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Abstract 

 
 

Conservation agriculture is defined by three main principles: minimum soil 
disturbance, permanent soil cover and crop rotations. CA is promoted as a 
promising technology for Africa, but to date, only a small area under CA fully 
complies with the above three principles. CA has both short and long term 
effects on crop productivity and sustainability through the modification of various 
agroecological functions. These functions are related to the quantity of crop and 
cover crop biomass produced and kept as mulch. One of the main challenges in 
designing CA for smallholder farming systems in developing countries is the 
competing uses for biomass, in particular for feeding livestock. The main 
difficulties are linking the efficiency of agroecological functions to varying 
degrees of biomass export, and evaluating the performance of cropping 
systems at farm level, which is where the decisions are made. In North 
Cameroon the quantity of biomass produced in the field has been doubled by 
associating a cover crop with a cereal crop. Part of the biomass was consumed 
by cattle during the dry season but the quantity of mulch that remained on the 
ground had a positive impact on the cotton water balance in the driest part of 
North Cameroon. In the Lake Alaotra region of Madagascar, the soil cover in 
rice fields under CA can vary, from 30% to 84% even in the same type of field 
depending on the plant used as cover crop, the quantity of biomass produced 
and management of the residues. The range is even greater when different 
kinds of fields are taken into consideration. Of course, the different 
agroecological functions can be fulfilled to a greater or lesser extent depending 
on the amount of available biomass and the resulting soil cover. The 
relationship between the quantity of biomass and soil cover has been calculated 
for different kinds of residues. We used these relationships to explore the 
variability of soil cover that could be generated in farmers’ fields, and to 
estimate how much of the biomass could be removed to feed livestock while 
leaving sufficient soil cover. Our results showed that under farmers’ conditions 
in Madagascar, the production and conservation of biomass was not always 
sufficient to fulfill all the agroecological functions of mulch. For example, partial 
export of biomass to be used as forage might have no effect in terms of erosion 
control but may considerably reduce the efficiency of physical weed control. As 
the balance between the potential benefits of exporting biomass and the 



 

efficiency of agroecological functions varies depending on the constraints and 
goals of each farm, we chose to analyze the potential benefits of exporting 
aboveground biomass to feed cattle at farm level. To this end, we modeled 
different size farms in Madagascar to investigate the relation between raising 
dairy cows and efficient application of CA. Our aim was to explore trade-offs 
and synergies between combinations of CA practices (i.e. different amounts of 
biomass exported) and the size of dairy cow herds (varying biomass needs and 
animal production). Changing the percentage of soil cover in CA plots did not 
significantly modify total farm net income, as this was more influenced by the 
characteristics of the milk market. Overall, CA systems can be beneficial for 
dairy cow farmers thanks to the forage produced, although the milk market and 
thus the value of biomass for forage, has a major influence on the way CA can 
be implemented at field level. To explore the range of possible cropping 
systems in a given biophysical situation, we created a tool named PRACT 
(Prototyping rotation and association with cover crop and no till). We used this 
tool to organize expert knowledge on crops and cover crops, biophysical 
characteristics of fields and agronomic rules and to link them using Malagasy 
conditions. PRACT generate a list of cropping systems, i.e. crops and cover 
crops and their sequences over three years. These cropping systems are 
characterized by their potential agroecological functions and crop production. 
The cropping systems are first selected based on the biophysical requirements 
of plants, plant compatibility and agronomic rules. But all the systems are not 
suitable for every kind of farm. Consequently using PRACT outputs, a second 
selection of cropping systems can be made based on the characteristics of the 
cropping system, i.e. crop production and agroecological functions. In this way, 
the selected cropping systems can be reduced to a number that can reasonably 
be handled by technicians and farmers. Finally, we recommend a more rigorous 
definition and characterization of treatments when comparing CA to 
conventional systems to obtain a clearer view of the link between the impact of 
CA, crop rotations and the level of biomass production.  
 
Key words: conservation agriculture, cropping system design, optimization, 
cover crops, cotton, rice, Cameroon, Madagascar 
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1.1 Conservation agriculture 
 

Policy makers, scientists, and civil society agree that the increases in crop and 

animal production that are needed to feed the world’s growing population have 

to be more sustainable than was the case during the previous “Green 

Revolution” (Sanchez et al., 2009; Snapp et al., 2010). Among the solutions put 

forward, ecological intensification (Doré et al., 2011), or agroecology, is 

increasingly considered to be the best way the tackle the issue of sustainable 

production (Wezel and Soldat, 2009; Schutter, 2010). Among agroecology 

systems, conservation agriculture (CA) is promoted as a promising technology 

for Africa (Fowler and Rockstrom, 2001; Hobbs, 2007; Hobbs et al., 2008). CA 

is defined by three principles (FAO, 2012a): (i) direct seeding; (ii) permanent 

organic soil cover; (iii) diversification of crop species grown in sequence and/or 

in association. When each of the functions and impacts of CA are considered 

individually (Fig. 1.1), they appear to be very promising in most agricultural 

situations but to date there have been few successful CA systems in 

smallholder agriculture in sub-Saharan Africa. Successful dissemination and 

adoption of a new technology is the result of complex interactions between the 

partners and the socio-economic context concerned. However, the first step is 

to identify appropriate technologies to propose to farmers. The research 

reported here focused on understanding what can be improved in the design of 

CA cropping systems for smallholders in developing countries. We based our 

analysis on two locations in Africa, North Cameroon and Madagascar, and 

combined experiences, data collected in farmers’ fields, and modelling. 
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Figure 1.1. The relationships between the underlying CA principles and 

expected beneficial functions adapted from FAO (2012a), Hobbs, (2007) and 

Lal (2008). 

 

A closer look at the three principles of CA (Fig. 1.1) shows that the majority of 

studies focus on the first principle, i.e. direct planting, without explicitly referring 

to soil cover and crop sequence and association. This is perhaps one the main 

reasons for the confusion in the names used to describe different agricultural 

practices, as conservation agriculture has often been confused with zero till (ZT) 

(Fuentes et al., 2010), no till (NT) (Yirenkyi, 2002; Bayer et al., 2006), 

conservation farming (CF) (Rockström et al., 2009) and conservation tillage 

(CT) (Mupangwa et al., 2008). Together with the use of herbicides, direct 

seeding was the key to the development of zero tillage and CA systems in 

Brazil, which is not the case for smallholder farms in developing countries in 

general, and sub-Saharan Africa in particular. As most smallholder farmers in 

sub-Saharan Africa do not have access to implements such as conventional 

seeding equipment, changing equipment it is not a major challenge for them. In 

most cases, they farm small areas and sow crops by hand without mulch 

formed of crop residues. Sometimes they plant using a digging stick. The 

biggest problems faced by smallholder farmers in sub-Saharan Africa when 

they want to use CA are related to the second and third principles, i.e. 

permanent soil cover and crop diversification. Permanent soil cover is difficult to 

achieve as there are competing uses for plant biomass, particularly as feed for 
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livestock (Giller et al., 2009). This is one of the major concerns about the 

suitability of CA in sub-Saharan Africa along with other limitations such as the 

knowledge-intensive nature of CA systems, the need for particular equipment or 

pesticides, land tenure, and the contrasting results of studies of its agronomic 

and socio-economic impacts (Giller et al., 2011; Andersson and Giller, 2012). In 

addition to leave mulch on the field, it is also difficult to introduce or change crop 

rotations, and to introduce new crops and cover crops, as these farmers have 

limited resources. Thus, in this work, I focused on these aspects of cropping 

system design.  

Among the 48 papers we identified in refereed scientific journals that compared 

CA and conventional cropping systems around the world, only ten provided data 

on the amounts of above-ground biomass produced by main crops and cover 

crops, three provided data on the percentage of soil cover, and only one 

provided data on both (Table 1.1).  

 

Table 1.1 Quantitative characterization of mulch (biomass and soil cover) in 48 

studies comparing CA and conventional techniques  

Biomass 
data 

Soil cover 
data 

References 

No No Schillinger, Holland, 2003; Lal, 2004; Govaerts et al., 
2006a, 2007cad; b, 2008, 2009b; a; Gupta and Seth, 
2007; Kosgei et al., 2007; Knowler and Bradshaw, 
2007; Hobbs, 2007; Chivenge et al., 2007; Munoz et 
al., 2007; Brevault et al., 2007; Gowing and Palmer, 
2008; Erenstein et al., 2008; Lichter et al., 2008; Hobbs 
et al., 2008; Erenstein and Laxmi, 2008; Céline et al., 
2009; Doane et al., 2009; Gebreegziabher et al., 2009; 
Mazvimavi and Twomlow, 2009; Jat et al., 2009; Liang, 
2010; Fuentes et al., 2010; Jan et al., 2010; Prosperi et 
al., 2011; Marongwe et al., 2011; Carbonell-bojollo et 
al., 2011; Rusinamhodzi et al., 2011; Farooq et al., 
2011 

Yes No Limon-Ortega et al., 2006; Mupangwa et al., 2007; 
Makurira et al., 2007; Metay et al., 2007; Chatskikh et 
al., 2009; Affholder et al., 2010; Naudin et al., 2010; 
Murungu et al., 2011; Dalal et al., 2011 

No Yes Ribeiro et al., 2011; Rodríguez-Lizana et al., 2008 
Yes Yes Boulal and Gómez-Macpherson, 2010 
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Surprisingly few studies quantify the amount of available mulch and the 

percentage soil cover even though much of measured and expected 

performance of CA is directly influenced by these variables.  

 

This research was conducted in two developing countries; Cameroon and 

Madagascar. Before describing the objectives and outline of the thesis (1.3) I 

describe the context within which the work took place. 

 

1.2. Context 

 
1.2.1 North Cameroon 
 
The North and the Far North Provinces of Cameroon have heterogeneous 

rainfall (600 to 1400 mm) (Fig. 1.2), relief (vast plains and steep mountains), 

population density and history (200 hab/km2 in the mountains to 20 hab/km2 in 

North Province). In the semi-arid Far North Province, the main crops are rainfed 

millet and sorghum, transplanted sorghum, cotton, cowpea and rice. The main 

crop rotations are cotton-cereals or cotton-legumes-cereals. Fallow is rare. 

Livestock-raising is based on transhumance except in the more densely 

populated areas (the mountains and the eastern part of the Far North province). 

The average farm size (2 to 3 ha) is rather small for this kind of region. CA 

systems have been tested since 2001 in a project implemented by the national 

cotton agency: SODECOTON (Société de développement du coton du 

Cameroon). The data used in Chapter 2 were obtained from this project. Up to 

now, CA activities in Cameroon have mainly focused on its application from the 

point of view of strictly technical management at the village level. To date, few 

studies have has been undertaken to understand the impacts of CA from field to 

village levels. 
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Figure 1.2. The North and Far North Provinces of Cameroon, in blue: land 

under cotton. 

 

1.2.2 Madagascar 
In 1992, the first trial of CA techniques in Madagascar began on KOBAMA 

industrial farm (state enterprise for wheat production and processing) in 

Antsirabe, From 1992 to 2011 a Malagasy NGO called TAFA assisted by 

engineers from CIRAD designed CA cropping systems. From the outset, all the 

work focused on the technical implementation of CA cropping systems but little 

scientific research was dedicated to the functions, performance and limitations 

of CA. Since 2002, more efforts have been invested in studying the effect of CA 

on erosion (Douzet et al., 2007; Van Hulst et al., 2011), biodiversity (Villenave 

et al., 2010), crop physiology (Dusserre et al., 2009), pests (Ratnadass et al., 

2006), diseases (Sester et al., 2010), weeds (Michellon et al., 2011), socio-

economic impacts (Penot et al., 2011a) and crop performance (Charpentier et 

al., 2005; Rasamizafimanantsoa et al., 2008). 

 

In 2009, around 9,000 farmers were practicing CA in Madagascar and the area 

under CA was estimated to be close to 5,000 ha across the whole country. In 

the Lake Alaotra region (Fig. 1.3), the area covered by CA was estimated to be 
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1,420 ha in 2009 by Rakotondramana et al. (2010) and 971 ha for the same 

year by Penot et al. (2011). The difference between these estimates of the area 

under CA come from different perceptions of what constitutes CA. Penot et al. 

(2011) did not include fields in the first year of application of CA in their 

estimates, nor fields covered only by forage. Most of the dissemination of CA 

systems has been done by extension agents financed by public development 

projects. There is little autonomous diffusion of CA techniques among farmers 

outside the project network.  

 
Figure 1.3. Madagascar and the Lake Alaotra region (Toamasina province).  
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1.3 Study objectives and thesis outline 

 

The main hypothesis of my study is: 

 

The benefits of Conservation Agriculture among diverse smallholder farmers 

are explained by the trade-offs between field and farm level 

 

The specific objectives were to: 

1.  Compare fibre, grain and biomass production between CA and 

conventional techniques in small farmer conditions and determine the 

main environmental and/or technical factors that explain production 

under different soil management. 

2. Quantify biomass production and retention in small farmers’ fields to 

understand the impact of biomass removal on soil cover and linked 

agroecological functions, and explore their impacts at farm scale. 

3. Explore trade-offs and synergies between combinations of CA 

practices, including biomass removal, and cattle raising for farms under 

different socio-economic conditions. 

4. Formalize agronomic rules and criteria to facilitate the process of CA 

cropping system design and evaluation in relation to biophysical 

conditions and farmers’ objectives to be evaluated.  

In the first experimental chapter (Chapter 2) we explore if it is possible to 

produce and retain sufficient biomass to implement CA under the semi-arid 

agroecologies of Northern Cameroon. We also compare cotton and cereal 

yields with conventional and CA techniques in small farmers’ fields (Objective 

1). Chapter 3 describes the variability of biomass production for a range of CA 

systems in farmers’ fields in the Lake Alaotra region of Madagascar. Trade-off 

curves between biomass production, soil cover and agro-ecological functions 

are derived (Objective 2). Moving from field to farm level, Chapter 4 explores 

trade-offs and synergies between combinations of CA practices and cattle 

raising for milk production. Various combinations of cropping systems were 

compared at farm level, taking into account other components of the farm 
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(labour and cash available, animal production), to achieve farm goals (Objective 

3). We explored the impact of the milk market and farm characteristics on the 

feasibility of CA. In Chapter 5, we formalize the choice of agronomic rules in 

terms of plant associations or plant successions, at plant and field level 

(Objective 4). We provide a tool to allow selection of the best crop and cover 

crop combinations and sequences for CA systems in relation to the impact of 

bio-physical constraints and famers’ preferences. In the final Chapter 6, I 

explore other agro-ecological functions not tackled in previous chapters, and 

discuss these in relation to the findings of the earlier chapters. I draw theoretical 

relationship between biomass removal and agro-ecological impacts at field level 

such as erosion, pest and disease control, weed control. By drawing these 

different relationships together we seek to establish threshold requirements for 

biomass production and removal change in relation to the desired agro-

ecological functions. I conclude with a discussion of the implications of our 

results for the future design of CA for smallholder farming systems in 

developing countries. I formulate recommendations to implement better 

balanced research on CA to go beyond traditionally opposing points of view that 

are often framed as “CA works” versus “CA does not work”. 

  
  



Chapter 1 

12 

 

 





Chapter 2 

14 

  



Impact of no tillage and mulching practices on cotton production Cameroon 

15 

Chapter 2  
Impact of no tillage and mulching practices on cotton 
production in North Cameroon: A multi-locational on-farm 
assessment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This article is published as: 
Naudin, K., Gozé, E., Balarabe, O., Giller, K. E., Scopel, E., 2010. Impact of no 
tillage and mulching practices on cotton production in North Cameroon: A multi-
locational on-farm assessment. Soil and Tillage Research, 108, 67-68. 
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Abstract 

 
The applicability of conservation agriculture (CA) in sub-Saharan Africa (SSA) is 
poorly documented. In the ‘‘Nord’’ and ‘‘Extrême-Nord’’ provinces of Cameroon, 
in a 2-year rotation between a cereal (maize or sorghum) and cotton, 
conventional techniques were compared with CA. The study was conducted 
from 2001 to 2006 in 662 plots in 243 farmers’ fields. Cereal treatments 
compared were conventional management techniques and CA consisting in the 
production of mulch using cover crops (Brachiaria ruziziensis, Crotalaria retusa, 
Dolichos lablab, Mucuna pruriens, Vigna unguiculata) intercropped within the 
cereal. In the ‘‘Extrême-Nord’’ province up to 9.7 t ha-1 of vegetative biomass 
was produced in the CA plots with sorghum and cover crops against up to 4.8 t 
ha-1 for sorghum alone in conventional plots. In the ‘‘Nord’’ province maize + 
cover crops produced up to 5.2 t ha-1 of biomass against up to 2.5 t ha-1 for 
maize alone. In both provinces, the cereal grain yields were equivalent or higher 
in CA compared to conventional plots. In 18 fields of the ‘‘Extrême-Nord’’ 
province the mulch remaining the year after sorghum + B. ruziziensis is mainly 
comprised between 3 t ha-1 and 5 t ha-1. Cotton treatments compared were T 
(tillage), NT (no tillage), and NTM (no tillage with mulch). In both provinces 
these treatments differed in soil cover, number of localized herbicide sprays 
used, ridging, and amount of nitrogen fertilizer used. In the ‘‘Extrême-Nord’’ 
province treatments differed also for the number of weeding and the date of the 
first weeding. In the ‘‘Extrême-Nord’’ province cotton yields were 12% lower for 
T and 24% lower for NT than for NTM. Cotton yields were regressed on crop 
husbandry indicators and used inputs. After a manual backward removal in a 
multiple linear regression respectively no parameters were found to significantly 
influence yield for T, only one parameter for NT, the number of herbicide sprays 
used at sowing, and three parameters for NTM: difference between heavy clay 
and silty loam, application of NPK fertilizer, sowing date. In the ‘‘Nord’’ province 
no difference in cotton yield was observed between T, NT and NTM. The 
flowering period was longer for NTM vs NT in the ‘‘Extrême-Nord’’ and the 
‘‘Nord’’ provinces and NTM vs T in the ‘‘Nord’’ province, respectively 13, 9 and 8 
days. Although we show that CA techniques can have benefits at field level, 
further studies are needed to assess their suitability at farm and village levels. 
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2.1 Introduction 
 

Conservation agriculture (CA) has potential to support crop production under 

tropical conditions while mitigating natural resource degradation (Benites and 

Ofori, 1993; Fowler and Rockstrom, 2001; Lal et al., 2007; Sá et al., 2009). CA 

is defined by three factors: minimum mechanical soil disturbance, permanent 

organic mulch covering the soil, and diversified crop rotations (Reicosky, 2007; 

FAO, 2012a). Cotton is already grown with CA techniques in USA (Arriaga et 

al., 2006) and Brazil (Scopel et al., 2004b). CA has been reported to give 

increased cotton yields after 6–8 years of application (Nyakatawa and Reddy, 

2001; Boquet et al., 2004) but also to depress yields after 2–3 years (Brown et 

al., 1985; Arriaga et al., 2006) compared with conventional tillage. On large-

scale farms in the Americas, the land area under CA has increased rapidly 

because it has reduced soil erosion and production costs (Seguy et al., 1996; 

Scopel et al., 2004a; Bolliger et al., 2006; Derpsch, 2007). On the contrary, 

smallholder farmers in Africa face serious difficulties in applying CA (Knowler 

and Bradshaw, 2007; Giller et al., 2009). Among the constraints to successful 

deployment of CA we can cite the difficulty to produce sufficient biomass in 

areas with low rainfall (Erenstein, 2003); difficulty to retain residue on the field 

during dry season because of fire, domestic use and cattle grazing (Erenstein, 

2003); difficulties with pest and weed control (Brevault et al., 2007, 2008); 

increased labor demands (Giller et al., 2009) and lastly the technical skills of the 

farmers to manage CA systems (Benites and Ofori, 1993). In the northern 

provinces of Cameroon cotton is the only major cash crop, grown by 95% of 

farmers (Sodecoton pers. com., 2005). Nowadays these farmers face three 

main constraints. First, the average cotton yield has declined steadily since the 

1980s at a rate of -8.4 kg ha-1 year-1 (Fig. 2.1, Sodecoton unpublished data).  
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Figure 2.1. Mean cotton yield from 1978 to 2007 for ‘‘Extrême-Nord’’ and ‘‘Nord’’ 

provinces. (Data provided by Sodecoton). Line: tendency, -8.4 kg ha-1 year-1. 

 

Second, the cotton price paid to farmers is decreasing (Folefack et al., 2009), 

whilst the cost of inputs, and in particular fertilizer and pesticides has increased 

(Kadekoy et al., 2009). Third, the land area available for cropping area per 

capita has declined due to increase in population and the restricted land 

resource (i.e. 45% of the ‘‘Nord’’ province area is covered by national parks and 

game reserves (Labonne et al., 2003). Therefore to maintain their income, 

farmers need to increase yields and of course this increase should be 

sustainable. To tackle this productivity and sustainability problem, Sodecoton, in 

collaboration with CIRAD, explored the possibility of producing cotton based on 

CA principles, since no references were available on CA cotton cropping 

systems in Africa. Rather than relying in experimentation in controlled plots on 

experimental stations, we tested CA in comparative experiments in farmers’ 

fields to assess the feasibility and the impact of CA under farmer’s management 

in the Northern provinces of Cameroon. The main aims were to compare 

conventional practices with CA, using CA methods as close as possible to 

current practice, encouraging farmers to operate freely with only technical 
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advice from Sodecoton technicians. The most commonly practiced rotation in 

north Cameroon is cereal in year n followed by cotton in year n + 1. In CA plots 

cereals were intercropped with a cover crop to produce extra biomass in year n 

and in year n + 1 cotton was cropped without tillage and with soil cover from 

retained cereal and cover crop residues. Therefore, the option tested was ‘‘in 

situ produced mulch’’ according to the classification of (Erenstein, 2003). In this 

study we addressed four specific questions: (i) how much biomass is it possible 

to produce and to retain when associating a cover crop with a cereal and what 

is the impact on cereal yield?; (ii)  are differences in soil management inducing 

other differences in farmers’ cotton management?; (iii) is cotton yield increased 

under no tillage with mulching as compared with no tillage without mulch or with 

conventional tillage?; and (iv) what are the main environmental or technical 

factors that explain cotton yield under different soil management techniques?  

 

2.2. Materials and methods 
 

2.2.1. Location 
 

This study was conducted over 5 years (2001–2006) in the ‘‘Nord’’ and 

‘‘Extrême-Nord’’ provinces of Cameroon in an area located between the 

latitudes of the towns of Mora (11°02’N, 14°09’E) and Touboro (7°47’N, 

15°21’E). The ‘‘Extrême-Nord’’ province is characterized by a Sahelo-Sudanian 

climate with a rainy season from June to September (800 mm mean annual 

rainfall), whereas the ‘‘Nord’’ province has a Sudanian climate with a single 

rainy season from mid-May to mid-October (1200 mm mean annual rainfall). 

The average minimum and maximum temperatures during the growing season 

were 21 °C and 34 °C, respectively. Soils varied between locations and position 

on the slope. The main soil types found in this two provinces are eutric fluvisols, 

planosols/gleyic solonetz, ferric luvisols, acrisols, regosols, gleyic luvisols, 

planosols, leptisols, luvisols, arenosols and vertisols (FAO-UNESCO Map, 

1990) cited by (Yerima and Van Ranst, 2005), with texture ranging from fine 

clay, heavy clay, loam, sandy, sandy loam and silty loam. 
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2.2.2. Experimental design and treatments 
 

The study was conducted with a network of farmers’ fields during the 2001–

2006 period (165 in total in the ‘‘Extrême-Nord’’ province and 78 in total in the 

‘‘Nord’’ province). We report results from 2004 to 2006 for cereals and from 

2001 to 2006 for cotton. The cropping system studied is cereal, i.e. sorghum 

(Sorghum bicolor (L.) Moench) in the ‘‘Extrême-Nord’’ province and maize (Zea 

mays L.) in the ‘‘Nord’’ province, then rotating next year with cotton (Gossypium 

hirsutum L.). Each farmer’s field planted was about 2500 m2 in area, which is 

the standard unit for allocation of fertilizer and pesticides to farmers of the 

contract company, Sodecoton. For both cereals and cotton we compared 

conventional and CA techniques in the same field. The fields were divided into 

two to four plots: in the case of two plots, one was conventional and the other 

CA; In the case of three plots per field one of the treatments was replicated, 

either CA or conventional; In the case of four plots two were conventional and 

the other two CA. Thus, plot size depended on the number of plots per field, 

either 1250 m2 if two plots, 833 m2 if three plots, or 625 m2 if four plots. All 

cultural operations were conducted by farmers. Technicians gave 

recommendations only for management of the CA plot. Table 2.1 shows the 

characteristics of the treatments compared regarding crop sequence, soil and 

residue management. In conventional plots cereals were grown alone without 

associated plants. Residues were managed in the traditional way, i.e. usually 

grazed partially and then burnt. These plots were cropped either with (T) or 

without tillage (NT), as farmers often plant cereals and cotton in both northern 

provinces of Cameroon without ploughing their fields, but also without mulching. 

On T plots, tillage was done after a significant rain shower with an ox-drawn 

plough to 10–15 cm depth. On NT plots cotton was sown by hand with a hoe 

with no disturbance of the soil surface outside the mounds. For both T and NT 

plots, ridging and weed control were perform by hand with a hoe or 

mechanically. Mechanical operations are performed with a normal plough or 

with specialized tools such as a ‘ridger’ for ridging and a ‘sweep’ for weed 

control. In NTM plots weed control was performed by hand or with glyphosate 
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spraying between rows with a protecting shield. Each spray of localized 

herbicide was done with around 1400 g ha-1 of glyphosate. In CA plots the 

cereal was intercropped with a cover crop (Crotalaria retusa L., Brachiaria 

ruziziensis R. Germ. & C.M. Evrard, Dolichos lablab L., Mucuna pruriens (L.) 

DC, or Vigna unguiculata (L.) Walp.). The cereal spacing was kept constant 

across CA and conventional plots: 0.8 m between cereal rows, 0.5 m between 

mounds and 2 plants/mound on average. The second year cotton was sown 

without tillage on the residual mulch. Remaining residues from the previous 

crop, i.e. cereal and cover crop, were retained on the soil surface. Plots were 

partly protected from grazing by a live fence and from fire by a firebreak. Cotton 

was sown by hand with a hoe with no disturbance of the soil surface outside the 

mounds. Only in the first year of the rotation some plots were tilled, e.g. year n: 

maize + B. ruziziensis tilled, year n + 1: cotton not tilled, n + 2: maize + B. 

ruziziensis not tilled, n + 3: cotton not tilled, etc. Cereal treatments included in 

this study were sorghum in the ‘‘Extrême-Nord’’ province and maize in the 

‘‘Nord’’ province, in both cases either grown as sole crop or in association with a 

cover crop (either B. ruziziensis or C. retusa). Although other cover crops were 

compared we do not report the results as the number of repetitions was too 

small. We aggregated results for cereal tilled and not tilled the first year for two 

main reasons. First, the number of plots per individual treatment would not have 

been enough after splitting the sample between the factors: province, type of 

cover crop, soil management and time of application of CA technique. Second, 

in this study, our principal aim was to test the effect of intercropping or not with 

a cover crop on biomass production and cereal yield. Cotton treatments 

compared were: cotton planted with tillage (T), no tillage without mulch (NT) or 

no tillage with mulch (NTM), but without separating effects of the previous crop. 

Table 2.2a shows the distribution of the 112 cereals plots of the survey per 

province (the ‘‘Extrême-Nord’’ and ‘‘Nord’’ provinces), management technique 

(associated or not with B. ruziziensis or C. retusa) and years (2004–2006).  
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Table 2.2b shows the distribution of the 550 cotton plots of the survey by 
provinces (‘‘Extrême-Nord’’ and ‘‘Nord’’ provinces), soil management 
techniques (T, NT, NTM) and years (2001–2006). 
Table 2.2. Number of single replicate plot comparisons in farmers ‘fields in two 
provinces ("Extrême-Nord" and "Nord") of Cameroon. a) Number of cereal 
(sorghum and maize) plots investigated for biomass production, either grown as 
sole crop (conventional) or intercropped with B. ruziziensis or C. retusa in each 
of three years (2004-2006). Each plot where the cereal was intercropped with a 
cover crop was compared with a control plot where the cereal was grown alone. 
b) Number of cotton plots investigated for cotton yield under different soil 
management technique (T: Tillage, NT: No Tillage, NTM: No Tillage with Mulch) 
over six years (2001-2006). 
a) 
Province Treatment Years Total 
  2004 2005 2006  

Extrême-Nord 

Sorghum conventional  5 4 10 19 
Sorghum + brachiaria 5 4 10 19 
Sorghum conventional  5 9 1 15 
Sorghum + crotalaria 5 9 1 15 

Nord 

Maize conventional 5  4 9 
Maize + brachiaria  5  4 9 
Maize conventional 8  5 13 
Maize + crotalaria 8  5 13 

Total  46 26 40 112 
b)  
Province Comparison Treatment Years Total 
   2001 2002 2003 2004 2005 2006  

Extrême-Nord 

T vs NTM 
T  11 8 34 17 10 80 
NTM  6 7 33 17 11 74 

NT vs NTM 
NT 6 2 15 17 31 41 112 
NTM 6 2 16 18 35 44 121 

None  
(1 plot per field) 

T   4 2   6 
NTM     1  1 

Nord 

T vs NTM 
T 3 1  6 3  13 
NTM 3 1  5 3  12 

NT vs NTM 
NT 2 1 4 14 21 17 59 
NTM 2 1 4 15 21 21 64 

T vs NT vs NTM  
T    1   1 
NT    1   1 
NTM    1   1 

None  
(1 plot per field) 

T    1   1 
NT    3   3 
NTM      1 1 

Total    22 25 58 151 149 145 550 
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2.2.3. Field measurements 
 

Cereal and cover crop vegetative biomass was cut on 20% of the length of 

every fifth row (i.e. 4% of the field area). Biomass was left to dry for at least 2 

weeks in the field before weighing. Cereal grain production was harvested on 

the same row as biomass but for the full length of the row (i.e. 20% of the field 

area). The length of each row, total number of rows and field width were 

characterized to extrapolate to an area basis. Mulch quantity on cotton field was 

estimated using a visual scale at sowing, ridging and harvest. The average of 

these three dates of observation made the final score we used. The visual scale 

was previously calibrated by taking pictures and weighing different quantities 

and types of mulch. For 18 plots of sorghum + B. ruziziensis in the ‘‘Extrême-

Nord’’ province we had both data of biomass production year n and mulch on 

soil year n + 1. On these plots we estimated residue retention from year n to 

year n + 1. Cotton technical management was assessed through interviews with 

the farmer two or three times per month. For each plot, the technician recorded 

the cropping management characteristics (operation, date, procedure, intensity, 

products used and amount). Cotton yield was measured by harvesting and 

weighing cotton seeds on every fifth row (i.e. 20% of the field area). The length 

of each row harvested, total number of rows and field width were characterized 

to extrapolate to an area basis. Weed pressure was ranked on a visual scale 

from 0 to 10 (Marnotte, 1984) at sowing, ridging and harvest. In case of 

heterogeneous weed cover, the plot was visually divided in smaller 

homogenous parts and the final rank was obtained by a combination of the rank 

weighted by the respective area. Daily rainfall was recorded in each village with 

a rain gauge. Soil texture was determined by hand using the VS-FAST method 

(Mcgarry, 2006) on soil samples taken from 0 to 20 and 20 to 40 cm depths. 

Start and end of flowering were estimated visually by technicians, and recorded 

when flowering had started or ended for half of the plants. Not all husbandry 

indicators were recorded for every plot, depending on the availability of the 

technician. Thus the comparison between systems was made on a different 

number of plots for each indicator tested. 
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2.2.4. Statistical analysis 
 

The comparative experiments were analyzed as multilocation trials, with a linear 

model for biomass and yield. For the cereal experiment, the following linear 

model (1) was used:  

 

Yijk = m + ai + bj + (ab)ij + Eijk      (1) 

 

where m is the intercept, ai is the effect of treatment i, bj is the effect of 

farmer’s field j, (ab)ij is their interaction, i.e. non-additive part of their combined 

effect, Eijk is the residual plot effect and measurement error in plot k. For this 

cereal experiment, after discarding the incomplete farmer’s plots, the design 

was balanced and an analysis of variance was performed for each system 

compared with the conventional. For the cotton experiment, the design was 

severely unbalanced and incomplete, as not all the treatments were present in 

each field. Thus the treatment yield means were adjusted for year and field 

effects. Since year and field can be considered to be drawn at random in 

potential populations of years and fields, these control factors and their 

interactions with the crop management were considered to be random. In 

addition these random effects on cotton yield were considered to be normally 

distributed. The parameters of the resulting mixed model were then estimated 

with the REML method, using the procedure Mixed of SAS/Stat®. The three 

adjusted means were then compared with three t-tests, and the P-values 

adjusted for multiple comparisons using Sidak’s method, which is a modification 

of Bonferroni’s method (Hsu, 1996). 

For the comparison of treatments, the Gaussian assumption adopted for the 

effects of year and field on yield are not valid for crop husbandry indicators. 

