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Preface

This is a broad review of statistical methods for spatial inventory and moni-
toring of natural resources. The report deals with sampling design and analysis
of sample data, and is intended to help researchers in developing good sam-
pling schemes and monitoring systems. The emphasis is on the methodology
for point sampling in space, in time or in space-time. Although the users of
this report are supposed to have some basic knowledge of statistics, statistical
theory is only dealt with as far as necessary for understanding of the methods
and sound applications. Technical and logistical aspects of taking samples and
measurements in the field are outside the scope of this report.

This report is based on two sources of knowledge. First, my own expertise
gained from statistical consultancy on sampling of natural resources in research
projects of the Alterra institute and its ancestors. This relates mostly to solil,
ground waler and vegetation inventory. Second, a recent literature study on
statistical methodology of monitoring of natural resources.

I thank Hans Bronswijk of R.IL.V.M. for a fruitful discussion in the initial
stage of this work, and my colleagues Mirjam Hack-ten Broeke, Martin Knotters,
and Peter I'inke for their useful comments on a draft version.

This report is the result of Project 81360 'Monitoring methodiek’, in Re-
search Program 328 ’Geodata Groene Ruimte’ of the Netherlands Ministry of
Agriculture, Nature Management and Fisheries.



Chapter 1

Introduction

The aim of this report is to present and explain to researchers the statistical
knowledge and methodology of sampling and associated data analysis that is
useful for spatial inventory and monitoring of natural resources. Therefore, T
intend to omit all theory not essential for applications or for basic understand-
ing. Where possible I refer to the sampling and monitoring literature for specific
topics. However, in one way this presentation is broader than standard statis-
tical texts, where I pay much attention to how statistical methodology can be
employed and embedded in real-life spatial inventory and monitoring projects.
Thus I discuss in detail how efficient sampling schemes (Chapter 2) and moni-
toring systems (Chapter 9) can be designed in view of the aims and constraints
of the project. The scope of this report is limited to natural resources that
are part of the biosphere, hydrosphere or pedosphere. Geologic inventories as
well as meteorologic monitoring are excluded as these are highly specialized
topics. The spatial scale varies from a single agricultural field, as in precision
agriculture, to continental, as in monitoring water quality of large rivers. The
temporal scale varies from about one day, as may be the case in inventories, to
many decades, as in long-term monitoring, e.g. of sea-water levels. The ulti-
mate reasons for inventory and monitoring as discussed here are human health,
rational production (food, fiber, timber) or environmental concern.

From a statistical point of view, the core of spatial inventory and monitoring
is first of all sampling. Ior spatial inventory, sampling is done in space at one
time. For monitoring it is done in time, either at a single location (temporal
sampling), or at multiple locations (space-time sampling). Sampling is therefore
the main focus of this report. The natural resources about which inventory or
monitoring in a given application intends to give information are refered to as
the ‘universe of interest’, or briefly the ‘universe’. Universes in this context
are biotic or a-biotic systems which generally vary in space and change with
time. Some universes may, for the purpose of sampling, be considered as a
physical continuum, e.g. the soil in a region at some time, the water of a river
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passing a point during a period, the crop in an agricultural field at some time',

or the natural vegetation in an area during a period?. The dimensionality of
continuous universes can be 1, 2 or 3 for space, 1 for time, or combinations
thereof. Other universes are populations of discrete, natural entities, such as
the trees in a forest.

I use the term ‘sampling’ in the usual broad sense of selecting parts from
a universe with the purpose of taking measurements from them. The selected
parts may be measured @ situ, they need not necessarily be taken out physically
from the universe. The collection of selected parts is refered to as the ‘sample’.
To avoid confusion, a single selected part is called a ‘sample element’. As a
reasonable simplification, sample elements from continuous universes may be
considered as points, lines, planes or (hyper-)volumes. This report focusses on
point sampling because that is most relevant for practical applications.

An important sampling issue dealt with in this report is the difference and
the choice between the design-based and the model-based approach to sampling
(Chapter 3), as much confusion around this issue still exists. Because the choice
between these two sampling approaches has major consequences, I use the dis-
tinction between them for a primary sub-division of the sampling strategies.
More text is devoted to design-based strategies than to model-based strategies,
not because they are more important but because there are more of them, and
reference to existing literature is often problematic. In the general, statistical
sampling literature design-based strategies are mostly presented in a non-spatial
finite population framework, and ‘translation’ into the space-time context is in
order.

The structure of this report is as follows. Part I deals with general issues of
sampling, relevant to inventory and monitoring:

e Chapter 2: principles, practical, scientific and statistical issues in design-
ing sampling schemes;

e Chapter 3: differences and choice between the design-based and the model-
based approach to sampling;

e Chapter 4: possibilities and limitations of composite or bulk sampling.
Part II treats spatial inventory, i.e. spatial sampling at one time:

e Chapter 5 and 6: design-based and model-based strategies for sampling
in space.

Part III treats monitoring, i.e. sampling in time or in space-time:

e Chapter 8: central issues in monitoring;

YA ‘continuum view' al crop is appropriate if interest lies in crop properties per areal unit of
the ficld. However, if interest lies in properties per plant, then the universe is to be considered
as a discrete population.

2 A monitoring period may or may not have a pre-planned end.



e Chapter 9: designing a monitoring system;
o Chapter 10: design-based and model-based strategies for sampling in time;

e Capter 11: design-based and model-based strategies for sampling in space-
time.
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Chapter 2

Designing a sampling
scheme

2.1 Towards good design of sampling schemes

Inventory and monitoring of natural resources is often performed through the
following activities:

e Planning of field activities: given the purpose of the project, the budget
and possible logistic constraints, it is decided how many, where, how and
when samples and/or field measurements are to be taken;

e [ield activities: taking samples and/or field measurements;
e Laboratory work: sample preparation and analyses;

e Data recording;

e Data processing;

e Reporting.

Roughly speaking, these activities can be thought of as the consecutive stages
of an inveuntory project. Obviously, in the case of monitoring field and labora-
tory work, as well as data recording and processing are done in some cyclic or
continuous fashion. The activities mentioned above may overlap in time, for in-
stance, data recording and field work are often done simultaneously. Also, there
can be switching back and forth between activities. For instance, if during data
processing some deficiency is discovered, it may be needed to do additional field
work. Laboratory work is optional, as in some cases the measurements are taken
in the field.

The main purpose of this section is to argue that, although the above se-
quence of activities may seem logical and sufficient, it does not constitute good

11
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sampling practice. This is because an essential element i1s missing at the be-
ginning: the element of planning the whole chain of activities, including the
statistical procedure of data processing. Careful planning of the entire project
is a pre-requisite of good sampling practice and should precede any other ac-
tivity. Researchers usually put enough effort and ingenuity in deciding how,
where and when to take samples and measurements. That is not the problem.
Very often, however, the ideas about how to analyze the data remain rather
vague until the data are there and crisp decisions must be made about what
to do with them. In that case, more likely than not, data analysis and data
acquisition will not be properly tuned to each other. Due to this mismatch,
the potential qualities that a data acquisition plan might have are not fully
exploited, and sub-optimal results are obtained. One example is where a strat-
ified random sample has been taken, but this sample is analyzed as if it were a
simple random sample. Another example is where the data are to be analyzed
by some form of kriging, but it appears that the variogram needed for this can
not be reliably estimated [rom the data. 'inally, a situation often encountered
is where the conclusions to be drawn from the sample data can only be based
on questionable assumptions because the sample was not properly randomized.
These examples will become more clear in the next sections.

In conclusion, it is recommended that not only the data acquisition is planned
but the entire project, with special attention for the tuning of data acquisition
with data processing and vice versa. Proper planning of the entire project will
most likely pay itself back by increased efficacy and efficiency. I wish to empha-
size this principle by referring to this complete plan as the sampling scheme.
This broad concept of sampling scheme covers much more than just how, where
and wlen to sample and measure. The sampling scheme captures all the de-
cisions and information pertinent to data acquisition, data recording and data
processing :

a. Objective of the inventory or monitoring: universe of interest defined in space
and/or time, target variables, target parameters;

b. Objective function or quality criterion used to quantify the suitability of
candidate sampling schemes;

c. Constraints: financial, logistic, operational;

d. Prior or ancillary information: existing sample data, maps, GIS files or mod-
els used in the design process;

e. Method of taking samples: dimensions of sample elements and sampling
devices;

f. Methods of determination: field measurements and/or laboratory analyses;

g. Sampling design: sample size or frequency and how the sample points in
space and/or time are to be selected;

h. The actually selected sample points in space and/or time;
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. Protocols on data recording and field work;
j. Method(s) of statistical analysis;

k. Prediction of operational costs and accuracy of results.

If we look at designing a sampling scheme as a case of problem solving, then
the items a through d above form the information from which we search for a
solution, items e through j together constitute the selected solution, and the
last item is an ez-ante evaluation of that solution.

Apart from tuning data acquisition to data processing and vice versa, there is
a more general reason why the project should be planned as a whole rather than
to optimize parts of it in isolation from each other: the consequences of a decision
about a single issue, in terms of quality and costs, depend on the decisions taken
on other issues. A simple example is where two methods of determination are
available for the target variable: an inexpensive but inaccurate method and an
expensive but accurate method. The choice between either has an effect on
both the costs and the accuracy of the final result, and these effects depend on
the sample size. Given a fixed budget, choosing the inexpensive method implies
that a larger sample size can be afforded. Whether or not this leads to a better
result depends on various factors. How to design a sampling scheme is dealt
with in the next sections.

2.2 Guiding principle in designing sampling schemes

A safe way to a good sampling scheme is this principle: ‘Start at the end, then
reason backwards’. This means that one should first determine precisely what
information is needed. Only when the information need is defined it becomes
useful to search for a sampling scheme that leads to that result in an efficient
way. The reason for this is that different types of results generally ask for
different sampling schemes. Although this is an extremely important fact in
sampling, it does not seem to be always clearly realized.

For instance, if the spatial mean of a region must be estimated, other, less
expensive sampling schemes are needed than for local estimation at points, as
for mapping. Another example is that data needs for generating hypotheses are
totally different from those of testing hypotheses. The same is true for esti-
mation of model parameters, for instance of variograms, compared with model
validation.

Types of results can be divided into three broad groups. Firstly, the purpose
of sampling may be estimation of the frequency disiribution of a variable, or one
or more parameters of that distribution. Examples are ‘location’ parameters
such as the mean, quantiles (e.g. the median) and the mode, or ‘dispersion’
parameters such as the standard deviation, the range and tolerance intervals.
These results are related to the universe as a whole; they have no geographical
or time coordinates. Secondly, the purpose may be some kind of description
of the spatial and/or temporal distribution of the variable within the universe.
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[ixamples are: prediction of values at points within the universe, estimation
of means within parts of the universe, or construction of contour maps. As
opposed to the first group, these results contain geographical and/or temporal
coordinates. Thirdly, there is a miscellaneous group of special purposes such as
estimation of model parameters, model validation, generating hypotheses and
multivariate statistics, including classification.

In principle, dillerent types of results ask for different sampling schemes,
because a given system may not yield the type of result that is required, or if it
does, it may do so in an inefficient way. In conclusion, a good way of designing
a sampling scheme is by reasoning backward through the following steps:

1. Decide precisely what type of result is needed, for instance, a map of a
given variable, at a given scale and with a given accuracy. Or testing of a
given hypothesis, at a given significance level and with a given statistical
power.

2. Determine what kind of data analysis leads to that result.
3. Determine what the data needs are for this analysis.

4. Search for a sampling scheme to get those data in the most efficient way.

To aid the search for a good sampling scheme some practical, scientific as
well as stalistical issues are discussed in the following sections.

2.3 Practical issues

Avoid undue complexity

Researchers often know much about the processes that have generated the spa-
tial pattern of soil or groundwater properties in the universe of interest. They
may be tempted to express all this knowledge in detail in the form of a highly
complex sampling design. Albeit understandable, this attitude entails two risks
which are easily underestimated. Firstly, due to unforeseen operational diffi-
culties during field work, it may prove impossible to carry out the design in
all its complexity. The field work must then be adjourned until the design is
re-adjusted. This may be time consuming and is likely to cause unwanted de-
lay. Secondly, the complexities are introduced to increase the efficiency, but
they may make the statistical analysis much more intricate and time consuming
than expected. It is therefore usually wise to avoid highly complex sampling de-
signs, because the theoretical gain in efficiency compared with simpler solutions
is easily overridden by practical difficulties.

