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SUMMARY 
 
This report focuses on the variables that influence the exposure to pesticides in the diet, and on 
how to model these variables in a probabilistic approach to assess the dietary exposure to these 
compounds. The main variables addressed are processing, unit variability, and percentage of the 
crop that has been treated with the compound combined with the level that should be assigned to 
those samples with concentrations below the reporting level. Different suggestions are made on 
how to include these factors in a probabilistic model. To assess the influence on dietary pesticide 
exposure of including these factors in the model, numeric experiments were performed using data 
on food consumption and pesticide levels in the Netherlands. Another issue addressed is the 
modelling of pesticide levels in foods when using a probabilistic approach. Pesticide levels can 
either enter a probabilistic model as raw data or via parametric modelling. This last approach is 
preferable when the number of levels available is low and/or when there are doubts that the 
available levels represent the true range of levels encountered in real life. To establish which type 
of distribution fitted pesticide levels best, 10 pesticide–commodity combinations were fitted to 21 
distribution types. The results demonstrated that the lognormal distribution fitted concentrations 
best. 
 
Another important issue in pesticide exposure assessment addressed in this report is what to do 
when pesticide data are scarce. In pesticide exposure assessment the data on pesticide residue 
levels on different crops will typically be limited. We addressed the question when we can speak 
of such a situation and a possible approach to deal with it is discussed, namely grouping of 
products. By grouping different products into product groups composed of related products (e.g. 
product groups consisting of cabbage or all kinds of berries) the number of measurements per 
group increases and may give sufficient data to estimate the parameters of the lognormal 
distribution that models the pesticide levels. 
 
Pesticide levels in the EU are usually reported in a tabulated (histogram) form. This report 
describes how this type of data can be transformed into a lognormal distribution and can thus be 
used in a probabilistic assessment of exposure. A numerical experiment is described in which full 
data were classified in histograms and then transformed in a lognormal distribution. Results 
showed that histogram data (as reported in the EU) can be used to estimate the dietary exposure 
to pesticides. 
 
This report encompasses work performed as part of Workpackage 2 of the Monte Carlo project 
funded by the European Commission Quality of Life and Management of Living Resources Fifth 
Framework Programme (contract noQLRT-CT-1999-00155). 
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1 INTRODUCTION 
 
This report focuses on the variables that influence the exposure to pesticides in the diet (chapter 
2), and on how to model these variables in a probabilistic model for assessing the dietary 
exposure to these compounds (chapter 3). 
 
The work reported here was carried out as part of Workpackage 2 of the Monte Carlo project 
funded by the European Commission Quality of Life and Management of Living Resources Fifth 
Framework Programme (contract noQLRT-CT-1999-00155). This report, in a slightly different form, 
is available under the title ‘Chemical concentrations in food – pesticide residues’ on the internet  
(http://www.tchpc.tcd.ie/montecarlo).  
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2 VARIABLES THAT INFLUENCE DIETARY EXPOSURE TO PESTICIDES  
 
Food may contain many different chemicals, such as nutrients (e.g. carbohydrates, vitamins), 
additives and process aids (e.g. antioxidants, emulsifiers), agricultural chemicals (pesticides and 
veterinary drugs) and toxins and environmental contaminants (e.g. mycotoxins, dioxins). The levels 
of these chemicals vary considerable. For example, agricultural chemicals may be present in high 
concentrations (levels above permitted levels) or be completely absent (Klaveren 1999). 
 
In the following we will focus on the intake of pesticides through the diet. To estimate the 
exposure to these chemicals, different issues need to be addressed to make the estimation as 
accurate and realistic as possible. These include the conversion of food as eaten into raw 
agricultural products, pesticide residue levels and the effect of different variables on these levels. 
These variables are processing, variability in levels within composite samples, and percentage of 
the crop that has been treated with the compound combined with the level that should be 
assigned to those samples with concentrations below the reporting level. All these issues should 
be included in a model for estimating the dietary exposure to pesticides (Crossley 2000, Petersen 
2000, US EPA 2000a). 
 
Other factors are known to influence the chemical level to which a consumer is exposed or which 
is analysed in a certain commodity. These include storage, transport, shelf-life, use patterns, lab-
to-lab variation, and analytical methods used to measure chemicals. Country of origin of the 
product is also a factor that may influence the level present in ready-to-eat food. For example, 
crops produced in southern European countries appear to contain more insecticides than 
countries with more humid and cold weather conditions. In these countries infections of fungi 
appear to be the predominant problem and therefore fungicides are the most commonly used 
pesticides. Due to shortage of information on these issues, at the level of both consumption and 
pesticide-commodity combination, these variables are not considered below. 

2.1 Food as eaten in terms of raw agricultural commodities 
 
Most analyses of pesticide residues in fruits and vegetables are conducted in raw agricultural 
commodities (RAC) including peels and non-edible parts. Processed or prepared foods are either 
not monitored or the number of samples is very small. This is due to the fact that in legislation 
limits of residues are mainly set for RAC. To model dietary exposure to pesticides, some 
countries have developed so-called recipe data banks for RAC to provide a link between residue 
data and food consumption data (Dooren et al. 1995). In the Dutch database all foods listed in the 
Dutch food composition table have been converted to RAC based on several sources of 
information (Dooren et al. 1995). These include among others recipes from cookbooks, and 
information from either the literature or label of the product. The type of processing a RAC has 
undergone before consumption is also recorded. E.g. apple juice may be converted to RAC 
'apple' with processing type 'juiced', apple eaten peeled to RAC 'apple' with processing type 
'peeled', apple eaten raw to RAC 'apple' with processing type 'none'. In this way the effect of 
processing on residue levels in RAC can be taken into account in exposure assessment. 
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2.2 Pesticide levels 
 
Pesticide levels in RAC can be derived from monitoring programmes executed by Member States 
of the European Union (EU). These data are mainly used to estimate the dietary exposure to 
pesticide residues, although they are not widely available. The raw data are present nationally in 
almost all EU countries, but are not easily accessible. Furthermore, there are differences in data 
collection and reporting between countries (no standardisation). This problem was recognised by 
the EU, which has set up a co-ordinated programme aiming to 'work towards a system which 
makes it possible to estimate dietary pesticide exposure throughout Europe' (EC 2000) sing a 
standardised manner of collecting and reporting pesticide levels in agricultural products. Apart 
from this problem, it should also be kept in mind that monitoring data may not always be 
representative of the levels people are exposed to in real life. The majority of pesticide monitoring 
programmes in Europe was initially set up for law enforcement reasons. Because of this sampling 
is not always at random and often focussed on those samples suspected to contain residue levels 
above the limit permitted (e.g. those products produced during wet seasons, under difficult 
conditions, or out of season). Use of these data in exposure assessment may thus lead to 
overestimates of exposure. However, recently it was recognised that there is an increasing need 
to compare the results of pesticide monitoring between countries and to use these data for 
exposure assessment. Because of this, current directives on pesticide monitoring programmes 
include more rules on representative sample taking (Codex Alimentarius 1999). 
 