Thus the linear model (1) was used, with the P-values for F obtained with a 

permutation test. When cotton yields were significantly different between 

techniques, yields under each technique were regressed separately for each of 

them, using a set of 10 crop husbandry and environment indicators chosen on 

the basis of: (i) their hypothesized effect on cotton yield; (ii) avoiding correlation 
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between variables; and (iii) a trade-off between the number of variables and the 

number of plots analyzed, since not all explanatory variables were recorded in 

every field. The explanatory variables were: soil texture (fine clay, heavy clay, 

loam, sandy, sandy loam, silty loam), rain (mm) 2 days before and 10 days after 

the sowing, number of years of supervision of the field by the project, average 

weed pressure (average from three ranks at sowing, ridging and harvest), 

number of herbicide sprays at sowing, number of localized herbicide sprays with 

a shield after sowing, quantity of P and K fertilizer added (in kg ha-1 of P2O5); 

the amount of K was strictly correlated with P since all farmers of the same 

province used the same NPK fertilizer, quantity of N fertilizer (in kg ha-1 of N), 

average soil cover by residue at sowing (in t ha-1), date of sowing (in Julian 

days). The data were screened to discard very incomplete records and 

variables. The screening was performed by coding the data presence as binary 

variable in a plot X variable table, and then simultaneous sorting of variables 

and plots with the PermutMatrix program (Caraux and Pinloche, 2005). As the 

remaining table still had missing data, multiple imputations were used to fill in 

the missing values with random numbers drawn conditionally on the existing 

data (Rubin, 1996). Multiple imputations were done using procedure ‘mi’ and 

results analyzed with procedure ‘mianalyse’ of SAS/Stat®. Missing values of 

qualitative variables (such as soil texture) were not replaced, to comply with the 

multivariate normal hypothesis underlying the multiple imputation technique. For 

the comparison of the ‘‘end of flowering dates’’ in the cotton experiment, 

incomplete farmer’s fields have been discarded. The resulting design was 

complete and a 2-way analysis of variance was performed with each farmer’s 

field playing the role of a block. This comparison was performed separately for 

each province and each conventional technique (T and NT) compared with 

NTM. All statistical analyses were done using SAS version 9.1.3 (SAS Institute, 

2004). 
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2.3. Results 
 
2.3.1. Vegetative biomass production by cereals and cover crops and 
cereals grain yields 
 
Total biomass production during the cereal cycle was twice as large on average 

in CA plots as with conventional management (Table 2.3). This was due to a 

larger or equivalent biomass production by cereal and to the additional cover 

crop biomass. In the ‘‘Extrême-Nord’’ province in CA plots sorghum + cover 

crops produced from 7.5 t ha-1 to 9.7 t ha-1 of vegetative biomass against 3.5 t 

ha-1 to 4.8 t ha-1 for sorghum alone in conventional plots. In the ‘‘Nord’’ province 

maize + cover crops produced from 4.9 t ha-1 to 5.2 t ha-1 of vegetative biomass 

against 1.9 t ha-1 to 2.5 t ha-1 for maize alone. In the ‘‘Extrême-Nord’’ province 

both cover crops produced less biomass than sorghum, whilst in the ‘‘Nord’’ 

province cover crops produced as much vegetative biomass as maize. 

Sorghum produced more biomass (from 3.5 ha-1 to 6.5 t ha-1 on average) than 

maize (from 1.9 t ha-1 to 2.5 t ha-1). On average cereal grain yields were 

moderate and similar under CA or conventional management, ranging from 1.11 

t ha-1 to 1.51 t ha-1 for sorghum in the ‘‘Extrême-Nord’’ province and from 1.69 t 

ha-1 to 2.06 t ha-1 for maize in the ‘‘Nord’’ province. Only in the ‘‘Extrême- Nord’’ 

province was the yield of sorghum associated with C. retusa (1.48 t ha-1) greater 

than for sorghum alone (1.11 t ha-1). 
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2.3.2. Residue retention  
 

For 18 plots in the ‘‘Extrême-Nord’’ province we compared biomass production 

with sorghum + B. ruziziensis in year n with the amount of residue retained on 

the soil in year n + 1 at cotton sowing (Fig. 2.2). In 14 fields part of the biomass 

was exported for domestic use or grazed by cattle, despite the plots being 

protected with live fences. In addition termites consumed part of the remaining 

biomass. Therefore the quantity of mulch retained in the fields was smaller than 

the amount of biomass produced the previous year. These fields are below the 

1:1 line on Fig. 2.2. In four of the fields, farmers added straw from other fields to 

increase the mulch cover; therefore the quantity of mulch was greater than 

biomass produced. These four fields fall above the 1:1 line on Fig. 2.2, but only 

three points can be seen as two of the points overlay.  

 
Figure 2.2. Relation between vegetative biomass produced by cereal + cover 

crop year n and mulch on cotton field year n+1. Data from 18 plots of Sorghum 

+ B. ruziziensis//Cotton rotation in the "Extrême-Nord" Province, Cameroon 

(2003-2006). The 1:1 line marks the limit between fields where mulch was less 



Chapter 2  

30 

than biomass produced the year before from fields where mulch was more than 

biomass produced the year before. In most fields a part of the biomass was 

exported for domestic use or by cattle grazing, thus quantity of mulch retained 

was less than biomass produced. In 4 fields, farmers added straw to increase 

mulch cover, therefore the quantity of mulch was greater than the biomass 

produced.  

 
2.3.3. Farmers’ management of cotton production 
 

The farmers’ management of T, NT, and NTM treatments did not significantly 

differ for either the ‘‘Extrême-Nord’’ and ‘‘Nord’’ provinces regarding the number 

of herbicide sprays at sowing, sowing date, insecticide sprays, P and K 

fertilization, and organic manure application (Tab. 2.4). Soil cover was of course 

less in conventional technique, T or NT, than for NTM, for both the ‘‘Extrême-

Nord’’ and ‘‘Nord’’ provinces. In NTM plots the soil cover was assessed to be 

3.5 t ha-1 for both the ‘‘Extrême-Nord’’ and ‘‘Nord’’ provinces. The quantity of 

mulch remaining in the field was similar in the ‘‘Extrême-Nord’’ and the ‘‘Nord’’ 

provinces despite differences in climate and animal or human pressure on 

residues. Localized spraying of herbicide with a protecting shield was used 

mainly in NTM plots, for six of ten plots in both provinces compare with one of 

the ten plots for NT in both province and four of ten plots for T in the ‘‘Extrême-

Nord’’ province. The number of weeding operations in the ‘‘Extrême-Nord’’ 

province was slightly but significantly less for the NTM (2.6) compared with T 

(2.8) and NT (2.9) treatments. No difference was found in the ‘‘Nord’’ province. 

The first weeding was performed later in NTM plots in the ‘‘Extrême-Nord’’ 

province (25 days after sowing) against 22 days after sowing for T and 21 days 

after sowing for NT. No difference was found in the ‘‘Nord’’ province. The 

number of ridgings is different for each technique in for both provinces. The rate 

of nitrogen fertilizer applied was significantly larger for NTM plots in the 

‘‘Extrême-Nord’’ province (51.2 kg N ha-1 for NTM against 30.3 kg N ha-1 for T 

and 44.6 kg N ha-1 for NT). In the ‘‘Nord’’ province the difference was similar, 

i.e. 58.9 kg N ha-1 for NTM against 52.9 kg N ha-1 for NT. More fertilizer was 
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applied by farmers in NTM plots as the technicians recommended they should 

add more urea to avoid nitrogen deficiency due to mulch. 

 
Table 2.4. Cotton crop management in the two provinces ("Extrême-Nord" and 

"Nord") under three soil management techniques (T: Tillage, NT: No Tillage, 

NTM: No Tillage with Mulch). Within the same province, values on the same line 

followed by different letters are statistically different (ANOVA SAS, Šidák test, 

P<0.10). m.d.: missing data 

Provinces Extrême-Nord  Nord 

Treatment T NT NTM  T NT NTM 

Number of plots 31 21 53  0 8 10 
Soil cover (t ha-1) 0.5 a 0.8 a 3.5 b  m.d 0.5 a 3.5 b 
Diuron (Number of sprays) 0.9 0.9 0.9  m.d 0.4 0.4 
Paraquat (Number of sprays) 0.3 0.2 0.2  m.d 0.4 0.4 
Glyphosate (Number of sprays) 0.7 0.7 0.7  m.d 0.6 0.6 
Herbicide (Number of sprays) 1.9 1.8 1.8  m.d 1.4 1.4 
Localized herbicide (Number of 
sprays) 

0.4 a 0.1 a 0.6 b  m.d 0.1 a 0.6 b 

Weeding (Number) 2.8 a 2.9 a 2.6 b  m.d 2.6 2.9 
First weeding (Days after 
sowing) 

22 a 21 a 25 b  m.d 26 24 

Sowing date (Days after 01Jan) 157 157 156  m.d 148 148 
Ridging (Number) 1.0 a 0.5 b 0.1 c  m.d 0.6 a 0.0 b 
Insecticide (Number of sprays) 6 6 6  m.d 7.1 7.1 
N (kg ha-1) 30.3 a 44.6 a 51.2 b  m.d 52.9 a 58.9 b 
P (kg ha-1) 6.6 6.8 6.6  m.d 16.3 15.9 
K (kg ha-1) 18.8 19.3 18.8  m.d 19.7 19.1 
Application of organic manure 
(Number) 

0 0 0  m.d 0.1  0.1  

 

2.3.4. Cotton yields 
 

In the ‘‘Extrême-Nord’’ province cotton yields differed significantly (P ≤ 0.10) 

between the three treatments. Compared with NTM yields were 12% smaller for 

T and 24% lower for NT (Tab. 2.5). In the ‘‘Nord’’ province no significant 
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differences were found. Yield was then regressed on crop husbandry indicators, 

separately for each technique. After a manual backward removal of non 

significant parameters in the multiple linear regression applied on yield (Tab. 

2.6), for the T treatment none of the variables significantly influenced yield. For 

NT only one parameter was significant: the number of herbicide sprays used at 

sowing was negatively related to cotton yield (-204 kg ha-1 per herbicide spray). 

For NTM three of the ten variables had a significant contribution. First, the 

difference between heavy clay and silty loam soils: +800 kg ha-1 for heavy clay. 

Second, the application of NPK fertilizers: +32 kg ha-1 cotton per kg ha-1 of P2O5 

added (=14 kg ha-1 of P). Each kg of P2O5 was also supplied together with 1.5 

kg of K2O (=1.25 kg of K). Third, the sowing date:-16 kg ha-1 of cotton per day 

of delay in sowing.  
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2.3.5. End of flowering date  
 

In both provinces the flowering period was longer for the NTM treatment than 

for T and NT. The mean shift is 8, 13, 8, 9 days, respectively for NTM compared 

to T and NT in the ‘‘Extrême-Nord’’ province and NTM compared to T and NT in 

the ‘‘Nord’’ province (Fig. 2.3). Differences are statistically significant (P < 0.05) 

except for NTM vs T in the ‘‘Extrême-Nord’’ province. Our observations 

indicated that flowering was prolonged in NTM plots because of better 

resistance of the plants to rainfall shortage. When a dry spell occurred during 

the growing season the farmers and technicians reported that the production of 

new flowers stopped on NT and T plots flowering continued on the NTM plot. 

 

 
Figure 2.3. Shift in end of cotton flowering date due to NTM as compared to T 

and NT. "Extrême-Nord" province, NTM vs T, n=10, NTM vs NT, n=23; "Nord" 

province, NTM vs T, n=6, NTM vs NT, n=42. Box plot: median (continuous line), 

mean (black square). 
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2.4. Discussion 
 

2.4.1. Biomass production 
 

The total amount of vegetative biomass produced in farmers’ fields was doubled 

when the cover crops B. ruziziensis or C. retusa were intercropped with maize 

or sorghum (Tab. 2.3). Nevertheless, large amounts of biomass production 

combined with an increased crop off take, may result in nutrient depletion from 

already poor soils. For example grazing of B. ruziziensis without manure or 

fertilizer input would result in a net loss of soil nutrients. In contrast C. retusa is 

not consumed by cattle and it can improve soil fertility through N2 fixation (Allen 

and Allen, 1981). Therefore B. ruziziensis should be recommended only for 

farmers who are able to protect their fields from grazing or who can compensate 

export of nutrients by bringing back manure or fertilizers. C. retusa may be more 

appropriate for farmers without livestock who do not need additional produce 

forage and to farmers who cannot protect their fields effectively from grazing. 

 

2.4.2. Biomass retention 
 

Biomass residue retention in the field is the key issue for effective deployment 

of CA under farmers’ conditions in sub-Saharan Africa (SSA) in general (Fowler 

and Rockstrom, 2001; Erenstein, 2003; Calegari and Ashburner, 2005; Giller et 

al., 2009) and in both northern provinces of Cameroon in particular. Several 

authors raised the issue that residue retention is problematic due to the 

competing uses for residues as feed for free-grazing animals. However, these 

studies considered only production of residues within conventional mono-

cropping systems, and not additional residue produced by cover crops. Our 

observations show that it was possible to retain both cereal + cover crop 

residues on the soil surface from year to year under farmers’ conditions in SSA. 

For sorghum + B. ruziziensis in the ‘‘Extrême-Nord’’ province on average 67% 

of total biomass was available at the beginning of the next cropping cycle (Fig. 

2.2). The amount of mulch available at cotton sowing was around 3–5 t ha-1. 
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These amounts are sufficient to have a significant impact on crop water balance 

and erosion control (Boli Baboule, 1997; Fowler and Rockstrom, 2001; Scopel 

et al., 2005; Soutou et al., 2005). 

 

2.4.3. Cereal production 
 

No detrimental effect of associating a cover crop on cereal crop yield was 

observed in this study. Moreover the yield of sorghum was greater when 

associated with crotalaria, in the ‘‘Extrême- Nord’’ province. Association of 

cereal with B. ruziziensis is more likely to cause a yield decrease than C. retusa 

as its rooting system is similar to that of cereals and both species may compete 

strongly for water and nitrogen especially under unfertile or limited conditions. 

Other examples of intercropping of maize with Brachiaria spp. come from 

regions in Brazil where rainfall is higher than in the northern provinces of 

Cameroon and crops receive more fertilizer (Borghi and Crusciol, 2007; 

Tsumanuma, 2011). In these cases maize yields were not affected by the 

presence of Brachiaria spp. Observations in farmers’ fields indicated that 

competition can be avoided by proper technical management, by delayed 

sowing of B. ruziziensis, deeper sowing of B. ruziziensis, fertilization of maize 

and early cutting of B. ruziziensis. In general competition between cereals and 

cover crops in CA plots is also reduced by improvement of soil fertility or the 

water balance and by the cover crop helping to suppress infestation of Striga 

hermonthica (Del.) Benth (Naudin and Balarabe, 2009). 

 

2.4.4. Weed control 
 

Weed control is one of the main expected advantages of practicing CA. In the 

‘‘Extrême-Nord’’ province there was evidence that weed control was improved 

with NTM indicated by the reduced number of weeding required, and the delay 

in the date of the first weeding, which allows more flexibility for farmers. Mulch 

slows down weed emergence, which gives two advantages. First of all it allows 

farmers to delay the first weeding, which usually overlaps with other operations 
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such as tillage or weeding of other fields (Dounias et al., 2002). Secondly, it 

reduces weed pressure during the first weeks of the crop when cotton is 

particularly sensitive to competition from weeds (Deat, 1977; Douti et al., 1995). 

In conventional systems most of the farmers have to delay the first weeding 

because they do not have the equipment and animals to weed all fields at the 

same time. In fact, 80% of farmers who use mechanical weed control have to 

hire both the plough and draught animals (Vall et al., 2003). In the ‘‘Nord’’ 

province, weed management variables were not statistically different between 

T, NT and NTM. In this province which receives more rainfall than the 

‘‘Extrême-Nord’’, there is a greater weed pressure and mulch was not sufficient 

to limit weeds. In Cameroon farmers easily accepted to use localized spraying 

of herbicide and they recognized the labor and money saving from using 

herbicide (Olina et al., 2003). 

 

2.4.5. Cotton yields 
 

Cotton yields were better with the NTM treatment than with NT and T in the 

‘‘Extrême-Nord’’ province. This difference cannot be attributed to the tillage 

treatments alone but to the whole package applied by the farmers, including an 

extra 7–21 kg ha-1 of N and 0.2–0.5 more applications of localized herbicide 

with NTM compared with T and NT. In the ‘‘Nord’’ province NTM yields were 

higher on average in NTM plots than in T or NT but these effects were not 

statistically different. We conclude that the contrasted effect of NTM, compared 

with T and NT between the ‘‘Extrême-Nord’’ and ‘‘Nord’’ provinces, was due 

mainly to different effects of the treatments on water balance as water is more 

limiting in the drier ‘‘Extrême-Nord’’ province. It was not feasible to directly 

estimate effects on the water balance in these farmer managed experiments. 

Moreover it is difficult to quantify the effect of mulch on the water balance 

although it is well known that mulching practices increase rainfall use efficiency 

by increasing water infiltration and reducing direct evaporation (Bristow et al., 

1986; Findeling et al., 2003). Thus the criterion introduced in the regression, i.e. 

rainfall at sowing, was not selected among the significant parameters after the 
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manual backward removal. Similarly, Bella-Medjo et al., (2005) reported that 

there was no significant correlation between cotton yield and rainfall in areas 

receiving more than 600 mm. Few significant parameters were retained in the 

multiple regression (T: 0, NT: 1, NTM: 3) and the residual yield variability was 

important, confirming the lack of parameters that characterize the water 

balance. Among parameters retained in the regression only the sowing date 

was related with the water balance. NTM cotton yield decreased by 16 kg ha-1 

for each day of that sowing date was delayed. This yield reduction is less than 

that reported in the literature where a yield penalty of -20 to -50 kg ha-1 per day 

by which sowing was delayed was found under conventional tillage 

management techniques (Milleville, 1976; Crétenet, 1987; Lançon et al., 1989; 

Haggblade and Tembo, 2003). Further indirect evidence of the effect of 

treatment on the cotton water balance is the difference in the duration of 

flowering. Because cotton is an indeterminate species its yield is closely related 

to the length of its reproductive period which is driven by duration of the rainfall 

period: the longer the reproductive period the greater the yield (Dounias et al., 

2002; Blanc et al., 2008). The flowering period was longer for NTM compared to 

NT in the ‘‘Extrême-Nord’’ and ‘‘Nord’’ provinces, and NTM compared to T in the 

‘‘Nord’’ province. The shift is respectively 13, 9 and 8 days. Results acquired in 

the same area also show a net benefit from the mulch on cotton water balance 

(Boli Baboule, 1997; Soutou et al., 2005). Beside such short term effects, CA 

can also have long-term benefits for crop production by reducing soil erosion 

(Boli Baboule, 1997) and improving the soil fertility (Sá et al., 2009). 

 

2.4.6. CA adoption 
 

CA is often said to be responsible for increased use of chemicals and therefore 

increased production costs (Affholder et al., 2010). In our case, in the ‘‘Extrême-

Nord’’ province, 21 kg ha-1 more N and 1100 g ha-1 more glyphosate was used, 

in average, in NTM plots than for T. This additional quantity of fertilizer was 

equivalent to 12% of the total fixed-charge for 1 ha of cotton (Sodecoton pers. 

com., 2008 prices). The economic balance is less sensitive to the price of 
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herbicide than that of fertilizer because the additional herbicide used with the 

NTM technique represented less than 1% of total cost of cropping. These kinds 

of modifications in crop management often require significant changes in 

technical and economical support to the farmers (Bolliger et al., 2006; Giller et 

al., 2009) but in this region farmers are accustomed to using inputs. Thus the 

northern provinces of Cameroon could be more favorable for CA adoption 

compared with other SSA regions because: (i) farmers have invested little in 

equipment for ploughing and in draught animals (Dounias et al., 2002), (ii) direct 

seeding manually with no tillage is becoming common (in 2005, 50% of the 

200,000 ha of cotton were cultivated without tillage (Sodecoton unpublished 

data)), (iii) farmers are already familiar with the use of herbicides (herbicides 

were used in 89% of cotton fields in 2007 (Sodecoton unpublished data)), (iv) 

Sodecoton provides interesting loans and efficient distribution for all fertilizers 

and pesticides required, (v) Sodecoton actively provides technical advice in all 

villages of the region. Another key issue for adoption of CA is on-field residue 

retention. Beside physical management, such as live fences to prevent grazing 

of crop residues after harvest, the social aspects of land management must be 

considered. In the northern provinces of Cameroon relationships between 

sedentary farmers and pastoralists are currently facing profound changes 

(Labonne et al., 2003). Pastoralists have increasing problems to access land for 

free grazing due to expansion of agricultural land, national parks and game 

reserves. CA adoption by farmers should not worsen this situation. Thus 

technical support is needed not only for the crop farmers but also to cattle 

owners to improve their forage production and management. 

 

2.5. Conclusion 
 

The CA practices tested in farmers’ fields gave improved yield of cotton in the 

‘‘Extrême-Nord’’ province with no tillage and mulch but no significant yield 

benefits in the ‘‘Nord’’ province. These yield increases in the ‘‘Extrême-Nord’’ 

province could not be attributed to CA alone, as more fertilizer was applied in 

the CA plots. We observed that technicians and farmers tended to increase the 
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amounts of fertilizer and herbicide used for managing cotton when practicing 

CA techniques. A factor contributing to the impact was the effect of mulching 

with CA on the cotton water balance. It was possible to double the amount of 

biomass produced in farmers’ fields using intercropped cover crops without a 

reduction in the yield of the main intercropped cereal. A large part of this 

biomass can be retained in the field as mulch for the next crop. Another 

advantage of CA was that it allowed more flexibility in organization of weeding 

operations. Further studies are needed to discriminate the impact of all 

components of the technical system on cotton yield. Whilst this study assessed 

the impact of CA at field level, and showed that there are potential benefits for 

smallholder farmers, the question remains as to whether these benefits are 

sufficiently immediate and tangible for farmers to encourage them to adopt CA 

practices rapidly. Further studies at farm and village levels are needed to 

assess whether this management system fits into the farming system as a 

whole. 
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Chapter 3  
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Abstract 
 
Farmers in the Lake Alaotra region of Madagascar are currently evaluating a 
range of conservation agriculture (CA) cropping systems. Most of the expected 
agroecological functions of CA (weed control, erosion control and water 
retention) are related to the degree of soil cover. Under farmers’ conditions, the 
grain and biomass productivity of these systems is highly variable and the 
biomass is used for several purposes. In this study, we measured biomass 
production of cover crops and crops in farmers’ fields. Further, we derived 
relationships to predict the soil cover that can be generated for a particular 
quantity of mulch. We used these relationships to explore the variability of soil 
cover that can be generated in farmers’ fields, and to estimate how much of the 
biomass can be removed for use as livestock feed, while retaining sufficient soil 
cover. Three different kinds of cropping systems were investigated in 91 
farmers’ fields. The first two cropping sequences were on the hillsides: (i) maize 
+ pulse (Vigna unguiculata or Dolichos lablab) in year 1, followed by upland rice 
in year 2; (ii) the second crop sequence included several years of Stylosanthes 
guianensis followed by upland rice; (iii) the third crop sequence was in lowland 
paddy fields: Vicia villosa or D. lablab, which was followed by rice within the 
same year and repeated every year. The biomass available prior to rice sowing 
varied from 3.6 t ha−1 with S. guianensis to 7.3 t ha−1 with V. villosa. The 
relationship between the mulch quantity (M) and soil cover (C) was measured 
using digital imaging and was well described by the following equation: C = 1 − 
exp(−Am × M), where Am is an area-to-mass ratio with R2 > 0.99 in all cases. The 
calculated average soil cover varied from 56 to 97% for maize + V. unguiculata 
and V. villosa, respectively. In order to maintain 90% soil cover at rice sowing, 
the average amount of biomass of V. villosa that could be removed was at least 
3 t ha−1 for three quarters of the fields. This quantity was less for other annual or 
biennial cropping systems. On average the V. villosa aboveground biomass 
contained 236 kg N ha−1. The study showed that for the conditions of farmers of 
Malagasy, the production and conservation of biomass is not always sufficient 
to fulfill all the above-cited agroecological functions of mulch. Inventory of the 
soil cover capacity for different types of mulch may help farmers to decide how 
much biomass they can remove from the field.  
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3.1. Introduction 
 
Conservation agriculture (CA) is defined by three principles: minimum soil 
disturbance, permanent organic mulch covering the soil and diversified crop 
rotations and associations (Reicosky, 2007; Hobbs, 2007; FAO, 2012a). Mulch 
plays an important role in CA benefits. In particular, soil cover acts on (i) weeds 
control, (ii) erosion control and (iii) improvement of crop–water balance. Weed 
control, besides allelopathic effects, results from physical effects of mulch on 
temperature, light extinction and physical obstruction of weed seedling 
emergence (Teasdale and Mohler, 1993, 2000; Bilalis et al., 2003). The 
percentage of ground cover has more direct influence than the quantity of 
biomass on weed emergence (Teasdale and Mohler, 2000), on erosion control 
(Smets et al., 2008) and on improvements in the crop–water balance (Scopel et 
al., 2004a). By contrast, other benefits of mulch, such as contributions to 
increase soil carbon contents (Neto et al., 2010) or provision of nitrogen for 
subsequent crop growth (Maltas et al., 2009), are directly proportional to the 
amount of mulch and its content of each element. In the Lake Alaotra region of 
Madagascar, farmers face different constraints in different fields within their 
farming systems. In upland fields, soil’s organic matter stocks are declining 
because of reduced fallow time. On these types of fields, dry spells can have a 
strong impact on crops’ yields. In most of paddy fields, rice transplanting is 
delayed and because of poor water control, weeds threaten rice yield. The 
average rice yield for conventional fields is around 1 t ha−1 for upland rice and 
2.5 t ha−1 in paddy fields with poor water control (Penot et al., 2010). As part of 
a long-term research and development program exploring options for enhancing 
the productivity and sustainability of farming systems in Madagascar, 
considerable emphasis has been devoted to identify suitable CA systems 
(Husson et al., 2010). In the Lake Alaotra region, in 2009, 1420 farmers have 
implemented CA cropping systems on a total of 1000 ha, i.e. on average 0.7 ha 
per adopting farmer (Rakotondramanana et al., 2010). Extension agents 
regularly monitor grain production, but biomass production is measured neither 
in terms of quantity nor in terms of soil cover. Various authors have stressed on 
the lack of biomass for use as mulch in smallholder farming systems in Africa (   
et al., 2002; Erenstein, 2003; Giller et al., 2009). First it is difficult to produce 
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enough biomass without external inputs, and second, once biomass is 
produced, it is difficult to retain it as mulch because of competing uses, 
especially for livestock feed. Surprisingly, few quantitative data are available 
concerning mulch availability under smallholder conditions, or on the amount of 
mulch required to fulfill different ecological functions. To the best of our 
knowledge, previous research has not addressed the question to what quantity 
of the available biomass can be removed from field while maintaining a degree 
of soil cover required for specific agronomic functions. Some authors propose 
thresholds for biomass exportation but provide few justifications. For example, 
(Govaerts et al., 2007c) suggest that it is possible to remove 50–70% of the 
residue while keeping adequate benefits to the soil only considering cereal 
yields. The hypotheses of this study are that when CA systems are 
implemented by smallholder farmers, in some cases the production and/or 
conservation of biomass lead to a partial soil cover; consequently, we can 
assume that not all cover functions will be effective. We can support farmers 
and technicians’ decisions, in terms of biomass management, by establishing 
curves taking into relation soil cover and mulch quantity by mulch type. 

 
Figure 3.1. Rainfall in the Ambongabe village (48°28’11.2”E, 17°51’50.6”S), 

lower and upper quartile for the 2000–2010 time period and 2008–2009 season 

rainfall.   
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3.2. Materials and methods 
 

3.2.1. Location 
 
All fields investigated were located in the Lake Alaotra region, Madagascar, 

between 17◦28.0’S and 17◦53.0’S, 48◦08.0’E and 48◦38.0’E, and 760–950 m 

above sea level. The mid-altitude tropical climate has a mean annual 

temperature of 22 ◦C. Average rainfall near Ambatondrazaka was 994 mm from 

2000 to 2010 and 1553 mm from October 2008 to September 2009 (Fig. 3.1) 

(Bas Rhône Languedoc (BRL), 2010). The hillside soils are Cambisols (texture 

20% clay, 38% silt and 42% sand). Lowland paddy fields are Ferralsols (texture 

39% clay, 29% silt and 32% sand) (A. Albrecht, personal communication 2010, 

Razafimbelo et al., 2010; FAO, 2012b). The hillside soils C stocks (0–20-cm 

layer) are smaller (15.6 to 19.7 t ha−1) than the paddy soils (23.6 to 29.0 t 

ha−1) (Razafimbelo et al., 2010).  

 
3.2.2 Experimental design 
 
The study was conducted in 91 farmers’ fields in 2008 and 2009. The study was 

done in one crop cycle but the aim was to stress the intra-annual variability 

coming from farmers’ management. Cropping systems differ according to their 

location in the landscape. On the hillsides, locally called tanety, all the crops are 

rain-fed. In the lowland, paddy field crops are irrigated but with poor water 

control, as the irrigation network is not fully functional, i.e. the farmers largely 

depend on rainfall and natural drainage in and out of fields.  
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a) 

 
b)

 
c) 

Figure 3.2. Examples of crop and cover crop sequences in CA cropping 
systems in the Lake Alaotra region, Madagascar. (a) A two-year rotation on 
hillsides with maize + D. lablab in year n, and upland rice in year n + 1; (b) a 
multi-annual succession on hillsides with a crop + S. guianensis in year n, S. 
guianensis alone in year n + 1/2/3, upland rice the last year; (c) a double crop 
sequence within a year in lowland fields with V. villosa in the off-season and rice 
in the main season. Modified from Séguy et al. (2009). 
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Two cropping sequences were studied on the hillsides. The first sequence was 

maize + pulse in year n, followed by upland rice in year n + 1. Pulses were 

cowpea (Vigna unguiculata (L.) Walp) or dolichos (Dolichos lablab L.), (Figure 

3.2a). The second crop sequence included one year of the forage legume 

Stylosanthes guianensis Aubl., ‘CIAT 184’. In year n, S. guianensis was sown 

alone or intercropped with main crops such as Bambara nut (Vigna subterranea 

(L.) Verdc.), groundnut (Arachis hypogaea L.), maize (Zea mays L.), and 

cassava (Manihot esculenta Crantz). In year n + 1/+2/+3, S. guianensis was 

grown alone for as long as the farmer wished. The last year of rotation, i.e. 

years n + 3 or n + 4, S. guianensis was killed mechanically by cutting the crown. 

After 2–3 weeks, when the mulch had been flattened, rice was sown (Figure 

3.2b). The third sequence studied was in lowland paddy fields with poor water 

control, where a cover crop was sown during off-season and rice was sown into 

the mulch of the cover crop at the beginning of the rainy season. The cover crop 

was hairy vetch (Vicia villosa Roth) or D. lablab (Figure 3.2c). In all cropping 

systems rice was directly seeded without tillage. Less than one-fifth of the 

maize + pulse fields received nitrogen, phosphorus and potassium (NPK) (in 

ratio of 11:22:16) or urea fertilizer, and in each case less than 50 kg ha−1 of 

fertilizer was used. The season before V. villosa and D. lablab were grown less 

than one-fifth of the paddy crops were fertilized. These fields were fertilized with 

less than 50 kg ha−1 urea. Sizes of the fields were diverse but relatively small, 

ranging from 100m2 to 5000m2. Farmers conducted all cultural operations. 

Table 3.1 shows the distribution of fields regarding the crop sequence and their 

locations. 
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Table 3.1. Number of fields investigated for each of the crop–cover crop 

combinations. In four fields, measurements were taken in both 2008 and 2009, 

giving a total of 95 samples.  

Type of fields and cover crop/crop combinations Number of fields 
Tanety (Hillside)  
 S. guianensis 17 

Maize + V. unguiculata 16 
Maize + D. lablab 22 

Paddy fields  
 D. lablab 15 

V. villosa 21 
Total 91 
 
3.2.3 Aboveground biomass measurement 
 
The available biomass was estimated from October to the first week of 

December, when rice is usually sown. Where biomass was still living (e.g. S. 

guianensis on hillside and V. villosa and D. lablab in paddy fields) it was cut 

close at 5 to 15 cm above the soil surface. Where the plants had already 

senesced (e.g. maize + D. lablab or maize + V. unguiculata), the dead material 

was removed from the soil to be weighed. Five sub-samples of 1 m2 were taken 

in each field, one in the centre of the field and others at the middle of each 

diagonal linking the centre and the corners of the field. Each sub-sample was 

weighed separately and a composite sample prepared. The composite sample 

was weighed in the field, air-dried and finally reweighed. Samples of the 

biomass (200 g) were oven-dried at 55 ◦C for 48 h to allow correction for 

moisture content and stored for near-infrared reflectance spectroscopy (NIRS) 

predictions. All biomass values are expressed on a dry matter basis. For some 

fields of maize + V. unguiculata and maize + D. Lablab, the aboveground 

biomass was also measured at the end of the growing season (March–April). At 

this date, five plots of 2.5 m2 were sampled from each field using the above-

described pattern. As the maize rows were spaced 1 m apart, each sample 

included 2.5-m length of one row of maize. 
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3.2.4 Soil cover measurement 
 
The relationship between mulch mass and soil cover was determined by 

measuring soil cover of the known mass of plant residue. Residues of D. lablab, 

V. villosa, maize + D. lablab mixture and S. guianensis were collected from 

farmers’ fields. In order to give uniform background, quantities of residues 

equivalent to 1, 3, 6, 9, 12 and 15 t ha−1 were spread on a 1 m2 blue plastic 

tarpauline. A nadir view photograph of the residue was taken. Digital images 

were processed using the Photoshop ® software to determine the visible area 

of the blue background. From this we inferred the proportion of the area 

covered by plant residues. For each quantity of residue, two replicate pictures 

were taken with a different random arrangement of residues. For randomly 

distributed mulch elements, the fraction of the soil covered by mulch (C) can be 

related to the mulch mass (M) by:  

 

C = 1 – exp (−A m × M),        (1) 

 

where Am is an area-to-mass ratio depending on mulch type (Gregory, 1982; 

Scopel et al., 1999; Smets et al., 2008). The coefficient Am has physical 

dimension of area covered by one average straw per mass of one average 

straw. We determined Am by adjusting a non-linear regression to observed data 

using the ‘non-linear regression’ function of the XLStat 2010.1.01 software. 

 
3.2.5 Nitrogen content 
 
An NIRS prediction was used to determine the nitrogen content of samples. 

