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1. Alleen door kennis van domein experts te formaliseren kan een geautomatiseerd visueel
inspectieproces transparant worden opgezet. (Dit proefschrift)

2. De vakgebieden kennismanagement en beeldverwerking zijn beide cruciaal voor het automa-
tiseren van transparante kennis-intensieve computer vision systemen. (Dit proefschrift)

3. ‘White-box’ computer vision systemen voor kennis-intensieve beeldverwerkingsapplicaties bie-
den voor zowel de ontwikkelaar als de eindgebruiker significante voordelen ten opzichte van
‘black-box’ systemen. (Dit proefschrift)

4. Positieve discriminatie is een onwenselijk instrument om meer vrouwen in topposities te krij-
gen daar het de positie van de aangenomen vrouwen ondermijnt.

5. Architecten dienen alvorens hun auteursrechten op een gebouw gerechtelijk uit te oefenen er
eerst drie weken te wonen of te werken.

6. Door de aanschafbelasting op voertuigen uitsluitend te koppelen aan de CO2-uitstoot en niet
langer te compenseren voor het gewicht van het voertuig, kan de Staat der Nederlanden laten
zien dat ze de Kyoto-doelstelling wel serieus neemt.

7. De betekenis van het woord ‘geloven’ in “geloven in God” en “geloven in de evolutietheorie”
wordt ten onrechte als hetzelfde beschouwd.

8. Een uitvaartverzekering is een ongebruikelijke spaarvorm, aangezien mensen een warm gevoel
krijgen bij een rentepercentage dat gelijk is aan de inflatie.

9. In een winstgevende projectorganisatie kan urenregistratie geen juiste weergave zijn van waar
uren werkelijk aan worden besteed.

10. Met de opkomst van Wikipedia doet de kennisdemocratie zijn intrede.

11. Het gemiddeld jaarlijks rendement van een beleggingshypotheek wordt over het algemeen
correct door hypotheekadviseurs voorgespiegeld. Indien het beloofde gemiddelde rendement
daadwerkelijk gehaald wordt, zegt dit echter niets over de uiteindelijke geldsom.

12. De gemeente Utrecht zou in haar luchtvervuilingsmodel ten minste rekening moeten houden
met enkele simpele behoudswetten. Volgens de huidige parametrisering verdwijnt al het
busverkeer tussen Nieuwegein en Utrecht in het niets. (Bron: Giftige cijfers, april 2009, http:
//utrecht.sp.nl/weblog/wp-content/uploads/2009/04/giftige-cijfers-20.pdf)
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Chapter 1

Introduction

Visual inspection plays a crucial role in today’s industry. It is used for quality
inspection of raw materials and produced goods, for guiding logistical processes,
for automatically assigning products to quality classes, and for assistance in
various other tasks. Some of these tasks are simple checks on the presence or
absence of a part, but others, such as determining the quality of plants, are more
complex and are at present usually performed by highly trained and experienced
human operators. In the more complex tasks, the knowledge and expertise of
the operators is crucial for correctly performing the task. Automation of such
tasks requires access to the involved expert knowledge in such a way that it
can be used in a computer vision system. In many cases, the required expert
knowledge is not available in an explicit format. As a result, automation of a
knowledge-intensive task in a way that the application benefits from the existing
knowledge and expertise is difficult.

Mostly, automated applications perform the task in an opaque way in the
sense that the knowledge used by the experts cannot easily been identified in
the code. This makes e.g. trouble-shooting and performance checking difficult
tasks. This thesis describes how knowledge-intensive computer vision tasks can
be automated in such a way that the knowledge of the experts is explicitly used. To
this end, we combine techniques from the fields of knowledge engineering and
computer vision. We aim to contribute to both fields.

1.1 Automation in practice

Mankind has been using tools and techniques to assist in a wide variety of
tasks since very early times. The use of flint for creating axes, the use of bone
for creating needles and the use of sticks for creating bows are well-known
examples of tools used by prehistoric people. These tools were hand-powered.

Mechanisation, the next step in using tools and technology, introduces the
use of machines for replacing manual labour or to the use of powered machinery
to assist a human operator in performing a task [36]. Some examples of mech-
anised tasks from early history are the irrigation systems in the Mesopotamian
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area and the implementation of automatically opening temple doors, devised by
the Greek Heron. In the Middle Ages mills and pumps were designed and em-
ployed in e.g. textile, paper and mining industries. In 1769, James Watt patented
his steam engine principle and mechanisation really took off.

A further development in the area of mechanisation is automation. Automa-
tion can be defined as ‘the use of control systems such as computers to operate
industrial machinery and perform processes, replacing human operators’ 1. In
this thesis, we focus on computer vision, a key technology in the automation of
visual inspection tasks. The term computer vision is used to refer to automated
systems in which input is acquired from a camera or a visual sensor system.
Computer vision tasks generally consist of three sub-tasks: seeing, thinking and
acting. ‘Seeing’ is the image acquisition process that deploys a camera to obtain
a representation of the object in the memory of the computer. ‘Thinking’ is the
image assessment process in which the recorded object is modelled, all relevant
information is processed by the computer vision software and appropriate action
is decided upon. ‘Acting’ is the final process of the computer vision application
in which it communicates with external actuators and indicates which actions
should be undertaken. We illustrate this computer vision paradigm with an ex-
ample of automated rose harvesting. A bush of cut roses is ‘seen’ with a colour
camera. The position and the ripeness of individual roses in the recorded bush
are identified in the ‘thinking’ process. The position of the ripe roses is next
communicated to the automatic harvester robot. This robot ‘acts’ by cutting and
transporting the ripe roses.

1.2 Impact of computer vision on industrial tasks

Computer vision is considered for use in industry. Automating tasks is of in-
terest when costs can be reduced, when the desired level of detail, precision, or
accuracy can be improved, or when speed can be increased. Improved precision
plays a role when human operators cannot meet the quality standards that are
demanded by industry. Increased speed is important when the human opera-
tors cannot achieve the desired throughput. Both aspects offer the possibility
to increase profit for a company. However, process automation is not always
feasible. This thesis aims to develop an approach that increases the viability of
automating computer vision tasks.

Automation of inspection processes can be employed across a wide range of
applications. Machines can be used to automate the handling of objects, as in
car assembly industry. Automation can be used to implement and guide feed-
back modules in a production process. An example is the measurement of paper
wetness in the paper production process to adjust the speed of the paper pulp
being deposited on a conveyor belt at the beginning of the process. In general,
computer vision can be used to replace human inspection and sorting tasks, to
support medical teams in performing precision surgery or to facilitate research

1http://en.wikiquote.org/wiki/Automation
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1.2. Impact of computer vision on industrial tasks

by assisting in visual analysis of experiments. To illustrate the broad range of
applications that are based on the use of computer vision technology, we now
summarise a number of examples from practice.

Car assembly industry

Car assembly is an industrial process in which the first automation steps have
been taken as early as 1902. In 1913, Ford introduced the first automated assem-
bly line. Nowadays, the assembly of cars is largely taken over by robots. For
example, in 2003, a new General Motors car factory opened [114]. In this factory,
338 programmable welding robots are used to perform over 2000 welds per car.
They are assisted by more than 50 vision-enabled robots to place tools and hold
parts in place. All in all only 1500 workers are employed in this factory.

Car assembly is a process for which automation enables a much higher
production speed than manual assembly2. Flexibility is an issue as well; by
allowing a flexible work flow, more than one type of car can be assembled at a
time. This allows a flexible catering to customer demand [114].

License plate recognition

Automated license plate recognition involves taking pictures from passing cars.
Typically, the automated license plate recognition process consists of two phases:
(i) the location of the license plate on the recorded car and (ii) the reading of
the license plate. [13]

Recognising license plates is automated for example to assist in speed detec-
tion over longer trajectories. This system permits automatic speed monitoring
of all cars on a motorway by measuring the elapsed time between entry and
departure of the monitored zone. Afterwards the license plates can be automat-
ically read and the registered owners of the speeding cars can be fined. Manual
analysis of the pictures of speeding cars is a tedious job.

Automatic surveillance systems

In many places, surveillance cameras record people and their activities. In most
cases, no image analysis is performed on the recorded data and all recorded data
are stored for a period of time. This includes video streams in which nothing
out of the ordinary has happened. If a crime has been committed, all recorded
data are retrieved and are searched for indications of this crime.

Recently, research has been done to apply image understanding techniques
to such video streams [2]. By storing only ‘interesting events’, storage capacity
and search time for abnormal events can be reduced significantly [101].

Automated egg inspection

In supermarkets eggs are offered in boxes with 6 or 10 eggs. Eggs in one box
have approximately the same colour and are relatively clean. This is not because

2http://news.thomasnet.com/IMT/archives/2003/08/the_car_factory.html?t=archive
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all hens lay perfect eggs, but because quality inspection and sorting steps take
place between egg-production and the supermarket. In industrial egg inspection
lines, all eggs are selected for their shape and inspected on the presence of dirt,
due to excrements, egg yolk or blood. Eggs that are too dirty or odd-shaped
are discarded for the consumer market, the remaining eggs are sorted on colour
and size. Until recently, this job was performed by human operators.

Today, egg sorting lines have a throughput of around 100.000 eggs per sort-
ing line per hour. This means that a staggering amount of 28 eggs need to
be inspected per second, a number too high even for skilled egg inspectors.
Therefore, an automated computer vision system for visual quality inspection
has been developed and is now successfully used in a commercial setting3.

1.3 Man-made objects and biological products

In the examples in the previous section, we describe a number of computer
vision systems that are implemented and used in real-life situations. Each ex-
ample has its own characteristics and its own level of complexity. Computer
vision systems can be considered from many different viewpoints. We can dis-
tinguish roughly two categories of computer vision systems. The first category
of computer vision systems deals with the processing of man-made objects, while
the second category deals with the processing of biological objects. For this thesis,
we are specifically interested in the inspection of biological objects.

Man-made objects typically have the property that each manufactured prod-
uct in a product category is identical to the previous product in shape and
colour. By this we mean that although more types of e.g. screws exist, in the
category of ‘hexagon socket head cap screws’4, all correctly produced screws
look the same. Detection of objects that have a lower quality is typically done
by looking at the deviation of the object under inspection from the template
object for the quality class.

Biological objects on the other hand have an inherent natural variation.
Where man-made objects that are assigned to the same quality class are all
similar in shape and colour, biological objects in the same class may differ. The
in-class variation – the variation between two arbitrarily chosen objects in the
same quality class – for biological objects may seem larger than the between-
class variation – the variation between two arbitrary objects in different quality
classes. In other words, two biological objects in the same quality class may
look less alike than two biological objects in different classes.

To illustrate this point, we look at an example in the world of insects. In
Figure 1.1 three insects are displayed. When an image classification algorithm
without additional domain information would classify the images in two classes,
image (a) and image (b) are likely to be assigned to the same class and image
(c) would be added to a different class. This assessment is based on the obvious

3http://www.greenvision.wur.nl/documents/folders/up2date/GV05_Handout\
%20Visionsysteem \%20voor\%20de\%20uitwendige\%20inspectie\%20van\%20eieren.pdf

4http://www.3dcontentcentral.com/ShowModels/MISUMIDATABASE/
Hexagon\%20Socket\%20Head\%20Cap\%20Screws/pdf-LB.PDF
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1.4. Knowledge-intensive tasks

(a) (b) (c)

Figure 1.1: Three images of insects. Image (a) depicts a common wasp, image (b) depicts a
hoverfly, image (c) depicts a cuckoo wasp. These images were taken from Wikipedia, image (a) is
owned by Trounce, (b) by Joaquim Alves Gaspar, and (c) by Kurt Kulac.

black-and-yellow pattern on the insects and would be a correct classification if
the division was to be made on insect colour. However, if the task is to classify
the insects in classes that represent insect genera – a dimension in which specific
shape aspects are more relevant than colour aspects – the classification proposed
above is incorrect. Both the common wasp in image (a) and the cuckoo wasp in
image (c) are of the order Hymenoptera, whereas the hoverfly in image (b) is of
the order Diptera. When the classification task is considered more closely, other
information than general shape and colour plays an important role. Important
features are antenna length and the connection between thorax and abdomen.
These features result in a classification of image (a) and (c) in the ‘wasp’ class
and image (b) in a different class. For the feature ‘colour pattern’ the in-class
variation for wasps is larger than the between-class variation of wasps and
hoverflies.

Biological objects are usually characterised by a combination of non-obvious
features. This makes automated inspection more complex than the automated
inspection of man-made objects. To perform a correct classification, we need
to know which features and feature values of the object determine the class to
which the object belongs and which margins are allowed. To make a correct
classification, knowledge of the biological objects and their quality features is
required. Biologically motivated computer vision is a knowledge-intensive task.

1.4 Knowledge-intensive tasks

Automation of routine tasks for identifying man-made objects is relatively easy,
in the sense that decision algorithms need to deal with few criteria and small
deviations there off. The more knowledge is needed for a correct performance of
the task, the harder it is to determine the precise decision criteria. In this respect,
biological objects are knowledge-intensive, since the correct inspection of natural
objects requires a high level of expert knowledge of the relation between object
features and quality of the object.

Our focus on biological objects implies that we selectively target the au-
tomation of knowledge-intensive computer vision tasks. We can define such tasks
as tasks that need a high level of specialist knowledge for a correct performance of
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Introduction

the task. Such tasks are generally performed by a task specialist or task expert.
These experts are a valuable source of information when automating knowledge-
intensive tasks due to a lot of experience in performing their task. Unfortunately,
in most cases part of their task knowledge is tacit knowledge. Through praxis,
knowledge has frequently been applied for the task and has become the base
for the expert’s routines [85]. The task knowledge has been internalised and as
a consequence, the expert is not consciously aware of this knowledge. Typically,
the expert can only partially describe the knowledge needed for a correct per-
formance of the task. In the field of knowledge acquisition, several approaches
can be used to explicate as much of this tacit knowledge as possible.

With the focus of this thesis set on knowledge-intensive computer vision tasks
for biological objects, we now continue with a brief description of the chosen
approach for designing such tasks. First, we look at related work in the field
of machine vision and cognitive vision. We show aspects of applying black-
box, white-box and grey-box design strategies and choose to use ontology-based
white-box design as the basis for the knowledge-intensive computer vision tasks
that are the focus of our thesis. This choice leads to a number of research
questions.

1.5 Knowledge-intensive computer vision

The subject of knowledge-intensive computer vision is closely related to the
fields of machine vision, machine perception, robotics and cognitive vision. Ma-
chine perception, a subdiscipline of both artificial intelligence and engineering,
focuses on the possibility to interpret aspects of the world based on visually
obtained input. Machine vision is the field in which computer vision is ap-
plied in industrial settings. Robotics is the discipline that focuses on the design
and application of robots. For a robot to interact with the world, it needs to
have an explicit representation of task and object knowledge, and the need for
‘grounding’ the meaning of the recorded data in terms of real physical objects,
parameters, and events (the so-called symbol grounding problem) [45]. Cogni-
tive vision is the field aiming at creating practical vision systems that combine
vision with reasoning, task-control and learning. One of the main research is-
sues in this field is the impossibility of designing a priori a complete model of all
possible objects, activities, and actions, and the need to build systems that can
deal dynamically with previously unseen image data, characterize previously
unseen objects, and address ad hoc tasks, not just ones that have been pre-
specified [110]. Each of these disciplines deals with complex information that
has to be interpreted in real-world terms. Below, we briefly describe the use of
semantic information in the four fields related to knowledge-intensive computer
vision, so we may use their approach as inspiration for our own work.

When a robot interacts with the world, it ‘sees’ the object and its envi-
ronment, it ‘thinks’ or interprets the recorded scene, and based on this inter-
pretation, the robot ‘acts’. The ‘thinking’ process usually takes place on three
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1.6. Design strategy

different levels. It uses a level for vision knowledge to segment the recorded
scene, an intermediate level with ‘semantic’ object parts – i.e. recognised object
features that are grouped together based on domain knowledge instead of on
appearance alone – and a reasoning level that helps in interpreting and act-
ing [67, 87]. The intermediate level contains semantic knowledge. This may
be phrased explicitly, but often such knowledge is specified in terms of (ob-
ject oriented) programming structures that are integrated in the programming
code [90, 111]. The semantic knowledge can consist of different levels of explicit
knowledge. Crevier et al [17] categorise the different approaches in their survey
on knowledge-intensive computer vision as generic image processing knowl-
edge, image processing knowledge actually in use, generic knowledge and task
knowledge.

The generic and task knowledge as specified in [17] describes the world in
‘interpretable objects’. Roughly, two kinds of object description are used. The
first kind consists of objects specified in terms of visual descriptors [11, 62, 74],
resulting in an object representation. An example taken from the paper of
Boissard et al [10] is the sentence ‘a white fly has a rectangularity vector of [0.5
0.6 0.8 0.85]’. In such applications, the object knowledge is closely linked to the
image processing features used to identify the described entity.

The second kind of object descriptor uses specifications that corresponds to
domain descriptors. Albusac et al [2], for example, uses a description of traffic
situations that may be encountered in his surveillance system. He uses machine
learning to automatically derive knowledge rules that are framed in terms of
expert knowledge. An example of such a rule is ‘if object is not {person, group
of people} ∧ object speed is {slow, medium} ∧ sidewalk intersection degree is {very
low, low} then situation is normal’. The concepts ‘person’, ‘group of people’, or
‘slow’ are understandable terms for a domain expert.

1.6 Design strategy

To design a computer vision application that performs a task automatically, the
application designers have to choose a modelling approach. In this section, we
discuss three types of different design philosophies: black-box, white-box and
grey-box design.

A black-box method for solving a problem is a method for which the inner
workings are hidden from or mysterious to the user and the software developer5.
The internal workings of the method may be known in a technical sense, but they
are not defined in terms that relate to the task domain [24]. Below, we describe
two well-known classes of black-box methods: (i) artificial neural networks, a
subclass of artificial biological networks, and (ii) genetic algorithms, a subclass of
artificial evolutionary algorithms. Neural networks obtain their internal models
by learning from multiple cases. Genetic algorithms adapt their internal models
to match the data. Both types of methods are frequently used in a computer
vision context.

5http://www.merriam-webster.com/dictionary/black+box
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Figure 1.2: A schematic representation of the several types of design methods discussed.
Figures (a) and (b) depict an application based on an artificial neural network, respectively on a
genetic algorithm. Figures (c) and (d) depict an model fitting approach, respectively a case-based
reasoning approach. Figures (e) and (f) represent a white-box design method based on an expert
system, respectively an ontology-based system.

White-box methods have the property that the internal workings of the
system are known and transparent. They can be understood in terms of the task
domain. The underlying conceptual model is explicitly defined. Crevier and
Lepage note that white-box systems in general have the following advantages
over black-box systems: knowledge rules can be added easily without modifying
existing rules, knowledge can more easily be validated when laid out explicitly
than when it is buried into opaque code, and knowledge pertaining to different
domains can be stored separately [17]. Below, we discuss two types of white-box
methods: (i) rule-based expert systems, and (ii) ontology-based methods. These
methods can also be applied to computer vision applications.

Where black-box methods require no formal specification of input, inter-
nal workings, or output, and white-box methods require a full specification of
these aspects, grey-box methods are in between. Examples of grey-box meth-
ods are inductive logic programming (ILP), case-based reasoning methods and
model-fitting methods. ILP uses explicit background knowledge to inductively
and automatically derive new knowledge [81, 66]. For case-based reasoning
methods, related cases to the problem are sought based on explicit knowledge
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(white-box), but the actual problem-solving mechanism is black-box. Model-
fitting methods are based on a physical, mathematical or statistical model that
describes the input data (white-box), but for which the actual parameters need
to be found in a black-box way.

In Figure 1.2, a schematic representation of two black-box, two grey-box and
two white-box design methods is given. The black-box methods depicted are a
neural network approach and a genetic algorithm approach. The grey-box meth-
ods shown are based on model fitting respectively case-based reasoning. The
white-box methods in the figure are based on expert systems and on ontologies.
These six methods are elaborated upon below.

Artificial neural networks (black-box)

An artificial neural network is a black-box method that is loosely based on an
understanding of the structure and functioning of the human brain [94]. The
brain consists of many neurons that communicate with each other to process
information and to control corresponding actions. An artificial neural network
is modelled analogously, albeit with less neurons. It consists of interconnected
simple computational elements – representing the neurons – that calculate an
output model based on the input that is offered. A neural network has to be
trained to properly perform a task. This can be done by supervised learning,
unsupervised learning or reinforced learning. In each case a function is to be
found that maps an instantiation of an input model to the corresponding output
model in such a way that the error made is minimised. When an artificial neural
network has been trained, it can be used to derive the output for arbitrary input
using the function that has been found during the training process.

The class of neural networks that is commonly used is the back-propagation
feed-forward multi-layer perceptron [15, 94]. Other classes of neural networks
exist as well [44, 71, 107], but are not discussed here. Back-propagation feed-
forward multi-layer perceptrons consists of a layer of input neurons, a number
of hidden layers of neurons, and a layer of output neurons (see Figure 1.3). Each
layer receives information from the previous layer as input, calculates new in-
formation and feeds this new information to the next layer (feed-forward). The
function that is to be determined in the training procedure consists of finding
the optimal set of weights of the interconnections between the nodes. This is
performed by applying a backpropagation method, that calculates the difference
between the actual output and the desired output. The found error is propa-
gated backwards by using the required output layer weight changes to calculate
the required weight changes for the nodes in the previous layer. In this way the
neural network is trained and ready for use.

When a neural network is properly designed and trained, it can be very
successful in performing a computer vision task [26]. Examples can be found
in many areas of computer vision, such as tumor recognition [27, 46], computer
chip manufacturing [70], or food classification [12, 22].
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Figure 1.3: A schematic representation of a back-propagation feed-forward multi-layer percep-
tron. The number of neurons in the input layer is equal to the number of input variables provided
for the task, the number of output neurons is determined by the number of desired output values
[115]. The number of hidden layers and the number of neurons in each of these layers is a design
issue for the neural network engineer.

Genetic algorithms (black-box)

Genetic algorithms are a second frequently used class of black-box modelling
methods. Genetic algorithms are loosely based on the theory of evolution [48].
A genetic algorithm has an ‘initial population’ of solutions as input. The algo-
rithm allows this population to develop into next generations. For each gen-
eration, combinations of selections, mutations and recombinations change the
individuals in the populations. For each individual, its fitness is determined.
Based on the fitness, individuals are stochastically selected and changed. The
goal of the genetic algorithm is to obtain a population of solutions that are
sufficiently fit to form solutions to the problem.

Genetic algorithms have been successfully applied to the fields of image
segmentation and pattern recognition [24]. Examples include the use of genetic
algorithms for tumor detection [41], food quality evaluation [14, 40], or shape
reconstruction [23, 47].

Case-based reasoning methods (grey-box)

Case-based reasoning methods are problem-solving mechanisms that use the ex-
plicitly defined specific knowledge of previously encountered problems. New
problems are solved by identifying similar past cases and reusing the corre-
sponding solution in the new situation [1]. This process is usually performed in
a cyclic process consisting of four steps: retrieve, reuse, revise, retain [113]. The
first step searches for past cases that are potentially of interest for solving the
problem. Past cases are stored as a problem-answer set annotated with terms
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that allow the case-based reasoning system to assess the applicability of the
case. A retrieved case is used to solve the problem by providing the answer of
the case as the answer to the new problem. Unless the case is very similar to the
problem at hand, the solution that is provided by this case has to be revised in
a domain-specific way. Adaptation can use various techniques, including rules
or further case-based reasoning on the finer grained aspects of the case [75].
The problem, the tested cases and their success rate in solving the problem are
stored for future use.

Case-based reasoning is a technology that is applied in a growing number
of applications. In the field of computer vision, case-based reasoning is used
as well [89]. Applications can be found in e.g. rail inspection [52], brain/liquor
segmentation [88], or soil analysis [55].

Model-fitting methods (grey-box)

In many cases, a system behaves according to a well-known model. An example
is the growth of micro-organisms on food. This growth can be modelled using
an S-curve. The model can be explained in terms of the behaviour of the micro-
organisms. At first, the micro-organisms go through a lag-phase. During this
phase, the cells are adjusting to the specific growth conditions present in the
new environment. Next, the exponential phase is entered. The micro-organisms
start to divide and grow exponentially. At a certain point, the growth is slowed
down due to e.g. competition between cells, dying cells and increasing toxicity,
until a stationary phase is entered [93]. In such data modelling tasks, the shape
of the model is known beforehand. The parameters of the model, however, are
not known. The lag phase may not be noticeable in the data, the food may not
be sufficient for the group of micro-organisms to enter the exponential phase.
Statistical methods are needed to find the best fitting model for the measured
data to optimally reflect the actual behaviour of the colony of micro-organisms.

The model describing a general scenario for a certain task can be given by a
mathematical, a physical-chemical, or e.g. a biological model, and can therefore
be considered to be white-box. The fitting of the data to the scenario, or in
other words, the identification of the specific instance of the model for the
actual situation, is a statistical process and is black-box. Therefore, we consider
the fitting of models as a grey-box method.

Computer vision is used in combination with model-fitting methods to semi-
automatically estimate model parameters and analyse the behaviour of the ob-
served system. Examples are the monitoring of embryonic cell growth [84], of
bacterial morphology [69] or bacterial community structure [82].

Expert systems (white-box)

Expert systems aim to use explicated human task-specific knowledge for advis-
ing users of the system and explaining the logic behind the advice [106]. Rule-
based expert systems represent the human knowledge in the form of rules [25].
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These rules can be used to infer new facts from existing facts [68]. Many expert
systems were developed for commercial application in the 1980s [28, 76].

Expert systems are based on rules that have been obtained from human
experts. Whereas human experts can use their common sense, expert systems
can only work with the rules that have been defined. Due to the intertwining
of the knowledge rules with the software, software based on expert systems is
hard to maintain.

Applications of expert systems can be found in fields such as medicine,
mortgage advice and human resource management. Several computer vision ap-
plications employing expert systems have been described as well [78]. Examples
include segmentation and enhancing of video images [6], weld assessment [97],
and fire detection [32].

Ontology-based methods (white-box)

A second type of white-box methods is based on applying ontologies. For
ontology-based design, the domain and task knowledge is modelled using an
ontology. In the context of computer and information sciences, an ontology is
defined as a set of classes, attributes, and relations among class members with
which a domain of knowledge is modelled [39].

Ontologies are currently obtaining massive attention from computer scien-
tists working on the next generation of the internet, the Semantic Web [4, 7].
They enable clear communication and common understanding of information
among people or software agents by formally defining the vocabulary of one or
more specific domains. Ontologies are useful models to encode domain knowl-
edge in a formal, machine-readable way and hence can be used in computer
vision applications.

Ontology-based systems are different from expert systems in the sense that
the semantics of the knowledge is explicitly defined. Not only rules, but also
descriptive domain knowledge is expressed, the knowledge is stored separately
from the implementation, and the knowledge can be used for other tasks than
defining rules and reasoning. In this thesis, we show how ontology-based design
can be applied to automate knowledge-intensive tasks.

For automating knowledge-intensive tasks, we have to make a decision concern-
ing the design method of choice. The criteria that we use for this decision are
the following. First, we require a system to be accurate and fast enough for use
in practice. Second, it is important that the computer vision system is trusted
by the end users. Third, we aim for a system that can be changed locally to
correct for mistakes or to adapt it to different situations. Finally, it would be
preferable if the system can be used to support organisational learning.

The first criterion can be met by white-, black- or greybox systems alike.
We believe that the second criterion is best met when the system is set up in
a transparent way, such that its function and its output is understandable by
the end users. This implies that white- or grey-box systems are preferable over
black-box systems. The third criterion asks for a flexible system in which local

20



1.7. Research questions

changes can be made relatively easy. Again, white- and grey-box systems meet
this criterion best. Supporting organisational learning, the last criterion, implies
that the level of human expertise can be increased by explaining the underlying
reasoning of the system, not just the outcome of the system.

Based on these criteria, we opt for a design method that is fully white-box.
More specifically, we choose for an ontology-based design method in which the
domain expert’s knowledge is explicitly modelled and used in the design of the
computer vision system.

1.7 Research questions

The main research question of this thesis is Is an ontology-based white-box design
method suitable for designing knowledge-intensive computer vision systems for biological
objects? To answer this research question, we have formulated the following
subquestions, each dealing with an aspect of the problem:

1. What are the characteristics of knowledge-intensive tasks? In which cases
is automation opportune? What is special about automating knowledge-
intensive tasks?

2. What are possible approaches for automating knowledge-intensive tasks?
What are the benefits of the chosen approach?

3. How can we obtain the knowledge that is relevant for successfully au-
tomating the task?

4. How can we systematically decide on the right level of transparency in
the design of knowledge-intensive computer vision applications?

5. How well does the proposed method perform in terms of a number of
predefined criteria?

6. How applicable is the developed method to the automation of other know-
ledge-intensive computer vision tasks?

In the subsequent chapters of this thesis, we attempt to answer these research
questions and describe a method to design knowledge-intensive computer vision
systems. Before we proceed, though, it is necessary to set the range of tasks
and domains that are covered by this thesis. The scope of this thesis is set by
the following observations and limitations.

• We constrain ourselves to tasks which are to be automated with a com-
puter vision system. These tasks are typically aimed at quality assessment,
quality inspection, or quality-based sorting of products.

• The tasks of interest are knowledge-intensive tasks that are at present
executed by task experts. Task experts are individuals who are well-versed
in performing the specified task in a certain domain. They have acquired
detailed expertise that is relevant for their task. This knowledge is used
by them to assess the quality of the object under inspection.
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• The focus of our research is directed at biological objects instead of man-
made objects.

1.8 Main contributions

The main contributions of this thesis to the field of knowledge-intensive com-
puter vision are the following. First, we have developed an ontology-based
method to systematically design transparent computer vision applications to
perform knowledge-intensive inspection tasks. In short, this method consists
of decomposing the inspection task into subtasks and explicitly formulating for
each of the subtasks the expert knowledge required in the form of an ontology.
In this process, software engineers and knowledge engineers form an interdis-
ciplinary team to obtain a white-box ontology-based computer vision system.

Second, we argue that internal transparency of procedural knowledge makes
it easier to adapt a computer vision system to new conditions and to diag-
nose faulty behaviour. At the same time, explicitness comes at a price and is
always bounded by practical considerations. Therefore we introduce for the
software engineer a method to make a balanced decision between transparency
and opaqueness. The method provides a set of pragmatic objectives and de-
cision criteria to decide on each level of a task’s decomposition whether more
transparency makes sense or whether delegation to a black-box component is
acceptable.

Third, we provide the knowledge engineer with a method to acquire explicit
expert knowledge. We propose an interview and observation based method to
obtain a task-specific, multi-domain, multi-expert knowledge model. With this
method, individual experts are interviewed, the individual knowledge models
are merged, an outsider’s perspective is added and the merged model is pre-
sented to the interviewed experts in a joint teach-back session. We complement
the interview-based method with the ROC-method. We have developed this
method to allow domain experts to take a more prominent and active role in
the knowledge modelling process. The ROC-component supports the domain
expert in identifying relevant knowledge, for ROC incorporates a prompting
process that offers the domain engineer terms associated with the terms that
he has selected in earlier iterations. In this way, the domain expert has a bet-
ter opportunity of covering all aspects of his knowledge. For the prompting
process, existing triple-based knowledge sources are used. Thereby, we benefit
from already existing sources in our ontology engineering process.

In this thesis we use a case study in the horticultural sector to illustrate our
work on automating knowledge-intensive tasks. In the next section we describe
the context of the case study, the various viewpoints on the quality inspection
task, and the complexity of seedling sorting.
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1.9 A case study in seedling inspection

1.9.1 Seedling inspection in horticulture

Our case study is centered around seedling inspection in horticulture in the
Netherlands. This task is performed to predict the amount of high quality
fruits or vegetables that the mature plant will produce. The goal is to maximise
the probability for a high yield of the whole crop. The quality assessment is
performed by seed growers and plant nurseries. Seed growers produce seeds
and sell these to plant nurseries. Plant nurseries grow the seeds until the young
plants are viable enough to be sold to a vegetable grower.

In seed growers’ companies, a sample from a batch of produced seeds is
taken and the seeds are grown. When the plants are in the seedling stage, they
are inspected and the inspection results are used (i) to determine the quality
and price of the produced seed batch and (ii) to provide feedback to the seed
breeding department for the development of future seed batches. The produced
seed batch is marked with the determined quality assessment and is sold to plant
nurseries. It is important that the quality indication matches the actual growth
of the seedlings; if the deviation is too large, the buyer will file a claim for
compensation with the seed grower.

Plant nurseries obtain seeds from the seed grower to grow them until the
young plants are large enough to be delivered to a vegetable grower. Plant
nurseries have to make sure that enough plants are grown for the grower; they
use the quality assessment of the seed growers to determine the number of
plants that are to be produced. When the plants have reached the seedling
stage, a quality assessment is performed to sort the batch of grown seedlings
into quality classes. The best plants are sold to the grower, the plants of lowest
quality are discarded. Again, it is important that the seedlings are correctly
assessed, since this assessment determines which plants are viable enough to
result in a high yield crop for the vegetable grower.

1.9.2 The inspection process

Quality inspection of seedlings is a complex task. Seedlings occur in various
shapes and sizes. To predict the yield of a mature plant, a set of heuristically
validated quality criteria is used. Some criteria are simple and concern e.g. leaf
area, stem length, and leaf curvature. Other criteria deal with more complex
issues such as the likelihood that a plant is budless, or the regularity of the leaf
shape.

To illustrate the diversity of occurring seedlings and the broad range of
quality features, we show in Figure 1.4 several examples. The depicted plants
represent only a small sample of possible variations. Plant (a) is a typical ex-
ample of a plant of good quality, since the plant has two cotyledons and two
true leaves that form more or less a cross. The area of the true leaves is ap-
proximately equal to the area of the cotyledons and the cotyledons originate
from the stem on the same height at opposite sides. Plant (b) is also a plant
with two seed lobes and two true leaves, but the area of the true leaves is sig-
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Figure 1.4: A small sample of seedlings to be assessed on their quality. All ten displayed
seedlings are equally old but vary in quality.

nificantly smaller. Plant (c) has three cotyledons instead of two, which implies
a larger probability to become budless. Plant (d) is a ‘Siamese twin’; on one
stem, two buds have been growing, each developing its own cotyledons. Plant
(e) is a plant with wrinkled cotyledons, causing them to have a different shape
than expected. Plant (f) has not discarded its seed well enough: the tips of the
cotyledons are still stuck within the seed coat. For plant (g) the same obser-
vation holds. Plant (h) has a disfigured cotyledon, as has plant (i). Plant (j) is
missing part of a cotyledon.

