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President, ladies and gentlemen, highly valued audience, 

In summer 2004, the Centre for Geo-information of 
Wageningen University organized a national workshop here 
in Wageningen on the value-added chain management in 
Earth observation1. It was basically a review of the past 35 
years of remote sensing activities in favour for a long stand
ing member of the Dutch delegation to ESA, Dr. ir. N.J.J. 
(Nico) Bunnik from NIVR. In total 14 speakers discussed 
the progress of remote sensing made in that period with 
special focus on the Netherlands. As usual, such an event 
will not close before a reasonable reception has taken place. 
During that particular reception, a member of the search 
committee responsible for my appointment here in 
Wageningen, approached one of our senior staff and re
marked, that the topic I am discussing today - imaging 



spectroscopy and directional remote sensing - is not that 
new like assumed by him and has been researched already 
in depth in the Netherlands over the past 35 years! 

In particular the early spectroradiometric measurements 
performed by Verhoef (Verhoef & Bunnilc, 1976) and 
Bunnik (Bunnik, 1978) in the proximity of Wageningen 
prompted him to this reaction. The work was continued 
and expanded in this domain (Clevers, 1989), and still to
day, the topic is of growing relevance and scientific interest 
as can be seen on the recent acquisition over Wageningen 
(cf., Fig. 1). 

Figure 1: Early spectroradiometric measurements in Wageningen ((Verhoef 

& Bunnik, 1976), left) and an airborne imaging spectrometer data take 

over Wageningen2 during summer 2004 (right). 

The Netherlands has been a forerunner in this particular 
topic and has significantly contributed to its scientific ad
vancement, but 35 years of past history are by far not suffi
cient to acknowledge the origin of spectrodirectional re
mote sensing. Therefore I will start with a short review and 
put the evolution of spectrodirectional remote sensing into 
a historical perspective. 



Brief History of Spectroscopy 

About 300 years ago, in 1704, Sir Isaac Newton published 
in his 'Treatise of Light' (Newton, 1704) the concept of dis
persion of light (cf., Fig. 2). He demonstrated that white 
light could be split up into component colours by means of 
a prism, and found that each pure colour is characterized by 
a specific refrangibility. The corpuscular theory by Newton 
was gradually successed over time by the wave theory. 
Consequendy, the substantial summary of past experiences 
performed by Maxwell (1873), resulted in his equations of 
electromagnetic waves. But it was not before the 19th centu
ry, until the quantitative measurement of dispersed light was 
recognized and standardized. A major contribution was 
Fraunhofers discovery of the dark lines in the solar spectrum 
(Fraunhofer, 1817); and their interpretation as absorption 
lines on the basis of experiments by Bunsen and Kirchhoff 
(1863). The term spectroscopy was first used in the late 19th 

century and provides the empirical foundations for atomic 
and molecular physics (Born & Wolf, 1999). Nevertheless, 
it was not before 1999 until the first launch of an imaging 
spectrometer in space3. 
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Figure 2: Newton's drawing of the dispersion of light published in his 

treatise of light (Newton, 1704)4. 



Brief History of Directionality 

Historically, directionality developed apart from spec
troscopy and it was only after Galilei (1632) had developed 
his mechanics, that optics was put on a firm foundation by 
Leonardo Da Vinci (cf., Fig. 3). Hooke (1664) discovered 
in 1664 the presence of light in the geometrical shadow, 
but an earlier qualitative description exists from Leonardo 
Da Vinci in his notebooks, where he demonstrates using 
experimental methods, that 'The position of the Eye above 
or below [trees] varies the shadows and lights in trees' (fol
lowing Richter (1970) as cited in Lucht (2004). Even 
though this was an early start for directional observations, 
the quantification of directionality was also only achieved 
in the late 19th century. Early works combining observa
tional methods with physical definitions appear in the mid 
of the 20th century, lead by Minnaert (1940) and more re
mote sensing related by Middleton (Middleton & Mungall, 
1952). Finally the standardisation of the geometrical 
nomenclature was due in the early 1970ies as coined by 
Nicodemus (Nicodemus, 1970; Nicodemus et al, 1977). 
The term Bidirectional Reflectance Distribution Function 
- or short BRDF - originates also from that time and the 
directionality found subsequently its way into computer 
science and particular photorealistic rendering, which gave 
this science a large boost in the 1970ies. But alike spec
troscopy, it was not before 1991, until the first directional 
instrument on a satellite - having 2 view angles - was 
launched in space'. 
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Figure 3: Excerpt from Leonardo Da Vinci's notebook on shadows and 

light ((Richter, 1970), left), and a conceptual drawing of Fred Nicodemus 

on geometrical optics in reflectance (Nicodemus etal., 1977, right). 