This method has proved to be an efficient tool to screen the quality of organic 

resources (Shepherd et al., 2003). Dried samples were finely grounded (1 mm) 

and scanned twice at 2-nm intervals over the 1100–2500-nm wavelengths on a 

monochromator (FOSS—NIR Systems 5000, Silver Spring, MD, USA). 

Mathematical analysis of the spectral data was performed with Win ISI III 

Version 1.63 software (Infrasoft International, Port Matilda, PA, USA). The NIRS 
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prediction referential used in the present study consisted of a large tropical and 

temperate forage database pairing reflectance values and reference analyses 

for concentrations of nitrogen (Tran et al., 2009). The nitrogen content is 

reported here only for S. guianensis on hillside and V. villosa, D. lablab on 

paddy fields, as the analysis has been made on biomass sample just before the 

seeding of rice. Thus, part of the nitrogen content of this biomass is available to 

following rice through mulch decomposition. 

 

3.3. Results  
 
3.3.1 Production of biomass and amount of mulch available 
The mulch available at the end of the dry season (October 2009) compared to 

the biomass produced at the beginning of the dry season (April–May 2009) was 

higher for maize + D. lablab fields and lower for maize + V. unguiculata ones 

(Figure 3.3). The mean quantity of mulch available prior to sowing of rice on 

hillsides was 3.6 t ha−1 for fields of S. guianensis, 4.0 t ha−1 for maize + V. 

unguiculata fields and 5.4 t ha−1 for maize +D. lablab fields. In paddy fields, the 

mean mulch available was 6.8 t ha−1 with V. villosa and 7.3 t ha−1 with D. lablab 

(Figure 3.4a). For all types of mulch, there was considerable variability between 

the hillside fields, but less variability in the paddy fields. 
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Figure 3.3. Relationship between the amount of vegetative biomass (dry matter) 

produced by cereal (+ cover crop) in April–May 2009 and the amount of mulch 

left in October 2009. Data from 17 farmers’ fields.  

 
3.3.2 Soil cover 
 
The digital picture analysis allowed relationships between the quantity of mulch 
and soil cover to be derived for four types of mulch (S. guianensis, maize+ D. 
lablab, D. lablab alone and V. villosa). Equation (1) proved to be a good 
descriptor of this relationship, as the coefficient of determination between 
observed soil cover and curve fit was greater than 0.99 in all cases (Figure 
3.5a). Am for maize + D. lablab, D. lablab, S. guianensis and V. villosa are 
presented in Table 3.2. The capacity of plant residues to cover the soil varied 
strongly between different residues. For example, 3 t ha−1 of maize + D. lablab 
covered around 50% of the soil surface, 3 t ha−1 of D. lablab covered 60%, 
whereas a similar quantity of V. villosa biomass covered nearly 90% of the soil 
surface. Ninety-five percent of soil cover was obtained with less than 5 t ha−1 of 
V. villosa, but the same cover rate required 10 t ha−1 of D. lablab.  The range of 
biomass quantity (Figure 3.4a) was then converted to soil cover (Figure 3.4b) 
using Equation (1) and the Am values given in Table 3.2. The calculated 
average soil cover (lower and upper quartile between commas) for S. 
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guianensis, maize + V. unguiculata, maize + D. lablab, V. villosa and D. lablab 
was 66% (58–79%), 56% (30– 74%), 70% (62–84%), 97% (99–100%) and 87% 
(84–94%), respectively. The range of variability observed for mulch quantity 
was different from those of soil cover. For example, CV of the average quantity 
of mulch of V. villosa was 34%, but the CV for soil cover was only 8%. For 
maize + D. lablab cover the CV varied from 27 to 41% (Figures 3.4a, b). 
 

Table 3.2. Area-to-mass ratio values (Am) from this study and from the literature 

for different crops and cover crops.  

Crop and cover 
crop 

Type of residue Area to 
mass 

Source 

Avena sativa Not decomposed 1.370 Steiner et al., 1999 
Unknown 1.400 Gregory, 1982 

Dolichos lablab Not decomposed 0.320 This study 
Glycine max Unknown 0.720 Gregory, 1982 
Hordeum vulgare Not decomposed 1.170 Steiner et al., 1999 
Secale cereale Unknown 0.420 Teasdale and Mohler, 

2000 
Stylosanthes 
guianensis 

Not decomposed 0.377 This study 

Triticum aestivum Unknown 0.540 Gregory, 1982 
Unknown 0.450 Gregory, 1982 

Triticum aestivum Not decomposed 1.830 Steiner et al., 1999 
Triticum aestivum Not decomposed 1.380 Steiner et al., 1999 
Vicia villosa Not decomposed 0.690 Teasdale and Mohler, 

2000 
Not decomposed 0.742 This study 

Zea mays Not decomposed 0.114 Gilley et al., 1986 
Unknown 0.190 Teasdale and Mohler, 

2000 
Unknown 0.400 Gregory, 1982 
Not decomposed 0.367 Scopel et al., 1999 
Partially decomposed 0.271 Scopel et al., 1999 
Partially decomposed, 0.092 Scopel et al., 1999 

Zea mays + Partially decomposed 0.251 This study 
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a) 

 
b) 
Figure 3.4. (a) Aboveground dry biomass available as mulch prior to sowing of 

rice. (b) Soil cover calculated from the amount of biomass measured in the field. 

Measured in the hillside fields and paddy fields in the Lake Alaotra region, 

2008–2009. Number of fields (n): S. guianensis = 19; maize + V. unguiculata = 

17; maize + D. lablab = 23; V. villosa = 21; D. lablab = 15. Box plot: median 

(horizontal continuous line), mean (cross).  
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3.3.3 Impact of biomass removal on soil cover 
 

Using the biomass production of V. villosa, D. lablab, S. guianensis, and maize 

+ V. unguiculata measured in the field (Figure 3.4a) and the soil cover curves 

derived from this data (Figure 3.5b), estimates were made of the effects of 

biomass removal on soil cover (Figure 3.6). This was done using the upper and 

the lower quartiles of biomass production among farmers’ fields. For V. villosa, 

points A, B, C and D mark the maximum quantity of biomass that can be 

removed before reaching 90% of soil cover (A, B) or 30% (C, D), for three 

quarters of fields (A, C) or one quarter of fields (B, D). For three quarters of the 

V. villosa fields, 3 t ha−1 can be removed while maintaining 90% soil cover, and 

5.6 t ha−1 can be removed from one quarter of the fields (Figure 3.6). If the 

target is 30% of soil cover, then the removable biomass will be 5.6 and 7.9 t 

ha−1 for three quarters or one-quarter of the fields, respectively. 

 

3.3.4 Nitrogen content 
 

The average nitrogen content of samples was respectively 2.7% of dry matter 

for S. guianensis, 3.4% for V. villosa and 1.8% for D. lablab. Combining with 

total biomass available, this gave 82 (±21) kg N ha−1 in the mulch for S. 

guianensis, 236 (±97) kg N ha−1 for V. villosa, and 123 (±46) kg N ha−1 for D. 

lablab (Figure 3.7).  
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a)  

 
b) 
Figure 3.5. a) Soil cover (%) as a function of the amount of mulch for different 
crop/cover crop combinations. (*) data from this study, (†) data from Teasdale 
and Mohler, (2000), (‡) data from Scopel et al. (1999). Equation: C = 1 – exp(-

Am.M) Where (C) is the fraction of the soil covered by mulch, (M) the mulch mass 
in t ha-1 and  Am is an area-to-mass ratio depending on mulch type. The R2 for 
the fitted curves are respectively 0.991, 0.990, 0.998 and 0.998 for 
S. guianensis, maize + D. lablab, D. lablab and V. villosa. b) Soil cover 
calculated from the quantities of biomass measured in the field. The relation 
between mulch quantity and soil cover for maize + V. unguiculata has been 
inferred from the relation for maize + D. lablab. Number of fields: S. guianensis, 
n = 19; maize + V. unguiculata, n = 17; maize + D. lablab, n = 23; V. villosa, n = 
21; D. lablab, n = 15.  
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Figure 3.6. Effect of biomass removal on the soil cover for five different cover 
crops, V. villosa, D. lablab, maize + D. lablab, S. guianensis and maize + V. 
unguiculata and quartile values from farmers’ fields. Point A, B, C and D, mark 
the maximum quantity of dry biomass which can be removed while maintaining 
90% soil cover (A, B) or 30 % (C, D), for 3/4 of the fields (A, C) or 1/4 of the 
fields (B, D). Theses quantity are 3.0, 5.3, 5.6 and 7.9 t ha-1 for A, B, C and D, 
respectively. 

 
Figure 3.7. Amount of nitrogen (kg ha-1) contained in the aboveground dry 
biomass of the different cover crops. Number of fields: S guianensis, n = 5; V. 
villosa, n = 21; D. lablab, n = 15. Box plot: median (continuous line), mean 
(cross).  
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3.4. Discussion  
 
3.4.1 Production and conservation of biomass 
 
Although maize + D. lablab fields had more biomass at the end of the dry 

season than at the beginning, less biomass remained in almost all maize + V. 

unguiculata fields. Three reasons can explain the difference between these two 

cover crops. First, V. unguiculata had ceased to grow before the end of the 

rainy season, whereas D. lablab continued to grow into the dry season. Second, 

cattle herders tend not to graze their cattle in fields of maize + D. lablab fields, 

as they see D. lablab is still growing there. As all the standing biomass dries in 

situ in maize + V. unguiculata fields, herders consider it to be a ‘normal’ field 

available for grazing. Third, farmers grew D. lablab only to produce biomass for 

the next crop, and not for edible grain. By contrast, farmers grew V. unguiculata 

for grain with the additional benefit of biomass for use as mulch. Nevertheless, 

the amount of biomass remaining at the end of the dry season in the Alaotra 

region of Madagascar is large compared with CA systems in other countries of 

sub-Saharan Africa, e.g. 3.5 t ha−1 (Naudin et al., 2010) or 2 t ha−1 (Wezel et 

al., 2002). S. guianensis can be cut and killed at the beginning of the third year 

after sowing to produce mulch where rice can be sown (Husson et al., 2010). All 

S. guianensis fields investigated were in the third, fourth or fifth year but the 

average biomass available at the beginning of the subsequent rainy season 

was 3.6 t ha−1, a small amount compared with the other cover crops, and much 

less than reported elsewhere (e.g. Saito et al., (2010) reported 7.4 t ha−1 for a 

two-year stand in Benin). Under controlled conditions, S. guianensis produced 

from 5 to 20 t ha−1 (Husson et al., 2008), but under real farmers’ conditions 

most of these fields had been partially grazed during the dry seasons, which 

explained the relatively small amount of remaining biomass. S. guianensis is 

well known to support multiple cuts during the growing season to provide fresh 

forage for animal feed, and is resistant to grazing (Roberge and Toutain, 1999). 

Nevertheless, this reduces its final growth and biomass available. Furthermore, 

S. guianensis is usually grown on the worst fields where farmers intend to 

improve soil fertility and can afford to leave the field uncropped. The 2008–2009 
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cropping season was rainy season (1553 mm) compared with the average rains 

(994 mm), thus the biomass obtained on hillsides was close to the optimum 

attainable in this region. Biomass production on paddy fields should be less 

sensitive to this climatic condition, as the water is not limiting in this kind of 

fields. In the lowland paddy fields, biomass production of D. lablab and V. 

villosa was similar at around 7 t ha−1, and greater than reported earlier in the 

literature, e.g. 2.44 to 5.16 t ha−1 (Sainju et al., 2006). None of these V. villosa 

or D. lablab fields have been grazed. Farmers prefer to grow V. villosa in this 

kind of field, as it can be intercropped with vegetables. V. villosa requires more 

water than D. lablab, so it is found only in lower lying fields with fine soil texture 

that allow capillary rise. When water is more limiting, D. lablab is selected. 

In the Lake Alaotra region of Madagascar where no basal fertilizer is applied, 

large amount of legume biomass was achieved in the lowland fields, but less 

biomass was produced in the upland fields probably due to poorer soil fertility. 

In particular, this poor production can be linked with low phosphorus availability. 

In many parts of the tropics basal fertilization with phosphorus and other 

nutrients is required to get good legume growth and nitrogen fixation (Giller and 

Cadisch, 1995). In paddy fields, the use of adapted legumes (D. lablab and V. 

villosa) on relatively fertile soils allowed production of a large amount of 

biomass each year without competing with other crops. The paddy fields are 

usually under exploited during the off-season, as vegetables are the only crops 

grown where manual irrigation is possible. The area covered by vegetables is 

small due to the labor required, leaving a large area where cover crops could be 

grown. 
 
3.4.2 Relationships between biomass and soil cover 
 
The capacity of plant residues to cover soil varied strongly between different 

residues. The presence of small leaves in V. villosa, S. guianensis and D. lablab 

gives the higher Am value compared with cereal residues alone so that much 

less biomass is needed to obtain the same percentage of soil cover. The digital 

picture analysis proved to be a useful tool for generating predictive equations to 

relate biomass with soil cover for different residue mixtures (Figure 3.5a). This 
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method is relatively easy to use even with low resources. It should be used 

more in order to better characterize mulch characteristics and thus to allow a 

better explanation for CA cropping systems impacts. 

As we can see in Figure 3.4a, the variability in terms of biomass production is 

relatively high, as is commonly found in smallholder cropping systems in 

developing countries (Tittonell et al., 2008; Naudin et al., 2010). This variability 

results in a wide range of soil cover (Figure 3.4b) and nitrogen input (Figure 

3.7). These examples demonstrate the wide variability in biomass yield found 

under farmer’s conditions, even for one type of cropping system, so that the 

agronomic benefits expected from CA are not necessarily fulfilled. Further, the 

agronomic benefits are not linearly linked with the quantity of mulch and 

therefore thresholds should be defined for specific combinations of 

environmental conditions, cover crop and expected function. 

 
3.4.3 Maintaining sufficient mulch 
 
We can infer from Smets et al., (2008) that a minimum of 30% soil cover is 

required to reduce inter-rill soil erosion substantially, whereas a target of 90% is 

the minimum required to obtain a good weed control (Teasdale and Mohler, 

2000; Bilalis et al., 2003). The amount of mulch required to achieve these rates 

of soil cover can be readily derived from Figure 3.5a. On the hillside fields 

where the biomass production was less than in the lowland paddy fields, the 

amount of biomass that could be removed was substantially less. For example, 

for S. guianensis, 90% of soil cover was reached in less than a quarter of the 

fields. With a target of 30% of soil cover, the removable biomass was between 

1.4 t ha−1 for three quarters of the fields and 3.4 t ha−1 for a quarter of the 

fields. Thus, the amount of biomass that can be removed for livestock, or 

grazed in situ varies strongly between the hillside and lowland paddy fields and 

between different legumes or residue mixtures. Govaerts et al., (2005) stressed 

the need to establish critical amount of residue required for maintaining soil 

productivity while using part of the biomass as fodder. These authors also 

mentioned that zero tillage with residue retention give better cereal yield results 

than without residue. But they did not specified the quantity of mulch retained 
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and even less the percentage of corresponding soil cover. Knowing the 

relationship between potential removable biomass and impact in terms of soil 

cover rate can help farmers to take decisions regarding the possibility to use 

part of the biomass produced in field. It also helps to compare the management 

flexibility of different cropping systems. In fact, in no-till cropping systems, the 

lack of mulch, less or equal to 30% of soil cover, can lead to increased erosion 

(Volk et al., 2004) and weed competition (Bilalis et al., 2003) compared with 

tilled cropping.  

 
3.4.4 Nitrogen availability and role on short-term productivity and long-
term fertility  
 
Beyond the quantity of biomass produced, the quality also varies among cover 

crops and fields. Again, for the same types of field (paddy field) and cropping 

system (annual rotation with rice), the quantity of nitrogen available in the 

residues can double with the type of cover crop, e.g. 123 kg N ha−1 for D. 

lablab against 236 kg N ha−1 for V. villosa. Values for V. villosa are higher than 

those observed by (Sainju et al., 2006), which varied from 76 to 167 kg N ha−1 

depending on the year. These authors showed that even with the smaller 

amount of biomass added, the available inorganic nitrogen content increased in 

the soil when V. villosa was killed resulting in increased grain and biomass 

yields of the subsequent sorghum crop. The biomass nitrogen can be partially 

returned to soil to benefit the following rice crop, or be fed to cattle to improve 

animal productivity. As stressed by (Rufino et al., 2006), the direct application of 

plant materials to soil results in more efficient cycling of nitrogen, with fewer 

losses from the system than from materials fed to livestock and then returned to 

the soil through manure. However, livestock provide many other benefits, and 

animal manure can contain large amount of available nitrogen, which can 

promote crop growth in short term (Rufino et al., 2006). The partial allocation of 

the biomass to cattle or to mulch is driven by the goals of the farmer; especially 

by trade-offs between expected benefits from rice yield improvement, reduction 

in labor required for weeding and enhanced cattle production. The short-term 

effects of mulch, such as water balance improvement (Scopel et al., 2004a; 
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Thierfelder and Wall, 2010) are more easily perceived by farmers than long-

term effects on soil fertility. Although after eight years of implementation of CA 

in the Lake Alaotra region, the C stock was consistently greater in CA plots 

(between 1.1 t ha−1 and 3.5 t ha−1) than in ploughed plots, but the difference 

was not statistically significant (Razafimbelo et al., 2010). Furthermore, these 

results were obtained when all of the plant residues were returned as mulch in 

the CA plots (rarely achieved in farmers’ fields) compared with complete 

removal of crop residues in the ploughed plots. These results reinforce the 

conclusion that the fulfillment of agroecological functions by CA will depend on 

the amount of biomass returned to soil and length of time the system is 

implemented. 

 
3.5. Conclusion  
 

Our results showed that it is possible to produce and keep sufficient biomass in 

the field for CA systems even under smallholder farming conditions where 

livestock graze freely during dry season. However, the quantity of biomass 

produced varies strongly between hillsides and valleys, and between cover 

crops and farmers’ management. Soil cover is not linearly related to mulch 

quantity. Thus, for a given quantity of biomass exported to feed cattle, the 

impact is different depending on the cover crop, the initial amount of biomass 

and the agroecological functions of mulch searched by farmers. When 

comparing benefits of different types of CA cropping systems, it is important to 

report the amount and quality of biomass produced, and the corresponding rate 

of soil cover. In terms of the agroecological functions of soil cover, such as 

weed control, erosion control and water retention, different amount of mulch is 

required with different cover crops. The relationships between biomass export 

for cattle feed and these agroecological functions require more systematic 

study. The decision on how much biomass can be removed from the field will 

depend on the local biophysical conditions, the biomass characteristics and the 

farmer’s goals for his/her whole farm system. 
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Chapter 4  

Trade-offs around use of biomass for 

livestock feed and soil cover at farm level in 

the Alaotra lake region of Madagascar.  
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Abstract 
 

Conservation agriculture (CA) is promoted as a promising technology to 
stabilize or improve crop yields in Africa and Madagascar. However, small scale 
farmers face difficulties to retain soil cover; mainly because of competing uses 
for the biomass produced, especially to feed cattle. To explore the relation 
between dairy cow raising and CA we developed an optimization model at farm 
level. Our aim was to explore trade-offs and synergies between combinations of 
CA practices and the size of dairy cow herds. Our model includes three main 
components: the farm, the crops and the cattle herd. The optimization was 
made on the total net income for three years. Biomass produced by cropping 
activities can either serve as mulch or to feed cows. We applied a constraint on 
the minimum soil cover % to keep at the end of each year for CA fields: from 30 
to 95 %. We simulated two scenarios of milk market:  a small milk market with 
low forage price and an open milk market scenario with higher price of forage. 
Three kinds of farms were simulated: medium-sized farm with hillsides 
dominating, medium-sized farm with paddy fields dominating and small-sized 
farm with hillsides. Changing the degree of soil cover to be retained on CA plots 
did not significantly modify the total farm net income. It was more strongly 
influenced by the characteristics of the milk market. In case of a limited milk 
market it was not profitable to have more than seven cows because the 
expenses were not compensated by animals’ products. In most of the situation 
simulated above six/seven cows the model chose to introduce CA cropping 
systems producing more forage on the hillsides if we allow the model to 
implement CA with only 30 % of soil cover. Conversely when setting this 
constraint to 95 % the model chose not to implement CA on hillsides. In all of 
the situations simulated with the maximum number of cows (12) it was possible 
to keep at least 50 % of soil cover on 80 % of the hillsides fields. On the other 
hand, it was impossible to keep 95 % of soil cover when forage fetched a high 
price. Overall, CA systems can be beneficial for dairy cow farmers due to the 
forage produced, although the milk market and thus the value of biomass for 
forage, has a strong influence on the way CA can implemented at field level.  
 
Keywords: biomass uses tradeoffs, soil cover, forage, crop residues, 

smallholder, linear programming
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4.1. Introduction 
 

Conservation agriculture (CA) is a promoted as a promising technology to 
control soil erosion and stabilize or improve crop yields in Africa and 
Madagascar (Fowler and Rockstrom, 2001; Hobbs, 2007; Schutter, 2011). Big 
part of CA efficiency is linked to the physical and chemical ecological functions 
played at the field level by a permanent superficial mulch of residue. The 
physical functions relating to soil cover include: i) weed control (Teasdale and 
Mohler, 2000), ii) erosion control (Smets et al., 2008), and iii) improvement of 
the crop water balance due to promotion of infiltration and reduction of 
evaporation losses (Scopel et al., 2004a). The chemical effects include 
provision of nutrients for plant growth and provision of chemical buffering for 
nutrient retention and against soil acidity, due to inputs of organic matter and 
nutrients (Maltas et al., 2009; Neto et al., 2010).  However, small scale farmers 
face some difficulties to retain an organic mulch as soil cover when 
implementing CA (Erenstein, 2003; Giller et al., 2009). This is due to two main 
issues; first, it is difficult for them to produce sufficient biomass on poor soil 
without fertilizer; and second, there are competing uses for the biomass 
produced, especially for livestock feed. In the present study we compare the 
relative advantages of using biomass produced on-farm as forage resource to 
feed the cattle or as a mulch to cover and protect the soil in the context of 
Malagasy small scale farmers. We focus on the short-term effects of mulch, 
which are mainly related to soil cover. Short-term benefits include weed control 
and yield increasing through crop water balance improvement. We developed 
an optimization model GANESH (Goals oriented Approach to use No till for a 
better Economic and environmental sustainability for SmallHolders) for 
simulation on representative, small and medium-sized farm using multiple goal 
linear programming. We used this model to explore the relation between dairy 
cows raising, a range of CA practices and biomass uses with economic income 
optimized at farm level. This has been done for two scenarios of milk market 
conditions and three kinds of farms. Our aim was to explore trade-offs and 
synergies between combinations of CA practices and the size of dairy cow 
herds. 
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4.2. Materials and methods 
 
4.2.1 Model  
 
4.2.1.1 General description 
 
The model includes three main components: i) the farm, ii) the crops, iii) the 

cattle herd (Figure 4.1a). External factors taken into account in the model were: 

input price (pesticide, fertilizer, hired labor, forage), output price (milk manure, 

crop production) and volume of milk marketable. GANESH optimizes the total 

net income of the farm (from crop and livestock activities) over a three year 

period, by choosing: i) the crop succession to be implemented on each farm 

fields, by selecting among 28 crop production activities which can be combined 

in different ways for the three-year period; ii) the quantity of forage to be 

purchased from outside the farm; iii) the quantity of above-ground biomass 

exported from the field for cattle feeding; iv) the quantity of hired labor. 

Constraints applied to the optimization are (Fig. 4.1b): i) the size of the 

workforce available in the family and the labor which can be hired taking into 

account available cash; ii) a minimum soil cover % at the end of each year for 

CA fields. This value can be set between 30 to 95 %; In this study, the minimum 

was set to 30 % of soil cover, a value commonly accepted to be the minimum 

for effective organic mulching (Erenstein, 2003). If the biomass exported for 

cattle feeding leads to a soil cover lower than the chosen value, then the 

following crop production activities must be conventional and not CA; iii) a 

minimum net income to cover basic needs of the farm (including household 

requirements); iv) a maximum volume of milk marketable per day.  
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Figure 4.1a. The three main components of the GANESH model (Crops, Farm 

and Cattle herd) and the main constraints influencing the choice of crop and 

cattle production activities and farm income. 

 
Figure 4.1b. A schematic representation of the objective function optimized in 
the model to maximize the total net income of the farm (from crop and livestock 
activities) for three years, and its dependence on the positive (+) or negative (-) 
contributions of the different variables.  
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4.2.1.2 Farm 
 

The farm is characterized by the number and type of people (for calculating 

household food demand and the workforce available): people > 60 years, men 

>15 years, women > 15 years, children < 15 years, children at school. Usually 

when people have cattle they employ a permanent worker (cowherd) to take 

care of the animals. These workers do not appear as part of the available 

workforce in the model as their time is strictly devoted to care of the cattle, but 

their salaries are taken into account as a cost. 

 

4.2.1.3 Crops 
 

Crops are taken into account in the model as crop production activities, which 

include either a crop alone or a crop associated with a cover crop (Tab. 4.1). 

The duration of the crop production activities is one year, (i.e. including both the 

rainy season and the off-season). Thus some crop production activities include 

only one crop or cover crop (e.g. rice alone grown with conventional techniques) 

or two (e.g. rice/vetch, meaning rice during the rainy season and vetch during 

the off-season). There are 28 crop production activities spread among four 

different kind of fields: i) hillsides, locally called tanety, ii) alluvial soils, locally 

called baiboho, iii) lowland paddy fields with poor water control, and iv) irrigated 

paddy fields. Hillsides soils typically have a loam texture (Razafimbelo et al., 

2010). They are usually devoted to upland crops such as cassava, maize and 

groundnuts. Baiboho soils have a sandy loam texture (Razafimbelo et al., 

2010). All upland crops can be grown on alluvial soils (upland rice, sweet 

potatoes, maize) during the rainy season. During the off-season, legumes or 

cover crops can be grown thanks to a shallow water table. Poor water control 

paddy fields and irrigated paddy field typically have a sandy loam texture. They 

are devoted to irrigated rice during the rainy season. During the off-season a 

vegetable or a cover crop can be grown depending on the soil texture and the 

depth of the water table. Crop production activities are split between 

conventional and CA soil management techniques. When looking for the 
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optimal solution (see below for optimization) GANESH seeks to find the best 

crop production activities succession over the full three years for each field. CA 

systems can only start in Year n+1 as they require biomass production in Year n 

to serve as mulch. However, the implementation of CA systems in Year n+1 

require that all, or part, of the aboveground biomass produced in year n is 

retained in the field (complying the minimum soil cover constraint set). 

Therefore, in general, in Year 1 of the simulation it is impossible to implement 

CA as no biomass has been produced previously. But, in some case CA 

systems can start in the off-season of Year 1 if enough biomass is produced 

and retained from the rainy season. GANESH combines crop production 

activities over a rotation period of three years with set goals and constraints. For 

example, a feasible crop succession for an alluvial soil field is: Year 1: maize in 

the rainy season, D. lablab in the off-season both with conventional techniques; 

Year 2: rice in the rainy season and vetch in the off-season both with CA 

techniques; Year 3: rice in the rainy season and vetch in the off-season both 

with CA techniques. The period of three years was chosen to allow full rotation 

cycles, to focus only on short terms effect of CA (weed control and yield 

increase due to better water balance) and to limit the number of crop production 

activities combinations to prevent excessive run times. Agronomic rules were 

incorporated to prohibit or force some crop successions. For example S. 

guianensis should be intercropped with a crop in year n. It takes at least one 

year to produce sufficient aboveground biomass, thus it occupies the field for, at 

least, the whole of year n+1 to be able to cultivate another crop in CA in year 

n+2.  
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Table 4.1. Crop production activities are the basic building blocks in the 

construction of cropping systems. They differ for each of the four types of fields 

(irrigated paddy fields, poor water control paddy fields, alluvial soils, hillsides) 

and are managed with either conventional or CA techniques. As CA techniques 

require biomass production the year before these crop production activities can 

only be grown in years 2 and 3. Conventional crop production activities can be 

grown in years 1, 2 and 3. "/" between two crops means a within-year (intra-

annual) sequence of two plants between the rainy season and the off-season. 

Type of field Soil management Crops (+cover crops) 
Year 
1 

Year 
2 

Year 
3 

Irrigated paddy fields Conventional Irrigated rice X X X 
Poor water control 
paddy fields 

Conventional Rice/Fallow X X X 
Rice/Vetch X X X 

CA Rice/Fallow X X 
  Rice/Vetch   X X 

Alluvial soil Conventional Rice/Fallow X X X 
Rice/Dolichos X X X 
Rice/Vetch X X X 
Maize/Fallow X X X 
Maize/Dolichos X X X 
Maize+Dolichos/Fallow X X X 

CA Rice/Fallow X X 
Rice/Dolichos X X 
Rice/Vetch X X 

    Maize+Dolichos/Fallow   X X 
Hillsides  Conventional Brachiaria X X X 

Cassava X X X 
Groundnut X X X 
Groundnut+Stylo X X X 
Maize X X X 
Maize+Dolichos X X X 
Rice X X X 
Cassava+Brachiaria X X X 

CA Brachiaria X X 
Rice X X 
Groundnut+Stylo X X 
Maize+Dolichos X X 

    Stylo   X X 
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The labor requirements for each crop production activities (Appendix 1) are 

defined by a number of man/day on a 2-weeks time step. The inputs 

requirements of crop production activities including seeds quantity, chemical 

fertilizer and organic manure, pesticides (Appendix 2) were translated into 

monetary values in kAr (1 kAr= 0.36 Euros in average in 2011). There are 12 

kinds of outputs of the crop production activities (Appendix 3): rice grain, maize 

grain, cassava tuber, groundnut, vetch residues, dolichos residues, maize 

stover, maize stover + dolichos residues, brachiaria, stylosanthes, rice bran, 

rice straw; plus one “additional” output which is stored maize stover, meaning 

maize stover taken to the farm to feed cattle and not left in the field to be 

grazed. Part of these outputs can be used to feed cattle: vetch residues, 

dolichos residues, maize stover, maize stover + dolichos residues, brachiaria, 

stylosanthes, rice bran, rice straw, stored maize stover. One further product not 

produced in the fields, namely cut natural grass, can be used to feed cattle. The 

entire set of technical coefficients was derived from repeated farm and plot 

survey described below. The forage chemical composition and nutritive values 

of each of these products were measured in a previous study (Naudin et al., 

2011; P. Salgado et al., unpublished results). The forage nutritive value is 

expressed according the French system by UFL (Unite Fourragère Lait) and 

PDI (Protéine Digestible dans l’Intestin grêle) to describe the energy and protein 

values, respectively (INRA, 2007; Appendix 4). 

The relation between mulch quantity and soil cover as described by Gregory 

(1982) was calibrated locally (Naudin et al., 2011c). This relationship is used to: 

i) calculate the remaining quantity of biomass to cover soil at the end of the dry 

season after partial consumption of residue by animals; ii) determine if the 

remaining soil cover at the end of the dry season in year n is sufficient to 

implement CA in year n+1. We used an integer variable and not a continuous’ 

one for the area of fields. In fact, farmers in this region do not split fields into 

many small parts so we set to 10 the maximum number of fields per type of soil. 

In the simulation process we also set to 500 m2 the minimum field area. 
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4.2.1.4 Livestock 
 

The livestock component comprises four kinds of animals: zebu male, zebu 

female, local dairy cow breed (Rana) and improved dairy cow breed (Norwegian 

Red). The inputs for these production activities are the labor requirement to take 

care of animals, forage nutritive value expressed as energy (UFL/kg DM) and 

protein (g PDI/kg DM) values in which feed intake was limited by the potential 

feed intake (kg DM/day) of animals. The outputs are milk, manure, heifers and 

calves sold, and draught power (Appendix 5). The herd management function of 

GANESH is dynamic, i.e. the age of each animal is set at the beginning of the 

simulation process, and then the age changes over the three year periods of 

simulation with a two-week time step (e.g. an animal age of 36 months at the 

beginning of the simulation is aged 72 months at the end). The animal feeding 

aspect is a key part of the model since it gathers at the same time the 

production (milk and draught power) and the management of forage and crop 

residues resources. The approach used by the model is based on the total 

cover of energy requirements of the herd. Energy requirements are calculated 

according to the expenditures for maintenance, growth (calves, heifers), 

pregnancy, and production. These requirements are met by both forage 

resources produced on-farm (first priority but under a certain number of 

nutritional or physiological constraints) and feeds (forage) coming from market. 

The energy requirements for lactation are calculated for a fixed milk production 

level (according to the month of lactation and genetic type) and will have 

obligatorily to be met by the energy supply of the ration. Animals are never 

considered as in under-nutrition situation. The maximum feed intake capacity of 

animals is taken into account by the model. The minimum feed intake is fixed to 

75% of the maximum feed intake. Rice straw is mainly used to meet the minimal 

fibber requirements of animals. Feed requirement (biomass quantity and 

energy) increases with age and production stage of the animals (Appendix 5). 

To simplify interpretation of model outputs we decided to set to 12 months the 

productive cycle of cows: 10 months of lactation period and 2 months of dry 
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period. Data for animal requirement and production were derived from standard 

tables (INRA, 2007; Rasamizafimanantsoa et al., 2008).  

 

4.2.1.5 External parameters and optimization 
 

To be able to simulate different scenarios, GANESH includes the influence of 

external parameters such as: the maximum volume of milk marketable/day, 

hired workforce price for each year period, selling price for each agricultural 

product including milk, price of inputs for crop production, prices of all 

purchased goods. The GANESH model is written in GAMS (22.5.148) with an 

Excel 2003 interface. It includes 24 variables and 51 equations, (Appendix 6). 

 

4.2.2 Data from Madagascar 
 

Data were derived from yearly repeated survey of more than 1000 farms which 

received technical advice from the development agency Bas Rhone Languedoc 

(BRL). The survey revealed a great diversity of technical management of crops 

among the farmers (Domas et al., 2008).  