In horticulture, each nursery company is specialised in producing seedlings
selected for the needs of their customers. Some specialise in growing plants for
the Northern market, others cater to the Southern European market, some pro-
duce seedlings suited for grafting, others are interested in seedlings for tomato
production, et cetera. The different business foci result in correspondingly differ-
ent quality inspection rules, and hence in different ways to perform the quality
assessment process. Depending on the specific business focus, plants (b) to (j)
may be classified as first choice, second choice, too small, or even as abnormal
plants.

At present, quality assessment is performed by highly-trained experts. They
use their knowledge to assess seedlings on all relevant aspects. However, task
experts are only human, and therefore their assessment is not as consistent as
desired. For example, the expert assessment depends on the quality of the
seedlings that were inspected just prior to the current batch. Moreover, after
a while, experts show signs of fatigue and sloppiness. Finally, we note that
even though each expert is intensely trained by the company in which he is
employed, the assessment of experts within one company will typically differ
up to ten percent. This is in part caused by the fact that the quality inspec-
tion knowledge is only partly explicitly defined. The horticultural companies
indicated that they use the small set of eight classification rules specified by
Naktuinbouw [83], whereas from interviews with experts we found that over
60 quality determination rules are actually used.
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To obtain a consistent quality assessment, the horticultural sector is inter-
ested in automating the inspection process. Individual companies in the horti-
cultural sector have already invested in the process of automating the seedling
sorting process. These first efforts have only been partially successful. Three vi-
sual inspection systems are commercially available. One of these takes a picture
of a tray of very young seedlings to give an estimation of the average cotyledon
area. This feature is used as a rough quality indication. A second system looks
at individual seedlings. Two cameras – one for a view from above, one from
the side – are used to determine the cotyledon area. The third existing machine
is better attuned to the seedling sorting reality, since it can not only determine
cotyledon area but also true leaf area.

Neither of these computer vision systems is accurate enough to inspect
the seedlings as well as the experts. The existing computer vision systems are
hampered by two problems: (i) the lack of detailed expert knowledge and (ii)
the use of a too simplified model of the plant. The existing systems only look at
leaf area as a quality indicator. The other more detailed quality features that are
used by the experts are disregarded by the machine. A second simplification in
the inspection systems is the use of 2D images of the plant. The projection causes
an imprecise view of the plant under inspection. We show in this thesis how
these limitations can be overcome by using 3D image analysis and introducing a
computer vision approach that is based on explicit expert knowledge. Still, the
3D computer vision system may experience differences between two recordings
of the same batch of seedlings. These differences caused by the image acquisition
phase will impact the subtasks that follow. It is important that the computer
vision system is robust enough to deal with such differences.

In this thesis, we consider a computer vision system to be successful when
its decisions are acceptable for the domain experts. Since two experts do not
always obtain the same answers when assessing an object, we allow for a de-
viation between the computer vision system and a task expert that is at most
as large as the inter-expert variability. Moreover, the quality assessment that
is assigned to an object by an expert may differ from the ‘scientifically sound
quality’ of that object. To survive, each company needs to specialise on specific
quality requirements set by their customers. Therefore, each company is focused
on specific characteristics of the seeds or seedlings. The quality assessment pro-
cedure partly depends on the business focus of the company and hence differs
per company. We do not concern ourselves with the notion of objective quality,
but consider the quality assessment made by the task experts as valid.

1.9.3 The roles in knowledge-intensive computer vision design

In the design of knowledge-intensive computer vision tasks, four different roles
are involved. Since these roles are used throughout the whole thesis, we briefly
introduce them here.

Domain expert, task expert, or task specialist. The person that fulfills this
role is an expert with respect to the task and domain for which the computer
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vision application is developed. For the case study, this person would be an
expert in the seedling inspection domain. He has detailed knowledge about the
plant domain and the seedling assessment process.

Knowledge engineer. The person that fulfills this role is schooled in the field of
knowledge management. He has interviewing skills, and can create knowledge
models such as ontologies. Moreover, the expression of procedural knowledge
in declarative statements is also done by the knowledge engineer.

Software designer: computer-vision specialist, computer-vision engineer. The
software designer creates the computer vision application. He has sufficient
knowledge to implement a computer vision application.

Problem owner. The commissioner of the application. In the horticultural case
study, the problem owners are the seed growers and the plant nurseries.

1.10 This thesis

To automate a knowledge-intensive task using image analysis, several choices
have to be made. In Chapter 2 we focus on the design choices that are to be made
for a successful automation of such a task. We create a framework consisting of
subtasks and intermediate models. The required knowledge models are touched
upon in this chapter, but the detailed description of creating application-specific
knowledge models is elaborated upon in Chapter 3. We illustrate the proposed
design method in this chapter by applying it to the seedling inspection task
from the horticultural case study.

Chapter 3 shows a method to obtain a formalised version of the task knowl-
edge in the form of application ontologies. To this end, traditional interview-
based knowledge acquisition is enriched with a reuse-based ontology construc-
tion component. This component re-uses existing knowledge from general
sources and supports the expert in defining concepts and relations that are rel-
evant for the task. It also increases the role of the experts in providing explicit
task knowledge.

We describe in Chapter 4 a method to support a software engineer to make
a balanced decision on the optimal level of transparency in the computer-vision
application. We propose a set of criteria to facilitate this decision and show how
this can be elaborated in our case study.

In Chapter 5, we show how well the developed method performs in a pro-
totype application for the case study. We focus in Chapter 6 on the predicted
advantages of the proposed implementation of the knowledge-intensive com-
puter vision task. Chapter 7 contains a discussion and our conclusions.
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Chapter 2

Knowledge-Driven Computer
Vision: Designing the
Framework

In this chapter, we propose a method to systematically design computer vision
applications that perform knowledge-intensive inspection tasks. The novelty
of our work is the explicit use of expert knowledge in the form of application
ontologies in the design of a knowledge-intensive computer vision system. We
show how the use of expert knowledge influences the design of the computer
vision system. We illustrate the proposed method by designing the computer
vision framework for the task in the case study. We show how the task can
be broken down into subtasks that are interspersed with knowledge models.
A knowledge model, in this thesis, is defined as a set of instances of formal
concepts that describe a domain. This chapter is based on a paper [60] published
in the International Journal of Human Computer Studies in 2006.

2.1 Properties of an ontology-based computer vision system

Knowledge-intensive computer vision tasks are currently typically performed
by highly trained experts. We aim to design an ontology-based computer vision
application that can perform the task as well as these experts. To ensure its
practical applicability, it should – as any computer vision system – have at least
the following two properties:

Correctness

The application should assess the objects correctly. If the computer vision application
makes too many errors, it will not be used in practice. The maximum acceptable
percentage of errors is to be determined by the companies.
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Speed

The application should have a high enough speed to be of economic interest. When this
is not the case, the application will not be used in practice.

Besides these two properties, the proposed ontology-based design of the com-
puter vision system also facilitates the following aspects.

Expert acceptance

The application should produce results that are acceptable for the task experts [21].
When the assessment of the objects under inspection by the application is the
same as the assessment by the experts, the expert will have no difficulty in ac-
cepting the results of the application. However, since the inter-expert variability
to assess objects such as seedlings is 5 to 10% according to the companies, it is
reasonable to expect that the application will occasionally generate a response
that is different from the initial assessment of an expert. This should not be a
problem, as long as the system can explain to the expert in his own terminol-
ogy why – and based on what – a decision was made. That way, the expert can
understand the reasoning of the system. He can concur that the interpretation
of the system is reasonable or can indicate to the application developers which
part of the reasoning structure is flawed. It is our expectation that this property
helps in building the expert’s confidence in the application.

Corrigibility

Flaws should be easy to track down in the automated inspection application. When
the automated application makes an incorrect quality assessment, it should be
possible to identify the cases incorrectly assessed by the application and to
correct the application accordingly.

We stress that this property of the computer vision system only guarantees
the easy and accurate pinpointing of flaws in the implementation phase; actually
changing the algorithms and making the system perform better may still be a
difficult task.

Adaptability

Additional features for assessing the objects under inspection should be easy to imple-
ment. When additional features are defined by the task experts, it should be
possible to implement these features in the application in an easy way. The
advantage of the adaptability property is that the system can be easily adapted
to different yet similar objects or to changing quality rules.

Robustness

The application should be reliable with respect to both frequently and rarely occurring
objects. As long as an object lies within the scope of the task and domain, the
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Figure 2.1: The software engineering and knowledge modelling task interact at the design
level. Tasks on the left-hand side are mostly in the knowledge engineering domain, tasks on the
right-hand side are mostly in the software engineering domain.

application should correctly assess objects that it has never been seen before,
even when such an object does not look like any other object that has ever been
offered to the application. This property is important, since it is often difficult
to obtain a data set that contains all possible quality variations of the objects to
be inspected. Correctly assigning less-frequently occurring objects to the correct
quality class increases the overall performance of the quality prediction.

Reliability

The application should be able to indicate when an object lies outside its area of expertise.
In some cases objects may be offered to the application that are outside the
scope of the application. Instead of blindly assessing such an object, it would
be preferable if the system would reject the object.

2.2 The design of the computer vision application

In Chapter 1, we have discussed the differences between black-box, grey-box and
white-box design. To design a knowledge-intensive computer vision application
that performs well and has the properties described above, we submit that an
ontology-based white-box approach can be applied. The main characteristic of
such a method is that we explicitly use formalised expert knowledge to make the
computer vision application as transparent as possible. The expert knowledge
is leading in the design of the computer vision system.

In this chapter we propose a method to systematically design ontology-
based computer vision applications. We note that both software engineering
and knowledge engineering are important fields for the design of an ontology-
based computer vision method (see Figure 2.1).

The methodology that we propose for designing ontology-based computer
vision applications is depicted in Figure 2.2. The application design process
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Figure 2.2: A schematic representation of the design process.

starts with the specification of the task and the domain in which the task resides
to set the scope for the software application. When modelling expert knowledge,
the task and domain specification are used to set the scope of the knowledge
to be modelled. Next, the task is broken down into subtasks. These subtasks
mimic the expert’s process of performing the task. Each subtask transforms an
input model of the object into an output model of the object. These models are
described using application ontologies that can be defined between the subtasks.
The third step is to define a rough setup of these application ontologies. Next,
these ontologies are refined to ensure that they contain all relevant knowledge
for successfully performing the task. This ontology construction process is de-
scribed in Chapter 3. Finally, we note that the design of the ontologies has an
influence on the computational steps that represent the internal mechanism of
each subtask. We specify these steps accordingly.

2.3 Specifying the task and domain, and setting the scope

After performing a requirement analysis in which the stakeholders and their
requirements are determined, the first step is to determine the limitations that
are set by the scope of the task. This aspect is used to identify for which area
of expertise the knowledge model has to be developed.

The observation that the scope of an application is an important factor in the
design of a computer vision application is not new. Annett et al [3] proposed
in 1971 the method of hierarchical task analysis, as a means of describing a
system in terms of its goals. In the software engineering field, requirements
specification is a standard part of the design process [109]. The specification of
requirements is aimed at getting a complete specification of the task and the
limitations set by the environment in which the application should function.
Several authors who present a computer vision application, remark that their
application is intended for a specific task. Examples are Jeliński et al [53] who
developed a computer vision application for cheese inspection, Bhandarkar et
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al [8] who developed an application for fractured bone alignment, or Llano et
al [72] who developed an application to automatically classify DNA. However,
although the task is usually mentioned, the boundaries of the domain of interest
are often not made explicit. We believe that an explicit scope definition is
important both for the specification of the ontologies, and for a transparent
foundation of the choices that are made in the computer vision framework.
Therefore, we present the specification of the task, its domain and its scope as
a standard part of the proposed design method.

Setting the scope of the application consists of two parts. First, the scope
of the application should indicate what task must be executed. Second, the
boundaries with respect to the task and domain have to be set. Examples of
limitations placed by the scope of a computer vision task are listed below.

• The scope determines the type of objects that are to be recorded.

• The scope could indicate the type of features that should be detected. One
could think of colour features, shape features, texture features, features
describing the components in the object, et cetera.

• The scope could set conditions on the size of the object parts to be recog-
nised. In some cases e.g. object parts should be recognised that are visible
with the naked eye, in other cases microscopic features should be detected.

By setting the scope of the task, the domain expert and problem owner have
put limitations on the computer vision application. These limitations have to be
taken into account in the design process of the computer vision system. Based
on the scope, the computer vision experts can decide whether the task requires a
representation in pixels/voxels, points, height maps, etc. Another decision that
is made based on the scope is the choice of the image acquisition technique.
In some cases laser range imaging would be suitable, in other cases simple 2D
imaging, stereovision or volumetric intersection would be required. The scope
also influences the wavelength that is required in the recordings. Moreover,
the scope helps to determine which expert knowledge is relevant and which
is not. This helps in the ontology specification and the process to define the
computational steps.

For the case study at hand, the task that has to be executed by the com-
puter vision system is to determine the quality of tomato seedlings. The following
observations from the task experts determine the scope of this task. Note that
these observations set both the scope for the manual seedling inspection task as
for the automated task.

• The quality of the seedlings predicts the yield of the seedling as an adult
plant in terms of tomatoes.

• The quality of the seedlings is assessed when they are approximately 12
days of age.

• The quality of the seedlings is determined solely by looking at external
properties of the plant. Quality aspects that are only observable by look-
ing at internal properties of the plant are not taken into account. Of the
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external plant features, we only take those into account that are visible
with the naked eye.

• Only visible plant aspects that are related to the shape of the plant are
taken into account.

• We focus on the quality assessment of tomato plants in general, we are
not interested in cultivar specific quality aspects.

• The quality assessment of a seedling is always executed relative to the
quality of the tray of plants from which the seedling is taken.

These observations have an impact on the design of the computer vision appli-
cation.

2.4 Task decomposition

With the scope and the task specified, the task can be broken down into subtasks.
Task decomposition occurs in many different areas: project management [77,
104], building projects [65], and modularisation in software engineering [109].
A frequently used method is hierarchical task analysis that breaks down the
operation at hand into sub-operations [3]. In this thesis, we base ourselves on
the description given by Schreiber et al in the CommonKADS methodology [95].
They describe a method for systematic breakdown of a task into subtasks in the
field of knowledge engineering. They indicate that decomposition of a task in
subtasks results in a number of consecutive elementary steps, each with their
own explicit input and output knowledge and an associated person or software
system that performs the subtask.

To obtain a white-box design, we aim to decompose the task into subtasks
in such a way that the computer vision expert’s way of performing the task
is followed closely1. An expert looks at an object, interprets it and makes an
assessment of this object. Since we want to be able to explain to the expert in
his own terminology why a certain decision is made by the computer vision ap-
plication, we follow the strategy of observation-interpretation-assessment in the
design of the computer vision application. This division results in the following
three subtasks:

• The ‘see’ or ‘image acquisition’ part: the computer vision application
‘sees’ the object by making a recording and an internal representation of
it. Obviously, without a recording of the object, the image analysis ap-
plication has no internal representation of the object and cannot continue
with inspecting and assessing the object.

• The ‘interpretation’ or ‘segmentation’ part: the assessment task can only
be executed when the image analysis application knows what the record-
ing signifies. In other words, the assessment task has to know what the
object is that is represented by the recording and what its pose, its relevant

1Note that we do not presume to model the exact thought processes of the expert. Instead, we
follow the description that the expert gives of his task.
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Figure 2.3: The decomposition of the image acquisition task in its subtasks.

parts et cetera are. Segmentation is the task that divides the representation
of the acquired object in regions that belong together, i.e. form an object
part. The first part of the ‘thinking’ process takes place in this subtask

• The ‘assessment’ or ‘classification’ part: the part of the computer vision
application that mimics the assessment performed by the task expert. In
this task relevant characteristics of the object under inspection are deter-
mined and the recorded object is assessed. The ‘thinking’ is completed
with this task. The findings of the application can be communicated to
the machine that ‘acts’ on the decision made in the assessment task.

The knowledge that the domain expert formulates will typically focus on the
assessment of the object under inspection. For the segmentation and image
acquisition subtasks expert knowledge from computer vision experts is required.

2.4.1 Image acquisition

The image acquisition task makes a recording of the object under inspection
in the real world to create a representation of the object in the computer vi-
sion application. The scope of the task determines the type of recording that
is required. This has an influence on the choice for a recording method, the
required precision of the recording and the allowed signal-to-noise ratio. The
expert knowledge needed for this task is delivered by a computer vision expert.
This knowledge entails recording techniques, recording devices, lighting meth-
ods, calibration procedures et cetera. In Figure 2.3, the image acquisition task is
schematically depicted.

For the case study, the scope sets limitations on the image acquisition
method. Three of the aforementioned observations are relevant for the image
acquisition task: (i) the seedlings are 12 days of age; this gives an indication of
the size of the plant under inspection, (ii) only plant features that are visible
with the naked eye are to be detected (iii) only shape-related quality aspects are
taken into account. These observations require an image acquisition method
that can record images of approximately 10 cm of height in a resolution with
details of approximately 1 mm2 of size. Moreover, the resulting plant model of
the image acquisition method should be geometric instead of e.g. colorimetric.
Based on these observations, we have chosen an image acquisition method that
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Figure 2.4: The decomposition of the image segmentation task (top row) and image analysis &
decision task (bottom row) in its subtasks.

uses volumetric intersection [79] to obtain 3D point clouds that represent the
seedlings.

Image acquisition is a process that is needed to obtain point clouds for
further processing. However, we do not consider the image acquisition process
itself as part of this thesis. Therefore, we have chosen to use an existing device
to generate a point cloud for each seedling based on a set of 24 colour images.
The representation of the seedling is given as a 3D point cloud. In this thesis,
we do not discuss the internal workings of the image acquisition task.

2.4.2 Segmentation and analysis

When a knowledge-intensive task is executed by a task expert, the object under
inspection is known and recognised by the expert. When a recorded object is
present in a computer vision system, it could be a recording of an arbitrary
object. Therefore, one of the tasks that has to be executed by the computer
vision system is to study the recorded image, divide it into meaningful regions
and interpret its findings.

To ensure that the result of this task can be used by the quality determination
task, we need to know which object parts are part of the task domain. These
parts are specified by the task expert. To automatically determine the objects
parts from the input model, the aforementioned task needs computer vision
knowledge. Hence, a computer vision expert is involved to specify the required
knowledge.

In Figure 2.4, we see that the knowledge of the task expert and of the com-
puter vision expert are both used to successfully interpret the recorded object.
Note that the computer vision expert can only select the correct segmentation
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Figure 2.5: The decomposition of the expert knowledge into parts and the corresponding
subtasks.

knowledge if (i) the scope of the computer vision task is known and (ii) the
required input for the classification task is known.

For our case study, the domain expert specifies the plant parts that are of
interest for the quality inspection task. Plant parts that are mentioned (and
modelled in the plant ontology) are Stem, Plug, True leaf, Cotyledon, etc. The
computer vision expert provides ‘structures’ – geometrical shapes – that match
these plant parts. For the case study, these structures are Thin cylinder, Thick
cylinder, Paraboloid and Surface (see the geometry ontology specified in Chap-
ter 5).

2.4.3 Decisions

The decision task performs the actual assessment of the object. This task can be
divided into two subtasks:

• Quantifying the quality parameters. The quality parameters are the character-
istics of the object that are relevant for the quality assessment.

• Applying the quality rules; the rule structure that determines the qual-
ity indication of the object under inspection. Individual rules using the
measured quality parameters are specified by the task expert.

These two tasks form the decomposition of the decision process. This decom-
position is displayed in Figure 2.5.

For the case study, we note that the scope sets us some limitations: (i)
the quality measures have to predict the yield of the adult plant, (ii) quality
assessment is of tomato plants in general, not of cultivar specific quality aspects,
(iii) quality assessment of a seedling is always executed with respect to the
quality of the tray of plants from which the seedling is taken. These limitations
guide the domain expert in specifying the quality rules.
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Figure 2.6: The decomposition of the segmentation and classification task in its subtasks
elaborated for the horticultural case study.

The overall task decomposition of the seedling inspection task results in the
framework as depicted in Figure 2.6. We see that the image segmentation task
starts with a subtask that fits geometrical shapes to point groups. The geometri-
cal shapes are matched to plant parts to form a model of the plant. The quality
determination tasks consists of determining the value of the relevant parameters
and deciding on the correct quality class based on the value of the combined
quality inspection rules.

2.5 Specifying the subtasks

In the previous section, we have defined the decomposition of the knowledge-
intensive task into subtasks interspersed with knowledge models. Each of these
subtasks can be represented by a sequence of components that perform a clearly
defined part of a task [103] – a so-called computational workflow. In this section,
we define the workflows that are used for the case study. These workflows are
based on concepts from the application ontologies as specified in Chapter 3.

Workflows and workflow management systems have recently gained much
attention, specifically in the field of bioinformatics. Bioinformatics researchers
frequently use workflows to define the research protocols used to repeatedly per-
form a specific scientific analysis [103]. Such workflows are generally composed
of Web Services [63]. Web services are self-contained, self-describing, modu-
lar applications that can be published, located, and invoked across the Web.
Web services perform functions, which can be anything from simple requests to
complicated business processes. [29].

The concept of workflows consisting of modular applications is useful in
the context of computer vision applications, but invoking such modular com-
ponents over the Internet may not be feasible due to speed requirements. At
its most abstract level, though, all workflows are a series of functional units
– components, tasks, jobs or services – and the dependencies between them
which define the order in which the units must be executed [20]. The functional
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units need not be Web services. For the method that we propose, we assume
that computational workflows consist of services: self-contained modules that
perform a specific job as part of the subtask workflow.

To specify workflows in the context of knowledge-intensive computer vi-
sion applications, we explicitly identify for each service in the computational
workflow (i) the input concepts, (ii) the output concepts, (iii) a human readable
(high level) description of the service. By explicitly describing the services in
this way, corrigibility, adaptability and acceptability are made possible, as we
show in Chapter 6. In the next subsections, we specify the workflows for the
subtasks in the case study.

2.5.1 Find structures in object

The first part of the seedling inspection task is to find geometrical shapes in
the recorded 3D point cloud to assist the segmentation algorithm in creating
the plant model. Colloquially speaking, the plant under inspection consists of
a cylindrical plug, possibly with a paraboloid-shaped cap consisting of vermi-
culite, from which a thin long cylindrical stem grows. Attached to this thin
cylindrical stem, one or more surfaces – normally known as leaves – can be
found. To find the thick cylinder, the paraboloid, the thin cylinder and the
surfaces, we use the workflow represented in Figure 2.7 to infer all information
from the 3D point cloud in the point ontology. Moreover, the actual mapping
between instances of regions from the point application ontology onto instances
of concepts in the geometrical application ontology takes place. Not all con-
cepts in the point application ontology are used in the mapping process; only
the instances of the regions are mapped to concepts in the geometry ontology.
A ‘Linelike region’ is mapped to an instance of ‘Thin cylinder’ and the ‘Planar
regions’ are mapped onto either ‘Thick cylinder’, ‘Paraboloid’ or ‘Surfaces’.

The services that compose the workflow are described next.

Create ‘Point groups’

• Input: All instances of the class ‘Point’.
• Output: An equal number of newly created instances of the class ‘Point

group’.
• Description: For each instance of the class ‘Point’ an instance of the class

‘Point group’ is created, of which the ‘Point’ is the ‘central point’ and for
which the ‘neighbours’ are determined.

Determine point type

• Input: An instance of the class ‘Point’ with no value for ‘type’.
• Output: An instance of the class ‘Point’ with a value for ‘type’.
• Description: For each instance of the class ‘Point’ its ‘type’ is determined.

If the ‘Point group’ of which the point instance is the central point is a
planar area, then the ‘type’ is set to ‘planar’. If the ‘Point group’ of which
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Figure 2.7: The workflow that performs the subtask to find structures in the point cloud.

the point instance is the central point is a linelike area, then the ‘type’ is
set to ‘linelike’.

Determine ‘Regions’ in the point cloud

• Input: All instances of the class ‘Points’.
• Output: A set of ‘Regions’.
• Description: For each set of point instances that form a region, an instance

of the class ‘Regions’ is created.

Determine ‘Thin cylinder’ region

• Input: The instance of the class ‘Linelike region’.
• Output: An instance of the class ‘Thin cylinder’.
• Description: If an instance of ‘Region’ has the value ‘linelike’ for the prop-

erty ‘type’, then this instance is mapped onto an instance of the ‘Thin
cylinder’. This means that the points corresponding to the ‘Region’ also
correspond to the ‘Thin cylinder’.

Determine ‘Thick cylinder’ region

• Input: All instances of the class ‘Planar region’.
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• Output: An instance of the class ‘Thick cylinder’.
• Description: The instance of ‘Region’ with the value ‘planar’ that best fits

to a cylindrical shape with the expected radius of a plug is assigned as
‘ThickCylinder’ The points corresponding to this ‘Region’ also correspond
to the found thick cylinder.

Determine ‘Paraboloid’ region

• Input: All remaining instances of the class ‘Planar region’.
• Output: One or zero instances of the class ‘Paraboloid’.
• Description: For all input ‘Planar regions’, the region that is best repre-

sented by a paraboloid and that has a small enough distance to the ‘Thick
Cylinder’ is mapped to an instance of ‘Paraboloid’. If none of the ‘Planar
regions’ fits well enough, no instance of the class ‘Paraboloid’ is created.

Determine ‘Surface’ regions

• Input: All remaining instances of the class ‘Planar region’.
• Output: An equal amount of instances of the class ‘Surface’.
• Description: Each planar region is mapped to an instance of the class

‘Surface’.

The underlying algorithms

To implement the services, algorithms or logical rules are needed. In the cases
where algorithms are needed, the computer vision expert is consulted on how
to calculate the desired values. To illustrate the underlying structure, we give
a description of the algorithms for this workflow. For the other workflows, we
omit this information.

• Determine neighbours of point group: The algorithm that is used by this ser-
vice calculates the distance between the central point and all other points,
and assigns a point to the set of neighbours when the distance between
the central point and this point is below a certain threshold.

• Determine point type: The algorithm that is used by this service calculates
the principal components of the central point in its ‘Point group’. Based
on the values of the eigenvalues a ‘planarity measure’ is calculated. The
point is classified as ‘linelike’ or ‘planar’ based on this planarity measure.

• Create region instances: The algorithm takes all instances of the class ‘Point’
as input and divides these into a group of planar points and a group of
linelike points. Some correction steps (e.g. knn correction [98]) are taken
to make sure that no isolated planar points are located in a group of solely
linelike points and vice versa. Then, all linelike points are assigned to one
‘region’. The planar points are separated into coherent groups using a 3D
flood fill algorithm. For each coherent group of planar points a ‘region’ is
created and these points are assigned as ‘points’ in this region.
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• Determine thin cylinder and Determine thick cylinder: With the Levenberg-
Marquardt non-linear least squares fitting routine [91], a thin cylinder of
radius of 1 mm is fitted to the linelike region and a thick cylinder of radius
of 1 cm is fitted to the planar region. Then, the region that fits best to a
thick cylinder is selected.

• Determine paraboloid: This algorithm performs the Levenberg-Marquardt
algorithm on the remaining planar regions to find a paraboloid-shaped
region that is close enough to the thick cylinder.

2.5.2 Match structures to object parts

The previous workflow has resulted in a set of geometric shapes, each with
a set of points assigned to them. In this workflow, we aim to find the plant
parts that correspond to the identified geometric shapes. The first step is to
calculate the value of the ‘top point’ of the Thin cylinder, which is the only
missing information in the geometry ontology. Next, the actual mapping of the
geometrical concepts onto the plant parts takes place: the instances of ‘Surface’
are mapped onto instances of ‘Leaf’, the instance of ‘Thick cylinder’ onto an
instance of ‘Plug body’, the instance of ‘Paraboloid’ onto an instance of ‘Plug
head’, and the instance of ‘Thin cylinder’ onto an instance of ‘Leaf or stem’. This
mapping has transformed the instances of the geometry ontology to instances
in the plant ontology. However, the identified instances in the plant domain
do not yet correspond to plant parts as recognised by the domain expert. The
‘Plug body’ and ‘Plug head’ should together be assigned to ‘Plug’. Moreover,
the ‘Leaf or stem’ instance has to be identified as either a ‘Leaf’ or a ‘Stem’. In
case of a ‘Leaf’, this instance has to be specified as ‘True leaf’, ‘Cotyledon’ or
‘Connected cotyledons’. All identified plant parts together form the ‘Plant’. The
workflow corresponding to this subtask is depicted in Figure 2.8

Recognise ‘Plug body’

• Input: instance of ‘Thick cylinder’.
• Output: instance of ‘Plug body’.
• Description: The ‘Thick cylinder’ is recognised as ‘Plug body’.

Recognise ‘Plug head’

• Input: instance of ‘Paraboloid’.
• Output: instance of ‘Plug head’.
• Description: The ‘Paraboloid’ is recognised as ‘Plug head’.

Recognise ‘Leaf or stem’

• Input: instance of ‘Thin cylinder’.
• Output: instance of ‘Leaf or Stem’.
• Description: The ‘Thin cylinder’ is recognised as ‘Leaf or Stem’.
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Figure 2.8: The workflow that performs the subtask to match geometrical structures to concepts
in the plant domain.

Recognise ‘Leaf’

• Input: instance of ‘Surface’.
• Output: instance of ‘Leaf’.
• Description: The ‘Surface’ is recognised as ‘Leaf’.

Create instance of ‘Plug’

• Input: instance of ‘Plug body’, instance of ‘Plug head’.
• Output: instance of ‘Plug’.
• Description: Together, the instances of ‘Plug body’ and ‘Plug head’ form

the ‘Plug’.

Decide on ‘Leaf’ or ‘Stem’

• Input: instance of ‘Leaf or stem’.
• Output: Either an instance of ‘Leaf’ or an instance of ‘Stem’.
• Description: This service decides whether the ‘Leaf or stem’ instance rep-

resents the ‘Stem’ or a small ‘Leaf’.

Decide on leaf type

• Input: instance of ‘Leaf’.
• Output: one or more instances of ‘Cotyledon’, ‘True leaf’, or ‘Connected

cotyledons’.
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Figure 2.9: The workflow that performs the subtask that calculates the parameters of the plant
parts and that determines the quality class of the Plant. The quality class is stored as property of
the Plant.

• Description: This service determines whether an input leaf is a compound
leaf, or not. It splits the leaf into proper leaf areas and creates a new
instance for each area corresponding to the actual type of leaf: ‘Cotyledon’,
‘Connected cotyledons’, or ‘True leaf’.

Build plant model

• Input: instance of ‘Plug’, instance of ‘Stem’, instances of ‘Cotyledon’, in-
stance of ‘Connected cotyledons’, instances of ‘True leaf’.

• Output: instance of ‘Plant’.
• Description: The recognised instances of the plant parts are assigned to a

new instance that represents the ‘Plant’.

2.5.3 Determine quality class

The next subtask calculates those parameter values of the plant parts that are
required for the quality assessment process. For the seedling assessment pro-
cess, parameters of the stem, the cotyledon and the true leaves are required.
Next, the calculated parameters are combined to determine the quality of the
plant. The workflow representing this subtask is depicted in Figure 2.9.

Calculate stem parameters

• Input: instance of ‘Stem’ without stem parameters.
• Output: instance of ‘Plant’ with stem parameters.
• Description: This service calculates the thickness and the length of the

stem.

42



2.6. Discussion and conclusions

Calculate true leaf parameters

• Input: instance of ‘True leaf’ without true leaf parameters.
• Output: instance of ‘Plant’ with true leaf parameters.
• Description: This service calculates the ‘true leaf area’, the ‘true leaf length’,

the ‘curvature’ measure of the true leaf on the stem side, and the ‘curva-
ture’ measure of the true leaf on the tip side.

Calculate cotyledon parameters

• Input: instance of ‘Cotyledon’ without cotyledon parameters.
• Output: instance of ‘Plant’ with cotyledon parameters.
• Description: This service calculates the area, length, width, indent area,

circumference and curvature of the cotyledons.

Determine quality class

• Input: instance of ‘Plant’ with parameters.
• Output: instance of ‘Plant’ with quality value.
• Description: This service determines the quality class to which the plant

belongs.

2.6 Discussion and conclusions

In this chapter, we have presented a method to systematically design ontology-
based computer vision applications by decomposing the task into subtasks until
the level of inferences has been reached. An ontology-based computer vision
application models the expert’s knowledge in ontologies that are used to per-
form the computer vision task automatically. Moreover, the computer vision
application is designed in such a way that it mimics the way that the expert has
described the task execution.

The proposed method supports software engineers and knowledge engi-
neers to implement a knowledge-based computer vision system that closely fol-
lows the expert’s way of inspecting objects. In this sense, it is a user-centered
design method [105, 112]: the assessment by the experts, the usability of the
application with respect to changing needs. The method starts with setting the
scope of the computer vision application. The scope supports the domain ex-
pert in formalising the application ontologies. Moreover, it helps the domain
expert in accurately specifying the inspection task. Finally, the specification
of the scope helps the computer vision expert to determine the type of image
acquisition procedure that is to be used.

Next, the method decomposes the task into subtasks. This decomposition
models the domain expert’s “observe – interpret – assess” way of performing
a visual inspection task. This decomposition leads to a generic framework.
The list of consecutive subtasks – record object, find structures, identify object
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parts, determine quality – can be reused for any visual inspection task. The
decomposition of the task into subtasks results in a framework in which the
mentioned subtasks are alternated with consecutive application ontologies in
which models of the recorded object exists.

The last step in the method is to design the various application ontologies
that exist between the subtasks. This process is discussed in Chapter 3. The
application ontologies contain those concepts that are required for a successful
execution of the computer vision task; they strongly influence the workflows of
which the subtasks are composed. Information about the object under inspection
can be captured and propagated through the subtasks due to the concepts of the
corresponding application ontology. To this end, the workflow must be created
in such a way that it enables the concepts from one ontology to be transformed
into the next ontology in a meaningful way. Expressing processing knowledge
in a declarative way is discussed in more detail in Chapter 4.

In this chapter, we have illustrated each step with the horticultural case
study. We submit, however, that the proposed method can be used for the design
of any ontology-based computer vision application aimed at automating a visual
inspection task. For each visual inspection task, a specification of the task and
its domain can be made. This is a joint activity of the problem owner and
the domain expert. With the scope in mind, the image acquisition task can be
designed. Recorded camera data are stored in the computer vision application.
It does not matter if the chosen structure is a point cloud, as in the horticultural
case, or a set of pixels, a set of line-scan images, etc. As long as an application
ontology is created by the computer vision expert (together with a knowledge
engineer), the application can handle the obtained input format.