Brief History of Spectrodirectional Remote Sensing 

Early concepts of acquiring directional information from 
natural targets where discussed already in 1958 in the for
mer Soviet Union (Arcybashev & Belov, 1958). The idea 
was to acquire a scene - a forest in this case - under various 
view angles by using a complex flight pattern (cf., Fig. 4). 
In addition, the camera - a spectrophotometer at this time 
- was tilted to different view directions to increase the 
amount of observation angles. Several satellites were 
launched in the 1990ies to measure multiple spectral bands 
and view angles in various combinations6. But it was not 
before 2001 until a 'true' imaging spectrometer with direc
tional capabilities was launched. The British CHRIS 
(Compact High Resolution Imaging Spectrometer) on 
board of the Belgian PROBA platform, operated by ESA 
(European Space Agency), can be considered as the first 
true spectrodirectional spaceborne instrument. The expres-



sion spectrodirectional is a typical finding of the 21st cen
tury. Mainly the efforts of the NASA MISR team around 
John Martonchik (NASA, JPL) and Michel Verstraete 
(JRC, It) coined this expression. Regularly the terms 'mul
tiple view angles' or 'multiangle radiometer' - amongst oth
ers - were used before. Currendy the subject of spectrodi
rectional as being a combination of high spectral resolution 
and multiple view angles can be found regularly in litera
ture (Baret, 2001; Strub et ai, 2003), as well as sound dis
cussions on having a combined benefit of both acquisition 
methods (Diner et ai, 2005; Verstraete et ai, 1996). 

Figure 4: Directional acquisition pattern for forest stand monitoring in 

1958 (Arcybashev & Belov, 1958) (left), and a 2004 NASA Terra/MISR7 

observation in three view angles of the Canary Islands (E) [V denotes a 

forward looking, '-' a backward looking instrument] (right). 

Increasing Relevance of Spectrodirectional and 
Hyperspectral Remote Sensing 

Even though the terms 'imaging spectroscopy', 'hyperspec
tral', and 'spectrodirectional' and resulting products have 
only partially found their ways into operational remote 
sensing services, the referencing of them as well as associat
ed citations are exponentially increasing over the past few 
years (cf., Fig. 5) - a good indication of the increasing rel
evance of this emerging topic. 
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Figure 5: Exponential growth per year of Internet and citation database 

based terminology related to the terms 'imaging spectroscopy' and 'direc

tionality' s. 

A thematic separation of these search terms in the above 
overview will be increasingly difficult in the future, since 
methodologies used in Earth observation related imaging 
spectroscopy are now also widely used in deep space re
search (Clark et ai, 2005), neurosciences (Devonshire étal., 
2004), chemometrics (Fernandez Pierna et ai, 2004), 
amongst others. 

The Art of Spectrodirectional Science 

By reassessing Leonardo Da Vinci's (Richter, 1970) and 
Hooke's (1664) early transition between natural science and 
artistic views, these can be translated into todays analogies. 

Sol LeWitt (USA, *1928) is attributed to be a Minimal 
artist, but states himself that his work is conceptual art. 



Working along his idea 'the concept is the most important 
aspect of the work', he became a synonym of a sculptor of 
connected open cubes in his artistic career. When he creat
ed 'Cubes in Color on Color' in 2003, he gave a perfect ex
ample of a conceptual definition of imaging spectroscopy 
(cf., Fig. 6). Spectroscopists are using these cubes with dif
ferent colours to depict the two-dimensional room of the 
space and the third dimension indicating wavelength. 
When imaging spectroscopists visualize their data, usually 
cubes are used to express the spatial and spectral domain. 
Finally an image cube can be plotted and the spectral com
ponent is coloured according to its surface reflectivity. 

Figure 6: 'Cubes in Color on Color' (by Sol LeWitt', left) and imaging 

spectrometer data cube10 (right). 

Paul Klee (CH, *1879, f1940) frequently used a personal 
sign system in his works that is abstract and figurative at the 
same time. His painting named 'Ueberschach' is therefore a 
perfect example to visualize the directional component of a 
directional data acquisition (cf. Fig. 7). The chess-board 
like pattern in the directional image acquisition seems to be 
an abstract feature of the landscape, but has its origin in dif
ferent view- and illumination geometries. While flying an 
aircraft North-South, the scene is illuminated homoge-

10 



tast West and differences in ground reflectance are due m 
vananon m sun-target-observer geometries ° 

Figure 7: 'Ueberschach' (by Paul Klee» Urt , n ^ J- • , , 
pattern (Beisl, 2001). ^ ^ d , r e C t ' ° n a l e h e " b o ™ 1 

Spectr0SC0py can be seen as detailing out colours, and when 

^ o g o u s due to similar colour theories, but Z due * 

soTlTrV" direCti0nal iUuminati0n d i f f -n-so to say, colours have remained in the family. 
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Figure 8: 'Offenbarung' (by Johannes Itten12, left) and results of a directi

onal model (Dangel et al., in print). 

Spectrodirectional Remote Sensing - A Definition 

The overview of spectrodirectional imaging shall be com
pleted by coining a definition and illustrating this defini
tion with two different spectrodirectional acquisition con
cepts (cf., Fig. 9): 

Spectrodirectional remote sensing is defined as being the si
multaneous acquisition of spatially coregistered images, in 
many, spectrally contiguous bands, at various observation and 
illumination angles, in an internationally recognized system 
of units from a remotely operated platform. 