Pesticide levels can also be derived from field trials (experiments performed to authorise the use 
of a pesticide in agriculture). These types of data are, however, not considered here, because 
they are unsuitable to estimate dietary exposure to a certain chemical in a certain population. In 
field trials pesticides are applied in a controlled manner, the whole crop is treated with the 
pesticide and a standardised period between administration and harvesting is observed. In real 
life, however, it is unlikely that all commodities have been treated, the circumstances of 
application will have been less controlled and the period between application and harvesting will 
vary. These factors will result in a larger variability in residue levels in real life compared to results 
from field trails. 
 
When using monitoring data in exposure assessment several variables that determine the level to 
which consumers are exposed in real life need to be considered, namely processing, variability 
and level assigned to samples with residue concentrations below the reporting level. These issues 
will be addressed below. 

2.2 1 Processing .
As mentioned above, pesticide analyses are mainly performed in RAC, which includes the peel and 
(other) non-edible parts. These commodities are however not eaten as such, but undergo some 
form of food processing before actual consumption. Processing has been interpreted as any 
operation performed on a food, food source, or food product from the point of harvest through 
consumption (Ritchey 1981). For example, most vegetables are washed and cooked and non-
edible parts are removed, and fruits are often washed, peeled and/or processed into juices or 
sauces. Processing affects pesticide levels (mainly reduction) as is evident from numerous studies 
(Celik et al. 1995, Elkins 1989, Hasegawa et al. 1991, Holland et al. 1994, Petersen et al. 1996, 
Ritchey 1981, Zabik et al. 2000), and from the pesticide evaluations reported yearly by the Joint 
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FAO/WHO Meeting on Pesticide Residues (e.g. (FAO/WHO 2000, FAO/WHO 2001)). The eventual 
effect of processing depends on many factors. These include the initial concentration of the 
residue, the inherent properties of the pesticide itself (e.g. water solubility, systemic versus non 
systemic), as well as the product to which it has been applied (e.g. Burchat et al. 1998). These 
processing effects on residue levels are extremely important in evaluating the risk associated with 
ingestion of pesticides residues. For example, Zabik et al. even stated that their study on the 
effect of processing on the level of four pesticides in apples provides data to alleviate recent 
concern for the level of pesticide residues in food, particularly those in foods eaten by children 
(Zabik et al. 2000). 
 
Due to the amount of pesticides authorised for use in agriculture and the different forms of 
processing applicable to one product, little detailed information is available on the influence of 
food processing on a specific pesticide-commodity combination. This is important because the 
behaviour and fate of the chemical varies with the pesticide as well as the crop (Burchat et al. 
1998). A manufacturer, requesting authorisation of a certain pesticide, is obliged to produce 
information on food processing if relevant. However, this information is mainly confidential and 
even if available many gaps certainly remain. Furthermore, conditions under which the effect of 
processing on a chemical level are evaluated may not always reflect accurately the practice in 
real life. 
 
If processing influences pesticide levels, it is relevant to have information on these items from 
food consumption surveys. However, it is not common practice in this type of survey to inform 
about food processing practices. For example, if an apple has been washed or peeled before 
consumption. In the absence of this type of information it may be possible to make general 
assumptions about processing, like 50% of the population peels the apple before consumption. 

2.2 2 Unit variability within composite samples.  
Monitoring measurements are typically performed in composite samples of RAC (e.g. peppers are 
analysed in samples consisting of 20 individual commodities each). Recently, it was recognised 
that pesticides may be unequally distributed within such a sample (Hamey and Harris 1999, Harris 
2000, Harris et al. 2000, PSD 1998a). Studies showed that individual units within a composite 
sample may contain high residue levels (Ambrus 2000, Andersson 2000, Earl et al. 2000, PSD 
1998b, PSD 1999). To account for this phenomenon, the term variability was introduced in acute 
exposure assessment of pesticides. 
 
In non-probabilistic modelling, variability is defined as the ratio of the 97.5th percentile (P97.5) of 
residue level of an individual commodity to the mean composite sample residue level (FAO/WHO 
2002). Variability was only defined for products with a unit weight larger than 25 g (Crossley 
2000, FAO/WHO 2002). For unit weights lower than 25 g is was assumed that the composite 
residue data reflect the residue levels in the food commodity as consumed. Variability is included 
in the equation that estimates the acute intake of a certain pesticide from one specific commodity 
(national or international estimate of short-intake; NESTI or IESTI). This equation was defined at the 
FAO/WHO Geneva Consultation in 1997 (Crossley 2000, FAO/WHO 1997) and later refined in 
subsequent meetings (FAO/WHO 2001, PSD 1998a): 
 

 

 8



 
� � � �

mean
processing bw

HRULP0,maxHRLPU,minfIESTIorNESTI �����

�

v
 

 
where: 
�� LP is the large-portion consumption of the commodity (P97.5 of consumers only), kg food 

per day; 
�� U is the unit weight of one commodity, kg; 
�� HR is highest reported residue level in a composite sample, mg per kg; 
�� bwmean is the mean body weight of the chosen (sub)population, kg; 
�� fprocessing is a factor accounting for processing and/or edible portions; 
�� v is the variability factor – the factor applied to the composite residue to estimate the 

residue level in a high-residue unit 
 
With insufficient data from measurements on individual units the FAO/WHO Expert Consultation 
recommended to assume (conservatively), when applying a variability factor, that all residue in a 
composite sample is present on one unit. Under this assumption v equals the number of units in 
the composite sample (FAO/WHO 1997). If Codex sampling protocols are used, then the number 
of units per composite sample is 5 for large crops (unit weight > 250 g) and 10 for medium 
crops (unit weights 25-250 g). More recently, the FAO/WHO concluded that a v of 7 for medium 
sized units could be used on a temporary basis until the database was further refined. The 
variability factor of 7 does not apply to granular soil treatment or leafy vegetables where the 
factor of 10 should be retained for medium sized units (FAO/WHO 2002). Unit weights are also 
important in probabilistic approaches, as will become evident in next chapter. 
 