 

4.2.3. Scenarios explored 
 

4.2.3.1 Milk market 
 

We simulated two scenarios in terms of milk market. The first scenario 

corresponds to the actual situation in the Lake Alaotra region (Saint-André, 

2010): essentially only low potential dairy cows (Rana breed) are available, high 

milk price (1.2 kAr/l), low grass prices (0.1 kAr/kg DM), but limitation in terms of 

milk volume marketable per day due to a small market (we set to 20 l the 

maximum volume to be marketable per day for each farm). The second was a 

scenario close to the current situation in the Vakinankaratra region 300 km 

south from Lake Alaotra (Duba, 2011) which represents one of the most 

important regions for milk production in Madagascar. Thus the second scenario 
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was: availability of improved dairy cows breed (such as Norwegian Red), low 

milk prices (0.5 kAr/l), higher grass prices (0.2 kAr/kg DM), but no limitation in 

terms of the milk volume marketable per day. 

 

4.2.3.2 Three kinds of farms 
 

Based on previous studies (Penot et al., 2011a) we decided to simulate three 

kinds of typical farms which differ in land area in hillsides and irrigated paddy 

fields. These are important differentiating factors that are essential to farmers’ 

self-sufficiency in rice. The three kinds of simulated farms were: i) medium-

sized farm with hillsides dominating; ii) medium-sized farm with paddy fields 

dominating; iii) small-sized farm with hillsides (Tab. 4.2).  

The simulations with each farm type differed only in the number of cows raised 

(from 0 to 12), area of fields and % of soil cover (from 30 to 95%). All other 

parameters (e.g. number of zebu cattle, type of people, etc.) were the same for 

all farms and simulations. The cowherder’s salary was set to 200 kAr/year. A 

limitation in terms of maximum cassava marketable per year was set to 550 

kg/year to avoid   the model to choose preferentially this activity as the market is 

inelastic. 

 

Table 4.2: Number and total area of fields for each simulated farms types. 
  Irrigated 

paddy fields
Poor water 
control 

paddy fields

Alluvial soil Hillsides 

   Area 
(ha) 

No. 
of 
fields

Area 
(ha) 

No. 
of 
fields 

Area 
(ha) 

No. 
of 
fields

Area 
(ha) 

No. 
of 
fields 

Medium‐sized 
farm with 
hillsides  

0 0 1  10 0.5 8 2 10 

Medium‐sized 
farm with paddy 
fields 

1 10  1  10 0.5 8 1 10 

Small‐sized farm 
with hillsides  

0 0 1  10 0.5 8 1 10 
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4.3. Results  
 

4.3.1 Income 
 

The total net income optimized by the model did not vary very much in function 

of the soil cover constraints (Fig. 4.2) as differences were always less than 2 % 

between the 30 and the 95 % value for soil cover constraint. However, net 

income was strongly affected by the number of cows (from 0 to 12) and the milk 

market scenario (unlimited or limited milk volume marketable). Without dairy 

cows the total income for three years was around 1 500 kAr for the medium-

sized farm with hillsides fields, 3 800 kAr for the medium-sized farm with 

irrigated paddy fields. The optimization was infeasible for the small-sized farm 

with hillsides fields with no cows. In the scenario with a limited milk market this 

income can be multiplied by 5 to 16, depending on farm type. It ceased to 

increase from 8 cows due to limited milk sales (Fig. 4.2 b, d, f). With more cows 

the cost of purchased forage was barely compensated by animal product sales 

(milk, manure). By contrast in the open market scenario the net income 

increased systematically with number of cows as there was no limitation to the 

quantity of milk that can be sold (Fig.4.2 a, c, e). In our study the net income 

could be multiplied by 8 to 23 when 12 cows were owned. The relative 

contribution to net income changed with animal selling becoming more 

important compared to income from crops products. 

 
4.3.2 Selection of CA systems 
 

After an optimization on three years it is possible to see where the model chose 

to select CA systems in function of the different scenarios. In our study only 

conventional systems were possible for irrigated paddy fields. The model chose 

CA systems for the whole area of poor water control paddy fields and alluvial 

soils, because CA was more productive in terms of grain and biomass and more 

flexible in terms of the cropping calendar (Appendix 3). Only for hillsides did the 

proportion of CA selected by the model vary according to the different 
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parameters, such as the soil cover constraint (30 or 95 %) and the price of 

forage purchased from the market (Fig. 4.3). With 12 cows to feed and a forage 

market price of 0.15 kAr /kg, which is only 50 % more than the actual (2011) 

price in the Lake Alaotra region, it appears almost impossible to implement CA 

while maintaining more than 80 % of soil cover. Above a threshold forage price 

of 0.2 kAr/kg, it becomes cheaper to use biomass produced on the farm through 

CA than to purchase it from outside for all kinds of farm.  

 

4.3.3 Proportion of purchased and produced on-farm forage 
 

All three farms type were almost self sufficient in forage to feed up to 7 cows 

(Fig. 4.4) with only a limited necessity for purchased forage. In order to keep 

more cows the demand for purchased forage increased strongly as on-farm 

forage production cannot increase as it is limited by the land area available and 

the yield of the species used. In the limited market scenario with more than 7-8 

cows the extra milk and manure sold hardly compensated the extra expense of 

forage (fig 4.2 b, d, f). 
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Figure 4.2. Total income over three years for three kinds of farm for three years: 

a,b medium-sized with hillsides, c,d medium-sized with irrigated paddy fields 

and e,f small-sized with hillsides fields as a function of an increasing number of 

cows from 0 to 12; and two degrees of soil cover (30 and 95 %, black and white 

bars respectively). Two scenarios of milk market are explored: a,c,e open or 

b,d,f limited milk market. When no values are given the solution is not feasible 

in the optimization process. 



Chapter 4      

82 

 
Figure 4.3. Percentage of hillsides fields covered by CA cropping systems, the 

third year: a,b medium-sized with hillsides, c,d medium-sized with irrigated 

paddy fields and e,f small-sized with hillsides fields as a function of an 

increasing constraint for soil cover of CA fields (30 to 95 %); forage. Two 

scenarios of milk market are explored: a,c,e open or b,d,f limited milk market. 

Simulations are made for farms with 12 cows.   
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Figure 4.4. Forage origin, on farm produced or purchased from market for three 

years:  a,b medium-sized with hillsides, c,d medium-sized with irrigated paddy 

fields and e,f small-sized with hillsides fields as a function of an increasing 

number of cows from 0 to 12. Two scenarios of milk market are explored: a,c,e 

open or b,d,f limited milk market. Soil cover constraint for CA plot has been set 

to 95 %. When no values are given the solution is not feasible. 
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4.3.4. Proportion of forage production coming from CA on hillsides 
 

Fig. 4.5 shows the forage used by animals coming from hillsides. This forage is 

in addition to forage and crop residue coming from CA practiced on poor water 

control paddy fields and alluvial soil (data not show). The quantity of forage 

coming from hillsides varied among the three types of farm as the relative area 

of hillsides fields compare to other fields varies among these types of farm. The 

farm with more forage coming from the hillsides was the “medium-sized farm 

with hillsides” as such farms do not have paddy field to produce rice straw 

compared to the “medium-sized farm with irrigated paddy field” and more 

hillsides fields than for the type “small-sized farm with tanety”. For each 

scenario and farm type the threshold of 6-8 cows was observed to a 

significantly increase in biomass use as forage coming from the hillsides fields. 

Nevertheless the proportion of forage coming from CA was systematically 

smaller when the soil cover constraint was set to 95 % than when it was set to 

30 %. In fact the model chose less CA when the soil cover constraint is too high 

(i.e. keeping 95 % of soil cover) as this threshold reduced strongly the quantity 

of biomass usable as forage. Thus, the model chose conventional crop 

production activities as they allowed all of the biomass to be removed from the 

field. When looking at scenarios with a soil cover constraint of 30 % for 

implementing CA, for all three kinds of farms, and in both market scenarios, CA 

started to be implemented with more than six cows. But in more constraining 

situations, i.e. when forcing 95 % of soil cover to be kept on the CA plot the 

model also chose to introduce CA but it was almost impossible to maintain CA 

fields with the increasing demand on forage (Fig. 4.5  a, c, e). In contrast it was 

easier to use biomass from CA fields when the pressure was less (Fig. 4.5 b, d, 

f) due to the cheaper forage available on the market. 
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Figure 4.5: Quantity of forage produced on-farm on hillsides coming from 

conventional fields (blacks bars) or CA fields (white bars) for three years: a,b 

medium-sized with hillsides, c,d medium-sized with irrigated paddy fields and e,f 

small-sized with hillsides fields as a function of an increasing number of cows 

from 0 to 12; and two degrees of soil cover (30 and 95 %).Two scenarios of milk 

market are explored: a,c,e open or b,d,f limited milk market. When no values 

are given the solution is not feasible.  
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4.4. Discussion  
 
When simulating two situations of milk market on three kind of farm we 

observed that changing the soil cover constraint had little impact on farm 

income, but influenced the proportion of CA fields on hillsides and the source of 

forage for cows. 

 

4.4.1 Impacts of mulching or cattle feeding on farmers’ income 
 

Net income was strongly influenced by the characteristics of the milk market 

(Fig.4.2). In the case of a limited milk market, with high milk prices, it was more 

profitable to maintain the herd between one to six cows, even with less 

productive cows (local breed). On the contrary in an open milk market scenario 

with lower prices farm income is directly linked with the amount of milk and 

manure produced. It was not profitable to have more than seven cows when the 

milk market was limited. This situation illustrates well that when the market is 

well structured with the active presence of industrials and/or collectors, milk 

production is an efficient way to improve and stabilize the income of tropical 

small scale farmers (Bernard et al., 2010). 

 

4.4.2 Soil cover and forage production  
 

Fig. 4.3 suggests that it is impossible to maintain sufficient soil cover when the 

biomass is a scarce resource, i.e. when the forage prices are high. But it is still 

possible to keep at least 50 % of soil cover on 80 % of the hillsides fields in all 

entire situation we have simulated, even with 12 cows. This can have 

implications for a dissemination strategy. If the technical message spread is to 

keep soil entirely covered without allowing exporting part of the biomass from 

the field, especially in biomass scarcity situations, then farmers will probably 

choose not to use CA, not even in part of their hillsides lands. In fact, they will 

prefer not to retain even part of the biomass produced when there is an option 

of economic benefit from selling it. This situation is common in the 
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Vakinankaratra region of Madagascar (Kasprzyk, 2008) where milk is easily 

sold, forage is scarce and proportion of CA in famers fields close to zero. The 

proportion of forage purchased versus produced on farm changes with the 

growing demand of forage. In general the farm is able to produce all the forage 

to feed up to six/seven cows. This is true even if there is still a need for 

purchased forage to fill a gap during the dry season as there is no hay or other 

form of storage. In the case of a limited milk market the expense of feeding 

more than six/seven cows is not compensated by the milk and manure sales 

and the net income will reach a ceiling (Fig. 4.2 b, d, f). Thus, in case of a 

limited milk market, it is not economically interesting to own more than six cows. 

But twice as many cows also require twice as much capital and give twice as 

much manure production. With more than seven/nine cows, more forage is 

purchased from outside the farm, and the net nutrient balance of the farm 

improves due to the additional biomass import. Furthermore this fertility transfer 

can be seen as having ecological benefits at a broader farming system level as 

most of the forage is bought during the dry season and comes from the wet 

lowland area where there is still biomass production (Douhard, 2010). These 

areas, mainly around the Alaotra river and swamp, are areas where sediments 

are deposit from the erosion of the surrounding hills (Ferry et al., 2009). Thus 

organic manure produced by cows fed with this kind of forage and applied on 

fields, among them hillsides, is a means of recycling of nutrients at the 

watershed level. The question is whether it is more interesting for the farmers, 

both economically and environmentally, to increase their herd above six cows 

with other dairy cows or to switch to increase the number of Zebu. When trying 

to produce more forage – having above six/seven cows – the model chose to 

introduce CA cropping systems producing forage on the hillsides (Fig. 4.5). 

Thus in this case CA is compatible with cattle raising as a potential way to 

increase biomass/forage production. But in a more constraining situation (i.e. 

open milk market, with a strong demand on forage and pressure on biomass) it 

is almost impossible to implement CA on hillsides while keeping 95 % of soil 

cover. The simulations also showed that it is impossible to implement CA 

without using part of the biomass to feed cattle in a context of a growing market 
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for milk. In that case all of the agroecological functions of mulch cannot be 

fulfilled. Regarding physical effects such as erosion control or water balance 

improvement, partial cover can be sufficient under tropical climate conditions 

(Findeling et al., 2003; Mulumba and Lal, 2008). But partial biomass export to 

feed cattle is incompatible with weed control or restoration of soil functions 

under CA. Therefore, the allocation of biomass to soil covering or cattle 

depends on the farmer’s objectives, constraints and priorities (Erenstein, 2011; 

Valbuena et al., 2012). 

 
4.4.3 The GANESH modelling approach 
 

The GANESH model was created using the available knowledge on cropping 

systems performance in farmers’ conditions, farm and cattle characteristics in 

the Lake Alaotra region. In the future GANESH model could be used to test 

scenarios based on new hypothesis. Some aspects can be improved at four 

levels: the cropping system, animal production, farmer behavior and regional 

level. First, at cropping system level, the model does not take into account mid-

term effects of CA on soil fertility and weeds pressure and their consequences 

for crop productivity. To analyze longer rotation periods then a means of 

incorporating the impacts on crop yields with years of practicing CA is needed. 

But, to date, the long term bio-physical effects of CA have not been clearly 

characterized in the Alaotra situation (Penot et al., 2011). Regarding weeds, we 

only take into account a quantity of labor for weeding that increases linearly with 

the decreasing rate of soil cover, although in practice the relationship is more 

complex as weed pressure does not vary linearly with soil cover (Teasdale and 

Mohler, 2000) and the labor needs are perhaps also not linearly related to weed 

pressure. In addition in GANESH, weeds are constrained to be completely 

controlled by farmers using a certain amount of labor to do so. If insufficient 

labor is available in a farm then the model will search for other crop production 

activities more compatible with farm constraints. The model can be improved by 

introducing the possibility to have only a partial, or a late, control of weeds 

having consequences on crop production (Jourdain et al., 2001) which could be 
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more realistic. Further, neither the link between nutrient exports from field 

through biomass, nor the soil erosion impact on future crop yields are included 

in the model. Introducing these relationships could push the model outcomes to 

keep more biomass on field and then purchase more forage. Secondly, 

GANESH does not alter animal production as a function of the feeding regime. 

Milk production of cows is calculated according to their genetic potential (local 

and improved dairy cow breeds) and the month of lactation (following the 

theoretical optimal milking curve). The milk production level remains constant 

throughout the whole simulation period because we assume that the energy 

supplied by the feed always cover all of the cows ‘requirements for milk 

production. To improve the model accuracy, a mathematical function could be 

designed to allow dynamic changes in milk production, according to forage 

availability and quality (León-Velarde, 1991; León-Velarde et al., 2003). The 

impacts on model outputs of introduction of such changes are difficult to 

anticipate as GANESH will optimize the crops choices, the level of animal 

feeding and the milk production. However, introducing such improvements will 

be important in order to design a functional decision support system to advice 

farmers. Thirdly, GANESH gives the optimum economical and technical 

solution. When the optimum solution includes CA, the model can suggest a 

complete shift from conventional to CA or inversely from one year to another. In 

practice, farmers usually cannot shift between such different systems such 

rapidly. Farmers’ aversion to risk makes them more cautious with new 

technology adoption (Barbier, 1998; Pannell et al., 2000). A way to take into 

account for this aspect in the model could be to constrain the proportion of new 

area in CA from one year to another. Fourthly, GANESH models individual 

farms. To simulate adoption of CA at regional level then the competition 

between farms to biomass access should be taken into account. Up to now 

such competition is accounted for only through the price of forage. 

Implementing such a change may cause the model to favor on-farm biomass 

production by choosing more CA systems which produce more biomass than 

conventional ones. 
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4.4.4 Similar studies 

 
We have seen that CA and milk production can be compatible and in some 
cases mutually profitable. Few other studies deal with the relationship between 
CA and cattle raising and in general they are driven by the local context of CA 
and cattle production. In Brazil more papers focus on technical issues. Landers 
(2007) presents examples of how to establish forage associated with a crop or 
how to establish crops in pastures. In Africa, most of the references stress the a 
priori difficulty to do CA, mainly because of a competition for biomass 
(Erenstein, 2003; Giller et al., 2009); or propose “CA” systems which do not fit 
totally with accepted (FAO) definition of CA (Lahmar et al., 2011; FAO, 2012a). 
In Southeast Asia many studies have investigated the rice-wheat systems in the 
Indo-Gangetic Plains (Erenstein et al., 2008, 2009; Erenstein, 2010). Erenstein 
et al (2009) confirm that it is possible, and necessary, to use part of crop 
residues to feed cattle in these systems. In Mexico (Limon-Ortega et al., 2006) 
showed a soil characteristics improvement positively linked with the quantity of 
residue retained. But the difference in term of cereal grain yield appeared only 
when comparing with or with mulch but not when comparing different level of 
residue retention, same results were reported by Govaerts et al. (2005). Fisher 
and Tozer (2012) provided a comprehensive overview of mixed farming 
systems including sheep and CA in Australia. In the end the relative importance 
of livestock or cropping system depends on the farmer’s preference, land 
capability and of course the economic benefits accrued. Lilley and Moore (2009) 
compared various residues management and grazing methods on soil cover, 
animal productivity and farm income in Australia. They conclude that 
“Maintaining a constant stocking rate […] using a cover threshold of 70%, […] 
caused minimal reduction in gross margin. Stubble retention resulted in a win-
win at most sites, with 4–8% increase in the proportion of time when cover was 
above 70% and generally a small increase in crop yield or gross margin”. To our 
knowledge, theirs is the only study that examines the balance between soil 
cover in direct seeded systems, with animal production and farm income. 
Despite the very different environment, their value of 70 % is close to the value 
of 50 % of soil cover kept on hillsides even with 12 cows we found in 
Madagascar.   
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4.5. Conclusion 
 

By using data from fields’ surveys in a farm model we could explore some 

facets of integration of CA at farm level on small farms in the Alaotra lake in 

Madagascar. Setting a more or less strong constraint on the degree of soil 

cover to be retained on CA plots did not significantly modify the total farm net 

income. It was possible to maintain > 50 % of cover on hillsides for CA fields 

even on a farm with twelve cows. By contrast, it was impossible to keep 95 % of 

soil cover on these fields due to the great demand for biomass and the high 

price of forage. If there is less demand for crop residues, CA is a technically and 

economically interesting solution to increase biomass production. In conclusion, 

we find that CA and livestock can be compatible and even mutually beneficial. 

Even when there is a strong biomass demand for fodder it could be more 

profitable to practice CA on some fields and to purchase forage to compensate 

the biomass retention in the field. CA and livestock are mutually beneficial when 

the pressure on biomass is less intense. In this case, CA can be an efficient 

way to increase forage production at farm level while maintaining the major 

agroecological functions of mulch. Our study is the first, to our knowledge, that 

models the impact of practicing CA, with various degrees of biomass export, on 

integration with livestock and farm income for smallholders. Optimization was a 

useful method as it allows exploration among millions of combination of 

potential production systems that represent the numerous constraints and goals 

of the farm. It further allowed an objective comparison of the production 

activities, based on quantitative data and taking into account the complexity of 

the interactions between theses production activities at farm level. This kind of 

ex ante study can be useful for guiding a CA design approach to explore 

impacts of a possible change in the context (inputs, forage, workforce, crop 

animal products prices); to understand which changes and trade-offs are 

associated with CA systems at farm level and which types of CA systems are 

more suitable for different types of farm. 
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Abstract 
 

Moving from conventional to CA implies deep changes in the organization of 

cropping systems. We propose a method for formalizing the process of CA 

cropping system design using a tool called PRACT (Prototyping Rotation and 

Association with Cover crop and no Till) applied to a Malagasy case study. The 

input information for PRACT concerns: i) crop adaptation to biophysical 

conditions, ii) cover crop adaptation to biophysical conditions, iii) agroecological 

functions of cover crop, iv) crop production, v) association possibilities between 

crop and cover crop, and vi) agroecological functions of the cropping system. All 

the information was derived from expert knowledge developed over more than 

12 years of agronomic experiments in Madagascar. The output from PRACT is 

a list of cropping systems, i.e. crop and cover crop associations and their 

sequences over three years. These cropping systems are characterized by their 

potential agroecological functions and crop production. The PRACT model 

selects a list of cropping systems taking into account the above information by 

using elaborate rules governing the intercropping and sequences between 

crops and cover crops. Examples of the outcomes of model simulations are 

provided for four different kinds of field. Taking into account the range of 

potential crops and cover crops, the number of cropping systems that was 

theoretically possible for the different field types ranged from 19,683 to 2.98 × 

1013. PRACT reduced this number by a factor of up to 28 times to propose 

possible cropping systems. Cropping systems are first selected in terms of the 

biophysical requirements of plants, plant compatibility and agronomic rules. But 

they are not all suitable for every kind of farmer. Thus by using PRACT output, 

a second cropping system selection step can be taken based on these cropping 

system characteristics, i.e. crop production and agroecological functions. By 

doing so the number of cropping systems selected can reach a reasonable 

value that can be handled by technicians and farmers. Lastly, possible uses and 

further development of the tool are discussed.   
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5.1. Introduction 
 

Crop sequences and/or intercrops are one of the three central pillars of 

Conservation Agriculture (CA) (FAO, 2012a; Sayre and Govaerts, 2012). 

Moving from conventional to CA implies deep changes in the organization of 

cropping systems, yet the agronomic and technical rules to support such 

changes have rarely been formalized. Manuals have been developed that 

present CA technical management and the underlying rationale in terms of crop 

and soil functioning (ACT, 2005; Husson et al., 2009; Seguy et al., 2012). But 

no tools are available to support the design of appropriate rotations for CA 

systems involving cover crops, such as have been developed for conventional 

crop rotations, e.g. ROTAT (Dogliotti et al., 2003) and ROTOR (Bachinger and 

Zander, 2007). These tools combine several crops to generate rotations. Filters 

limit the full factorial number of possible crop rotations. These filters are based on 

expert knowledge and enable the exclusion of crop successions that are not 

feasible or not advisable. 

In this paper, we propose a way of formalizing the process of CA cropping system 

design. To that end, we formalized the underlying hypothesis behind the design, 

based on field characterization, crops and cover crop adaptation to different field 

types, crop and cover crop agroecological functions, the possible intercrop 

combinations and sequences of crops and cover crops. We illustrate this 

reasoning through the design and use of a tool called PRACT (Prototyping 

Rotation and Association with Cover crop and no Till) applied to a Malagasy 

case study. This approach can be used to propose a list of possible cropping 

systems for testing in the field or in silico at both field and farm level. 

 

5.2. The PRACT tool (Prototyping Rotation and Association with Cover 
crop and no Till) 
 
 We identified six different kinds of information that can support the design of 

new CA cropping systems: i) crop adaptation to biophysical conditions, ii) cover 

crop adaptation to biophysical conditions, iii) agroecological functions of cover 
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crops, iv) crop production, v) compatibility for intercropping of crops and cover 

crops, and vi) agroecological functions of the overall cropping system. In 

PRACT this information is organized in a knowledge database including data on 

crops, cover crops, agronomic units, and the relationships between these three 

components (Fig. 5.1). The underlying expert knowledge had been developed 

since the 1990s in Madagascar and other tropical countries by a team of CIRAD 

agronomists and their local colleagues (Seguy et al., 2012) The expert 

knowledge was already formalized in technical manuals (Husson et al., 2009, 

2012). PRACT allows the user to generate crop rotations based on CA 

principles for a defined agro-climatic context that are best adapted to cope with 

local constraints. It has been developed with the database management system 

Microsoft Access 2007® to make it accessible for potential users in developing 

countries. 

 
Figure 5.2. Simplified plan of information processing in PRACT, interactions 

with the user and output.  
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5.2.1 Tool development 
 
PRACT is organized (Fig. 5.1) around a database with 28 plants which are 

crops, cover crops, or both, suited to the Lake Alaotra region of Madagascar: 

Arachis hypogaea, Arachis pintoï, Arachis repens, Avena sativa, Brachiaria 

brizantha, Brachiaria ruziziensis, Cajanus cajan, Crotalaria grahamiana, 

Crotalaria juncea, Crotalaria spectabilis, Dolichos lablab, Eleusine coracana, 

Glycine max, Ipomoea batatas, Lolium multiflorum, Manihot esculenta, Mucuna 

pruriens, Oryza sativa, Pennisetum clandestinum, Phaseolus vulgaris, Solanum 

tuberosum, Sorghum bicolor, Stylosanthes guianensis, Vicia villosa, Vigna 

subterranea, Vigna umbellata, Vigna unguiculata, Zea mays. The plants are 

characterized according to their ability to be grown in different environments, 

here defined as agronomic units, a corpus of “rules” that specify the place each 

plant can have in intercrop associations or crop sequences, and their potential 

efficiency in fulfilling agroecological functions and characteristics such as 

“simplicity of management” or “ability to produce during marginal periods” (Tab. 

5.1).  
The final output of PRACT is a list of cropping systems, i.e. crop and cover crop 

intercropping in the cropping season and in the off-season over a three year 

period. Each of the cropping systems is characterized by the same factors as 

the plants (Tab. 5.1). The characterization of cropping systems is calculated by 

summing up the characteristics value of each plant in the cropping system. 

Even after applying filters, the number of possible cropping systems can be too 

large to be handled by technicians or farmers. Thus, a further step is to select 

from among these cropping systems those that fit in with farmers’ particular 

goals and constraints. Selection can be based on characterization of the 

agroecological function, or ease of implementation, or the species of crop and 

cover crop chosen by the farmer. The number of cropping systems can also be 

reduced beforehand, during the PRACT cropping system generation process, 

by selecting only some of the crops and cover crops based on farmers’ 

preferences. But reducing a priori the number of crops and cover crops will 

reduce the chances of identifying an innovative cropping system. We thus 
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propose that PRACT should be used in two steps: first obtain a list of possible 

cropping systems based on the local conditions and general agronomic rules; 

and secondly choose from these systems those which fit in with farmers’ main 

goals and constraints for both crop and animal production. 

 

5.2.2 Plant characteristics 
 

Plants (crop and cover crop species) are characterized by their outputs (grain 

production, tuber/root production, and biomass/forage production) and 

qualitative impacts on agroecological functions. Both are translated into semi-

quantitative indicators (Tab. 5.1). All these indicators are based on expert 

knowledge (Husson et al., 2009).  

 

Table 5.1. Characteristics and agroecological functions of crops and cover 

crops in the PRACT database. 

 

SOM 
increase and 
soil 
decompaction

Erosion 
control

N 
fixation

Nutrient 
recycling

Biomass 
production

Ability to 
produce during 
marginal periods

Weed 
control

Pest 
control

Ease  
of use

Crops
Oryza sativa -1 -1 -1 0 1 -1 -1 -1 0
Zea mays 1 0 -1 1 2 -1 0 -1 1
Sorghum bicolor 2 0 -1 2 2 -1 0 -1 1
Glycine max -1 0 1 0 0 -1 -1 0 0
Arachis hypogaea -1 0 1 0 0 0 -1 0 0
Phaseolus vulgaris -1 0 1 0 0 1 0 0 0
Vigna subterranean 0 0 1 0 0 0 0 0 0
Vigna unguiculata 1 1 1 0 1 1 1 0 2
Vigna umbellata 1 1 1 0 1 1 1 0 1
Dolichos lablab 1 1 1 1 1 2 1 0 1
Vegetable -1 0 0 0 0 1 -1 -1 0
Solanum tuberosum 0 0 -1 0 0 1 -1 -1 0
Mahinot esculenta 0 -1 -1 0 0 1 -1 0 1
Ipomoea batatas 0 1 -1 0 0 1 0 0 1

Cover crops
Arachis pintoï 2 2 2 1 1 1 2 0 -1
Arachis repens 2 2 2 1 1 1 2 0 -1
Avena sativa 1 1 0 2 1 2 2 0 2
Brachiaria brizantha 2 2 0 2 2 1 0 0 0
Brachiaria ruziziensis 2 2 0 2 2 1 0 0 0
Cajanus cajan 1 0 2 1 1 1 1 0 0
Crotalaria juncea 1 0 2 1 1 1 1 0 1
Crotalaria grahamiana 1 0 2 1 1 1 1 0 1
Crotalaria spectabilis 1 0 2 1 1 1 1 0 1
Eleusine coracana 2 2 1 1 2 0 1 0 1
Lolium multiflorum 1 2 -1 1 2 1 1 0 0
Mucuna pruriens 0 1 1 1 1 0 1 0 0
Pennisetum clandestinum 2 2 0 2 2 1 0 0 0
Stylosanthes guianensis 2 2 2 2 2 1 2 0 2
Vicia villosa 1 2 2 2 1 2 2 2 1
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5.2.3 Agronomic units 
 

Agronomic units are defined as areas which provide uniform biophysical 

conditions that impact plants and cropping systems. Therefore a different set of 

cropping systems can be selected for each agronomic unit. For Lake Alaotra in 

Madagascar each of the 17 agronomic units is discriminated by: i) the position 

in the toposequence, ii) soil fertility and compaction, iii) the drainage or water 

logging status, iv) potential for irrigation management, v) the possibility or not of 

supporting the growth of an off-season cover crop (Fig 5.2, Fig. 5.3, Husson et 

al. 2012). 

 

Figure 5.2. Locations of the main agronomic units along the toposequence in 

the Lake Alaotra region, adapted from Husson et al. (2012). 
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Figure 5.3. Decision tree to select the type of agronomic units in the lake 

Alaotra region as a function of the position in the toposequence, risk of flooding, 

soil compaction and possible off-season cropping due to the presence of a 

ground water table, adapted from Husson et al. (2012). 
 

5.2.4 Agronomic rules 
 

Plant species are also characterized by three kinds of constraints: i) whether or 

not plants can be grown on the different agronomic units, ii) whether or not the 

plants can be intercropped or grown in sequence, iii) more elaborate rules 

regarding plant associations and successions. The constraints are applied in 

three sequential steps in the cropping design process. The first step is the 

compatibility of plants and the agronomic units. It is determined with regard to 

each plant’s requirements in terms of soil and the water regime. Soil is 

considered in terms of compaction and fertility. The water regime during the 

rainy season is driven by drainage and irrigation. Drainage is mainly determined 
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by the position in the toposequence. Three types of water supply were 

identified: strictly rainfed fields, fields irrigated from channels only in the event of 

sufficient rainfall, or fields irrigated from channels with a secure access to water 

throughout the cycle (coming from a dam or a permanent source). During the 

dry off-season no fields can be irrigated and the only water source for crops and 

cover crops is capillary rise. The second constraint applied is to determine 

compatibility between crops and cover crops for intercropping. The possibility of 

associating plants results mainly from potential competition for light, water 

and/or nutrients. Table 5.2 lists crops and cover crops which can or cannot be 

intercropped together.  

 

Table 5.2. Possibilities for intercropping (Y) or not (N) between crops and cover 

crops as given in the PRACT database.  

 

 

The third step uses more elaborate rules about the crop sequences which are 

defined for each agronomic unit in PRACT. Below we describe how six groups 

A
ra

ch
is

 p
in

to
ï

A
ra

ch
is

 re
pe

ns

A
ve

na
 s

at
iv

a

B
ra

ch
ia

ria
 b

riz
an

th
a

B
ra

ch
ia

ria
 ru

zi
zi

en
si

s

C
aj

an
us

 c
aj

an

C
ro

ta
la

ria
 g

ra
ha

m
ia

na

C
ro

ta
la

ria
 ju

nc
ea

C
ro

ta
la

ria
 s

pe
ct

ab
ilis

C
yn

od
on

 d
ac

ty
lo

n

D
ol

ic
ho

s 
la

bl
ab

E
le

us
in

e 
co

ra
ca

na

Lo
liu

m
 m

ul
tif

lo
ru

m

M
uc

un
a 

pr
ur

ie
ns

P
en

ni
se

tu
m

 c
la

nd
es

tin
um

S
ty

lo
sa

nt
he

s 
gu

ia
ne

ns
is

V
ic

ia
 v

illo
sa

V
ig

na
 u

ng
ui

cu
la

ta

Arachis hypogaea N N Y Y Y Y Y Y Y Y N Y Y N Y Y Y N
Vegetable N N Y N N Y Y Y Y N N Y N N N Y Y N
Glycine max N N Y Y Y N N N N Y N Y Y N Y Y Y N
Manihot esculenta N N Y Y Y Y Y Y Y Y N Y Y N Y Y Y Y
Ipomoea batatas N N Y N N N N N N N N N N N N Y Y N
Oryza sativa Y Y N N N N N N N N N N N N N Y Y N
Phaseolus vulgaris N N Y Y Y N N N N Y N Y Y N N Y Y N
Solanum tuberosum N N Y N N N N N N N N Y Y N Y Y Y N
Sorghum bicolor Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Vigna subterranea N N Y N N Y Y Y Y N N Y N N N Y Y N
Vigna umbellata N N Y N N N N N N N N Y N N N Y Y N
Vigna unguiculata N N Y N N N N N N N N Y N N N Y Y N
Zea Mays Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
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of rules are defined for specific agronomic units of the Alaotra Region, but these 

are generic rules which can be applied to similar locations elsewhere.  

Rule 1: if a cover crop is grown in the rainy season in Year n then the same 

cover crop should continue to be grown in the off-season of the same Year n. 

This rule applies for all perennial cover crops for all agronomics units. It also 

applies for annual cover crops except on agronomic units where off-season 

cultivation is possible, i.e.: “irrigated paddy field terrace with off-season, poor 

water control paddy field with off-season, unflooded paddy field with off-season, 

upland soil in plain, river bank, alluvial soil with off-season, non-irrigated 

‘pseudo’ paddy field, terrace with off-season, poor water control flooded paddy 

field with off-season, irrigated flooded paddy field with off-season”. Perennial 

cover crops need to be grown for more than one season to produce a sufficient 

amount of biomass to justify their planting. When no off-season crop is possible 

the cover crop grown in the rainy season usually continues to grow for some 

weeks at the beginning of the dry season (e.g., Crotalaria sp., C. Cajan or D. 

lablab on upland soil in plains, river banks, alluvial soil with off-season crops 

and cover crops).  