Consequendy, by applying this definition, the result will fi
nally end in the quantitative and qualitative characteriza
tion of both, the surface and the atmosphere, using geo
metrically coherent spectrodirectional radiometric meas
urements. This result can then be used for: 

12 



Unambiguous direct and indirect identification of sur
face materials and atmospheric trace gases, 
Measurement of their relative concentrations, 
Assignment of the proportional contribution of mixed 
pixel signals (spectral un-mixing problem), 
Derivation of their spatial distribution (mapping prob
lem), and their 
Study over time (multi-temporal analysis). 

Figure 9: Two diffèrent acquisition methods of directional information 

using either 9 cameras pointing at different locations (left) (NASA MISR13), 

or by using an agile platform (right) (ESA SPECTRA"). 

Research Directions using Spectrodirectional Remote 
Sensing 

The understanding of the relevance to measure biogeo-
physical parameters using novel techniques such as spec
trodirectional remote sensing arises from various efforts in 
environmental policy on a global level. The often referred 
to Kyoto Protocol to the UN Framework convention on 
Climate Change (UNFCC) proposes a global policy to be 
applied at international level, based on assessments of car
bon emission and sequestration rates. The aim of the pro-
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tocol is therefore to stabilize the C 0 2 concentration in the 
atmosphere in the long run. In particular, the consideration 
of carbon sinks in the protocol has given a large momen
tum to implement a scientifically sound accounting and 
verification system. The key issues to be resolved there are 
the variability, uncertainty, attribution, non—permanence, 
leakage, and future evolvement of the carbon sequestration 
in the terrestrial biosphere (Valentini et al, 2000). The es
timated carbon up-take of the biosphere must be consis
tent with all other evidence at three levels of integration of 
the carbon budget: global national, and local. 

One particular component of the Earth system, the terres
trial environment has been identified as being a critical 
component of the variability of the global carbon cycle. But 
given the natural diversity of landscapes, the (instrument
ed) measurement and validation approach remains chal
lenging. Earth observation from airborne or spaceborne 
platforms is the only observational approach capable of 
providing data at the relevant scales and resolution needed 
to extrapolate findings of in situ (field) studies to larger ar
eas, to document the heterogeneity of the landscape at re
gional scale and to connect these findings into a global 
view. Extrapolation can either be done by statistical and/or 
GIS techniques (Guisan & Zimmermann, 2000), as well as 
by process modelling of ecosystems. The latter is a very 
promising approach for testing ecological hypotheses and 
for assessing and forecasting the state of large landscapes up 
to the global scale. 

Such approaches usually require the spatial input of the state 
of the ecosystems at simulation start and of relevant bio
physical, biochemical and/or structural information of the 
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terrestrial ecosystems (Schaepman et al, 2003). Ecosystem 
models — often referred to as biogeochemistry models be
cause they simulate pools and fluxes of relevant ecosystem 
elements such as carbon, nitrogen or water - ideally com
bine remote sensing information on the structure of the veg
etation with monthly (e.g. CENTURY, see (Wilson et al, 
2003)) to daily (e.g. BIOME-BGC, see (Thornton et al, 
2002)) meteorological data and a set of ecophysiological pa
rameters, which drive the processes of ecosystems. When ap
plied to a gridded landscape, the combination of spatially 
explicit air- or spaceborne information on the vegetations 
structure with ecosystem models allow for an accurate as
sessment of ecosystem processes, for testing novel ecological 
theories and for predicting possible future states of the land 
surface (e.g. (Kimball et ai, 2000; Turner et al, 2003)). 

Such large scale to global quantifications are clearly beyond 
the realm of experimental analysis. The close coordination 
of Earth observation satellites and airborne instruments is 
thus essential for the successful validation of the contribu
tion of the terrestrial component to the global carbon cycle 
(Schaepman et al, 2005). Space agencies and international 
organizations have recently established a coordination 
mechanism (e.g., the Integrated Global Observing Strategy 
Partnership (IGOS-P) that facilitates progress in space-
based measurements (Rast et al, 2001)). 

Rast (2004) outlines that the interannual variability of C 0 2 

fluxes is much higher for the terrestrial biosphere than for 
the oceans. Recent estimates suggest even that during the 
1980ies, 23% of the total anthropogenic carbon emissions 
were taken up by the oceans, and as much as 32% by the 
terrestrial biosphere. For the 1990ies the figures are 28% 
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for the oceans and 34% for the land. The land-atmosphere 
flux represents the balance of a positive term due to land-
use change and a residual terrestrial sink. The two terms 
cannot be separated on the basis of current atmospheric 
measurements. Using independent analyses to estimate the 
land-use change component for the 1980s based on 
Houghton & Hackler (2000) and Houghton et al. (1999), 
and the CCMLP (McGuire et al., 2001) the residual ter
restrial sink can be inferred for the 1980ies. Comparable 
global data on land-use changes through the 1990ies are 
not yet available. 

