crude protein and dry matter mainly affected
persistency. Herd curves can therefore be used as an indicator of herd feeding
management.

Based on results found in the literature, greater impact of energy and forage
quality on herd curve traits was expected. The response in milk and milk
components production to varying diet chemical composition was then
investigated at individual cow level (Chapter 4). The analyses were performed
by combining individual lactation curves, estimated using a random regression
sire-maternal grandsire test-day model, with chemical composition of total
mixed rations fed to animals. Results showed that starch had the greatest effect
on milk, fat, and protein production when crude protein and neutral detergent
fiber contents were at a high and low value, respectively. The change in
production effect when the other nutrients are included in the model found in
this study suggests the confounding response one can have when multiple
nutrients are not accounted for.

In Chapter 5 the association of total-mixed-ration physical properties with
production of milk, fat, and protein was assessed. Total-mixed-ration physical
property was estimated as particle fractions retained on the Penn State Particle
Separator. Particle size distribution in Ragusa dairy farm total mixed rations
were associated only with small but significant effects on milk protein yield.
Optimal distributions were different than those recommended and may reflect
regional differences based on types of forages fed.

In Chapters 4 and 5, a different approach compared to most experiments
investigating production responses to varying nutritional quality was developed:
the field study approach allowed a retrospective explanation of lactation curves
variation due to diet chemical and physical composition on a very large dataset
including a large number of herds and animals.

Finally, in the general discussion presented in chapter 6, the contribution of the
analyses performed in this thesis to development of management parameters
derived from milk recording system information are discussed. First, the value
of using random regression test-day models to analyze milk and milk
components data for management purposes was evaluated. Second, the use of
field data in a multi-component analysis approach to assess cow production
response to nutrition was discussed. Finally, potential applications of research
findings described in this thesis to support technicians as well as farmers in
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their decision-making strategies were discussed. A proper management
information system that supports farmers in translating the detection of a
problem from herd curves into consequent planning of activities can be set up
using the parameters estimated in this thesis.
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Samenvatting (Summary in Dutch)

Management informatie is cruciaal zowel voor nauwkeurige monitoring als voor
een adequate planning van de activiteiten op moderne melkveebedrijven.
Melkproductieergistratie wordt wereldwijd erkend als een waardevol
instrument voor bedrijfsmanagement. Daarnaast zijn melkproductiegegevens
een belangrijke bron voor het schatten van fokwaarden. Analyses van gegevens
voor deze twee doeleinden zijn al lange tijd gescheiden processen met
verschillende statistische procedures en verschillende frequentie van de
gegevensverwerking. Random regressiemodellen die gebruik maken van
proefmelkgegevens, de zogenaamde testdagmodellen, zijn  reeds
geimplementeerd voor het schatten van fokwaarden. Recente studies hebben
de mogelijkheid van het gebruik van het testdagmodel voor management
doeleinden onderzocht. Het doel van dit onderzoek was om de bruikbaarheid
van proefmelkgegevens ter ondersteuning van de veehoudersin het
mangement van Siciliaanse melkveebedrijven te onderzoeken.

De specifieke doelstellingen van dit proefschrift waren 1) ontwikkelen van test-
dag random regressie model voor de analyse van de melkproductiegegevens
van Siciliaanse melkveebedrijven, 2) ontwikkelen van parameters uit het
random regressie model die gebruikt kunnen worden om melkveehouders te
adviseren over voeding van hun melkkoeien, en 3) het effect van chemische en
fysische samenstelling van de voeding te onderzoeken op melkproductiecurves.
Voor doelstelling 2 tot 3 werd veldonderzoek uitgevoerd in Zuid-Italié (provincie
Ragusa) waar naast de routine proefmelkgegevens, ook het rantsoen en
chemische samenstelling van het rantsoen werd verzameld. Het verzamelen van
gegevens werd uitgevoerd van maart 2006 tot en met december 2008
betreffende de 40 samenwerkende bedrijven.

Ten eerste werd het gebruik van een random regressie testdagmodel
onderzocht (Hoofdstuk 2). Variantiecomponenten voor melk-, vet- en
eiwitproductie en celgetal van melkkoeien in provincie Ragusa werden geschat.
Hogere variantie van de lactatiecurven werd gevonden tussen bedrijven, in
vergelijking met de fenotypische variantie (tussen dieren) rond de
piekproductie tijdens de lactatie. Dit suggereerde dat de ontwikkeling van
managementparameters voor melk-, vet- en eiwitproductie rondom de
lactatiepiek zich moeten richten op bedrijfsniveau in plaats van koeniveau , om
het management te verbeteren in de provincie Ragusa.

Bronnen van variatie die verschillen in bedrijfscurves verklaren werden
onderzocht in Hoofdstuk 3. Bedrijfscurves voor melk-, vet- en eiwitproductie
werden geschat op basis van een random regressie testdagmodel.
Eigenschappen dei de curves beschrijven (piek, dagen in melk tijdens de piek,
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gemiddelde productie, en persistentie) waren geassocieerd met ras (Holstein
Friesian vs Brown Swiss), voersysteem (totaal gemengd rantsoen vs traditionele
aparte voeding) en de samenstelling van het TMR rantsoen (droge stof, as, ruw
eiwit, verteerbare stikstof, lignine, vezels en zetmeel). Voersysteem had een
significant effect op de piekproductie en gemiddelde productie. Brown Swiss
bedrijven toonden significant hogere persistentie, terwijl bedrijven met Holstein
Friesians een hogere piek en een hoger gemiddelde hadden. Ruw eiwit had de
grootste invloed op de hoogte van de bedrijfscurve en het gemiddelde van de
bedrijfscurve, terwijl de interactie tussen ruw eiwit en droge stof de persistentie
beinvloedde. Verschillen in bedrijfscurven kunnen daarom gebruikt worden als
indicator voor wijze van voeren.