Guidelines on how to apply variability in a probabilistic approach are not available. The US 
Environmental Protection Agency (US EPA) developed a method for extrapolating from pesticide 
residue levels in composite samples to residue levels in single units ('decomposition method'; (US 
EPA 1999)). This method results in a new residue data set of individual commodities that can then 
be incorporated into a probabilistic exposure estimation model in order to estimate exposure to 
pesticide residues in foods. The accuracy of this methodology depends on the number of samples 
collected from the same population of commodities (number should preferably exceed 30) and on 
the number of units in the composite sample (N) relative to the number of samples (n). If N >> n 
and the number of samples is small (e.g. 7 samples of 100 apples) the accuracy of the method 
deteriorates (US EPA 1999). 
 
To apply the variability factor successfully in exposure assessment, this factor should be 
representative of the level of variability to which people in real life can be subjected when 
consuming fruits and vegetables. Variability studies are not standardised as yet. Studies are 
performed on batches of individual commodities sampled from different locations, such as 
wholesalers and retailers, local and central markets, points of entry (for imported products) and 
processing industries. Variability studies may also be performed as part of field trials. All these 
studies result in variability factors that may be more or less representative of variability factors 
applicable to ready-to-eat products. The within-batch variability obtained from field trials may be 
smaller than that found in batches available for sale. Field trials are normally carried out under 
controlled circumstances, resulting in residue levels within a batch that are likely to be more 
uniform than that following commercial application of pesticides. When studied at the level of 
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retailer or (local and central) market the individual units of a composite sample may have been 
sorted according to size (e.g. fruit) or colour (e.g. red, yellow and green peppers) which will 
increase the residue level variability within a batch. Variability studies performed at the end of the 
distribution process will typically be most representative of variability factors applicable to 
products as consumed. However, these studies are not common. In authorisation of pesticides, 
default factors for variability (see above) are used when no variability study is available. It is 
however very questionable that these factors should also be applied when using monitoring 
results in probabilistic exposure assessment. These factors are fixed values and can therefore not 
be used as such in single simulations of a probabilistic exposure analysis. All the above mentioned 
factors complicate the application of variability in acute dietary exposure assessment of 
pesticides. In the next chapter several approaches are proposed to incorporate variability in the 
probabilistic approach to estimate the acute dietary exposure to pesticides. 
 
Information on the variability factor for a certain pesticide-commodity combination is expected to 
be very limited. Some studies have been performed as mentioned above, but information remains 
scarce. Nowadays, Authorisation Committees ask for variability studies when a compound is 
acute toxic. However, in the past this was not requested so limited data will be available from this 
source. And if available, as mentioned above, the use of these factors is questionable in 
probabilistic exposure assessment of pesticides. 
 

. f rt2.2 3 Percentage crop treated and levels below the limit o  repo ing 
Another important issue in exposure assessment to pesticides is the treatment of samples that 
are reported to contain no residues (Loftus et al. 1992, US EPA 2000a). These 'non-detects' 
(NDs) do not necessarily contain no residue, but may have levels below the level (limit of 
reporting, LOR) at which laboratories or monitoring authorities are obliged to report. The status of 
the LOR used by the laboratory is often not clear. In pesticide exposure assessment the limit is 
commonly indicated as LOD (limit of detection) or LOQ (limit of quantification). Unfortunately, only 
residue levels higher than LOD or LOQ are reported, in spite of official IUPAC (International Union 
for Pure and Applied Chemistry) recommendations to always report the numerical values below 
LOD or LOQ limits if available (Cressie 1994, Currie 1999, IUPAC 1995). 
 
The effect of the level assigned to the NDs on the estimated chemical intake of a population 
depends on several factors. These include the percentage of residue levels that are NDs, the level 
of the LOR relative to the levels monitored above this limit, and the percentage of the crop that 
has been treated with the pesticides (determines the percentage of NDs that can be considered 
to be real zeros). This issue is important in pesticide exposure assessment because in pesticide 
monitoring the majority of samples has residue levels below LOR. 
 
The US EPA developed a method in which the percentage of NDs that are real zeros depends on 
the percentage of the crop that has been treated with the pesticide (US EPA 2000a). For the 
other NDs, that are estimated to contain residue and are therefore no real zeros, different 
approaches were recommended, such as assigning them either the LOR or 0.5 � LOR, or using 
statistical methods to estimate the values or distribution of values associated with the ND values 
(US EPA 2000a). In general, these statistical methods should be used only in situations where the 
NDs compromise less than half the data set and the rest of the data are normally or lognormally 
distributed. In pesticide exposure assessment, however, the number of NDs will often exceed 
50% of the data set, making this approach less applicable when addressing dietary exposure to 
these chemicals. 
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3 PROBABILISTIC MODELLING OF DIETARY EXPOSURE TO PESTICIDES 

3.1 Model description 
 
This chapter describes a probabilistic model for the assessment of acute dietary exposure to 
pesticide residues. The model combines food consumption survey data and pesticide 
concentration data from monitoring programmes. The model allows for effects of food processing 
on residue levels between monitoring and ingestion, it can model unit variability either from 
available data or default assumptions, and it can use information on LOR and percentage crop 
treated to check whether NDs present a source of uncertainty. The model is only concerned with 
single-pesticide exposure modelling. The basic model is 
 

i
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ijkijk
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where yij is the intake of individual i on day j (in �g.kg-1.d-1), xijk is the consumption by individual i on 
day j of food commodity k (in g), cijk is the concentration of the pesticide in commodity k eaten by 
individual i on day j (in mg.kg-1), and wi is the body weight of individual i (in kg). Finally, p is the 
number of food commodities accounted for in the model.  
 
In the stochastic model the quantities xijk, wi and cijk are assumed to arise from probability 
distributions for individual food consumption and body weight, p(x1 ,...,xp,w), and for pesticide 
concentrations in each food commodity, pk(c). In principle these probability distributions may be 
parametric (e.g. completely defined by the specification of some parameter values) or empirical 
(e.g. only implicitly and roughly defined by the availability of a representative sample). In this 
report we incorporate food consumption and body weight into the model as an empirical 
distribution. Pesticide residue levels will be addressed both as a parametric and empirical 
distribution. 
 