Allow for unexpected delay in field work

Even if you are familiar with the circumstances in the terrain, there can be fac-
tors beyond your control that prevent the field work to be completed within the
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available time. Clearly, unfinished field work may seriously harm the statistical
potential of the design. It is therefore prudent to allocate spare time in the
system for contretemps, say 20 % of the total time for field work, and to include
a number of optional sample points to be visited as far as spare time allows.

Include a test phase if necessary

If you are uncertain about the logistics of the field work or the spatial or tem-
poral variability, a preliminary test phase is always worth the extra effort. The
information that you get from even a small sample collected in advance will en-
able you to optimize the main sample more precisely and it will reduce the risk
that the project will not meet its goal at all. In the final statistical analysis you
can combine the test sample data with the main sample data, so the additional
effort is limited to extra travel time and statistical analysis.

Evaluate the system beforehand

It is good practice to quantitatively predict the cost of operation of the system
and the accuracy of the result, prior to the field work. Predicting cost and accu-
racy can be done in sophisticated ways, using mathematical models {Domburg
e.a., 1994), or more globally, using experiences {rom similar projects, rules-of-
thumb and approximations. A test phase will of course improve the prediction
of cost and accuracy.

Explicit evaluation ez ante in terms of cost and accuracy is not only a final
check of whether the system can be trusted to lead to the goal, it also enables
comparison with evaluation ez post, i.e. after the project is finished. If this re-
veals significant discrepancies, the causes should be analyzed. This may provide
a ground for better planning of [uture projects.

2.4 Scientific issues

Protocol for field work

Rules for field work will usually concern the physical act of taking samples
and/or measurements in the field, but they should also tell what to do if a
sample point is inaccessible or if it falls outside the universe. An example of the
latter in soil sampling is where, on inspection in the field, it turns out that at
the given point there is no ‘soil’ according to a given definition.

A poor protocol may seriously affect the quality of the results. Obvious
requirements for a protocol are that it is complete, unambiguous, practically
feasible and scientifically sound. The scientific aspect plays a role, for instance,
when a rule says that an inaccessible sampling point is to be shifted to a nearby
location in a certain way. In principle this leads to over-representation of bound-
ary zones and, depending on the kind of design and the statistical analysis, this
may result in biased estimates.
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Protocol for data recording

As for field work, there should be sound rules for data recording. These rules
should not only cover regular recording but also prescribe different codes for
when a sampling point falls outside the universe, for when it is inaccessible,
for when a variable cannot be measured because it is too large or too small
(‘censoring’ in the statistical sense), and for when a variable cannot be measured
for other reasons.

2.5 Statistical issues

Prior information on spatial and temporal variability

All prior information about the variability in the universe should be employed
in the search for an efficient sampling design. Examples of prior information
are satellite images, aerial photographs, thematic maps (e.g. groundwater, soil
or vegetation maps) and theory about the spatial and/or temporal patterns of
variation in the universe. This theory may be available in a verbal, qualitative
form, or in a quantitative form of a mathematical model.

There are many ways in which prior information can be exploited in sampling
schemes. Two modes can be distinghuished. The first mode is to use the prior
information in the sampling design, i.e. in the data acquisition stage. The
second mode is to use it in the statistical analysis of the sample data, i.e. in the
data processing stage. In the following I give examples of each mode.

An example of the first mode is when images, photographs or maps are
used for stratification of the universe. In that case the universe is split into a
number of relatively homogeneous sub-universes (called ‘strata’), which are then
sampled independently from each other (Section 5.4). Another example is when
genetic theory enables intelligent guesses about the spatial and/or temporal
correlation. I'or instance, in the case of a universe consisting of the soil in a
given area, eolian deposition of parent material in that area may be known
to have resulted in little short-range variation of texture. Then, if the target
variable is closely related to texture, it will be important for efficiency to avoid
sampling at points close to each other. Finally, an example of the first mode is
when a variogram is used to optimize the sample density or sample frequency.

An example of the second mode is when a variogram is used to optimize the
weights of sample data for linear prediction as in Ordinary Kriging. Another
example is the use of ancillary data in regression estimators (Section 5.8.3).

If prior information on the variability is captured in the form of variograms
or correlograms, these functions can be used to predict the sampling variance
for a given design (Section 5.9 and Chapter 6). If in addition a model for the
costs is available then it is possible to optimize the sampling design in a fully
quantitative way (Domburg e.a., 1997).
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Modes of sample point selection

Three possible modes of sample point selection can be distinguished: conve-
nience sampling, purposive sampling and probability sampling. The concept of
convenience sampling is self-explanatory. An obvious example is when sampling
is limited to road sides or other easily accessible spots. The advantage of this
mode is that it saves time and cost. The disadvantage is that the statistical
properties are inferior compared to the other modes. For instance, estimates
from a convenience sample have to be considered as biased unless one is willing
to accept specific assumptions about the sampling process and the spatial and
temporal variation. These assumptions are often debatable, and this may or
may not be acceptable, depending ou the context of the project.

Purposive sampling tries to select the sample points such that a given pur-
pose is served best. An example is the ‘free survey’ method of mapping soil
classes, whereby the surveyor locates the sample points where they are expected
to be most informative with respect to soil class delineation. In this example
the points are selected in a subjective manner, using experience, visible land-
scape features and pedogenetic hypotheses. However, purposive sampling may
also proceed by formally optimizing an objective function related to the pur-
pose. For instance, if the purpose is to map a spatial distribution by kriging
and if geographical boundary effects are disregarded, then it can be shown that
the prediction error is minimized by a hexagonal grid of sample points, under
assumptions of stationarity and isotropy (McBratuey e.a., 1981). If boundary
effects cannot be neglected, or if point data are available prior to sampling, then
the grid that minimizes the prediction error will be irregular, and this can be
found by simulated annealing (van Groenigen & Stein, 1998). Both methods
are discussed in Chapter 6.

Probability sampling, unlike the other modes, selects sample points at ran-
dom locations. Therefore the probabilities of selecting the points are known,
and these probabilities provide the basis for statistical analysis of the data.
As explained in Chapter 5, there are many techniques for random selection of
sampling points. Collectively, this approach to sampling is referred to as the
design-based approach, as opposed to the model-based approach, where the
sample points are fixed instead of random and statistical analysis is based on a
model of the variation in the universe. The choice between these two approaches
is an important statistical issue, which is separately dealt with in Chapter 3.

Sources of error

It is important to realize that the accuracy of the final result is not only deter-
mined by sampling error, i.e. the error due to the fact that sampling is limited
to a finite number of points. Other sources of error are: sample treatment, mea-
surement and ‘non-response’: a term used in the general statistical literature to
indicate the situation where for some reason no data can be obtained from a
sample element. In groundwater, soil and vegetation sampling this occurs when
a point in the field cannot be visited or when measurement is impossible for



18 CHAPTER 2. DESIGNING A SAMPLING SCHEME

other reasons.

Although any reduction of the sampling error will lead to a smaller total
error, there is little point in putting all effort in further reduction of the sampling
error if another source of error still has a higher order of magnitude. Therefore,
in devising a sampling scheme, the relative importance of all error sources should
be taken into consideration.



Chapter 3

Design-based versus
model-based approach to
sampling

There are two fundamentally different approaches to sampling: the design-based
approach, followed in classical survey sampling, and the model-based approach,
followed in geostatistics. Differences and relationships between these two ap-
proaches are extensively treated in Sarndal e.a., (1992). De Gruijter & ter Braak
(1990) discuss the issue in the spatial context, but the distinction holds and is
equally relevant for sampling in time and in space-time. The difference between
the two approaches is illustrated in Fig. 3.1 with a simple example, taken from
Brus-& de Gruijter (1997): a square area is sampled at 25 points and a 0/1
variable measured to estimate the fraction of the area with value 1. Fig. 3.1A
shows a spatial distribution of the 0/1 variable and a configuration of 25 sample
points. Averaging the observed values at these points yields an estimate of the
fraction.

Now both approaches quantify the uncertainty of such an estimate by consid-
ering what would happen if sampling were repeated many times in a hypothetical
experiment. Obviously, if in this experiment neither the pattern of values nor
the locations of the sample points were changed there would be no variation,
so omne or the other has to be varied. The two approaches differ in which of the
two is varied. The design-based approach evaluates the uncertainty by repeated
sampling with different sets of sample points, while considering the pattern of
values in the area as unknown but fixed. The sets of sample locations are gen-
erated according to a chosen random sampling design. The row of figures (A,
B and C) represents three possible outcomes. As opposed to this, the model-
based approach evaluates the uncertainty by repeated sampling with a fixed set
of sample points, while varying the pattern of values in the area according to a
chosen random model of the spatial variation. For this approach the column of
figures (A, D and E) represents three possible outcomes. (Note that the target

19
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[igure 3.1: Repeated sampling in the design-based approach (A, B, C) and in the
model-based approach (A, D, E). In the design-based approach the population
is fixed and the sampling points are random. In the model-based approach
the sampling points are fixed and the population is random. (From Brus & de
Gruijter, 1997)
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quantity in this approach is no longer constant: it varies among realizations from
the model. The standard statistical terminology therefore speaks of prediction
instead of estimation.)

The experiment can remain truly hypothetical in most instances because
probability calculus enables to determine what happens on average over all
possible realizations. In more intricate situations this is infeasible, however, and
repeated sampling has to be simulated numerically, either varying the sample
points or the pattern of values, or both.

The fact that the two approaches use a different source of randomness has
several important practical as well as theoretical consequences. The main conse-
quence is that the statistical inference from the sample data is entirely different.
In the design-based approach estimation, testing and prediction are based on the
selection probabilities as determined by the random design. This means that in
calculating weighted averages, the data are assigned weights determined by their
selection probabilities, not by their co-ordinates in space and/or time. In the
model-based approach, inference is based on a stochastic model of the variation
in the universe. Here the weights of the data are determined by covariances,
given by the model as a function of co-ordinates in space and/or time.

Before deciding on the details of a sampling design, a choice between the
design-based and the model-based approach should be made. It goes beyond
the scope of this book to discuss this issue in detail, only an outline is given.
An extensive discussion is presented in Brus & de Gruijter (1997). The ‘ideal’
circumstances for application of the design-based approach are as follows.

i. The required result is an estimate of the frequency distribution of the tar-
get variable in the universe as a whole, or a parameter of this distribution,
such as the mean, the standard deviation or a quantile.

ii. A minimum sample size of, say, b or 10 points can be afforded, depending
on the variation in the universe, to have at least a rough idea of the
sampling error.

ili. It is practically feasible to sample at randomly selected locations and/or
times.

iv. It is important to obtain an estimate that is unbiased in the sense that, av-
eraged over all possible samples of the applied design, the estimate equals
the true value of the target parameter.

v. It is important to obtain an objective assessment of the uncertainty of the
estimate.

Around this ‘ideal’ there is a range of circumstances in which the design-
based approach is still preferable to the model-based approach.

The ‘ideal’ circumstances for application of the model-based approach are
as follows.



22CHAPTER 3. DESIGN-BASED VERSUS MODEL-BASED APPROACH TO SAMPLING

i. The required result is prediction of values at individual points, as with
forecasting, or distribution of values over the entire universe, as with map-
ping.

i. At least a medium sample size can be afforded, depending on the spa-
tial/temporal variation. The model usually implies stationarity assump-
tions and a variogram. Accurate estimation of the variogram requires
a sufficiently large numebr of observations. Following Webster & Oliver
(1992) this number should be at least 100 to 150.

iil. A reliable model of the variation is available.

iv. High auto-correlations exist in the universe.

As before, around this ‘ideal’ there is a range of circumstances in which
the model-based approach is still preferable to the design-based approach. A
typical intermediate situation is where averages are required for a number of
sub-universes or ‘blocks’, in which only sparse sampling can be done. Brus and
De Gruijter (1997) explore this in a case study.



Chapter 4

Composite sampling

Composite sampling is the technique of putting the material of individual sam-
ples together and to mix and analyse this. As only the composite samples are
analysed, the number of analyses is strongly reduced. The technique is often
used in soil sampling because of its great advantage in saving laboratory costs.
A vast amount of literature exists on this subject, both theoretical and applied,
but a well-founded and generally applicable methodology of composite sam-
pling does not seem to be available. Therefore, I merely give some indications
on when and how to apply composite sampling, aud I do this by discussing the
assumptions that underly compositing.

The basic assumption in its most general form is that analysing a composite
gives the same result as analysing the individual samples used to form the com-
posite. Two special cases are mentioned lere. The first case is where interest
lies in the presence or absence of a qualitative variable, for instance, a species
of soil microbe or a chemical substaiice. If the method used to determine pres-
ence/absence has a detection limit that is low enough, then a composite sample
could be analysed instead of individual samples separately. This case is often
referred to as group screening or group testing.