The segmentation phase starts with looking for structures in the image. For
the horticultural case these were geometrical structures. For other applications,
they may be structures composed of areas with similar texture or colour, edges,
clusters, et cetera. As long as an application ontology is created for the chosen
structures, the model of the object can be dealt with by the computer vision
application. After this low-level segmentation, the next step recognises the object
under inspection. The recognised structures transform into a model of the object
under inspection, e.g. a plant, a parcel, a tumor, but again only into objects that
can possibly exist in this specific task context. This is ensured by the explicit
definition of the application ontology, delineated by the specified scope. The
segmented object in turn is mapped to an assessment class, such as quality, price
level, style, again specifically selected for this task.

The method proposed gives a conceptual, generic framework that sets the
stage for the content of the application ontologies and for the algorithmic im-
plementation of the procedural knowledge. At the lowest conceptual level, task-
specific design steps are taken. By setting up the computer vision application
in the proposed way, we predict that the application has some important addi-
tional properties besides the required correctness and speed: expert acceptance,
corrigibility, adaptability, robustness and reliability. We show this in Chapter 6.

44



Chapter 3

Obtaining Task-Specific
Knowledge

In the previous chapter, we have proposed a method for developing ontology-
based computer vision applications. One of the key aspects of the proposed
method is the availability of task-specific ontologies that contain the relevant
knowledge for representing the specific perspectives needed to fulfill this task.
In this chapter, we describe a method to develop such dedicated ontologies.
The knowledge modelling activity starts off with a traditional interview-based
knowledge acquisition method that is extended with a reuse-based component
for domain experts. We submit that the presented method is in particular suited
to create application ontologies for task-specific, multi-domain, multi-expert settings
in which expert knowledge may be partly tacit.

This chapter is based on three publications: a paper for the Theory and Ap-
plications in Knowledge Management workshop (TAKMA 2005) [59], a paper for
the European Federation of Information Technology in Agriculture (EFITA 2005)
[58] and a paper for the Asian Semantic Web Conference (ASWC 2008) [57].

3.1 Application ontologies in computer vision applications

The use of ontologies as a means to transfer knowledge of the environment to
a computer vision application has been reported in several studies in the field
of cognitive computer vision [30, 38]. Thonnat [102] for example, shows two
applications of using explicit expertise for complex image processing. Hudelot
and Thonnat [50] use ontologies to support their generic (domain-independent)
cognitive vision platform. Maillot et al use ontologies in their ‘methodology that
is not linked to any application domain’ [73]. The ontologies described in these
cognitive vision publications are generic ontologies. Such ontologies are most
commonly used, both in the context of cognitive vision and in the context of the
Semantic Web. Domain ontologies are frequently used to improve the accuracy
of web searches, to assist in the organisation and navigation of web sites, or
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to enable the communication of intelligent agents with their environment [4].
These types of tasks require a vocabulary that covers a broad domain.

For modelling knowledge that is used by a group of experts to perform a
dedicated knowledge-intensive task, domain ontologies are too generic. First,
generic domain ontologies commonly contain more information than necessary
for a task. For example, the description of all possible kinds of defects and dis-
eases of plants in the generic plant domain ontology is irrelevant for the seedling
inspection task. It would cause unnecessary overhead and complexity for the
automated seedling inspection application if a generic plant ontology was used.
Checking a plant for all listed defects and diseases will cause unnecessary delays
in the high speed computer vision application. The computer vision application
is expected to handle approximately 15,000 plants per hour, a number which is
on the limit of current processor speed. Any delay ensures that this number
is not met and hence that the computer vision system is of limited economic
interest. Second, generic domain ontologies are not detailed enough for fulfill-
ing a knowledge-intensive task successfully. For any knowledge-intensive task,
task-specific information must be included in the ontology in addition to gen-
eral knowledge about the domain. Examples of attributes that are relevant for
our case study but that will not be found in a generic plant ontology are the
curvature of leaf tips and the angle between true leaves.

We introduce the idea of application ontologies1 to find a balance between
general domain knowledge and specific task details. An application ontology
consists of (i) general domain knowledge that is relevant for the task at hand, and
(ii) additional task-specific knowledge that is not necessarily valid or available
for the generic domain. Hence, application ontologies are formal knowledge
models that are dedicated to a specific task.

We continue this chapter with a detailed description of the interview-based
knowledge acquisition method that has been used to create the plant application
ontology (Section 3.2). This method can deal with multi-expert, multi-domain,
task-specific settings. Next, we introduce an alternative knowledge acquisition
method, the ROC-method, that is based on reusing existing sources (Section 3.3).
ROC is developed for single-expert settings and has not been applied to the
seedling inspection case study. Instead, this method is illustrated by a 3D ge-
ometry ontology for a drawing application, and a supply-chain ontology for an
expert finding application. The interview-based knowledge acquisition method
and the ROC-method are briefly compared in a cost-benefit analysis in Sec-
tion 3.3.5. In the discussion section (Section 3.4), we reflect on the strengths and
weaknesses of the interview-based method and the ROC method. We describe
in which settings which method can be used. We conclude that a combination
of both methods leads to an efficient knowledge acquisition process.

1‘Task-specific ontology’ is used as a synonym for ‘application ontology’.
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Figure 3.1: A schematic representation of the interview-based knowledge acquisition process,
illustrated for the plant ontology case study. This process can be used as a template for interview-
based knowledge acquisition for multi-expert, multi-domain, task-specific situations.

3.2 Interview-based knowledge acquisition

For knowledge-intensive computer vision applications, application ontologies
have to be developed. Such application ontologies are multi-domain; not only
the domain knowledge of a domain expert, but also the domain knowledge of
a computer vision expert has to be taken into account. They are task-specific
as well, since the application ontology should contain only those concepts and
relations that are relevant for the computer vision task. By involving multiple
domain experts in the knowledge acquisition process, the tacit knowledge from
some of these experts can be filled in by the explicit knowledge from other
experts.

For creating application ontologies we propose a knowledge acquisition pro-
cess that can deal with these three characteristics of the task (see Figure 3.1):
individual domain experts are interviewed, the individual models are merged,
an expert from a different domain is asked to add knowledge to the applica-
tion ontology, and the enriched ontology is presented to the domain experts for
validation.

For the seedling inspection application, we are interested in two types of
knowledge from the plant inspection expert: seedling assessment rules and plant
morphological knowledge. Both types of knowledge can be obtained at the same
time by interviewing domain experts that assess seedlings on a regular basis.
In this section we focus on the plant morphological knowledge. In the next
sections, the interviewing process is indicated in italics interspersed with obser-
vations and lessons learned in roman font.

47



Obtaining Task-Specific Knowledge

3.2.1 The interviewing process

According to Schreiber et al [95], knowledge acquisition or knowledge elicitation
is the process of capturing and structuring knowledge from a human expert
through some form of interaction with that expert. The knowledge needed to
perform visual inspection tasks consists of procedural knowledge – how is the task
performed in terms of methods, rules and heuristics – and descriptive knowledge –
what are the relevant concepts. Procedural knowledge is used to model the task
decomposition and corresponding work patterns. Descriptive knowledge has to
be acquired to allow the creation of the corresponding knowledge models.

There are several well-known methods to elicit descriptive knowledge. Schrei-
ber et al provide a good overview of such knowledge acquisition techniques in
Chapter 8 of the CommonKADS book [95]. For the case study, we have used the
open interview technique proposed by Scott et al [96]. Interview-based knowl-
edge acquisition is an activity for which a knowledge engineer interviews one
or more domain experts. The knowledge engineer asks questions to learn and
understand as much as possible from the domain experts. It may be useful
to think of this type of knowledge acquisition as an apprenticeship process
by which knowledge engineers make the transition themselves from that of a
novice to becoming well-versed in the domain [64]. We have also employed
the observation-based ‘Think aloud method’ as described by Van Someren et
al [100]. Observation-based knowledge acquisition is the activity of observing
the domain expert while he executes the task. By combining these interview-
based and observation-based techniques, the knowledge engineer aims to get a
full description of the domain expert’s knowledge.

For the case study’s knowledge acquisition sessions, we asked 13 experts in indi-
vidual sessions to list plant features relevant for the quality assessment task. Part of
each session consisted of the expert showing us his task while explaining his actions
aloud. Hereto, each expert had access to two trays of 240 seedlings each to illustrate
their assessment routines. The trays were provided by the companies that employ the
experts. This ensured an optimal correspondence between the plant material used in the
interviews and the material that is usually inspected by each expert.

In the knowledge acquisition process, three (idealised) roles are distinguished,
each role with its own responsibilities and skills: the problem owner who expli-
cates and monitors the purpose of the ontology, the domain expert who explains
the relevant domain knowledge and the knowledge engineer who creates the
application ontology. By asking the problem owner to state the purpose of the
application ontology in advance, the domain expert has a way of checking that
the knowledge that he expresses is relevant for the application ontology.

Each expert was interviewed once. Each interview-observation session lasted ap-
proximately two hours. After each session, a report in natural language was written
and the expert used approximately 30 minutes to read it and verify its content.

By comparing the thirteen interviews, we noticed that each expert described the
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Figure 3.2: The plant structure as seen by two different sorting experts.

plant structure in a different way. Figure 3.2 depicts part of the plant morphology as
sketched in two of the thirteen interviews.

Individual experts give a description of their domain as they see it. Differences
between two experts that perform the same task in the same domain are caused
by three effects. First, two experts may have a different granularity level for the
terms with which they describe their domain. One expert considers for example
the two top leaves of a seedling as separate entities First true leaf and Second true
leaf respectively, whereas a second expert describes them as one entity, the Top
of the plant. Second, the terms used for the same concept may differ between
two experts. For example, the leaves that are indicated with a ‘3’ in Figure 3.2
are referred to as Cotyledons by Expert A but as Seed lobes by Expert B. Third,
two experts may use the same term to indicate a different concept. The term
Growth point for example is used by some experts to indicate the tiny plant part
from which the next true leaf will sprout, while it is used by other experts to
indicate the Top of the plant. The knowledge engineer should be aware of these
differences when he models the experts’ knowledge.

Based on the information obtained in the interview-observation sessions, we created
for each expert an individual plant ontology. As a first step, we determined in each
interview all plant parts (the concepts) and used these to form the rudimentary structure
for the individual knowledge models. The second step in creating the ontologies consisted
of further studying the interviews and adding all mentioned properties (attributes and
relations) of the plant parts to the initial ontology.

In Figure 3.3, we see a representation of part of the two ontologies that were
depicted as rudimentary structure in Figure 3.2. This time, the relations between and
the attributes of the concepts are displayed as well. We see that the structures of the
two ontologies differ, since not all concepts of ontology A are present in ontology B and
vice versa. Another difference stems from the variation in emphasis on the relevance of
the parameters: in ontology A, damage may only occur at the level of the ‘Seed lobe’;
in ontology B, damage to the ‘True leaves’ is also taken into account and the location
(close to the ‘Stem’ or not) and degree (heavy, medium, light) of the damage is also
important. Finally, we noticed that the concepts in the ontologies may contain different
attributes. Sometimes, these attributes are synonyms of each other. This holds e.g. for
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Figure 3.3: Schematic representation of a part of two individual plant ontologies.

the attributes ‘size’ and ‘leaf area’ of the concept ‘Leaf’. In other cases, attributes exist
in only one of the two ontologies, as e.g. the attribute ‘curvature’ of the ‘Stem’.

3.2.2 Merger of individual ontologies

Although individual ontologies contain different descriptions of the domain,
each description represents a domain model with which the expert can success-
fully fulfill his task. Each individual ontology corresponds to a valid expert’s
view on his domain. Since we are interested in finding a complete overview of
experts’ domain knowledge, we perform a merging step in which the differences
between the individual ontologies should be incorporated.

To merge the thirteen individual ontologies, we identified the concepts in the in-
dividual ontologies, chose appropriate names for them and indicated other names as
synonyms. The concept ‘Cotyledon’, for example, had seven different synonyms in the
interviews2: ‘Cotyledon’, ‘Seed lobe’, ‘Lobe’, ‘Ear’, et cetera.

Retaining synonyms of concepts expressed by different domain experts is im-
portant for the merged ontology in order to allow each expert to recognise his

2Not all names can be translated. In Dutch they are: cotyl, kiemlob, kiemlobbe, lob, lobblad, oor,
zaadlob
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own terms in the final knowledge model. This facilitates the experts in easier
understanding and acceptance of the created knowledge model, allows knowl-
edge from one expert to be expressed in terms of another expert, and supports
the communication process between experts.

We noticed that on the concept level most differences between the individual on-
tologies resulted from different levels of detail in the plant description. Hence, we
incorporated the different plant models from all individual ontologies by introducing
hierarchical levels of plant concepts. The concept ‘Top’ for example consists of all ‘True
leaves’. Even though the concept ‘Top’ did not occur in the ontology of expert A, by
adding it to the merged ontology we did not fundamentally change the structure of the
plant as described by expert A, but added additional details in the plant structure.

Next, we defined the attributes for each concept. We found that experts differed
significantly in the expression of these attributes due to the different business foci of the
companies. Partly, though, some experts had forgotten to express some attributes, even
when they did use those attributes in the quality inspection task.

Part of the phase in which the attributes were defined consisted of deciding the
range of the attributes. Some attributes were defined qualitatively in some individual
ontologies and quantitatively in other ontologies. This was the case for the attribute
‘length’ of the concept ‘Stem’. The value of this attribute was expressed quantitatively
as a number (at least 3 cm), or qualitatively in comparison to the average stem length
of all plants in the tray. By deciding to use the latter range, an additional attribute
‘average stem length’ had to be added to the concept ‘Tray’.

The interview-based knowledge acquisition process expects from experts that
they can give a full overview of relevant knowledge to a knowledge engineer.
This may be a too optimistic representation of the domain experts capacity of
communicating about their task knowledge. The knowledge engineer can ask
questions, but due to his lack of domain knowledge, he may not cover all parts
of the relevant domain. This problem can be solved by interviewing multiple
experts that fill in each other’s gaps. Another way is to prompt the expert with
possibly relevant concepts taken from existing sources. We elaborate on this
procedure by introducing the reuse-based ontology construction component in
Section 3.3.

With the merging of the concepts and relations, a rough outline of the final merged
ontology was obtained. The last step in the modelling process dealt with a refinement of
the merged ontology in order to accommodate implicit nuances that were used by some
of the experts. An example of such a refinement is to subdivide the concept ‘Damage’
by the notions of ‘Localised Damage’ and ‘Global Damage’. The experts indicated that
for certain defects, such as ‘leaf curvature’, the location of the defect is important in the
quality assessment, while this was not true for other types of defects, such as ‘indent
area’.

In the merging process, the knowledge engineer is forced to think about details
of the individual ontologies that may at first have been hidden. As a result,
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additional relevant information can be identified that was not expressed by any
of the originally interviewed and observed experts.

3.2.3 Addition of ‘trivial’ aspects

The first two steps of the interview-based knowledge acquisition process ensure
that the views of multiple experts are combined into one rich knowledge model.
The resulting model is created for use in a multi-domain setting; it is used in
a computer vision application. To successfully support the computer vision
task, we involve a second type of expert in the creation of the plant ontology:
the computer vision expert. The role of this expert is to identify relations or
concepts that exist in the knowledge domain of the first experts, that are crucial
for the computer vision system but that were not mentioned by the task experts
(see step 4 in Figure 3.1). Such knowledge may be too trivial for task experts to
mention, or may not be part of the usual perspective of the task experts.

More generally speaking, in a multi-domain application, any expert Ei in
a different domain than expert E can add a task-relevant outsider’s perspective
to the domain of expert E to reduce the probability that too trivial or otherwise
forgotten facts are omitted in the domain description.

The plant ontology plays an important role in two of the identified subtasks; the
output of the segmentation task is defined in terms of the plant ontology as is the input
of the quality determination task. The computer vision expert based his input on the
merged ontology and a set of recorded seedlings. Properties that were observed by the
computer vision expert and added to the plant ontology were e.g. the relation that a
cotyledon is connected to a stem, and the fact that a tomato plant can have only one
stem.

3.2.4 Verification of obtained models

To ensure that the merging of individual ontologies and the adding of outsiders’
perspectives do not result in inaccuracies, it is important to verify the resulting
application ontology. A well-known verification method is a teach-back session.
The essence of such a session is that the knowledge engineer presents to all
participating domain experts at the same time the created knowledge model
and asks for feedback from the experts.

At the teach-back session we presented to all domain experts interviewed the merged
plant application ontology that was enriched with the knowledge needed for the com-
puter vision task. During the teach-back session, several concepts had to be refined on
instigation of the experts. The experts indicated for example that the concept ‘Leaf stem’,
that connects the leaves to the main stem, must be considered as part of the ‘Leaf’ and
not of the ‘Stem’. Some relations and attributes were removed from the merged ontology.
The attributes ‘is beautiful’ and ‘mass’, for instance, were covered by combinations of
other attributes and were therefore removed from the ontology. In two cases, an attribute
was discussed for which the sorting experts could not reach an operational definition.
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These were the attributes ‘uniformity’ of a ‘Tray’, which was outside the scope of the
knowledge used by the sorting specialists, and the attribute ‘delicacy’ of a Plant, which
is so complex that it needs to be defined for each cultivar separately. Since these two
attributes lie outside the scope of the seedling inspection task, they were removed from
the ontology. The same holds for the concepts ‘Root’ (inside the plug and hence not
visible) and ‘Shoot tip’ (too small for detection).

Part of the discussion was about the additional relations and attributes of the con-
cepts that were added to support the computer vision task. Since these were of almost
trivial nature to the experts, there were no problems in approving them.

The teach-back session with the experts took approximately 1.5 hours. The proposed
changes were made to the ontology.

Interview- and observation-based knowledge acquisition entails intensive inter-
action between knowledge engineer and domain experts. This human factor
often leads to a willingness of the experts to make the project a success. Be-
cause of this, the involved experts may be inclined to adapt their own individual
knowledge model and accept a richer, all-encompassing domain model. This ef-
fect is stronger for domain knowledge that is background knowledge, like the
plant morphology in our example, than for knowledge concerning economi-
cally critical processes, like the inspection rules that are used for the quality
inspection.

3.3 The reuse-based ontology construction component

In the previous section, we presented an interview- and observation-based
knowledge acquisition process to obtain a multi-domain, multi-expert task-
specific ontology. This process consists of four steps: (i) create knowledge
models based upon interviews with and observations of individual experts, (ii)
merge the individual ontologies into a merged ontology, (iii) add the perspective
of a second type of experts to the merged ontology, (iv) organise a teach-back
session to check the validity of the created ontology. We identified three roles
that are involved in the knowledge acquisition process: the problem owner, the
domain expert, and the knowledge engineer.

The interview-based knowledge acquisition method has a number of ad-
vantages. First, by interviewing experts, these experts tend to get involved in
the knowledge modelling activity. This commitment improves the quality of
the final model. Second, by eliciting the knowledge of several domain experts,
we increase the probability that tacit knowledge of one expert is covered by ex-
plicit knowledge of another expert after merging the individual ontologies. This
results in a particularly rich application ontology. Third, the involvement of ex-
perts from various task-relevant domains results in an application ontology that
is honed to the task for which the application ontology is created. Finally, the
teach-back procedure allows for corrections when needed, discussions between
the involved experts to obtain a common solution to possible contradictions,
and commitment of the experts to the final model.
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Knowledge acquisition based only on interviews and observations has some
disadvantages as well. First, it is a process that takes a lot of time, since the
knowledge engineer has to be trained to become a domain expert himself before
he can create a model of the task domain. For the creation of the plant appli-
cation ontology with only 37 concepts, for example, the domain experts spent a
total of 58 hours and the knowledge engineer even 88.5 hours. Second, for the
domain expert, the knowledge elicitation process is a new task. It may therefore
be difficult to give a structured and full overview of his task knowledge. Finally,
interview-based knowledge acquisition typically creates a model from scratch,
even though reusable sources may exist.

Based on these observations, we conclude that involving domain experts is
beneficial for obtaining a usable task-specific knowledge model. To overcome
the disadvantages of pure interview-based techniques, we propose to add a
reuse-based ontology construction component (ROC) to our toolkit of interview-
and observation-based knowledge acquisition that gives domain experts a more
prominent and active role in the knowledge modelling process. This way, we
aim to make the knowledge acquisition process more efficient. Moreover, the
ROC component supports the domain expert in identifying relevant knowledge,
for ROC incorporates a prompting process that offers the domain expert terms
associated with the terms that he has selected in earlier iterations. In this way,
the domain expert has a better opportunity of covering all aspects of his knowl-
edge. For the prompting process, existing knowledge sources are used. Thereby,
we benefit from already existing sources in the ontology engineering process.

3.3.1 Related work on ontology engineering

Knowledge acquisition is part of the research field of ontology engineering.
Besides traditional knowledge acquisition activities such as interviewing and
observing, the field of ontology engineering covers methods involved in on-
tology development, management and support. Gomez et al [37] present a
good overview of well-known ontology engineering methods, such as KACTUS,
Methontology, SENSUS, On-to-Knowledge etc.

Most ontology engineering methods support the knowledge engineer in cre-
ating the required ontology. Ontology editing tools such as Protégé [56] are
aimed at professionals with a background in formal representation languages
such as OWL or RDF. This makes them less suited for use by domain experts
who lack such a background.

Some methods, such as ACE, Rabbit and CLone [54, 42, 34], have been
presented that transfer the knowledge modelling process to domain experts.
The chosen approach is to force the domain experts to use controlled natu-
ral language and subsequently parse the constructed sentences into appropriate
(OWL) statements. However, sentences that express domain expert’s knowledge
in such languages can only be formed in predefined ways and restrict the do-
main experts’ freedom of expression. The reason is that only by using highly
constrained sentence structures, it is possible to unambiguously translate them
to OWL statements.
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We do not think that the solution to making the knowledge acquisition pro-
cess more efficient is obtained by training the domain expert to become knowl-
edge engineer. Instead, with the ROC component we explicitly aim to support
the domain expert in identifying the knowledge that is to be included in the
ontology and expect the knowledge engineer to transform the identified knowl-
edge into the required ontology in a separate modelling step. Therefore, we do
not target a specific set of OWL constructs, but allow the domain engineer as
much freedom as possible to express knowledge. The only prescribed structure
is that knowledge has to be entered in a ‘subject–predicate–object’ triple format,
the most basic sentence structure in natural language and at the same time the
basis for the RDF ontology language. There are no additional restrictions on
the triple’s content.

The integration of the newly created knowledge model with existing sources
is traditionally handled by the knowledge engineer. Semi-automatic support for
reuse activities such as mapping is provided by tools such as Falcon-AO [49].
A novel idea in ROC is to reuse existing sources by offering the domain expert
possibly relevant concepts from a preprocessed repository. Hence, we explicitly
support the associative process of knowledge elicitation (for example, by helping
the expert in remembering to include related concepts). It is expected that such
associations speed up the acquisition process. Some work in this direction is
also done by D’Aquin et al [19]. They have developed a plug-in for both the
Protégé and NeOn toolkits which enables the search for related RDF-triples on
the Web using the Watson semantic search engine3. The user of this plug-in can
select relevant RDF-triples for inclusion in the current project. With ROC, we
provide similar functionality but (i) base ourselves on an information repository
focused on the domain at hand that contains triples gathered from RDF-sources
and semi-structured web documents, and (ii) integrate the reuse-functionality
in the domain expert-friendly ROC-environment.

3.3.2 Proto-ontologies

For the knowledge identification activity of the domain expert, we introduce the
concept of a purpose-specific ‘proto-ontology’4 Proto-ontologies are knowledge
models that solely consist of concepts and relations; formal term definitions,
knowledge rules and logical constructs are not part of the proto-ontology. We
believe that proto-ontologies are well-suited for the domain expert to easily
capture relevant knowledge as basis for the final application ontology.

In the creation of proto-ontologies, we do not require the use of ‘good
modelling practices’, as for example defined in [86], since concepts like ‘subclas-
sOf’, ‘datatypeProperty’, or ‘inverseProperty’ as used in the ontology language
OWL are mostly meaningless to the domain expert and may even hinder the
knowledge identification process. Instead, we stay close to natural language ex-
pressions to assist the domain expert. The resulting proto-ontology is a useful

3http://watson.kmi.open.ac.uk/editor_plugins.html
4A proto-ontology in this thesis is always application specific. For readability reasons, we use

proto-ontology instead of ‘application proto-ontology’.
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Figure 3.4: Workflow of the proto-ontology creation process. Setting the purpose and identifying
seed terms are tasks that are performed by the problem owner and the domain expert, selecting and
specifying concepts and relations is done by the domain expert. The problem owner is responsible
for evaluating the concepts and relations that are added to the proto-ontology. After the evaluation
of the final result, it is possible that a new ROC-cycle is required.

intermediate product consisting of interconnected informal RDF-triples that the
knowledge engineer can work on.

3.3.3 Reuse-based ontology construction in five steps

In this section, we explain the steps used to support the domain expert in iden-
tifying relevant knowledge for the proto-ontology. This process is divided into
four main parts; stating (1) purpose, (2) seed terms, (3) concepts, and (4) rela-
tions, not unlike existing methods such as Methontology [31]. The progression
through these tasks is presented in Figure 3.4, but the domain expert is free to
switch back and forth between different steps as he sees fit. In the ‘concepts’ and
‘relations’ part, the ROC component prompts the domain expert with possibly
relevant concepts or relations. Below, these steps are presented in more detail.

Orthogonal to these four steps is the process of evaluation. While each step
has a decision criterion to decide whether or not to progress to the next step,
Step 4 finishes with an overall evaluation of the resulting proto-ontology. The
domain expert and the problem owner evaluate the created proto-ontology with
respect to the specified purpose. They decide whether the result is satisfactory.
If this is not so, any step in the proto-ontology construction workflow can be
revisited.

Step 1: Source identification.

For the prompting process, the ROC component requires the presence of semi-
structured knowledge in an information repository. We are interested in reusing
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existing knowledge sources that have been processed into simple natural lan-
guage statements in a ‘subject – predicate – object’ format. Such statements are
understandable to the expert as ‘term – association – term’ statements and can,
in a later stage, easily be mapped onto RDF/OWL expressions by the knowledge
engineer.

To create the required information repository, we have to identify sources
that may contain relevant information for the proto-ontology. We recognise two
types of usable sources: (i) semi-structured sources, like web pages in a structured
layout (tables, pages with rigid section structures, etc.), and (ii) existing ontologies
and thesauri, typically formalised in OWL, RDF(S), or SKOS.

To effectively use the semi-structured sources, a triple extraction step is re-
quired. Various techniques can be employed to do so. The possibility used
in this thesis is to create a custom parser and triple extractor for each identi-
fied semi-structured source. This ‘tailor-made’ approach yields relatively high-
quality triples, but is labour-intensive for the knowledge engineer, since it re-
quires adaptation of the extraction tool for each new source. Alternative ap-
proaches using more generic and robust tooling are supported as well, for ex-
ample in the form of more generic parsers and crawlers, but also the integration
of text mining and named entity recognition software (e.g. Calais5). Note that
our claim is not to have created a particularly novel triple extraction technique,
but that when a source is harvested for triples, those triples can be efficiently
used to support the proto-ontology creation process.

Existing ontologies and thesauri, the second type of existing sources, are
already formalised and structured as triples. The triples from both types of
sources can be used as the basis for the prompting process. The triples are
stored in an information repository, in our case realised using the Sesame RDF
framework6. To ensure that triples can be presented to the domain expert in
a format that is intuitive to him and that does not burden him with formal
knowledge representation terminology, informal labels of the formal relations
are required. Hence, the knowledge engineer has to review the selected sources
and provide such mappings. For example, the formal ‘rdfs:subClassOf’ relation
could be mapped to the natural language expression ‘is a’.

Step 2: Defining the scope.

Although ontologies are typically considered purpose-independent artifacts, in
creating application ontologies, we take the purpose as defined a priori by the
problem owner into account as a crucial aspect during development, since it
helps the domain expert to keep focus and to decide on issues such as coverage
and level of detail of the proto-ontology. The scope of the proto-ontology is
determined by three dimensions: the application perspective, represented by
the problem owner; the domain perspective, determined by the domain expert,
and the discipline perspective, covering the multi-domain aspect of application
ontologies (see Figure 3.5). The problem owner is the main stakeholder for the

5http://www.opencalais.com/
6http://www.openrdf.org/
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application that is to be supported by the ontology. Hence, he takes the lead in
defining the application’s scope and purpose. He first identifies the type of task
that is to be performed, using the CommonKADS [95] task templates. During
the proto-ontology construction process, the domain expert and problem owner
interactively refine the purpose and adapt the proto-ontology to converge to a
knowledge model that is well suited to support the envisioned application. A
domain expert selects concepts from the domain; the problem owner may reject
some of them and indicate that other concepts are to be explored further. This
process of delineating the scope with respect to the domain and task dimension
takes place for every discipline involved.

Aspects that help to specify the scope of the proto-ontology are:

• The application for which the proto-ontology is created. In the ROC-
component, the problem owner can enter a description of the application
in natural language.

• The type of end users of the application, and thereby the level of expertise
required in the proto-ontology. In ROC we distinguish ‘general public’,
‘professionals’, and ‘experts’.

• The disciplines covered by the proto-ontology. The ROC-component offers
a list of general subjects, such as food, agriculture, mathematics, etcetera.

Moreover, in the process of setting the scope of the application, the problem
owner and domain expert can specify terms that should be included in the
proto-ontology, and terms that should not be included. This way, the scope
definition is gradually refined.

For example, we imagine developing the plant proto-ontology for our case
study using the ROC component. The description of the application is: A com-
puter vision application that uses expert knowledge to automatically determine the qual-
ity of recorded tomato plants, a classification task. The system will typically be
used by Experts. The subjects of relevance that are chosen by the problem
owner may be Agriculture, Plants and Computer vision. During the process, the
problem owner and domain expert indicate concepts that are to be explored
in more detail, such as Cotyledon and True leaf, and reject concepts that are too
detailed for inclusion such as Petiolule (too detailed on the domain axis) and
Plant diseases (out of focus of the classification task). The domain expert elab-
orates by finding related concepts to True leaf such as Terminal leaflet and Vein
structure. The problem owner can accept or reject the proposed concepts. In
this way, problem owner and domain expert work together to find the concepts
that best suit the purpose of the proto-ontology within the plant subject layer.
Next, the computer vision expert is asked for his input. In a similar process, he
and the problem owner will identify that geometry concepts such as Cylinder
and Surface are important, but texture features such as Edge and Pattern are out
of scope. In Figure 3.5 this scope refinement process is depicted. Concepts C,
D and F are within scope, the other concepts are too generic or specific in one
of the dimensions.
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Figure 3.5: Scoping of the proto-ontology. The scope is determined by the three dimensions
task perspective, domain perspective and discipline perspective. For each subject layer on the
discipline axis, a domain expert is asked to identify the relevant concepts. In the figure, concepts
C, D, E and F are within the scope. Concepts A and B are concepts like ‘Flower’ and ‘Disease’
that are too generic for the task, concepts G and H are concepts like ‘Stem hair’ and ‘Petiole’ that
are too specific for the task. Concept I may be a plant disease such as ‘Necrosis’ or ‘Fungus’,
useful for the diagnosis task, but not for the classification task.

Step 3: Seeding the proto-ontology.

When the scope is set, the domain expert is asked to compile a list of terms
that are relevant to the proto-ontology domain, the so-called seed concepts. The
seed concepts can be obtained in several ways. The domain expert can just list
them at the beginning of the proto-ontology construction process, the knowledge
engineer can extract them from an intake interview or from the description of
the application as specified in the scoping process, or they can automatically
be extracted from relevant texts. The problem owner has the possibility to
identify terms that are not to be included in the proto-ontology. This list of
non-concepts serves to restrict the proto-ontology to its intended scope. Both
the approved terms and the rejected terms will grow in the proto-ontology
construction process. The domain expert and problem owner can revisit the
seeding step whenever they think of concepts that should or should not be
included in the proto-ontology.

For the example in the plant domain, the domain expert chooses the con-
cepts Stem, Cotyledon and Leaf as initial seed concepts (see Figure 3.6).

Step 4: Extending the set of concepts.

The purpose of this task is to identify relevant terms from a pool of terms asso-
ciated with the previously defined seed concepts. The method uses either the
seed concepts or previously associated and approved concepts to automatically
look up associated terms in the information repository. The identified terms are of-
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Figure 3.6: A screenshot of the ROC component during the process of seeding the proto-
ontology. The domain expert is asked to name relevant terms for the proto-ontology.

fered to the domain expert and the problem owner for inspection. If a new term
is relevant to the domain and task of the proto-ontology, both the domain expert
and problem owner accept the term; otherwise, the term is rejected. Accepted
terms may be adapted to better reflect the domain knowledge.

If a term from the seed list is not found in the information repository, it is
added to the proto-ontology as a single concept. In Step 5, the domain expert
can link this concept to the rest of the proto-ontology by defining appropriate
relations.

For the plant proto-ontology, the information repository may yield for the
seed concept Leaf terms such as Leaf blade, Leaf vegetables, Leaf area, Leaf angle,
Tomato leaf crumple virus and Compound leaf (see Figure 3.7). The domain expert
chooses the latter four, which automatically transfers the non-chosen terms to the
list of non-approved concepts. These terms are not offered again to the domain
expert. In the example, the problem owner may reject the term Leaf abscission
as being too detailed and change the name of Leaf-stem angle to Leaf angle. Next,
the domain expert assesses all associations for Stem and Cotyledon. By updating
the list of associations, the information repository identifies all terms connected
to the newly approved concepts. The domain expert and problem owner can
iterate until they have identified all relevant concepts for the proto-ontology.
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Figure 3.7: A screenshot of the ROC component during the process of identifying concepts for
the proto-ontology. The seed concepts and approved concepts are listed on the left. For each concept
in this list, the related concepts are identified and presented in the second column. The expert is
asked to indicate which related concepts are relevant for the proto-ontology. These concepts can
be selected and approved, the other non-selected concepts are automatically added to the list of
non-approved concepts.

Step 5: Adding Relations.

In this task, the domain expert identifies relevant relations and labels them
properly. To do this, relations between approved concepts are retrieved from the
information repository and offered for review to the domain expert. The domain
expert is asked to either approve or reject the relations. If a relation is approved,
the domain expert can change the label of the relation. The domain expert can
also add new relations to the proto-ontology.

With respect to the plant example, the system may present the expert with
the relations Stem – grows from – Plug and Stem – develops into – Cotyledon. The
first relation is accepted by the expert, but the relation Stem – develops into –
Cotyledon is replaced by the relation Stem – is connected to – Cotyledon.

Note that monitoring the purpose of the proto-ontology is important for the
process of defining labels for the relations. Depending on the type of task, the
extent to which the labels have to be specified differs. In some cases, it suffices
to know that a relation exists, but the type of relation is irrelevant. In other
cases, as e.g. the seedling inspection case, the precise specification of the type
of relation is required for a useful deployment of the proto-ontology.