3 1 1 Modelling o  pes icide concentra ions. .  f t t  
Rationale 
Residue concentrations in various food commodities are independent and can therefore be 
modelled by univariate distributions. Two approaches are possible: 
1) Non-parametric modelling of residue levels 

) f   

In the non-parametric approach, residue values are sampled at random from the available data 
and combined with the consumption data to generate a new distribution of exposure values. To 
assess the risk of exposure, percentiles of the exposure distribution are estimated. The 
disadvantage of this approach is that the results will be limited by the observations (another 
experiment will very likely result in other values). Therefore, in most cases the parametric 
approach is preferred. 
2  Parametric modelling o  residue levels
In the parametric approach, residue concentrations per commodity are sampled from parametric 
distributions. A special feature of residue data is that the large majority of measured 
concentrations (often more than 80%) is below LOR, resulting in skew residue concentration 
distributions with a large spike at zero and an extended tail to higher values. For statistical 
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Table 1. Number and mean pesticide residue level of samples with levels at or above the limit of 
reporting (LOR) for several pesticide–commodity combinations. Data are from monitoring 
programmes performed from 1997 till 2000 in the Netherlands. 

 
pesticide 

 
commodity 

number of  
samples � LOR 

concentration 
(mg kg ) . -1

bromopropylate apple 33 (5)  1 0.15 � 0.12 
 pear 74 (21) 0.21 � 0.20 
captan apple 248 (38) 0.26 � 0.44 
 pear 77 (27) 0.32 � 0.38 
chlorfenvinphos carrot 79 (39) 0.16 � 0.26 
chlorpropham potato 257 (66) 1.71 � 2.36 
diphenylamine apple 36 (7) 1.00 � 1.07 
iprodione carrot 96 (46) 0.11 � 0.15 
pirimicarb apple 71 (11) 0.07 � 0.07 
tolyfluanid pear 128 (33) 0.21 � 0.26 

1 Number in brackets is percentage samples at or above LOR. 

modelling a two-step procedure should be applied when addressing residue levels parametrically: 
1) modelling the presence of a concentration � LOR on food products with a binomial distribution 
with a parameter p representing the probability of a reported residue level, and 2) modelling 
residue levels � LOR with a parametric distribution. 
 
Methods 
To establish which type of distribution fits pesticide residue levels best we performed a study in 
which we modelled residue data in randomly selected foods. We chose those pesticides that were 
most frequently found to be � LOR during 2000 in the Netherlands. Pesticide residue data were 
derived from the KAP-database (Quality Programme for Agricultural Products), in which annually 
more than 200,000 records of measurements originating from Dutch food monitoring 
programmes for meat, fish, dairy products, vegetables and fruit are stored. The selected 
pesticide-commodity combinations are listed in table 1. We used BestFit (version 2.0d, Palisade 
Corp., Newfield, NY) to determine the top ranking of accepted distributions for the selected 
combinations. BestFit is a decision tool, which can be linked to Excel to fit more than 21 
distribution types to data. It performs statistical tests to compare quality of fit and ranks 
distributions by three goodness-of-fit statistics. In this study we used the Anderson-Darling test 
which is similar to the Kolmogorov-Smirnov test, but places more emphasis on the tail values. All 
tests are very sensitive to the number of values. The BestFit programme was used to select the 
number of intervals for the data classification prior to distribution fitting. The method for 
determining the distribution parameters was the maximum likelihood estimators (MLEs). Graphs 
were used to assess visually how well distributions agreed with the input data. Both test statistics 
as graphs should be used in interpreting the results.  
 
Results 
In total 10 pesticide-commodity combinations were tested. The distributions that were accepted 
four times or more are listed in table 2. Modelling lognormal distributions to residue levels was 
acceptable for all pesticide-commodity combinations. PearsonVI distribution, second best, was 
rejected for one combination, namely tolyfluanid-pear. This outcome confirms the results of a 
study conducted by Voet et al (1999). Products with at least 30 positive measurement values of 
iprodione were taken to explore which distributional type was suitable. The lognormal and the 
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Table 2.  Percentage1 of times a distribution was acceptable. Only samples with pesticide 
residue levels at or above the limit of reporting were used. 

distribution % accepted 
Lognorm 100 
Lognorm2 100 
Pearson VI 90 
Expon 70 
Inverse Gaussian 70 
Gamma 50 
Pearson V 50 
Weibull 50 
Beta 40 

 
1 Only those distributions accepted four times or more are displayed.

Pearson VI turned out to have an adequate fit for iprodione content in endive, cabbage lettuce, 
strawberry, carrot and currant. 
 
Conclusion 
Since residue data are positive, positively skewed and originate by mechanisms generating the 
lognormal distribution under a variety of biological circumstances (Crow & Shimizu, 1988) the 
lognormal was chosen to proceed with. At least in those situations where not contradicted by the 
data. Of course, in future research when more data may be available, the choice of distributional 
form should be reinvestigated. 
 
3.1 2 Modelling of processing .
Rationale 
Pesticide levels in food as eaten may differ from levels in the product as measured in monitoring 
programmes (typically raw product) due to processing (§2.2.1). In general we assume the 
following model: 
 
  ijkkijk crfcpos ��

 
where crijk is the pesticide concentration in a raw agricultural commodity k (RAC), and fk a 
processing factor for a specific combination of RAC and processing type with values typically 
between 0 and 1. Occasionally this factor may exceed 1. The user of the model should specify 
processing factors for each commodity – processing type combination as defined in the food 
consumption database. For this purpose it is advised to maintain a database of processing 
factors, indexed by pesticide, RAC and processing type. Before running the model it may then be 
necessary to specify how the processing factors are derived (e.g. from the data base entries 
and/or from other information). For example, if no processing factors are known for captan in 
pears, it may be decided to use the corresponding factors for captan in apples. 
 
Often the information will be limited and this may be entered in the probabilistic model by 
specifying uncertainties. A practical proposal is to specify for each processing factor two values, 
namely fk,nom and fk,upp, the nominal value (typically some sort of mean from an experimental study) 
and an upper 95% confidence limit, respectively. The fk,upp is typically set by an expert (even when 
statistical information on variability of the factor is available, there will often be uncertainty due to 
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appropriateness of the processing study for the target population). The upper limit should be such 
that experts easily agree that the limit is not too low. 
 