Figure 10: Global C 0 2 budgets (in PgC/yr) based on intra-decadal 

trends in atmospheric C0 2 and 0 2 . Positive values are fluxes to the 

atmosphere; negative values represent uptake from the atmosphere. Error 

bars denote uncertainty (± Is), not interannual variability, which is sub

stantially greater15. 

When estimating future terrestrial carbon fluxes, the con
tribution of the terrestrial biosphere remains unclear, and in 
addition inter-model differences are still large. Simulations 
using Dynamic Global Vegetation Models (DGVM), con-
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sistently indicate that rising C0 2 levels are causing a per
sistent, later saturating carbon sink, while the effect of cli
mate change may lead to a reduction in sink strength or 
even in a source (cf. Fig. 11) (Rast et ai, 2004). 
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Figure 11: Projections of the uptake of anthropogenic C0 2 by six dynamic global 

vegetation models driven by changes in COj concentrations (IPCC, 2001). 

In summary, the land biosphere C02 uptake and its associ
ated uncertainty must be understood and reduced further 
by performing the following actions: 

• Better determination of relevant biosphere parameters 
by representing the biosphere at their relevant scale in 
appropriate spatial and temporal scales, 

• Enhanced (and standardized) parameterisation of the 
carbon exchange between vegetation, soil and atmos
phere, and 

• Attributing the anthropogenic disturbance a higher 
importance by establishing 'vegetation scenarios' anal
ogous to the IPCC defined 'atmospheric scenarios'. 
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This will allow to better estimate the evolution of the bios-
pheric uptake, define if the biospheric sink is stable over 
time, and finally to resolve the question if unknown feed
backs are hidden somewhere. 

The Contribution of Spectrodirectional Remote Sensing 

There is little disagreement over the fact that remote sens
ing in general and spectrodirectional remote sensing in par
ticular is well suited to (modified/added from (Cohen & 
Goward, 2004): 
• Map spatially distributed phenomena at various scales, 

such as ecosystems, habitats, plant functional 
groups/types, and species, 

• Measure continuous fields incorporating biophysical 
and biochemical variables, 

• Map categorical variables in the form of discrete classi
fication and land use/cover change (LUCC), 

• Map temporal phenomena, in particular successional 
stages, 

• Map spatio-temporally coupled processes such as the 
phenology, and 

• Record disturbance induced by humans (also expressed 
as land use changes), fires, volcanoes, and other ex
treme events. 

Even though this is an important achievement, remote 
sensing is still confined to mostly above ground and limit
ed penetration depth measurements. This results in the fact 
that approximations must be made, when assessing relevant 
biogeophysical and biogeochemical cycles: NPP (Net 
Primary Productivity (cf., (Gower et al., 1999)16) will al-
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ways be confined to aNPP (aboveground Net Primary 
Productivity) when using reflective remote sensing data. 
Proper estimates of (global) plant growth or NPP will 
therefore always need significant amount of data to be as
similated or integrated to satisfy a more rigorous system 
(cf. Fig. 12). 

f Nutrlvnt 1 

Short Time Scale 
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Figure 12: Net Primary Productivity (NPP) estimates or plant growth listed in vari

ous scales and interactions (Field et ai, 1995). 

The particular benefit of using spectrodirectional measure
ments over single viewangle and limited spectral band 
measurements is the significant improvement of the quali
ty and reliability of the retrievals. Spectro-directional imag
ing is increasingly seen as an acquisition technology that 
enables biogeophysical variables of the Earths surface to be 
mapped with unprecedented accuracy (this progress is well 
documented in Rast (Rast étal., 2001; Rast et ai, 2004)). 

Additionally, the gained knowledge of directional effects -
or surface and atmospheric anisotropy - is presently also 
being used to correct undesired effects of wide field of view 
angle sensors (Govaerts et al., 2004). 
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Concluding it can be said that the (spectro-)directional re
mote sensing science community has two major research 
objectives: 
• Minimizing the influence of the anisotropic behaviour 

to achieve high quality, standardized and therefore 
comparable and reproducible data sets, as well as 

• Maximizing the information retrieval to enhance the 
quality and reliability of the derived products. 

From Pixels to Processes 

In-situ measurements, individual radiance measurements, as 
well as satellite observations in the solar reflected domain in 
remote sensing are always influenced by five dimensions 
(e.g., the spatial, spectral, directional, temporal, and polarisa
tion dimensions), whereas the dimension 'space' is usually a 
two dimensional observation (x and y), and the direction a 
combination of four angles (illumination zenith and azimuth 
angles, as well as observation zenith and azimuth angles). 

Figure 13: Combining the spectral (left, bottom) and directional (left, top) 

component of remotely sensed data to achieve spectrodirectional data 

sets (right) (Data: (Strub et al, 2003) and (Rast étal, 2004)). 
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Figure 13 identifies a monotemporal in-situ measurement, 
with neglected polarisation dependent information, reducing 
the dimensions to a spectral and a directional component. 