At the end of the ROC-process, a proto-ontology has been obtained that reflects
the domain expert’s task knowledge. Due to the close cooperation of the prob-
lem owner and the domain expert in setting the scope, the obtained model is
relevant for the knowledge-intensive application.
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3.3.4 Case studies for the ROC component

To evaluate the efficiency of the ROC component, we have created proto-ontolo-
gies for several application domains. Here, we present two cases that are not
related to the seedling-inspection application from the case study. The first case
study that we present deals with the creation of a geometry proto-ontology
for a drawing program. The second case study creates a proto-ontology for
identifying supply chain experts. Below, we briefly present these case studies,
discuss the lessons learned and evaluate the efficiency of the ROC component
in the knowledge acquisition process.

Case study 1: the geometry proto-ontology

As a first test case for the ROC component, a proto-ontology containing ge-
ometry concepts has been created. The problem owner had indicated that the
resulting knowledge model should be used to support an imaginary 3D drawing
program. In this case study, we used a preliminary implementation of the ROC
component: the case study was used to improve the ROC-process.

To prepare the ROC repository, we have asked the expert to indicate semi-
structured sources relevant for the intended drawing application. The expert
mentioned the Geometrical Classroom on Mathworld7. Besides this source, we
used the sources that were already present in the information repository. Note
that these sources were not application specific. We had not yet added the
possibility to actively include or exclude sources in this early version of the
ROC component. Below we give a short description of the used sources.

• The CABI thesaurus8, consisting of terms related to applied life sciences.
• The NAL thesaurus9, containing agricultural and biological terminology.
• OUM, the ontology of units and measures10, containing units of measure,

quantities, dimensions, and systems of units.
• The OpenCyc thesaurus, a generic knowledge base11.
• Mathworld Geometrical Classroom, containing an overview of geometrical

terms, their definitions and the categories to which they belong.

The Mathworld Geometrical Classroom is a semi-structured source for which
we have created a tailor-made parser. We have used the structure of the Math-
world page to find triples like <term> isPartOfCategory <category name>,
<term> hasDefinition<definition> and <word> isRelatedTo<term>. Ex-
amples of identified triples are: Triangle – is part of category – Polygon, Triangle –
has definition – A three-sided (and three-angled) polygon, and Hypothenuse – is related
to – Triangle. The process of creating the parser and harvesting the triples took

7http://mathworld.wolfram.com/classroom/classes/Geometry.html
8http://www.cabthesaurus.info
9http://agclass.nal.usda.gov.agt/agt.shtml

10http://www.afsg.nl/foodinformatics/index.asp
11http://www.opencyc.org
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the knowledge engineer approximately 0.5 days. The other sources were har-
vested in a similar way. The retrieved triples have been added to the information
repository.

For this early test of the ROC component, both the knowledge engineer and
the domain expert were present at the proto-ontology creation process. The
knowledge engineer operated the ROC system, and the domain expert provided
the input. In this first implementation of the ROC component, the purpose was
only defined in terms of a global description of the application and of the domain
of interest.

The domain expert started the seeding process with two concepts in the
seed list: cubes and cylinders. In the ‘concept step’ these terms were looked up
in the repository. In this first implementation of ROC, we did not distinguish
between the ‘concept step’ and the ‘relation step’. Therefore, the domain expert
was asked to assess the statements and to adjust relations and concepts when
necessary. At certain points in time, the created intermediate proto-ontology
was visualised; the knowledge engineer manually mapped the concepts in the
information repository to classes and the relations to properties and used the
TGViz plug-in 12 of Protégé to show the intermediate proto-ontology to the
domain expert. The domain expert needed thirteen iterations to reach a sat-
isfactory proto-ontology. For this process, approximately 20 hours have been
used by the domain expert and 25 by the knowledge engineer. The resulting
proto-ontology contains 453 triples.

Case study 2: the supply chain proto-ontology

For a knowledge institute, it is important that the expertises of its employees are
known to properly answer questions from e.g. journalists. We have developed
a prototype system for Wageningen University and Research Centers in which
a search term can be entered to find the corresponding expert.

For the prototype of the expert finder system, we have performed a pilot
study that focused on the areas of expertise of ‘agri-food supply chains’. To this
end, we have invited a domain expert in this area to participate in a number of
ROC sessions. In these sessions, two knowledge engineers were present: one
to guide the domain expert through the ROC process, the other to operate the
second version of the preliminary ROC tools.

To prepare the information repository, the domain expert was asked to iden-
tify relevant Web-based sources on ‘supply chains’. The expert indicated that
‘chain logistics’ and ‘supply chain management’ are more appropriate terms and
presented us with relevant sources. Below we give a short description of the
identified sources.

• The CABI and NAL thesaurus as in the first case study.
12http://users.ecs.soton.ac.uk/ha/TGVizTab/
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• The MeSH vocabulary13: a controlled vocabulary in the area of life sci-
ences.

• The UMLS vocabulary14: a controlled vocabulary in the biomedical sci-
ences.

• The AGROVOC thesaurus15: covering concepts in the agri-food domain.
• Agrologistics list16: a structured list with terms in agrologistics.
• Sustainability list17: a structured list with terms in sustainability.
• Expertise list: a structured list with the expertises of Wageningen UR.
• Wikipedia supply chain management18: containing information on supply

chain management.

A tailor-made parser for the last three sources was used to harvest triples.
This parsing process resulted in triples of the form <term> isSubcategoryOf
<chain logistics term>, <term> isSubcategoryOf<supply chain manage-
ment term>, and <term> isRelatedTo<term>. Examples are Cost-benefit anal-
ysis – is related to – costs, Chain integration – is a subcategory of – organisation, and
Food safety – is a subcategory of – chain transparency. The other sources were avail-
able in SKOS-format and could therefore directly be added to the information
repository.

The process of identifying appropriate additional knowledge sources and
writing parsers for these sources, took the domain expert 0.75 days. The har-
vested statements were added to the information repository.

The purpose of the proto-ontology was defined as being useful for expert identifi-
cation within Wageningen UR. The proto-ontology domain was supply chains and
food domain, the expert type of end users was defined as general public.

The domain expert started with a seed concept list of 49 terms specified
in Dutch. These terms were translated into English. The translation to English
terms was needed since the used sources were partly in English. The remain-
der of the first session was used for the ‘concept step’. All terms that were
automatically retrieved from the information repository were presented to the
domain expert in separate sets; each set centered around a seed concept. The
advantage of this set-based way of presentation is that the list of retrieved terms
is presented to the domain expert in manageable chunks instead of in an over-
whelmingly large list. For each set, the domain expert checked all terms and
indicated whether they had to be included in the proto-ontology.

The proto-ontology construction step was concluded after a second iteration
of the ‘concept step’. Since the purpose defined for this task did not require any
further specification of the relations – a simple ‘has-relation-with’ label sufficed

13http://www.nlm.nih.gov/mesh/filelist.html
14http://www.nlm.nih.gov/research/umls/documentation.html
15http://www.fao.org/aims/faq\_aos\#30.htm
16Internal reports ‘kenniskaart agrologistiek en visie agrologistiek’ (in Dutch), and ‘platform agrol-

ogistiek’ (in Dutch)
17Internal report ‘Vitaal en samen’ (in Dutch)
18http://en.wikipedia.org/wiki/Supply_chain_management
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– the ‘relation step’ was not entered. In total the process of creating the proto-
ontology took 5 hours for the domain expert and a little less than 17 hours for
the knowledge engineers. The resulting proto-ontology contains 248 triples.

Experiences and lessons learned for the ROC component

One of the goals of the ROC component is to support domain experts in opti-
mally performing their task of defining concepts and relations between concepts,
while staying in their frame of reference. The domain experts indicated that the
use of ‘term – relation – term’ statements was clear to them. Both experts19

were well capable of performing the knowledge specification activity within the
predefined knowledge format. They indicated that the separation of roles of
domain expert and knowledge engineer was satisfactory, since it made sure that
the domain expert was responsible for the knowledge specification part of the
process.

In the first case study, we noted that the combination of the concept step
and the relation step was cumbersome for the domain expert. He had to look
at the visualisation of the intermediate proto-ontologies to recall what earlier
decisions had already been made. In the second implementation of ROC, the
separation of these steps was embedded. The domain expert in the second case
study indicated that already discarded concepts should not show up in relation
to other concepts in other sets. As a result, we adjusted the method (step 4) in
such a way that a list of discarded concepts is maintained and a filtering step
removes such concepts from the sets that are offered to the domain expert.

3.3.5 Evaluation of the ROC component

We evaluate the ROC component with respect to its original objectives and the
chosen solutions.

Firstly, we claimed that the ROC component is more efficient than interview-
based-only knowledge acquisition, since it allows the problem owner, domain
expert and knowledge engineer to focus on their own strengths: the problem
owner sets the scope in close cooperation with the domain expert; the domain
expert gathers knowledge and creates a proto-ontology; the knowledge engineer
focusses on the knowledge modelling aspects. We can evaluate the ROC com-
ponent with respect to the first two parts of this process. The last part has not
been elaborated yet. To evaluate the efficiency of using ROC compared to only
using interview-based knowledge acquisition, we performed a cost-benefit anal-
ysis in which we compare proto-ontologies developed with respectively without
the ROC-component.

Secondly, the ROC-component aims to support the domain expert in gath-
ering the required knowledge and benefitting optimally from existing sources.
To see whether the use of multiple sources in the information repository in-
deed led to reuse of existing knowledge in the proto-ontology, we performed

19These experts were academically trained, but had no previous experience in the field of knowl-
edge modelling.
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an analysis on the two proto-ontologies from the presented case studies. The
usefulness of the information repository can be measured by identifying how
often the automatically proposed statements are selected by the domain expert
and how often the knowledge engineer added knowledge not taken from the
repository.

Finally, we intend to use the ROC-component as a means of creating task-
specific knowledge models. We evaluate the usability of the created knowledge
model for one of the examples, namely the expert recommendation application
for which the supply chain proto-ontology was developed.

The above mentioned evaluation methods provide us with a preliminary
judgement of the potential of the approach. The full evaluation of the interview-
and observation-based method complemented with the ROC component for ap-
plication ontology construction awaits the development of the knowledge engi-
neering part of the ROC component.

Comparison of interviews and ROC

To obtain an impression of the costs and benefits of the ROC component, we
compared a ROC-only method to interview-based-only proto-ontology creation.
In other words, we compare the effort for creating a number of interview-only
proto-ontologies with the effort to create proto-ontologies with the use of the
ROC-component.

Within our group, we have developed for example the Plant Ontology for
the seedling-inspection task, the Healthy Food Components Ontology20, and
the Potato Ontology [43] using interview-based knowledge acquisition. We can
compare these with the Geometry Ontology and the Supply Chain Ontology as
described in the ROC use cases. In Table 3.1, an overview of these ontologies
and their development efforts is given. We see that both the knowledge engineer
and the domain expert are involved in the knowledge acquisition process, be
it in the interview-based or in the ROC-based component. The problem owner
was not explicitly included in the process. The process of creating the potato
ontology and the supply chain ontology are most similar, since in both cases
only one domain expert from only one discipline was interviewed and the proto-
ontologies are of comparable size. The geometry proto-ontology was hampered
by the immature character of the initial ROC tools and is therefore less suited
for comparison.

When we compare the construction of the supply chain ontology with the
construction of the potato ontology, we see that for the supply chain ontol-
ogy, the knowledge engineer needs three times the time of the domain expert,
whereas in the potato proto-ontology this ratio is 1 to 4. Although these results
are far from statistically conclusive, they suggest that the ROC component could
reduce the amount of time required by the knowledge engineer to develop the
proto-ontology. It is indeed one of the design criteria of ROC to not require
the knowledge engineer to study the domain of the proto-ontology. The num-
bers for the domain expert are more difficult to interpret. In the supply chain

20The application based on this ontology can be found at www.afsg.nl/icgv
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proto-ontology # sessions
∑

time DE
∑

time KE total time # concepts # disciplines
Plants 13 (13 DEs) 58 hrs 88.5 hrs 146.5 hrs 37 2
Food components 4 (4 DEs) 10 hrs 30 hrs 40 hrs 120 1
Potato 8 (1 DE) 8 hrs 32 hrs 40 hrs 279 1
Geometry 12 (1 DE) 20 hrs 25 hrs 45 hrs 208 1
Supply chains 2 (1 DE) 5 hrs 16.5 hrs 21 hrs 236 1

Table 3.1: In this table, an overview is given of the properties of three manually developed
proto-ontologies and the two proto-ontologies covered in the case studies (Geometry and Supply
Chains).

proto-ontology, the domain expert is involved in fewer sessions of the ROC com-
ponent than for the development of the traditional interview-based knowledge
acquisition for the potato ontology. Whether this is a generic trait of the ROC
component is still to be seen. The total time used to develop the potato respec-
tively the supply chain ontologies differs a factor of two in favour of the ROC
component.

Evaluation of ROC in an application

One of the evaluation measures of a proto-ontology is to see how well it supports
an envisaged application. For the geometrical case study no specific application
was created. For the second case study, we developed an expert recommenda-
tion system that can be used to identify experts in the field of supply chains.

For the expert recommendation system, we assumed that experts publish
on subjects that are within their area of expertise. These publications can be
used to create individual ‘fingerprints’21, containing a set of characteristic terms
describing the expertise of each expert. To link a search term to a fingerprint,
we need ontologies for a number of expert domains. If, for example, a journalist
needs information about avian influenza, the appropriate expert will probably
be known as expert on bird diseases. When only text based search is used, the
journalist will not find the desired expert. When a (light-weight) ontology is
used in which the link between avian influenza and bird disease is made, the
corresponding expert can be identified.

To find an expert, a user enters a free text string indicating the topic for
which the expert is required. This term is matched with the terms in the proto-
ontology. If a matching term is found, its related terms in the proto-ontology are
collected. The application uses these terms to scan the publications’ fingerprints
for the original search term and its related terms. The authors from the pub-
lications are identified and ranked. The user can see which related terms have
been found, and which experts best match the original query.

To evaluate the usability of the supply chain proto-ontology, we selected ten
terms from the proto-ontology. With this set of terms, we queried the system
for experts. Next, we checked with the involved domain expert whether the
Top 3 of scientists returned are indeed experts in the indicated areas. For the
terms food supply, supply chains, supply chain management and food production, the

21http://www.collexis.com
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(a) Case 1: Geometry

Source # Triples
CABI 2
Mathworld 164
OUM 8
Domain expert 279

(b) Case 2: Supply Chains

Source # Triples Source # Triples
CABI 81 Intranet sustainability 3
AGROVOC 61 Intranet agrologistics 2
Wikipedia 42 UMLS 1
MeSH 30 Domain expert 0
NALT 28

Table 3.2: Contribution of sources to total triple size of proto-ontology.

identified experts were the persons expected by the domain expert (i.e. high
precision). For the terms logistics and food safety the domain expert did not
know all identified experts personally. After looking into the experts’ affiliations,
though, the domain expert concluded that it was reasonable to assume that the
unknown persons were indeed experts in the indicated fields. The terms trade
barrier and chain governance were on the border of the expertise of the domain
expert; he could not give an indication of the correctness of the selection. The
terms quality and networks are important for the food supply field of expertise,
but also have a meaning in other areas. The found experts indeed related to
these terms, but were not specifically linked to the area of supply chain quality
or networks. Overall, the expert finder tool seems to indicate the expected
experts or related persons in the expected departments. This suggests that the
proto-ontology supporting the expert finder tool fulfills its expectations well.

Use of the information repository

In this section we look at the amount of information from the repository that
was actually reused in the case studies. We see in Table 3.2 that in the geomet-
rical case, the domain expert has mainly taken concepts and associations from
Mathworld, and has added many new statements (e.g. equations, parameters,
etc.). The skewed ratio between reused and new concepts was caused by (1)
spontaneous associations by the domain expert at the presented concepts – a
desirable effect – and (2) a limited amount of available dedicated statements in
the information repository. This shows that identifying sufficient and adequate
sources is important to profit optimally from ROC. For the supply chain case
more sources were available. The ratio between triples from these sources is
more balanced and no new concepts were added by the domain expert.

3.3.6 Conclusion

We have observed that the ROC component may accelerate proto-ontology con-
struction by supporting different players in the process. First, the problem
owner is assisted in defining the application context. Second, the domain ex-
pert specifies a proto-ontology without being hindered by technical modelling
details. Third, the time spent by the knowledge engineer to get to know the
domain is minimized. With ROC, association rate, focus and readability during
ontology development is enhanced. Existing knowledge sources are used from
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the start of the construction process and the purpose of the proto-ontology is
continuously monitored. Furthermore, we use natural language-like statements
generated from a triple format as intermediate representation.

Even though ROC and its tools are still under development, we have al-
ready used them successfully. In the two case studies we have constructed
proto-ontologies in a relatively short time. The evaluation of the results shows
that combining multiple sources works well, as they all appear in the resulting
proto-ontology. Not many additional triples need to be added by the domain
experts when sufficient reusable sources are available. We also analyzed the
costs and benefits of developing ontologies for five cases. Two of these ontolo-
gies were developed with ROC, the other three with an interview-only method.
The comparison shows that the time needed by the knowledge engineer and to a
lesser extent the domain expert is reduced by using ROC. Measuring the quality
of the proto-ontology, though, remains difficult and is ultimately expressed by
the effectiveness in applying the model in some context.

Future developments around the ROC-component involve the following as-
pects:

• An aspect of ROC that needs further attention is ensuring that domain
experts stay motivated during the process. This can be achieved by cer-
tifying that the domain expert is committed to the intended application
and by minimizing the amount of manual editing.

• Another issue we will attend is to include the selection of appropriate
domain experts as a step in the ROC component, not unlike choosing
appropriate text sources.

• A third extension that we presently investigate is the inclusion of existing
triple extraction tools in the ROC toolkit.

• The fourth proposed addition to the ROC component is a proto-ontology
structure dashboard giving continuous feedback on a number of perfor-
mance indicators, to guide the problem owner and domain expert in cre-
ating balanced, high-quality proto-ontologies.

• The fifth aspect is to systematically support the identification of ontolo-
gies that may serve as reusable sources based on a problem description
provided by the domain expert.

• Lastly, the steps for refinement of a proto-ontology towards e.g. a full-
blown OWL model, a SKOS model or any other form requires additional
work.

3.4 Discussion and conclusions

In this chapter, we have discussed the knowledge elicitation process to obtain
application ontologies for knowledge-intensive computer vision tasks. The dis-
cussed methods can be used to obtain other application ontologies as well.
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Figure 3.8: A schematic representation of the interview-based knowledge acquisition process
enhanced with the ROC-component, illustrated for the plant application ontology case study. This
process can be used as a template for any interview-based knowledge acquisition for multi-expert,
multi-domain, task-specific situation.

Ontologies for knowledge-intensive computer vision tasks typically require
task-specific, multi-expert and multi-domain knowledge. We have proposed
an interview-based method that can deal with these aspects. First, the scope
of the application is set and task-specific knowledge from individual experts
is obtained. Then, the created knowledge models are merged into one multi-
expert ontology. Next, expert(s) from other domain(s) are asked to provide their
input and finally the created knowledge model is presented to all experts for
feed-back and error correction.

Setting the scope for a knowledge-intensive computer vision task is a pro-
cess that takes place in three dimensions: the application perspective, domain
perspective, and discipline perspective are to be considered. The problem owner
covers the application perspective and the domain expert the domain perspec-
tive. The problem owner is involved in the scoping process on all application-
domain slices, the domain expert is only concerned with the discipline that he is
expert in. By setting the scope explicitly and ensuring that checking the scope is
relevant in the whole knowledge acquisition process, the problem owner ensures
that the created knowledge model is dedicated to the application.

For obtaining individual expert knowledge, interview & observation-based
knowledge acquisition is a good approach. This approach has the benefit that
domain experts are involved in the process. The effect is that the experts work
with the knowledge engineers to create a high quality application ontology. By
involving multiple experts, it frequently happens that the tacit knowledge of
one expert is covered by the explicit knowledge of another expert. As a result,
the coverage of the application domain is better as well. The involvement of
experts from different domains that are relevant for the task ensures that the
created ontologies are well suited for the application.

However, ontology construction only based on interviews has some disad-
vantages. Interview sessions allow the knowledge engineer to obtain sufficient
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understanding of the task domain to identify the knowledge needed for the
modelling process. It would be more efficient if the domain expert could fulfill
this role. Moreover, knowledge models built in interviews assume creation from
scratch, even when reusable knowledge sources are available. The ROC-based
ontology construction method was developed to deal with these issues.

The ROC component helps the domain expert in expressing his knowledge
by giving suggestions for relevant terms. It prompts the domain expert with
related terms taken from existing preprocessed knowledge sources. The pre-
liminary evaluation of ROC indicates that the ROC component indeed results
in reuse of existing knowledge, efficiency in the knowledge acquisition process
and task-specificity of the created proto-ontology.

The ROC component in its present form has some disadvantages. First, if no
reusable knowledge sources can be found, the ROC component can obviously
not be used. Second, task experts may find the process of creating a knowledge
model on their own less appealing than participating in an interviewing session.
At present, we have no experience with collective ontology development. We
expect that this process would be more appealing for experts. Finally, the quality
of the proto-ontology cannot yet be checked automatically.

To combine the benefits from both approaches, we propose to combine
interview-based methods with the ROC-component in the same process (see
Figure 3.8). The scope of the application is input for the interview & observation
process or the ROC-process. The result of the ROC method is a proto-ontology.
This proto-ontology can be sufficiently rich to immediately create an application
ontology. In some cases, though, the proto-ontology will be used as input
for the interviewing process. The domain expert and knowledge engineer can
focus on some parts of the proto-ontology that have not been covered yet. The
application ontology obtained from the interviewing process can serve as input
as one of the reusable sources in the ROC component. The domain expert gets
the opportunity to enrich the application ontology with existing sources. By
choosing this setup for the knowledge acquisition process, we use the benefits
of the interview approach and combine them with those of the ROC component.

The method proposed in this chapter is well-suited for creating applica-
tion ontologies for knowledge-intensive computer-vision tasks, and even more
widely, for knowledge-intensive tasks in general. It gives domain experts an
active role in the knowledge capturing process, ensures that the created ontol-
ogy is on target by involving the problem owner in the process, and enables the
knowledge engineer to focus on the modelling process.
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Chapter 4

Transparent Procedural
Knowledge

In agriculture, automating knowledge-intensive tasks is a frequently occurring
problem. Task-performing software is often opaque, which has a negative im-
pact on a system’s adaptability and on the end user’s understanding and trust of
the system’s operation. A transparent, declarative way of specifying the expert
knowledge required in such software is needed.

We argue that a white-box approach is in principle preferred over systems
in which the applied expertise is hidden in the system code. Internal trans-
parency makes it easier to adapt the system to new conditions and to diagnose
faulty behaviour. At the same time, explicitness comes at a price and is always
bounded by practical considerations. Therefore we introduce a method to find
a balanced decision between transparency and opaqueness. The method pro-
posed in this paper provides a set of pragmatic objectives and decision criteria
to decide on each level of a task’s decomposition whether more transparency is
sensible or whether delegation to a black-box component is acceptable.

We apply the proposed method in our case study and show how a balanced
decision on transparency is obtained. We conclude that the proposed method
offers structure to the application designer in making substantiated implemen-
tation decisions.

In this chapter, we focus on the research question “How can we system-
atically decide on the right level of transparency in the design of knowledge-
intensive computer vision applications?” We show how the transparency deci-
sion depends on (secondary) task objectives. A paper ’Transparent Procedural
Knowledge for Computer Vision Applications’ which covers this chapter has
been submitted for publication.
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4.1 Introduction

In traditional applications, the software written to perform a task is opaque
in the sense that the knowledge used in the application cannot easily be iden-
tified in the code. Such a black-box setup works well in those cases where
the role of the software developer and the domain expert completely overlap
and when the developers remain responsible for the application over its entire
lifetime for all use cases. However, the central message of this thesis is that
for knowledge-intensive applications, opaque software is not satisfactory. The
considered domains are hard to master for software engineers, new application
areas and unforeseen conditions may arise over time. Opaqueness makes it hard
to maintain and adapt such a system.

In Chapter 2, we have focused on using explicit descriptive knowledge to
get a clear image of the task and domain of the computer vision application.
We have created a decomposition of the inspection task into subtasks and in-
termediate models. For this decomposition, we have chosen to follow the Com-
monKADS method [95] of decomposing until the primitive task level has been
reached. In this chapter, we introduce the idea that the desired level of trans-
parency depends on the secondary objectives of the application. For some ap-
plications, a decomposition of the task until the primitive level is not necessary
and perhaps not even desired.

In this chapter, we focus on designing a computer-vision method that is
transparent to the level that is feasible and sensible in practice. This chapter is
organised as follows. We set out general objectives that ask for a degree of
transparency. We next propose a set of criteria that can be used to decide for
a component in the application whether transparency is desired. These criteria
are used as guidelines to support the making of practical design choices. More-
over, we introduce mechanisms for actually adding transparency to the targeted
component. We apply the proposed method to our case study in Section 4.4
and evaluate how the criteria help us to design an application with the desired
level of transparency in Section 4.5. We conclude in Section 4.6.

4.2 Related Work

The subject of knowledge-intensive computer vision has been studied in the
fields of machine vision, machine perception, robotics and cognitive vision, since
each of these disciplines deals with complex information that has to be inter-
preted in real-world terms. For the context of this chapter, we focus on computer
vision applications that use explicit procedural knowledge.

Procedural knowledge is used on various levels of explicitness. Crowley et
al [18], for example, have chosen to use case based reasoning for their system
that can independently diagnose and repair itself. Cases of repair strategies are
used to apply procedural knowledge to a problem; the knowledge itself, though,
is embedded in the cases and is not formulated explicitly. The work of Clouard
et al [16] focuses on automatic generation of image processing programs. The
resulting computer vision code does not explicitly reflect the domain expert’s
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procedural knowledge either. Albusac et al[2] use both an explicit description
of the domain (traffic situations in a surveillance system) and knowledge rules
that are stated in terms of expert knowledge. An example of such a rule is ‘if
object is not <person, group of people> AND object speed is <slow, medium>
AND sidewalk intersection degree is <very low, low> then situation is normal’.
The concepts ‘person’, ‘group of people’, or ‘slow’ are understandable terms
for a domain expert. They explicitly stress that allowing the domain expert to
understand the system output is very important. In that sense, their work is
closest in spirit to our work.

4.3 Implementing Transparency

Introducing transparency in an application automatically implies making choices
as to the level where adding transparency stops. Transparency is a property of
a software system that is not strictly required for a correct functioning of the
application. We have to make a decision on the level to which transparency
is beneficial for the system. After all, from a certain level additional explicit
knowledge introduces unwanted overhead or may even cause confusion for de-
velopers and users. Instead of blindly adding more transparency, the use of
black-box components may be the best implementation choice at certain points
in the application.

To get a clear image of the trade-offs between black-box and transparent
design, we need to take a step back from technical considerations and focus on
underlying design objectives and criteria.

4.3.1 Design Objectives

Software systems have to comply to both functional and non-functional require-
ments. The following requirements are relevant for our discussion: (i) robust-
ness and reliability, (ii) trust, and (iii) speed. A system should be robust and
reliable. This means that it should handle all possibly encountered situations
properly, and signal cases that fall outside the scope of the system. This re-
quirement asks for a scope of the system and its subsystems that is modelled
as accurately as possible. Moreover, the system should be trusted by its end
users. Transparency of the system can help end users to build confidence in the
application. Another objective is that the system should respond fast enough to
a given input.

Besides affecting these general system properties, transparency may also
contribute to the support of tasks associated with the system and its develop-
ment. Supporting these tasks is not vital for the execution of the task per se, but
it provides the users and developers of the application with additional benefits.
We consider two types of tasks that are of interest for our discussion.

The first task is system modification [17, 35], entailing maintenance, mod-
ification, trouble shooting, correction, testing, diagnosis, et cetera. These tasks
aim at sustained system improvement. Task support can be given by tools that
detect the cause of an error and point to its location in the code or by tools

75



Transparent Procedural Knowledge

that pinpoint modifications needed for a new application area. In general these
tasks can be said to contribute to the objectives corrigibility and adaptability.

The second task is organisational learning [21], including education, dis-
cussion, elicitation, externalisation, et cetera. This refers to all tasks that are
performed by the system to lift the level of human expertise in the organisation,
summarised as the objective understandability. Here, task support builds on the
fact that system behaviour is paired to explanation of the underlying reason-
ing. For example, novices in a particular field of expertise can learn to see the
effect of decisions made by the system, reflecting consented knowledge from
leading experts. Another example is that other experts may become aware of
the implicit reasoning they apply in cases similar to the ones demonstrated by
the system.

We submit that a clear view on these tasks helps to properly set the objec-
tives for transparency.

4.3.2 Transparency criteria

The decision on whether or not to further specify task-specific knowledge de-
pends on (secondary) objectives of the application. To help decide where and
to which level transparency is required and feasible, we present the following
set of criteria:

Availability of explicit domain expertise.

If the expert knowledge required for the component can be modelled explicitly,
then the component is eligible for explicit specification. Some tasks are typically
implicit and hard to express verbally. For example, it is difficult for people to
express how they recognise faces.

Application range.

This factor is related to the scope of the considered software component, both in
terms of task and domain. The application range indicates the envisaged future
tasks and domains for which it might be applied. A specification of the input
and output types that the component covers is asked for.

Common sense and trivial knowledge.

Not all knowledge underlying an application should be made explicit. Detailing
trivial facts (for example how an average value is computed) clutters the system
with irrelevant knowledge and makes it less transparent.

Explanation.

In order to support tasks such as diagnosis and education, the system should be
able to provide a clear explanation of its reasoning process. It may be necessary
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Figure 4.1: A graphical representation of adding transparency to an application. A component
can be broken down into subcomponents. A component can be explicitly defined by expressing its
internal workings in a declarative fashion. Conceptual refinement is not displayed in this picture.

to give more information about the underlying knowledge than strictly needed
to perform the original task.

Third party expertise and trust.

It often occurs that components developed by a third party are used. System de-
velopers may or may not trust the origin of such a component. If one believes
that the component performs as promised, no need for further specification
exists. For example, many predefined mathematical computing libraries from
respected software developing companies have been validated and verified ex-
tensively. Third party components are often optimised for speed of execution,
memory footprint and scalability.

The identified criteria are a guideline in deciding on the correct level of trans-
parency. They offer structure in designing knowledge-intensive computer vision
applications, but some aspects of the decision process will be undecided by the
criteria and remain subjective.

4.3.3 Realisation

When the criteria from the previous section indicate that transparency is asked
for, we have to actually realise transparency in the component. To encode a
component in a transparent way, the knowledge in the component must be
made explicit and encoded separately from the processing code.

For every subtask on every level of the application, a decision on whether
more transparency is desired can be made. In this section, we introduce three
patterns for making conceptual knowledge explicit (see Figure 4.1).
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Task and domain decomposition.

The first manner in which we can add transparency to an application is by per-
forming task and domain decomposition. Task decomposition is a technique
that is used in many different areas, such as project management [77, 104],
building projects [65], and modularisation in software engineering [109]. A
frequently used method is hierarchical task analysis that breaks down the op-
eration at hand into sub-operations [3]. Without decomposition, these would
remain hidden. The CommonKADS methodology [95] has formalised this type
of decomposition as a way to model knowledge-intensive tasks. At the lowest
level of task decomposition it links domain models to the inputs and outputs
of so-called inferences. In creating transparency, it is not so much the decom-
position of the activity that is important, but the associated identification of
intermediate concepts and relations.

Conceptual refinement.

The second way to add transparency to an application is by providing concep-
tual refinement of its input facts. These input facts are instances of an applica-
tion ontology. The classes in the application ontology may be too imprecise for
the component under inspection, especially when future use of the component
is envisaged. If a component is only suitable for a subset of the instances of
the input class, then the application ontology should be refined with an addi-
tional subclass corresponding to this subset. For example, instead of allowing
all plants as input for a component that is only suitable for tomato plants, we
create a subclass ‘tomato plant’ of the class ‘plant’ and indicate that only in-
stances of the class ‘tomato plant’ can be used as inputs for the component.
Besides refining facts that are related to the input for a component, facts that
express the conditions under which the component can be applied also provide
transparency.

Logical inferences.

The third manner to add transparency to an application is by providing ex-
plicit knowledge rules for the inner workings of a component. Knowledge is
essentially a mechanism to derive new facts from existing facts. Logical rules
describe the relations between the facts specified in the other two steps. They
provide additional insight on how a task is performed, but without resorting
to imperative coding. This manner of adding transparency separates the inner
workings of a component into explicit expert knowledge and processing steps.

The three methods listed are different ways to add transparency to an applica-
tion. With the first two methods, descriptive domain knowledge can be expli-
cated; the ontologies in which the domain knowledge is modelled are refined.
With the last method, procedural knowledge is made transparent. By defining
procedural knowledge in the form of knowledge rules, the relations between
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Figure 4.2: A schematic representation of the design process of transparent knowledge-intensive
applications.

consecutive models of an object are made transparent. In this way, both de-
scriptive and procedural expert knowledge can be embedded in the computer
vision design.

The proposed design process for knowledge-intensive computer vision ap-
plications can be summarised as follows (see Figure 4.2): first the task is defined
and the scope is set, as proposed in Chapters 2 and 3, next the input and out-
put ontologies are defined. Then, the secondary objectives of the application are
charted, since they are leading in deciding on the transparency of a component.
If a component requires additional transparency, either the component and the
involved ontologies are further decomposed, the input and output ontologies
are further refined, or the inner workings of the component are made explicit
using knowledge rules. If no additional transparency is needed, a black-box
component is introduced. The process of deciding on transparency is repeated
until for all components in the application a decision has been made.

This design process is a further elaboration on the process proposed in
Chapter 2 in the sense that two new components – define objectives and decide
on transparency – have been added to the design process, and the components
task decomposition, refine ontology, and create algorithms (computational steps)
no longer have to be applied for all components. Moreover, the new setup
distinguishes between white-box logical rules and black-box algorithms, instead
of always choosing the black-box computational steps.

The five decision criteria proposed support the designer of a computer vision
application in deciding which transparency decision can be implemented using
which transparency mechanism:

The criteria concerning explicit expertise, trivial knowledge and third-party ex-
pertise can lead to a further decomposition of task and domain:
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• The explicit expertise criterion investigates whether it is at all possible to
express the knowledge in a component in an explicit way. When this
criterion is not met, the decision for the component is easy: it has to
remain a black-box.

• The criteria concerning trivial knowledge and third party expertise decide
when it is necessary to decompose a task: if the component under inspec-
tion is not sufficiently primitive, adding transparency could make sense;
if a trusted third-party component is available, then further decomposing
of the task may not be necessary.

Based on the application range criterion, conceptual refinement is required:
this criterion ensures that if a component is only suitable for a limited set of
input objects, this fact is stored with the component. By setting conditions on
the input objects, we prevent the component from accidentally be used for other
objects.