A typical database entry might thus read: 

 
pesticide RAC processing fk,nom fk,upp  
captan  apple washing 0.5 0.7 
 

and, confronted with the need to have processing factors for pears in a specific exposure 
analysis, an expert judgement may be: 
 

pesticide RAC processing fk,nom fk,upp  
captan  pear washing 0.5 0.8 

 
In probabilistic modelling processing factors can be used in either of three ways (for each RAC k 
to be chosen by the user): 
 
1. No processing factor: take fk = 1. This is in most (but not all) cases a worst-case 

assumption. No data on processing are needed and therefore this route is useful as a first 
step. 

2. Fixed value: use fk = fk,upp. Available information on processing effects is used, although in a 
cautionary way (in accordance to the precautionary principle). Note that fk,nom values need 
not to be specified when using this approach. 

3. Distribution: The logarithms of fk,nom and fk,upp are equated to the mean and the 95% one-
sided upper confidence limit of a normal distribution, respectively. This normal distribution 
is thus specified by a mean ln(fk,nom) and a standard deviation {ln(fk,upp) – ln(fk,nom)}/1.645. 
Values are drawn from this distribution in probabilistic analysis. 

 
Values equal to 0 are replaced by a low user-specified value (e.g. 0.01); this is useful 
computationally to avoid problems with logarithms. 
 
Methods 
To study the effect of processing we used residue data of captan in raw apples of the Dutch 
Inspectorate of 1997 till 2000. We chose this combination because captan is a pesticide often 
found in this product at levels � LOR. In total 570 composite samples (n = 20) of apples were 
analysed of which 248 contained levels of captan � LOR (0.01 mg.kg-1). The mean level of captan 
in these apples was 0.26 � 0.44 mg.kg-1, ranging from 0.01 mg.kg-1 to 3.50 mg.kg-1. Samples 
with captan levels < LOR were considered to contain no residue. 
 
The apple consumption data of the Dutch population were taken from the DNFCS 97/98 
(Kistemaker et al. 1998). This survey sampled 6,250 respondents (1-97 years) who recorded and 
weighed all food consumed during two consecutive days. This resulted in 12,500 single 
consumption days. In the survey apple was consumed on 7,737 days (62% of all survey days). 
The mean consumption (including the ‘non-consumption’ days) was 61 g per day. To link the 
consumption data to the residue levels in raw apples, the consumption of food products 
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Figure 1. Effect of processing on the exposure (�g kg d ) to captan 
through the consumption of apples in the Dutch population. 
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containing apples was converted to the consumption of raw apples using the recipe database 
CPAP (Conversion of food products to Primary Agricultural Products; (Dooren et al. 1995)). 
 
The effect of processing on captan levels in apples was varied as follows: no effect of processing, 
processing equals 0.5 (fixed level), and processing equals 0.5 but with a certain amount of 
uncertainty. In this last case processing was assumed to be, with a 95% certainty, between 0.45-
0.55, 0.40-0.60, 0.35-0.65, 0.30-0.70 or 0.25-0.75. For this the processing factor was modelled 
as a normal distribution with a mean of 0.5 and a standard deviation of 0.025, 0.05, 0.075, 0.10, 
and 0.125, respectively. By increasing the uncertainty of processing, we intended to show how 
sensitive the model was for variation in this parameter. In this example we assumed that 100% of 
the population consumed processed apples. The selected processing factors were never lower 
than 0. 
 
The probabilistic analyses were performed with spreadsheet models written in Excel (version 7.0, 
Microsoft Crop., Redmond, WA) and with the @Risk add-in (version 3.5.2, Palisade Corp., 
Newfield, NY), using Latin Hypercube sampling. Individual consumption data and residue levels of 
individual composite samples of apples were used. Each Monte Carlo simulation was run for 
5,000 iterations. During the simulation every captan residue level selected was multiplied with one 
(no processing), 0.5 (fixed level) or a number selected from a normal distribution (mean = 0.5) 
with varying standard deviations. The resulting captan level was then multiplied with a selected 
intake of apple from the consumption database. The exposure to captan was divided by the 
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corresponding body weight to give intake (�g) per unit body weight per day. We calculated the 
mean and P97.5 and P99.9 of each distribution. 
 
Results 
The mean and P97.5 and P99.9 of the intake distribution are plotted in figure 1 for the different 
levels of processing. It is evident that by applying a processing factor of 0.5 to all residue levels 
the exposure to captan, compared to the situation that no processing is applied, was halved. It is 
clear from this figure that the mean and P97.5 of the intake distribution were not sensitive to an 
increasing amount of uncertainty around the estimation of the processing effect. P99.9 fluctuated 
somewhat more, due to the fact that this percentile is more sensitive for extreme values 
occurring both in the consumption and residue database. 
 
Conclusion 
We conclude that processing has a major effect on the magnitude of exposure to pesticides, and 
should therefore be considered in exposure calculations if information is available, especially 
because in most cases the regulatory threshold risk is at the upper tail of the exposure 
distribution. However, it should be kept in mind that the results of any exposure assessment are 
dependent on the data used and assumptions made. The final effect of processing on the upper 
tail of the distribution will depend on the magnitude of the processing effect on the residue level 
and the contribution of the consumption of processed foods to the total consumption of the raw 
agricultural commodity. 
 
. .  f t r  3 1 3 Modelling o  uni  va iability within composite samples

Rationale 
Monitoring programmes analyse pesticide levels in an agricultural product cmk typically as a 
homogenised composite sample (§2.2.2). Such a composite sample is composed of nuk units 
with unit weight wuk. The weight of a composite sample is therefore wmk = nuk � wuk . This weight 
is often larger than a consumer portion. For example, a typical composite sample of 20 sweet 
peppers weighs 3.2 kg, whereas daily consumer portion weights in the DNFCS 97/98 range from 
0.08 g to 458 g. 
 
How should monitoring data be used to estimate the individual raw commodity pesticide level crijk? 
Although the mean residue level of a composite sample (cmk) may be a fair estimate of the mean 
residue level an individual unit (crijk), the variability of cmk is not appropriate for the estimation of 
the variability of crijk. In smaller portions extreme values may occur more readily, and thus acute 
exposures may be higher than when using composite sample residue levels. 
 