Rule 2: if cover crop X is grown in the rainy season of year n then the cover 

crop will also be X in the off-season of Year n, the rainy season of Year n+1 and 

the off-season of Year n+1. This rule applies for the following perennial cover 

crops that all take a long time to become established and produce sufficient 

biomass: A. pintoï, A. repens, B. brizantha, B. ruziziensis, P. clandestinum, and 

S. guianensis. This rule also applies for all agronomic units where these plants 

can be grown. A. pintoï or A. repens can be used as “living mulch” and are 

difficult to kill completely. For these reasons it makes no sense to kill them one 

or two years after installation. In general B. brizantha, B. ruziziensis and P. 

clandestinum are used as forage by farmers who do not return the fields rapidly 

to annual crops (Andriarimalala et al., 2012) . In general, on hillsides, S. 

guianensis does not produce sufficient biomass to be killed and used as dead 

mulch until at least three years after sowing (Chapter 3, Naudin et al., 2011). 

Rule 3: if the cover crop in the off-season of Year n is A. pintoï, A. repens, or S. 

guianensis, then the crop in Year n+1 should not be a legume such as A. 
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hypogaea, G. max, P. vulgaris, V. subterranea or V. unguiculata. This rule 

concerns only perennial cover crops. This rule applies for all agronomic units 

where these cover crops can be cultivated. A. pintoï and A. repens are difficult 

to install so it is more logical to grow a cereal in succession to make full use of 

the N input from the cover crop. There is also more risk of soil borne pathogens 

if legumes are intercropped or introduced in the crop sequence.  

Rule 4: if the cover crop in the off-season of Year n is A. pintoï, A. repens, or S. 

guianensis then the crop in Year n+1 should not be I. batatas or S. tuberosum. 
This rule concerns only perennial cover crops. This rule applies for all 

agronomic units where these cover crops can be cultivated. The justification is 

possible above- or below-ground competition between the crops and cover 

crops.  

Rule 5. if the cover crop in the off-season of Year n is B. brizantha, B. 

ruziziensis, P. clandestinum, then the crop in Year n+1 can only be M. 

esculenta and no crop can be grown in Year n+2. This rule concerns only 

perennial cover crops. Cassava can be intercropped with Brachiaria spp. 

without loss of yield (Charpentier et al., 2005). 

Rule 6: sufficient biomass should be produced in Year n, or in the off-season of 

Year n to be able to grow using CA in Year n+1, e.g. plants that produce 

enough biomass are species such as A. pintoï, A. repens, A. sativa, B. 

brizantha, B. ruziziensis, C. cajan, C. grahamiana, C. juncea, C. spectabilis, D. 

lablab, E. coracana, L. multiflorum, M. pruriens, P. clandestinum, S. bicolor S. 

guianensis, V. umbellata, V. unguiculata, V. villosa, or Z. mays. This rule 

concerns both annual and perennial cover crops. 

 

5.3. Application of the PRACT tool 
 

We illustrate here the output of PRACT for four contrasting situations in the 

Alaotra region (Fig. 5.4):  

• Hillsides with low fertility compacted soils 

• Hillsides with medium fertility non-compacted soils 

• Unflooded paddy field with off-season crops and cover crops 
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• Upland soil in a plain, river banks, or alluvial soil with off-season crops 

and cover crops 

The crops and cover crops taken into consideration in these simulations are 

listed in Table 5.3. 

For each of the simulations we followed two steps. Firstly we calculated the 

number of possible cropping systems taking into account biophysical 

constraints and agronomic rules. Secondly we presented  a sample selection of 

a subset based on the supposed average farmer preferences in the Alaotra 

region. This last step was closely linked with the type of farmer,  i.e. for the 

same type of field, farmers may not perceive biophysical constraints in the 

same way and will not give the same priority to the various agroecological 

functions.    

 

5.3.1 Hillsides with low fertility compacted soils 
 
As three crops and nine cover crops can be grown on this soil (Tab. 5.3), the 

factorial combination gave 19,683 possible combinations without taking into 

account plant species incompatibility and agronomic rules. After applying the 

rules, the number of cropping systems could be reduced to 5,501. Among them 

several combinations were similar, for example Brachiaria spp. and P. 

clandestinum are subject to the same kind of rules and have the same impact 

on the crops (Table 5.1). The same applies for C. grahamiana, C. spectabilis 

and C. juncea, except for differences between them in palatability for cattle 

(Husson et al., 2009). Thus, if we aggregated together similar plants, the total 

number of cropping systems was reduced to 1,031. These were the possible 

cropping systems, but we could select a subset from them taking into account 

farmer preferences or in situ constraints, see below.   

In fact, the main justification for CA on these types of soil is to improve soil 

quality and thus to open up new possibilities in terms of cropping. Thus, when 

sorting according to the capacity to increase SOM and improve soil structure 

and limit erosion, the systems selected were those with sorghum associated 

with legume cover crops. The best cropping systems had sorghum associated 
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with S. guianensis in the first two years and S. guianensis alone for the last 

year. But sorghum is not consumed in this area. Thus, to select a system 

producing food, only those with cassava could be selected. The best cropping 

systems that combined cassava production, SOM improvement and erosion 

control were: M. esculenta + S. guianensis in year 1 and 2, and S. guianensis 

alone in year 3, or M. esculenta + Brachiaria sp. in year 1 and 2 and Brachiaria 

sp. alone in year 3. 

 

Figure 5.4. Representation of the reduction in the number of cropping systems 

(crop intercrops and successions over 3 years) from all the possible 

combinations to fewer cropping systems that address specific goals. 
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Table 5.3: List of plants which can be grown for the four simulated agronomic 

units. 

 
 

5.3.2 Hillsides with medium fertility, non-compacted soils 
 

As 11 crops and 18 cover crops can be grown (Tab. 5.3), the factorial 

combination gave 7,762,392 possible combinations without taking into account 

plant incompatibility and agronomic rules. After applying the rules, the number 

of cropping systems could be reduced to 276,464. These were the possible 

cropping systems, but we could select a subset from among them taking into 

account farmer preferences.  

For example, when searching for systems with the maximum number of rice 

crops, i.e. in years 1, 2 and 3, only 2 cropping systems were possible: rice with 

A. pintoï and A. repens living cover. Other cover crops were too competitive 

because of their rooting systems (grasses) or above-ground biomass production 

(other legumes) to be associated with rice. But these two cropping systems 

Season Season Season Off-season Season Off-season
Arachis pintoï X X X
Arachis repens X X X
Avena sativa X X X X
Brachiaria brizantha X X X X
Brachiaria humidicola X X X X
Brachiaria ruziziensis X X X X
Cajanus cajan X X X
Crotalaria grahamiana X X X X
Crotalaria juncea X X X X
Crotalaria spectabilis X X X X
Dolichos lablab X X X X X
Eleusine coracana X X
Lolium multiflorum X X X X
Mucuna pruriens X X X
Pennisetum clandestinum X X X X
Stylosanthes guianensis X X X X
Vicia villosa X X
Vigna umbellata X X
Vigna unguiculata X X
No cover crop X X X X X X
Total number 9 18 2 6 19 17
Arachis hypogaea X X
Glycine max X
Ipomoea batatas X X X
Manihot esculenta X X X X
Oryza sativa X X X
Phaseolus vulgaris X X X X
Solanum tuberosum X
Sorghum bicolor X X X X X
Vegetable X X
Vigna subterranea X X
Vigna umbellata X X
Vigna unguiculata X X X
Zea Mays X X
No crop X X X X X X
Total number 3 11 2 4 12 8

Unflooded paddy field  with off-
season crops and cover crops

Upland soil in plain, river bank, 
or alluvial soil with off-season 
crops and cover crops

Hillsides with low fertility 
compacted soils

Hillsides with medium fertility 
non compacted soils
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were among the eight worst in terms of ease of cropping system 

implementation. When searching for cropping systems with the maximum 

quantity of forage produced, i.e. either, A. sativa, B. brizantha, B. ruziziensis, L. 

multiflorum, P. clandestinum, or S. guianensis in years 1, 2 or 3, 132,301 

cropping systems were possible. With the same plants used each year, 7,866 

cropping systems were possible. The best systems in terms of erosion control 

and SOM improvement numbered 76. They included A. pintoï, B. brizantha, B. 

ruziziensis, E. coracana, V. umbellata, V. unguiculata, V. subterranea, S. bicolor 

or S. guianensis. Further selection should be made according to farmer 

preferences and complementarity with other fields on the farm. 

 

5.3.3 Unflooded paddy field with off-season 
 

One crop (O. sativa) and one cover crop (B. humidicola) can be grown in 

season and five crops, or three cover crops can be grown during the off-season 

(Tab. 5.3). The factorial calculation gave 2×2×5×4 = 512,000 possible 

combinations taking into account that only four cover crops in the off-season 

were considered, as B. humidicola can only be grown in the off-season when it 

is grown in the rainy season, and that it is also possible to have no crop or no 

cover crop in the cropping season and the off season. After applying the rules, 

the number of cropping systems could be reduced to 33,825 combinations. 

Within this list we could select a subset of cropping systems considering that 

farmers want to produce rice each year in this kind of field. Then the number of 

possible cropping systems was further reduced to 4,096. Furthermore, if we 

considered that because these soils are fertile, with water available, and 

represent only a small area, farmers want to produce cash crops during the off-

season (i.e. vegetables and P. vulgaris), then the number of possible cropping 

systems became 64. These systems are based on sequences between rice and 

vegetables or P. vulgaris. Vegetables and P. vulgaris can be associated with A. 

sativa or V. villosa. If the famer wants to produce rice every year and produce 

as much forage as possible in the off-season then he/she will associate off-

season crops with forage cover crops. Then 27 cropping systems are possible 
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based on a succession between rice and A. sativa, V. villosa or L. multiflorum. 

Those with V. villosa each year may increase soil N content even when all the 

above-ground biomass is removed (Rochester and Peoples, 2005; Anugroho et 

al., 2009). 
 
5.3.4 Upland soil in a plain, river banks with alluvial soil and off-season 
cover crops 
 
As 19 crops and 12 cover crops can be grown in the cropping season and 17 

crops and 8 cover crops in the off-season (Tab. 5.3), there were 2.98141 × 1013 

possible combinations. With this huge number of combinations, it was 

impossible to run PRACT with all the plants to find the number of possible 

cropping systems. For non-compacted hillside soils, the number of cropping 

systems was reduced to 6.6% of the original number after applying the rules. If 

we used this same coefficient, the number of cropping systems remaining was 

still 1.06 × 1012. But we were able to further reduce the choice by taking into 

account that these types of fields are rare and the area per farm small so that 

farmers wish to produce as many crops as possible. Farmers will grow a cereal 

crop each rainy season and a cash crop each off-season. Also they will not 

choose any cover crops which cannot be associated with a crop and will choose 

plants which can produce edible products. Therefore, this limits the choice to O. 

sativa, Z. mays + A. pintoï, D. lablab, or no cover crop in the rainy season and 

P. vulgaris, S. tuberosum, I. batatas, vegetable or no crops + A. pintoï, A. 

sativa, D. lablab, L. multiflorum or V. villosa in the off-season. The total number 

of possible cropping systems then became 10,235. There were 1,111 systems 

with rice every year in total. One of the major problems on this kind of soil is the 

abundance of weeds due to soil fertility and water availability. The best systems 

in terms of weed control were systems with A. pintoï, but they were also the 

worst in terms of ease of management. The easiest systems to manage were 

those with D. lablab as a cover crop in the off-season. On these kinds of fields 

famers farmers usually do not want to grow perennial forages as they do not 

want to ‘lock-up’ fertile soil with crops of less value. However, as the soil is 
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fertile and water available all year round, it is possible to grow forage during the 

off-season. While keeping the same objective of growing rice every year, the 

best system in terms of forage production was O. sativa on a living cover of A. 

pintoï. In fact A. pintoï is a good forage but grown together with rice it needs to 

be controlled to reduce competition, resulting in less biomass production. 

Another useful system in terms of rice and forage production was the annual 

sequence between O. sativa during rainy season and V. villosa in the off-

season. Furthermore V. villosa can be intercropped with vegetables, combining 

rice, cash crops and forage production. 

 

5.4. Discussion  
 

5.4.1 Features of PRACT 
 

Simulations made on the four kinds of fields gave contrasting results in terms of 

the number and the nature of cropping systems selected before and after 

applying the rules. The characteristics of the agronomic units drive the range of 

plant species that can be selected and therefore the total number of cropping 

systems that are feasible. By applying agronomic rules and crop choices we are 

able to drastically reduce the number of potential cropping systems. Other tools, 

such as Lexsys, Pasture Picker, Tropical Forages select a forage or cover crop 

for a specific environment (CTAHR, Cook et al., Robert, 2010; CSIRO, 2012; 

FAO, 2012c) but have not been designed to consider potential for intercropping 

or crop rotations. Tools such as ROTAT (Dogliotti et al., 2003) or ROTOR 

(Bachinger and Zander, 2007) are designed to select crop species in time or 

space, but deal with fewer plants, and simpler agronomic rules than PRACT. 

For example, ROTAT generates a maximum of 250,000 cropping systems over 

seven years. This is far less than the number of combinations over three years 

that we began with. In fact the possibility of having intercrops and successions 

of crops and cover crops and of growing during the off-season drastically 

increases the number of possible cropping systems compared to conventional 

systems without cover crops.  
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5.4.2 Steps in designing CA cropping systems 
 

As described in Section 5.2, we identify six kinds of information that can be 

used to design new cropping systems. These kinds of information can be 

obtained in different ways which we discuss below.  

 

5.4.2.1 Crop and Cover crop adaptation to local biophysical conditions 
 

Crop and cover crop adaptation to local biophysical conditions can be obtained 

in different ways. First, from current observations or previous experimental 

results in the region. Often, cover crops have been tested as forage, green 

manures or as cover crops for perennial plantations (coffee, oil palm) 

(Bradshaw and Lanini, 1995; Matos et al., 2008). Thus substantial information 

can be gathered regarding the adaptation of different species to soil, 

temperature, rainfall pattern and sometimes pests and diseases (e.g. Tropical 

Forages, Cook et al., 2012) Secondly, if the exact species have never been 

cultivated it is also possible to extrapolate their likely behaviour from similar or 

related species. For example, A. pintoï and A. repens are quite close in terms of 

biophysical adaptation. But precautions must be taken, as for some species the 

different varieties show quite heterogeneous behaviour. Thirdly, and perhaps 

most importantly, substantial information exists on the adaptation of crop and 

cover crop species from experience in comparable agroecological conditions in 

the tropics. For example, tools such as Homologue can be used to identify 

regions with similar agroecological conditions around the world where species 

have been tested previously (IITA, 2010). It only requires being able to compare 

the ecology of both regions. But it is not always easy to define similarities, as in 

general not all components of the biophysical parameters perfectly match from 

one situation to another. Various methods have been proposed to combine and 

weight agroecological parameters (O’Brien, 2004; Jarvis et al., 2008). Fourthly, 

in theory simulation modelling could also be used to generate such information 

but in practice few crops and cover crops have been studied or modelled in 
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sufficient detail to predict adaptation to new conditions. Fifthly, it is also 

possible, and often desirable, to carry out experiments in situ.  

 

5.4.2.2 Agroecological functions of cover crops 
 

In this study we used expert knowledge to characterize the plants in terms of 

agroecological functions (Husson et al., 2009; Seguy et al., 2012). Such 

information can also be derived from the literature and other databases (Robert, 

2010). On the one hand, in CA system the impacts in terms of agroecological 

functions are often related to the amount of biomass produced by crops and 

cover crops (Govaerts et al., 2006b; Limon-Ortega et al., 2006; Smets et al., 

2008; Virto et al., 2011). On the other hand, crop biomass productivity is 

strongly linked to its potential competitive ability. Thus, the issue is often to 

identify not the most productive cover crop but the cover crop which does not 

compete in time or space with other commercial crops. An additional difficulty 

can be the specific behaviour of each cultivar in different environments. For 

example, biomass production and N2 fixation can vary greatly even within the 

same species (Giller et al., 1997; Giller, 2001).  

 

5.4.2.3 Intercropping crops and cover crops 
 

The possibility and impact of intercropping crops and cover crops can be 

derived from databases and the literature. But it is much more complicated 

because of competition for nutrients, water, light and interactions related to pest 

and disease incidence. Modelling of the multiple interactions in multispecies 

systems remains a major challenge (Malézieux et al., 2009). Tixier et al. (2011) 

used a simple model focusing on radiation interception and based on species 

traits. Other studies use more detailed crop models to predict  partitioning of 

different resources such as radiation, water and nitrogen between the two crops 

(Baumann et al., 2002; Shili-Touzi et al., 2010) or between trees and crops 

(Noordwijk and Lusiana, 1999). A promising way could be to use models 

developed for crop and weed interactions (Bastiaans et al., 2000). These 
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models take into account weed control management operations and similarities 

can be extrapolated to cover crop management. Furthermore, the ideal models 

should take into account the three-party interaction between crops, weeds and 

cover crops (den Hollander et al., 2007a; b). In our case, compatibility for 

intercropping had been formalized in a technical manual that considered 

different combinations of cover crops and crops based on extensive field 

experiments (Husson et al., 2009).  

 

5.4.2.4 Agroecological functions of the cropping system 
 

The agroecological functions of a cropping system should be assessed at least 

over one rotation and not only one season or year. Criteria to evaluate the 

cropping systems can be directly extrapolated from plant characteristics, as in 

PRACT (e.g. crop production). But some of the functions at cropping system 

level are determined by the combination (intercrops or sequences) of different 

plants. The evaluation of cropping systems in terms of yields and agroecological 

functions can be extrapolated from single crop characteristics when they are 

combined in simple sequences as a monocrop, but it is much more complex in 

the case of  crop and cover crop intercropping.   

The agroecological evaluation of cropping systems, both ex-ante or ex-post, is 

possible with tools such as PRACT or other approaches (Sadok et al., 2009; 

Tixier et al., 2011). But it makes no sense to evaluate the cropping system per 

se without taking into account the social or economic perspectives. For 

example, the introduction of a cover crop is likely to increase labour 

requirements, at least in the short-term, as well as the complexity of 

management for the farmer. Such modifications may suit only some farmers. 

When wishing to evaluate cropping systems by modelling or using a multicriteria 

approach, this needs to be done at farm level, as done in the Alaotra region, for 

example, by using linear programming (Chapter 4) or with other tools in different 

systems (Sadok et al., 2009; van Wijk et al., 2009; Le Gal et al., 2010, 2011) 
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5.4.2.5 Possible uses and further development of PRACT  
 

If we refer to the typology proposed by van Ittersum et al., (2003), up to now the 

field of application for PRACT has been more related to research or education 

than to the decision-making process. We discuss below the possible evolution 

of PRACT in general and what is required to move toward a decision support 

system (DSS). 

PRACT is sufficiently flexible to allow new crops and cover crops to be added, 

characteristics of the different species to be changed and adjusted, or selection 

rules to be added, revised or removed. The iteration between analysis of the 

potential combinations in output and adding new characteristics and rules can 

be done quite quickly in an interactive way. Thus, PRACT can be used to select 

cropping systems to be tested in the field. One of the main issues is to reduce 

the number of cropping systems to facilitate their comparison by famers and 

technicians. Selection of cropping systems to be tested could also be done 

together with farmers in a participatory approach before starting to test cropping 

systems in the field. This is a rapid approach to understanding farmers’ goals 

and constraints and matching cropping systems to them. It can also be argued 

that if a large selection of systems can be compared, it is important to test crops 

and cover crops which do not fit in with farmers’ wishes a priori. For example, in 

Section 5.3.1 we saw that systems with S. bicolor are the best for improving soil 

quality. In a first round of simulation it could be interesting to include S. bicolor 

in the initial set of crops chosen, so as to allow systems to be selected that 

include an example of cropping systems focused on soil improvement rather 

than on crop production alone. An array of systems could then be used as 

examples to discuss with farmers and extension workers the possibilities of 

including such a cropping system in their farm plans. If the number of crops and 

cover crops is reduced too quickly, the potential for discovering novel, 

innovative combinations is reduced, as are the options that can be discussed 

with farmers. When comparing cropping systems selected by PRACT with those 

of farmers, three situations can occur:  they can be equal, a priori worse or a 

priori better from an expert’s point of view. In the second case technicians’ and 
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farmers’ knowledge can be translated into new rules or parameters in PRACT to 

prevent PRACT from generating irrelevant cropping systems from their point of 

view. At least the interaction for redefining these rules can be very informative 

for both farmers and extension agents. In the last case, the new proposed 

systems can be selected for testing on a small area to evaluate them under real 

conditions.  

PRACT is also useful for generating a large range of cropping systems as 

inputs for farm modelling and for scenario testing. For example, as shown by 

Dogliotti et al., (2005), linear programming can be used to select from among 

the cropping systems which better suit farmers’ goals and constraints.  

If PRACT were used as a DSS, we recommend that it should be used as a 

stand-alone tool in the first instance, as users generally do not like “black 

boxes” where equations or calculations are not clear (McCown, 2002). 

Secondly, PRACT should be regarded as a “learning” tool rather than a tool that 

provides definitive advice. Thirdly, the tool and any DSS version of PRACT are 

designed for use by extension workers and scientists - not for direct use by 

farmers in Madagascar who have neither the means nor interest to use such a 

tool. 

Lastly, we encountered limitations in the maximum number of simulations that 

could be handled by Microsoft Access 2007®. Thus, further improvement of 

PRACT would require the application to be developed within a more powerful 

database manager. 

 
5.5. Conclusions  
 

Generating a list of commercial crops and cover crops, intercropped or in 

sequence, to be combined in a cropping system is more complex for CA 

systems than for conventional cropping systems. The numbers of possible 

combinations increase factorially by adding cover crops as intercrops or in the 

off-season in sequence. The agronomic rules are also more complex, as the 

need to produce biomass for soil cover or forage, without reducing crop 

production, restricts the feasibility of crop and cover crop intercropping or 
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sequences. The potential number of combinations, together with the number of 

agronomic rules to be taken into consideration, make CA cropping systems 

more difficult to design for local conditions, even without considering the 

technical management of each crop and each cover crop. This complexity is, 

perhaps, one of the reasons for the small number of CA cropping systems 

developed by farmers themselves in sub-Saharan Africa. Even after applying 

agronomic rules, the number of feasible (from a biophysical point of view) 

cropping systems can still be large. Further filtering of cropping systems is 

therefore carried out considering farmers’ main preferences, goals and 

constraints, meaning that the evaluation of the cropping system per se, with no 

reference to a type of farm, is not relevant. Furthermore, even for a specific type 

of farm, the adequacy of a cropping system should be considered in relation to 

other activities (crop, animal production and off-farm activities). Finally, the 

agroecological functions of a crop are not always known, easy to measure and 

even less easy to simulate. This is even more problematic when dealing with 

intercrops or rotations where interactions between plants can have strong 

impacts on the expression of these functions. Up to now, few models have dealt 

with this problem and they often consider interactions concerning only a single 

function, such as N (Baldé et al., 2011), or two functions, such as competition 

with weeds and N (Tixier et al., 2011). It is therefore impossible to rely on 

modelling alone for an ex ante evaluation of cropping systems. But modelling 

could be useful for explaining and debating about expert knowledge. Modelling 

could also be used together with on-farm experiments and farmer evaluations of 

cropping systems to select promising systems and management options, even 

though it has not often been used for CA cropping systems (Giller et al., 2011; 

Tittonell et al., 2012).  
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6.1 Introduction 
 
As cropping systems provide many products and services, their ex-ante or ex-

post evaluation cannot be made useful on the basis of a single criterion. In 

particular, for CA cropping systems the evaluations should be made regarding 

their expected impacts or agroecological functions. These functions, apart from 

grain production, can be grouped into eight categories (Fig. 1.1). The 

achievement of these functions depends on how each of the three CA principles 

is implemented. In Chapter 5 we explored the linkages between the degree of 

implementation of CA principles and the achievement of agroecological 

functions. 

We have seen in Chapter 2 (Objective 1) that the application of the first CA 

principle (direct seeding) alone did not have a significant impact on cotton 

production in the Far North province of Cameroon as yields obtained under no 

till with or without mulch were not different from those with tillage. The second 

principle (soil cover) had an impact, as yields were greater under no till with 

mulch than under no till without mulch. The last principle (crop diversity) was 

implemented by intercropping a cover crop with cereals that led to doubling the 

quantity of the above-ground biomass produced. The effect of no till and mulch 

on the duration of the flowering period and final yield was an indicator of a 

positive effect of CA on the “water balance” function. Regarding technical 

management, no tillage with mulch was found to use more herbicide spray and 

fertilizer. 

In Chapter 3 (Objective 2) we have shown that the second principle (soil cover) 

was strongly linked with the third principle (crop diversity). In farmers’ rice fields 

in the Alaotra region of Madagascar the soil cover of CA fields can vary 

strongly. It ranged from 30 to 84% even when considering the same kind of 

field, depending on the cover crop used and the amount of biomass produced. 

The range of variation was much greater when different kinds of fields were 

considered. Of course, whether the different agroecological functions of CA can 

be fulfilled depends on the amount of biomass production, residue management 

and resulting soil cover. Chapter 3 investigated the relationships between the 

quantity of biomass produced and retained, and the soil cover this provided for 
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a range of different crops and cover crops. We used these relationships to 

explore the variability of soil cover that could be generated in farmers’ fields, 

and to estimate how much of the biomass could be removed for use as 

livestock feed, while retaining sufficient soil cover. The study showed that under 

farmers’ conditions in Madagascar, the production and conservation of biomass 

was not always sufficient to fulfil all the above-cited agroecological functions of 

mulch. Furthermore, the thresholds varied for the different functions desired. 

For example, partial removal of biomass to be used as forage may have no 

effect in reducing the effectiveness of the mulch in erosion control but the same 

degree of removal may reduce notably the potential to control weeds.  

As the balance of potential benefits derived from removal of biomass for feed 

varied according to farm constraints and goals, in Chapter 4 (Objective 3) we 

modelled the potential benefits of above-ground biomass export to feed cattle at 

farm level. We studied Malagasy farms of different sizes to explore the 

relationships between raising dairy cows and CA. Our aim was to explore trade-

offs and synergies between combinations of CA practices (more or less 

biomass export), and the size of dairy cow herds (with animal production 

depending on biomass for forage). We applied a constraint on the minimum soil 

cover to be kept at the end of each year for CA fields: from 30 to 95%. We 

simulated two scenarios of milk market:  a small milk market with low forage 

price, and an open milk market with higher forage price. Three kinds of farms 

were simulated. Changing the degree of soil cover to be retained on CA plots 

did not significantly modify the total farm net income. It was more strongly 

influenced by the characteristics of the milk market. Overall, CA systems can be 

beneficial to dairy cow farmers because of the forage produced, although the 

milk market and thus the value of biomass for forage, has a strong influence on 

the way CA can be implemented at field level. Even with a limited number of 

possible cropping activities (28) the number of possible combinations of 

cropping systems is numerous. In fact the total number of potential cropping 

activities even for one kind of field is very high when considering all possible 

crops and cover crops that may be grown.  
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This led us to explore the whole range of possible cropping systems in given 

field situations in Chapter 5 (Objective 4). In this chapter the focus was on the 

third principle of CA (crop diversity). Our aim was to propose a method for 

designing CA cropping systems adapted to each of these situations. We 

formalized the underlying hypothesis behind the design, based on field 

characterisation, cover crop adaptation to different field types, the possible 

intercrop combinations, and sequences of crops and cover crops. This work 

showed that even after applying agronomic rules from a biophysical perspective 

the number of feasible cropping systems remained large. The number of 

cropping systems was then reduced considering farmers’ preferences, goals 

and constraints at farm level. The evaluation of the cropping systems designed 

per se without reference to farm types was not relevant to the real farming 

situation. In the same line and even for a given type of farm, the adequacy of a 

cropping system should be considered in relation with other activities (crop, 

animal production and off-farm activities).  

 
Some CA functions (Fig. 1.1) have not been explored in detail in the previous 

chapters of this thesis, for example pest and disease control, C sequestration, 

runoff and erosion, and weed control, mainly because our studies on these 

functions in Madagascar are still ongoing. These functions may also have 

significant impacts on crop production both in the short or long term. In the 

following parts we discussed the links between the achievement of these four 

functions and above-ground biomass exportation. The underlying idea was that 

the biomass produced could be used to feed animals. This export was 

beneficial for animal production but could be detrimental to crop production 

sustainability. We explored the theoretical relations between crop residue 

management and efficiency of the cropping system regarding the four 

agroecological functions detailed hereafter. 
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6.2 Runoff and erosion 
 
In most of the countries where CA has been introduced, the principal goal has 

been to reduce soil erosion through reducing runoff (Lal, 1976; Bolliger et al., 

2006; Hobbs, 2007; FAO, 2012a). The relationship between soil cover and 

runoff and erosion is well documented. For example in the RUSLE 2 model the 

effect of an increasing soil cover on erosion reduction is described by the 

equation: MF=100e-aC, where MF is erosion in percent of a control plot with no 

cover, “a” a constant and C the soil cover in percent, (Fig. 6.1). At the minimum 

threshold of 30% of soil cover used in Chapters 3 and 4, the mulch cover 

reduced interrill erosion up to 47% and rill erosion to 19%. In further modelling, 

for example in an expansion of the GANESH model, it would be possible to 

integrate the relationship in Fig. 6.2 to define thresholds and trade-offs directly 

in terms of soil erosion. 

 
Figure 6.1. Relationships between soil cover and percentage of rill and interrill 

erosion compared with a control with no mulch (Renard et al., 1997). 
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Figure 6.2. Interrill erosion (in percent of a bare soil control) for three different 

types of mulch: Maize+dolichos at a rate of 5.4 t ha-1, Stylosanthes at 2.7 t ha-1, 

Stylosanthes at 8 t ha-1. Mulch quantity and soil cover data from Naudin et al. 

(2011) and the relationship between soil cover and erosion control from Renard 

et al. (1997). 

 
Of course the mulch quantity changes in the course of the year as mulch 

decomposes. Thus, as for C input, the effect of soil cover on soil erosion should 

be assessed over time. Usually it is important that soil cover be most complete 

at the beginning of the rainy season when rainfall is intense. For example, in 

Madagascar the patterns of soil cover differed widely between CA and 

conventional cropping systems, but also between the different kinds of CA 

cropping systems. Thus the potential effect on erosion control varied in the 

same way (Fig. 6.3). 
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Figure 6.3. Effect of mulch on interrill erosion potential percentage of control for 

three cropping systems over five years in Madagascar. Calculated with soil 

cover data from Van Hulst et al. (2011). 

 
6.3 C sequestration 
 
Many studies have shown contrasting effects of CA on soil organic carbon 

(SOC) stocks (Govaerts et al., 2009b). CA impacts C sequestration in two ways: 

reduction of SOM decomposition by reducing tillage effects on aggregate 

stability, and increase in C input by introducing cover crops. We have not 

investigated the effect of CA on SOC decomposition in our local conditions. But 

as shown by Virto et al. (2011) and Corbeels et al. (2006), C input is the main 

factor explaining differences in SOC storage. Thus a comparison of cropping 

systems could be made based on the total biomass produced as potential for 

increasing SOC stocks. Then the relationship between biomass export and C 

input to soil is perhaps the easiest to determine. See Fig. 6.4 for an example 

based on data from Madagascar. 
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Figure 6.4. C input as a function of biomass removal for two cover crops grown 

preceding rice: S. guianensis and Maize + Dolichos lablab, calculated with data 

from Naudin et al. (2011a). Assuming that C input to soil from below-ground 

parts (roots and exudates) are 2.2 t ha-1 for S. guianensis and 1.5 t ha-1 for 

maize+dolichos extrapolated from Kuzyakov and Domanski (2000).  

 
6.4 Pest and disease control  
 
Pests and diseases of the main crops are affected in CA by, among others: i) 

the cover crop in rotation, ii) the physical effect of mulch on local conditions, iii) 

the nature of residues and their chemical composition, iv) changes in canopy 

structure due to changes in crop management and/or development calendar. 

 
The nature of cover crop in rotation can have effects through various 

mechanisms: temporary disruption of pest/pathogen cycles through non-host 

effects; resource concentration/dilution and spatial disruption of pest 

dynamics / pathogen epidemics; pest deterrence or repellence; pest stimulation 

or attraction; below-ground allelopathic effects; stimulation of soil pest-pathogen 

antagonists; crop physiological resistance through improved nutrition; effects 

through provision of alternative food to natural enemies of crop pests; effects 

due to provision of refuges/shelters for predators due to vegetative 
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structural/architectural characteristics; effects through microclimate alteration or 

as physical barriers (Ratnadass et al., 2011). From the literature review and on 

site or mesocosm experiments we have seen that few cover crops used in 

Madagascar have shown effects on insects or diseases in CA systems. 

However, effects on nematodes are more widely documented in the literature 

but rarely used as criteria to design new cropping systems (Quaranta, 2010; 

Naudin et al., 2011b) (Tab. 6.1).  
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In general, soils under mulch may host more invertebrates (in both number and 

type) than bare soils (Blanchart et al., 2007; Brevault et al., 2007; Maria de 

Aquino et al., 2008; Rabary et al., 2011). CA proponents argue that this 

biodiversity can promote natural control of pests and diseases (Hobbs, 2007; 

Kassam et al., 2009). But even within the same study (Table 6.2) these effects 

are not systematic, and CA systems can have positive, negative or no effects 

on pest control.  