Adding transparency by explicitly defining logical inferences is done based
on the criteria trivial knowledge, explainability and third party expertise:

• The trivial knowledge criterion indicates that making too detailed knowl-
edge explicit leads to cluttering. The explainability criterion indicates that
the explication of knowledge contributes to gaining insight in the inner
workings of the component.

• The third party expertise criterion indicates that existing trusted components
can be reused and need not be specified. The combination of these three
components allows us to decide on the necessity for formulating procedu-
ral knowledge in a declarative format.

4.4 Transparency in the computer vision application

In this section, we apply the decision criteria and the means to create trans-
parency introduced in the previous section to the seedling inspection case study.
The computer vision application to assess tomato seedlings on their quality is
created with several of the mentioned objectives in mind. Suppose1, that we
are interested in adaptability, since that allows the experts to use the application
for other objects, such as bell peppers seedlings, or cabbage seedlings, and for
other tasks such as grafting. We are also interested in corrigibility, since that
allows the tracking down of errors in the application. Moreover, we are inter-
ested in reliability. Whenever a batch of seeds is polluted with seeds from a
different species, it is important that this is noticed. Without reliability as prop-
erty, the different seedlings would simply be rejected as ‘abnormal plants’, and
would not be identified as plants outside the scope. Also understandability and
building trust are desired objectives. The horticultural sector is interested in an
application that is trusted by all companies and that can be used to train new
personnel.

1In reality, we are also interested in the objective speed for the application.
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Figure 4.3: A graphical representation of the subtasks and intermediate models at the highest
level. Boxes indicate instances of models, ovals represent processing components.

At the highest level, the application transforms the recordings of the tomato
seedlings into quality classes. This task consists of the following steps: (i) a seg-
mentation of the point cloud to obtain a representation of the object in geometric
shapes, (ii) an interpretation of the geometric shapes in terms of plant parts, and
(iii) a classification of the plant into a set of quality classes (see Figure 4.3). For
each of the steps, we single out a number of components. For each of these
components, we use the five transparency decision criteria to decide whether
more transparency is required for the component, and show how the decision
can be implemented. For demonstration purposes, we use a pseudocode rep-
resentation of the required knowledge rules. The actual implementation takes
place using semantic web technologies such as OWL [80] and Jess [33]. OWL is
used to encode ontologies, Jess is used to encode declarative rules. We use Java
to deal with the opaque components in the application. We show the actual
implementation for the example ‘create point group’.

4.4.1 Selected subtasks of the segmentation component

The segmentation component has a set of points as input and a set of geometric
shapes that are closely connected to plant parts as output. This component is
decomposed in a number of subtasks. We elaborate three of them: (i) create
point group, (ii) determine point type, and (iii) determine thick cylinder region.

Create point groups

The first component that we discuss performs the subtask labeled as ‘create
point groups’. For each point P , it results in a point group that has point P
as its central point and that contains all points Pn that are close enough to
P as neighbours. We want to decide whether this component needs further
specification or not. We can apply the five criteria.

First, the available of explicit expertise is studied. The knowledge required
to make this component work is covered in an explicit manner by the computer
vision expert. Hence, this criterion is met; the means to create a white-box
component are available. Second, we consider the application range. As far as
we can foresee, the component is applicable for all computer vision tasks in
which an object is recorded as a point cloud and for which the point cloud has
to be segmented. Assessing bell peppers and cabbages – or even airplanes and
chairs – does not differ for this component from assessing tomatoes, and nei-
ther do quality assessment and grafting. Therefore, we state that the application
range is sufficiently met; no further specification of the input and output of the
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Figure 4.4: A graphical representation of the specification of the ‘create point group’-component.

task is asked for. Third, we consider the triviality level of the knowledge in the
component. At this level of the application, the knowledge needed to create
point groups and identify neighbours is domain-dependent and hence not triv-
ial. The definition of when a point is a neighbouring point is not made explicit
yet. Based on this criterion, it makes sense to further decompose the task into
subtasks. Fourth, the need for explaining the internal workings of the compo-
nent is considered. For the plant expert, explicit knowledge of this component
is not required. Explicit knowledge will not facilitate training or acceptance,
since this component is outside the scope of the plant expert’s knowledge. Fi-
nally, we are interested to know whether a third-party component is available
that can be used. At this level of the application, no reusable third-party tools
exist. A further decomposition of the component would lead to more primitive
components that may be obtained as third-party components.

So, based on the expectation of more trivial knowledge and the possibility
to reuse existing components on a lower level, we decide to further decompose
the ‘create point groups’ subtask into more detailed subtasks (see Figure 4.4).
The subtasks identified in the decomposition are (i) ‘initialise point groups’ and
(ii) ‘find neighbouring points’.

The ‘initialise point groups’ component indicates that for each point a point
group must be created with the point as central point; no further decompo-
sition is possible, no existing third-party tools are available. Expressing the
knowledge in a white-box fashion does not really contribute to explainability,
but does not clutter the code either. We conclude that the decision criteria give
no clear indication on whether a white-box or a black-box expression would be
preferred. In this case, we make the (subjective) decision to create a declarative
implementation of this component:

If ∃ point P , then ∃ point group PG and PG has-central-point P.

For the second subtask, ‘find neighbouring points’, the distance between points
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Figure 4.5: A graphical representation of the specification of the ‘determine point type’-
component.

has to be calculated. This functionality is available as a trusted third party tool
and can be reused. The actual assigning of points to a point group is based on
a domain-specific threshold value t on the distance. We therefore specify it in
a declarative fashion with a call to the black-box component ‘distance’:

If ∃ point group PG and PG has-central-point Pc and P1 is a point and P1 �= Pc

and distance(P1, Pc) < t, then PG has-neighbouring-point P1.

Determine point type

The second component that we discuss is the subtask ‘determine point type’.
This component determines for an input point P , belonging to a point group
PG the value for ‘point type’. This value can be linelike or planar. The rele-
vant criteria for this component are the application range, the triviality of the
knowledge, and the third party components.

At this level of decomposition, the component is not yet so primitive that
we can use third-party trusted software or that the knowledge is so trivial that
there is no use for further decomposition. We therefore decide to zoom in on
the component and look at it in more detail (see Figure 4.5). The component can
be decomposed into three subtasks: (i) ‘perform a PCA analysis’, (ii) ‘calculate
the planarity measure’, and (iii) ‘decide on the point type’.

Performing a PCA-analysis is a standard procedure for which adequate
third-party components are available. There is no need to further specify this
component. Calculating the planarity measure, on the other hand, is a do-
main specific component; depending on the type of objects under inspection,
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the equation may change. With respect to the application range, we note that
the component is only valid for seedlings with oblong leaves. For example for
banana plants (with elongated leaves) and Christmas cacti (with round leaves),
the calculation of the planarity measure will probably need a different equation
or threshold value. For this component, we refine the value of the ‘has-leaf-
shape’ attribute of object-type from ‘any’ to ‘oblong’. It makes sense to make
the inner workings of the component ‘calculate the planarity measure’ explicit:

If ∃ point group PG and PG has-neighbouring-points Pn

and PG has-PCA-components PCi and object-type has-leaf-shape ‘oblong’,

then PG has-planarity-measure x =
PC2∑
PCi

.

Deciding on the point type involves a simple comparison with respect to a
domain-specific threshold value t. We choose to express the component in a
declarative fashion, so that the use of the domain-specific threshold value is
explicitly available. The corresponding knowledge rules are:

If ∃ point group PG and PG has-central-point Pc and
PG has-planarity-measure x and x > t,

then Pc has-point-type ‘planar’.

If ∃ point group PG and PG has-central-point Pc and
PG has-planarity-measure x and x ≤ t,

then Pc has-point-type ‘linelike’.

Determine thick cylinder region

The third component that we discuss is the subtask ‘determine thick cylinder
region’. For this component, the planar regions are used as input, the region
that most resembles a cylinder with a fixed radius is selected and identified as
a thick cylinder shape. The relevant criterion for this component is the criterion
concerning third-party expertise; the other criteria do not give a preference
for white-box or black-box. The region that best resembles a cylinder can be
determined by performing a Levenberg-Marquardt non-linear least squares fit
to the points in the region. This function is available as a third party component.
We therefore decide to implement this component in a black-box fashion using
the trusted Levenberg-Marquardt algorithm.

4.4.2 Selected subtasks in the interpretation subtask

The main task, assessing the quality of the seedling, has an ‘interpretation’
subtask as component (see the introduction of Section 4.4). This component has
as input a set of geometrical shapes and as output a plant model consisting of
a set of plant parts with quality features determined. Based on the criteria, we
further decompose the subtask into subcomponents. In this section, we discuss
the component ‘recognise plug body’.
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Figure 4.6: A graphical representation of the specification of the ‘recognise plug body’-
component.

Recognise plug body

One of the components in the interpretation subtask is the subtask that recog-
nises the plug body. This task has as input a thick cylinder shape consisting
of a number of points, and as output a ‘plug body’-plant part consisting of the
same points. The computer vision expert has sufficient knowledge to provide an
explicit description of the component. As far as the application range criterion
is concerned, this component is applicable to all plants that grow in rock wool
plugs. In all foreseeable automated inspection applications, seedlings grow in
these plugs. Therefore, this criterion has no preference for a white-box or a
black-box implementation. The knowledge used in this component is trivial; it
concerns a one-on-one mapping of a geometric shape on a plant part. Therefore,
this criterion requires no further decomposition of the subtask. No explainabil-
ity is required, and no third party component is available that implements this
subtask (see Figure 4.6).

Concluding, no preference exists for implementing this component in a
declarative or an imperative way. We choose to use a declarative knowledge
rule:

If ∃ thick cylinder TkC and TkC has-points Pi,

then ∃ plug body PB and PB has-points Pi.

4.4.3 Selected subtasks in the classification subtask

The classification subtask has as input a plant model consisting of plant parts
and quality parameters, and has as output a quality class that corresponds to
the quality of the plant model. In this section, we focus on the component
‘determine quality class’ and decide on the level of detail required for optimal
transparency.

Determine quality class

The subtask ‘determine quality class’ decides for an input plant model what the
corresponding quality class is. The manner in which this subtask operates is
of interest for understandability; the need for explainability is strong. Explicit
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Figure 4.7: A graphical representation of the specification of the ‘determine quality class’-
component.

expertise on how the decision is made is available from interviews with domain
experts, so explicit expression of knowledge is not inhibited. To further specify
the application range, it is important to have insight in the precise decision
rules. Different subsets can be used for different tasks or domains. Based on
these criteria, we decide to further decompose this task into subtasks2: (i) stem
length decision, (ii) stem thickness decision, (iii) true leaf area decision, (iv)
combination of individual decisions (see Figure 4.7).

The ‘stem length decision’ indicates for which stem length a plant is still a
candidate for a first class assessment, for which only second class is obtainable,
and when a plant should be regarded as an abnormal plant. This rule is valid
for all plants and tasks for which stem length is an important quality criterion.
The stem length is compared to the average stem length k of all seedlings. We
express this component as a set of three declarative knowledge rules for optimal
support of explainability and adaptability:

2For conciseness reasons, we give only a subset of the classification subtasks.
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If plant P and P has-stem-length sl and sl > 0.8 ∗ k,

then P has-quality-class ‘first choice’.

If plant P and P has-stem-length sl and 0.5 ∗ k ≤ sl ≤ 0.8 ∗ k,

then P has-quality-class ‘second choice’.

If plant P and P has-stem-length sl and sl < 0.5 ∗ k,

then P has-quality-class ‘abnormal’.

For the same reasons as above, the ‘stem thickness decision’ is expressed as a
declarative rule as well. This rule is valid whenever stem thickness plays a role
in the quality assessment of the plant:

If plant P and P has stem thickness st and st < 1 mm,
then P has-minus-point -1.

The decision about the true leaf area of a plant is also expressed declaratively.
Again, this rule is only used in domains and tasks where true leaf area is an
important quality aspect:

If plant P and P has true-leaf-area ta and ta > 0.5 ∗ l,

then P has-quality-class ‘first choice’.

If plant P and P has true-leaf-area ta and ta ≤ 0.5 ∗ l,

then P has-quality-class ‘second choice’.

The ‘combination of individual decisions’ takes the decisions made by the pre-
vious three rules and combines them to find the appropriate class of the plant.
The knowledge for this subtask is available in an explicit way, the application
range suffices for all foreseeable applications, the combination of quality classes
and finding the maximum allowed class is trivial knowledge, explainability is
not a very high priority for this component, and no third-party components
are available that automatically perform this task. These criteria do not lead to
a strong bias for using declarative or imperative knowledge at this point. We
decide to implement this subtask in a imperative fashion.

4.4.4 Implementation in OWL, Jess and Java

We show the implementation details for the component ‘create point groups’.
This component has as input a set of instance of the class Point, and as output

87



Transparent Procedural Knowledge

a set of instances of the class Point Group. Both classes are defined in the Point
Ontology and are encoded in OWL. The corresponding part of the OWL code
is displayed below. For conciseness reasons, we have omitted all labels of the
concepts and relations. Moreover, only the relevant properties of the concepts
Point and Point Group have been listed.

<owl:Class rdf:ID="Point">
<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

</owl:Class>

<owl:Class rdf:ID="Point_group">
<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="has_x_coordinate">
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger"

>1</owl:cardinality>
<rdfs:domain rdf:resource="#Point"/>
<rdfs:range rdf:resource="#Coordinate"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="has_y_coordinate">
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger"

>1</owl:cardinality>
<rdfs:domain rdf:resource="#Point"/>
<rdfs:range rdf:resource="#Coordinate"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="has_z_coordinate">
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger"

>1</owl:cardinality>
<rdfs:domain rdf:resource="#Point"/>
<rdfs:range rdf:resource="#Coordinate"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="has_central_point">
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger"

>1</owl:cardinality>
<rdfs:range rdf:resource="#Point"/>
<rdfs:domain rdf:resource="#Point_group"/>
<rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>has_central_point</rdfs:label>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="has_neighbours">
<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger"

>5</owl:minCardinality>
<rdfs:range rdf:resource="#Point"/>
<rdfs:domain rdf:resource="#Point_group"/>
<rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>has_neighbours</rdfs:label>

</owl:ObjectProperty>

We see that the class Point has as properties an x, y, and z coordinate. The class
Point Group has the properties has-central-point and has-neighbours, both with
the class Point as range.
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With these concepts formally defined, we can define the two white-box rules
‘initialise point groups’ and ‘determine neighbours’ in Jess. The description
of the rules is added between quotes, the Jess-representation of the rules is
given in the rule body. We require a black-box component (distance) in the
decomposition and therefore introduce a load-function command to link to the
corresponding method in Java.

;; Loading the required java classes
(load-function afsg.me.Distance)

;; The rules
(defrule initialise-point-groups

"If a Point P exists, then a Point group PG is created, of which
P is the ‘central point’"

?P <- (Point (x-coordinate ?x) (y-coordinate ?y) (z-coordinate ?z))
=>
(assert (Point_Group (has_central_point ?P)))

)

(defrule determine-neighbours
"If a point group PG exists and PG has central point Pc and P1 is
a point and P1 is unequal to Pc and distance(Pc,P1)<t, then PG
has neighbouring point P1."

?Pc <- (Point (x-coordinate ?xc) (y-coordinate ?yc) (z-coordinate ?zc))
?PG <- (Point_Group (has_central_point ?Pc))
?P1 <- (Point (x-coordinate ?x1) (y-coordinate ?y1) (z-coordinate ?z1))
(test (neq ?Pc ?P1))
(test (< (distance (create$ ?Pc ?P1)) t)
=>
(assert (Point_Group (has_neighbours ?P1)))

)

The Java-code required for calculating the distance is implemented in a standard
way in Java. To communicate between Java and Jess, the Java program has
to import the jess package to enable the use of the Jess-interpretable class
Userfunction.

4.5 Evaluation

In this section, we reflect on the results obtained in the case study. We evaluate
how the decision criteria have helped us to meet the transparency objectives
of the application. Moreover, we show how some decisions would have been
different if the set of objectives changes. Next, we show how the decisions made
help to realise the desired objectives for the seedling inspection case.

4.5.1 Objectives and criteria in the case study

For each of the five decision criteria used, we have seen how they contribute
to the five objectives of the case study (see Table 4.1). The criterion concerning
explicit expertise deals with the possibility to express knowledge in a transparent
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criteria Explicit Application Trivial Explanation Third Party
objectives Expertise Range Knowledge Tools

Reliability &
Robustness

• • •

Build trust • • •
Correction • • •

Adaptation • •
Understandability • •

Table 4.1: Overview of how the method criteria defined in section 4.3.1 support the five case
study objectives identified in section 4.4.

way. By explicitly describing the domain knowledge in terms of objects and
properties in the application, adaptability, reliability and understandability are
supported. In the case study, we have applied the explicit expertise criterion to
all tasks where additional transparency was required.

The criterion concerning application range deals with the input objects for
which a component is well suited. By explicit specification of the input objects
and their attributes, the application knows for which objects the component can
be used; it supports building of trust, adaptability and reliability. For the case
study, the application range criterion lead to a declarative specification of ‘cal-
culate the planarity measure’ and a further decomposition of ‘determine quality
class’.

The trivial knowledge and common sense criterion indicates whether decompos-
ing and specifying a component leads to more insight in the component or to
more cluttering. This criterion helps to find the right level of decomposition and
specification; it supports finding the right level of transparency. For example
for the components ‘create point groups’ and ‘determine quality class’ in the
case study, no further decomposition is required, whereas for the components
‘decide on the point type’ and ‘stem length decision’ specifying the components’
knowledge in an explicit way leads to more transparency.

The criterion concerning explanation is strongly linked to further explaining
knowledge rules. Explanation allows for a specification of a component’s knowl-
edge in domain relevant terms. It therefore contributes to the objectives of un-
derstandability and building trust. In the case study, the component ‘determine
quality class’ was decomposed based on explanation. By decomposing this com-
ponent, the subcomponents are made visible and the objectives are served. For
the same criterion and objectives, a component like ‘stem length decision’ was
explicitly specified.

The last criterion deals with the availability of third party expertise and the
trust one has in a component created by a third party. Since the makers of
the components are trusted, using these components contribute to the desired
level of trust of the application. Due the availability of third party components,
the components ‘perform PCA analysis’, ‘determine thick cylinder region’ and
‘combination of individual decisions’ are implemented as black-box components.
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Explicit Application Trivial Explanation Third Party
Expertise Range Knowledge Tools

Speed • •

Table 4.2: This table indicates how the criteria support the speed objective.

It is interesting to look at the influence of an additional objective on the design
process. Suppose that the system would need to perform at high speed. In
Table 4.2, we see that the availability of explicit expertise and of third party
components have an influence on the speed objective.

In the case study, the adding of the speed objective leads for example to a
clear advise in the case of ‘initialise point groups’. Based on the explicit expertise
criterion, we decide that the component is not eligible for further decomposition.
Using explicit expertise would lead to an explicit specification of the knowledge
that is not profitable for the other objectives. The declarative specification of the
knowledge may influence the speed in a negative way. Therefore, we choose to
implement this component in a black-box fashion. The same argument holds
for all non-biased components in the original case study.

In the same way, we can look at the influence of removing an objective. Let us
look at a component that is used in the quality assessment process3: ‘splitted
heads decision’. A ‘splitted head’ is a defect in a seedling that shows itself
as a plant with two sets of true leaves. The splitted head component can be
explained in domain specific rules:

If plant P and P has-number-true-leaves 4 and
P has-true-leaf-area > 0.7 ∗ l, then P has-splitted-head-probability ‘true’.

If plant P has-splitted-head-probability ‘true’,
then P has-quality-class ‘abnormal’.

The first of these rules is an explicit specification of how the value for the prop-
erty ‘has-splitted-head-probability’ is determined. If understandability is not
an objective, the determination of the splitted head probability is treated as a
black-box component, not as an explicit knowledge rule.

4.5.2 Design consequences for the transparency objectives

In Section4.4, we have made transparency decisions to support the objectives
adaptability, corrigibility, reliability, understandability and building trust in our case
study. In this section, we look at the practical consequences of the transparency
decisions made. Our claim is that due to a correctly defined level of trans-
parency, we can offer tool support to the end user of the application with respect

3This component was not mentioned before due to conciseness reasons
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to the desired objectives. In the remainder of this section, we describe the man-
ner in which this is possible. We sketch the possibilities to use the transparent
setup of the application to build trust and to support corrigibility. Next, we
show that adaptability and reliability can also be supported. The actual tools
are presented in Chapter 6.

4.5.2.1 Leafing through the application

Transparency can be used to build trust, to support corrigibility and to assist
in organisational learning. In the design process, the transparency criteria have
supported us to design the application such that the components are either ex-
plicitly explained, so trivial that they need no explaining, or available as trusted
third-party components. The side effect of this design process, is that we can
show the inner workings of the application to the end user in just the right
amount of detail. By visualising the sequence of models, by pointing out the
trusted black-box components and by presenting the declarative rules to the ex-
pert in the expert’s own terminology, the expert can gain insight in the steps in
the algorithms used and his trust in the application will increase.

With the explicit task knowledge captured in declarative rules and task-
specific ontologies, the expert knowledge has been formalised. In the case study
this means that experts have indicated which plant features are relevant for
assessing the quality of the plants and for which values of these features the
plant should be assessed as a first class, second class or abnormal plant. Such
explicit task knowledge can easily be represented in a flow diagram that is
interpretable by the experts. Such a diagram gives a concise overview of the
task knowledge and is useful in training new employees and in discussing about
the seedling inspection process. An example of such a flow diagram can be
found in Figure 4.8. It is a valuable tool for the organisational learning task.

4.5.2.2 Adaptability and reliability

The adaptability objective requires that the computer vision application can
easily be adapted to changing situations. The application has been designed
with this objective in mind. For each component, the software designer has
indicated for which input objects it is valid. This allows the expert to identify
the components that have to be adapted for a different task or domain.

Moreover, due to the understandability objective, the explicit knowledge
rules employed by the expert are known. This allows domain experts to au-
tonomously adapt quality assessment rules according to their needs. Since the
quality rules are expressed in a declarative format, a user-friendly tool can be
implemented to show the assessment rules to the experts. Experts can adapt the
set of quality rules by changing the decision value of a feature, add or remove
a quality class, introduce new quality features or reject features that are already
in use. When new features are introduced, the software team obviously has to
play a part in implementing the algorithms to calculate the new features. In
all other cases, the domain expert should be able to make the changes on his
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Figure 4.8: A flow diagram containing the task knowledge for seedling assessment. With this
diagram, new employees can be trained to assess seedlings.

own. A custom-made Adaptation Module can be used to change the quality
assessment rules.

A Reliability Module can be set up as well. The function of this module is
to contain relevant exclusion criteria expressed using knowledge rules. Due to
the similarity of the reliability tool to the adaptability tool, we do not show its
implementation in Chapter 6.

4.6 Conclusion

For knowledge-intensive task, the availability of explicit expertise has an influ-
ence on trust in the application, robustness and reliability of the application,
speed of the application, sustained system development, and organisational
learning. Software developers have to make decisions on the correct level of
transparency in the application. This level depends on the objectives that are
indicated as relevant.

The transparency objectives identified in this chapter partly overlap with the
white-box aspects defined in Chapter 2. Corrigibility, adaptability, robustness,
reliability and speed are overlapping objectives. Expert acceptance in Chap-
ter 2 has been interpreted as trust in this chapter. Organisational learning and
sustained system improvement are new objectives introduced in this chapter.
These latter two objectives can only be obtained by allowing transparency of
the processing steps; the other objectives can already profit from transparency
of descriptive knowledge alone.

In this chapter, we have shown how the choice of design objectives for a
task influences the decision on when transparency is desired for a task com-
ponent. We have presented a set of decision criteria that can be used by the
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software developer to decide on the need for transparency at every level of the
application. Based on the decision, the component and the domain ontologies
have to be further decomposed, the input and output ontology has to be refined,
knowledge rules have to be defined, or a black-box component can be used.

We have shown that the objectives of the case study play an important role
in design decisions to obtain the desired level of transparency. A different set of
objectives leads to different decisions. The theory in this Chapter offers structure
to the application designer in making transparency decisions. This ensures a
careful weighing of costs and benefits in the implementation process.
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Chapter 5

The white-box seedling
inspection system

In this chapter, we show the results of applying the proposed method for design-
ing white-box, knowledge-intensive computer vision applications to the seedling
inspection case study. To this end, we have created three application ontologies:
the point ontology, the geometric ontology, and the plant ontology. These on-
tologies have been created using interview-based knowledge acquisition. More-
over, we have implemented a prototype version of the computer vision applica-
tion that inspects and assesses tomato seedlings following the method proposed
in the previous chapters.

5.1 The ontologies created for the vision application

The main application in this thesis – the seedling inspection system – employs
three ontologies to express different views on the recorded seedling: (i) the plant,
(ii) the geometry, and (iii) the point application ontology. The plant application
ontology is based on plant expert knowledge and is focused on the set of quality
inspection rules that the domain experts use to decide on the quality of the
recorded plants. It contains knowledge that represents the morphology of the
plants under inspection. The concepts in the geometry ontology are limited to
the shapes of the possibly occurring plant parts. The specification of the point
application ontology partly depends on the chosen image acquisition method
and partly on the information required in the geometry application ontology.
In the next paragraphs, we discuss the content of these ontologies.

5.1.1 The point application ontology

The point application ontology contains all concepts that are related to three
dimensional point clouds. The point ontology corresponds to the ‘see’ task of a
computer vision application: the image acquisition results in a set of points that
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Figure 5.1: A graphical representation of the concepts and relations in the Point Application
Ontology.

are represented in this ontology. Moreover, the lowest level processing, where
points are tentatively grouped together in regions is performed in terms of this
ontology.

The point application ontology is depicted in Figure 5.1. The concepts in this
ontology are (i) ‘Point cloud’, (ii) ‘Point’, (iii) ‘Point group’, and (iv) ‘Region’. For
each plant that needs to be classified, an instance of the ‘Point cloud’ is created.
This instance corresponds to the whole plant. The point application ontology
contains the class ‘Point’. Each instance of this class has as attributes a ‘x, y,
and z-coordinate’ and a ‘type’ that can have the value ‘linelike’ or ‘planar’. For
each ‘central point’ p a ‘point group’ is created. Each instance of a ‘point group’
contains the ‘central point’ p and its ‘neighbouring points’. ‘Regions’ consist of
points of the same type that are grouped together. A ‘Region’ has two properties
that indicates how well the ‘Region’ matches a cylinder and a paraboloid.

5.1.2 The geometry application ontology

The geometry application ontology contains all geometrical concepts that cor-
respond to a more sophisticated segmentation of the recorded object into units
that can be used to identify plant parts later on. The geometry concepts in this
application ontology are a subset of all possible geometry shapes; the set of
shapes is restricted by the seedling inspection task.

We give a graphical representation of this ontology in Figure 5.2. The four
concepts in this ontology all represent a geometrical shape: (i) ‘Thick cylinder’,
(ii) ‘Thin cylinder’, (iii) ‘Paraboloid’, and (iv) ‘Surface’. An instance of a ‘Thick
cylinder’ consists of a set of ‘Planar points’ that roughly have the shape of a
cylinder with a radius of 20 mm. An instance of a ‘Thin cylinder’ consists of
a set of ‘Linelike points’ that roughly form a cylinder shape with a relatively
small radius. A ‘Paraboloid’ consists of a set of ‘Points’ with point type ‘planar’
that together have an ‘umbrella’ shape. An instance of a ‘Surface’ has a set of
‘Points’ that form neither a ‘Thick cylinder’ nor a ‘Paraboloid’. The geometry
application ontology always contains exactly one instance of a ‘Thick cylinder’,
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Figure 5.2: A graphical representation of the concepts and relations in the Geometrical Appli-
cation Ontology.

at most one instance of a ‘Paraboloid’, and an arbitrary number of instances of
‘Thin cylinders’ and ‘Surfaces’.

5.1.3 The obtained plant application ontology

The plant application ontology obtained in the knowledge acquisition process
consists of concepts representing the plant parts of the seedlings under inspec-
tion. The concepts in this ontology are (i) ‘Plug’, (ii) ‘Stem’, (iii) ‘Leaf’, (iv)
‘Cotyledon’, (v) ‘True leaf’, (vi) ‘Connected cotyledons’, (vii) ‘Tray’, (viii) ‘Top’,
and (ix) ‘Plant’. Each instance of these concepts (except ‘Plant’ and ‘Tray’) has as
attribute a set of ‘points’ connected to it. These points are equal to points in the
point application ontology. The stem, and each of the leaves has a set of param-
eters to describe them, like ‘stem length’, ‘leaf area’, et cetera. These parameters
are important for the classification of the plants. Each instance of ‘Plant’ con-
sists of instances of ‘Plug’, ‘Stem’, ‘Cotyledon’, ‘Connected cotyledons’ and/or
‘True leaf’. It has a number of properties, among which an attribute indicating
the quality class indicator. A graphical representation of the plant application
ontology is displayed in Figure 5.3.

Note that in the implementation of the computer vision application, addi-
tional concepts were added to the plant application ontology: ‘Leaf or Stem’,
‘Plug body’, ‘Plug head’. These concepts are auxiliary concepts prompted by
the transformation function from geometrical concepts to the plant application
ontology. They have been obtained from discussions with the computer vi-
sion expert with knowledge of the geometry application ontology and the plant
domain expert. The concept ‘Plant’ has several properties corresponding to fea-
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Figure 5.3: A graphical representation of the Plant Application Ontology.

tures that are relevant for the quality assessment task. It also has a property
that is used to indicate the ‘quality’ of the inspected plant.

5.2 Implementation of the seedling inspection prototype

To facilitate testing whether the proposed method can result in a working know-
ledge-based computer vision application, we have implemented a prototype ap-
plication for the seedling inspection case that complies with the given require-
ments. In this part, we describe our experimental setup, introduce the concept
of sanity check rules, and go step by step through the test application. We
evaluate the results and thereby show that it is indeed feasible to implement
a computer-vision application using the ontology-based design method. More-
over, we show that the white-box induced sanity-check rules lead to a ‘learning
effect’ that attunes the application more and more to its environment.

5.2.1 Experimental setup

The prototype software application has been created in the programming lan-
guage LabVIEW 8.6 and the corresponding IMAQ Vision software. It has been
developed for inspecting tomato seedlings that are approximately 12 days of
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Figure 5.4: The input point cloud (ID = 11) and its corresponding geometrical model. The
geometrical shapes are correctly identified. The red points are part of the Thick cylinder, the
turquoise points are part of the Thin cylinder, and the blue points are part of the Surface.

Figure 5.5: An input point cloud (ID = 22) and its corresponding geometrical model. The
geometrical shapes are correctly identified.

Figure 5.6: The input point cloud (ID = 26) and its corresponding geometrical model. The
geometrical shapes are correctly identified.
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(a) (b)

(c) (d)

(e)

Figure 5.7: The incorrectly processed point clouds. Figure (a) represents a geometric model
that leads to an incorrect plant model later in the application. Figures (b) to (e) are incorrect due
to bugs in the algorithms associated with the point-geometry processing steps.
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Figure 5.8: The sanity check code for correcting the geometric model as implemented in
LabVIEW. For each of the shapes, we check whether it is a thin cylinder. If so, we check how
many neighbouring shapes the thin cylinder has. When only one region is a neighbour of the thin
cylinder, we check whether this region surrounds the thin cylinder. When this check is positive as
well, the points of the thin cylinder are added to the surrounding shape and the thin cylinder is
removed from the list of shapes.

Figure 5.9: The original geometric model, and the corrected geometric model after the sanity
check for the point cloud displayed in Figure 5.7 (a). The new geometric model correctly consists
of two surfaces (red, blue), a thick cylinder (turquoise) and a thin cylinder (green).
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Figure 5.10: The geometric model (plant ID = 10) and its corresponding plant model. The
red points in the plant model correspond to a ‘Plug’, the blue points to a ‘Stem’, the turquoise
and purple points to ‘Cotyledons’, and the grey points to a ‘True leaf’. The plant parts have been
identified correctly.

Figure 5.11: The geometric model (plant ID = 17) and its corresponding plant model. The
plant parts have been identified correctly.

Figure 5.12: The geometric model (plant ID = 26) and its corresponding plant model. The
plant parts have been identified correctly.
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Identification of geometric re-
gions:

red points: Thin cylinder
blue points: Thick cylinder
green points: Surface
purple points: Thin cylinder

Figure 5.13: The manual processing of the point cloud to form the geometrical model. The
identification of a line-like appendix in the plant that is part of the first true leaf is valid in terms
of the geometric model.

Figure 5.14: The geometric model (ID = 4) and its corresponding plant model. The plant
parts have not been identified correctly; the stem of the plant is not recognised as a plant part.
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(a) (b)

(c) (d)

(h)

Figure 5.15: The intermediate results of a correct leaf identification for a point cloud. The
largest leaf is looked for first, then the points corresponding to this leaf are identified and the leaf is
removed from the remaining unidentified surface points. This procedure is repeated for all leaves.
It leads to the final leaf segmentation as depicted in (h).
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(a) (b)

Figure 5.16: In these images, the identification of the first leaf (pink) in the ‘Surface’ is
incorrect. In figure (a), the leaf contains too many points; in figure (b), the leaf contains too few
points.

(a) (b)

(c) (d)

Figure 5.17: In these images, the identification of the second leaf (pink) in the ‘Surface’ is
incorrect. In figures (a) and (c), the complete surface is shown before the first leaf points are
removed. In figures (b) and (d), the identification of the second leaf is displayed. The leaf in
figure (b) contains too few points, the leaf in figure (d) contains too many points.
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(a) (b)

Figure 5.18: When the example geometric model is processed automatically, it results in the
plant model depicted in figure (a). This incorrect plant model consists of a plug (red points), a
stem (blue points), a cotyledon (turquoise points), and a true leaf (purple points). When this plant
is manually processed using the protocol defined, it results in the correct plant model displayed
in figure (b). It has a plug (red points), a stem (turquoise points), a cotyledon (blue points), and
two true leaves (green and pink points).

Figure 5.19: The plant model in this figure consists of a plug (red points), a stem (blue), two
cotyledons (turquoise and green), and a true leaf (grey). The leaf identification is incorrect: the
green points should have been assigned as true leaf, and the grey points as cotyledon.
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Figure 6.1: The corrigibility module starts with checking whether the plant model is correct.
In the screenshot, we see a 3D display of the plant model, an overview of the identified plant parts
and the option for the expert to indicate whether the plant model is correct or not.