In non-probabilistic modelling of acute dietary exposure the unit-to-unit variability has been 
addressed by the definition of a variability factor v (§2.2.2). Values for v can be obtained by 
measuring individual units within a composite sample. In practice such data are mostly available 
from field trials, although for estimating the exposure in real life it would be more appropriate to 
derive unit variability from monitoring samples (§2.2.2). We therefore advise the use of field trial 
values for v only when data from monitoring programmes are not available. Because, the 
lognormal distribution is considered an appropriate model for positive residue levels (§3.1.1), we 
will also assume a lognormal distribution for unit residue levels. Let this distribution be 
characterised by � (mean) and � (standard deviation), the parameters of the log-transformed 
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concentrations lc. The variability factor v can be converted into the standard deviation � (see 
below). Upper-tail percentiles of this lognormal distribution are influenced in two opposing ways by 
the magnitude of the variability factor: 

1. Because of more spread, the percentiles c  increase with � relative to the median e�� qz
q e �

�

� 

(zq is the 100q percent point of the standard normal distribution); 
2. However, the median e� decreases with � relative to the expected value (mean) E(c) according 

to: � �
2

2
1
�� �

�� ecEe . 

 
Composite sample levels cmk are estimates of E(c). Percentiles of the unit distribution for a batch 
with expected value (mean) cmk are therefore equal to 
 

 �� qz
kq ecmc ��

��

2
2
1

 

 
The combined influence in this simple case is that cq increases with � for high percentiles (zq >�), 
but decreases with � for relatively low percentiles (zq<�). 
 
The following approaches to model sample variability should be incorporated in the model: 
1. Use estimated values of v 
2. Use default (conservative) values of v 
3. Use weight ratios to define maximum variability of residue levels in consumed portions 
4. Use weight ratios in combination with a unit homogeneity assumption 
 
These approaches are described in more detail below. In all cases we assume that the majority of 
residue levels is derived from a representative sample of composite samples. Alternatively, 
surveys may be available in which residue levels have been collected for individual units. These 
data can be used directly, although care is needed to reflect the structure of between-
batch/within-batch variability (Hamey 2000). In the DEEM model approaches related to 1 and 4 
are implemented (US EPA 2000b). 
 
1) Use estimated values o  v f
In this approach it is essential to discern between-batch variability from within-batch variability. 
Typically, variability factors are calculated for units from one field trial or commercial batch, 
although such batches are not always clearly defined. Variability factors describe the variability 
between units within batches. The proposed approach is as follows: 

�� If individual unit levels are available, estimate � as the standard deviation of the 
logarithmically transformed concentrations. When data from several batches or field trials are 
available, pool the estimates. 

�� If a value for v is available that can be interpreted as the ratio between P97.5 and the median 
of a lognormal distribution of unit residue levels in one batch, then, with � and � representing 
the mean and standard deviation of the log-transformed concentrations lc , we have 

 

�

�

��

2
2

e
e
ev ��

�
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or � �vln2
1

��  

�� If a value for v is available that has been calculated as the ratio between the maximum and 

the mean of n individual values, then � can be calculated as � �vzz qq ln22
���� , where 

zq is the quantile of the standard normal distribution corresponding with the maximum of a 
sample of n units. According to Blom (Blom 1958) and Harter (Harter 1961) it can be 
approximated very accurately by zq = �-1((n - �)/(n - 2� + 1)), where �-1( .) is the inverse 
cumulative standard normal distribution function, and � = 0.315065 + 0.057974u - 
0.009776u2 , with u = log10(n). 

�� For each iteration i in the Monte Carlo simulation, obtain for each commodity k a simulated 
intake xik and a simulated composite sample residue level cmik . 

�� Calculate the number of unit intakes nuxik in xik (round upwards) and set weights wikl equal to 
wuk , except for the last partial intake that has weight . � � kikikikl wunuxxw 1���

�� Draw nuxik simulated log-concentration values lcikl from a normal distribution with mean 
� � 2

2
1ln �� �� ikcm  and standard deviation�. 

�� Backtransform and sum to obtain the simulated concentration in the consumed portion: 
 

ik

nux

l

lc
iklik xewcr

ik
ikl�

�

�

1
 

 

Variability between units is often quantified with the coefficient of variation (CV) rather than the 
variability factor v. With v defined as the ratio between P97.5 and median, the relation between 
these two parameters in a lognormal distribution is 1�� vCV  or . 21 CVv ��

2) Use default (conservative) values of v 
In the absence of reliable data a default value for v (e.g. v = 5 or 7) may be used. This approach 
is almost equal to the approach described above. However, in order  
to be conservative, the variability factor is only used to obtain a larger spread in unit pesticide 
levels, not to lower the estimate of the median value �. This can be interpreted as assuming that 
composite samples are obtained from very homogeneous sets of units (with effectively v = 1), 
and that this homogeneity does not apply to consumer portions. Consequently, in this approach 
the unit log-concentrations are drawn from a normal distribution with mean and is 

otherwise the same as described above. 

� ikcmln�� �

) t f f r  t  
 
3  Use weigh  ratios to de ine maximum variability o  esidue levels in consumed por ions
When no variability factors are available another approach is possible. The conservative 
assumption can be made that a composite sample is constructed by combining an appropriate 
number of portions of size xijk where these portions are independent and random samples from 
the total population. If this is true the unit-to-unit variability will be larger than in the more realistic 
situation where composite samples consist of units with a shared history. Therefore, the use of 
this assumption results in a conservative estimate of exposure. 
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Table 3. Percentiles (%) of exposure to methamidophos via the consumption of sweet 
peppers. 

all days 95 97.5 99 99.9 99.99 

positive intakes 34.1 67.1 86.8 98.7 99.9 
 the assumption given above the variability of concentrations in consumed portions of 
t xik can be related to the variability of monitoring measurements of weight wmk . Basic 
ical considerations show that standard deviations or coefficients of variation should be 
lied by a factor ikk xwm . If concentrations in the total population of portions of a certain 

re modelled with a lognormal distribution, then simulated concentrations for a portion xik can 
tained by sampling from this distribution. The proposed approach is as follows: 
stimate the mean � and the standard deviation �comp in the set of log-transformed composite 
ample residue concentrations: lcmk = ln(cmk). 

stimate the coefficient of variation at the original scale as 1
2

��
compeCVcomp

� . 

or each iteration i in the probabilistic analysis, obtain for each commodity k a simulated 
take xik . 

orrect the coefficient of variation for portion size: 
ik

k
comp x

wm
CV�CV . 

raw a simulated log-concentration lcik from a normal distribution with mean � and standard 

eviation � �21ln CV��� . 

acktransform to obtain the simulated concentration in the consumed portion: . iklc
ik ecr �

 weight ratios and the assumption of homogeneous units 
iation on the previous approach is to add the assumption that units are always 
geneous. In fact, this assumption is also implicit in the first two approaches. This means that 
ide levels in portions smaller than unit weights are treated the same as concentrations in a 
portion. In that case the CV correction factor ikk xwm  is replaced by 