The second special case, more relevant to inventory and monitoring of nat-
ural resources, is where interest lies in the average value of a quantitative vari-
able, for instance, phosphate content in the topsoil. Here the assumption is that
analysing a composite gives the same result as averageing the values measured
on idividual samples. In other words: arithmatic averageing can be replaced
by physical averageing. Of course, pre-assumptions are that averageing is mean-
ingful, and that it is needed given the purpose of the project. I discuss these
assumptions briefly.

Averaging of values is meaningful

This requires that the target variable is a quantitative property, which pre-
cludes composite sampling when the target variable is measured on a nominal
or an ordinal scale.

Averaging of values is needed

23
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Taking a non-composite sampling scheme as point of departure, this pre-
assumption implies that, without compositing, the estimator of the target quan-
tity would be a function of one or more arithmatic means of individual sample
values. The simplest exaniple of such estimators is the unweighted sample mean,
as for instance used with Simple Random Sampling (Section 5.3), Systematic
Sampling (Section 5.7), Systematic Unaligned Sampling or Markov Chain Sam-
pling (Section 5.8.2). In these cases all individual samples could in principle
be put together into one composite. Other examples, involving multiple arith-
matic means, are the estimators used with Stratified Sampling (Section 5.4),
Two-Stage Sampling (Section 5.5) and Cluster Sampling (5.6).In these cases all
individual samples belonging to the same stratum, primary sampling unit or
cluster could in principle be put together.

This requirement precludes compositing when the purpose is to estimate, for
instance, a measure of dispersion {(e.g. standard deviation or range), an extreme
value, a quantile, or values at unsampled points via kriging. In these cases the
estimators are not arithmatic means of sample values.

Arithmatic averageing can be replaced by physical averageing

In order to make this basic assumption valid, three requirements must be
met. PFirstly, the target variable must be directly measured in the samples,
or be defined as a linear transformation of one or more measured variables.
Otherwise, if the target variable is a non-linear transformation of one or more
measured variables, the transformation of the mean value(s) from a composite
sample is not equal to the mean of the transformed values from individual
samples. Neglecting this fact can lead to an unacceptable systematic error.
[Examples of a target variable defined as a non-linear transformation are: the
indicator variable indicating whether or not the phosphate content in the topsoil
exceeds a given threshold, available soll moisture content calculated with a non-
linear model from inputs measured at sample points, and pH as a logarithmic
transformation of hydrogen activity.

Secondly, after putting individual samples together and mixing, no physical,
chemical or biological interactions between the increments should take place
that influences the value of the target variable. This precludes, for instance,
compositing when the target variable depends on pH and some samples contain
calcium carbonate while others don’t. As above, compositing in such cases could
casily lead to an unacceptable systematic error.

Thirdly, compositing reduces laboratory costs, but it introduces two inter-
related sources of error: error by imperfect mixing of the composites and error
by sub-sampling the mixed composite. Also, random measurement errors will
cancel out less well in the case of composite sampling than with non-composite
sampling, because fewer measured values are averaged. The additional error
due to compositing should not enlarge the total error too much, and this puts a
limit to the number of individual samples that can bulked. The increase of the
contribution of measurement error to the total error could be counter-acted by
taking multiple measurements from each composite while still preserving a cost
advantage. Also, if mixing and sub-sampling are important error sources, one
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could make a number of smaller composites from random subsets of individual
samples, instead of one large composite.

Some influential theoretical publications on composite sampling are Duncan
(1962), Brown and Fisher (1972), Rohde (1976) and Elder, Thompson and Myers
(1980). Boswell et al. (1996) provide an annotated bibliography. Papers on
composite soil sampling are e.g.: Baker et al. (1981), Brus et al. (1999),
Cameron et al. (1971), Carter and Lowe (1986), Courtin et al. (1983), Onate
(1953), Ruark et al. (1982), Reed and Rigney (1947), Webster and Burgess
(1984) and Williams et al. (1989).
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Part 11

Inventory: spatial sampling
at one time

27






Chapter 5

Design-based sampling in
2-dimensional space

5.1 Introduction

This chapter discusses how design-based sampling strategies work and how they
can be applied in monitoring projects. The aim is to help understanding the
basic principles at an intuitive level, the text is not meant as an exposé of
sampling theory. A somewhat practically oriented textbook on design-based
sampling strategies is Cochran (1977), from which most of the material pre-
sented here i1s borrowed or derived. A comprehensive textbook on sampling
theory is Sarndal e.a. (1992).

The general pattern in the development of sampling strategies is to take
the simplest strategy (Simple Random Sampling, Section 5.3) as a starting
point, with complete random selection of all sample points. Then restrictions
on randomization are looked for, such that this would reduce the sampling
variance or the cost of operation, or both. Different types of restrictions can be
distinguished, each giving rise to a different type of sampling design.

Before discussing the basic designs, the statistical concept of sampling design
itself need to be defined more precisely. In the spatial context it is defined as a
function that assigns a probability of selection to any set of points in the area.
For instance, the sampling design for Simple Random Sampling with sample
size 25 assigns equal selection probabilities to every possible set of 25 points
in the area and zero probability to any other set. (Note that a design assigns
probabilities to sets of points, not to individual points.) A sampling strategy is
defined as a combination (p,t) of a sampling design (p) and an estimator (¢) for
a given target parameter (7'), such as the mean of the area. Statistical quality
measures, like bias and variance, can only be defined and evaluated for these
combinations, not for a design or an estimator on its own,

29
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5.2 Scope of design-based strategies

A typical application of design-based strategies is to estimate the areal mean of
a directly measured quantitative variable. However, the scope of these strategies
is much wider than this. Extensions are possible in three directions: derived
variables, other parameters, and smaller (sub-)areas.

IMirstly, the target variable need neither be quantitative, nor directly mea-
sured. If the target variable is measured al a nominal or ordinal scale, then the
sample data consist of class labels, and these can be analyzed statistically by
first transforming them into 0/1 indicator variables. The presence or absence
of a given class is thereby re-coded as 1 and 0, respectively. Of course, if there
are k mutually exclusive classes, only & — 1 indicator variables are needed. The
mean of an indicator variable can be interpreted as the fraction of the area in
which the class occurs.

Transformation into indicator variables can also be applied to quantitative
variables in order to estimate the areal fraction in which the variable exceeds a
given threshold. This technique can be extended to estimate the entire Spatial
Cumulative Distribution unction (SCDF') of a quantitative variable. In that
case areal fractions are estimated for a series of threshold values.

Apart from the simple 0/1 transformations, the target variable may be the
output of a more or less complicated model for which the input data is col-
lected at the sample points. Another important case of indirect determination
is in validation studies, where the target variable represents an error, i.e. the
difference between a measured value and a value predicted by a process model
or a spatial distribution model, such as a thematic map. A common example
is the error resulting from a classification algorithm applied to remotely sensed
images. The errors determined at the sample points can be used to estimate
their spatial mean (which equals the bias), the mean absolute error, the mean
squared error, or the entire SCDF of the errors.

Secondly, the target parameter need not be the spatial mean. For instance,
it may also be a quantile, such as the median, the spatial variance, a tolerance
interval, or a parameter of a model relating one or more predictor variables with
a variable of interest. See e.g. Krishnaiah & Rao (1988) and Patil & Rao (1994)
for design-based statistical inference on these and other target parameters.

Thirdly, the region for which estimation or testing of hypotheses is demanded
need not be the entire area sampled; interest may also be in one or more sub-
arcas. There are two different methods of estimation and testing in sub-areas.
The first is to sample the sub-areas independently from each other, in which
case they act as ‘strata’ in a stratified sampling design (Section 5.4). In the
second method the sampling design is independent from any division into sub-
areas. [istimation in sub-areas is then only based on sorting the sample data
afterwards according to the sub-areas in which the sample points happen to
fall. In this case the sub-areas are referred to as ‘domains of interest’, or briefly
‘domains’.

The following sections describe each basic strategy by discussing the type of
random selection restriction, a technique for selecting samples according to the
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design, a simple example, the inference from sample data, the determination of
sample sizes and advantages and disadvantages. I repeat from Chapter 3 that
design-based statistical inferences such as given below are valid, regardless of
the structure of the spatial variation, because they do not make any assumption
about this structure.

5.3 Simple Random Sampling (SRS)

Restriction on random selection

No restrictions on random selection other than a previously chosen fixed sample
size. All sample points are selected with equal probability and independently
from each other.

Selection technique

An algorithm for SRS with sample size n, applicable to irregularly shaped areas,
is as follows.

(a) Determine the minimum and maximum X and Y co-ordinates of the area:
Xinin, Xmax> Ymin and ¥Yipax.

(b) Generate independently from each other two (pseudo-)random co-ordinates,
Xran and Yiap, from the uniform distribution on the interval (Xmin, Xmax)
and (Yiin and Yiax ), respectively.

(¢) Determine with a point-in-polygon routine whether the point (Xian, Yran)
falls in the area. Accept the point if it does; skip the point if it does not.

(d) Repeat step (b) and (c) until n points are selected.

Example

Fig. 3.1A, B and C show three realizations of SRS with 25 points; I'ig. 5.1 is
an example with n = 16. Notice the irregularity, the clustering and the empty
spaces in the configurations, which is typical of SRS.

Statistical inference

The spatial mean of the area, Y, for a quantitative variable y is estimated by:

n

=3

i=1

<)

with n = sample size, and y; = value of sample point 7.
The strategy (SRS, %) is ‘p-unbiased’; this is a quality criterion defined as:

E,[y] = Y, where Ep[] denotes the statistical expectation over all possible
sample realizations from a design p (in this case SRS). This means that if we
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Figure 5.1: Notional example of Simple Random Sampling

would repeat sampling, measuring and calculating 3 in the same way again and
again, we would find on average the true value Y. If measurement errors are
present, then the unbiaseduess still holds if the errors are purely random, i.e.
ZEro on average.

The variance of the variable y between points in the area is estimated by:

3

1 —\2
v(y) = -1 > (i -7)

=1

and the standard deviation by s(y) = \/v(y). The sampling variance of the
estimated mean ¥ is estimated by:

aud its standard error by s(y) = /v(y)

If the data contain random measurement errors, then their contribution to
the total estimation error is automatically included in the estimates »(¥) and
5(3). -

The two-sided 100(1-a)% confidence interval for Y is given by:

TEti_as - s(y) (5.1)

where t)_q/2 is the (1 — §) quantile of the Student distribution with (n— 1)
degrees of freedom. This confidence interval is based on the assumption that
y, and as a consequence ¥, is normally distributed. If the distribution deviates
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clearly from normality, the data should be first transformed to normality, for
instance by taking the logarithm. The interval boundaries thus found are then
back-transformed to the original scale. Transformation is not necessary if n is
large, because then % is approximately normally distributed according to the
Central Limit Theorem.

The above formulas for estimating means can also be used for areal fractions.
The fraction of the area where a qualitative variable ¢ has a given value, for
instance ‘very suitable’, can be estimated by first generating a 0/1 indicator
variable from the sample data, with value 1 if g= ‘very suitable’, and 0 otherwise.
Then the above equations are simply applied to this indicator variable. The
only exception is the calculation of confidence intervals because the indicator
variable is clearly not normally distributed. The sample fraction has a Binomial
distribution, and with small samples (n < 20) this distribution should be used
to construct confidence intervals. With larger samples the distribution is close
enough to normality and formula (5.1) will be accurate enough for most practical
applications.

The above formulas can also be used for estimation in a domain (Section
5.2), if it contains sample points. A domain may or may not have a known
geographical delineation. An example of the latter is where the spatial mean of
a target variable within a given soil type is to be estimated, and no map of the
soil types at an appropriate scale is available. This mean can be estimated if,
in addition to thie target variable, the soil type is recorded at the sample points.

The mean of a quantitative variable ¥ in domain j, )_’j, is simply estimated
by averaging over the sample points that fall in this domain:

ny
~ 7

= 1
i= E Yiky
nj

k=1

l-.<

where n; = number of sample points in domain j, and y;. = value at point &
in domain 7.

Variances, standard deviations and confidence intervals are calculated in the
same way as for the area. The same applies to estimation of fractions and

SCDI"'s in domains.

Sample size

The sample size needed to estimate a mean such that, with a chosen large

y——?ll is smaller than a chosen limit 7, can

, " 2
"= <M> ’
rY

where u;_q/9 is the (1 ~ «/2) quantile of the standard normal distribution, and
S is a prior estimate of the standard deviation of y in the area.
In this formula £ is the coefficient of variation of ¥ in the area. Of course,

this parameter is not known exactly beforehand. Instead, a prior estimate is

probability 1 — «, the relative error
be calculated by:
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substituted, which can be obtained from a pilot or previous sampling in the
same area, from sampling in a similar area, or from general knowledge of the
spatial variation.