Figure 6.2: In this screenshot of the corrigibility module, we see the input point cloud (for
reference) and the line-plane model created by the application. In the drop-down box, the expert
can indicate whether the line-plane model is correct or not.
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Figure 6.3: As part of the quality assessment check, the Diagnosis Module asks the expert
whether the plant has been classified correctly based on the number of cotyledons.

age (see Figure 5.20). We have created a testset consisting of 96 tomato plants.
These seedlings have been recorded with the 3D Scan Station (Scanbull Software
GmbH, Nürnberg), using volumetric intersection [79]. Each seedling was put
on a rotation table in a light cabinet. We set the software to make 24 frames for
one table revolution spaced at 15 degrees. For each frame, the table was halted
for 10 seconds to allow the plant to stop shaking before making a digital image.
A picture was made using a digital camera mounted on a tripod in front of
the cabinet (see Figure 5.21). The camera made an angle of approximately 30
degrees with the horizontal plane and was positioned at approximately 80 cm
from the plant, thus allowing the camera to get a good view of the leaves of the
seedling.

The recorded images were semi-automatically processed by the Scan Station
software to form 3D point clouds with points that represent the surface of the
recorded plants. The created point cloud models consists on average of approx-
imately 2500 points, obtained from an automated triangulation of the object’s
surface.

For designing the prototype application, we have followed the framework
design proposed in Chapter 2. We started with setting the scope, decomposed
the task into subtasks, interviewed experts for their expert knowledge, and de-
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Figure 6.4: As part of the quality assessment check, the Diagnosis Module asks the expert
whether the plant has been classified correctly based on the true leaf area.

fined the processing components. For showing that a computer vision applica-
tion setup according to the proposed framework results in a workable computer
vision application, we opted for LabVIEW, rather than Jess/Java (as proposed
in Chapter 4). This implementation choice is based on our practical expertise
with LabVIEW and has no consequences for testing the viability of our design
method. By showing that the prototype is suited for inspecting the seedlings,
we show that an application designed using the proposed white-box design
method is capable of performing the task satisfactorily.

5.2.2 Sanity check rules

In any computer vision application, flaws may occur. We distinguish two kinds
of errors. The first kind are genuine bugs: the algorithm is designed with a
flaw and does not perform according to its specifications. This type of errors
should be solved to obtain a well-functioning application. However, for our
evaluation, we are interested to test the design method, not the implementation
of the computer vision algorithms. Not all algorithms in the prototype appli-
cation function optimally yet, since the computer vision algorithms required
for processing the seedlings have to deal with complex implementation details
beyond the scope of this thesis. To be able to test the design method despite
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Figure 5.20: This figure shows a seedling, 12 days of age, that is considered to be a first quality
plant.

the flaws, we have decided to separate the implementation of the knowledge-
intensive components from the actual knowledge in the components. By using
the explicit knowledge of a component to guide the processing of the object,
we can mimic the performance of the algorithm had it been correctly imple-
mented. With the internal working of the algorithms correct or mimicked, we
can evaluate whether the created workflow suffices to process the plants in the
test set correctly. This suffices to evaluate that the white-box design method can
function correctly. The criteria that are more specifically linked to transparency
are evaluated in Chapter 6.

The second kind of errors are errors that result in an incorrect model in later
steps of the decision process. Such judgements of the object under inspection
are in principle correct with respect to the local domain knowledge available for
the decision. Only in a later step in the task when more task-specific knowledge
is available, the earlier decision turns out to be incorrect. This second type of
errors is of real interest for our application. Moreover, we can show added
value of our design by solving this type of errors in a structured way. Due to
the knowledge-based approach, we can detect the error in the advanced model,
understand why the earlier decision was made, and – more importantly – know

Figure 5.21: The test set has been created using the 3D Scan Station.
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how to correct for it. With hindsight, the algorithm can conclude that the earlier
decision is inconsistent with all possible more advanced models. When such
inconsistencies occur, a corresponding sanity check rule can be added to the early
stage of the application to automatically correct the unintended error. We will
discuss this second type or error and the corresponding sanity check rules in
more detail in the next sections.

We continue this chapter with evaluating the implemented application step by
step. Whenever opportune, we introduce sanity check rules to the application.

5.2.3 Test: creation of the geometric model

We first test the function in the process that uses knowledge about the input
3D point cloud to obtain a model in terms of geometrical shapes. We have
implemented a set of LabVIEW functions that automatically perform this model
transition. By processing the test set, 91 of 96 input point clouds resulted in a
correct geometric model with geometric shapes consisting of points from the
input point cloud. In Figures 5.4, 5.5, and 5.6 examples are displayed of point
clouds that have successfully been transformed to geometrical models.

From the remaining 5 point clouds (see Figure 5.7), 1 leads to an incorrect
model in later steps of the application (an error of type 2) and 4 are incorrectly
processed because of genuine bugs (errors of type 1) in the algorithms. We
consider the incorrectly processed point clouds individually. As described in
Section 2.5, the following processing steps have to be taken to generate the
geometrical model:

• Create point groups and determine point types. This results in a classifi-
cation of all points in the point cloud as linelike or planar points.

• Determine regions of related points. Points that are close enough and that
have the same type are assigned to the same region. This results in a
division of the point cloud into linelike and planar regions.

• Identify the geometric regions. The identified regions are recognised as
specific geometric shapes.

When we consider the point cloud in Figure 5.7 (a), the creation of point groups
and determining the point types of the points is successfully done. Based on
the initial knowledge in the geometric ontology, there is no reason to frown
upon the linelike points (green and grey) surrounded by a set of planar points
(red). The division of the point cloud into linelike and planar regions based on
calculating the planarity measure is done without any problems as well. Next,
the geometric model is constructed. It consists of thick and thin cylinders and
some surfaces. Each of these concepts exists in the geometric ontology and
the identified model is initially considered to be a valid geometric model. In
the next steps of the application though, the identified geometric model cannot
result in a valid plant model. More specifically, we conclude that a ‘Leaf or
stem’ part in the middle of a ‘Leaf’ cannot occur as separate plant part. The
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geometric model that leads to this plant model is therefore incorrect and should
be corrected using a sanity check rule.

Based on the information that a thin cylinder enclosed by a surface cannot
occur, we conclude that linelike points in the middle of planar points cannot
occur either. This leads to the following sanity check rule:

Sanity check rule geometric model: If a ‘Thin cylinder’ is com-
pletely surrounded by one ‘Surface’, the geometric model is incorrect.
The type of the ‘Points’ that constitute the ‘Thin cylinder’ should be
changed to ‘planar’ and the ‘Points’ should be added to the ‘Surface’.

The appropriate sanity check rule is implemented in LabVIEW (see Fig-
ure 5.8) and the incorrect geometric model from Figure 5.7 (a) is identified in an
early stage. It is corrected by the sanity check rule. In Figure 5.9, the originally
identified geometric model and the corrected geometric model are shown for
the point cloud in Figure 5.7 (a). This example shows how non-local knowledge
can be used to prevent errors of the second type.

Next, we consider the errors of type 1, i.e. the genuine bugs in the algorithms.
We first consider the point cloud in Figure 5.7 (b). For this model, the creation
of the point groups and the identification of the point types is performed cor-
rectly. The assignment of the regions, though, is incorrect: the linelike region is
intertwined with the planar region. This is a situation that does not fulfil our
expectations. The algorithms that assign the points to regions should prevent
this behaviour. The processing of the point cloud in Figure 5.7 (c) has a flaw in
the algorithm that determines the point type. The green points in the figure are
assigned as linelike points, although the computer vision expert expects them
to be planar. The grey points, though, are correctly identified as linelike points.
The point cloud in Figure 5.7 (d) also has a flaw in the algorithm that deter-
mines the point type of the points. The red points in the figure are assigned
as planar points, whereas the grey and green points are correctly identified as
linelike points. This is unexpected behaviour. The red points should have been
identified as linelike points. Figure 5.7 (e) depicts a point cloud that is correctly
divided into linelike and planar points. However, a flaw occurs in the algorithm
that identifies geometric regions. The model consists of the shapes ‘Thick cylin-
der’, ‘Thin cylinder’ and ‘Surface’, but the ‘Thick cylinder’ is not assigned to the
shape that is most cylinder like, but to the red points in the figure.

Since we are interested in showing that the proposed design method results
in a useful computer vision application and not in assessing the quality of the
implemented algorithms, we allow a manual correction of the occurring bugs in
the algorithm. When the point clouds in Figures 5.7 (b) to (e) are processed by
hand according to the protocol described by the expert, a valid geometric model
results. In Figure 5.13, this manual correction is shown for the point cloud in
Figure 5.7 (c). The points that were incorrectly assigned as linelike points are
after manual processing of the point cloud identified as planar points. The
resulting geometric model corresponds with the expectation of the geometric
model for this point cloud.
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We conclude that the creation of the geometric model fulfills our expectations:
the decomposition of the task into subtasks, the use of the concepts from the
point and geometric ontology, and the application of the task descriptions de-
fined by the expert result in a part of the computer vision application that
successfully transforms the input point clouds to a geometric model. Moreover,
we have shown that a sanity check rule based on the explicit domain knowl-
edge can be implemented to prevent the detected error of the second type in
the geometric model to reoccur in the future.

5.2.4 Test: creation of the plant model

The processing knowledge that has the geometrical model as input and generates
a plant model is considered next. Of the remaining 92 test plants1, 55 are
transformed to a correct plant model. In Figures 5.10, 5.11 and 5.12, three
examples of correctly transformed plants are shown. The geometric model in the
left-hand side of Figure 5.10 is processed and a plug, a stem, two cotyledons and
a true leaf are correctly identified. The plant in Figure 5.11 has two cotyledons
that are stuck in the seed coat. The subtask that creates a plant model from a
geometric model recognises the structure as a set of connected cotyledons. Also
the remaining true leaf, the stem, and the plug are correctly identified for this
plant. The geometric model in Figure 5.12 is processed and results in a plant
model with two cotyledons, two true leafs, a stem and a plug.

The 37 incorrectly processed plants suffer from errors of the first or second
type. The errors in the creation of a plant model from a geometric model are
concentrated in the components ‘stem recognition’, ‘individual leaf identifica-
tion’ and ‘leaf type assignment’. We describe the results of these components
in some detail.

Stem recognition For one of the plants, the geometric model is incorrectly
processed with respect to the stem recognition (see Figure 5.14). Due to the few
points in the thin cylinder, the plant recognition step discards these points and
decides that the thin cylinder does not correspond to a leaf or stem in the model.
As a consequence, the resulting plant model has no stem. The domain expert
considers such a model as invalid. The plant ontology has to be equipped with
a sanity check rule to correct this kind of erroneous decision:

Sanity check rule plant model: A plant model with ‘Leaves’ must
have a ‘Stem’ that connects the ‘Leaves’ to the ‘Plug’.

This sanity check rule finds that the ‘Thin cylinder’ shape in the geometric model
is located between the ‘Thick cylinder’ and the ‘Surface’. It assigns the points
corresponding to the ‘Thin cylinder’ to a new ‘Stem’ shape.

1The 91 plants that were initially processed correctly and the 1 plant that was corrected using
the implemented sanity check rule.
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Individual leaf identification The geometric model consists of one or more
surfaces that are analysed and in which one or more leaves are identified. The
leaf identification of individual leaves is one of the more complex processes
in the system due to the natural variation in the plants. For our analysis, we
distinguish between several parts of the leaf segmentation step. In each of these
steps, errors of type 1 occur.

First, the algorithms check whether the plant has connected cotyledons.
For an example of a plant with connected cotyledons, we refer to Figure 1.4 (f)
and (g). In the test set, six plants occur with connected cotyledons. Two of these
plants are incorrectly processed due to an error of the first type.

Second, the surface shapes are analysed and the individual leaves are iden-
tified. In 14 cases, the first leaf is not correctly separated from the remaining
leaf mass. In 5 cases, the same problem occurs in separating the second leaf.
In 10 cases, separating the third leaf is incorrect. In one case, the last leaf is
incorrectly divided into two leaves. The leaf segmentation algorithm determines
the individual leaves one by one within the ‘Surface’. First, the largest leaf is
detected, its points are identified and removed from the remaining points in
the surface (see Figure 5.15 (a) and (b) for an example of a correctly processed
plant model). This step is repeated for each remaining leaf, resulting in a fully
segmented ‘Surface’ (see Figure 5.15 (c) to (h)). Identifying which points corre-
spond to a leaf is not trivial. In Figures 5.16 and 5.17, examples are shown of
incorrectly identified leaves. In most cases too many or too few leaf points are
removed. This is caused by the algorithm that looks at a thinner part of the leaf
closer to the stem. When other leaves are obscuring the view for the algorithm,
an incorrect decision is made.

The errors in this algorithm must be solved to enable correct identification
of the plant model. For evaluating the method, though, it suffices to manually
process the geometric models that lead to incorrect plant models due to bugs
in the algorithms according to the protocols defined. An example of such a
manual processing of a point cloud is displayed in Figure 5.18.

Leaf type assignment Finally, the individual leaves are classified as cotyledon
or true leaf. For most plants, this classification functions well. For 2 plants, an
error of type 1 occurs in the identification of which leaf is a cotyledon and which
is a true leaf. In the first of these plants, the two cotyledons are identified as true
leaves and vice versa. In the second plant, the second cotyledon is seen as a true
leaf and vice versa (see Figure 5.19). The leaf classification algorithm should
be further improved to overcome the incorrect assignments. Therefore, once
again, we process the point clouds manually according to the corresponding
procedural knowledge.

We conclude that the processing of the geometric models to create the plant
models functions as expected. By following the protocols outlined for the in-
dividual processing steps in terms of the geometric and the plant ontology, we
have shown that the geometric models can correctly be transformed into plant
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models. Moreover, a sanity check rule has been identified and implemented,
ensuring that plant models with leaves also have a stem as plant part.

5.2.5 Test: classification of the plant model

Next, the classification of the plant model has to be tested. This involves the
comparison of plant assessment according to the formalised classification rules
with plant assessment according to a domain expert. To test this classification,
we have used the test set of 96 plants. Whenever the automated creation of the
plant model was incorrect, we have manually segmented the point cloud into a
correct plant model.

In 80 cases, the automated assessment and the expert assessment agree.
For the 16 cases in which the knowledge rules and the expert did not agree,
we consulted the expert and adapted the classification rules according to his
indications. We asked the other domain experts involved to study the explicit
form of their classification rules as well. To do this, trays of seedlings were
grown and tested with the experts’ own sets of knowledge rules. In some cases
this led to a company-specific refinement of the rules. With these refinements
included each of the experts indicated that the individual set of knowledge rules
was suitable for assessing the quality of tomato seedlings.

We note that most experts require a training of several months2. Even with
this training phase completed, most companies instituted a weekly consultation
between the seedling experts to ensure that the experts assess the plants in
the same way. Even with such meetings, inter-expert variation in a company
is still 5 to 10 percent [83]. The difference between the assessment according
to the formalised classification rules and the expert assessment are within the
inter-expert difference.

The classification of the plant model is the final step in the computer vision
application. We conclude that the use of the explicitly specified quality rules
leads to a successful assessment of the quality of the plants under inspection
that mimics the assessment of the domain experts.

5.3 Conclusion

In this chapter, we have shown that a white-box computer vision system set up
according to the method proposed in this thesis leads to an application that can
successfully perform the task for which it has been developed. The input cloud
can be transformed into a geometrical model, which is transformed into a plant
model. This plant model can be used to determine the quality class to which
the recorded plant should be assigned. The point cloud, the geometrical model
and the plant model are formally defined in the ontologies shown in Section 5.1.

The problems that we have encountered in the prototype were implemen-
tation issues at the level of individual algorithms. For the incorrectly processed

2This information is obtained from the interviews with the companies.
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point clouds, we manually ensured that the algorithms performed according to
the experts’ expectations – something that is only possible because of the ex-
plicitly defined procedural knowledge. This enabled us to show that the design
method can lead to a viable computer vision application. For future use of the
computer vision application in an industrial environment, the flawed algorithms
will have to be further corrected.
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Chapter 6

Evaluation of the Proposed
Method

In this chapter, we evaluate the proposed method for designing white-box,
knowledge-intensive computer vision applications. We show that the devel-
oped white-box application for the case study has four highly desired proper-
ties mentioned in Chapter 2: (i) corrigibility, (ii) adaptability, (iii) robustness,
and (iv) reliability. Moreover, we go back to the discussion in Chapter 4 for the
aspects of (v) understandability and (vi) trust. Additionally, for corrigibility and
adaptability, we show how a tool can be implemented to allow the user of the
computer vision application to optimally benefit from this property.

6.1 Corrigibility

In the previous chapter we have shown that the proposed white-box design
method leads to a viable method and implementation for assessing seedlings.
We claim that the white-box setup of the method has an inherent set of ad-
ditional favourable properties. The first of these properties is corrigibility. We
define corrigibility as the property that flaws in the computer vision application
can be tracked down easily. We stress that we restrict our definition to support-
ing easy and accurate identification of flaws in the implementation. Actually
removing the flaws and making the system perform well may still be a difficult
task. To show that the proposed method results in corrigibility, we first describe
corrigibility in the case study and show its functioning for several test plants.
Next, we discuss what properties of the proposed method ensure corrigibility.

6.1.1 Corrigibility for the case study

Corrigibility is a property that is useful in two situations: (i) when the computer
vision application is in development and needs to be tested, and (ii) when it
has been implemented, is in use, and assigns a small percentage of seedlings
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incorrectly to a quality class. For both cases, it is relevant that the flaw is
detected accurately and the application is mended as soon as possible. During
the design of the computer vision application, the knowledge models and rules
of the experts from different disciplines – for the case study, the disciplines
‘computer vision’ and ‘plant’ – have been specified.

By considering the consecutive set of models – point model, point type
model, geometric model, pseudo plant part model, plant model – and by listing
the knowledge rules used to obtain one model from the previous model, the
expert can get insight in the steps performed by the computer vision applica-
tion. The corrigibility property ensures that these experts can diagnose their
part of the system without understanding the black-box algorithms employed.
The only requirement is that they understand the intermediate models and ex-
plicit knowledge rules. Since these are stated in the domain expert’s terms,
this condition is met by default. Based on their diagnosis they can inform the
software team on the origin and type of the incorrect action.

6.1.2 Tool support: the Diagnosis Module

With the application set up in the proposed way, we can implement a tool – a
Diagnosis Module – that makes it possible to detect errors in conceptual terms.
In this section, we implement a Diagnosis Module for the case study. The Diag-
nosis Module is a software module that visualises and explains the subsequent
steps that are taken by the application for a specific plant in such a way that the
involved experts can autonomously pinpoint the location and nature of the error
in the application. As soon as the flaw has been tracked down, the software
team has sufficient information to start correcting the application.

Example 1: Incorrect line-plane model In Figures 6.1 and 6.2, two screenshots
of the implemented Diagnosis Module are shown for plant 06. This plant is
incorrectly assigned to quality class ‘abnormal’ instead of ‘too small’. We have
seen that the error originates from an incorrect transition from input model to
geometric model in the currently implemented version of the computer vision
system.

The plant expert noticed during testing that plant 06 was incorrectly clas-
sified. Using the Diagnosis Module, he started to track down the flaw in the
system. The Diagnosis Module starts with showing the plant expert the created
plant model and asking whether this model is correct or not (see Figure 6.1).
The plant model is displayed as a point cloud with coloured points that repre-
sent plant parts. A list of identified plant parts is shown as well. For plant 06,
the plant expert indicates that the displayed plant model is incorrect, since the
parts indicated as leaves do not correspond to the real leaves of the plant. Based
on this answer, the Diagnosis Module next offers a visualisation of the preced-
ing, geometric model to the computer vision expert. This model is displayed as
a point cloud with coloured points that represent geometric parts. A list of cor-
responding geometric parts is offered as well. Based on the information shown,
the expert indicates that the geometric model is incorrect as well. This answer
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prompts the Diagnosis Module to focus on the processing steps that convert the
point model into the geometrical model.

Next, the computer vision expert is asked whether the input model is cor-
rectly divided into linelike points and planar points. The module offers an
image of the original input cloud (for reference) and an image of the line-plane
model (see Figure 6.2). An explanation of what the computer vision expert
could expect is offered as well: “all points that are roughly on a line should be
indicated as ’linelike point’, all other points as ’planar points’.”. For plant 06,
the computer vision expert indicates that the line-plane model is incorrect, since
he thinks that the blue points in the middle of the cotyledon should have been
indicated as planar points. The diagnosis that the Diagnosis Module offers is:
“The error can be found in the transition between input model and line-plane
model”.

The computer vision expert uses the conclusion of the Diagnosis Module
to correct the errors. If these are errors of the first type, the involved algorithm
is corrected. If these are errors of the second type, a sanity check rule can be
implemented. For the model in Figure 6.1, the incorrect line-plane assessment
leads to a geometrical model where a ‘Thin cylinder’ is enclosed between a
‘Surface’ and a ‘Thin cylinder’. In plant terms, this implies that a ‘Leaf or stem’
part is attached to a ‘Leaf’ on one side and to a ‘Leaf or stem’ part on the other
side. The plant domain expert indicates that this situation can never occur in
the plant domain. Therefore, a sanity check rule is added to the point domain
indicating that a ‘Linelike region’ that is enclosed by a ‘Planar region’ should be
corrected. We have seen in Section 5.2.3 that implementation of such a sanity
check rule leads to improved performance of the system.

We conclude that the corrigibility property of the computer vision appli-
cation can lead to the identification of task specific sanity checks that can be
embedded in the application. Such sanity checks are phrased in terms of the
domain experts. In Section 6.3.3, we argue why sanity check rules cannot be
defined on beforehand, but need to be identified and formulated when plants
are processed for which early decisions lead to incorrect models later in the
process.

Example 2: Incorrect classification rules For another plant, the Diagnosis
Module shows a different set of models to the expert, since the first model
– the plant model – is assessed as correct; the found plant parts correspond to
the real plant parts. Next, the Diagnosis Module leads the expert through the
components of the classification knowledge rule, indicating for each component
the calculated parameters and the intermediate conclusion based on these pa-
rameters. The expert can indicate for each step whether the application makes
the right decision or not. For plant 18, the number of cotyledons is calculated
as 2, and based on this parameter, the plant is maximum first choice (see Fig-
ure 6.3). The expert indicates that this is correct. Next, the average area of
the true leaves is determined at 88% of the average true leaf area of all plants
in the tray, and based on this percentage, the plant is classified as maximum
second choice (see Figure 6.4). The expert concludes that the plant should not
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have been classified as second choice, but as first choice. The conclusion for
the software team is that either the calculation of the true leaf area is incorrect
or the true-leaf-area-rule is incorrect. In this way, the Diagnosis Module not
only helps to check the implementation of the algorithms and the descriptive
knowledge, but also the procedural knowledge that is used in the application.

6.1.3 Corrigibility setup in general

Corrigibility is a property that is inherent to white-box applications set up ac-
cording to the method proposed in this thesis. Due to the setup of the applica-
tion in terms of explicit models and processing steps, both the models and the
processing knowledge is available in the domain experts’ terminology. There-
fore, each step in the application can be studied by looking at the input and
output models and the corresponding knowledge rules. This gives us exactly
the framework required to accurately identify the location and nature of any
flaws in the implementation.

The case study shows us how corrigibility is obtained and even how to set
up a dedicated Diagnosis Module to provide user-friendly support to domain
experts. Such a Diagnosis Module can be added to the application to allow the
domain expert to easily make a diagnosis of the system. The corrigibility check
of a program is strongly linked to the architecture of the white-box application
itself. If the computer vision application is changed in terms of application
ontologies or transition functions, the Diagnosis Module can automatically be
changed accordingly.

Setting up a Diagnosis Module for an arbitrary white-box application as
proposed in this thesis can be done by following the same procedure as used for
the case study. We have to create a software program that can show the model
identifying the instance that was incorrectly assessed in a backward-chaining
fashion. We start by showing the ‘last’ model – the model that corresponds to the
input of the last set of procedural knowledge – we continue with the preceding
model, until the domain expert indicates that a model is not flawed. In that
case, the program has identified the component for which the input model is
correct and the output model is incorrect. Next, the set of knowledge rules
corresponding to the creation of the incorrect output model is to be checked.
Again, the program should start with the model that is the input for the ‘last’
knowledge rule of the component. The information corresponding to this step
can be shown to the expert and the diagnosis can be communicated to the
software team. Note that a Diagnosis Module can be set up in a similar fashion
when the program contains parallel instead of linear programming steps.

In this section we have shown that both the domain expert and the computer
vision expert play a role in identifying errors. More generally speaking, each
expert that has been involved in the development of a white-box application
is involved in the corrigibility procedure. The involved individuals are experts
only within their own domain. In the corrigibility diagnosis, they are each
offered information from an intermediate ontology in their own terms. They
can therefore each check the performance of their own part of the application.
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Figure 6.5: A schematic representation of the Brassica plant ontology.

In conclusion, we have shown that corrigibility is realised in white-box applica-
tions set up according to the framework proposed in this thesis. Moreover, we
can identify sanity check rules that can be added to the application to enhance
its performance. We have also shown that the users of a white-box application
can be supported with respect to corrigibility by using a dedicated Diagnosis
Module.

6.2 Adaptability

The second of the claimed properties of white-box systems is adaptability. Adapt-
ability in the context of computer vision systems is defined as the possibility to
(easily) change the software application with respect to the used quality rules
for assessing the objects under inspection, or to adapt the software to assess ob-
jects that are different from but morphologically similar enough to the objects
for which the software application has originally been developed. In the next
sections, we show that the case application is adaptable, show a tool to support
adaptation by the end users of the application, and discuss adaptability for gen-
eral white-box computer vision systems set up using the method proposed in
this thesis.

6.2.1 Adaptability criterion for the case study

Adaptability is, like corrigibility, a property that is of importance when the com-
puter vision application has been implemented and is in use. In this section,
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we focus on the desire of a company to adapt the computer vision application
developed in the case study in such a way that it can be used to assess different
but similar cultivars. For this process, both a domain expert and a knowledge
engineer are involved. The task of the domain expert is to indicate the differ-
ences between the cultivars and their assessment; the task of the knowledge
engineer is to formalise these differences and embed them in the existing ap-
plication ontologies and knowledge rules. The consequences of our approach
are that these modifications have minimal impact on the actual implementation
level. They introduce a minimal amount of additional work for the software
developer.

To illustrate the adaptability property, we elaborate on an adaptation of the
horticultural case study in which the cultivar of interest is no longer tomato
but brassica (cabbage). Brassica is, like tomato, a dicotyl plant, and the quality
assessment process of brassica seedlings is similar to that of tomato seedlings.
To adapt the existing software, we take the following three steps:

• First, we identify the plant application ontology corresponding to brassica
seedlings.

• Next, we formulate the quality assessment rules that are applicable; these
are part of the formal assessment knowledge.

• Finally, we backpropagate the required additional plant knowledge to the
geometric ontology and the point ontology and to the corresponding pro-
cedural knowledge to ensure that the computer vision system can deal
with the adapted requirements in all steps.

For the case study we have chosen to create the brassica plant ontology using an
interview-only approach with the existing tomato knowledge as input informa-
tion. We have interviewed two experts from a seed company that is interested
in assessing brassica seedlings. In Figure 6.5, the created ontology is shown and
its reusability is considered. Note that the brassica ontology does not contain
the concept ‘Cotyledon’, which is important for tomato seedlings. Moreover, dif-
ferent plant features are defined for brassica seedlings, such as ‘damaged area’
and ‘necrosis’. The other concepts from the tomato plant ontology are valid for
the brassica plant ontology as well and are hence added to the brassica plant
ontology.

Next, we have asked the domain experts which tomato rules are still applica-
ble in the brassica domain, which should be adapted, which are to be discarded,
and which new rules should be added to the set of brassica assessment rules.
We have used the set of all identified tomato seedling assessment rules as the
basis for this step. These rules were broken up into sections corresponding
to tomato seedling plant parts to facilitate the discussion. We have asked the
domain experts to identify for each relevant plant part whether the specified
tomato rules were relevant for the brassica seedlings, or whether they should
be adapted, discarded or replaced. Part of the resulting changed document is
displayed in Figure 6.6. We see that in the first rule, the value that distinguishes
the good plants from the abnormal plants has been changed from 50% to 25%.
The second rule is adapted in such a way that it gives the same information as
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1. If the true leaves are well developed (i.e. larger than 50% 25% of the
average true leaf area of the plants in the tray), then the plant is a first
choice plant.

2. If the true leaf area is small (between 25% and 50% less than 25% of the
average plant), then the plant is a second choice plant an abnormal plant.

3. If the first true leaf is well developed, but the second true leaf is relatively
small with respect to the average second true leaf, then the plant is a
second choice plant.

4. If the plant is smaller than the average plant, but the build of the plant is
well, then the plant is a second choice plant.

5. If the true leaf is damaged damaged area of the true leaf is larger than
50% of the true leaf area, then the plant is a second choice plant an
abnormal plant.

Figure 6.6: Part of the changes required for the brassica knowledge rules.

the first rule. The third and fourth rule of the tomato rule set are not relevant
for brassica plants. The fifth displayed rule introduces a new concept: the dam-
aged area of the true leaves relative to the total true leaf area. The whole set
of brassica rules was then formulated and presented to the domain experts for
verification1.

The final step required a study of the impact on the other parts of the system
of the newly defined plant application ontology. All changes with respect to the
tomato ontology were reviewed, to see if they affected the geometrical ontology
or even the point ontology. The procedural knowledge affected by the changes
in the ontologies were reviewed as well. Contrary to the tomato ontology, the
brassica ontology does not contain the concept ‘Stem’. The geometrical ontology
corresponding to the tomato-based computer vision application contains the
concepts ‘Thick cylinder’, ‘Thin cylinder’, ‘Paraboloid’ and ‘Surface’. We know
from the explicit procedural knowledge that the geometrical ontology does not
need the concept ‘Thin cylinder’. Similarly, the point ontology has no need for
the concept ‘Linelike region’. The corresponding procedural knowledge was
removed from the ontologies.

6.2.2 Tool support: adapting knowledge rules concerning quality assessment

The adaptability criterion requires that the computer vision application can eas-
ily be adapted to changing situations. To allow end users of the application to
benefit optimally from the adaptability property, we propose the implementa-
tion of an Adaptation Module. Such an Adaptation Module assists the domain
expert to autonomously adapt quality assessment rules according to his needs.
This is especially useful when the application has to assess the same objects –
tomato seedlings – but with different quality criteria. A change like this can be

1For confidentiality reasons, the presented set of rules is not the actual set of rules.
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desired by a company because of strategic or commercial reasons. It is impor-
tant that the computer vision application is flexible and can adapt easily when
the quality definition used by the company changes.

One possible adaptation is to change the decision value of a feature. As an
example, a company can change the rule “if the feature ‘leaf area’ is smaller
than 50% of the average leaf area, then the plant is second choice” to “if the
leaf area is smaller than 30% of the average leaf area, then the plant is second
choice”. Another possibility is to add or remove an entire quality class. One can
for example indicate that the distinction between ‘first’, ‘second’, ‘third’ choice
and ‘abnormal’ plants is too detailed; the quality classes ‘useable plants’ and
‘rejected plants’ are to be used instead. In other cases, a company may decide
to add even more detailed quality classes to better study the seedlings under
consideration. As a third possibility, a company may introduce new features or
reject features that are already in use.

When new features are introduced, the software team obviously has to play
a part in implementing the algorithms to calculate the new features. In all other
cases, the domain expert should be able to make the changes on his own. A
custom-made Adaptation Module can be used to change the quality assessment
rules. The developed Adaptation Module for the case study is depicted in Fig-
ure 6.7. It contains a text-based representation of the set of knowledge rules that
is the basis for the quality assessment. The first few lines in the module indicate
the quality classes that are available in the application2. In the example shown
in the figure, the quality classes are ‘Eerste keus’ (first choice), ‘Tweede keus’
(second choice), and ‘Abnormaal’ (abnormal). In the knowledge rule overview,
the second column indicates that these lines correspond to quality classes. To
change the quality classes that are allowed in the system, new classes can be
added, existing classes can be renamed or removed in this part of the Adaptation
Module.

The next lines contain individual knowledge rules, each corresponding to
a component of the procedural knowledge. The first knowledge rule is identi-
fied by the label ‘Start’. The underlying software executes the knowledge rules
starting with this line. Each line consists of a label, the type of relation, the
feature for which the plant is checked, the assessment value, the decision if the
feature is below the assessment value, and the decision if the feature is above
the assessment value. In the example, the ‘start’ line checks whether the plant
is budless. If this is the case, the plant is abnormal, otherwise, the next knowl-
edge rule is to be considered (the default action if no value is specified). The
next line indicates that if the number of true leaves is less than one, the plant
is abnormal. The third line indicates that if the number of true leaves is less
than two, then the line labeled as ‘groottetest’ (check size) should be executed
next, otherwise the fourth line is next. If the ‘groottetest’ (check size) line is
executed, the relative size of the first true leaf with respect to the average size is
checked. If this is smaller than 1.1, the plant has only one true leaf (otherwise
‘groottetest’ (check size) would not have been executed) and this is smaller than

2In a later version of the Adaptation Module, this information could be encoded separately from
the knowledge rules to make the module more user-friendly.
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Figure 6.7: A screenshot of the user interface in which the domain expert can change the used
knowledge rules. In this screenshot, seedling assessment rules are displayed.

110% of the average true leaf size. The plant is assessed as ‘abnormal’. If it is
more than 110%, the plant is assessed as ‘second choice’.

Example 1: change the decision value of a feature To change the decision
value of a feature, the domain expert simply has to adapt its value in the Adap-
tation Module. For example, the rule that checks whether the number of true
leaves is greater than 1 can be changed to a rule that checks whether the number
of true leaves is greater than 2 by changing the value in the fourth column.

Example 2: removing and adding knowledge rules If an expert wishes to
remove a rule, he can simply delete it from the list of rules. If he is interested
in adding an additional rule, he can either use existing features and quality
classes or indicate that a new feature is called for. In that last case, the expert
can define the quality feature, but has to contact the software team to implement
the desired feature.

The Adaptation Module allows the expert to compose new rules based on
existing building blocks. Features that have already been implemented can be
combined with other features and desired decision criteria. This allows the
experts to adapt the quality criteria to meet changing quality standards.

6.2.3 Adaptability setup in general

In the previous sections, we have looked at the adaptability property for the
case study. Adaptability is, like corrigibility, a property that is possible because
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of the white-box approach. It allows the users of the system the flexibility
of using it in different application fields. More specifically, users are enabled
to autonomously make changes to the system or to instigate the development
of new functionality by computer vision specialists. This is a very valuable
property for industrial use of such a computer vision system.

In this section, we argue why any computer vision system that has been
developed using the method discussed in this thesis has adaptability as an
inherent property. Moreover, we show how a user of such a computer vision
system can in fact adapt the application to meet changing requirements.