Op basis van de resultaten gevonden in de literatuur, werd een grotere impact
van de energie- en ruwvoerkwaliteit op de melkproductiecurves verwacht.
Daarom werd onderzocht hoe de chemische samenstelling van het rantsoen
effect had op individueel koeniveau (Hoofdstuk 4). De analyses werden
uitgevoerd door het schatten van individuele lactatiecurves, en deze te
combineren met het effect van de chemische samenstelling van het rantsoen.
De resultaten toonden aan dat zetmeel het grootste effect had op melk-, vet-
en eiwitproductie wanneer ruw eiwit en neutraalbestande vesel inhoud een
hoge en lage waarde hadden, respectievelijk. De verandering in het effect op
productie, nadat de andere nutrienten in het model meegenomen waren, geeft
aan dat je een verstrengeld effect kunt hebben wanneer geen rekening wordt
gehouden met meerdere nutrienten.

In hoofdstuk 5 is gekeken naar de invloed van de deeltjesgrootteverdeling van
het TMR op de melkproductiecurves. Deze werden bepaald met de Penn State
Particle Separator. Deeltjesgrootteverdeling op Ragusa melkveebedrijven was
alleen geassocieerd met een klein maar significant effect op eiwitproductie.
Optimale verdeling van de fracties lag anders dan aanbevolen op basis van
resultaten uit ander landen. Dit kan verklaard worden door verschillen in de
soorten gevoerde ruwvoeders .

De multicomponent analyse van praktijkdata met behulp van random
regressiemodellen, zoals in hoofdstuk 4 en 5, voegt een extra benadering toe bij
het onderzoek naar de effecten van voeding op productie. In vergelijking met
de dominerende experimentele aanpak kan via deze benadering achteraf
verklaard worden hoe verscheidene chemische en fysische componenten van
het rantsoen (en de interacties) een effect hebben op de lactatiecurve van
melkvee, onder praktijkomstandigheden en met een relatieve grote dataset
met een groot aantal bedrijven en dieren.
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Ten slotte, in de algemene discussie in hoofdstuk 6, is de toegevoegde waarde
van random regressiemodellen voor management informatie bediscussieerd, en
het gebruik van praktijkgegevens in een multi-component analyse om
voedingseffecten te schatten. Tot slot is beschreven hoe de resultaten uit dit
proefschrift gebruikt kunnen worden bij de ondersteuning van voorlichters en
boeren ter ondersteuning van hun besluitvorming. Een goed management
informatiesysteem dat veehouders ondersteunt bij het vertalen van de
gevonden afwijkingen van productiebedrijfscurves naar consequente planning
van werkzaamheden, kan worden opgezet op basis van de parameters geschat
int dit onderzoek.
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The Basic Package (3 ECTS)
WIAS Introduction Course
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ADSA-PSA-AMPA-ASAS Joint Annual Meeting,
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EAAP 58th Annual Meeting, meeting,
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ADSA-CSAS-ASAS Joint Annual Meeting,
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Heraklion, Crete Island (Greece), August 23-27
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Nutrition and Management of Dairy Cattle, Ragusa, June 5-9
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"Variance of test-day milk, milk components, and somatic cell score
useful for management advice", ADSA-PSA-AMPA-ASAS Joint Annual
Meeting, San Antonio, Texas (USA), July 9, oral

"Variance of milk, milk components, and somatic cell score useful
for management advice", Nutrition and Management of Dairy
Cattle, Ragusa, June 5-9, oral

"Influence of Feed Management on Random Herd Curves from
Random Regression Test-Day Model ", ADSA-CSAS-ASAS Joint
Annual Meeting, Montreal, Quebec (Canada), July 16, oral

"Effect of TMR chemical composition on milk yield lactation curves
using a random regression animal model", EAAP 61st Annual
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In-Depth Studies (20 ECTS)

Advanced statistics courses

Introduction to Multivariate analysis, Ragusa (Italy)

WIAS advanced statistics course: design of animal experiments,
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Linear models in animal breeding, Svolvaer (Norway)

Survival analysis, Wageningen (the Netherlands)

MSc level courses
Genetic Improvement of Livestock
Modern Statistics for the Life Sciences

Professional Skills Support Courses (2.7 ECTS)

Techniques for Writing and Presenting a Scientific paper,
Wageningen (the Netherlands)

Formazione sui processi della comunicazione interpersonale e della
negoziazione all'interno del gruppo di lavoro [Training on the
processes of interpersonal communication and negotiation within
the working group], Ragusa (Italy)

Research Skills Training (6 ECTS)
Preparing own PhD research proposal
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Supervising theses

BSC thesis on "Evolution of animal models: the Test-day model"

(A. Mandara)
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performance" (G. Giurdanella)

BSC thesis on "TEST-DAY MODELS to evaluate the effect of particle size
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on lactation curve" (D. Massari) 2012
Management Skills Training (1 ECTS)
Organisation of seminars and courses
Organisation of genetics session in "Nutrition and management of 2007

dairy cattle" within the "Nutrition and Management on line"
meeting in Ragusa (ltaly), June 5-9
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