If instead of the relative error we wish the absolute error |y— ?l to be
smaller than a chosen limit d, we need sample size:

The sample size needed to estimate a fraction can be calculated in the same
way as with a quantitative variable. In that case the prior estimate of the
standard deviation of the corresponding indicator variable is derived from a

prior estimate of the fraction P by: § = /P(1 — P).

Advantage

The simplicity of this type of design enables relatively simple and straightfor-
ward statistical analyses of the sample data, also with non-standard estimation
and testing problems.

Disadvantages

(i) The sampling variance is usually larger than with most other types of design
at the same cost, and (¢) because large empty spaces can occur between the
sampling points, estimation in domains may be impossible.

5.4 Stratified Sampling (StS)

Restriction on random selection

The area is divided in sub-areas, called ‘strata’, in each of which SRS is applied
with sample sizes chosen beforehand.

Selection technique

The algorithm for SRS is applied to each stratum separately.

Example

Fig. 5.2 shows an example with 16 square strata and 1 point in each stratum.
Notice the more even spreading compared with SRS in I'ig. 5.1.

Statistical inference

Means, areal fractions and SCDIVs (after 0/1 transformation) of the area are
estimated by:

L L
Ys. = 7 ZAh “Yno

h=1
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I'igure 5.2: Notional example of Stratified Sampling

with I = number of strata; Aj = area of stratum h; A = total area, and ¥, =
sample mean of stratum h.

The strategy (StS, yg,) is p-unbiased. Provided all sample sizes are > 1, the
variance of Fg, can be estimated by:

L
_ 1 _
v(Ts) = > AR v@),
F

=1
where v(g},) is the estimated variance of 3,,:

ny

> ni —Tn)*,

i=]

1
U(yh) - 'nh(nh _ ].)
with nj;, = sample size in Ath stratum.

The standard deviation is estimated by s(7,) = \/v(¥y,). Confidence inter-
vals are calculated in the same way as with SRS, see Eq. 5.1.

The method of estimating means, fractions or SCDI”s (after 0/1 transfor-
mation) in a domain depends on whether the areas of the domain within the
strata are known. If they are, then the mean of the jth domain, Y;, is estimated
by

=~

~ 1 _
it > Anj T (5.2)
I n

2
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with Aj; = area of domain j within stratum h; A; = total area of domain

J, and ,; = sample mean of domain j within stratum k. The variance of 7]- is
estimated by

-~

? ZAh] yh]
where :
1 n.,,j
e - - an . — a7 )2
’U(!jhj) = nhj(nhj — ]_) izz:l(yhzg yhg) )

with nj; = number of sample points falling in domain j within stratum h.
If the areas of the domain within the strata are not known, they have to be
estimated from the sample. Unbiased estimates to be substituted in Itq. 5.2

are:
and Aj = E Ahj.
h

The variance is now larger, because of the error in the estimated areas. It is
estimated by

v 1 A2 — . T — =3\?2
v(Y;) = = > Wh—l) > @nis — i)’ + n (1 - J) (yh.j - Yj) ] :
J ! 3

o i
Ap; = Ay

L h

h h

Sample sizes

The sample sizes in the strata may be chosen to minimize the variance V(g ) for
a given maximum allowable cost, or to minimize the cost for a given maximum
allowable variance. A simple linear cost function is:

C= Co + Z Cpnp,

with ¢, = overhead cost, and ¢, = cost per sample point in stratum /.
If we adopt this function, the optimal ratios of the sample sizes to the total

sample size n are:
np _ Ah Sh/\/ Ch

T Z (A’LS’L/ﬁ) '
where the S), are prior estimates of the standard deviations in the strata. This
formula implies that a stratum gets a larger sample, if it is larger or more
variable or less expensive to sample.

The total sample size affordable for a fixed cost C, given that optimal allo-
cation to the strata is applied, is:

(C —co) 3 (AnSn/ Ve Ven)
> AnSny/en

The total sample size needed to keep the variance below a maximum value
Vin, again presuming that optimal allocation to the strata is applied, is:

1
n= Vm, . Z (MLS'ILﬁ) : Z I’{/}LS]-L/\/C_},:,
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where W), = A;,/A. If the cost per point is equal for the strata, this reduces to:

n= 1—/1— : (Z thh)2 :

m

If, instead of V,,, an absolute error d has been specified with an allowed
probability of exceeding a, then V,,, can be derived from d and «, according to
Vin = d/u1_q)9, where u;_q 2 is the 1 — @/2 quantile of the standard normal
distribution.

When estimating areal fractions rather than means of quantitative variables,
the above formulas for sample sizes can still be applied if S}, is replaced by
V Pr(1 — Py), where Py, is a prior estimate of the fraction in stratum h.

Advantages

There are two possible reasons for stratification. The first is that the efficiency
as compared with SRS may be increased, i.e. smaller sampling variance at the
same cost, or lower cost with the same variance. In this case the stratification
is chosen such that the expected gain in efliciency is maximized. In practice
this can be achieved by forming strata that are as homogeneous as possible.
Also, if the cost per sample point varies strongly within the area, for instance
with distance from roads, it is efficient to stratify accordingly and to sample the
‘Inexpensive’ strata more densely. Another reason for stratification may be that
separate estimates for given sub-areas are needed. If the strata coincide with
these sub-areas of interest then, as opposed to SRS, one has control over the
accuracy of the estimates by allocating sufficient sample sizes to the strata.

Disadvantage

With inappropriate stratification or sub-optimal allocation of sample sizes, there
could be loss rather than gain in efficiency. This can occur if the stratum means
differ little or if the sample sizes are strongly disproportional to the surface
areas of the strata. If, for instance, one has many small strata with unequal
area and a small sample in each, then these sample sizes are bound to be strongly
disproportional because they must be integer numbers.

5.5 Two-stage Sampling (TsS)

Restriction on random selection

As with StS, the area is divided into a number of sub-areas. Sampling is then
restricted to a number of randomly selected sub-areas, in this case called primary
units. Note the difference with StS where all sub-areas (strata) are sampled.
In large scale surveys this principle is often generalized to multistage sampling.
(Three-stage crop sampling, for instance, could use sub-areas from RS images
as primary units, fields as secondary units, and sample plots as tertiary units.)
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Selection technique

A version is described by which the primary units (PU’s) are selected with
replacement and with probabilities proportional to their area. An algorithm to
make 1 such selections from all N PU’s in the area is as follows:

(a) Determine the areas of all PU’s, Ay, ..., An, and their cumulative sums,

k
Sl,...,SN, with Sk = Z Al

2=1

(b) Generate a (pseudo-)random number @ from the uniform distribution on
the interval (0, Sy).

(c) Select the PU of which the corresponding Sy is the first in the series that
exceeds x.

(d) Repeat step (b) and (c) until n PU’s are selected.

An alternative, sometimes more efficient algorithm works with a geographical
representation of the area and its PU’s:

(a) Select a random point in the area as in SRS.

(b) Determine with a point-in-polygon routine in which PU the point falls,
and select this PU.

(¢) Repeat step (b) and (c) until = selections have been made.

In the second stage, a pre-determined number of sample points, m;, is se-
lected within each of the PU’s selected in the first stage. This is done in the
same way as with SRS. If the geographical algorithm is applied, the random
points used to select the PU’s may also be used as sample points. If a PU has
been selected more than once, an independent sample of points must be selected
for each time the PU was selected.

Example

I'ig. 5.3 shows four square PU’s selected in the first stage, and four points in
each in the second stage. Notice the stronger spatial clustering compared with
SRS in IMig. 5.1. This is just a simple, notional example. It should be noted,
however, that the PU’s may be defined in any way that seems appropriate, and
that the number of sample points may vary among units.

Statistical inference

Means, areal fractions and SCDF’s (after 0/1 transformation) of the area are
estimated by the remarkably simple estimator:

R
Tt =D s (5.3)
i=1
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Figure 5.3: Notional example of Two-stage Sampling

with n = number of PU selections, and ¥; = sample mean of the PU from
selection <.
The strategy (TsS, ¥r,) is p-unbiased. The variance is simply estimated by:

1 - .
v(Jrs) = w(m—1) Z@i —Jrs)*
=1

Notice that neither the areas of the PU’s, A;, nor the secondary sample sizes
m; occur in these formulas. This simplicity is due to the fact that the PU’s
are selected with replacement and probabilities proportional to size. The effect
of the secondary sample sizes on the variance is implicitly accounted for. (To
understand this, consider that the larger m; is, the less variable %;, and the
smaller its contribution to the variance.)

The standard deviation is estimated by s(¥p,) = /v(¥ps)- Confidence in-
tervals are calculated in the same way as with SRS, see Iiq. 5.1.

The method of estimating meaus, areal fractions and SCDF’s in domains
depends on whether the area of the domain, A4;, is known or not. If it is known,

then the mean of the jth domain, Y';, is estimated by:

Y; = (5-4)

i.b |N"~-<)

where 171 is an estimate of the total (spatial integral) of variable y over
domain j. To estimate this total, we first define a new variable y’, which equals
y everywhere in the domain, but is zero elsewhere. The total of y over domain
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j equals the total of ¥’ over the area, and this is estimated as A times the
estimated mean of ', following Eq. 5.3:

% —1 —/
Yj=A-yTs=; Ui

where 7! is the sample mean of the transformed variable ¥’ from PU selection
4. The variance of the domain mean is estimated by:

- A\? 1 u
(Y )=["2)  — e T — )2
U(YJ) <A_]) n(n . 1) ;(yz yTs) .

If the area of the domain is not known, it has to be estimated from the
sample. An unbiased estimate to be substituted for 4; in Eq. 5.4 is:
A\ A * myj

j =

n & m;’
=1
with m;; = number of points in PU selection ¢ and domain j. Hence, the ratio

estimator:

J
= T on ’
Ai ST g pm

=1

=

2 7 2
= A 1 = omy
o(¥p)=|*+=)  ——— 7 —Yri—2) .
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Sample sizes

The primary and secondary samples sizes nn and m; can be optimally determined
via dynamic programming, given a budget or variance requirement, any cost
function and prior estimates of the within- and between-unit variances; see
Domburg e.a. (1997). A simple approximation is by taking the m; constant,
say m; = m. This is reasonable if the PU’s have roughly the same area and
internal variability. The variance of the mean is now

_ 1 1
o) = 5 (834 5% ) (55)

where 53 and S, are the between-unit and the pooled within-unit variance,
respectively. Given the hinear cost function C' = ¢;n + conm, the sample sizes
minimizing the variance under the constraint that the cost does not exceed a
budget Cy,, can be found using the Lagrange multiplier method:

_ 1Bcvm
~ Swy/acs + Spey

n
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and
m = Sw[a
SB C2
Conversely, minimizing the cost under the constraint that the variance does

not exceed a maximum V,,:

1 Co 0
n=— | SwSB,/— + 5§
" I/m ( weB Cy + B)
and m as above.

If, instead of V,,, an absolute error d has been specified with an allowed
probability of exceeding «, then V;, can be derived from d and «, according to
Vin = d/u1_qy2, where u;_q/9 is the 1 — a/2 quantile of the standard normal
distribution.

When estimating areal fractions rather than means of quantitative variables,
the above formulas for sample sizes can still be applied if Sp is interpreted as
a prior estimate of the standard deviation between the fractions in the units
P;, and Sy is replaced by a prior estimate of the square root of the average of
P;(1 — P;) over the units.

Advantage

The spatial clustering of sample points created by TsS has the operational ad-
vantage of reducing the travel time between points in the field. Of course, the
importance of this depends on the scale and the accessibility of the terrain.
The advantage may be amplified by defining the PU’s such that they reflect
dominating accessibility features like roads and land ownerships.

Disadvantage

The spatial clustering generally leads to lower precision, given the sample size.
However, the rationale is that due to the operational advantage a larger sample
size can be afforded for the same budget, so that the initial loss of precision is
outweighed.

5.6 Cluster Sampling (CIS)

Restriction on random selection

Pre-defined sets of points are selected, instead of individual points as in SRS,
StS and T'sS. These sets are referred to as ‘clusters’.

Selection technique

In principle the number of clusters in the area is infinite, so it is impossible to
create all clusters beforehand and to sample from this collection. However, only
clusters which are selected need to be created, and selection of a cluster can
take place via selection of one of its points. Hence the following algorithm:
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(a) Select a random point in the area as in SRS; use this point as a ‘starting
point’.