Compiling literature references of documented spectral ab
sorption features (cf., Fig. 14), one can easily estimate the 
potential of remote sensing to identify biochemical com
pounds in plants. Nevertheless, the documented features 
are in many cases measured using dried plant material, sug
gesting a potential shift of spectral features compared to 
fresh material, which may result in a variety of absorption 
lines located close to each other, and slightly offset of stan
dard reported absorption features (Curran, 1989; Wessman 
et al, 1988). A major challenge remains to separate plant 
water content (leaf water) and columnar water vapour con
tained in the atmosphere (Sims & Gamon, 2002, 2003). 
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Figure 14: Spectral features of vegetation biochemicals in the solar reflect

ed domain: literature identified biochemical feature extraction based on 

spectral band position (left, Schaepman (unpublished17), absorption of 

five biochemical compounds found in leaves (right) (wessman, 1990)). 

The measurement of the spatial extent using spectrometers 
can also vary significantly and is a crucial item when trying 
to integrate various spatial scales. In particular the sampling 
scheme for in-situ measurements plays an important role 
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for the choice of the final application. Scaling from leaf to 
canopy level as well as choosing the right spatial sampling 
interval to characterize the landscape heterogeneity proper
ly, is highly over-determined in remote sensing and requires 
trade-offs to be made to achieve the desired product accu
racy. Figure 15 illustrates the measurement of leaf optical 
properties at spatial scales from less than a few cm2 up to 
the canopy level where usually half a m2 is a proper meas
urement unit. These spectral scales ranging from leaf to 
canopy level, can be successfully modelled using radiative 
transfer based approaches (Jacquemoud et al., 2000; Pinty 
et ai, 2001; Pinty et ai, 2004; Verhoef & Bach, 2003). 

Figure 15: Spectral measurements from leaf (needle transmission in the 

laboratory) (left), and in vivo (middle) to canopy level (right)18. 

At all spatial scales, vegetation canopies and leaves are un
dergoing substantial dynamic behaviour, and the dynamic 
change of vegetation is still encapsulated with a significant 
uncertainty in their quantification (Cao & Woodward, 
1998). By coupled analysis of spectral and temporal fea
tures, it can be demonstrated that full spectral coverage is a 
predominant requirement to monitor all relevant processes 
occurring at leaf and canopy level (Lichtenthaler et ai, 
1998). This is demonstrated and visualized in Fig. 16, 
which suggests that depending on the stress exposure time 
of a single leaf, different portions of the reflective part of 
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the electromagnetic spectrum undergo more changes than 
others (early stress is dominating the shortwave infrared re
gion at the beginning, whereas leaf decomposition is affect
ing the visible part more significantly in a later stage). 
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Figure 16: Measured decay of a 'Ficus benjamina L.' leaf under laborato

ry conditions with accelerated (water) stress, induced by illuminating the 

leaf with a leaf clip using a built-in illumination source (Schaepman & 

Bartholomeus, 2004"). 

Another aspect of multitemporal analysis is the inherent 
measurement stability of remote sensing instruments. 
Significant advances have been made in measuring the ra
diance field with higher accuracy (Fox et al., 2003), and 
long-time calibration experiments demonstrate measure
ment stability of better than 2% uncertainty on the long 
run (Kneubiihler et ai, 2003). Fig. 17 demonstrates this us
ing MERIS on ENVISAT as an example, and puts addi
tional emphasis on the proper characterization of the at
mosphere, including the proper choice of radiative transfer 
models and the solar spectrum. 
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Figure 17: Top-of-atmosphere (TOA) radiances of MERIS on ENVISAT 

as modeled using vicarious calibration methods in comparison with two 

different solar irradiance standards (Kneubilhler etal., 2003). 

The directional (anisotropic) component is increasingly 
covered with ground measurement instrumentation 
(Bruegge et al, 2004; Schoenermark & Roeser, 2004), 
which are in generally referred to as goniometers 
(Sandmeier, 2000). They are existing in various designs, 
which are represented in Fig. 18. 

Figure 18: Various directional ground acquisition instruments - or so 

called goniometers (Bruegge etal, 2004)20. 

The general understanding of surface anisotropy and its 
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importance to include in an overall uncertainty evaluation 
of spectro-directional based products has found its general 
way into the common understanding of processing remote
ly sensed data. Existing uncertainties can further be mini
mized by introducing a standardisation of terminology 
(Schaepman-Strub et ai, 2005 (submitted), as well as care
fully evaluating the limitations of spectroradiometric meas
urements (cf., Fig. 19). But due to the fact that a spectro
radiometric measurement is a multidimensional problem — 
as mentioned already earlier - as well as the inherent insta
bility of the measuring instruments, and the techniques 
used for eliminating measurement errors, spectroradiomet
ric measurements will remain one of the least reliable of all 
physical measurements (Kostkowski, 1997)! 
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Figure 19: View angle dependent error of Albedo product retrieval accuracies 

when ignoring directionality (Schaepman-Strub etal, 2005 (submitted)). 