� �ikkk xwu ,max . These four possible approaches to model variability are illustrated below. 

ds 
ue data of methamidophos in raw sweet peppers from the Dutch Health Inspectorate for 
 were used, because a variability study was performed during that year (Schee 2000). In 
83 composite samples (consisting of 20 peppers each) were analysed. The unit weight of 

epper is 160 g, so the weight of a composite sample is 3.2 kg. In 37% of the samples (106 
les) levels of methamidophos � LOR (= 0.01 mg.kg –1). To study the unit variability, individual 
rs of six composite samples were analysed. Ratios of maximum residue level in single units 
 composite sample residue level were used as estimates of the variability factor v. The 
ual estimates of v were 3.15, 2.80, 4.14, 5.96, 7.72 and 7.42 (mean 5.20). 
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Table 4. Exposure to methamidophos (�g kg d ) via the consumption of sweet peppers for 
different approaches to model variability . 

. -1. -1

1

% of days P95 P97.5 P99 P99.9 P99.99 
0. no correction for variability 0.010 0.064 0.23 1.3 8 
1. v (= 5.2)  from data 0.007 0.050 0.21 1.2 9 
2. v = 10 (conservative) 0.010 0.070 0.31 3.1 13 
3. weight ratio 0.006 0.098 0.71 23.6 177 
4. weight ratio + hom. units 0.008 0.076 0.43 6.1 21 

1For more details see text. 

The consumption data consisted of sweet pepper intake on 12,500 consumption days (DNFCS 
97/98; (Kistemaker et al. 1998)). Sweet peppers were consumed in portions ranging from 0.08 g 
to 458 g on 2,533 days (20%). Thus positive intakes of methamidophos via sweet peppers were 
expected only in 7.4% of all cases (37% of 20%). This means that percentiles in the distribution of 
all days will correspond with much lower percentiles in the distribution of only the positive intakes 
of methamidophos (table 3). For example, P95 for ‘all days’ corresponded with P34.1 of the 
exposure distribution when only the positive intakes were considered (table 3). 
 
Probabilistic analyses were performed with a general-purpose statistical programming language, 
GenStat (GenStat 2002; see §3.3). For this positive levels were simulated for each of the 2,533 
positive consumption days, and the conversion table was applied (table 3) to obtain percentiles for 
the total population (including non-consumers). Concentration values were simulated without 
regard for unit variability, and via the four approaches mentioned above. Individual data for both 
residue and consumption levels were used. The exposure to methamidophos was divided by the 
corresponding body weight to give exposure (�g) per unit body weight per day. We calculated 
different percentiles of each exposure distribution. 
 
Results 
Results are listed in table 4. It is evident that with approach 1 (v based on real data) moderate 
percentiles tended to get lower, while very high percentiles (P99.99 in this case) were higher than 
the uncorrected value. In approach 2 (assumes homogeneous composite samples, but a large 
default v = 10) all percentiles > 50th of the positive intakes (P97.5 and higher percentiles for the 
whole population; table 4) were higher than the uncorrected values, but the differences were 
small. Approach 3 (correction based on the weight ratio between composite sample and 
consumed portion) resulted in very high percentiles, mainly due to the large number of very low 
consumption levels of sweet peppers. Incorporating the unit homogeneity assumption in this 
method (approach 4) lowered the percentiles considerably, although values remained more 
conservative than those of approaches 1 and 2. 
 
Conclusion 
Incorporating variability into the probabilistic exposure assessment of pesticides influences the 
outcome. However, more experience with these approaches to include unit variability effects in 
stochastic exposure is necessary. 
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3 1 4 Modelling o  levels below the limit o  repo ing. .  f  f rt  
Rationale 
Most monitoring measurements of pesticides are nondetects (NDs), i.e. no quantitative 
measurements are reported. When a pesticide enters the food chain only via crop treatment, and 
when the percentage of crop treated is (approximately) known to be 100pcrop-treated , then this 
knowledge may be used to infer that 100(1-pcrop-treated) % of the monitoring measurements should 
be real zeroes, contributing nothing to pesticide intake, whereas other NDs in the monitoring data 
could have any value between zero and the reporting level (LOR). For 100(pnondetect – pcrop-treated) % of 
the monitoring measurements, 0 and LOR represent best-case and worst-case estimates, 
respectively. A simple way (first step) to consider the uncertainty associated with NDs is to 
compare exposure distributions for these two situations. 
 
Methods 
To study the effect of residue levels assigned to NDs, we performed two studies. In the first 
study, we applied 0 or LOR = 0.01 mg-kg-1 (two most extreme possibilities) to the NDs of captan 
in apples as a function of percentage NDs in the residue data set (see §3.1.2). The percentage 
samples below LOR was varied from 0% up to 90%. The amount of samples with levels above LOR 
was unchanged throughout the analyses (n = 248). For example, 10% NDs meant 27 samples 
below LOR, 20% NDs equalled 62 samples below LOR, etc. The percentage crop treated was set 
at 100%, which represents the 'worst-case situation'. The probabilistic analyses were performed 
with spreadsheet models written in Excel (version 7.0, Microsoft Crop., Redmond, WA) and with 
the @Risk add-in (version 3.5.2, Palisade Corp., Newfield, NY) using individual consumption data 
and residue levels of individual composite samples of apples as described in §3.1.2. Each 
simulation was run with 5,000 iterations, using Latin Hypercube sampling. The exposure to captan 
was divided by the corresponding body weight to give intake (�g) per unit body weight per day. 
We calculated the mean, P97.5 and P99.9 of each distribution. 
 
In a second study, the sensitivity of exposure percentiles to the treatment of NDs was 
investigated further using data of methamidophos in sweet peppers (§3.1.3). Initially we used 106 
methamidophos levels in sweet peppers (range = 0.02-2.75 mg.kg-1; median = 0.28 mg.kg-1) � 
LOR (= 0.01 mg.kg-1; 37% of all analyses). To check the importance of the level assigned to NDs 
these data were reduced to 79 levels (median = 0.37 mg.kg-1) � LOR (= 0.1 mg.kg-1) and 13 
levels (median = 1.4 mg.kg-1) � LOR (= 1 mg.kg-1). The percentage of NDs was varied from 63% 
(real situation) to 90% and 99%. Probabilistic analyses were performed with GenStat (GenStat 
2002) by simulating positive exposure days for each of the 2,533 positive consumption days, and 
applying table 3 to obtain percentiles for the whole population. The same set of random values 
was used for all situations. Individual consumption data and residue levels of composite samples 
of peppers were used. 
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Figure 2. Effect of % samples with levels below the limit of reporting (LOR) and 
the level assigned to the non-detects (LOR or zero) on the exposure 
(�g.kg-1.d-1) to captan through the consumption of apples in the Dutch 
population. A: mean and P97.5 of exposure; B: P99.9 of exposure. 