 
Table 6.2. Some examples of studies showing contrasting effects of CA on pest 

control in Madagascar and Cameroon. 
     Comparison of CA with 

control  
 

 Comparison Country Crop Pest More 
pest 

No 
difference 

Less 
pest  

Reference 

Direct 
planting 

No till vs 
ploughing 

Cameroon Cotton Herbivore 
insects in 
general 

 X X Brévault et 
al. 2007 

Permanent 
soil cover 

No till with or 
without mulch
 

Cameroon 
 

Cotton Millipedes X   Brévault et 
al. (2008) 

Aphids  X  Brévault et 
al. (2008) 

Herbivore 
insects in 
general 

X X X Brévault et 
al. (2007) 

Crop diversity No till with 
grass, 
legume or no 
cover crop 

Cameroon Cotton Herbivore 
insects in 
general 

 X  Brévault et 
al. (2007) 

Rice, 
soybean or 
no residue 

Madagascar No  Plant-feeder 
nematodes 

 X  Villenave et 
al. (2010) 

No till with 7 
cover crops 
vs 
conventional 
tillage  

Madagascar Rice White grubs X X X Rabary et 
al. (2011) 

Combination 
of factors 

No till vs  
conventional 

Madagascar Rice White grubs X   Ratnadass 
et al. (2006) 

 
Furthermore, to the best of our knowledge, no studies directly link various 

degrees of soil cover or quantity of mulch with the effect on crop pests, meaning 

that it is difficult to link biomass removal and pest control. If we draw a 

theoretical relationship between above-ground biomass removal and pest 

pressure, different kinds of curves are possible. 
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• No effect of biomass removal, the pest pressure is the same with bare 

soil as with a cover crop and mulch has no effect on pests (Fig. 6.5, line 

A) 

• No effect of biomass removal, the pest pressure is the same with bare 

soil as with a cover crop which had an effect while being grown in situ 

the year before, but the residue had no effect (Fig. 6.5, line B) 

• Increase of pest pressure due to biomass removal, linear (Fig. 6.5, line 

C) or not (Fig. 6.5, line D and E) 

• Decrease of pest pressure with biomass removal, linear (Fig. 6.5, line 

F) or not (Fig. 6.5, line G and E) 

 
Figure 6.5. Theoretic relation between biomass removal (with an initial biomass 

of 8 t ha-1), and pest and disease pressure on the crop compared with a control 

situation (bare soil). A/B no changes compared with the bare soil control, C/D/E 

increase in pest and disease pressure with decreasing soil cover, F/G/H 

decrease in pest and disease pressure with decreasing soil cover. 

 
In conclusion the nature of the cover crop in rotation, the presence of mulch, 

and the suppression of tillage are maybe more important than the amount of 

mulch or the percentage of soil cover. Because of the variety of pests and 
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diseases and the complexity of biological mechanisms, the relationships 

between residue management and pest and disease control are more complex 

relationships to understand compared with other functions. 

 
6.5 Weed control 
 
CA has an impact on weed pressure through various mechanisms (Table 6.3). 
 
Table 6.3: Effects of CA on weed pressure adapted from Chauhan and Johnson 

(2009)  

Favourable for crop Unfavourable for crop Can be both 

Seed predation Interception of herbicides 
by thick surface residues 

Vertical weed seed 
distribution

Early crop sowing possible Lack of disruption of 
perennial weed root 

Crop rotation complexity, 
disruption of weed cycle 

 Moisture conservation 

Mulch allelopathic effects   Change in weed  
Decreasing light 
transmittance 

  

Competition between 
weeds and cover crop 

  

 
Our experimentation on this topic in the Lake Alaotra region of Madagascar 

showed that the total control of weeds in rice crops only appears with very large 

quantities of mulch: 20 t ha-1 of mulch (Fig. 6.6), or equivalent to twice the 

quantity of mulch to cover 99% of soil (Fig. 6.7). We also found that the weed 

cover or weed emergence was often higher on soil covered up to 99% by mulch 

than on soil with no cover.  
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Figure 6.6. Development of soil cover by weeds between rice rows during the 

2009-2010 cropping season; three rates of Dolichos lablab mulch (7, 13, 20 t 

ha-1) values expressed in percent of control (no cover), unpublished results. 

 
Figure 6.7. Cumulative emergence of weeds during the 2010-2011 or 2011-

2012 cropping seasons. Emergence expressed in percent of control plot (no 

cover), mean and standard deviation. Model: y = -0.0043x2 + 0.2987x + 100, R² 

= 0.5146, unpublished results. 
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The potential yield reduction because of competition with weeds, referred to 

here as weed pressure, is not linearly related to soil cover. Because i) mulch 

can have allelopathic effects not related with the percentage of cover or mulch 

quantity, ii) even the emergence of one species is seldom linearly related with 

soil cover (Fig. 6.7, Teasdale and Mohler, 2000), this is likely to be even less 

the case when considering a mixture of various weed species and all other 

stages of weed development. Thus we propose two shapes of theoretical 

relationships between soil cover and weed pressure in Fig. 6.8.  

 

 
Figure 6.8. Theoretical relationships between soil cover and weed pressure.  

 
Using Model B of Fig. 6.8 and biomass data from Chapter 3 (Naudin et al., 

2011a) we can draw a theoretical relation between biomass removal and weed 

pressure using biomass data from Madagascar (Fig. 6.9). 
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Figure 6.9. Theoretical relationships between biomass removal and weed 

pressure, based on relationships between soil cover and emergence (Naudin 

2012, Teasdale and Mohler, 2000) and the assumption that weed control is 

more difficult for farmers when there is only partial cover. Biomass data from 

Naudin et al. (2011) mulch of maize + D. lablab, S. guianensis at 2.7 t ha-1, S. 

guianensis at 8 t ha-1. 

 
Of course weed pressure in the crop and farm management varies greatly 

between cropping systems (e.g. flooded or not), farm types (e.g. with great 

labour availability or without), access to herbicides or not. For example in North 

Cameroon (Chapter 2) even smallholder farmers, because they have access to 

loans, herbicides, pesticides and fertilizers through the cotton company, place 

less importance in weed control than farmers of the Lake Alaotra region. In that 

part of Madagascar, herbicide use is uncommon because farmers rely on their 

own cash to buy pesticides, and these inputs are expensive, compared with 

farm income, and few outlets for agrochemicals exist. Even in the same region, 

the degree of weed control differs highly between farm types.  
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6.6 Balancing CA functions 
 
If we assume that the main factor determining CA success in developing 

countries is competition for plant biomass mulch or for cattle feed, then the 

benefits of keeping mulch on soil surface must be balanced against the use of 

biomass as forage. This issue is assessed at farm level.  

I propose some theoretical relationships to determine trade-offs between 

biomass export from field to feed animals and the agroecological functions of 

CA in Fig. 6.10. Up to now these relationships have only been partially 

established in developing countries. More effort should be made to understand 

them. Quantitative assessments are needed to evaluate cropping systems, ex-

ante or ex-post, with multi-criteria methods to enable design of new appropriate 

options. Such assessments are also needed to provide quantitative tools to 

development agents and to farmers with regard to trade-offs around biomass 

uses.  

 
Figure 6.10. Theoretical relationships between biomass removal and weed 

pressure, erosion control and C input. Simulation for S. guianensis with 8 t ha-1 

of above-ground biomass. Based on biomass data from Chapter 3, relations 

between soil cover and emergence (Teasdale and Mohler, 2000; Naudin et al., 

2012) and the assumption that weed control is more difficult for the farmer. 

Biomass data from Naudin et al. (2011).   
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6.7 General conclusion  
 

The main hypothesis of my thesis is: “The benefits of Conservation Agriculture 

among diverse smallholder farmers are explained by the trade-offs between 

field and farm level”. This hypothesis has been addressed in various ways in the 

preceding chapters. In Cameroon the contract with the cotton company is 

globally favourable for the adoption of CA. Thus the risk at farm level to 

implement CA is quite low compared to the potential agronomic benefit at field 

level in the Far North province. In Madagascar farm characteristics and milk 

market drive the possibility or not to keep crops and cover crops biomass as 

mulch or to use it to feed cattle. The selection and evaluation of new CA 

cropping system is also almost impossible to do without taking into account 

farm constraints and objectives. But as I argue below the first step to 

understand these trade-offs is to quantify biomass production and uses and the 

explicit benefits from biomass uses at field and farm level. 

The debate around priorities in terms of agronomic research for developing 

countries has become increasingly dominated by political ideology and less by 

scientific argument (Sumberg et al., 2012). Regarding CA, the proponents and 

critics can always find scientific works to support their arguments (Hobbs, 2007; 

Giller et al., 2009). The studies regarding positive or negative effects of CA are 

not consistent; depending on the researchers, CA impacts have been found 

positive, negative, or null compared with conventional techniques on 

agroecological functions of cropping systems and their productivity (Giller et al., 

2009; Verhulst et al., 2010; Baudron et al., 2011). There is sufficient evidence 

that most of the effects of mulch are related to biomass quantity and soil cover 

(Scopel et al., 1999; Teasdale and Mohler, 2000; Corbeels et al., 2006; 

Govaerts et al., 2008; Smets et al., 2008). But as we have seen in the 

introduction, very few studies give details on the quantity of mulch produced 

and even fewer evaluate soil cover in CA treatments when comparing them to 

conventional ones. As for other ecological intensification approaches (Doré et 

al., 2011) I argue that it could be informative to implement meta-analyses linking 

CA impacts and quantities of biomass produced in cropping systems. 
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Furthermore, I formulate the hypothesis that well-managed cropping systems 

maximize biomass production and the associated agroecological functions 

without competing in time or space with crop production and other farm 

activities. As seen in Chapter 4, I infer that biomass production for CA and 

livestock can find a mutually beneficial equilibrium. 

At the same time there is still confusion among authors about what CA actually 

is. Some papers are supposed to relate to CA but in fact their CA treatment is a 

“no tillage” treatment, i.e. without mulch and/or without crop diversification 

(Lahmar et al., 2011). These techniques and studies may be valuable but using 

the term CA for very different cropping systems creates a smokescreen which 

confuses the scientific debate. In fact CA proponents and critics include or do 

not include these kinds of work to emphasize their points. Proponents include 

the area under “no till” (not complete CA) when they want to show the large 

spread of CA in the world (Derpsch, 1997, 2007). Thus I recommend a more 

rigorous description of cropping systems, technical management, residue 

management, biomass production and mulch cover quantification when 

reporting experiences on CA. The debate around the usefulness of CA for 

smallholders in developing countries, in particular in sub-Saharan Africa, is far 

from closed. I suggest that future debates should be based on more rigorous 

definitions and quantitative data, as proposed by Giller et al. (2011).  

 
In the end, regardless of what we like to do from a scientific 'design' 

perspective, it has to meet farmers' needs and goals to succeed in the real 

world of farming. Purely technical research will not achieve this if farmers do not 

play a central role in evaluating and feeding back their ideas and evaluations to 

the world of science and research. 

 
It is not easy to anticipate the future development of CA in Africa, partly 

because the development of Africa itself is at an historic turning point. Certainly 

CA will find its place in the drive for an ecological intensification of agriculture in 

Africa (Schutter, 2010; Snapp et al., 2010). Researchers should participate in 

the effort by providing strong arguments based on data from real farms and 

fields, by clearly defining the objects studied, by conducting multi-criteria 
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evaluations of cropping systems, and by understanding the cropping system as 

an inherent part of the farming system. This thesis work was oriented to 

contribute to a more peaceful and fruitful scientific debate. 
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Appendix 

Appendix 1: Labour requirements (man/day/ha) for each crop production 

activity per two weeks periods,  

 

Appendix 2: Input requirements for each crop production activity. 

 

Appendix 3: Crop production activity outputs (kg/ha) for each period of two-

weeks. 

 

Appendix 4: Forage and crop residues nutritive values according to the French 

feed evaluation system INRA  

 

Appendix 5: Animal nutritive requirements, maximum feed intake, production 

and and labour needs for the four types of animals  

 

Appendix 6: model formulation of GANESH 
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Appendix 2: Input requirements for each crop production activity in terms of 

seed, fertilizer, manure and pesticides needs expressed in cash terms 

(kAr/ha/year). 
Type of field Soil 

management 
Crops (+cover crops) Seeds Fertilizer 

+Organic 
manure 

Pesticides 

Irrigated paddy 
fields 

Conventional Irrigated rice 30 0 24 

Poor water control 
paddy fields  

Conventional Rice/Fallow 80 103 26 
 Rice/Vetch 150 443 32 
CA Rice/Fallow 62 84 22 
  Rice/Vetch 142 168 29 

Alluvial soils 
  

Conventional Rice/Fallow 77 123 27 
 Rice/Dolichos 95 123 27 
 Rice/Vetch 157 123 27 
 Maize/Fallow 16 280 0 
 Maize/Dolichos 96 364 7 
 Maize(exp)/Dolichos 96 364 7 
 Maize+Dolichos/Fallow 35 113 18 
CA Rice/Fallow 54 106 63 
 Rice/Dolichos 68 106 63 
 Rice/Vetch 134 106 63 
  Maize+Dolichos/Fallow 37 178 11 

Hillsides Conventional Brachiaria 125 0 0 
  Cassava 0 30 0 
  Groundnut 90 60 0 
  Groundnut+Stylo 138 0 0 
  Maize 16 280 0 
  Maize+Dolichos 43 244 13 
  Rice 64 57 24 
  Cassava+Brachiaria 125 30 0 
 CA Brachiaria 125 0 0 
  Rice 64 149 0 
  Groundnut+Stylo 138 0 3 
    Maize+Dolichos 44.08 212 17 
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Appendix 3: Crop production activity outputs (kg/ha) for each period of two-

weeks. One crop production activities can produce various outputs, for 

example, crop production activities with rice produce rice grain, bran and straw. 

The by-products used as animal feed are also taken into account. 
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Appendix 4: Forage and crop residues nutritive values according to the French 

feed evaluation system INRA (INRA, 2007) system of “unite fourragère lait” 

(UFL) equivalent to the energy provided by one kg of oats. One UFL 

corresponds to the Net Energy of 1 kg of standard barley (1700 kcal NEL/kg DM 

of feed). PDI: Protein Digested in the Intestine; PDI value measures the sum of 

absorbed protein supplied by feed undegradable protein and microbial protein. 

  

Energy 

(UFL/kg DM) 

Protein (g 

PDI/kg DM) 

Vetch residues 0.71 106 

Dolichos residues 0.7 90 

Maize stover 0.57 29 

Maize stover + dolichos residues 0.71 60 

Brachiaria 0.6 70 

Stylosanthes 0.7 80 

Rice bran 0.58 46 

Rice straw 0.58 46 

Stored maize stover 0.57 29 

Cut-grass 0.65 40 
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Appendix 6: model formulation of GANESH 

The model formulation of GANESH is presented here. The model can be solved 

using linear programming (LP) software, but includes integer variables for area 

resulting in a mixed integer programming (MIP) model. 

Sets 
Below are presented all the sets and subsets used in the model: 

 

Crop sets 

Soil: defines the 4 types of soil. IPF=Irrigated low land paddy field, PWC=Poor 

water control low land paddy field, AS=Alluvial soil, Hill=Hillsides 

Plot: 1, 2, 3, …, 10 

Crop: 1, 2, …, 33 

CACrop(Crop): 13 CA cropping systems 

CVCrop(Crop): 20 conventional cropping systems 

CoverCrop(Crop): Cropping systems that produce biomass for user as mulch or 

fodder 

NotCover(Crop): Cropping systems that do not produce biomass 

Cover: 1, 2, …, 12 All the levels of soil cover (0%, 10%, 20%, …, 99%) 

 

Time sets  

Year: 1, 2 and 3 

Period: 1,2, …, 24 one period=15 days=2 weeks 

 

In/Out-put sets 

Output: 1=Rice, 2=corn, 3=Cassava tuber, 4=Groundnut, 5=Vicia residues, 

6=Dolichos residues, 7=Corn stover, 8=Corn stover+dolichos residues, 

9=Brachiaria, 10=Stylosanthes, 11=Rice bran, 12=Rice straw, 13=Stored corn 

stover, 14=Cut grass 

Sold(Output): 4 sold output 

Feed(Output): 10 outputs that can be used as animal feed 

Forage(Feed): Outputs only used as forage 
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CoverForage(Feed): Outputs used either as forage or as cover 

Input: 1=seeds, 2=manure, 3=pesticides 

 

Animal sets 

Animal: Dib=Dairy improved breed, Drb=Dairy rana breed, Zf=Zebu female, 

Zm=Zebu male 

FemaleA(Animal): Female cows 

Age: Animal age in number of periods 

Zm_Age(Age): Zebu male age 

Calv_F_Age(Age): Calving female age 

Calv_M_Age(Age): Calving male age 

Sold_Age(Age): Sold age 

Production: 1=Milk, 2=Manure, 3=Labour 

Need: 1=Labor, 2=Energy(UFL), 3=max kg of ingested dry matter(DM), 4=min 

kg ingested DM, 5=Protein(MAD) 

 

Family sets 

Family: Fam=Total family members 

 

Sets Abbreviations 

A = Animal DMC = CACrop Pct = Production 

Age = Age FA = FemaleA Pl = Plot 

CAg = Calv_F_Age Fam = Family Pl = Period 

CAg = Calv_M_Age Fd = Feed Sag = Sold_Age 

Cp = Crop Fg = Forage Sd = Sold 

CV = CVCrop I = Input Sl = Soil 

Cv = Cover NCp = NotCover Y = Year 

CvCp = CoverCrop Nd = Need Zag = Zm_Age 

CvFg = CoverForage O = Output 
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Parameters 

Below are listed all the parameters used in GANESH: 

 

Family parameters 

 ி: Available family labour per periodݎܾܽܮݕ݈݅݉ܽܨ

 ி: Survival threshold per year݈ܽݒ݅ݒݎݑܵ

 ி: Oxherd costs݀ݎ݄݁ݔܱ

 ௌௗ: Self-consumed outputs each year݊݅ݐ݉ݑݏ݊ܥ݂݈݁ܵ

 

Cropping systems parameters 

 ,ௌ: List of all the farmer’s plots and surface areasܣܥܶ

 ,,ௌ: All the possible cropping systems by year for each type of soil݈ܾ݁݅ݏݏܲ

ܻ݈݅݁݀,ை,: Crops yields for each period 

 ,: Crops required labour per periodݎܾܽܮ

 : Price of external labour per day for each period݁ܿ݅ݎܲݎܾܽܮ

 ,: 1= it is a weeding task, 0=it is notݎܾܽܮ_ܹ݀݁݁

 ,ூ: Crops required inputsݐݏܥ

ܿ݅ݎܲ ௌ݁ௗ: Price of each sold output 

 ௌௗ: Maximum cassava sold per yearݐ݅݉݅ܮݏݏܽܥ

 

Forage parameters 

 ிௗ: Forage prices݁ܿ݅ݎܲ݁݃ܽݎܨ

 ிௗ,ேௗ: Forage characteristics (UFL, and kg DM)ݎ݄ܽܥ_݁݃ܽݎܨ

 

Animal parameters 

 ,: Initial herd composition݇ܿݐܵ_ܫ

 ,ேௗ,: Herd needs in terms of labour, UFL and DM݀݁݁ܰ_݀ݎ݁ܪ

 ,௧,: Herd productions in terms of labour, manure and milk݊݅ݐܿݑ݀ݎܲ_݀ݎ݁ܪ

 : Milk production limit per periodݐ݅݉݅ܮ݈݇݅ܯ
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 ௧: Milk, manure and labour prices݁ܿ݅ݎܲ_݊݅ݐܿݑ݀ݎܲ

 

Cover parameters 

 ௩,௩ி: Equivalence between cover quantity and cover percentageݎ݁ݒܥ_݈݅ܵ

 ௩: Labour multiplication factor depending on left coverݎ݁ݒܥ_ܹ݀݁݁

 ௩,௩ி: Determines the kind of forage produced by a cropݎܥ_݁݃ܽݎܨ

 

Variables 

Below are listed all the variables used in the model: 

 

Free variables 

 Balance at the end 6 years :݁݉ܿ݊ܫ݈ܽݐܶݒ

 ,,,: Herd evolution all along the model݀ݎ݁ܪݒ

 ,: Herd evolution݀ܽ݁ܪ_ݐܶݒ

 ,,: Total number of culled animal݈ܽ݉݅݊ܣ_݈݈݀݁ݑܥ_ݐܶݒ

 *,,: Number of sold calves݈݀ܵ_ܣ݈݁ܽ݉݁ܨݒ

 ,ேௗ,,: Animals needs݀݁݁ܰ_݀ݎ݁ܪݒ

 ேௗ,,: Total needs݀݁݁ܰ_ݐܶݒ

 ிௗ,,,ௌ,: Cumulated forage exported from the fields every݁݃ܽݎܨ݉ݎܽܨݐܶݒ

year 

 ை,,,ௌ,: Output production every period݊݅ݐܿݑ݀ݎܲ݉ݎܽܨݒ

 ,௧,,: Milk, manure and labour production per animal every݊݅ݐܿݑ݀ݎܲ_݀ݎ݁ܪݒ

period 

 ௧,,: Milk, manure and labour production every period݊݅ݐܿݑ݀ݎܲ_ݐܶݒ

 

Binary variables 

 ,ௌ,,,௩: 0=the crop is not selected, 1=the crop is selectedܺݒ

 

Integer variables 
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 ,: Number of days of external labourݎܾܽܮݐݔܧݒ

 

Positive variables 

 ிௗ,,,,ௌ,: Forage exported from the fields to feed animals݁݃ܽݎܨ݉ݎܽܨݒ

 ிௗ,,,: Bought forage for animal݁݃ܽݎܨݐݔܧݒ

 ிௗ,,,ௌ,: Exported forage to be stored݁݃ܽݎܨݔܧݒ

 ிௗ,,,,ௌ,: Forage exported from the stock to feed animals݁݃ܽݎܨ݇ܿݐܵݒ

 ிௗ,,,ௌ,: Stored forage evolution݁݃ܽݎܨ݀݁ݎݐܵݒ

 24,ௌ,,௩ி: Biomass left on the field at the period 24݊ܫݎ݁ݒܥݒ

 ,: Limited quantities of sold milkݐ݅݉݅ܮ݈݇݅ܯݒ

 ,,ௌ,: Limited quantities of cassava roots soldݐ݅݉݅ܮݏݏܽܥݒ

 

Equations 

This section presents the equations used for formulating the constraints, the 

auxiliary variables, the balances and the objective functions: 

 

Farm plan equations 

One crop per plot per year: 

Each year, a plot cannot contain more than one crop 

 ,ௌ,,,௩ܺݒ ൈ ,,ௌ݈ܾ݁݅ݏݏܲ
,௩

  ݏ݈݈݄݅ ݎ݂ 1

 ,ௌ,,,௩ܺݒ ൈ ,,ௌ݈ܾ݁݅ݏݏܲ
,௩

ൌ  ݏ݈݅ݏ ݎ݄݁ݐ ݎ݂ 1

 ,ௌ,,,௩ܺݒ
,௩

  "݈ܾ݁݅ݏݏܲ" ݎ݁ݐ݁݉ܽݎܽ ݄݁ݐ ݂ ݁ݏݑܾܽܿ݁ ݈݁ݑݎ ݈ܽ݊ݎ݁ݐ݊݅ 1

 

Crop production equations 

Plot periodic production: 

Outputs produced on each crop every period (except for cassava). 
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 ,ௌ,,,௩ܺݒ ൈ ,,ௌ݈ܾ݁݅ݏݏܲ ൈ ܻ݈݅݁݀,ை, ൈ ,ௌܣܥܶ
,௩

ൌ  ை,,,ௌ,݊݅ݐܿݑ݀ݎܲ݉ݎܽܨݒ

 

Cassava limitation 

ሺܺݒ,ௌ,,,௩ ൈ ,,ௌ݈ܾ݁݅ݏݏܲ ൈ ܻ݈݅݁݀,ଷ, ൈ ,ௌሻܣܥܶ െ  ,,ௌ,ݐ݅݉݅ܮݏݏܽܥݒ

ൌ  ଷ,,,ௌ,݊݅ݐܿݑ݀ݎܲ݉ݎܽܨݒ

 

 ଷ,,,ௌ,݊݅ݐܿݑ݀ݎܲ݉ݎܽܨݒ െ ଷ݊݅ݐ݉ݑݏ݊ܥ݂݈݁ܵ
,ௌ,

  ଷݐ݅݉݅ܮݏݏܽܥ

 

Succession rules equations 

CA crop after biomass: 

A CA crop can only follow a crop that produces a certain amount of biomass 

(user parameter) 

 ,ௌ,,௩,௩ܺݒ
௩,௩

െ  ାଵ,ௌ,,ெ,௩ܺݒ  െ0.5
௩,ெ

 ݎ݁ݒܿ ݂݅ 

  %30 ݂ ݉ݑ݉݅݊݅݉ ܽ ݎ݂ 4

 

Forced minimum cover: 

Minimum cover left on CA crops 

 ,ௌ,,ெ,௩ܺݒ ൌ ݎ݁ݒܿ ݂݅ 0 ൏ %10 ݂ ݉ݑ݉݅݊݅݉ ܽ ݎ݂ 2
௩,ெ

 

 

Stylosanthes and brachiaria rules: 

Pure stylo/brach can only follow a stylo/brach system or itself 

 ,ௌ,,௩,௩ܺݒ െ ାଵ,ௌ,,ଶହ/ଶଽ,௩ܺݒ ൌ 0
௩

ݎܥ ݂݅  ൌ  ݉݁ݐݏݕݏ ܽ݅ݎ݄ܽ݅ܿܽݎܾ ݎ ݈ݕݐܵ

 

Constant cover: 
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The cover %age remains constant every year on the same plot 

 ,ௌ,,௩,௩ܺݒ
௩

െ  ାଵ,ௌ,,௩,௩ܺݒ
௩

 0 

 

Automatic cover attribution: 

Cropping systems that don’t produce biomass have a cover=1 

 ,ௌ,,ே,௩ܺݒ ൌ ݎ݁ݒܿ ݂݅ 0  1
,ௌ,,ே,௩

 

 

Herd evolution equations 

Initial herd composition: 

The initial stock is determine by user 

,ଵ,ଵ,݀ݎ݁ܪݒ ൌ  ,݇ܿݐܵ_ܫ

 

Herd evolution: 

The herd composition evolves every period 

,݀ܽ݁ܪ_ݐܶݒ ൌ  ,,,݀ݎ݁ܪݒ
,

 

 

Age evolution for each period 

,,ଵ,݀ݎ݁ܪݒ ൌ ݀݅ݎ݁ ݂݅ ,ିଵ,ଶସ,ିଵ݀ݎ݁ܪݒ ൌ 1 

,,,݀ݎ݁ܪݒ ൌ ݀݅ݎ݁ ݂݅ ,,ିଵ,ିଵ݀ݎ݁ܪݒ ് 1 

 

Number of culled animals every period 

,,ଵ݈ܽ݉݅݊ܣ_݈݈݀݁ݑܥ_ݐܶݒ ൌ ݀݅ݎ݁ ݂݅ ,ିଵ,ଶସ,௨ௗ ݀ݎ݁ܪݒ ൌ 1 

,,݈ܽ݉݅݊ܣ_݈݈݀݁ݑܥ_ݐܶݒ ൌ ݀݅ݎ݁ ݂݅ ,,ିଵ,௨ௗ ݀ݎ݁ܪݒ ് 1 

 

Number of sold calves every period 

ி,,݈݀ܵ_ܣ݈݁ܽ݉݁ܨݒ ൌ  ி,,,݀ݎ݁ܪݒ
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Animal production equations 

Herd production: 

Every period, animals produce milk, manure and labour 

,௧,,݊݅ݐܿݑ݀ݎܲ_݀ݎ݁ܪݒ ൌ  ,,,݀ݎ݁ܪݒ ൈ ,௧,݊݅ݐܿݑ݀ݎܲ_݀ݎ݁ܪ


 

 

Total animal production: 

Every period farm produces milk, manure and labour 

௧,,݊݅ݐܿݑ݀ݎܲ_ݐܶݒ ൌ  ݈݇݅݉ ݎ݂ ݐ݁ܿݔ݁ ,௧,,݊݅ݐܿݑ݀ݎܲ_݀ݎ݁ܪݒ


 

 

Sold milk limitation every period 

ଵ,,݊݅ݐܿݑ݀ݎܲ_ݐܶݒ ൌ  ,ଵ,,݊݅ݐܿݑ݀ݎܲ_݀ݎ݁ܪݒ െ ,ݐ݅݉݅ܮ݈݇݅ܯݒ


 

ଵ,,݊݅ݐܿݑ݀ݎܲ_ݐܶݒ   ݐ݅݉݅ܮ݈݇݅ܯ

 

Animal needs equations 

Animal needs: 

Every period animals needs UFL, MAD, labour and certain quantity of forage 

,ேௗ,,݀݁݁ܰ_݀ݎ݁ܪݒ ൌ  ,,,݀ݎ݁ܪݒ ൈ ,ேௗ,݀݁݁ܰ_݀ݎ݁ܪ


 

ேௗ,,݀݁݁ܰ_ݐܶݒ ൌ  ,ேௗ,,݀݁݁ܰ_݀ݎ݁ܪݒ


 

  ܦܣܯ ݀݊ܽ ܮܨܷ ݎ݂ ,ேௗ,,݀݁݁ܰ_݀ݎ݁ܪݒ

 

Ration composition: 

The ration composition has to fulfil the animal needs 

 ிௗ,,,,ௌ,݁݃ܽݎܨ݉ݎܽܨݒ ൈ ிௗ,ேௗݎ݄ܽܥ_݁݃ܽݎܨ
ிௗ,ௌ,

 

  ிௗ,,,,ௌ,݁݃ܽݎܨ݇ܿݐܵݒ ൈ ிௗ,ேௗݎ݄ܽܥ_݁݃ܽݎܨ
ிௗ,ௌ,
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݁݃ܽݎܨݐݔܧݒிௗ,,, 

ൌ  ܮܨܷ ݎ݂ ,ேௗ,,݀݁݁ܰ_݀ݎ݁ܪݒ

  ܯܦ ݀݁ݐݏ݁݃݊݅ ݂ ݃݇ ݉ݑ݊݅݊݅݉ ݎ݂ ,ேௗ,,݀݁݁ܰ_݀ݎ݁ܪݒ

  ܯܦ ݀݁ݐݏ݁݃݊݅ ݂ ݃݇ ݉ݑ݉݅ݔܽ݉ ݎ݂ ,ேௗ,,݀݁݁ܰ_݀ݎ݁ܪݒ

 

Forage evolution equations 

Initial forage stock: 

At the beginning, the stock is empty 

ிௗ,,ଵ,ଵ,ௌ,݁݃ܽݎܨ݇ܿݐܵݒ  ிௗ,ଵ,ଵ,ௌ,݁݃ܽݎܨ݀݁ݎݐܵݒ ൌ 0 

 

Stored forage evolution: 

The stock evolution depends on the amount of stored/given forage 

ிௗ,,ିଵ,ௌ,݁݃ܽݎܨ݀݁ݎݐܵݒ  ிௗ,,ିଵ,ௌ,݁݃ܽݎܨݔܧݒ

െ  ிௗ,,,ିଵ,ௌ,݁݃ܽݎܨ݇ܿݐܵݒ


 

ൌ ݀݅ݎ݁ ݂݅ ிௗ,,,ௌ,݁݃ܽݎܨ݀݁ݎݐܵݒ ് 1 

ிௗ,ିଵ,ଶସ,ௌ,݁݃ܽݎܨ݀݁ݎݐܵݒ  ிௗ,ିଵ,ଶସ,ௌ,݁݃ܽݎܨݔܧݒ

െ  ிௗ,,ିଵ,ଶସ,ௌ,݁݃ܽݎܨ݇ܿݐܵݒ


 

ൌ ݀݅ݎ݁ ݂݅ ிௗ,,ଵ,ௌ,݁݃ܽݎܨ݀݁ݎݐܵݒ ൌ 1 

ிௗ,ଷ,ଶସ,ௌ,݁݃ܽݎܨ݀݁ݎݐܵݒ   ிௗ,,ଷ,ଶସ,ௌ,݁݃ܽݎܨ݇ܿݐܵݒ


 ݀݅ݎ݁ ݐݏ݈ܽ ݄݁ݐ ݎ݂ 

 

Storage duration: 

Forages cannot be stored longer than one year 

 ிௗ,,,,ௌ,݁݃ܽݎܨ݇ܿݐܵݒ
,,ௌ,

ൌ  ிௗ,,ଵ,ௌ,݁݃ܽݎܨ݀݁ݎݐܵݒ
ௌ,

 

 

Given forage: 

Total given forage directly from the plots. Every year, it starts at 0 
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ிௗ,,ିଵ,ௌ,݁݃ܽݎܨ݉ݎܽܨݐܶݒ  ிௗ,,ିଵ,ௌ,݁݃ܽݎܨݔܧݒ

  ிௗ,,,ିଵ,ௌ,݁݃ܽݎܨ݉ݎܽܨݒ


 

ൌ  ிௗ,,,ௌ,݁݃ܽݎܨ݉ݎܽܨݐܶݒ

ிௗ,,ଵ,ௌ,݁݃ܽݎܨ݉ݎܽܨݐܶݒ ൌ ݀݅ݎ݁ ݂݅ 0 ൌ 1 

 

Available forage: 

Maximum exportable forage from field each period 

ிௗ,,,ௌ,݁݃ܽݎܨݔܧݒ   ிௗ,,,,ௌ,݁݃ܽݎܨ݉ݎܽܨݒ


 

 ிௗ,,,ௌ,݊݅ݐܿݑ݀ݎܲ݉ݎܽܨݒ െ  ிௗ,,,ௌ,݁݃ܽݎܨ݉ݎܽܨݐܶݒ

 

Cover management equations 

Cover left: 

Quantity of biomass left on period 24 

ிௗ,,ଶସ,ௌ,݊݅ݐܿݑ݀ݎܲ݉ݎܽܨݒ െ ிௗ,,ଶସ,ௌ,݁݃ܽݎܨ݉ݎܽܨݐܶݒ

െ  ிௗ,,ଶସ,ௌ,݁݃ܽݎܨݔܧݒ

െ  ிௗ,,,ଶସ,ௌ,݁݃ܽݎܨ݉ݎܽܨݒ ൌ 24,ௌ,,௩ி݊ܫݎ݁ݒܥݒ


 