The importance of directional research is expressed in two 
user communities, one of them trying to stress the unique
ness of spectrodirectional images (Gobron et al, 2002; 
Pinty etal, 2002) whilst retrieving related parameters with 
increased accuracy, whereas others try to minimize the im-
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pact of directionality (Csiszar et al, 2001; Hu et al, 2000; 
Richter, 1998). Figure 20 depicts the retrieval difference of 
directional corrected and non-corrected results expressed in 
a difference image (Schaepman-Strub et ai, 2003). The re
sulting difference LAI product shows clearly vegetation 
structure aspects as well as the position of the hot-spot (Li 
& Strahler, 1992; Liang & Strahler, 1993) as a strong 
backscattering effect in the irrigated canopies. 

Figure 20: Vegetation index difference images of directional corrected ver

sus uncorrected images. Left: Directional differences visible in two differ

ently acquired flights. Right: Ambrais (Hu et al, 1997) BRDF corrected 

images, minimizing the directional differences. Middle: Difference image 

of left and right with applied GRVI (Green Vegetation Index, (Broge & 

Leblanc, 2001)). Obviously the difference image in the middle reveals in

formation about the vegetation structure as can be clearly seen (Data from 

Moreno (2001)). 

Finally, spectrodirectional remote sensing will allow the 
generation of products that support the estimation of criti
cal vegetation parameters (Rast et al, 2004), but neither is 
this approach limited to vegetation nor can all relevant pa
rameters be estimated using these sensors alone. 

The following table gives an indication of relevant input 
parameters for land-biosphere modelling as well as the tech
nical implementation concept needed to successfully re
trieve them with acceptable uncertainties. 
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Vegetation Variables (Parameters) 

Vegetation spatial distribution and phenology 
Fractional vegetation cover (fCover) 
Leaf Area Index (LAI) 
Fraction living / dead biomass 
Canopy structure 
Vegetation height 

Vegetation interaction with radiation 
Albedo 
Fraction of Absorbed Photosynthetically Active 
Radiation (fAPAR) 

Foliage chemistry and water status 
Leaf chlorophyll 
Leaf water content 
Leaf dry matter 
Leaf nitrogen I foliage nitrogen 

Vegetation and soil energy balance 
Foliage temperature (related to stomatal 
evaporation rate) 
Soil temperature (related to water stress) 

Table 1 : Four relevant vegetation parameter blocks needed to successfully run 

a land-biosphere model and associated remote sensing acquisition concepts. 

The final products generated using spectrodirectional re
mote sensing approaches do not differ from any conven
tional' retrieval in their final appearance, but significantly 
differ in the resulting uncertainty. Fig. 21. illustrates three 
classical products, such as LAI (Leaf Area Index), fAPAR 
(fraction of Absorbed Photosynthetically Active Radiation), 
and fCover (fraction of vegetation cover) as described in the 
DAISEX experiments in Spain (Berger et al, 2001). 
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Figure 21: Three Level 3 products (from left: LAI, fAPAR, and fCover) de

rived from imaging spectrometers using atmospheric correction, geomet

ric correction, and including a compensation for directional effects in

duced by the atmosphere and the ground. 

From Pixels to Processes: The Land-Biosphere Model 
Approach 

Typical land-biosphere models are composed out of 'build
ing blocks' with associated functions that treat the interac
tion of photons with vegetation as follows: 

• Carbon engine 
O / (C0 2 , light, water availability, temperature, nutrients) 

• Carbon allocation 
O ƒ (geometry, physiology, plant functional type, 

species) 
• "Remineralisation" 

O ƒ (plant functional type, physiology, microbiology, 
molecular structure (e.g. lignin vs. waxes or cellulose) 

• Soil hydrology 
O ƒ (root depth) 

• Population dynamics 
O Succession 

• ƒ (stand height, stand age, physiology) 
O Disturbance 

• ƒ (climate, fire, humans) 
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The Carbon engine usually defines how much carbon is 
fixed per unit time by photosynthesis. In general the 
amount of carbon fixed per unit time is a function of am
bient (atmospheric) C02 , light, water availability, tempera
ture and nutrients. The second part deals with a recipe for 
carbon allocation of carbon fixed by photosynthesis to dif
ferent living tissue like stems or roots. Carbon allocation is 
a function of plant geometry and physiology. This is fol
lowed by a description of the fate of dead plant material 
(Remineralisation), i.e. the carbon flow from living to non
living forms and its subsequent decomposition. The decay 
processes are a function of plant species, physiology, micro
biology and molecular structure of plant tissue (e.g. lignin 
vs. waxes or cellulose). Next, a predictive equation of soil 
moisture (Soil hydrology) is given. Soil moisture is a func
tion of soil hydraulic properties, évapotranspiration and 
precipitation. And finally a representation of the dominant 
stochastic Population dynamics processes like early versus 
late successional species through competition for resources 
(light, nutrients, water) which is a function of stand height, 
stand age, and physiology, and - disturbance by humans 
(land use), fire, windfall, insects which is a function of cli
mate and human activity (Gloor, 2005). 