(b) Find the other points of the cluster to which the starting point belongs,
by applying predetermined geometric rules corresponding with the chosen
cluster definition.

(c) Repeat step (a) and (b) until 7 clusters have been selected.

A condition for this algorithm to be valid is that the geometric rules are such
that always the same cluster is created regardless of which of its points is used
as starting point. A well-known technique satisfying this condition is random
transect sampling with equidistant sample points on straight lines with a fixed
direction. Given this direction, the random starting point determines the line of
the transect. The other sample points are found by taking a pre-chosen distance
in both directions from the starting point, until the line crosses the boundary
of the area. Clusters thus formed will generally consist of a variable number of
points, and the probability of selecting a cluster is proportional to the number
of points in it. (This is taken into account in the statistical inference.)

Example

Fig. 5.4 shows four transects, each with four equidistant points. To limit the
length of the transects, the area has first been dissected with internal boundaries
perpendicular to the transects. Notice the spatial clustering and the regularity
compared with SRS, StS and TsS (Iig. 5.1, 5.2 and 5.3). This is just a simple,
notional example. It should be noted, however, that the clusters may be defined
in any way that seems appropriate.

Statistical inference

For this type of design the same formulas are used as for T'sS, clusters taking
the role of primary sampling units. For clarity the inference is presented again,
together with the ‘cluster interpretation’ of the quantities.

Means, areal fractions and SCDE’s (after 0/1 transformation) of the area
are estimated by the estimator:

g
Ya =5 Zyz’ (5.6)
i=1

with n = number of clusters, and yJ; = mean of cluster <.
The strategy (CIS, §) is p-unbiased. The variance is estimated by:

n

_ 1 _ 2
v = — Y, — 1 .
@) n(n—1) ; W — Jo1)
Notice that the size of the clusters (number of points) don’t occur in these
formulas. This simplicity is due to the fact that the clusters are selected with



5.6. CLUSTER SAMPLING (CLS) 43

*
#
#
*
*
*
*
# *
» .
W #

Figure 5.4: Notional example of Cluster Sampling

probabilities proportional to size. The effect of the cluster size on the variance
is implicitly accounted for. (To understand this, consider that the larger the
clusters are, the smaller the variance among their means must be.)

The standard deviation is estimated by $(J¢) = Vv(@c;). Confidence in-
tervals are calculated in the same way as with SRS, see Fq. 5.1.

The method of estimating means, areal fractions and SCDE’s in domains
depends on whether the area of the domain, A;, is known or not. If it is known,
then the mean of the jth domain, ?j, is estimated by:

~)»

s.:-}‘:. |\'N-<)

j (5.7)

where ?} is an estimate of the total (spatial integral) of variable y over
domain j. To estimate this total, we first define a new variable vy, which equals
y everywhere in the domain, but is zero elsewhere. The total of y over domain
j equals the total of ¥’ over the area, and this is estimated as A times the
estimated mean of 3/, following Eq. 5.6:

i=1

where ¥ is the mean of the transformed variable ¥’ in cluster . The variance
of the domain mean is estimated by:

n

o) = (§) oy L@ e (5.9

=1

L
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If the area of the domain is not known, it has to be estimated from the
sample. An unbiased estimate to be substituted for 4; in Eq. 5.7 is:

n
A=Ay i
J y
n & m;
=1
with m;; = number of points in cluster ¢ and domain j. Hence, the ratio

estimator:
n

>

- j =1

n ’
Z mij/mi
=1

\F)l:g)

with estimated variance:

n 2

2
= A 1 ;S my

V= =]  — =Y —2 ] .
v(¥rj) <AJ.> n(n—1) <y, N )

1=

Sample size

The number of clusters needed to keep the variance of the estimated mean below
a given maximum V;, is given by n = “—ié—, where .9123 is a prior estimate of the
variance between cluster means. Clearly, this variance depends on the number
of points in the clusters and their spatial configuration. If prior information
on the spatial variability is available in the form of a variogram, the method
described in Section 5.9 can be used to estimate .9123 for a given cluster definition.

If, instead of V,,, an absolute error d has been specified with an allowed
probability of exceeding «, then V,, can be derived from d and «, according to
Vin = (l/'lLl_a/g , where u;_,/p is the 1 — /2 quantile of the standard normal
distribution.

When estimating areal fractions rather than means of quantitative variables,
the above formula for n can still be applied if S is interpreted as a prior estimate
of the variance between cluster [ractions.

Advantages

Like in TsS, the spatial clustering of sample points has the operational advantage
of reducing the travel time between points in the field. In addition, the regularity
may reduce the time needed to locate consecutive points in the cluster. Of
course, the importance of these advantages depend on the scale, the accessibility
of the terrain and the navigation technique used.

Disadvantages

As with TsS, the spatial clustering generally leads to lower precision, given the
sample size. Again, the rationale is that due to the operational advantages a
larger sample size can be afforded for the same budget, so that the initial loss
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of precision is outweighed. If the spatial variation has a dominant direction, the
precision can be optimized by taking transects in the direction of the greatest
change.

Another disadvantage is that the sample size, i.e. the total number of points
in the clusters which happen to be selected, is generally random. This may be
undesirable for budgetary or logistic reasons. The variation in sample size can
be reduced by defining clusters of roughly equal size.

5.7 Systematic Sampling (SyS)

Restriction on random selection

As with CIS, random selection is applied to pre-defined sets of points, instead of
individual points as in SRS, StS and TsS. The difference with CIS is that only
one cluster is selected. In this sense, SyS is a special case of CIS. (Note that the
term ‘cluster’ as used here does not refer to geographical compactness, but to
the fact that if one point of a cluster is included in the sample, all other points
are included too.)

Selection technique

The selection algorithm for CIS is used with n = 1.

Example

Fig. 5.5 shows a random square grid. Notice the more even spatial spreading
and the greater regularity compared with all other types of designs (Fig. 5.1 —
5.4).

Statistical inference

Means, areal fractions and SCDF’s (after 0/1 transformation) of the area are
simply estimated by the sample mean 7, as with SRS. The strategy (SyS, ¥) is
p-unbiased. This condition holds only if the grid is randomly selected, as is pre-
scribed by the selection technique given above. With ‘centered grid sampling’,
on the other hand, the grid is purposively placed around the center of the area,
so that the boundary zones are avoided. This is a typical model-based strategy
(see Chapter 6), which is p-biased.

Unfortunately, no unbiased variance estimators exist for this type of de-
sign. Many variance estimators have been proposed in the literature; all are
based on assumptions about the spatial variation. A well-known procedure is
Yates’s method of balanced differences (Yates, 1981). An overview of variance
estimation is given by Cochran (1977). A simple, often applied procedure is
to calculate the variance as if the sample was obtained by SRS. If there is no
pseudo-cyclic variation this over-estimates the variance, so in that case the ac-
curacy assessment will be on the safe side.
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I'igure 5.5: Notional example of Systematic Sampling

Means, areal fractions and SCDF’s (after 0/1 transformation) in a domain
are simply estimated by the sample mean in this domain:

my

_ 1
Y; = Ezyij,
J =1

where m; is the number of grid points falling in domain j.

Sample size

As indicated above, the sample size is random in general. The average sample
size is determined by the choice of the grid size. A rough approach to this
choice is to determine the sample size in the same way as for SRS (Section 5.3)
and to reduce this with a empirical factor (for instance 2) to account for better
precision of SyS relative to SRS. The average required grid size for a square
grid is then \/A/m. However, if an estimated variogram is available, it is more
accurate to apply the method described in Section 5.9.
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Advantages

Because only one cluster is selected, the clusters should be pre-defined such that
each of them covers the area as good as possible. This is achieved with clusters
in the form of regular grids: square, triangular or hexagonal. The statistical
precision can thus be maximized through the definition of the grid. In addition,
SyS has the same operational advantage as CIS: the regularity of the grid may
reduce the time needed to locate consecutive points in the field. Again, the
importance of this depends on the scale, the accessibility of the terrain and the
navigation technique used.

Disadvantages

Because this type of design does not produce any random repetition, no un-
biased estimate of the sampling variance is available. If the spatial variation
in the area is pseudo-cyclic, the variance may be severely underestimated, thus
making a false impression of accuracy. An operational disadvantage may be
that the total travel distance between sample points is relatively long, due to
the even spreading of the points. Finally, SyS has the same disadvantage as CIS:
the sample size (number of grid points that happen to fall inside the area) is
generally random, which may be undesirable for budgetary or logistic reasons.
The possible variation in sample size will often be larger than with CIS, and it
will be more difficult to reduce this variation.

5.8 Advanced design-based strategies

Apart from the basic strategies outlined in the previous sections, a large number
of more advanced strategies have been developed. This section outlines some of
the major possibilities.

5.8.1 Compound strategies

The basic strategies of the previous sections can be combined in many ways to
form compound strategies. One example is given in Fig. 5.6, where TsS has been
applied, however with SyS in both stages instead of SRS. In this case a square
grid of 2 x 2 PU’s was selected, and then a square grid of 2 X 2 points in each
of the selected PU’s. Notice that the total between-point distance is reduced
as compared with SyS in Fig.5.5, that the risk of interference with possible
cyclic variation has practically vanished, and that the operational advantage of
regularity in the configuration still largely exists.

Fig. 5.7 shows another example of a compound strategy: Stratified Cluster
Sampling with four strata and two clusters in each stratum. The clusters are
perpendicular transects, each with two points at a fixed distance. Notice that,
due to the stratification, a more even spreading is obtained as compared with
CIS in Fig. 5.4, while the operational advantage of regularity still exists. See de
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r

Figure 5.6: Notional example of Two-stage Sampling with Systematic Sampling
in both stages

Gruijter & Marsman (1985) for an account of perpendicular random transect
sampling and an application in quality assessment of soil maps.

As alluded in the examples above, the reason for combining two or more
basic strategies is always an enhancement of advantages or mitigation of disad-
vantages of the basic strategies. As a final example, consider the situation in
which the high precision and the operational advantage of regularity in SyS is
wanted, however, it is desirable that the precision can be quantified from the
data, without recourse to assumptions about the spatial variability. A possible
solution is to adapt the T'wo-stage/Systematic compound strategy of Fig. 5.6.
In order to enable model-free variance estimation, the PU’s could be selected at
random instead of systematically, while maintaining grid sampling in the second
stage. In that case, the variance can be estimated in the same way as with basic
TsS.

In devising a compound strategy, very often there are good reasons to stratify
the area first, and then to decide which designs will be applied in the strata. It
is not necessary to have the same type of design in each stratum. As long as the
stratum means and their variances are estimated without bias, these estimates
can be combined into unbiased overall mean and variance estimates using the
formulas given in Section 5.4.

If a variogram for the area is available, the variance of a compound strategy
can be predicted prior to sampling, using the Monte-Carlo simulation technique
presented in Section 5.9. In the case of stratification this technique can be
applied to each stratum separately, using different variograms if necessary.
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Figure 5.7: Notional example of Stratified Cluster Sampling

5.8.2 Spatial systematic strategies

Most strategies discussed so far are spatial in the sense that primary sampling
units and clusters are defined on the basis of geographical co-ordinates. Also
strata are usually defined that way. Given these definitions, however, the ran-
dom selection restrictions do not refer to the co-ordinates of sample points. A
category of more inherently spatial strategies exists of which the random selec-
tion restrictions make explicitly use of X and Y co-ordinates or distances in
geographical space. Two examples are given.

[ig. 5.8 shows a ‘systematic unaligned’ sample. This technique was proposed
by Quenouille (1949). The area is first divided into square strata and one point is
selected in each stratum, however, not independently. A random X co-ordinate
is generated for each row of strata, and a random ¥ co-ordinate for each column.
The sample point in a stratum is then found by combining the co-ordinates of
its row and column. Notice in F'ig. 5.8 the irregular, but still fairly even spread
of the points.

IMig. 5.9 shows a ‘Markov chain’ sample, a technique discussed by Breidt
(1995). Again, notice the irregular but fairly even spread of the points. The
underlying principle is that the differences between the co-ordinates of consecu-
tive points are not fixed, as with systematic unaligned samples, but stochastic.
These differences lave a variance which is determined through a parameter ¢,
chosen by the user. Thus Markov Chain designs form a class in which one-per-
stratum StRR and systematic unaligned designs are special cases, with ¢ = 0 and
¢ = 1, respectively. The example in Fig. 5.9 was generated with ¢ = 0.75.

As illustrated by the examples, the purpose of this type of strategies is to
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Figure 5.8: Notional example of Systematic Unaligned Sampling
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Figure 5.9: Notional example of Markov Chain Sampling
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allow enough randomness to avoid the risk of interference with periodic vari-
ations and linear artifacts like roads, ditches, cables and pipelines, while still
maintaining as much as possible an even spread of the points over the area.