 

Cover rate conversion: 

Conversion from kg to %age of cover 

 ,ௌ,,௩,௩ܺݒ ൈ ,ௌܣܥܶ ൈ ௩,௩ிݎ݁ݒܥ_݈݅ܵ ൈ ௩,௩ிݎܥ_݁݃ܽݎܨ
௩,௩ி,௩

ൈ 1.0001 

  ݐ݈݅݉݅ ݎ݁ݓ݈ 24,ௌ,,௩ி݊ܫݎ݁ݒܥݒ
௩ி

 

 ,ௌ,,௩,௩ܺݒ ൈ ,ௌܣܥܶ ൈ ௩ାଵ,௩ிݎ݁ݒܥ_݈݅ܵ ൈ ௩,௩ிݎܥ_݁݃ܽݎܨ
௩,௩ி,௩

 

  ݐ݈݅݉݅ ݎ݁ݑ 24,ௌ,,௩ி݊ܫݎ݁ݒܥݒ
௩ி
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Labour equations 

Total labour: 

Total farm labour is split between family and external labour  

 ݒ ଵܺ,ௌ,,,௩ ൈ ,ݎݑܾܽܮ ൈ ,ௌܣܥܶ
ௌ,,,௩

ݐܶݒ_ܰ݁݁݀ଵ,ଵ, 

  ிௗ,,ଵ,,ௌ,݁݃ܽݎܨ݉ݎܽܨݒ ൈ ிௗ,ேௗݎ݄ܽܥ_݁݃ܽݎܨ
ிௗ,,ௌ,

 

  ிௗ,ଵ,,ௌ,݁݃ܽݎܨݔܧݒ ൈ ிௗ,ேௗݎ݄ܽܥ_݁݃ܽݎܨ
ிௗ,ௌ,

 

 ଵ,ݎݑܾܽܮݐݔܧݒ  ݎܽ݁ݕ ݎ݂ ிݎݑܾܽܮݕ݈݅݉ܽܨ ൌ 1 

 

 ,ௌ,,,௩ܺݒ ൈ ,ݎݑܾܽܮ ൈ ,ௌܣܥܶ
ௌ,,,௩

ݐܶݒ_ܰ݁݁݀ଵ,, 

  ,ௌ,,,௩ܺݒ ൈ ,ݎݑܾܽܮ ൈ ,ௌܣܥܶ
ௌ,,,௩

ൈ ,ݎݑܾܽܮ_ܹ݀݁݁

ൈ  ௩ݎ݁ݒܥ_ܹ݀݁݁

  ிௗ,,,,ௌ,݁݃ܽݎܨ݉ݎܽܨݒ ൈ ிௗ,ேௗݎ݄ܽܥ_݁݃ܽݎܨ
ிௗ,,ௌ,

 

  ிௗ,,,ௌ,݁݃ܽݎܨݔܧݒ ൈ ிௗ,ேௗݎ݄ܽܥ_݁݃ܽݎܨ
ிௗ,ௌ,

 

 ,ݎݑܾܽܮݐݔܧݒ   ݏݎܽ݁ݕ ݎ݄݁ݐ ݄݁ݐ ݎ݂ ிݎݑܾܽܮݕ݈݅݉ܽܨ

 

Family needs equations 

Self-consumption: 

The family consumes on-farm produced outputs 

 ௌௗ,,,ௌ,݊݅ݐܿݑ݀ݎܲ݉ݎܽܨݒ
,ௌ,

  ை,,,ௌ,݊݅ݐܿݑ݀ݎܲ݉ݎܽܨݒ

 

Survival threshold: 

Every year, the income has to fulfill the minimum for living 
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 ௌௗ,,,ௌ,݊݅ݐܿݑ݀ݎܲ݉ݎܽܨݒ
ௌௗ,,ௌ,

ൈ ܿ݅ݎܲ ௌ݁ௗ

െ  ,ௌ,,,௩ܺݒ ൈ ,ூݐݏܥ ൈ ,ௌܣܥܶ
ௌ,,,௩,ூ

 

െ  ிௗ,,,݁݃ܽݎܨݐݔܧݒ ൈ ிௗ݁ܿ݅ݎܲ݁݃ܽݎܨ
ிௗ,,

 

  ௧,,݊݅ݐܿݑ݀ݎܲ_ݐܶݒ ൈ ௧݁ܿ݅ݎܲ_݊݅ݐܿݑ݀ݎܲ
௧,

െ  ,ݎܾܽܮݐݔܧݒ ൈ ݁ܿ݅ݎܲݎݑܾܽܮ


 

െܱ݀ݎ݄݁ݔி   ,,݈݀ܵ_ܣ݈݁ܽ݉݁ܨݒ
,

ൈ 200 ൌ  ி݈ܽݒ݅ݒݎݑܵ

 

Objective function: Final Income 

This is the function to optimize 

 ௌௗ,,,ௌ,݊݅ݐܿݑ݀ݎܲ݉ݎܽܨݒ
ௌௗ,,,ௌ,

ൈ ܿ݅ݎܲ ௌ݁ௗ

െ  ,ௌ,,,௩ܺݒ ൈ ,ூݐݏܥ ൈ ,ௌܣܥܶ
,ௌ,,,௩,ூ

 

െ  ிௗ,,,݁݃ܽݎܨݐݔܧݒ ൈ ிௗ݁ܿ݅ݎܲ݁݃ܽݎܨ
ிௗ,,,

െ  ௌௗ݊݅ݐ݉ݑݏ݊ܥ݂݈݁ܵ
ௌௗ

ൈ ܿ݅ݎܲ ௌ݁ௗ ൈ 3 

  ௧,,݊݅ݐܿݑ݀ݎܲ_ݐܶݒ ൈ ௧݁ܿ݅ݎܲ_݊݅ݐܿݑ݀ݎܲ
௧,,

െ  ,ݎݑܾܽܮݐݔܧݒ ൈ ݁ܿ݅ݎܲݎݑܾܽܮ
,

 

െሺܱ݀ݎ݄݁ݔி ൈ 3ሻ   ,,݈݀ܵ_ܣ݈݁ܽ݉݁ܨݒ
,,

ൈ 200 

ൌ  ݁݉ܿ݊ܫ݈ܽݐܶݒ
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Summary 

 
 

Conservation Agriculture (CA) is defined by three main principles: direct 

seeding, permanent soil cover, and crop diversification. CA is promoted as a 

promising technology in Africa, but to date, the extent of land under CA that fully 

complies with the three above principles is very limited. CA has both short and 

long term effects on crop productivity and sustainability as it modifies different 

agroecological functions. These functions are related to the quantity of biomass 

produced  by the crop and cover crop that is left on the ground as mulch. One of 

the main challenges in designing CA for smallholder farming systems in 

developing countries is competing uses of biomass, in particular for livestock 

feeding. The difficulty is thus linking the efficiency of agroecological functions to 

differing amounts of biomass to be exported, and evaluating the performance of 

cropping systems at farm level, i.e. the level the at which decisions are made. 

 

Our results showed that the application of the first CA principle (direct seeding) 

alone did not have a significant impact on cotton production in the Far North 

province of Cameroon as yields obtained under no till with or without mulch 

were not different from those with tillage (Chapter 2). The second principle (soil 

cover) produced higher yields with the no till system with mulch than without 

mulch. In the two provinces of Cameroon in which the tillage, no tillage, and no 

tillage with mulch systems were compared, there was a difference in soil cover, 

in the number of herbicide application, ridging, and the amount of nitrogen 

fertilizer used by farmers. In Far North Province, there was also a difference in 

the number of weedings and the date of the first weeding. In Far North 

Province, cotton yields were 12% lower with tillage and 24% lower with no 

tillage with no mulch than with no tillage with mulch. Cotton yields were 

regressed on crop husbandry indicators and the amount of inputs used. After 

manual backward removal in a multiple linear regression, no parameters were 

found to significantly influence yield for tillage, only one parameter for no tillage, 

the number of herbicide application used at sowing, and three parameters for 
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no tillage with mulch: difference between heavy clay and silty loam, application 

of NPK fertilizer, and sowing date. In North Province, no difference in cotton 

yield was observed between the three treatments. The flowering period was 

longer with no tillage with mulch than with no tillage in the Far North and North 

Provinces and with no tillage with mulch than with tillage in North Province, 

respectively 13, 9 and 8 days. The last principle (crop diversity) was 

implemented by planting a cover crop with cereals that doubled the quantity of 

aboveground biomass produced. The cereal management systems compared 

were conventional management and CA consisting in the production of mulch 

using cover crops (Brachiaria ruziziensis, Crotalaria retusa, Dolichos lablab, 

Mucuna pruriens, and Vigna unguiculata) intercropped with the cereal. In Far 

North Province, up to 9.7 t ha-1 of vegetative biomass was produced in CA plots 

with sorghum and cover crops compared to 4.8 t ha-1 for sorghum alone in 

conventional plots. In North Province maize + a cover crop produced up to 5.2 t 

ha-1 of biomass compared with 2.5 t ha-1 for maize alone. In both provinces, the 

cereal grain yields in CA plots were the same as or higher than yields in 

conventional plots. In 18 fields in Far North Province, the mulch remaining the 

year after sorghum + B. ruziziensis ranged between 3 t ha-1 and 5 t ha-1. 

Although we found that CA can have benefits at field level, our results indicated 

that further studies are needed to assess the suitability of CA at farm and village 

levels. 

 

The second principle of CA (soil cover) is closely linked with the third principle 

(crop diversity) (Chapter 3). The soil cover in rice fields grown under CA in the 

Alaotra region of Madagascar can vary considerably. Three different kinds of 

cropping systems were investigated in 91 farmers’ fields. The first two cropping 

sequences were applied in hillside fields: (i) maize + pulse (Vigna unguiculata 

or Dolichos lablab) in year 1, followed by upland rice in year 2; (ii) the second 

crop sequence included several years of Stylosanthes guianensis followed by 

upland rice; (iii) the third crop sequence was applied in lowland paddy fields: 

Vicia villosa or D. lablab, followed by rice in the same year and the same 
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sequence was repeated every year. The biomass available prior to rice sowing 

ranged from 3.6 t ha−1 with S. guianensis to 7.3 t ha−1 with V. villosa.  

We investigated the relationship between the quantity of biomass produced and 

that left on the soil as mulch and the soil cover this provides for a range of 

different crops and cover crops. The relationship between the quantity of mulch 

(M) and soil cover (C) was measured using digital imaging and was well 

described by the following equation: C = 1 − exp(−Am × M), where Am is an area-

to-mass ratio with R2 > 0.99 in all cases. 

We used these relationships to explore the variability of soil cover observed in 

farmers’ fields. The calculated average soil cover ranged from 56% for maize + 

V. unguiculata to to 97% for maize + V. villosa. Of course, whether the different 

agroecological functions of CA can be fulfilled depends on the amount of 

biomass produced, residue management, and the resulting soil cover. To 

maintain 90% soil cover at rice sowing, the average amount of biomass of V. 

villosa that could be removed was at least 3 t ha−1 for three quarters of the 

fields. Our study showed that under farmers’ conditions in Madagascar, the 

production and conservation of biomass is not always sufficient to fulfill all the 

agroecological functions of mulch. Furthermore, the thresholds vary depending 

on the function concerned. For example, partial removal of biomass to be used 

as forage may not reduce the effectiveness of the mulch in erosion control but 

the same amount of removal may markedly reduce its effectiveness in weed 

control.  

 

As the balance of potential benefits derived from removal of biomass for feed 

varies depending on farm constraints and goals, we modelled the potential 

benefits of aboveground biomass exported to feed cattle at farm level (Chapter 

4). We used Malagasy farms of different sizes to explore the relationships 

between raising dairy cows and CA. Our aim was to explore trade-offs and 

synergies between combinations of CA practices (different amounts of biomass 

exported) and the size of dairy cow herds (with animal production depending on 

biomass for feed). We applied constraints on the minimum soil cover (from 30% 

to 95) to be kept in CA fields at the end of each year.. We simulated two milk 
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market scenarios: a small milk market with a low price for forage and an open 

milk market with a higher price for forage. Three kinds of farms were simulated: 

medium-sized farms with mostly hillside fields, medium-sized farms with mostly 

paddy fields, and small farms with only hillside fields. Changing the percentage 

soil cover to be retained in CA plots did not significantly modify total farm net 

income, which was more influenced by the characteristics of the milk market. In 

the case of a limited milk market, it was not profitable for a farmer to have more 

than seven cows because the expenses involved were not compensated for by 

the sale of animal products. In most of the situations simulated with more than 

six/seven cows, the model chose to introduce CA cropping systems producing 

more forage on the hillsides if we allowed the model to implement CA with only 

30% of soil cover. Conversely when this constraint was set to 95%, the model 

chose not to implement CA on hillsides. In all the situations simulated with the 

maximum number of cows (12) it was possible to keep at least 50% of soil 

cover on 80% of the hillside fields. On the other hand, it was impossible to keep 

95% of soil cover when forage fetched a high price. Overall, CA systems can be 

profitable for dairy cow farmers due to the forage produced, although the milk 

market and hence the value of biomass for forage, has a major influence on the 

way CA can be implemented at field level. Even with a limited number of 

possible cropping activities (28) many different combinations of cropping 

systems are possible. In fact the total number of possible cropping activities 

even for one kind of field is very large when all possible crops and cover crops 

that can be grown are taken into consideration.  

 

This led us to explore the whole range of possible cropping systems for known 

field situations in Chapter 5. In this chapter the focus was on the third principle 

of CA (crop diversity). Our aim was to propose a method for designing CA 

cropping systems suitable for each of these situations. We formalized the 

hypothesis underlying the design, which was based on field characterisation, the 

choice of a cover crop for different types of fields, possible combinations of 

intercrops and crop sequences, and cover crops. This work demonstrates that 

even after applying agronomic rules, from a biophysical perspective, the 
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number of feasible cropping systems is still large. The number of cropping 

systems was then reduced to account for farmers’ preferences, goals, and 

constraints at farm level. The evaluation of cropping systems designed per se 

without reference to farm types, is not relevant for the real farming situation. 

Following the same reasoning and for each type of farm, the suitability of a 

cropping system should be considered in relation with other activities (crop, 

animal production and off-farm activities).  

 

If we assume that, in developing countries, the main factor determining the 

success of CA is competition for plant biomass for use as mulch or for cattle 

feed, then the benefits of leaving mulch on the soil surface have to be balanced 

against the use of biomass as feed. This balancing is done at farm level. The 

relationships between the quantity of mulch, the soil cover, and of the fulfilment 

of agroecological functions have only been partially characterized in developing 

countries. Further research is required to understand these relationships. 

Quantitative assessments are needed for new more appropriate systems to be 

designed. Such assessments are also needed to provide quantitative tools for 

development agents and for farmers on the trade-offs related to the use of 

biomass. 

 

We also call for a more rigorous description of cropping systems, technical 

management, residue management, and quantification of biomass production 

and of the mulch cover when reporting experiences concerning CA. This would 

give the scientific community a clearer view of the impacts and limitations of CA 

for smallholders as a function of different technical management options. In this 

way, we hope that the debate around the suitability of CA for developing 

countries could be based on shared views of the positive impacts and 

limitations rather than on ideological positions. 
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Samenvatting 

 
Conservation agriculture (CA) kent drie kernbeginselen: minimale 

bodemverstoring (oftewel geen grondbewerking en direct zaaien in smalle 

sleuven), permanente grondbedekking en diversificatie van gewassen. CA 

wordt gezien als een veelbelovende technologie voor Afrika. Echter, tot op 

heden is het landoppervlak waarop CA volledig volgens de drie bovenstaande 

beginselen wordt toegepast beperkt. CA heeft zowel korte als lange termijn 

effecten op de productiviteit en duurzaamheid van de teelt doordat het 

verschillende agro-ecologische functies modificeerd. Deze functies zijn 

gerelateerd aan de hoeveelheid biomassa die wordt geproduceerd door het 

gewas zelf en door de grondbedekker die op het veld achterblijft als mulch. Een 

van de belangrijkste uitdagingen bij het ontwikkelen van CA voor kleinschalige 

landbouwsystemen in ontwikkelingslanden is dat biomassa ook voor andere 

concurrerende doeleinden wordt gebruikt, zoals veevoeder. De moeilijkheid ligt 

dus in het leggen van verbanden tussen de efficientie van agro-ecologische 

functies en verschillende niveaus van biomassa ‘uitval’, en in het beoordelen 

van de prestaties van teeltsystemen op bedrijfsniveau, oftewel het niveau waar 

de beslissingen worden genomen.  

 

Onze bevindingen wezen uit dat toepassing van slechts het eerste CA-beginsel 

(direct zaaien) geen significante invloed had op de katoenproductie in de 

extreem-noordelijke provincie (‘Far North Province”) van Kameroen: de 

opbgrensten met en zonder mulch waren niet verschillend ongeacht het wel of 

niet bewerken van de grond (hoofdstuk 2). Het tweede beginsel 

(grondbedekking) leidde tot hogere opbrengsten zonder grondbewerking maar 

met mulch vergeleken met wanneer geen mulch werd toegepast. In de twee 

Kameroenese provincies waar de drie varianten werden vergeleken, namelijk 

ploegen, geen grondbewerking en geen grondbewerking met verschillende 

mulchsystemen, was er een verschil in grondbedekking, het aantal herbicide 

toepassingen, aanaarding en de hoeveelheid gebruikte stikstofkunstmest. In de 

extreem-noordelijke provincie varieerde ook het aantal keren dat onkruid 
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gewied werd en het tijdstip waarop de boer voor het eerst wiedde. In deze 

provincie waren de katoenopbrengsten 12% lager wanneer eerst werd 

geploegd, en 24% lager zonder ploegen en zonder mulch, vergeleken met 

situaties waarin de grond niet werd bewerkt maar wel werd gemulcht. We 

onderzochten de invloed van verschillende indicatoren voor gewasgerelateerde 

parktijken en de hoeveelheid gebruikte inputs op katoenopbrengsten. Na het 

één voor één handmatig verwijderen van niet-significante parameters in een 

meervoudige lineaire regressie, bleek dat geen enkele parameter de opbrengst 

bij eerst ploegen significant beïnvloedde, en slechts één parameter die bij geen 

grondbewerking - namelijk het aantal herbicide-toepassingen tijdens het zaaien. 

Bij geen grondbewerking maar met mulch, vonden we drie parameters die de 

opbrengst significant beinvloedden: de grondsoort - zware klei of leem, het 

gebruik van NPK kunstmest en de zaaitijd (datum). In de noordelijke provincie 

(“North Province”), vonden we geen verschil in katoenopbrengst tussen deze 

drie behandelmethoden. In de extreem-noordelijke en noordelijke provincies 

was de bloeiperiode langer bij geen grondbewerking met mulch dan bij geen 

grondbewerking alleen, respectievelijk 13 en 9 dagen. In de noordelijke 

provincie was de bloeiperiode ook langer bij geen grondbewerking met mulch 

dan bij ploegen alleen, respectivelijk 13 en 8 dagen. Het derde beginsel van 

CA, gewasdiversificatie, werd toegepast door middel van intercropping. Hierbij 

werd een grondbedekkend gewas afgewisseld met rijen van het hoofdgewas, in 

dit geval granen. In deze studie werden conventionele graanteeltsystemen 

vergeleken met CA waarbij grondbedekkende gewassen zoals Crotalaria 

Retusa, Dolichos Lablab, Mucuna Pruriens en Vigna Unguiculata werden 

geplant tussen de granen. In de extreem-noordelijke provincie leidde dit tot 

verdubbeling van de hoeveel geproduceerde bovengrondse biomassa. Op de 

CA-percelen waar sorghum samen met een grondbedekker geplant werd, was 

de opbrengst aan vegetatieve biomassa 9.7 ton per hectare, in vergelijking met 

4.8 ton voor alleen sorghum op conventionele percelen. In de noordelijke 

provincie bracht het planten van maïs met grondbedekkers 5.2 ton biomassa 

per hectare op, vergeleken met slechts 2.5 ton op percelen waar enkel maïs 

stond. In beide provincies was de graanopbrengst op de CA-percelen hetzelfde 
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of hoger dan op de conventionele percelen. Daarnaast bleef op 18 percelen in 

het extreme noorden, een jaar na het telen van sorghum samen met B. 

Ruziziensis, tussen de 3 en 5 ton per hectare mulch liggen. Hoewel we 

ondervonden dat CA voordelen biedt op veldniveau, maken deze resultaten ook 

duidelijk dat meer onderzoek nodig is naar de verdiensten van CA op de schaal 

van de boerderij of het dorp.  

 

Het tweede beginsel van CA (grondbedekking) is nauw verwant aan het derde, 

diversificatie van gewassen (hoofdstuk 3). De mate van grondbedekking in de 

rijstvelden van één van de grootste rijstproducerende regio's van Madagaskar, 

de Alaotra regio, varieert aanzienlijk. Drie verschillende teeltsystemen werden 

onderzocht op 91 velden; twee systemen werden toegepast op velden op de 

hellingen en één in de laagland rijstvelden. Op de hellingen waren dit : (i) maïs 

samen met peulvruchten (Vigna Unguiculata of Dolichos Lablab) in het eerste 

jaar gevolgd door hoogland rijst in het tweede jaar, (ii) Stylosanthes guianensis 

gedurende meerdere jaren, met daarna hoogland rijst. In de laagland rijstvelden 

werd (iii) Vicia villosa of D. Lablab gevolgd door rijst in hetzelfde jaar, en dit 

gedurende een aantal achtereenvolgende jaren herhaald. De biomassa voordat 

rijst gezaaid werd was 3.6 ton per hectare met S. Guianensis  en 7.3 ton met V. 

Villosa.  

We onderzochten de verhouding tussende hoeveel geproduceerde biomassa, 

de hoeveelheid die op het veld achter werd gelaten als mulch en de mate van 

grondbedekking dat dit opleverde voor verschillende graan- en 

grondbedekkende gewassen. De verhoudingen tussen de hoeveelheid mulch 

(M) en de mate van grondbedekking (C=”Coverage”) werd gemeten met “digital 

imaging” en werd goed beschreven met de volgende vergelijking: C = 1 − 

exp(−Am × M), waarbij Am de oppervlakte-tot-massa (Area-to-mass) verhouding is, 

met in alle gevallen R2 > 0.99.  

Aan de hand van deze verhoudingen onderzochten we de geobserveerde 

variabiliteit in mate van grondbedekking tussen verschillende percelen. De 

gemiddelde bedekking varieerde tussen 56% en 97% voor maïs samen met V. 

Unguiculata and V. Villosa, respectievelijk. In hoeverre de agro-ecologische 
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functies van CA vervuld kunnen worden hangt natuurlijk af van de hoeveelheid 

geproduceerde biomassa, het beheer van gewasresiduëen en de daaruit 

voortvloeiende bedekking van de grond. Om een grondbedekking van 90% te 

behouden tijdens het rijstzaaien kon in drie kwart van de velden gemiddeld 3 

ton per hectare aan V. Villosa biomassa worden verwijderd. Ons onderzoek laat 

zien dat onder de lokale omstandigheden voor boeren in Madagaskar, de 

productie en het behoud van biomassa niet altijd voldoende zijn om alle agro-

ecologische functies van mulch te vervullen. Bovendien varieren de 

drempelwaardes voor biomassa afhankelijk van de betreffende functie. 

Bijvoorbeeld, een gedeeltelijke verwijdering van biomassa voor veevoeder hoeft 

niet per se een negatieve invloed te hebben op de effectiviteit van mulch in 

erosiebestrijding. Echter, eenzelfde hoeveelheid verwijderde biomassa kan de 

effectiviteit van mulch voor onkruidbeheersing wél aanzienlijk aantasten.  

 

Aangezien de potentiële voordelen van het gebruik van biomassa als 

veevoeder varieeren naar gelang de beperkingen en doelen van het bedrijf, 

hebben we deze gemodelleerd op bedrijfschaal (Hoofdstuk 4). Hiervoor 

gebruikten we boerenbedrijfjes van verschillende groottes in Madagaskar. We 

wilden onderzoeken hoe verschillende combinaties van CA-praktijken (met 

verschillende mates van uitval van biomassa) zich verhouden tot de grootte van 

kuddes melkvee (waarbij dierlijke productie afhankelijk was van biomassa als 

veevoer). We bepaalden verschillende minimale percentages grondbedekking 

(van 30% tot 95%) die aan het einde van ieder jaar op de CA-velden moesten 

worden aangehouden. Daarnaast simuleerden we twee scenario's voor het 

vermarkten van melk: een beperkte melkmarkt met lage prijzen voor veevoeder, 

en een open melkmarkt met een hogere prijs voor veevoeder. Drie soorten 

boerenbedrijven werden gesimuleerd: middelgrote bedrijven op heuvelachtig 

terrein, middelgrote bedrijven met voornamelijk laaglandrijstvelden en kleine 

boerderijen met alleen velden op hellingen. De conclusie was dat het 

percentage te behouden grondbedekking in CA percelen geen invloed had op 

het totale netto bedrijfsinkomen. Dit inkomen werd meer beïnvloed door het 

type melkmarkt. In het geval van een gelimiteerde markt bleek het voor een 
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boer niet rendabel om meer dan zeven koeien te hebben, omdat de daarbij 

gemoeide kosten niet werden gecompenseerd door de verkoop van melk. In de 

meeste situaties waarbij meer dan zes/zeven koeien werd gesimuleerd, koos 

het model voor de introductie van CA-teeltsystemen die meer veevoeder op de 

hellingen genereerden mits we toestemming gaven voor slechts 30% 

grondbedekking. Wanneer we een minimum percentage van 95% oplegden, 

zag het model af van CA op hellingen. In alle simulaties met het maximaal 

aantal koeien (12) bleek het mogelijk om op 80% van de hellingvelden minstens 

50% grondbedekking te behouden. Anderzijds was het onmogelijk om 95% 

grondbedekking te behouden wanneer voedergewassen hoge prijzen haalden. 

Al met al kunnen CA systemen rendabel zijn voor melkveehouders, met name 

door het produceren van veevoeder, hoewel de melkmarkt en dus de waarde 

van biomassa voor voer, een sterke weerslag heeft op de manier waarop CA 

kan worden geimplementeerd op veldniveau. Zelfs met een beperkt aantal 

mogelijke teeltactiviteiten (28), zijn er vele mogelijke combinaties van 

teeltsystemen. Alle hoofd- en grondbedekkendegewassen in aanmerking 

nemende, levert dit talrijke mogelijke combinaties van teeltactiviteiten op, zelfs 

voor maar één type veld.  

 

Dit bracht ons ertoe om in Hoofdstuk 5 het gehele scala aan mogelijke 

teeltsysteem te verkennen voor bekende veldsituaties. In dit hoofdstuk ligt de 

nadruk op het derde beginsel van CA; diversiteit van gewassen. Ons doel was 

om een methode te ontwikkelen om CA-teeltsystemen te ontwikkelen die 

geschikt waren voor elk van deze situaties. We formaliseerden de hypothese 

die aan het ontwerp ten grondslag lag. Deze was gebaseerd op 

veldkarakterisatie, de keuze van een grondbedekkend gewas voor 

verschillende veldtypes (hellingen, laagland), mogelijke combinaties van 

gewassen en gewasvolgordes, en grondbedekkende gewassen. Deze activiteit 

toonde aan dat zelfs na het toepassen van agronomische regels het aantal 

haalbare teeltsystemen, vanuit biofysisch perspectief, nog steeds erg groot is. 

Daarop hebben we het aantal teeltsystemen verminderd naar gelang de 

voorkeur van boeren, alsmede naar gelang hun bedrijfsdoelstellingen en -



Samenvatting 
 

198 

beperkingen. Immers, de evaluatie van teeltsystemen zonder referentie naar 

bedrijfstype is niet relevant voor echte boerenbedrijfssituaties. Vanuit dezelfde 

redenering, en voor elk type bedrijf, moet de geschiktheid van een teeltsysteem 

worden overwogen in relatie tot de overige activiteiten van de kleine boer (teelt-, 

veehouderij en niet-agrarische activiteiten). 

 

Als we aannemen dat concurrerend gebruik vanplantaardige biomassa als 

mulch en als veevoeder de belangrijkste factor voor het wel of niet slagen van 

Conservation Agriculture is in ontwikkelingslanden, dan moeten we de 

voordelen van het gebruik van mulch als grondbedekking afgewegen tegen het 

gebruik ervan als veevoeder. Deze afweging wordt gemaakt op bedrijfsniveau. 

De verhoudingen tussen de hoeveelheid mulch, de bedekking van de grond, en 

het vervullen van agro-ecologische functies zijn nog deels onderbelicht in 

ontwikkelingslanden. Om deze verhoudingen beter te begrijpen is meer 

onderzoek nodig. Kwantitatieve evaluaties zijn nodig om geschikte en beter 

aangepaste teeltsystemen te kunnen ontwerpen. Zulke evaluaties zijn tevens 

nodig om aan ontwikkelingswerkers en boeren kwantitatieve meetinstrumenten 

te leveren die de trade-offs rond het gebruik van biomassa duidelijker in kaart te 

brengen. 

 

We roepen tevens op tot meer diepgaande beschrijvingen van teeltsystemen, 

technisch management, het beheer van gewasresiduëen en de kwantificatie 

van biomassaproductie en van de mulchbedekking bij het rapporteren van 

ervaringen met CA. Dit zou de wetenschappelijke gemeenschap een duidelijker 

beeld verschaffen van zowel de impacts en beperkingen van CA voor kleine 

boeren, als een functie van verschillende technische management opties. 

Hierdoor hopen we dat het debat rond de geschiktheid van CA voor 

ontwikkelingslanden meer gestoeld zal zijn op gedeelde opvattingen over de 

meerwaardes en beperkingen van CA, in plaats van op ideologische posities. 
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Résumé 

 

L’agriculture de conservation (AC) est définie par trois principes : semis direct, 

couverture organique permanente du sol et diversification végétale. L’AC 

impacte différentes fonctions agro-écologiques des systèmes de culture, elle a 

à la fois des effets à court et à long terme sur la productivité et la durabilité des 

cultures. Ces effets sont notamment liés à la quantité de biomasse produite et 

laissée sur le sol par les cultures et les plantes de couverture. La compétition 

pour cette biomasse, en particulier pour l’alimentation des animaux, constitue 

l’une des principales données à prendre en compte dans la construction de 

nouveaux systèmes de culture. Toutefois, il est encore difficile de lier l’efficacité 

des fonctions agro-écologiques à des niveaux d’exportation de la biomasse. 

 

Dans le chapitre 2 nous avons étudié l’application du premier (semis direct) et 

du deuxième (couvert permanent) principes de l’AC en comparant 3 traitements 

(semis direct sans mulch, semis direct avec mulch et labour) dans deux 

provinces du Cameroun : Nord et Extrême Nord. En comparant ces 3 

techniques mises en œuvre par des paysans, nous avons pu mettre évidence 

des différences dans les trois itinéraires techniques concernant la couverture du 

sol, le nombre d’applications d’herbicide et la quantité d’azote utilisée. Dans 

l’extrême Nord, il y a également une différence sur la date du premier sarclage. 

Toujours dans l’extrême Nord, les rendements en coton sont inférieurs de 12 % 

avec labour, de 24 % en semis direct sans mulch par rapport au semis direct 

avec mulch. Nous avons cherché l’impact de l’itinéraire technique sur les 

rendements en coton à l’aide de régressions linéaires. Dans les parcelles 

labourées, aucune relation significative n’a pu être mise en évidence. Dans les 

parcelles en semis direct sans mulch, seul le nombre d’applications d’herbicide 

au semis a pu être relié au rendement. Enfin, pour le traitement semis direct 

avec mulch, les paramètres significativement liés aux rendements sont la 

quantité de NPK utilisée, la date de semis et la différence entre les parcelles 

argileuses et limoneuses. Dans la province du Nord, le rendement ne diffère 

pas entre les 3 types de gestion du sol. Enfin, la période de floraison a été plus 
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longue pour le traitement semis direct avec mulch que pour le traitement semis 

direct dans l’extrême Nord et le Nord : elles sont respectivement de 13 et 9 

jours. On constate une différence analogue entre le traitement semis direct 

avec mulch et traitement labour dans le Nord, la période de floraison étant 

respectivement de 9 et 8 jours. Le dernier principe de l’AC a été mis en œuvre 

en installant une plante de couverture dans la céréale, ce qui a permis de 

doubler la production de biomasse aérienne. Les deux types de traitement 

comparés pour les céréales étaient la culture conventionnelle (céréales 

maïs/sorgho) seule et les céréales cultivées en AC, c'est-à-dire associées avec 

une plante de couverture (Brachiaria ruziziensis, Crotalaria retusa, Dolichos 

lablab, Mucuna pruriens, ou Vigna unguiculata). Dans l’extrême Nord, 9.7 t/ha 

de biomasse ont pu être produites avec du sorgho associé alors que la 

biomasse était de 4.8 t/ha pour du sorgho seul dans les parcelles 

conventionnelles. Dans la province du Nord, l’association du maïs avec des 

plantes de couverture permet de produire 5.2 t/ha de biomasse contre 2.5 t/ha 

avec le maïs seul. Dans les deux provinces, le rendement en céréales était 

équivalent ou supérieur pour les céréales associées comparées aux céréales 

seules. Dans 18 champs de l’extrême Nord, la quantité de mulch de sorgho + 

B. ruziziensis restante après la saison sèche allait de 3 t ha-1 à 5 t ha-1. Même si 

l’AC a montré des avantages à l’échelle parcelle, nos résultats indiquent que 

des études complémentaires sont nécessaires pour s’assurer de la faisabilité 

de l’AC à l’échelle exploitation et village. 