Land-biosphere models can be grouped into two broad 
classes. The ones that use satellite data to locate the "pho-
tosyntetically active" land vegetation. In these models, the 
"Carbon engine" is then driven by absorbed light estimat
ed from satellite and a prescribed light use efficiency. 
Typical representatives are the CASA model (Potter, 1993) 
and the TURC model (Ruimy etal, 1996). Population dy
namics is in a sense implicit in this formulation as ex
plained later on. The second class of models predicts the 
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spatial vegetation distribution and the organic soil pools on 
its own, while hydraulic properties of the soils are pre
scribed. Typical examples are the Lund-Potsdam-Jena (LPJ) 
model (Sitch etal., 2003), and the Ecosystem Demography 
(ED) model (Moorcroft et al, 2001). Several models in
clude population dynamic processes like fire disturbance 
(e.g. LPJ). Nonetheless only a model that includes the de
scription of demographics (age distribution of species class
es as a function of time) and competition for light by in
cluding a description of height distribution can properly 
describe disturbance processes and their effect on land veg
etation. The only model that currently propagates both 
height and age distributions is ED. 

The following table compares five different land-biosphere 
models indicating their implementation of the building 
blocks (modified following (Gloor, 2005; Schaepman, 
2005). A more detailed discussion can be found in the lit
erature (Cramer etal., 1999; Ruimy etal., 1999)). 
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Modal / Building 
Block 
Carbon Engina 

Phanotogy 

Allocation 

Ramineraliaatlon 

(Sou-) Hydrology 

Discretization 

Demography 

Reference 

CASA 

Light use effi
ciency, PAR, 
fPAR 

fPAR 

Globally fixed 
ratios; leaf, 
litter, roots 

5 litter, 2 or
ganic pools, 
first order de
cay 
Bucket type 

PFTs 

None 

(Potter, 1993) 

BETHY 

(Farquhar et 
el., 1982) or 
LUE 

? 

? 

? 

Bucket type 

PFTs 

None 

(Knorr, 2000) 

PnET 

Pmax=a+b*N, 
where N Is fo
liar nitrogen 

Predicted 

Simple alloca
tion rules for 
tissue types 

No soil carbon 
component 

One soil layer 

Biomass pro
duced only by 
tissue type 
(foliage) 

Nona 

(Aber & Fed
erer, 1992) 

IMS 

(Farquhar et 
el., 1982) 

fPAR 

Allome tries 

Fast and slow 
pools of C and 
N 

Bucket type 

Defined by 
mortality and 
fecundity func
tions (species 
build a contin
uum) 
Core of model 

(Anderson et 
al., 2004) 

SMART/SUMO 

C-ass a ffijghL 
N.P.water 
availability, 
temp) 
Not relevant 
(bmestep = 1y) 
Ratios (root, 
snoot, leaf) 
f ixed per 
vegetation type 
Litter + 2 or
ganic pools, 
fixed ratio + 1st 
order decay 
Supplied by 
external hy
drologies! 
model 
(WATBAL, 
SWAP) 
5 FTs that 
compete for 
light, N, P, wa
ter 

None (but tree 
mortality in
cluded) 
(Wamelink et 
al., 2000) 

Table 2: Comparison of five land-biosphere models describing individual 

functionality of their core parts ((P)FT - (Plant) Functional Type; C-ass -

Carbon assimilation; N - Nitrogen; P - Phosphorus) (Schaepman, 2005). 

Observations by Data Acquisition Systems 

In remote sensing, there are several mission categories de
scribed, that contribute to the systematic measurement of 
the Earth's reflected radiance. 

Exploratory missions, 
• ESA: SPECTRA (Rast et aL, 2004); NASA: ESSP (Earth System 

Science Pathfinder Missions, cf., (Crisp & Johnson, 2005) and 

AVTRIS (Green«al., 199S) 

Technology demonstrators / operational precursor mis
sions, 
• ESA: CHRIS/PROBA (Cutter et aL, 2004) and APEX 
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(Schaepman et ai, 2004); NASA: Hyperion/EO-1 (Ungar et ai, 

2003) 

Systematic measurement missions, and 
• ESA: MERIS/ENVISAT (Bezy et al., 1999); NASA: MODIS 

(Myneni tf«/.,2002) 

Operational missions. 
ESA: MSG-1 (Borde et ai, 2004); NASA: NOAA AVHRR (Rao & 

Chen, 1999) 

Figure 22: Current and future remote sensing missions can be subdivided 

into the following categories: exploratory missions, technology demon

strators (or operational precursor missions), systematic measurement mis

sions, and operational missions (from left: SPECTRA, APEX, CHRIS, 

ENVISAT, and MSG). 

Several international programmes and national space agen
cies and various national initiatives worldwide are develop
ing missions in the above framework. With a particular 
European focus, the most important to be mentioned is the 
Living Planet Programme of ESA (Readings, 1998), com
posed out of two major elements 
• a science and research element in the form of the Earth 

Explorer missions21, and 
• an element designed to facilitate the delivery of Earth 

observation data for the eventual use in operational 
services. This includes the well-established meteorolog
ical missions with the European Organisation for the 
Exploitation of Meteorological Satellites (EUMET-
SAT) and also new missions focusing on the environ-
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ment and civil security. This latter element, which is a 
joint initiative between the European Commission and 
ESA, is called GMES22. The space component of 
GMES includes the development and operations of all 
satellite and ground segment infrastructure providing 
the required data streams for the Sentinel 1-4/523. 