5.8.3 Regression estimators

Suppose that an ancillary variable x is available which is roughly linearly related
to the target variable y and known everywhere in the area, for instance from
remote sensing or a digital terrain model. Then this information can be exploited
by using a ‘regression estimator’. For a simple random sample this is

Ve =¥+ b(X - "l’_')v

where:
Y : sample mean of target variable;
T : sample mean of ancillary variable, measured at the same points as y;

X : areal mean of ancillary variable;
b : least squares estimate of the regression coefficient:

i

> (i —y)(x: — )

b=i=l

For large samples (say n > 50) the variance can be estimated by (Cochran,
1977):

1 S = 12
v(Ty,) = n—(n——ﬁ ; ((yi —7) — b(z; — T)]".

If the ancillary variable is not known everywhere in the area, but can be mea-
sured cheaply in a large sample, then the relationship can be used by measuring
y only on a random sub-sample, and again applying a regression estimator. This
technique is known in the sampling literature as ‘double sampling’ or ‘two-phase
sampling’. Instead of the areal mean, X, we now have the large sample mean
7', so that

Y=Y+ b(il - T,

with estimated variance (Chochran, 1977):

- » [1, @ -7 Sy~ Sy
U(’UL,.) - Sy.m |:.n + Z('Lz _ .'L_‘)Q +
is the estimated residual variance:

e g2
where s,
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The regression estimators given above have been generalized to stratified sam-
pling and to the case with more than one ancillary variable. They have a great
potential for natural resource inventory, but their application in practice seems
underdeveloped. Brus (2000) discussed in detail the use of regression models in
design-based estimation of spatial means of soil properties.

5.9 Model-based pi'ediction of design-based sam-
pling variances

If prior information on the spatial variability is available in the form of a var-
logram, the following method can be used to predict the sampling variance
of any design-based strategy. The core of the method is the general equation
for predicting the variance of a design-based estimated mean from a variogram

(Domburg e.a. 1994):

BelVo(P)] = Fa = BylN - Ty - N (5.9)
where:

Ee|.] : statistical expectation over realizations from the model & underlying
the chosen variogram;

E,|.] : statistical expectation over realizations from the design p;

Vp(.) : variance over realizations from the design p (the usual sampling vari-
ance in the design-based approach);

% 4 : mean semi-variance between two random points in the area;

A : the vector of design-based weights of the points of a sample selected
according to design p (Ior instance, if one cluster of 3 points and one of 2 points
were selected, the weights in calculating the mean would be (cf. Eq. 5.6): 1/6,
1/6,1/6, 1/4, 1/4.);

I's : matrix of semi-variances between the points of a sample selected ac-
cording to design p.

The first term, 7 4, 1s calculated by numerical integration or by Monte-Carlo
simulation, repeatedly selecting a pair of random points, calculating its sermni-
variance, and averaging. The second term can also be evaluated by Monte-Carlo
simulation, repeatedly selecting a sample according to design p, calculating its
mean semi-variance A’ - I'y- A, and averaging. This generic procedure is computa-
tionally demanding but it is the only option for compound and spatial systematic
strategies (Section 5.8). For the basic strategies, however, much more efficient
algorithms are possible, making use of the structure of the design types. The
following special prediction equations can namely be derived from the general

Equation (5.9).

Simple Random Sampling
In the case of SRS, Equation (5.9) simplifies to:

V(7)) = .
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Stratified Sampling

For StS, Equation (5.9) becomes:

L
Eay 1 _
Le[Vp(Y)) = Z E’)’A/n
h=1."

where % 4, is the mean semi-variance between two random points in stratum h.
Different variograms can be used for the strata.

Two-stage Sampling

Ior TsS and m; coustant the sampling variance is given by Fquation (5.5).
The variance components in this equation are the between-unit and the pooled
within-unit variance, S% and S%,. These components can be predicted from
the two terms in Equation (5.9). The first term predicts the total variance,
S2 = S% + S%, while the second term predicts S3, /2 if we take n = 1 and
m = 2. In other words, the second term is calculated by repeatedly selecting
one unit and two random points in it. The result is the mean semi-variance
between pairs of random points within units, denoted by %;;. The sampling
variance is then predicted by:

= 1/ m—1 _
BV = 5 (74 = "= 0 )

m

Cluster Sampling

The sampling variance with CIS equals the between-cluster variance, S3, divided
by the number of clusters, n. To predict S3 for a given cluster definition, we
apply Equaton (5.9) to CIS with n = 1. In other words, the second term is
calculated by repeatedly selecting only one cluster. Within each cluster the
points have equal weight (1/m;), so that A"- I’y - A simplifies to the unweighted

mean:
my My mi—1 my;

- DID I TR S e

T k=11=1 k=1 I=k+1

because I'y is symmetric with zero diagonal. The result is the mean semi-
variance between pairs of points within clusters, denoted by %¥~. The sampling
variance is then predicted by:

BV(D)] = 5 (34— 7o)

course, in the special case that all clusters have the same size and shape,
Of th 1 that all clusters | t d sh
A T, - X needs to be calculated only once.
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Systematic Sampling
As SyS is CIS with n = 1, the sampling variance can be predicted by:

BelVp(V)] =F 1 — Fo-

Again, in the special case that all clusters have the same size and shape,
X - T'y - A needs to be calculated only once.



Chapter 6

Model-based sampling in
2-dimensional space

In the model-based approach the emphasis is on identifying suitable stochastic
models of the spatial variation, which are then primarily used for prediction,
given the sample data. This subject is treated in many textbooks on geosta-
tistics. The models can also be used to find efficient sampling designs, but the
main focus is on model building and inference, not on sampling design. This is
natural, because the approach was developed to cope with prediction problems
in the mining industry, where the data had already been collected via conve-
nience or purposive sampling (Section 2.5). Nevertheless, stochastic models of
the spatial variation have been successfully used in optimizing spatial sampling
configurations for model-based strategies. Three different forms can be distin-
guished.

Firstly, if no prior point data from the area are available, the model can be
used to determine the optimal sampling grid for point kriging or block kriging,
given an accuracy requirement. It has been shown (Matérn, 1986) that if the
spatial variation is second order stationary and isotropic, then equilateral tri-
angular grids usually render the most accurate predictions, closely followed by
square grids. In case of anisotropy the grid should be stretched in the direction
with the smallest variability. McBratney e.a. (1981) presented a method to de-
termine the optimal grid spacing for point kriging, given a variogram; a program
and examples can be found in McBratney & Webster (1981). A similar method
to determine the optimal grid spacing for block kriging is given by McBratney
& Webster (1983). These methods are intended for large areas with a compact
shape, so that boundary eflects can be disregarded.

Secondly, if point data from the area pre-exist, the model can be used to
find good locations for additional sampling. To that end a contour map of the
kriging variance is made; additional sampling is then projected preferably in
regions with high variance as this provides the largest reduction of uncertainty.
This technique is practical and has found wide-spread application. It is only

95
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Figure 6.1: Examples of two model-based strategies: (A) centred equilateral
triangular grid, and (b) configuration optimized by spatial simulated annealing
with the Minimization of the Mean of Shortest Distances criterion. (I'rom van
Groenigen & Stein, 1998)

approximative, however, in the sense that it does not lead to an exact optimal
configuration of sampling points.

Thirdly, if the area is small or irregularly shaped, then boundary effects
cannot be disregarded and computationally more intensive methods are needed.
Van Groeningen & Stein (1998) present such a method, using spatial simulated
annealing. Fig. 6.1 shows an example of a point configuration optimized by
their method.

The area contains two kinds of inclusions which cannot be sampled: a build-
ing in the South and water in the North. In this example, the soil under the
building is part of the research area, say for soil sanitation, while the water is
not. The optimized configuration shows that sample points are attracted by the
‘research inclusion’, but repelled by the ‘non-research inclusion’. For compari-
son an equilateral triangular grid is shown, with the points removed that cannot
be sampled. Using this method it is very easy to account for pre-existing data
points; at the start they are simply added to the new points and their loca-
tions are kept fixed during the optimization process. The method then renders
an optimized configuration, as opposed to the approximative method described
above. Another advantage of this method is that it is versatile, because different
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quality criteria for optimization can be build in easily.

The scope of model-based strategies is wider than that of design-based
strategies. Firstly, the data requirements are more relaxed. Data [rom con-
venience, purposive as well as probability sampling can be used for model-based
inference, while design-based inference requires probability sampling. Secondly,
model-based inference can be directed towards a wider class of target quanti-
ties, including local functions and functions defined by geographic neighborhood
operations. An example of the latter is the total surface area of land patches
consisting of a minimum number of adjacent pixels classified as suitable for a
given land use. A local function which can only be predicted by a model-based
strategy is, for instance, the spatial mean of a small domain (or ‘block’} with
no sample points in it.

The price paid by the model-based approach for its larger versatility is full
dependency on a stochastic model of which the validity is more or less arguable.
If the alternative of the design-based approach is not applicable, this dependency
just has to be accepted. However, where the scope of the two approaches overlap,
one has a choice as discussed in Chapter 3.
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Chapter 7

Sampling in 1- or
3-dimensional space

The previous chapters are focussed on sampling in 2D space, but in practice
very often other dimensions are involved: 1D or 3D space, time or space-time.
In general, the methodology presented for 2D space can be easily transferred or
adapted to these other dimensions as is outlined in this and the next chapters.

One-dimensional spatial universes can have a horizontal or a vertical orien-
tation. Horizontal 1D universes are, for instance, projected trajectories of roads
or pipelines. The methodology presented for 2D is directly transferable to this
situation. Sampling in vertical 1D space, i.e. sampling at depth, is practically
always done at more than one location, hence it is part of sampling in 3D space.

The universe of interest is very often embedded in 3D space. Sample points
would then have three coordinates (X, Y and Z7), and theoretically all three
could be determined independently of each other, similarly to X and Y in 2D
sampling. That would typically lead to sampling at a single variable depth at
each location. However, this is hardly ever done in practice. There are two main
reasons to treat the 7 coordinate differently, and to decompose the 3D sampling
problem into a 2D (horizontal) problem and a 1D (vertical) problem.

The first reason is when the target variable is defined as a function of soil
properties at various depths, as is usually the case in the context of, for instance,
plant growth and leaching. It is then logical to sample at these depths at each
location. The second reason is when the target veriable is defined at points in
3D space, e.g. the concentration of a contaminant, and the target quantity is
defined over 3D space, e.g. the 3D spatial mean. In that case, although not a
necessity, it is usually efficient to take samples at various depths at the same
location. The sample i1s designed and analysed as a two-stage sample, with
locations as primary units and depths as secondary units (see Section 5.5).

The methodology of sampling at depth is in principle the same as that for 2D
space, however, cluster and two-stage sampling wil usually inefficient because
their operational advantages in 2D space do not hold for sampling at depth. The
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two dominant techniques in practice are purposive sampling at fixed depths and
stratified systematic sampling, with soil horizons as strata and compositing of
samples from the same horizon.



Part 111

Monitoring: sampling in
time or in space-time
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Chapter 8

Central issues in monitoring

8.1 Purposes of monitoring

According to Webster’s dictionary, monitoring is: "to watch, observe or check
for special purposes”. The good thing of this definition is that it links moni-
toring explicitely with "special purposes”, to the extent that without a special
purpose we should not even speak of monitoring. Nevertheless, two essential
elements are missing in this definition. Firstly, that monitoring is repeated and
continued for a shorter or longer period of time. Secondly, the observation is
being done in a more or less systematic way. Generally speaking, monitoring
of natural resources should provide the information that is necessary for taking
proper decisions on natural resources management. With regard to soil, a tra-
ditional kind of monitoring is for the nutrient status of agricultural fields as a
whole, while recently systems are being developed to monitor variations within
fields, to support precision agriculture. Also, during the last decades systems
have been set up to monitor soil quality and soil pollution at a regional or na-
tional scale. Monitoring in hydrology shows a large variety of aims and scales.
As for soil, monitoring of open water as well as ground water may be directed
to quality and pollution, or otherwise to quantity, with water level as an impor-
tant aspect. Monitoring in ecology has still a wider scope than in soil science
and hydrology; important objectives are evaluation of effects of environmental
changes on species abundances and occurrence of vegetation types.

With a view on designing monitoring systems, it is useful to distinguish
three categories of monitoring according to its purpose (Dixon & Chiswell, 1996;
Loaiciga e.a., 1992):

e ambient or status monitoring for quantitative description of the universe
as it changes with time;

e trend monitoring to test whether temporal trends are present in the uni-
verse;
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e regulatory or compliance monitoring to test whether the universe satisfies
regulatory conditions.