We have seen that in the case study, adaptability with respect to the classifi-
cation features is enabled by the explicit and transparent setup of procedural and
descriptive knowledge. Due to the explicit definition of the knowledge rules, the
expert can understand the steps that the computer vision system takes in his own
vocabulary. For any similarly developed computer vision system, the procedural
knowledge is defined in such a way that it is understandable for the expert.
Adaptability is based upon the expert’s understanding of the knowledge rules.
Only in that way, the expert is capable of modifying the classification function
to suit a new purpose.

Moreover, adaptation of the system to similar but different objects is made
possible by the transparent setup of the whole system. Explicit definition of the
procedural knowledge and explicit specification of the application ontologies
are requirements for the easy adaptation of the computer vision system. This
holds true for any similarly developed application. To easily identify the changes
needed in the system caused by a change of objects under inspection, a clear
understanding of the transition functions and models that are in play is required.

However, it is not sufficient that the white-box computer vision system has
transparency as an inherent property. If the system cannot be easily adapted by
the experts, we cannot truly say that the system is adaptable. We have to show
how in a general application, the user can be enabled to make the required
changes.

If the desired adaptation involves adapting the computer vision system for
different objects, the specification of the current application domain ontology
will be adapted. To do this, the ROC method with the current application
domain ontology as one of the basic sources can be used. Alternatively, an
interview-based knowledge acquisition method can be applied, with the current
knowledge model as starting point. Since the existing knowledge is used as a
basis, and the new situation is similar to the existing situation, it is to be expected
that changes are small and hence easy to carry through.

For changes in the classification knowledge, a custom-made Adaptation
Module can be implemented to support the domain expert in his efforts. The
information needed to set up such a module is defined in the explicit description
of the imperative and declarative processing knowledge of which the transition
function consists. Since the domain expert’s assessment is available in the form
of decision rules, a rule editor can be implemented as in the case study. Such a
rule editor can be used by a domain expert to autonomously make the desired
changes and thereby adapt the system.
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6.3 Robustness and reliability

In this section, we consider the two criteria robustness and reliability together,
since these two criteria are closely related. Robustness is defined as the property
that any object that is in the scope of the task and domain for which the ap-
plication has been built can be correctly assessed by the application. Moreover,
robustness ensures that the application is insensitive for irrelevant defects and
variations of the inspected objects. Reliability is defined as the ability of the
application to indicate when an object lies outside its area of expertise. In some
cases objects may be offered that are out of scope. Instead of blindly assessing
such an object, it would be preferable if the application would indicate that the
object lies outside its area of expertise.

Robustness and reliability are two sides of the same coin. They both are
connected to the scope and domain of the application. Together they promise
that all objects within the scope are recognised properly, and all objects outside
the scope are identified as outliers.

6.3.1 Robustness

Robustness is a property that is intrinsically pursued due to the white-box setup
of the application as discussed in this thesis. The domain experts have explicitly
defined which features of the objects under inspection are relevant in the as-
sessment of the object. They have indicated which seedling variations can occur
and what should be the response of the computer vision application to these
variations. Note, that properties that are irrelevant for the assessment are not
mentioned in the descriptive or procedural knowledge. Irrelevant defects – i.e.
defects in properties that are not used for the assessment of the object – do not
disturb the assessment process, since they are not considered by the computer
vision application.

Robustness is ensured by explicitly formulating the type of objects that can
occur. Hence, robustness only holds when the expressed knowledge covers
the complete domain on which the task needs to be executed. The setting of
the scope is a crucial process to ensure robustness. It should be carried out
accurately.

6.3.2 Specificity and selectivity

We consider in this section a practical aspect of robustness. When we make a
decision inside the scope of the application, we would like to be certain that
when a decision is made, it is indeed the correct decision; we are interested in a
high specificity of the application. However, many algorithms are not very selec-
tive. In this section, we show how the availability of explicit domain knowledge
can help to improve selectivity and hence specificity.

Let us, for example, look at the planarity measure that is calculated in the
point ontology to determine whether a point is located in a linelike or a planar
environment. To this end, a principal component analysis is performed on the
point and its environment, and based on the length of the second eigenvector
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with respect to the sum of the lengths of all eigenvectors, a decision is made
on the planarity of the point. A threshold value determines the boundary be-
tween linelike points and planar points. When the planarity measure is very
different from the threshold value, the point is very clearly linelike or planar.
However, when the planarity measure is close to the threshold value, there is
an uncertainty in the point type assignment.

Due to the explicit availability of domain knowledge we have additional
knowledge to make the decision more certain. Suppose that some of the points
with an uncertain assignment to the point type ‘linelike’ are later on found
to be in the middle of a ‘Surface’ (and hence a ‘Leaf’). Then, we can derive
that the assignment was incorrect, since from plant knowledge, we know that
a leaf only contains ‘planar’ points. By maintaining the information that the
point assignment was uncertain, a correction based on domain knowledge can
be incorporated. This ensures a de facto increase of selectivity and hence a more
reliable application.

6.3.3 Reliability using knowledge rules

Reliability is a property that is more difficult to guarantee than robustness. The
computer vision system is based on explicit knowledge defining which plants
are inside its scope. These plants will be assessed as first, second, third choice
plants or as abnormal plants. However, plants that lie outside the scope of
the application, e.g. parsley or tulips, will probably be rejected, but they are
not explicitly recognised as out-of-scope plants, but simply as abnormal tomato
plants. This is undesirable, since for a company it is important to (i) sell seeds
with preferably no pollution from other species, and (ii) to assess only the quality
of the intended seeds, not lower the quality indication due to chance pollutions
present in the planted seeds.

For an application to identify which objects lie outside its area of expertise,
exclusion criteria can be defined and encoded using knowledge rules. There are
some nuances to the use of such excluding knowledge rules. Some of these rules
relate to criteria that are natural to the expert; an example in the case study is
to state that a plant can only have one stem, only one plug and maximum four
cotyledons. Plants with more cotyledons (e.g. parsley) or more stems (e.g. onions)
do not meet the criterion. They may occur, but must be recognised as ‘strange
plants’. Other rules can be expressed explicitly, but are not naturally a part of
the domain expert’s description of the domain. An example is “a plant with
leaves connected to the stem where it exits the plug is not a tomato seedling”
(but for example a tulip). The occurrence of such objects in the task domain is so
unlikely that it seems unnatural to add the corresponding rules to the ontology.

In short, full reliability would require an exhaustive list of rules to describe
all objects outside the scope, and is therefore not feasible. Apart from it being
impossible to obtain a complete list, it is not the most practical solution from a
performance point of view. Users of a computer vision system are interested in
recognising and rejecting objects that lie outside the scope. It makes sense to
only add knowledge rules to recognise foreign objects that may actually occur
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in the inspection environment. Bell peppers and other vegetable seedlings are
grown in the same environment as tomato seedlings; tulips are not.

Both sanity check rules and for reliability rules are applied on a ‘learning
by seeing’ basis. By adding rules only when triggered by an unexpected model
respectively object, the rules are set to deal with naturally occurring cases. This
allows the system to gradually become more and more attuned to its setting.

6.3.4 Proposed reliability rules for the case study

To ensure reliability in the case study, the knowledge engineer and domain
expert have to explore the scope boundaries and the domain environment. It
makes sense to start with the plant domain. Another source of input for reliabil-
ity rules are the sanity checks that are identified by the corrigibility procedure.
The domain expert can e.g. indicate that a tomato plant can only have one stem,
only one plug and maximum four cotyledons. These restrictions can be ex-
pressed by the knowledge engineer in the ontology modelling language OWL
using owl:Cardinality respectively owl:maxCardinality constructs.

The expected shape of the cotyledons and true leaves can be added to the
plant ontology to ensure that e.g. a bell pepper seedling is not allowed to pass as
a tomato seedling. The corresponding rule would be ‘the true leaf has to contain
indents, otherwise the plant under inspection is not a tomato seedling’. This
rule can be expressed using Jess as a rule that calls an algorithm to determine
whether such indents are present or not.

For the geometric ontology, some reliability rules in the plant ontology trans-
late to reliability rules on the number of thin cylinders that could be present
in the object (namely one) and the number of thick cylinders (maximum one).
The number of surfaces can still vary, since the transition function between the
geometric ontology and the plant ontology does not translate each surface to
exactly one leaf. The geometric ontology will also contain rules that have no
counterpart in the plant ontology. An object can e.g. lie outside the scope of the
ontology when it consists of other geometrical shapes (such as cubes, spheres,
tetrahedra). It is up to the domain expert to decide which rules correspond to
non-exotic occurrences of abnormal objects.

Finally, we consider the point ontology. We have designed this ontology
based on the fact that the representation of the recorded tomato seedling consists
of points that form linelike or planar regions. To implement the reliability
criterion, we state that if a region occurs that is not linelike nor planar, then the
object under inspection lies outside the scope of the application. To fully cover
this statement, we should enrich the ontology with a measure that indicates the
linelikeness and planarity of the present regions. If a region is not sufficiently
linelike or planar, the computer vision application should indicate that the object
under inspection lies outside its scope. The value of the indicated measure can
be determined empirically. This rule can be implemented using a Jess rule that
calls upon an algorithm to determine whether the planarity measure is within
the correct range for the plant to be a tomato plant.
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6.3.5 Reliability in transitional situations

So far, we have discussed reliability in cases where on rare occasions an unex-
pected object is offered to the computer vision application. However, in practice
a different situation may occur in which reliability is relevant. Suppose that
the computer vision application is used to alternately assess tomato seedling
batches and bell pepper batches. In such cases, it would be necessary that the
application can assess both tomato and bell pepper seedlings. We can imagine
a scenario in which the application can automatically indicate whether the new
tray of seedlings is a bell pepper or a tomato tray and what the quality assess-
ment of the individual seedlings is. This would be convenient for the operators
of the machine, since they do not have to enter this information manually on
beforehand.

We might be able to equip the computer vision application with the possi-
bility to use both task models at the same time. The result of an assessment can
be that based on the tomato knowledge, the seedlings are mostly abnormal and
third choice, whereas the bell pepper knowledge indicates that most seedlings
are first choice bell peppers with a small number of second choice seedlings.
As a conclusion, the application could decide that the inspected batch is most
likely a bell pepper batch, but has a small chance of being a low quality tomato
batch.

The envisaged application could indicate whether the inspected batch is a
batch of tomato seedlings or of bell peppers and provide a probability measure
for this decision. By allowing the two knowledge models to be used simultane-
ously, the application has the possibility to look at a batch of input objects from
two different but frequently occurring view points and determine the validity of
each of these views. It thereby gains the possibility to assess whether an object
lies outside one domain but inside another domain. This is a valuable property
of the computer vision application in practical situations.

6.4 Conclusions

In this chapter, we have shown that the application has corrigibility, adaptability,
and robustness as inherent properties and can be equipped with axioms to
ensure reliability as well. These properties offer a significant advantage to the
user of the computer vision system over black-box systems.

Due to adaptability, the user is allowed a certain degree of freedom in applying
the system to (slightly) different tasks and domains. Corrigibility allows the user
to get a clear insight in the decisions taken by the system and in pinpointing
flaws that the system makes. Robustness and reliability deal with the property
of the system that all objects within the specified scope are properly assessed
and objects that are outside the scope can be identified as such. The level
of reliability required by the user is dependent on the environment in which
the application is used and its desired performance. Robustness and reliability
ensure appropriate behaviour of the computer vision system, even when something
unusual occurs.
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In Chapter 2, two additional properties have been mentioned: expert ac-
ceptance and speed. These properties have not been discussed in this chapter.
Expert acceptance was discussed in Chapter 4 in two forms: understandabil-
ity and trust. Understandability, required for organisational learning, can be
supported due to the direct pairing of transparency in the application and the
underlying reasoning behind the application steps. We have shown that training
material can easily be obtained when a transparent application has been created
(see Figure 4.8). Trust in an application was achieved by designing the applica-
tion on the proper level of transparency. By adding transparency in such a way
that the most detailed level of the application contains either explicit domain
knowledge, trusted third-party components, or trivial components, the expert’s
trust is built.

Speed, the last mentioned objective, is not applicable to the prototype system
that we have created so far. However, the industrial parties that have been
involved in this project have decided to continue with a commercial follow-up
of this project. In this new project, the approach proposed in this thesis and
the pilot software will be further developed. The goal of this follow-up project
is to develop an automated seedling inspection machine that is commercially
available within the next two years. The speed requirement for this machine is
that it can handle between 10,000 and 20,000 plants per hour. One of the major
bottlenecks, fast image acquisition, has recently been solved by us [61]. From
first experiments, it is our expectation that the required speed can be met for
the processing of the plants as well.
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Chapter 7

Discussion & Conclusion

This thesis is built on three paradigms: (i) the choice to develop a white-box
instead of a black-box computer vision system, (ii) the choice to consider the
domain expert as key person in the design process, and (iii) the choice to develop
a design framework that combines techniques from software engineering with
knowledge engineering. In this concluding chapter, we critically assess how
these paradigms should be approached in practice.

The last section in this chapter provides the answers to the research ques-
tions posed in Section 1.7 and the overall conclusion of this thesis.

7.1 White-box systems complemented with opaque elements

The first paradigm that we review is our choice to design white-box computer
vision applications. In Chapters 4 and 6 of this thesis, we have shown that
white-box systems based on explicit expert knowledge result in the important
benefits of transparency, adaptability, corrigibility, reliability, robustness, main-
tainability and expert acceptance. In addition to these advantages, the white-box
design approach has some useful side effects. Due to the explicit formulation
of the expert’s domain and task knowledge, the explicit knowledge can easily
be adapted e.g. for instruction of new employees.

In the case study, experts have expressed their task knowledge: they have indicated which
plant features are relevant for assessing the quality of the plants and for which values
of these features the plant should be assessed as a first class, second class or abnormal
plant. Such explicit task knowledge can easily be represented in a flow diagram that
is interpretable by the experts. Such a diagram gives a concise overview of the task
knowledge and is useful in training new employees.

Implementing a computer-vision system in a white-box fashion may have poten-
tial disadvantages, though. First, the process of explicating the expert knowl-
edge is time-consuming. For each inspection task, a careful consideration must
be made on whether a white-box approach is the best choice based on the actual
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amount of knowledge required for executing the task versus the ease with which
can be learned from example cases. Another factor is how often the inspection
process will have to be adapted for similar objects or different quality criteria. A
third factor is the expected need of the experts to communicate about the actual
steps taken in the inspection process to colleagues or third parties. We recom-
mend that a project for designing any computer vision application starts with
interviewing the problem owner and one or more experts to learn about the
complexity of the task and taking inventory of the availability of training data.
Based on these interviews, a decision can be made for the type of computer
vision system that is required.

At the beginning of the horticultural project, the companies involved explained how
the different experts needed a few months of training before they were able to assess
the seedlings properly. This information was used by us to conclude that the seedling
inspection task indeed is a knowledge-intensive task and that a white-box design is
applicable.

The second possible disadvantage of using explicit knowledge can be the neg-
ative effect on the required speed of the application. Especially when the com-
puter vision application has to perform in a real-time high-throughput setting,
speed-optimised software is required. It is, however, difficult to decide before-
hand how an implementation based on explicit knowledge will perform in terms
of speed relative to an implementation using embedded implicit knowledge.
Subjective factors such as the programming skill of the individual programmer,
the chosen encoding of the algorithms, memory requirements, all influence the
speed of a computer program.

A distinct advantage of white-box design over pure black-box design is
that the task and domain decomposition of the task in the white-box design
allows the subcomponents to be profiled or benchmarked [51] to determine
which process step is slowest. The optimisation effort can then be targeted to
this process step.

The success of designing a white-box system based on expert-knowledge de-
pends on the possibility to correctly explicate expert knowledge. We submit
that if only part of the expert knowledge can be explicated, the proposed de-
sign method is still of value. For the parts of the task where tacit knowledge
cannot be expressed, the software engineers can implement a grey-box or black-
box component in the white-box setup. This combination of white-box and
grey-box or black-box components occurs on several scales.

At the lowest level of the application, processing knowledge is specified
in terms of complex calculations. Such calculation-based knowledge rules (see
Chapter 4) contain grey-box or black-box components that determine the value
of the property that is to be calculated. In most cases, the algorithm is known
in the form of interpretable equations, and hence a grey-box component is used.
In some cases though, e.g. in the case of neural networks, the inner workings of
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the algorithm are unknown in interpretable terms. In such cases, a black-box
component is used to automate the calculation of the property.

The implementation of grey-box and black-box components in a white-box
system to represent tacit expert knowledge is a good solution to designing
systems with as much explicit expert knowledge as possible. When explicit
knowledge becomes available, e.g. from a different domain expert, the black-box
component can be replaced by a grey-box or even a white-box component.

The procedural knowledge in the case study indicates how to interpret raw vision data
by grouping it into larger, more meaningful units (from single points to point groups
to planes and cylinders and so on). When we focus on determining the point type of
the central point in a point group, we use a grey-box method to calculate the principal
components of the point group. By looking at the length of the first, second and third
component, we interpret the shape of the point group and decide whether the point group
is linelike or planar.

In the case study, several trusted third party components are used. Examples are the
PCA-analysis and the Levenberg-Marquardt fitting algorithm.

7.2 The expert as the key person in the design process

We now discuss the central role of the expert in the design of a computer vision
application. Since a white-box application is based on explicit expert knowledge,
a precise encoding of this knowledge is required. The focus on expert knowledge
puts the domain expert in a central position in the design phase.

For a successful involvement of experts in the design process, we require
a (i) motivated expert to cooperate in designing the computer vision applica-
tion. Moreover, the expert has to (ii) have the opportunity and (iii) the ability to
express his knowledge [99]. In knowledge sharing research, the reluctance of ex-
perts to share their specialistic knowledge is widely recognised as an inhibition
to knowledge elicitation [5, 9]. Motivation is potentially adversely influenced
by several factors [92]. For our discussion, we highlight job security, expert
recognition, and organisational climate. Job security is a difficult aspect when
automating tasks. The expert may (rightly) fear that the application that is
developed may take over his job. This may in a negative way influence the ex-
pert’s willingness to express his knowledge. Recognition of the practitioner as the
company’s expert on the subject may improve his motivation. An organisational
climate in which discussing the task and sharing each other’s views is common
practice will also have a positive contribution to the expert’s motivation. Below,
we discuss these points for the case study.

In the horticultural case study, the experts did not show any fear for losing their jobs.
In none of the interviews, this point was raised. In each interview, the respective expert
was very willing and open in sharing his knowledge. We suspect that fear did not play
a role, because only part of the expert’s task is assessing the quality of seedlings, and the
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remainder of the work is enough to provide a full-time, less repetitive, job. Moreover,
the experts are used to automation in their work environment. Dutch horticulture is a
very innovative sector in which new technologies and automated processes are adapted
on a regular basis [108].

Recognition is a factor that works in favour of knowledge sharing in the horticultural
case study. Experts are the carriers and guardians of the company’s task knowledge.
With the computer vision application in place, the experts will have an important role
in ensuring that the process is performed correctly. When changes in the process are
required, these experts will be responsible for ensuring that the new requirements are
correctly communicated to the computer vision application designers. Moreover, the
experts will be asked to communicate with other companies’ experts on maintaining and
improving the high quality standard for vegetable seedlings. In short, they get credited
for their expertise.

Finally, the organisations involved in the case study already have a knowledge sharing
procedure in place. In most organisations, the quality assessment experts come together
once a week to jointly assess a tray of seedlings and to discuss why not all plants have
received the same quality assessment. Therefore, discussing their knowledge with others
was not a new task for the experts.

With respect to the expert getting his opportunity to express his knowledge,
the second prerequisite, it is important that experts who are to participate in
designing a computer vision application can indeed do so. The management has
to grant them time to discuss with knowledge engineers and software engineers,
and to explicate their knowledge as required.

For the case study, opportunity was no point of concern. Each company allowed ex-
perts to participate in the process. Whether we interviewed the experts in their work
environment, or whether we asked the experts to meet with other company’s experts on
a central location, the experts could devote the required time to the process.

The ability of experts to express their knowledge is the third factor to characterise
the effectiveness of knowledge acquisition. When an expert is motivated and
available, but lacks the ability to communicate his knowledge, the knowledge
acquisition process will not be successful. Dimensions that are of interest for
the expert’s ability are (i) the stage of development of the expert [64], and (ii)
the expert’s ability to analyse and explain his knowledge to others [21]. In
general, practitioners that are in the transition process from novice to expert
are considered to be best capable to analyse and explain their knowledge [21]
for knowledge elicitation using the interviewing method. The ROC-method
also requires experts that can explicate their knowledge. However, due to the
prompting of possibly relevant concepts from reconstructed sources, the ROC-
method enables both intermediate and full experts to make their knowledge
explicit.
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In the case study, we interviewed both intermediate and full experts to obtain explicit
domain knowledge. In one interview, we found a strong indication that the full expert
that we talked to had trouble expressing his knowledge. He indicated that a plant is only
assigned to the highest quality class, if this plant has ‘body’. We asked him to explain
this term, and he indicated that the plant should have ‘spirit’ and ‘mass’, and that you
could ‘just see’ those properties when looking at the plant. No further explanation on
these descriptions could be elicited from this expert. In general though, the interviewed
experts were capable of explaining their knowledge.

To ensure that the motivated expert can indeed significantly contribute to
the design of a knowledge-intensive computer vision application, sufficient sup-
port for the expert has to be available. In Chapter 3, we have covered this aspect
by introducing the ROC component. The ROC component allows the domain ex-
pert to autonomously define descriptive knowledge relevant for the task, thereby
empowering him to fully participate in the computer vision design process. In
the next paragraphs, we assess future developments of ROC required to provide
even better support to the expert.

For an efficient use of the ROC component, it is vital that suitable knowl-
edge sources are available. Moreover, the existing knowledge sources must be
available in a format that is usable by the ROC component. At present, we
mainly use SKOS, RDF and OWL models to populate the repository of reusable
sources. In the future, we expect that more and more additional structured
resources will become available via e.g. SPARQL endpoints. Moreover, we ex-
pect that natural language processing (NLP) techniques will enable harvesting
knowledge from texts. These developments will make more sources available
for the ROC component.

A function that is not available in the ROC-tool yet, is the possibility to ex-
plicitly document the used concepts and relations. Adding definitions, perhaps
even discussions that led to these definitions, will give a clearer understanding
of the created knowledge model.

At present, the ROC component supports the domain expert in express-
ing concepts and relations between these concepts. Automated support for
expressing domain statements via a ‘ROC for Rules’ component is not avail-
able yet. Such a tool would be valuable in the design of knowledge-intensive
applications. The purpose of this ‘ROC for Rules’ component would be to al-
low experts to autonomously express rules that make inferring of new instances
possible. Moreover, the expressed rules can be (partly) reused for similar tasks
or domains.

The ROC component and a future ‘ROC for Rules’ tool change the role
of the knowledge engineer even further to a person who coaches the domain
expert in expressing his knowledge instead of a person who must obtain full
knowledge of the expert’s domain. The knowledge engineer will always need
some knowledge of the domain, but with the domain expert creating the proto-
ontology, the necessity for having a detailed active understanding of the domain
is reduced.
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The design method presented in this thesis is suited for single-expert and multi-
expert knowledge models (see Figure 3.1). When asking multiple experts to
express their domain knowledge, there is a risk that the experts contradict each
other. In those cases, it may be difficult to coach the experts in changing their
conflicting models and discussing with each other to obtain common ground.
When multiple experts are able to elaborate on each other’s models and to-
gether express a richer model than each individual model, this common model
represents a better conceptualisation of the domain.

7.3 Combining knowledge engineering and software engineering

The third aspect that we single out is the proposed combination of software
engineering with knowledge engineering (see Figure 2.2).

Without this combination, the computer vision application would be imple-
mented solely by expertise from the software engineering field. The application
would be divided into image acquisition, segmentation and classification and
for each of these steps the computational steps and algorithms required to as-
sess the recorded objects would be specified (see Figure 7.1, right-hand side). In
this way, a grey-box or black-box computer vision application would be created.

Knowledge engineers would traditionally not be asked to assist in the au-
tomation of processes, but would more likely be asked to assist in explicating
and transferring the knowledge of task experts within the company. Hereto,
they would define the scope, interview experts to obtain an overview of their
descriptive knowledge, combine the descriptive knowledge into a company-wide
model, and enrich these models with procedural knowledge rules (see Figure 7.1,
left-hand side). In this way, expert knowledge is made explicit and can be used
to e.g. train new experts or assist in domain-specific research.

The proposed design method combines the fields of knowledge engineering
and software engineering and has a white-box computer vision system as a
result. Useful byproducts are an explicit model of the descriptive knowledge
that can be used in research, and an overview of the know-how knowledge that
can be used to train experts and to adapt the process to new requirements.

The co-operation between knowledge engineer and software engineer fol-
lows the workflow defined in Figure 2.2. In this paragraph, we briefly describe
the products that they exchange during their cooperation.

Both types of engineers and the problem owner are involved in defining the
task and setting the scope of the application. The software engineer creates a
document in which the task is decomposed into subtasks interspersed with in-
termediate interfaces; the global software architecture. The knowledge engineer
uses the descriptions of the subtasks to identify corresponding domain experts.
These experts are asked to explicate the relevant domain knowledge for their
subtask and domain. This results in ontologies that are refined by using one of
the methods discussed in Chapter 3. The ontologies are offered to the software
engineer in the form of diagrams or class objects. The software engineer can use
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Figure 7.1: Software engineering can lead to a black-box application, knowledge engineering
to a knowledge model.

these diagrams and his earlier decomposition of the task to define the computa-
tional steps required in domain-specific terms. The domain expert is consulted
to offer his procedural knowledge, and a process flow on paper results. The
knowledge engineer uses the process flow to identify fact-inferring statements.
These statements can then be implemented in a declarative programming lan-
guage. The software engineer uses the list of required calculations to design
and implement the corresponding algorithms.

At present, one of the main obstacles in using ontologies in computer-vision
applications is the practical unfamiliarity of most computer vision engineers
with ontology languages and – to a lesser degree – with declarative program-
ming languages. In our opinion, stimulation of knowledge exchange between
the fields of ontology engineering and computer vision engineering allows a ma-
jor step forward in the application of full knowledge-intensive computer vision
tasks in practice.

It is interesting to see which white-box benefits can be obtained when only
part of the knowledge engineering work is integrated in the software design.
Suppose that the domain expert is only asked to give an informal description of
the computer vision task but no formal encoding of descriptive and procedural
knowledge is made. In that case, the consecutive steps taken in the application
would be provided as informal descriptions stated in domain expert’s terms.
The benefit of such a setup over a complete black-box application is that the
consecutive steps can be explained to the domain experts. As a result, it will
(slightly) contribute to expert acceptance.
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Suppose that only descriptive knowledge is formally encoded and used
in the application, but the ‘how to’-knowledge is implemented in a black-box
fashion. This would be more transparent than a mere black-box method, since
it allows e.g. an easy visualisation of consecutive intermediate results to the
domain experts. Such set of visualisations in recognisable subsequent models
would allow for corrigibility, since the specific black-box component containing
the error can be identified. Moreover, with the descriptive knowledge formally
expressed, all objects in the scope of the application are defined and hence the
application has robustness as property (see Section 6.3.1).

7.4 Conclusion

The main research question of this thesis is “how can we develop a method for
designing image analysis applications to automate knowledge-intensive tasks?”. This
question has been divided into a number of sub-questions. In the next sections,
we give the answers to these sub-questions.

1. What are the characteristics of knowledge-intensive tasks? In which cases is automa-
tion opportune? What is special about automating knowledge-intensive tasks?

The first step in our research was to define the notion of knowledge-intensive task
in more detail. knowledge-intensive tasks are tasks that need a high level of
specialist knowledge for a correct performance of the task. When such a task is
performed by a human, the task knowledge can be partially explicit and partially
tacit.

Several motives for automating knowledge-intensive tasks are known. First,
task experts may not always be available. It takes time and money to train
employees to become experts, and due to job transfers and retirements experts
may leave the company. Second, there may not be enough experts to perform
the task in a satisfactory manner at the desired throughput. Third, experts are
humans; they may show less objectivity and consistency in their functioning
than desired. Fourth, experts may not be fast enough to keep up with increasing
processing speed. To overcome such difficulties, the automation of a knowledge-
intensive task is opportune.

Domain experts are a valuable source of information for the process of
automating knowledge-intensive tasks. They have a lot of experience in per-
forming their task, however a large part of their knowledge is tacit knowledge.
To have a machine perform the task in the same way as a domain expert, the
implicit knowledge of the expert should be made explicit. The explicit knowl-
edge should be encoded in such a way that it is usable for a machine. In other
words, the machine has to be able to ‘reason’ with the explicit knowledge.

The answers to these questions gave us a demarcation of our research topic.
They set the scope and defined our task.
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2. What are possible approaches for automating knowledge-intensive tasks? What are
the benefits of the chosen approach?

For the automation of knowledge-intensive tasks, we have used an ontology-
based white-box approach. This approach has some inherent properties that
highly improve the usability of the designed computer vision application. These
properties are transparency, expert acceptance, adaptability, corrigibility, robust-
ness and reliability.

Transparency influences expert acceptance in a positive way. Due to adapt-
ability, the user is allowed a certain degree of freedom in applying the system to
slightly different tasks and domains. We have shown how the tomato inspection
system can be adapted for the inspection of tomato seedlings for grafting suit-
ability (changed task) and for inspecting brassica seedlings (changed domain).

Corrigibility allows the user to get a clear insight in the decisions taken by
the system and in pinpointing flaws that the system makes. We have discussed
how a corrigibility module can help to identify errors and to find sanity check
rules for the involved domains.

Robustness and reliability deal with the property of the system that all
objects within the specified scope are properly assessed and objects that are
outside the scope can be identified as such. We have argued that the level
of reliability required by the user is dependent on the environment in which
the application is used and its desired performance. Robustness and reliability
ensure appropriate behaviour of the computer vision system, even when something
unusual occurs.

3. How can we obtain the knowledge that is relevant for successfully automating the
task?

Knowledge acquisition is a process that takes place in three dimensions: the
application dimension, the domain dimension, and the discipline dimension
(see Section 3.3.3). For each discipline, the problem owner and domain expert
ensure that the knowledge acquisition is relevant for the task.

Descriptive knowledge is acquired by applying a combination of interview-
observation-based methods and the ROC-component. The ROC-component sup-
ports the domain expert in actively participating in the expression of his knowl-
edge. It uses associations obtained from existing knowledge sources to prompt
the domain expert in creating a semi-formal knowledge model.

The resulting model of the ROC-method can be used as input for the inter-
viewing process and vice versa. Either or both methods can be used to obtain
an optimal definition of the descriptive knowledge required for the computer
vision application.

Inferential knowledge can be elicited as well. Such knowledge indicates
how the quality inspection task is performed. The end result of the knowledge
modelling process is a set of application ontologies, each corresponding to a
discipline, and a set of knowledge rules used to infer new facts in the application.
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The knowledge engineering effort in the case study has lead to a point
ontology, a geometric ontology, and a plant ontology consisting of concepts and
relations. Moreover, sanity check rules for these domains have been expressed.
‘How to’-knowledge has been identified as well to allow descriptions of the
recorded seedling in one vocabulary to be expressed in another vocabulary.

4. How can procedural knowledge be encoded in a semantically meaningful way? How
can we systematically embed the definition of procedural knowledge in the proposed
framework for knowledge-intensive computer vision applications?

Expert knowledge concerning a task not only consists of descriptive knowledge,
but also of procedural knowledge. We argue that a white-box approach in which
the procedural knowledge is expressed explicitly is in principle preferred over
systems in which the applied expertise is hidden in the system code. After all,
internal transparency makes it easier to adapt the system to new conditions and
to diagnose faulty behaviour. At the same time, explicitness comes at a price and
is always bounded by practical considerations. Therefore we have introduced
in this thesis a method to make a balanced decision between transparency and
opaqueness.

To decide on transparency, we look further than the obvious objectives of an
application such as accurateness, reliability, robustness, and speed, and focus on
underlying design objectives and criteria, such as trust, system modification and
understandability. Depending on the design objectives for a specific application,
a choice for (i) a further task and domain decomposition, (ii) a refinement of the
descriptive knowledge, (iii) the use of logical inferences, or (iv) the introduction
of a black-box component created by a trusted third party is made.

The set of decision criteria concern the availability of explicit domain ex-
pertise, the application range of a component, the level of common sense and
triviality of a subtask, the need for explanation of a subtask, and the availability
of trusted third party software. These criteria offer structure to the application
designer in making decisions concerning transparency. The proposed method
ensures a careful weighing of costs and benefits in the implementation process.

5. How well does the proposed method perform in terms of a number of predefined
criteria?

We have shown that the proposed design method leads to a white-box computer
vision application that can properly perform the task for which it has been
developed; in other words, correctness can be attained. Moreover, we have
shown that the proposed white-box applications are inherently equipped with
the possibilities to support corrigibility, adaptability, robustness and reliability.
The remaining two properties – speed and expert acceptance – have not been
tested, since the computer vision application for the case study developed using
the proposed method is in prototype stage and cannot be evaluated for these
criteria yet.
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6. How applicable is the developed method to the automation of other knowledge-
intensive computer vision tasks?

The presented paradigm to systematically design ontology-based computer vi-
sion applications can be used for any knowledge-intensive object inspection task
for which shape features determine the quality of the object. For each task, a
task description and a definition of the domain can be made. The division of
the computer vision application into image acquisition, image segmentation,
and image classification is generic. The use of explicit procedural knowledge
to propagate knowledge about the recorded object through the application can
also be used for arbitrary knowledge-intensive computer vision tasks.

The design method can be applied to inspection tasks in any domain. Raw
camera data, in the form of e.g. point clouds, triangulated laser range data, or
voxels, can be mapped to a carefully defined set of structures. Such structures
can be geometrical, or areas with similar texture or colour, edges, clusters et
cetera. The identified structures then transfer into a model of the object under
inspection, e.g. a plant, a person, or a car, but again only into objects that can
possibly exist in this specific task and domain context. The segmented object in
turn is mapped to an assessment class, such as quality, price level, style, again
specifically selected for this task.

The main research question: Is the ontology-based white-box design method presented
in this thesis suitable for designing knowledge-intensive computer vision systems for
biological objects?

With the subquestions answered, we have gathered sufficient knowledge to an-
swer the main question of our thesis. We have shown in this thesis that it is
indeed feasible to design a white-box computer vision application that success-
fully performs knowledge-intensive visual inspection tasks. We have presented
a design method, involving the fields of knowledge engineering and software
engineering. Due to the white-box approach, the scope of the application, the
division into subtasks, and the explicit descriptive and inferential knowledge
play an important role. The domain expert is considered as the key person in
the design process; his knowledge is leading for the computer vision application.

Not only have we shown how we can design knowledge-intensive computer
vision applications, we have also shown that applications developed according
to the proposed paradigm have the highly desirable properties adaptability, con-
sistency, corrigibility, expert acceptance, maintainability, reliability, robustness,
and transparency. We have proposed a way to create tools that support the
users and developers of the application in benefiting from these properties.