Trends - Integrated Systems Solutions and In Situ 
Sensing 

Historically, remote sensing and GIS needed to be integrat
ed, because they pursued different and separate tracks. 
Integration of GIS and Remote Sensing was a keyword in 
Geo-Information Science in the 80ies and 90ies. At this 
time it sounded like people dealing with vector and raster 
representation of data needed further integration. But to
day we are looking at much more elaborated systems, 
namely integrated systems solutions supporting data assim
ilation. These solutions will provide scalable approaches, al
lowing the integration of multiple data sources. They also 
represent collaborative environments, supporting quantita
tive data analysis at several scales. Data assimilation will fur
ther allow the solid coupling of physical models, linking 
soil-vegetation-atmosphere-transfer (SVAT) models to state 
space estimation algorithms (e.g., Kalman filters) 
(Choudhury, 2001; Crow & Wood, 2003; Houser et al, 
1998; Olioso et al., 1999; Weiss étal, 2001). 

Remote sensing will be increasingly part of a multidiscipli-
nary research environment, complemented by in situ sens
ing. The latter will be a technology that is used to acquire 
information about an object, where the distance between 
the object and the sensor is comparable small to any linear 
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dimension of the sensor (sensing in place). Networks of in 
situ sensors are existing already for a while (e.g., meteoro
logical stations), and its becoming increasingly feasible to 
provide telecommunication technologies with these net
works to achieve (near) real time integration of heteroge
neous sensor webs into the information infrastructure 
(Bacharach, 2005; Chien et al., 2005). 

Current Achievements and Outlook 

Spectrodirectional remote sensing enables biophysical and 
biochemical variables of the Earth's surface to be mapped 
with unprecedented accuracy. In addition to this, our quan
titative understanding of the photon-vegetation interaction 
has been significantly deepened, by looking at many, con
tiguous spectral bands, as well as various view-angles to the 
Earth' surface. 

Practically, this particular success is based on improved da
ta quality and wider availability of consistent remote sens
ing observations to the user community. And secondly due 
to the broader availability of computing resources, that are 
needed to run quantitative, physical based models. 

In the near future, new emerging applications in spectrodirec
tional remote sensing of vegetation will focus on monitoring 

• Transitional zones 
o in particular ecotones, e.g., ecosystem-, 

communities-, or habitat boundaries (e.g., 
tundra - boreal forest, forest - heathland, 
etc.), where most of the pressure and 
changes in terms of disturbance are being 
identified, 
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• Managed ecosystems 
o where precision appliance is a key economi

cal factor, contributing to better yield esti
mates, and 

• (Un-) managed ecosystems 
o where plant succession, plant functional 

types, and invasive species are important fo
cus areas 

The above will be complemented by the consistent meas
urements of calibrated and validated surface reflectance to 
derive Albedo products, retrieval of columnar atmospheric 
absorption, such as water vapour and aerosol particle size 
distribution, the fraction of vegetation contributing to the 
photosynthetic processes, separation of canopy water and 
atmospheric water content, the canopy light use efficiency 
(LUE) for estimation of the carbon fixation rates, fire fuel 
and fuel moisture, as well as anthropogenic and non-an
thropogenic induced disturbance (Asner et ai, 2005; 
Stuffier et ai, 2004). 

Major challenges to be resolved with spectrodirectional re
mote sensing is still a continuous potential mismatch of 
spatio-temporal scales of field, airborne and spaceborne 
measurements, and model requirements. These must be ad
dressed by pursuing a rigorous scientific agenda that is not 
limited to the scientific use of spectrodirectional data usage, 
but also includes a more thorough view on 

• Spatio-temporal discontinuities in measurements that 
may result in variable data and product quality, 

• Disturbance processes that are difficult to capture, due 
to limited mission duration times and missing back
ward compatibility, 
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• Data assimilation schemes becoming more important 
due to the steadily increasing availability of geo-data at 
large, and finally there will be a 

• Convergence to Earth System Sciences observed, truly 
linking various disciplines into multidisciplinary ap
proaches. 

The combination of coupled soil-vegetation-atmosphere 
transfer in view of ecological and C0 2 related research 
questions will be - as demonstrated in this short overview 
- a primary focus for the upcoming years. 

The multidisciplinary expertise of WUR, as well the inter
national setting of it, provide an excellent framework to re
alize this. 

Spectrodirectional remote sensing has made significant ad
vances over the past years, and it has been shown before, that 
a good design is simple and survives a long time (Fig. 23). 

Figure 23: Comparison of two optical designs dated 1704 (left) and 

2004 (tight). Similarities in design are striking (Newton, 1704; Nieke et 

ai, 2004). 
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