With status monitoring the sampling scheme should allow efficient estima-
tion of decriptive parameters repeatedly; with trend and regulatory monitoring
an important issue in system design is the validity and power of the relevant
statistical tests.

8.2 Monitoring: sampling under changing cir-
cumstances

In view of the design of sampling schemes, an extremely important difference be-
tween inventory and monitoring is that inventory takes place within a relatively
short period of time, during which neither the universe is supposed to change in
any relevant way, nor the operational, organisational and budgetary conditions
will generally alter. With monitoring, on the other hand, not only the universe
may undergo large, unexpected changes, but especially in long-term monitoring
the conditions may also alter in a way that makes adaption of the sampling
scheme inevitable or desirable. There may be a change in the objectives or their
priorities, or new knowledge or better models or techniques may become avail-
able. An important situation that will always change during monitoring is, the
amount of available data. Although this is clear enough, it is less obvious how
to exploit the increasing information on the universe for re-design or fine-tuning
of the sampling scheme. The fact that monitoring, especially long-term moni-
toring, is generally bound to face changing circumstances calls for flexibility of
the sampling scheme. The so-called dynamic and rotational systems are more
powerful in this respect; see Chapter 11.



Chapter 9

Designing a monitoring
system

I use the term ‘monitoring system’ here as a synonym of ‘sampling scheme for
monitoring’, i.e. a scheme for sampling in time or in space-time. A term of-
ten used in this connection is ‘monitoring network’, which has been defined by
Loaiciga e.a. (1992) as a fixed of set sampling locations and a sampling fre-
quency. The ‘system’ concept is much more general than the ‘network’ concept,
for two reasons. IMirstly, a monitoring system is a sampling scheme, so it includes
not only a sampling design in space-time but, for instance, also the measurement
technique and the method of data analysis (see Section 2.1). Secondly, the set of
sampling locations of a monitoring network does not change with time and the
same sampling frequency is applied at each location: it represents a so-called
static sampling design. A monitoring system, on the other hand, may use a
dynamic sampling design with sampling locations that change with time, or a
rotation sampling design in which part of the locations change with time. As
dynamic and rotational systems have the highly desirable property of flexibility
(Section 8.2), it is important not to exclude these in advance by using a too
restrictive concept of sampling design.

Monitoring system design is decision taking under uncertainty and often has
to deal with changing conditions, high complexity and competing objectives.
Apart from flexiblity, this asks for:

1. robustness of the system, so that if the most questionable assumptions
made in designing the system appear to be incorrect, it still produces
useful information.

2. an iterative approach, to anticipate the situation that more data and better
insight is available for fine-tuning and re-designing the system.

In Section 2.2 I proposed as a guiding principle in design of sampling schemes:
"start at the end, then reason backwards”. In other words: start the design
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process with a precise as possible specification of the objective, by analysing the
information need. I believe that this is a good principle in sampling for inventory
as well as for monitoring. The objective is the main factor that determines the
spatial and temporal scale, the target variables and parameters, the level of
detail, and the objective function.

The objective function that you choose to optimize in designing a system
should represent the final aim as accurately as possible, but a problem is that
there is often more than one objective, and the objectives may change. Anyhow,
it is good to realize that in principle there is a choice between two main kinds
of objective function: surrogate objective functions (statistical quantities like
error-variance or detection probability) and ultimate objective functions, which
estimate beforehand the value of the monitoring information in achieving the
ultimate goals. In principle, if an ultimate objective function can be defined
realistically, that would be better than a surrogate function, because that makes
it more likely that the system will be doing what it is supposed to do.

Given an objective function, the technique to optimize it will generally be
some form of Monte-Carlo simulation with a stochastic model of the spatio-
temporal variation in the universe. This generates equi-probable random real-
izations of the universe, and for each realization the response from a candidate
monitoring system is evaluated. The value of the objective function for the can-
didate system is then calculated over these responses, and an iterative search
algorithm repeats this process for other candidates in order to find the best
system.

Some pitfalls in designing monitoring systems are worth mentioning. The
first pitfall is that one does not fully acknowledge the dynamics of the problem,
by not realizing or under-estimating how fast some circumstances may change
while the system is used. Secondly, there may be an inclination to under-
estimate the temporal variation, hence to choose a design that covers the time
domain insufficiently, because it is usually easier to get a realistic prior estimate
of the spatial variation than of the temporal variation. Thirdly, it may be
tempting to adopt a cheap-to-measure target variable at the cost, however, of
large bias in the final results. Suppose, for instance, that the objective is to
estimate the total emission of a pollutant from the soil to the ground water in
a given area during a given period. One possible strategy would then be to
measure the concentration of the pollutant in the soil moisture at the sampling
points, to estimate the mean concentration from these data, and to multiply the
mean concentration with the total ground water recharge taken from a water
balance for the area. The advantage of this strategy is that only concentrations
need to be measured. However, the disadvantage is that the estimate of the total
emission is possibly seriously biased. The cause of this bias is that the strategy
assumes implicitly that concentration and recharge are independent variables,
whereas 1n reality this will not be true; for instance, there may be a tendency
for high concentrations at times and at places with low recharge to the ground
water. A solution is to measure not only the concentration at the sample points
but also the flux to the ground water, and to take the product of these two as
the target variable.
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The last pitfall to mention here is the use of a wrong formula for sample size
or sampling frequency. To explain this, consider the variance of the estimated
mean of some target variable  over a universe. Suppose we have n observations
on @, with a deterministic mean g plus a random component € with variance
ol

T =pte (i=1...n)

If we take the unweighted sample mean as estimator of u:

~ 1
.U'Z,',:Zﬂfi

and if the observations are independent, then the variance of the mean is given

by:

3=

Var(fi) = % (9.1)

However, if the observations are not independent, then it was realized long
ago (Bayley & Hammerlsley, 1946), that this formula needs adjustment by tak-
ing account of the covariances between the observations:

| o
Var(@) = % (Yot +23 3 Covman)} == (14 (-5} (92)

where p denotes the average correlation between the observations. So, an
equivalent sample size was defined, equal to the nominal sample size divided by
the correction factor in Eq. 9.2:

"1 = 4 (n - )7}

This formula for equivalent sample size has become rather popular and is
applied in time serie analysis (Lettenmayer, 1976; Matalas & Langbein, 1962;
Zhou, 1996) as well as in spatial statistics, for instance in Gilbert’s book on
ecological monitoring (Gilbert, 1987). The formula seems entirely correct, but
if we look at what happens with the variance of the mean when we increase
the sample size, some odd behaviour can be noticed. Take as a simple example
an equidistant time series with the exponential autocorrelation function p(T) =
e 37T (see Fig. 9.1).

I'uthermore, we take both ¢ and the monitoring period equal to 1, and
increase the sample size by increasing the sampling frequency. Using Iiquation
(9.1) and (9.2), respectively, for independent and dependent observations we
obtain the variance of the estimated mean (i) as a function of sample size,
depicted in Fig. 9.2.

In Fig. 9.2 we see that with independent observations the variance contin-
uously decreases with increasing sample size, however with dependent obser-
vations the variance first drops, but not lower than a certain level, and after
that it stays nearly constant, in fact even increases somewhat. In other words,

(9.3)
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Figure 9.1: Autocorrelation function used to calculate the variance of the esti-
mated mean; see text.
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Figure 9.2: Variance of the estimated mean as a function of sample size, for
independent and dependent observations.



69

according to Fquation (9.2) we cannot reach a precision beyond a certain level
no matter how many samples we take, which counters the intuition that the
larger the sample, the more we know about the universe. The reason for this
is not that Equation (9.2) is incorrect, but that we were estimating the wrong
mean. Remember that g is just a model parameter. The solution is that we
don’t take the model mean as the target quantity to estimate, but the average
of & over the universe of interest: :

i .
T=—" adu
ol Ju

where the integration is over the universe of interest U, with size [|U]|.

As explained in Chapter 3 there are two different approaches to estimate
Z: the model-based appoach, which leads to some form of block-kriging or a
time series equivalent of that, and the design-based approach, using probabil-
ity sampling. The methods derived from these two approaches are dealt with
separately in Chapter 5 and 6 for spatial universes, in Section 10.1 and 10.2 for
temporal universes, and in Section 11.1 and 11.2 for space-time universes.

In summary, when designing a monitoring system it seems useful to:

e optimize an ultimate objective function whenever possible;

e consider the use of a rotational system because of its inherent flexibility
(Section 11.1);

e be careful with the use of stratifications, because changes in the universe
may render the original stratification obsolete or hard to maintain.
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Chapter 10
Sampling in time

Sampling in time is done, for instance, to monitor the quality of surface water
or groundwater at a single critical location. It is similar to sampling in space in
the sense that, although the practical aspects may differ, the same principles,
theory and problems of choice play a role. Therefore, much of what has been
said about spatial sampling in Part II is applicable to temporal sampling as
well. In particular, the distinction and the choice between the design-based and
the model-based approach is again of paramount importance and is taken here
too as the main sub-division of the methodology. See Chapter 3 for a general
discussion of how to choose between these two appoaches. In the special case
of sampling in time it should be added that cyclic variations seem to be more
common in time than in space. If this is true, then for sampling in time more
caution is needed with model-based strategies involving systematic sampling,
i.e. at constant time-intervals, because of a greater risk that the sampling
interval interferes with some cyclic pattern of variation (see also Section 5.7).
On the other hand, taking samples at constant intervals is often more convenient.
Of course this advantage vanishes when a programmable automatic sampling
device can be installed. With sampling in time too, design-based strategies
have the advantage of greater simplicity and more robustness in the sense that
the statistical inference from the sample data does not rely on the validity of a
time series model. The scope of design-based strategies, however, is limited to
estimation of parameters related to the universe or to sub-universes as a whole,
e.g. means, totals, quantiles or distribution functions (see also Section 5.2).

Notwithstanding the similarities, temporal sampling may differ in one prin-
cipal aspect {rom spatial sampling: while spatial sampling always takes place in
a bounded universe, the temporal universe to be monitored may have an end-
point that is still undetermined when the monitoring system is designed. This
has several consequences, as discussed in the following sections. One practical
consequence is that, instead of the total sample size, the average sample size
per unit of time or the sampling frequency becomes the major parameter of the
monitoring system.
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10.1 Design-based sampling in time

Although random sampling seems to be less usual in time than in space, the
same methods as discussed in Chapter 5 for spatial sampling can be used for
temporal sampling. Clearly, where in 2D spatial sampling populations, domains,
strata and primary sampling units are all areas, in temporal sampling they are
periods of time. The advantages and disadvantages indicated for the various
spatial sampling strategies in Chapter 5 hold, mutatis mutandis, for sampling
in time. If the end of the monitoring period is pre-determined, the selection
techniques presented in Chapter 5 for the 2D spatial context only need obvious
adaptations to the 1D temporal context. Long-term monitoring projects often
have no pre-determined end, but budgets tend to be allocated annually. In that
case it is practical to take the budgetary years as strata, and to determine the
sample size for each successive year from the available budget.

There is one exception to the rule that the 2D spatial sampling designs of
Chapter 5 are applicable in time: the systematic unalined type of design in
Section 5.8.2 needs 2 dimensions. In place of that, the Markov Chain design
discussed in Section 5.8.2 is well suited to achieve a fairly even spread of sampling
points over time, while still avoiding the risk of interference with (pseudo-)cyclic
variations.

Oune important purpose in temporal sampling is not covered by the design-
based methods presented for spatial sampling in Chapter 5: estimation or testing
of a step trend. If interest lies in possible effects of a sudden natural change
or certain human activities that start at a given point in time, then a relevant
quantity to estimate may be the difference between the temporal means before

and after the change:
1 te
/ adt
te — by Ly

where T, and T}, are the temporal means after and before the change, re-
spectively, ¢, and ¢, are the beginning and end time of the monitoring, and i,
is the time at which the change happens. This effect is simply estimated by:

1 te
D=3, -7, = adi —
a b te'—tc/g,c

~ ~

D=7, -7
where T, and Ty, are estimators of the temporal means, depending on the
applied type of sampling design (see Chapter 5). If the samples taken before

and after the change are taken independently from each other, then the variance
of D equals:

V(D) = V(&) + V(Z)
where V(Z,) and V(%) are the true sampling variances of the estimated

means. An estimate ’I)(B)Aof V(D) can simply be obtained by inserting the
estimates of V(Z,) and V (%), as given in Chapter 5 for the various designs:
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v(D) = v(F,) + v(Ts)

A two-sided 100(1 — &) % confidence interval for D is given by:

Dty oy - \Ju(D) (10.1)

where ¢1_4/9 is the (1 5) quantile of the Student distribution with (n, +7,)
degrees of freedom; 7, and 1, denoting the degrees of freedom on which the
estimates v(T,) and v(Ty) are based. The null-hypothesis of no effect (D = 0)
can be tested against the alternative D 7% 0 with the two-sided two-sample t-
test. The null-hypothesis is rejected if the confidence interval of formula (10.1)

does not contain zero.