In our opinion, these white-box properties are extremely valuable for the
users of the application and give the design of white-box computer vision ap-
plications a definite edge over black-box applications.
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Summary

This thesis focusses on the modelling of knowledge-intensive computer vision
tasks. Knowledge-intensive tasks are tasks that require a high level of expert
knowledge to be performed successfully. Such tasks are generally performed
by a task expert. Task experts have a lot of experience in performing their task
and can be a valuable source of information for the automation of the task. We
propose a framework for creating a white-box ontology-based computer vision
application.

White-box methods have the property that the internal workings of the sys-
tem are known and transparent. They can be understood in terms of the task
domain. An application that is based on explicit expert knowledge has a num-
ber of inherent advantages, among which corrigibility, adaptability, robustness,
and reliability. We propose a design method for developing white-box computer
vision applications that consists of the following steps: (i) define the scope of
the task and the purpose of the application, (ii) decompose the task into sub-
tasks, (iii) define and refine application ontologies that contain the descriptive
knowledge of the expert, (iv) identify computational components, (v) specify
explicit procedural knowledge rules, and (vi) implement algorithms required
by the procedural knowledge.

The scope is one of the cornerstones of the application, since it sets the
boundaries of the task. The problem owner and the domain experts are to-
gether responsible for setting the scope and defining the purpose. Scope and
purpose are important for the task decomposition and for the specification of
the application ontologies. The scope and purpose help the domain engineer to
keep focus in creating dedicated ontologies for the application.

The decomposition of the task into subtasks models the domain expert’s
“observe – interpret – assess” way of performing a visual inspection task. This
decomposition leads to a generic framework of subtasks alternated with applica-
tion ontologies. The list of consecutive subtasks – record object, find structures,
identify object parts, determine parameters, determine quality – can be reused
for any visual inspection task.

Application ontologies are task-specific ontologies containing the descrip-
tive knowledge relevant for the task. We have described an interview-based
knowledge acquisition method that is suited for modelling multi-domain, multi-
expert task-specific ontologies. Using the knowledge of multiple experts leads
to a rich application ontology; adding an outsider’s perspective from domain
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experts from other involved domains, leads to an expression of knowledge that
may be too trivial for task experts to mention or may not be part of the usual
perspective of the task experts.

Knowledge acquisition based on interviews and observations only has some
disadvantages. It takes a lot of modelling time for domain expert and knowl-
edge engineer, it is difficult for the knowledge engineer to give a structured
and full overview of his knowledge, and a model is created from scratch, even
though reusable sources may exist. We have therefore introduced a reuse-based
ontology construction component that gives domain expert a more prominent
and active role in the knowledge acquisition process. This component prompts
the domain expert with terms from existing knowledge sources to help him cre-
ate a full overview of his knowledge. We show that this method is an efficient
way to obtain a semi-formal description of the domain knowledge.

With the decomposition of the knowledge-intensive task into subtasks in-
terspersed with descriptive knowledge models completed, we focus on the sub-
tasks. Each of these subtasks can be represented by a sequence of components
that perform a clearly defined part of a task. To specify these components,
we explicitly identify for each service in the computational workflow (i) the in-
put concepts, (ii) the output concepts, and (iii) a human readable (high level)
description of the service. This information is used as documentation for the
procedural knowledge.

Besides transparency of descriptive knowledge, transparency of processing
knowledge is a desirable feature of a knowledge-intensive computer vision sys-
tem. We show that blindly embedding software components in a transparent
way may have an adverse effect. In some cases, transparency is not useful or
desired. To support the software developer to make a balanced decision on
whether transparency is called for, we have proposed a set of decision criteria
– availability of expertise, application range of a component, triviality, explana-
tion, and availability of third-party expertise. These decision criteria are paired
to means of adding transparency to an application. We have elaborated sev-
eral examples from the horticultural case study to show which transparency
decisions are made for which reasons.

Using the framework for designing knowledge-intensive computer vision
applications, we have implemented a prototype system to automatically as-
sess the quality of tomato seedlings. We have shown that the proposed design
method indeed results in a white-box system that has adaptability, corrigibil-
ity, reliability and robustness as properties. We provide guidelines on how to
implement tool support for the adaptability and corrigibility properties of the
system, to better assist the end users of the application. Moreover, we show
how organisational learning and building trust in the application are supported
by the white-box setup of the computer vision application.
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Samenvatting voor iedereen

De visuele inspectie van producten is een belangrijk onderdeel van veel indus-
triële processen. Denk bijvoorbeeld aan de kwaliteitscontrole van grondstoffen
en halffabricaten, of aan het classificeren en sorteren van producten op uiterlijke
kenmerken. Soms vindt er een eenvoudige controle plaats op de aanwezigheid
of afwezigheid van een onderdeel, maar in andere gevallen is er sprake van een
complexere beoordeling. Een voorbeeld van een complexere taak is het beoorde-
len van natuurlijke producten op hun kwaliteit, zoals kiemplanten, snijbloemen,
fruit, champignons, et cetera.

Natuurlijke objecten ontstaan vanuit een groeiproces en komen daardoor in
allerlei soorten en maten voor. Twee bloemen van dezelfde soort die allebei als
eerste klas bloemen zijn beoordeeld hoeven helemaal niet op elkaar te lijken. Dit
is een duidelijk verschil met industriële producten, zoals schroeven en bouten.
Alle schroeven van dezelfde soort zien er exact hetzelfde uit. Het is voor in-
dustriële producten dan ook gemakkelijker om afwijkende producten te vinden
dan voor natuurlijke producten.

De beoordeling van natuurlijke producten wordt veelal gedaan op basis van
onderliggende kwaliteitskenmerken. De inspectietaak wordt uitgevoerd door
goed getrainde experts, die door hun ervaring precies weten welke producten
eerste keus of tweede keus producten zijn en welke producten moeten worden
afgekeurd. In dit proefschrift beargumenteren we dat het voor het automatis-
eren van dergelijke kennisintensieve inspectietaken noodzakelijk is dat de kennis
en ervaring van de experts wordt gebruikt als basis van het beeldverwerkingsal-
goritme.

Het gebruiken van de expertkennis op zo’n manier dat de kennis terug te
vinden is in het systeem – dit noemen we een white-box systeem – resulteert niet
alleen in een correcte beoordeling van de natuurlijke objecten, maar het heeft
nog een aantal andere voordelen. Deze voordelen hebben te maken met de
transparantie van de applicatie. Hierbij denken we aan

• Uitlegbaarheid: door de expertkennis expliciet te maken, wordt het mogelijk
om de kennis ook te gebruiken om communicatie tussen verschillende
experts te ondersteunen en om nieuwe mensen op te leiden tot expert.

• Vertrouwen in de applicatie: doordat het beeldverwerkingssysteem geba-
seerd is op expliciete kennis, kunnen de beslissingen van het systeem wor-
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den verklaard in termen die voor experts te begrijpen zijn. Dit bevordert
het vertrouwen van de experts in het systeem.

• Correcties en aanpassingen: door het gebruik van expliciete expertkennis,
kunnen fouten worden opgespoord en opgelost. Het systeem kan ook
worden aangepast om andere maar vergelijkbare producten te beoorde-
len, door precies dat stuk van de software te vervangen dat anders is ten
opzichte van de oorspronkelijke taak.

• Robuustheid en betrouwbaarheid: doordat het systeem gebaseerd is op de
volledige beschrijving van de taak en de mogelijke verschijningsvormen
van de producten, zal het goed functioneren voor alle producten die bin-
nen het taakdomein vallen.

In de rest van deze samenvatting bespreken we onze voorbeeldapplicatie en
de drie belangrijkste onderwerpen uit dit proefschrift. Eerst richten we ons op
het modelleren van expertkennis. Daarna beschrijven we hoe het opdelen van
een taak in deeltaken bijdraagt aan de transparantie van de applicatie. Tot slot
kijken we in meer detail naar transparantie en beschrijven we wanneer meer
transparantie wel of niet gewenst is.

De voorbeeldapplicatie: tomatenkiemplanten

In het proefschrift gebruiken we een case study om de ontwikkelde kennisin-
tensieve beeldverwerkingsmethode te illustreren: het classificeren van tomaten-
kiemplanten. In de Nederlandse tuinbouw is kiemplantinspectie een belangrijk
proces. Voor zaadveredelaars en voor plantenkwekers is het belangrijk dat in
een vroeg stadium kan worden voorspeld hoeveel groente of fruit een volwassen
plant zal opleveren. Het doel van het inspectieproces is om de kans op een hoge
opbrengst van het volwassen gewas te maximaliseren.

Kwaliteitscontrole van kiemplanten is een complexe taak, aangezien ze veel
verschillende verschijningsvormen hebben (zie figuur 1.4). Om het rendement
van een volwassen plant te voorspellen wordt door experts een set van proef-
ondervindelijk gevalideerde kwaliteitscriteria gebruikt. Enkele eenvoudige cri-
teria zijn bijvoorbeeld bladoppervlak, steellengte, en bladkromming. Voorbeel-
den van complexere criteria zijn de kans dat een plant een kroeskop is, of de
onregelmatigheid van de bladvorm. Op dit moment wordt de kwaliteitsbepal-
ing uitgevoerd door goed getrainde experts. Hoewel elke deskundige intensief
wordt getraind door het bedrijf waar hij werkzaam is, verschilt de beoordeling
van de experts in hetzelfde bedrijf doorgaans tot wel tien procent. De variatie
tussen experts van verschillende bedrijven is nog hoger. De verschillende beo-
ordeling wordt deels veroorzaakt doordat mensen subjectief zijn: als een expert
vermoeid raakt, gaat hij fouten maken. Deels speelt ook mee dat de oplei-
ding van de experts is gebaseerd op acht officieel omschreven classificatieregels
van Naktuinbouw, terwijl uit interviews met experts bleek dat in de praktijk
meer dan 60 verschillende classificatieregels worden gebruikt. Bovendien zit-
ten er verschillen in de kwaliteitsbeoordeling tussen bedrijven, omdat niet alle
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planten voor dezelfde markt bedoeld zijn. De Noord-Europese markt en de
Zuid-Europese markt stellen andere kwaliteitseisen aan kiemplanten.

Om een succesvolle beeldverwerkingsapplicatie te ontwikkelen is het ener-
zijds nodig om driedimensionale opnames van de kiemplanten te maken, zodat
alle vormvariaties kunnen worden opgemerkt. Anderzijds moet er per bedrijf
een bedrijfseigen set van beoordelingsregels worden opgesteld die door de ap-
plicatie wordt gebruikt.

Het modelleren van expertkennis

We hebben al opgemerkt dat experts veel kennis en kunde hebben om een taak
succesvol uit te voeren. Deze kennis is in het algemeen niet of niet volledig
opgeschreven, maar bevindt zich in het hoofd van de experts; de kennis is
impliciet aanwezig. Als we een white-box beeldverwerkingsapplicatie willen
maken, is het echter belangrijk dat deze kennis expliciet wordt gemaakt. Pas als
de kennis zo is opgeschreven dat hij interpreteerbaar is voor een computer, dan
kan hij gebruikt worden voor de applicatie.

In het vakgebied knowledge engineering wordt veel aandacht geschonken
aan het achterhalen en expliciet maken van expertkennis. Een veelgebruikte
methode daarvoor is interviewen en observeren. Voor de kiemplantenapplicatie
hebben we gebruik gemaakt van een interviewgebaseerde aanpak om de kennis
van de experts boven water te krijgen (zie figuur 3.1). Nadat experts geïnter-
viewd zijn, is de expertkennis opgeschreven in de vorm van een gespreksver-
slag. Dit gespreksverslag is nog niet leesbaar voor een computer. De knowledge
engineer moet vanuit het gespreksverslag een formeel kennismodel – een zoge-
naamde ontologie – maken.

Ontologieën zijn formele beschrijvingen van een kennisdomein. Ze bestaan
uit concepten, die de belangrijke begrippen in het domein aangeven. Voor het
kiemplantdomein kun je bijvoorbeeld denken aan ‘plant’, ‘steel’, ‘zaadlob’ of
‘echt blad’. De concepten kunnen attributen bevatten, die eigenschappen aan-
duiden, zoals ‘steellengte’ of ‘bladoppervlak’. De concepten kunnen ook met
relaties met elkaar verbonden zijn. In een ontologie wordt gebruik gemaakt van
eenvoudige zinnen, grofweg in de vorm van ‘onderwerp – werkwoord – lijdend
voorwerp’. Voorbeelden zijn zinnen als ‘plant – heeft – steel’ of ‘echt blad – is
onderdeel van – kop’ (zie figuur 5.3). Doordat de zinnen zo eenvoudig zijn en
altijd dezelfde vorm hebben, is het mogelijk dat een computer ze interpreteert.
Op deze manier kan de gemodelleerde expertkennis gebruikt worden door de
beeldverwerkingsapplicatie.

Het interviewen van experts om hun kennis te verkrijgen heeft een aantal
voordelen. De experts zijn betrokken bij de ontwikkeling van het kennismodel,
ze vullen elkaar aan en komen samen tot een model waar alle experts achter
staan. De ontologie die zo ontstaat, is precies afgestemd op de inspectietaak. Er
zijn echter ook wat nadelen. De knowledge engineer moet geschoold worden in
het domein van de experts om een zinvolle ontologie te kunnen maken. Voor
de expert is het formuleren van zijn kennis een nieuw proces, waardoor het
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risico bestaat dat gedeeltes van het domein vergeten worden. Tot slot wordt
met de interviewaanpak van voor af aan begonnen met het bouwen van een
kennismodel. Als er thesauri, ontologieën of andere gestructureerde bronnen
bestaan die deels kunnen worden hergebruikt, wordt daar geen gebruik van
gemaakt.

In dit proefschrift hebben we daarom niet alleen interviewgebaseerde on-
tologieën besproken, we hebben ook een methode geïntroduceerd waarmee de
expert zelfstandig alle kennis voor een ontologie kan verzamelen. Dit is de ROC-
methode, waarbij ROC staat voor reuse-based ontology construction. De manier
van ontologieën bouwen die door ROC wordt voorgesteld maakt gebruik van
bestaande bronnen. De expert noemt om te beginnen een aantal belangrijke
begrippen in zijn domein. De ROC-software zoekt vervolgens in bestaande on-
tologieën en thesauri of deze begrippen daarin voorkomen. Als dat zo is, dan
worden alle concepten die met een relatie gekoppeld zijn aan de beginbegrippen
opgehaald en ter beoordeling voorgelegd aan de expert. De expert kan door de
nuttige concepten goed te keuren en de applicatie opnieuw te laten zoeken een
steeds betere verzameling van relevante begrippen verkrijgen. Hiermee wordt
het proces om ontologieën te bouwen versneld.

In hoofdstuk 3 hebben we laten zien hoe interviewgebaseerde en ROC-ge-
baseerde kennismodellering werkt. We hebben ook laten zien dat de methodes
met elkaar gecombineerd kunnen worden om op efficiënte wijze een ontologie
te ontwikkelen.

Het opdelen van een taak in deeltaken

Nu we een methode hebben om expertkennis te formaliseren, kunnen we ons
richten op het maken van een transparante beeldverwerkingsapplicatie. Dit
gedeelte staat beschreven in hoofdstuk 2 van het proefschrift.

Elke beeldverwerkingsapplicatie bestaat uit drie achtereenvolgende proces-
sen: kijk – interpreteer – beslis, of meer formeel beeldacquisitie – segmentatie en
analyse – classificatie. Het doel van de beeldacquisitie is om een opname van
het te beoordelen object te maken, waardoor er een interne representatie van
het object bestaat. Zo’n interne representatie bestaat uit een stel punten die
wat de computer betreft een willekeurig object zouden kunnen beschrijven. De
interpretatiestap is bedoeld om het opgenomen object te verdelen in samen-
hangende gebieden, die gekoppeld worden aan objectonderdelen. Voor het
kiemplantvoordeel houdt dit in dat in de opgenomen puntenwolk lijnachtige en
vlakachtige gebieden worden gezocht. Voor deze gebieden worden geometrische
vormen gezocht, zoals cilinders met een grote of kleine straal, en gekromde
vlakken. Later zal dan blijken dat de punten die horen bij de cilinder met een
grote straal precies die punten zijn die bij de plug van het kiemplantje horen. De
punten in de dunne cilinder vormen de steel, en elk van de gekromde vlakken
komt overeen met een blad. In de classificatiefase worden tot slot de attribuut-
waarden van de plantonderdelen berekend, zodat bladoppervlak, steellengte et
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cetera bekend zijn. Deze waarden kunnen gebruikt worden om de kwaliteits-
regels van de experts aan te roepen en het plantje te classificeren.

De opdeling van de beeldverwerkingstaak in deze stappen kan gecombi-
neerd worden met verschillende ontologieën met domeinkennis. Uit boven-
staande beschrijving blijkt dat we een puntenontologie, een geometrische on-
tologie, en een plantontologie nodig hebben (zie figuur 2.6). De plantontologie
hebben we met de experts opgesteld. Hierdoor weten we welke plantonderde-
len voorkomen bij kiemplantjes. Dit stelt ons in staat om de bijbehorende ge-
ometrische vormen op te stellen. Kubussen en piramides zijn niet nodig in het
plantdomein, maar dikke en dunne cilinders en gekromde vlakken juist wel.
Vanuit de geometrische vormen kunnen we ook beslissen wat we voor gegevens
nodig hebben in de puntontologie. Door te bepalen welke punten in een lijn-
achtige omgeving liggen en welke in een vlakachtige, kunnen we een vroege
groepering maken van de punten. Deze groepering helpt om de geometrische
vormen te vinden.

De opdeling van de inspectietaak volgens het ‘kijk – interpreteer – beslis’-
principe leidt tot een generiek toepasbare ontwerpstructuur. De lijst van opeen-
volgende deeltaken van (i) opnemen, (ii) structuren vinden, (iii) deelobjecten
vinden, (iv) parameters bepalen en (v) kwaliteit bepalen kan worden gebruikt
voor elke visuele inspectietaak. Door de tussenliggende ontologieën te specifi-
ceren worden opeenvolgende modellen van het object getoond, en wordt met
name bijgedragen aan de transparantie-eigenschappen ‘correcties’ en – indirect
aan – ‘vertrouwen’. Als, immers, een plant verkeerd beoordeeld wordt, dan
kan model voor model worden teruggekeken tot een correct tussenmodel wordt
gevonden (zie figuur 6.1). We weten dan dat de beoordelingsfout te vinden is
in de deeltaak die dit correcte model als input en een foutief model als output
heeft. Als een beoordeling betwijfeld wordt door een expert, kan het systeem
laten zien welke opeenvolgende modellen zijn gebruikt. Dit biedt de expert
inzicht in de werking van de applicatie.

Transparantie

Zoals eerder gemeld, zijn correcties en vertrouwen niet de enige gewenste eigen-
schappen van de beeldverwerkingsapplicatie. In hoofdstuk 4 van dit proefschrift
laten we zien dat een applicatie op drie manieren transparanter kan worden
gemaakt (zie figuur 4.1). Ten eerste kunnen we de methode uit de vorige sec-
tie gebruiken: het opdelen van taak en domein in deeltaken en bijbehorende
tussenmodellen. Ten tweede is het mogelijk om inputfeiten van een taak te ver-
fijnen. Ten derde kunnen we de gebruikte procedurele kennis – de kennis die
beschrijft hoe een taak wordt uitgevoerd – in de vorm van expliciete kennisregels
geven.

Deze laatste manier van kennis specificeren hadden we nog niet bespro-
ken. Tot nu toe zijn we uitgegaan van expertkennis die in de vorm van ontolo-
gieën wordt vastgelegd. Dat soort kennis is geschikt om ‘statische’ kennis te
beschrijven. Expertregels zijn een andere vorm van expertkennis. Deze regels
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Samenvatting voor iedereen

hebben de vorm van een ‘als . . . dan’-uitspraak en beschrijven hoe een expert
een bepaalde beslissing maakt. Voorbeelden in het kiemplantdomein zijn: ‘als
een plant een steel heeft die korter is dan 80% van de gemiddelde steellengte
van de planten in de tray, dan is de plant tweede keus of afkeur’. Dit soort ‘dy-
namische’ kennis kan worden vastgelegd in de vorm van formele kennisregels.
Ze kunnen door een applicatie worden geïnterpreteerd.

We hebben drie manieren gedefinieerd om transparantie toe te voegen aan
een applicatie, maar hiermee zijn we er nog niet. De gewenste mate van
transparantie is namelijk lastig te bepalen. Alles volledig transparant maken is
overbodig en kan verwarrend werken. Stel bijvoorbeeld dat je een programma
gebruikt om een ingewikkelde analyse uit te voeren. Het is dan nuttig om te
weten dat er eerst een gemiddelde wordt genomen, waarna een andere bereken-
ing wordt toegepast. Het is niet zo nuttig om precies uitgespeld te zien hoe het
nemen van een gemiddelde werkt, omdat het een alom bekende berekening be-
treft. Details over het gemiddelde berekenen voegen niet meer begrip toe over
de ingewikkelde analyse. De aanwezigheid van triviale kennis kan een reden
zijn om een niet-transparante component – een black-box component – toe te laten
in een white-box applicatie.

In hoofdstuk 4 geven we naast het trivialiteitcriterium nog een aantal andere
criteria die de softwareontwikkelaar moeten helpen bij het beslisproces op welke
punten transparantie gewenst is. Deze criteria zijn: (i) beschikbaarheid van ex-
pertkennis, (ii) applicatiedomein, (iii) uitlegbaarheid en (iv) vertrouwde software
van anderen. Als er geen expertkennis beschikbaar is, dan is er geen keus; een
black-box component is dan de enige oplossing. Als het applicatiedomein van
een deeltaak alleen van toepassing is op bijvoorbeeld tomatenkiemplanten, maar
niet op paprikakiemplanten, dan is het nodig om bij de inputfeiten van de taak
aan te geven voor welk type kiemplanten de taak geschikt is. Als de kennis die
gebruikt wordt in de applicatie ook gebruikt wordt voor opleidingsdoeleinden,
dan speelt uitlegbaarheid van deeltaken een belangrijke rol. Er kan dan gekozen
worden om expliciet extra kennis in het systeem te specificeren, die misschien
ook als black-box component beschikbaar was geweest, maar die nuttige achter-
grondinformatie geeft over het proces. Tot slot kan de applicatieontwikkelaar
kiezen voor het gebruik van software van anderen, als deze software volledig
vertrouwd wordt.

Door de transparantiecriteria op elk niveau van de applicatie toe te passen
(zie figuur 4.2), kan een uitgebalanceerde, transparante beeldverwerkingsappli-
catie verkregen worden, waarmee alle genoemde voordelen – correctheid, cor-
rigeerbaarheid en aanpasbaarheid, robuustheid en betrouwbaarheid, vertrouwen
in de applicatie, en uitlegbaarheid – kunnen worden ondersteund.

In hoofdstuk 5 van dit proefschrift laten we de ontologieën en de software
voor de voorbeeldapplicatie zien, die ontwikkeld zijn volgens de hierboven
beschreven methoden. We laten zien dat de voorgestelde methode inderdaad
succesvol is in het implementeren van een kwaliteitsinspectiesysteem voor to-
matenkiemplanten. Hoofdstuk 6 evalueert de beschreven theorie met betrekking
tot de eigenschappen corrigeerbaarheid, aanpasbaarheid, robuustheid en be-
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trouwbaarheid. We laten niet alleen zien dat de voorbeeldapplicatie aan deze
eigenschappen voldoet, maar we geven ook aanwijzingen over hoe je tools zou
kunnen ontwikkelen om daadwerkelijk te profiteren van deze eigenschappen.
Hoofdstuk 7, tot slot, bevat de discussie, waarin de belangrijkste paradigma’s –
het ontwikkelen van een white-box applicatie, het beschouwen van de expert als
hoofdrolspeler en het combineren van technieken uit de software engineering
en knowledge engineering vakgebieden – besproken worden.
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Vrij naar het gezegde “It takes a village to raise a child”, zou ik willen zeggen “It
takes a village to complete a thesis”. In mijn eentje had ik dit proefschrift nooit
kunnen schrijven en ik ben dan ook veel mensen dankbaar voor hun bijdrage
aan mijn promotietraject.

Jan Top en Lucas van Vliet, mijn beide promotoren, hebben me steeds
begeleid op mijn promotiezoektocht. Met Jan heb ik vele uurtjes, vaak aan het
eind van de middag of vroeg op de avond, gediscussieerd over modelleerkeuzes
en mogelijke oplossingsrichtingen voor problemen waar ik tegenaan liep. Zowel
als promotor als als themaleider Informatie Management binnen A&F ben je wat
mij betreft ‘top’: doordat je goed luistert en altijd de juiste vragen weet te stellen,
hielp je me steeds weer een stap vooruit. Ik heb de discussiesessies altijd als
zeer inspirerend ervaren en zie ernaar uit om ze in de toekomst voort te blijven
zetten. Lucas was altijd bereid om mee te denken over de beeldverwerkingskant
van mijn werk. Ik ben erg blij dat je me vol enthousiasme hebt gesteund om
informatiemanagement en beeldverwerking met elkaar te combineren. Bedankt
dat ik zoveel ik wilde in je groep kon werken. Hierdoor kon ik mijn aandacht
op een Delftse dag volledig richten op mijn promotiewerk, zonder afgeleid te
worden door Wageningse projecten.

Zonder Toine Timmermans zou ik nooit aan dit boekje zijn begonnen: hij
vroeg me op een dag of ik niet een voorstel wilde schrijven om op basis daarvan
te promoveren. Toine, bedankt voor het vertrouwen. Dankzij hem en Hans Maas
kon ik zelfs een jaar full-time aan mijn promotieonderzoek besteden in Zürich,
terwijl ik gewoon bij A&F in dienst bleef. Die tijd in Zürich was erg nuttig
en is me nog steeds dierbaar. In the group of Luc van Gool at ETH, I could
work alongside other computer vision experts. Luc, thank you for having me in
your group! And even though the BIWI-group was more involved in tracking,
gesture recognition and medical imaging, I could always talk with interested
colleagues. Andreas Griesser, Matthieu Bray, were my roommates. I remember
their surprise when I was enthusiastic about the first snow! Little did I know
that the snow flakes would continue to fall throughout the season . . . . Bryn
Lloyd, you were a student in my project and have helped to create the basis for
the implementation of the case study. Peter Czech (Monthy Python) and Herbert
Bay (gestampte muisjes) were always ready for some small talk. In Zürich, we
were part of a group of international friends: Rob, Heather, Ulf, Robert und
Sabine, Mario and Martha, Michelle and Ben. I enjoyed your company and
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friendship, and will always remember the Sinterklaas-evening, the ExpoVina-
visits, the sightseeing, the hikes in the Swiss mountains, the cheese fondues. I
am glad that we are still in touch, even though most of us are living elsewhere
nowadays.

Wageningen is gedurende mijn promotietijd de belangrijkste uitvalsbasis ge-
weest. Toen ik begon met promoveren, was Anneke mijn kamergenote: gezel-
ligheid en nu en dan tropisch fruit. Nadat Anneke A&F verliet, werden Mar-
tijntje en ik kamergenoten. Martijntje, we hadden al ervaring met kamerdelen
in Eindhoven en Kopenhagen, en ik vond het erg prettig om die traditie een
vervolg te geven in Wageningen. De discussies op het white-board, de verschil-
lende smaken sinaasappelthee en het delen van wel en wee karakteriseren voor
mij deze tijd. Ik hoop dat je in je eigen promotietraject net zo veel hebt aan je
kamergenoot als ik. In de eindfase van mijn promotiewerk deelde ik de kamer
met Mariëlle. Mariëlle, onze gesprekken bij de ochtendthee geven altijd een
goed begin aan een nieuwe dag. Dank voor het meeleven met de afrondende
promotiestappen. Jacco en Rick zijn achtereenvolgens als themaleider Vision
betrokken geweest bij mijn promotie en hebben het werk steeds met grote be-
langstelling gevolgd. Met Franck heb ik vergadering na vergadering van de
IOP-projecten bijgewoond. Gerwoud en André hebben me meerdere keren uit
de brand geholpen bij het programmeren in Labview en C en het bedenken van
slimme algoritmes. Later, toen het MARVIN-project gestart was, zijn behalve
Gerwoud ook Rick, Remco, Franck en Mari inhoudelijk betrokken geraakt bij het
project. Binnen Food Informatics is een gedeelte van het ROC-werk onderge-
bracht, waaraan ik met Lars, Hajo, Jeen, Remko en Jan heb gewerkt. Ook de
andere collega’s (en oud-collega’s) bij LIVE hebben ervoor gezorgd dat ik de
afgelopen jaren plezier in mijn werk heb gehad en gehouden. Behalve inhoude-
lijke contacten gingen we samen lunchen, in de kantine of in de stad, en werden
er regelmatig film- en spelletjesavonden georganiseerd. Ik kan me geen betere
collega’s wensen! Qing Gu en Elwin Staal, jullie hebben als afstudeerder bijge-
dragen aan de uitwerking van de theorie respectievelijk de case study. Bedankt
voor jullie inzet. Steven Groot heeft vanuit biologische hoek steeds meegekeken
naar de bepaling van zaailingkwaliteit en heeft me met zeer waardevolle achter-
grondinformatie en een altijd open blik geholpen om snel in de plantenwereld
thuis te geraken. Van Pieter de Visser mocht ik de Scanstation lenen om mijn
eerste (en ook vele latere) testopnames te maken. Robert, bedankt voor de hulp
bij het meten en opknippen van testplantjes om een representatieve dataset te
krijgen. Mari, bedankt voor de Engelse vertaling van de stellingen. Tot slot wil
ik graag Rinus Seijnaeve bedanken voor de ondersteuning bij het printen van
de verschillende versies van mijn proefschrift, Corry Snijder voor de talloze li-
teratuurspeurtochten, en Mirjam van den Berg voor het uittypen van ellenlange
gespreksverslagen.

Vanaf de start van het project heb ik veel te danken aan de bedrijven die
me in staat hebben gesteld om de kennis-intensieve beeldverwerkingsmethode
toe te passen op het kiemplant-inspectie probleem. Specifiek wil ik Kees van
den Berg, Wim Hazeu, John Ammerlaan (Leo Ammerlaan); Marc Balemans, Jos
Dukker (Beekenkamp); Corine de Groot, Arnaud Hulskes, Marion Bruin, Johan
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de Grauw (Bejo); Edith van Dijk-Nas, Frank de Rooij, Shankara Naika (De Ruiter
Seeds); Meindert Klooster, Merel Langens (Enza); Bram Voogd (Grow Group);
Miriam Zandstra, Jan Hauwert, Henry Bruggink, Gerrit Lakeman (Incotec); Jan
Innemee, Maaike van Kilsdonk, Gerard van Bentum (Nickerson-Zwaan); Marjo
Smeets, Jan Bergs, Ruud Nabben (Nunhems); Marc Rijneveen, René Janssen
(RijkZwaan); Emile Clerkx (Seminis); Edward Blank, Tonko Bruggink, Agnes
Chardonnens, Barbara Westland, Maarten Homan, Paul van den Wijngaard
(Syngenta); Arko van der Lugt, Jilles Koornneef, Ron van Etten (van der Lugt);
Jan Tamerus (Vreugdenhil); en Alie Sahin, Erik van den Arend (WPK) noemen.
Zonder de interviews met jullie, jullie feedback, en het blijvende enthousiasme
zou hoofdstuk 5 er niet zijn. Clemens Stolk heeft vanuit Plantum het grootste
gedeelte van mijn promotietijd meegemaakt. Hartelijk dank, Clemens, voor de
goede contacten de afgelopen jaren. Thijs Simons heeft het stokje van Clemens
overgenomen en ook hem wil ik bedanken voor zijn niet aflatende enthousiasme
voor het project. HenkJan Reus, als leider van de IOP-begeleidingscommissie
zorgde je ervoor dat we als promovendi vooruitgang bleven boeken en van
elkaars werk konden leren.

Promotietijd bestaat gelukkig niet alleen uit werken, maar ook uit sociale
activiteiten in de soms spaarzame vrije tijd. Ik prijs me gelukkig met een vrien-
dengroep vol lieve vrienden in Utrecht en omgeving en in Brabant. De vele
gezellige etentjes, operavoorstellingen en thee-leuterijen hebben we voldoende
energie gegeven om door te blijven gaan. Michiel en Marijne, onze avond-
jes samen koken en eindloos natafelen zijn hoogtepunten geweest. Ingrid en
Dorian, laten we de traditie om regelmatig samen op pad te gaan vasthouden.
Guido en Simon, dank voor de wiskundige hulp op cruciale punten en dank ook
voor de niet afnemende belangstelling. Gerard en Tineke, Gert-Jan en Hennie,
Lonneke, Mariëlle, Hans, Paul, Marger, Simone, Ester, dank voor jullie vriend-
schap. Eindelijk kan ik jullie vragen bevestigend beantwoorden: ja, het is af!
Michiel le Comte and Rob Pfab have both been so kind to read my manuscript to
provide it with very useful feedback. Thanks a lot! Ook mijn (schoon)broertjes
en (schoon)zusjes wil ik hier noemen: Michael en Daniëlla, Daniëlle and Jior-
gos, Gijsje en Ramon, ook jullie zijn steeds vol interesse het promotiewerk blijven
volgen. Daniëlle, ik vond het geweldig dat je via Skype alles over mijn onder-
zoek wilde weten. Michael, het lopen van de Strand6Daagse gaf me een mooie
ontspannende week na het inleveren van mijn proefschrift. Heerlijk om samen
uit te waaien en bij te kletsen! Jan en Ans, bedankt voor jullie interesse en
uiteraard voor de creatieve fotosessie voor de kaft. Mam, pap, van kleins af aan
hebben jullie me gestimuleerd om het beste uit me zelf te halen. Nog steeds
vragen jullie vol interesse naar wat mij bezig houdt. Dankzij jullie aandacht,
liefde en zorg ben ik geworden wie ik ben, zonder jullie aandacht, liefde en
zorg zou ik hier niet hebben gestaan. Tot slot wil ik Femius bedanken. In
Utrecht, Enschede, Wageningen, Zürich en weer Utrecht was je er altijd voor
me. Je hielp me met de technische LATEXdetails, je dacht mee over algoritmische
vraagstukken. Maar belangrijker nog: in de stressvolle periodes van mijn pro-
motie, zorgde je voor ontspanning. Je reed me bijvoorbeeld in onze bolide naar
Middelburg of Deventer, terwijl ik als bijrijder op de laptop hoofdstuk na hoofd-
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stuk bijschaafde. Zo zorgde je ervoor dat in die drukke weekenden de balans
tussen werk en ontspanning goed bewaakt werd. Bedankt voor je voortdurende
steun en liefde.
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