 

Le deuxième principe de l’AC (couverture du sol) est étroitement lié au 

troisième principe (diversification végétale) (Chapitre 3). La couverture du sol 

dans les champs cultivés en AC dans la région du lac Alaotra à Madagascar 

peut varier considérablement. Trois systèmes de culture différents ont été 

étudiés au travers de 91 champs paysans. Les deux premiers systèmes 

concernaient les parcelles pluviales : (i) maïs + légumineuses volubiles (Vigna 

unguiculata ou Dolichos lablab) en année 1, suivi par du riz pluvial en année 2, 

(ii) le deuxième système de culture incluait plusieurs années de Stylosanthes 

guianensis suivi de riz pluvial; (iii) le troisième système de culture concernait les 
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rizières : en saison des pluies, du riz a été semé suivi de Vicia villosa or D. 

lablab en contre saison. La même succession a été répétée chaque année. La 

biomasse disponible avant le semis s’étalait de 3.6 t ha−1 avec S. guianensis à 

7.3 t ha−1 avec V. villosa. Nous avons cherché à établir la relation entre la 

quantité de biomasse au sol et la couverture du sol correspondante pour 

différentes cultures et plantes de couverture. La relation en quantité de mulch 

(M) et couverture du sol (C) a été mesurée grâce à des analyses d’images, elle 

est bien décrire par l’équation  C = 1 − exp(−Am × M), ou Am est le ratio aire/masse 

avec un  R2 > 0.99 dans tous les cas mesurés. Nous avons utilisé cette relation 

pour explorer la variabilité de couverture du sol observée dans les champs 

paysans. La couverture moyenne calculée s’étale de 56% pour maïs + V. 

unguiculata à 97% pour maïs + V. villosa. Bien sûr, les fonctions agro-

écologiques de l’AC s’expriment ou pas en fonction de la quantité de biomasse 

produite, du mode de gestion des résidus et de la couverture du sol résultante. 

Pour maintenir 90 % de couverture du sol au semis du riz, la quantité de 

biomasse de V. villosa  qui peut être prélevée s’élève à 3 t/ha pour ¾ des 

champs. Notre étude a montré que dans les conditions paysannes à 

Madagascar, la production et la conservation de biomasse n’étaient pas 

toujours suffisantes pour remplir toutes les fonctions agro-écologiques du 

mulch. De plus, les seuils d’exportation tolérables varient selon les fonctions 

concernées. Par exemple, une exportation partielle de la biomasse peut ne pas 

avoir d’impact sur l’efficacité du contrôle de l’érosion, mais peut réduire 

notablement l’efficacité de contrôle des adventices.  

 

L’équilibre entre les bénéfices potentiels de l’utilisation de la biomasse pour 

nourrir des animaux dépend des objectifs et contraintes des exploitants. Nous 

avons donc modélisé les bénéfices potentiels de l’exportation de biomasse des 

champs à l’échelle de l’exploitation (Chapitre 4). Nous avons effectué nos 

simulations pour des fermes de tailles différentes. Notre objectif était d’explorer 

les compromis et synergies entre différents modes de gestion de l’AC (plus ou 

moins d’exportation de biomasse) et les tailles du troupeau de vaches laitières. 

Nous avons appliqué des contraintes de couverture minimum du sol (30 à 95%) 
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à garder dans les champs en AC avant chaque nouvelle saison culturale. Nous 

avons simulé deux types de marchés du lait : un marché réduit avec un prix 

réduit du fourrage et un prix élevé du lait et un marché ouvert du lait avec des 

prix élevés du fourrage et des prix réduits pour le lait. Trois types de fermes ont 

été modélisées : taille moyenne avec principalement des parcelles pluviales sur 

colline, taille moyenne avec des rizières et petite taille avec principalement des 

parcelles pluviales sur colline. Le revenu net total de l’exploitation varie peu 

quand on fait varier la couverture du sol à conserver et donc la quantité de 

biomasse exportable. Ce revenu est plus influencé par les caractéristiques du 

marché du lait. Dans le cas d’un marché limité, il n’est pas profitable pour les 

paysans d’avoir plus de 7 vaches car les dépenses ne sont pas compensées 

par la vente des produits animaux. Pour la plupart des situations que nous 

avons simulées, au delà de 6/7 vaches le modèle choisit d’introduire l’AC pour 

produire du fourrage sur les collines, mais ceci uniquement si on l’autorise à 

pratiquer l’AC avec seulement 30 % de couverture du sol. A l’inverse, quand 

cette contrainte est établie à 95 %, le modèle choisit de ne pas réaliser de l’AC 

sur les collines. Dans toutes les situations simulées avec le nombre maximum 

de vaches (12), il a été possible de garder au moins 50 % de couverture du sol 

sur 80 % des champs de collines. Au final l’AC, peut être profitable pour les 

éleveurs laitiers grâce au fourrage produit. Le marché du lait et donc la valeur 

de la biomasse comme fourrage a une influence majeure sur la façon dont l’AC 

peut être réalisée à l’échelle du champ.  

 

Même avec un nombre réduit de cultures disponibles (28), des milliards de 

successions différentes sont possibles. Cela nous a conduit à explorer 

l’étendue des systèmes de culture possibles pour des situations bio-physiques 

données (chapitre 5). Dans ce chapitre, nous nous sommes intéressés plus 

particulièrement au troisième principe de l’AC (la diversification végétale). Notre 

objectif était de proposer une méthode pour la création de systèmes de culture 

adaptés à différentes situations. Nous avons formalisé les hypothèses 

mobilisées lors de cette création, elles sont basées sur la caractérisation des 

champs, le choix d’une plante de couverture adaptée aux situations 
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biophysiques, les combinaisons de plantes en inter-culture et rotation. Ce travail 

montre que même en ayant appliqué des règles agronomiques ne se basant 

que sur des critères biophysiques, le nombre de systèmes de culture 

potentiellement faisables reste élevé. Le nombre de systèmes de culture peut 

être réduit en prenant en compte les préférences des paysans, leurs objectifs et 

leurs contraintes. L’évaluation des systèmes de culture per se, sans références 

aux types de ferme, n’est donc pas pertinente. En suivant le même 

raisonnement et pour chaque type de ferme, le choix des systèmes de culture 

doit se faire en relation avec d’autres activités (production animale, activités 

extra-agricoles). 

 

Dans les pays en voie de développement, le principal facteur qui détermine le 

succès de l’AC est très souvent la compétition pour l’utilisation de la biomasse 

pour nourrir les animaux. Les bénéfices obtenus en laissant le mulch sur le sol 

doivent donc en permanence être mis en balance avec les bénéfices potentiels 

obtenus en utilisant la biomasse comme fourrage. Cet équilibre doit être 

envisagé à l’échelle de la ferme. La relation entre la quantité de mulch, la 

couverture du sol et les fonctions agro-écologiques n’a été que partiellement 

établie dans ces pays. Des recherches complémentaires sont nécessaires pour 

mieux établir ces relations. La quantification de ces fonctions, des seuils et des 

relations est nécessaire pour aider à la conception et à la gestion technique de 

nouveaux systèmes de culture. 

Nous appelons également à une description plus rigoureuse des systèmes de 

culture, des modes de gestion, de la production de biomasse et du mulch 

quand il s’agit de rapporter des expérimentations concernant l’AC. Cela 

permettra de donner à la communauté scientifique un meilleur aperçu des 

impacts et limitations de l’AC pour les petits paysans. Nous espérons ainsi que 

le débat au sujet de l’adaptation de l’AC pour les pays en voie de 

développement se fondera davantage sur l’analyse des effets positifs et 

négatifs de l’AC, et moins sur des positions idéologiques a priori. 
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- Direct-seeding Mulch-based cropping system (DMC) design and optimization 
of farm plans; cases studies in Cameroon and Madagascar (2009) 

 
Post-graduate courses (7.5 ECTS) 

- The art of modelling; WUR (2008) 
- QUALUS, Quantitative Analysis of Land Use Systems; WUR (2010) 

 

Laboratory training and working visits (3 ECTS) 

- Dairy cows nutrition and forage, redaction of a technical manual with a group 
of Malagasy and French researcher and practitioners; CIRAD Pôle élevage, La 
Réunion island, France (2007) 

- Use of inter specific plant diversification for pest and disease control, 
laboratory, field visit and scientific meeting; CIRAD La Martinique Island, 
France (2009) 
 

Invited review of (unpublished) journal manuscript (1 ECTS) 

- Crop Protection: CA and weed control (2010) 
 

Deficiency, refresh, brush-up courses (3 ECTS) 

- Optimization using GAMS; CIRAD-WUR, Montpellier, France (2007) 
- Creation and use of an Access database; CIRAD, Antananarivo, Madagascar 

(2010) 
- Creation and use of an Access database; CIRAD, Montpellier (2011) 
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Competence strengthening / skills courses (4.5 ECTS)  

- Scientific writing and communication; Antananarivo, Madagascar; CIRAD 
(2006) 

- Soil carbon dynamic in CA cropping system, course, laboratory and field 
investigation; Ponta Grossa University, Brazil (2007) 
 

Discussion groups / local seminars / other scientific meetings (7 ECTS) 
- Annual meeting of the “Omega 3 project “ of CIRAD; Antsirabe, Madagascar 

(2010) 
- Annual meeting of the “Pepites” project; Antsirabe, Madagascar (2011) 
- Annual meeting of the “SCRID” research unit; Antanarivo, Madagascar (2008-

2012) 
  

International symposia, workshops and conferences (8.4 ECTS) 
- 3rd International congress on conservation agriculture; Naϊrobi, Kenya (2005) 
- Regional seminar on CA for savanna area; Garoua, Cameroon (2007) 
- International symposium on soil and CA; Antananarivo, Madagascar (2008) 
- 5th International congress on conservation agriculture; Brisbane, Australia 

(2011) 
 

Supervision of 8 MSc students (4.5 ECTS) 
- Andraiamasinoro, Lalaina Herinaina: biomass production in conservation 

agriculture cropping system (2009) 
- Rakotosolofo, Mirana: biomass production in conservation agriculture cropping 

system (2009) 
- Bruelle, Guillaume: farm modelling (2010) 
- Andriamampandry, Ruffin: Biomass production in conservation agriculture 

cropping systems (2010) 
- Niovotiana, Ravaosolo Marie Agnès: Comparison of soil management 

techniques in controlled experimental fields (2010) 
- Van Hulst, Freddy: biomass production in conservation agriculture cropping 

systems (2011)  
- Irintsoa , Laingo: impact of conservation agriculture cropping system on weed 

control (2011) 
- Rakotomalala, Andriamarosata Joël: impact of conservation agriculture 

cropping system on weed control (2012) 
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Curriculum vitae 

Krishna Naudin was born in 1973 in Paris but grew up in Lozère a rural 

department in France. After completing his secondary education in 1991 in the 

local high school of Mende, he decided to follow his passion for biology at 

Montpellier University. During these years he developed the idea that he would 

like use his knowledge to the benefit of developing countries. For his first 

training period he went for the first time to Africa. He worked at the IRD (Institut 

de Recherche pour le Développement) in Dakar on a key mechanism for 

ecological intensification of agriculture: biological N2 fixation. He graduated with 

a four year university degree “maitrise” in applied plant physiology in 1995. 

Mindful that knowledge in biological science is not sufficient to have an impact 

on rural development issues, he decided to pursue three further years of study 

to expand his expertise. First at the ENSAIA in Nancy (École Nationale 

Supérieure d'Agronomie et des Industries AlimentairesI) to obtain a fifth year 

university degree in ”agronomic science” and further at the IRC (Institut des 

Régions Chaudes) in Montpellier to obtain a master degree in “rural 

development”. During these years he did his training period first in Montpellier, 

then in Madagascar and finally he did a master’s thesis in North Vietnam on 

“alternative cropping systems to slash and burn”. After his graduation in 1999 

he spent 15 months in Phnom Penh (Cambodia) working on the other side of 

rural development: financing. He worked for a funding agency: the AFD 

(Agence Française de Développement), on rural development project design, 

evaluation and reporting. Then he was hired by CIRAD and worked in North 

Cameroon from 2001 to 2005. He worked in a project of the state cotton 

company (Sodécoton) focusing on soil fertility improvement and farmers’ 

capacity building. He was in charge of testing the potential of conservation 

agriculture (CA) to improve cotton and cereal production sustainably. In 2004 

Eric Scopel went for a mission in North Cameroon, at this occasion the idea of a 

PhD on CA cropping design was born. In 2005 Krishna went to Madagascar, 

the first two years he worked for the NGO TAFA in relation with development 
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project to develop CA cropping systems. Then he worked in a mixed research 

team between CIRAD, FOFIFA (national agronomic research institute) in 

Madagascar and Antananarivo University called SCRID working on sustainable 

rice based cropping system. In 2006 Marco Wopereis, who was then head of 

the annual crops department of CIRAD, introduced him to Ken Giller who 

accepted to be his thesis supervisor. The thesis work began at the end of year 

2007. Krishna is still in Madagascar up to mid-2013 before he will return to the 

CIRAD headquarters in Montpellier.   
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Peer-reviewed Journal Article with Impact Factor 
Tittonell P., Scopel E., Andrieu N., Posthumus H., Mapfumo P., Corbeels M., 

Van Halsema G., Lahmar R., Lugandu S., Rakotoarisoa J., Mtambanengwe 
F., Pound B., Chikowo R., Naudin K., Triomphe B., Mkomwa S. 2012. 
Agroecology-based aggradation-conservation agriculture (ABACO): 
Targeting innovations to combat soil degradation and food insecurity in 
semi-arid Africa. Field Crops Research, 132 : 168-174.  

Naudin K., Scopel E., Andriamandroso A.L.H., Rakotosolofo M., 
Andriamarosoa Ratsimnazafy Ny Riana Solomalala, Rakotozandriny J.D.N., 
Salgado P., Giller K.E. 2012. Trade-offs between biomass use and soil 
cover. The case of rice-based cropping systems in the Lake Alaotra Region 
of Madagascar. Experimental Agriculture, 48 (2) : 194-209. 

Naudin K., Gozé E., Balarabe O., Giller K.E., Scopel E. 2010. Impact of no 
tillage and mulching practices on cotton production in North Cameroon: A 
multi-locational on-farm assessment. Soil and Tillage Research, 108 (1-2) : 
68-76.  

Brévault T., Guibert H., Naudin K. 2009. Preliminary studies of pest constraints 
to cotton seedlings in a direct seeding mulch-based system in Cameroon. 
Experimental Agriculture, 45 (1) : 25-33.  

Brévault T., Bikay S., Maldes J.M., Naudin K. 2007. Impact of a no-till with 
mulch soil management strategy on soil macrofauna communities in a cotton 
cropping system. Soil and Tillage Research, 97 : 140-149.  

 
Peer-reviewed Journal Article without Impact Factor 
Husson O., Castella J.C., Ha Dinh Tuan, Naudin K. 2004. Diagnostic 

agronomique des facteurs limitant le rendement du riz pluvial de montagne 
dans le nord du Vietnam = Agronomic diagnosis of factors limiting upland 
rice yield in mountainous areas of Northern Vietnam. Cahiers Agricultures, 
13 (5) : 421-428. 

 
Non peer-reviewed Journal Article 
Naudin K., Bikay S., Maldes J.M., Brévault T. 2008. Impacts des SCV sur la 

macrofaune, cas du coton au Nord Cameroun. Terre malgache (26) (spec.) : 
149-151 Séminaire International Les sols tropicaux en semis-direct sous 
couvertures végétales , 2007-12-03/2007-12-08, Antananarivo, Madagascar. 

Soutou G., Naudin K., Balarabe O., Adoum O., Scopel E. 2008. Effet du semis 
sous couvert végétal sur l’infiltration, le ruissellement et simulation du bilan 
hydrique dans les systèmes de culture à base de coton au Nord Cameroun. 
Terre malgache (26) (spec.) : 177-179 Séminaire International Les sols 
tropicaux en semis-direct sous couvertures végétales , 2007-12-03/2007-12-
08, Antananarivo, Madagascar 
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Booklet 
Raunet M., Naudin K., Bied-Charreton M., Husson O., Séguy L. 2006. Lutte 

contre la désertification : l'apport d'une agriculture en semis direct sur 
couverture végétale permanente (SCV). Montpellier : Agropolis international, 
39 p.. (Les dossiers thématiques : CSFD, 4). 
http://www.agropolis.fr/pdf/CSFD/CSFD_dossier_4.pdf 

 
Book Chapter in technical manuals 
Rasamizafimanantsoa A.H., Rakotonirainy H.J., Randrianaivoarivony J.M., 

Rahetlah B.V., Razafimpamoa H.L., Razanamparany C., Narcisse M., 
Michellon R., Rakotondramanana, Husson O., Lecomte P., Naudin K., 
Tillard E., Randrianasolo J., Séguy L., Thomas P., et al. 2008. Conduite des 
systèmes de culture sur couverts végétaux et affouragement des vaches 
laitières : guide pour les Hautes Terres de Madagascar. La Plaine des 
Cafres : ARP, 90 p. 

Husson O., Charpentier H., Chabaud F.X., Naudin K., Rakotondramanana, 
Séguy L. 2010. Flore des jachères et adventices des cultures Annexe1 : les 
principales plantes de jachères et adventices des cultures à Madagascar. In 
: CIRAD. Manuel pratique du semis direct à Madagascar. Annexe 1 . 
Anatnanarivo : CIRAD, 64 p. 

Husson O., Charpentier H., Razanamparany C., Moussa N., Michellon R., 
Naudin K., Razafintsalama H., Rakotoarinivo C., Rakotondramanana, 
Enjalric F., Séguy L. 2010. Maïs ou sorgho associé à une légumineuse 
alimentaire volubile (Dolique, Niébé ou Vigna umbellata). In : CIRAD. 
Manuel pratique du semis direct à Madagascar. Volume V . Antananarivo : 
CIRAD, 20 p.  

Husson O., Charpentier H., Naudin K., Moussa N., Michellon R., Andrianasolo 
H.M., Razanamparany C., Rakotoarinivo C., Rakotondramanana, Enjalric F., 
Séguy L. 2009. Le choix des itinéraires techniques : Chapitre 2. La mise en 
place de systèmes de culture en semis direct. In : CIRAD. Manuel pratique 
du semis direct à Madagascar. Volume II . Antananarivo : CIRAD, 76 p. 

Husson O., Charpentier H., Naudin K., Razanamparany C., Moussa N., 
Michellon R., Andrianasolo H.M., Razafintsalama H., Rakotoarinivo C., 
Rakotondramanana, Séguy L. 2009. Le choix des cultures, associations et 
successions adaptées aux contraintes agro-climatiques : Chapitre 1. La 
mise en place de systèmes de culture en semis direct. In : CIRAD. Manuel 
pratique du semis direct à Madagascar. Volume II . Antananarivo : CIRAD, 
24 p. 

Husson O., Charpentier H., Naudin K., Razanamparany C., Moussa N., 
Michellon R., Razafintsalama H., Rakotoarinivo C., Rakotondramanana, 
Enjalric F., Séguy L. 2009. Comment proposer des systèmes de culture en 
semis direct sur couverture végétale permanente adaptés aux besoins et 
contraintes des agriculteurs : Chapitre 3. La mise en place de systèmes de 
culture en semis direct. In : CIRAD. Manuel pratique du semis direct à 
Madagascar. Volume II . Antananarivo : CIRAD, 20 p. 
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Séguy L., Husson O., Charpentier H., Bouzinac S., Michellon R., Chabanne A., 
Boulakia S., Tivet F., Naudin K., Enjalric F., Ramaroson I., 
Rakotondramanana. 2009. Principes et fonctionnement des écosystèmes 
cultivés en semis direct sur couverture végétale permanente. In : CIRAD. 
Manuel pratique du semis direct à Madagascar. Volume I . Antananarivo : 
CIRAD, 32 p. 

Séguy L., Husson O., Charpentier H., Bouzinac S., Michellon R., Chabanne A., 
Boulakia S., Tivet F., Naudin K., Enjalric F., Chabierski S., 
Rakotondralambo P., Rakotondramanana. 2009. La gestion des 
écosystèmes cultivés en semis direct sur couverture végétale permanente : 
Chapitre 2. Principes et intérêts du semis direct. In : CIRAD. Manuel 
pratique du semis direct à Madagascar. Volume I . Antananarivo : CIRAD, 
32 p. 

Husson O., Charpentier H., Razanamparany C., Moussa N., Michellon R., 
Naudin K., Rakotoarinivo C., Rakotondramanana, Séguy L. 2008. 
Stylosanthes guianensis : Chapitre 3.2.1. Fiches techniques plantes de 
couverture : légumineuses pérennes. In : CIRAD. Manuel pratique du semis 
direct à Madagascar. Volume III . Antananarivo : CIRAD, 12 p. 

Husson O., Charpentier H., Razanamparany C., Moussa N., Michellon R., 
Naudin K., Razafintsalama H., Rakotoarinivo C., Rakotondramanana, 
Séguy L. 2008. Chapitre 3.4.1. Fiches techniques plantes de couverture : 
légumineuses pérennes, Brachiaria sp : B. ruziziensis, B. brizantha, B. 
decumbens, B. humidicola. In : CIRAD. Manuel pratique du semis direct à 
Madagascar. Volume III . Antananarivo : CIRAD, 20 p. 

Husson O., Charpentier H., Razanamparany C., Moussa N., Michellon R., 
Naudin K., Rakotoarinivo C., Rakotondramanana, Séguy L. 2008. Vesce 
velue : Vicia villosa : Chapitre 3.1.1. Fiches techniques plantes de 
couverture : légumineuses annuelles. In : CIRAD. Manuel pratique du semis 
direct à Madagascar. Volume III . Antananarivo : CIRAD, 12 p. 

 
Conference Paper 
Michellon R., Husson O., Moussa N., Randrianjafizanaka M.T., Naudin K., 

Letourmy P., Andrianaivo A.P., Rakotondramanana, Raveloarijoana N., 
Enjalric F., Penot E., Séguy L. 2011. Striga asiatica: a driving-force for 
dissemination of conservation agriculture systems based on Stylosanthes 
guianensis in Madagascar. In : 5th World Congress of Conservation 
Agriculture (WCCA) incorporating 3rd Farming System Design Conference, 
Brisbane, Australia, 26-29 september, 2011. Resilient food systems for a 
changing world . s.l. : s.n., p. 213-214 World Congress of Conservation 
Agriculture. 5, 2011-09-26/2011-09-29, Brisbane, Australia. 

Naudin K., Scopel E., Husson O., Auzoux S., Penot E., Giller K.E. 2011. 
Prototyping rotation and association with cover crop and no till. In : 5th World 
Congress of Conservation Agriculture (WCCA) incorporating 3rd Farming 
System Design Conference, Brisbane, Australia, 26-29 september, 2011. 
Resilient food systems for a changing world . s.l. : s.n., p. 485-487 World 
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Congress of Conservation Agriculture. 5, 2011-09-26/2011-09-29, Brisbane, 
Australia. 

Randriamanantsoa R., Quaranta B., Aberlenc H.P., Rafamatanantsoa E., 
Naudin K., Ratnadass A., Vercambre B. 2011. Diversité et gestion des vers 
blancs (coléoptère, Scarabaeoidea) en riziculture pluviale sur les Hautes 
Terres malgaches. Journée de l'Académie d'agriculture de Madagascar sur 
le riz, Antananarivo, Madagascar, 16 juin 2011. s.l. : s.n., [8] p. Journée de 
l'Académie d'agriculture de Madagascar sur le riz, 2011-06-16, 
Antananarivo, Madagascar. 

Van Hulst F., Naudin K., Domas R., De Graaff J., Visser S., Scopel E. 2011. 
Conservation agriculture potential effects on soil erosion for rainfed crops in 
the Lake Alaotra region in Madagascar. In : 5th World Congress of 
Conservation Agriculture (WCCA) incorporating 3rd Farming System Design 
Conference, Brisbane, Australia, 26-29 september, 2011. Resilient food 
systems for a changing world . s.l. : s.n., p. 155-156 World Congress of 
Conservation Agriculture. 5, 2011-09-26/2011-09-29, Brisbane, Australia. 

Rabary B., Naudin K., Letourmy P., Mze Hassani I., Randriamanantsoa R., 
Michellon R., Rafarasoa L.S., Ratnadass A. 2011. White grubs, 
Scarabaeidae larvae (Insecta, Coleoptera) control by plants in conservation 
agriculture: effects on macrofauna diversity. In : 5th World Congress of 
Conservation Agriculture (WCCA) incorporating 3rd Farming System Design 
Conference, Brisbane, Australia, 26-29 september, 2011. Resilient food 
systems for a changing world . s.l. : s.n., p. 149-150 World Congress of 
Conservation Agriculture. 5, 2011-09-26/2011-09-29, Brisbane, Australia. 

Naudin K., Quaranta B., Husson O., Randriamanantsoa R., Rabary B., 
Rafarasoa L.S., Michellon R., Fernandes P., Ratnadass A. 2011. Candidate 
plants to help soil pest control in conservation agriculture: potential effects of 
21 species used as cover crops in Madagascar. In : 5th World Congress of 
Conservation Agriculture (WCCA) incorporating 3rd Farming System Design 
Conference, Brisbane, Australia, 26-29 september, 2011. Resilient food 
systems for a changing world . s.l. : s.n., p. 411-412 World Congress of 
Conservation Agriculture. 5, 2011-09-26/2011-09-29, Brisbane, Australia. 

Naudin K., Bruelle G., Salgado P., Penot E., Scopel E., Lubbers M., De Ridder 
N., Giller K.E. 2011. Assessment of tradeoffs for biomass uses between 
livestock and soil cover at farm level. In : 5th World Congress of 
Conservation Agriculture (WCCA) incorporating 3rd Farming System Design 
Conference, Brisbane, Australia, 26-29 september, 2011. Resilient food 
systems for a changing world . s.l. : s.n., p. 237-239 World Congress of 
Conservation Agriculture. 5, 2011-09-26/2011-09-29, Brisbane, Australia. 

Balarabe O., Abou Abba A., Olivier D., Naudin K. 2010. Structured or 
spontaneous dissemination of DMC techniques in small-scale cotton-base 
agriculture ? The northern Cameroon case study. In : Chanphengxay 
Monthathip B. (ed.), Khamhung Anonth (ed.), Panysiri Khamkéo (ed.), 
Chabanne André (ed.), Julien Frédéric (ed.), Tran Quoc Hoa (ed.), Lienhard 
Pascal (ed.), Tivet Florent (ed.). Investing in sustainable agriculture : the 
case of conservation agriculture and direct seeding mulch-based cropping 
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systems. Proceedings of the Regional Workshop held in Phonsavan, Xieng 
Khouang Province, Lao PDR, 28th October - 1st November 2008. Vientiane 
: Ministry of Agriculture and Forestry [Laos], p. 224-233 Regional Workshop 
on Conservation Agriculture, 2008-10-28/2008-11-01, Phonsavan, Laos. 

Balarabe O., Séguy L., Naudin K. 2010. Sustainability of conventional 
agriculture and conservation agriculture in small-scale cotton-based regions 
in west and central Africa : lessons from northern Cameroon. In : 
Chanphengxay Monthathip B. (ed.), Khamhung Anonth (ed.), Panysiri 
Khamkéo (ed.), Chabanne André (ed.), Julien Frédéric (ed.), Tran Quoc Hoa 
(ed.), Lienhard Pascal (ed.), Tivet Florent (ed.). Investing in sustainable 
agriculture : the case of conservation agriculture and direct seeding mulch-
based cropping systems. Proceedings of the Regional Workshop held in 
Phonsavan, Xieng Khouang Province, Lao PDR, 28th October - 1st 
November 2008. Vientiane : Ministry of Agriculture and Forestry [Laos], p. 
50-59 Regional Workshop on Conservation Agriculture, 2008-10-28/2008-
11-01, Phonsavan, Laos. 

Balarabe O., Naudin K., Lifran R. 2010. Mulch economic value in cereal-cotton 
rotation of Northern Cameroon : a plot scale evaluation of Direct-seeding 
Mulch-based cropping systems. In : Wery Jacques (ed.), Shili-Touzi I. (ed.), 
Perrin A. (ed.). Proceedings of Agro 2010 : the XIth ESA Congress, August 
29th - September 3rd, 2010, Montpellier, France. Montpellier : Agropolis 
international, p. 403-404 ESA Congress. 11, 2010-08-29/2010-09-03, 
Montpellier, France. 

Penot E., Scopel E., Domas R., Naudin K. 2010. La durabilité est elle soluble 
dans le développement ? L'adoption des techniques de conservation de 
l'agriculture dans un contexte d'incertitudes multiples au lac Alaotra, 
Madagascar. In : Colloque Agir en situation d'incertitude, Montpellier, 
France, 22-24 novembre 2010; CIRAD; INRA. Quelles constructions 
individuelles et collectives des régimes de protection et d'adaptation en 
agriculture? . s.l. : s.n., 13 p. Colloque Agir en situation d'incertitude, 2010-
11-22/2010-11-24, Montpellier, France. 

Naudin K., Scopel E., Rakotosolofo M., Solomalala A.R.N.R., Andriamalala H., 
Domas R., Hyac P., Dupin B., Rakotozandriny J.D.N., Lecomte P., Giller 
K.E. 2010. Trade-offs between different functions of biomass in conservation 
agriculture: Examples from smallholders fields of rainfed rice in Madagascar. 
In : Wery Jacques (ed.), Shili-Touzi I. (ed.), Perrin A. (ed.). Proceedings of 
Agro 2010 : the XIth ESA Congress, August 29th - September 3rd, 2010, 
Montpellier, France. Montpellier : Agropolis international, p. 293-294 ESA 
Congress. 11, 2010-08-29/2010-09-03, Montpellier, France. 

Naudin K., Balarabe O. 2010. How to produce more biomass for direct seeding 
mulched based cropping system in sub-saharian Africa ? Example in North 
Cameroun. In : Chanphengxay Monthathip B. (ed.), Khamhung Anonth (ed.), 
Panysiri Khamkéo (ed.), Chabanne André (ed.), Julien Frédéric (ed.), Tran 
Quoc Hoa (ed.), Lienhard Pascal (ed.), Tivet Florent (ed.). Investing in 
sustainable agriculture : the case of conservation agriculture and direct 
seeding mulch-based cropping systems. Proceedings of the Regional 
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Workshop held in Phonsavan, Xieng Khouang Province, Lao PDR, 28th 
October - 1st November 2008. Vientiane : Ministry of Agriculture and 
Forestry [Laos], p. 81-94 Regional Workshop on Conservation Agriculture, 
2008-10-28/2008-11-01, Phonsavan, Laos. 

Balarabe O., Séguy L., Naudin K., Lifran R. 2009. Sustainability of conventional 
and conservation agriculture in small scale cotton based regions in West and 
Central Africa: Lessons from Northern Cameroon rica? : [Abstract]. 
Innovations for improving efficiency, equity and environment (book of 
abstracts) : 4th World Congress on Conservation Agriculture, New Delhi, 
India, 4-7 February 2009. s.l. : s.n., p. 260-261 World Congress on 
Conservation Agriculture. 4, 2009-02-04/2009-02-07, New Delhi, Inde. 

Naudin K., Douzet J.M., Rakotosolofo M., Andriamarosoa Ratsimnazafy Ny 
Riana Solomalala, Andriamalala H., Domas R., Dupin B., Hyac P. 2009. La 
biomasse dans les systèmes de culture de riz pluvial en SCV. Actes de 
l'atelier national sur la recherche et le développement du riz pluvial à 
Madagascar. Antananarivo : FOFIFA, p. 111-116 Atelier National sur la 
Recherche et le Développement du Riz Pluvial à Madagascar, 2009-10-
14/2009-10-15, Antsirabé, Madagascar. 

Dusserre J., Douzet J.M., Rahantanirina A., Razafindrakoto A., Ramahandry F., 
Naudin K. 2009. Upland cropping systems to produce staple food and milk 
on the Malagasy highlands [Abstract]. Innovations for improving efficiency, 
equity and environment (book of abstracts). 4th World Congress on 
Conservation Agriculture, 4-7 February 2009, New Delhi, India. s.l. : s.n., p. 
233-234 World Congress on Conservation Agriculture. 4, 2009-02-04/2009-
02-07, New Delhi, India. 

Rakotondramanana, Husson O., Andriantahina R., Naudin K. 2009. Direct 
seeding mulch based cropping systems (DMC) as a means to improve the 
economy of small scale farmers in Madagascar [Abstract]. Innovations for 
improving efficiency, equity and environment (book of abstracts). 4th World 
Congress on Conservation Agriculture, 4-7 February 2009, New Delhi, India. 
s.l. : s.n., p. 236 World Congress on Conservation Agriculture. 4, 2009-02-
04/2009-02-07, New Delhi, India. 

Naudin K., Penot E. 2009. How cropping and farming system modelling can 
help the extension of conservation agriculture ? Case study in Madagascar 
[Abstract]. Innovations for improving efficiency, equity and environment 
(book of abstracts). 4th World Congress on Conservation Agriculture, 4-7 
February 2009, New Delhi, India. s.l. : s.n., p. 396 World Congress on 
Conservation Agriculture. 4, 2009-02-04/2009-02-07, New Delhi, India. 

Balarabe O., Abou Abba A., Olivier D., Naudin K. 2008. Structured or 
spontaneous extension of DMC techniques in small-scale cotton-based 
agriculture? The Northern Cameroon case study [Abstract]. In : Regional 
Workshop on Conservation Agricultures, Phonsavan, Laos, 28 October - 1 
November 2008. Investing in Sustainable Agriculture : the case of 
conservation agriculture and direct seeding mulch-based cropping system . 
s.l. : s.n., p. 54-55 Regional Workshop on Conservation Agriculture, 2008-
10-28/2008-11-01, Phonsavan, Laos. 
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Naudin K., Balarabe O. 2008. How can more biomass be produced for direct 
seeding mulched-based cropping systems in sub-saharan Africa? Example 
in North Cameroon [Abstract]. In : Regional Workshop on Conservation 
Agricultures, Phonsavan, Laos, 28 October - 1 November 2008. Investing in 
Sustainable Agriculture : the case of conservation agriculture and direct 
seeding mulch-based cropping system . s.l. : s.n., p. 24-25 Regional 
Workshop on Conservation Agriculture, 2008-10-28/2008-11-01, 
Phonsavan, Laos. 
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