10.2 Model-based sampling in time

The simplest and most usual model-based method of sampling in time is to
sample at equidistant points in time, and to use a time series model for statistical
inference from the sample data. Time series analysis is a broad subject on its
own, and a vast literature exists on its methodology. A practical textbook is
Box & Jenkins (1976); see Hipel &McLeod (1994) for applications in natural
resources. These books discuss in detail how models of the temporal variation
may be selected and fitted to the data, and how these models can be used to
test, estimate and forecast quantities of interest. We repeat the warning in
Chapter 9 that some formulas for sample size imply that the model mean is to
be estimated, and therefore render sample sizes that are larger than needed for
estimating the more relevant temporal mean, the average of the target variable
over the monitoring period.

The tendency to sample equidistantly in time is obviously caused by opera-
tional advantages but probably enforced by the fact that equidistant series can
be analysed by methods which are mathematically relatively simple. However,
taking spatial sampling as an analogy, it can be conjectured that equidistant
sampling in time is not always the best option even in the model-based approach.
As explained in Section 5.4, if in spatial sampling sub-areas can be outlined be-
forehand that are expectedly more variable than others, then it is efficient to
stratify accordingly and to sample more densely in the more variable strata.
Similarly, if the temporal variation varies with time then it should be efficient
to sample more densely in periods with larger variability. Another example
can be borrowed from Chapter 6 on model-based sampling in space, where it
was demonstrated that when optimizing a configuration of sample points for an
area in which certain parts are not accessible for sampling, the sample poiuts
are attracted or repelled by the boundaries of the inaccessible parts, depending
on whether they belong to the target area or not. Similarly, if sampling is im-
possible in one or more sub-periods then a sampling design adapted in the same
way should be more efficient than an equidistant one.
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Chapter 11
Sampling in space-time

The general remarks made in Chapter 10 about sampling in time also apply to
sampling in space-time. In addition, two specific concepts need to be mentioned
here: static and dynamic monitoring systems. Static monitoring systems are
systems by which samples are taken each time at the same locations. With
dynamic systems a new set of sampling locations is selected at each sampling
time. The difference between static and dynamic systems is illustrated by Fig.
11.1 and Fig. 11.2.

The choice between a static and a dynamic system should be guided by
operational as well as statistical considerations. Obviously, a static system has
an operational advantage if the costs of repeated sampling at the same location
are lower than for sampling at different locations with the same total sample
size. Common reasons for this are when locating sample points in the field is
easier because they can be marked, or when sampling, measuring or recording
equipment is installed at fixed points in the field on a semi-permanent basis.
A statistical advantage of static systems is that estimation of temporal trends
will often be more efficient than other systems. A statistical disadvantage is
that while monitoring goes on, only the information on temporal variability
increases, not that on spatial variability.

The main advantage of dynamic systems is that they are much more flex-
ible than static ones. This is because at each sampling time the system can
be adapted to altered circumstances with respect to the spatial or temporal
variablity existing in the universe, the accumulating amount of information on
both these variabilities, or the information needs. The importance of flexibility
in monitoring systems has been discussed in Section 8.2.

Rotational systems are a compromise between static and dynamic systems
in that at each sampling time a fraction of the locations is rotated out of the
sample and replaced by new ones (see Fig. 11.3). Advantages compared with
static systems are greater flexibility and better spatial coverage. If there is a fair
amount of temporal correlation between sampling times, advantages compared
with dynamic systems are their higher efficiencies in estimating temporal trends
as well as status; see Section 11.1.

75



76 CHAPTER 11. SAMPLING IN SPACE-TIMI:

] { ‘ 1 Pl
| o N
B e o S 08 o- 88
_ Wr 4;,;. .1 ® _ ;.;W, S f,,,;.',.
| | ! | oo
u % ; ‘i u
Fo— ’ T,.!_ - ‘ —@® -?,, — _— —® — - ,ﬂ._?_
Time
B R B S A
| L
I. ~o P o . *,? _® _ S S _ M.,,
L | | i ; P

Figure 11.1: Notional example of a static system, with Simple Random Sampling
in both space and time.

11.1 Design-based sampling in space-time

11.1.1 Static systems

A static system can be viewed as a combination of a spatial sampling design
and a temporal sampling design, such that at each sampling time all points of
the spatial design are sampled and vice versa (see Fig. 11.1). The inference
in static systems will depend primarily on these two constituting designs. For
both space and time a choice has to be made between the design-based and the
model-based approach, so there are four possible combinations: design-based in
space and time, design-based in space plus model-based in time, model-based in
space plus design-based in time, and model-based in space and time. Only the
first combination, leading to purely design-based systems, is dealt with in this
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Figure 11.2: Notional example of a dynamic system, with Simple Random Sam-
pling in both space and time.

Chapter; the other combinations use a model of the spatial and/or temporal
variation for inference and are dealt with in Section 11.2.

The set of sampling locations as employed in design-based static systems
can be selected by the same designs as described in Chapter 5 on design-based
sampling in space, while the set of sampling times can be selected by the meth-
ods discussed in Section 10.1 on design-based sampling in time. Inference on
(a parameter of) the Spatial Cumulative Distribution Function at any given
sampling time can be done by applying the appropriate method from Chapter
5 on the data collected at that time.

Inference on a space-time mean is done in two steps. First, for each sampling
location the temporal mean is estimated from the data at that location, using the
method associated with the temporal design. Then the space-time mean and its
standard error is estimated using these temporal means as ‘observations’, using
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Figure 11.3: Notional example of a rotational system, with Simple Random
Sampling in both space and time.

the method associated with the spatial design. This standard error accounts
automatically for errors due to sampling in space and sampling in time. The
same two-step procedure can be followed for estimating space-time totals.

If the difference between the spatial means at two different times, D =
Y (t2) =Y (¢1), must be estimated or tested, then a possible temporal correlation

between the estimated means Y (1) and Y (t2) should be taken into account. A
simple, implicit way of doing this is similar to the two-step procedure indicated
before, and is based on the fact that the difference between two spatial means
is equal to the spatial mean of the differences. So, first calculate the difference
d; = y;(l2) — yi(t1) at each sample point %, then apply the appropriate method
of inference from Chapter 5 to those differences. In the case of classical testing,
this procedure leads to the common t-test for paired observations. The same
procedure can be followed for inference on the spatial mean of any temporal
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trend parameter, sucl as the difference between the temporal means before and
after some event (step trend), or the average change per unit of time (linear
trend).

11.1.2 Dynamic systems

With dynamic systems, at each sampling time one is free to choose a spatial
sampling design from Chapter 5 that seems most appropriate given the circum-
stances at that time. For simplicity, I'ig. 11.2 shows the same spatial design at
every sampling time (SRS with n = 9), but in applications one may adapt the
sample size, possible stratification, clusters and/or primary sampling units, and
even the very type of design. Because the sa’r\nples take}} at different times are

mutually independent, the estimated means Y (¢;) and Y (¢) are so too. Hence
the difference D is estimated by

D=Y(t:) - Y(t)

and its standard error is simply estimated from the variances:

s(D) = \/v (Y?'(t2)) +v (f/(tl))

In the case of classical testing, this procedure leads to the common two-sample
t-test.

More generally, the two-step procedure for static systems (estimating first
temporally, then spatially) is now reversed into estimating first spatially, then
temporally. For instance, inference on a space-time mean proceeds by first es-
timating the spatial mean at each sampling time (using the method associated
with the spatial design at that time), and then estimating the space-time mean
from these means as ‘observations’ (using the method associated with the tem-
poral design). Inference on totals and trend parameters is similar,

Dynamic systems can be considered as a special case of two-stage sampling
in space-time, using spatial sections of the universe at given times as primary
sampling units, and sampling locations as secondary units. Therefore, the meth-
ods of inference for two-stage sampling in space, given in Section 5.5, can be
applied. In the extreme case when one location is selected at each sampling
time, this is equivalent to Simple Random Sampling in space-time. (Note that
the designs in the examples of Fig. 11.1, 11.2 and 11.3, although with SRS in
both space and time, are not equivalent with SRS in space-time.)

Of course one may reverse the order of space and time in the two stages, by
using temporal sections of the universe (i.e. periods of time) at given locations
as primary sampling units, and sampling times as secondary units. Now the set
of sampling locations remains fixed through time, as with static systems, which
brings the same operational advantages. The difference with static systems is
that sampling at the various locations is not synchronized, and that the temporal
design may be adapted to local circumstances. This kind of dynamic system is
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attractive when considerable spatial variation between time series is known to
exist, and the mentioned operational advantages are real. The inference is as
for static systems.

11.1.3 Rotational systems

Rotation sampling or ‘sampling with partial replacement’ represents a compro-
mise between static and dynamic systems. The rationale is to avoid on the one
hand the unbalancedness of static systems that accumulate more data only in
time. On the other hand, the relative inefficiency of dynamic systems for esti-
mating temporal trends is partially avoided because repeated measurements are
made at the same locations.

The principle of rotation sampling is to divide the locations of an initial
spatial sample into different rotation groups, and to replace each time one group
by a new set of locations (see Fig. 11.3). The spatial mean at any time tg, Yo,
is estimated by the composite estimator (Rao and Graham, 1964; Salski, 1990):

~

~1 o~ ) el —
Yo=QY_1+Yo_1—Y_10)+(1-Q)Yo

where Q is a weighing constant (0 < Q < 1), Y is the estimator for to based
on the entire sample at {p, 70,_1 is the estimator for {y based on only those

samples common to tp and the previous time ¢_, ?_1,0 is the estimator for ¢_

o~/
based on only those samples common to to and t—1, and Y _, is the composite
estimator for ¢_,. The difference D is estimated by

Rao and Graham (1964), in an extensive study assuming a finite popula-
tion, calculated optimum values for Q@ and gains in efficiency over the simple
estimators of level (Yp) and change (D). It appeared that when the temporal
correlation is high moderate gains (15 - 55 %) for level and large gains (100 -
800 %) for change are achieved. Keeping the sample size constant, the gains
for level decrease with increasing number of repeated measurements, while the
gains for change increase.

Many different strategies of rotation sampling have been developed, includ-
ing improved estimation procedures. In some strategies a set of locations would
be re-introduced into the sample after having been rotated out for some time.
See Binder & Hidiroglou (1988) for a review on rotation sampling,.

11.2 Model-based sampling in space-time

Broadly speaking four approaches can be followed for model-based sampling in
space-time, using:
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e a geostatistical model of variation in space-time (an extension of spatial
geostatistics with the time dimension);

e a multivariate time-series model (a generalisation of univariate time-series,
the respons being the time-dependent vector of observations at the various
sampling locations);

e a regionalized time-series model (a spaﬁial geostatistical model with the
parameters of time-series models fitted at the various sampling locations
as regionalized variables);

e a space-time Kalman filter (a data assimilation technique with optimality
properties, especially useful for short time-series).

All four approaches involve complicated and highly specialized statistical
techniques. Therefore a presentation of these methods falls outside the scope
of this report, and the reader is referred to the literature: Kyriakidis & Journel
(1999) for the geostatistical approach, Box & Jenkins (1976) for time-series
analysis, and Anderson & Moore (1979) and Binder & Hidiroglou (1988) for the
Kalman filter approach.

The geostatistical approach is generally considered to be less promising than
the regionalized time-series and the Kalman filter approach, because it is often
difficult to construct a realistic model of the variation in space-time. The same
applies to the multivariate time-series approach. Although much depends on
what data are available, it seems thal in many practical situations the regional-
ized time-series approach and the Kalman filter approach are the most suitable
candidates for model-based inference from sample data.

11.3 Final remarks

Clearly, several important issues received little or no attention in this report.
This is partly due to the fact that I could not find much practical methodology
to tackle these problems. Therefore I suggest priority for further research on
the following themes:

e combining data from probability samples with data from purposive or
convenience samples;

e suitable techniques of cartographic presention of monitoring results on
maultiple target variables;

e specialized sampling strategies for locating ‘hot-spots’;
e efficient design-based rotational monitoring systems;

e regionalized time-series modeling and Kalman filters, using available prior
information.
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