 
Results 
The results of the first study are plotted in figure 2. It is evident that the level assigned to NDs (0 
or LOR) affected the upper percentile of the distribution when the percentage of NDs was 20% or 
more. This was most clear for P97.5 (upper panel). The mean and P99.9 of the intake distribution 
were fairly insensitive to the level assigned to the NDs (fluctuations were due to the fact that 
different simulations were performed). When 70% or more of the samples were below LOR, P97.5 
approached zero when level assigned to NDs was zero. 
 
Figure 3 shows the estimated percentiles for nine combinations of LOR and percentage of values 
� LOR (37%, 10% and 1%; %det). Each panel shows percentiles from simulations where NDs were 
replaced by zero (symbol 0) and LOR (symbol 1). It can be seen (for example in panel LOR = 0.10 
mg.kg-1, %det = 1) that intermediate percentiles (e.g. P95, P97.5) were influenced most, whereas 
lower percentiles (e.g. P70) and very high percentiles (e.g. P99.99) were not or less affected. 
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Figure 3.  Residue levels of methamidophos in sweet peppers. Exposure percentiles with   
nondetects replaced by zero (0) or LOR (1) for different combinations of LOR and 
% detect concentrations. Right upper graph corresponds with real LOR and 
%detect. 

 

 
Furthermore, changes became more pronounced when LOR increased (from top to bottom in 
figure 3) and when the percentage of values � LOR became lower (or percentage of NDs larger; 
right to left). The panel in the right upper corner (LOR = 0.01 mg.kg-1, %det = 37) corresponds 
with the real situation, and therefore little problems with NDs are expected for methamidophos in 
sweet peppers. 
 
Conclusion 
We conclude from the results that the effect of levels assigned to NDs on the dietary exposure to 
pesticides depends on the percentage of samples below LOR in the residue database and the 
level of LOR assigned. In pesticide exposure assessment the amount of NDs is almost always 
substantial. Apart from the amount of samples below LOR, the effect of the level assigned to the 
NDs on the exposure to a pesticide also depends on the relative magnitude of LOR versus residue 
levels found in the monitoring programme and the percentage of crop treated. 
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3 1 5 Specifica ion of model inputs and unce tainty analysis. . t   r   
We distinguish between choices on the model and those on model input. 
1. Model: choices once made on the model are considered fixed, i.e. they add no uncertainty to 

the model outcomes. The following choices are relevant: 
a. consumer population: total or a subset of certain ages 
b. type of exposure calculation: acute (daily intakes) or chronic (usual intakes) 
c. type of distribution of residue data: empirical or parametric 
d. for parametric models: pooling of parameters over products (yes or no) 
e. approach to incorporate unit variability and processing 

2. Model input: model inputs represent the numeric data that enter the model. In general they will 
have an associated uncertainty. In order to allow future extensions of the model to evaluate 
the uncertainty of model outcomes it is necessary that something is known about these 
uncertainties. Model inputs are: 
a. Food consumption: this data is considered to be a representative sample of the relevant 

population; uncertainty is implicit in the sample, and can be evaluated with re-sampling 
procedures (e.g. bootstrap) 

b. Pesticide monitoring levels: in case of modelling empirical data re-sampling procedures 
can be used to assess the uncertainty; in case of parametric modelling the uncertainty 
can be expressed as standard errors of the parameters. 

c. Percentage crop treated 
d. NDs: in a simple first approach the maximal uncertainty from NDs can be estimated from 

a comparison of simulations with substitution of 0 and LOR for NDs. 
e. Variability factors and unit weights (approach 1 or 2) or the weight of (mixture) samples 

and unit weights in the monitoring programme (approach 3 or 4) 
f. Processing factors to describe the effect of processing on pesticide residue levels. 

 
Model inputs 3, 5 and 6 can be specified in general (i.e. applicable for all products) or specific 
values for products can be given. For inputs 3-6 one should specify either conservative values, or 
nominal values in connection with information on the uncertainty in these values. In order to make 
this as practical as possible this information should be requested in the form of a limit (either 
upper or lower), which should be considered conceptually as a one-sided 97.5 % confidence limit. 
The programme will translate the nominal and limit values into a normal uncertainty distribution on 
an appropriate scale (logistic for factors restricted to the interval (0,1), lognormal for non-negative 
inputs such as sample weight).  
 
Figure 4 shows an example of a possible main input sheet of a Monte Carlo Exposure Analysis 
model (not yet all relevant choices are included). On a specification sheet additional inputs can be 
specified in a format as follows: 

 
% crop treated 
pesticide RAC pcrop treated, nom pcrop treated, upp 
captan  apple      0.25      0.75 
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M o n te  C arlo  R isk  A n a lys is P e stic ide : Ipro

Inputs M o de l O utput

C o nce ntra tion da ta P ro ce s s P rint?
W eights  of m onitoring s am ples :  s ee s ee s pec ific at ion s heet S um m ary  of databas e no
   s pec ific at ion  s hee t S um m ary  of s im ulated intak es no

L im it  o f report ing ('LO D'): M o nte  C a rlo  mo de l P erc entiles y es
LO R  (ppm ): 0 .02 S um m ary  upper quantile  d is tribu tionno

S um m ary  data: no #  s im u lat ions 10000 if y es : C onc entra tion: *
if y es ,  data on file  x x x x _s um m .x ls Q uant ile  (if c onc = *): 98

em piric al c onc entrat ion data: y es S um m ary  tota l d is t ribution no

F o od c o ns umptio n da ta if no,  then (param etric  m odelling) Top 10 intak e no
  pooling of m eans /va rianc es : y es Top 10 c ons um pt ion no

A ge res t ric t ions : no   if y es , then Top 10 res idues no
if y es :     autom atic  pooling no M edian 9 intak e no

m in. age: 0     if no, then c hoos e: M edian 9 c ons um ption no
m ax .  age: 4       s tep of proc es s  (1/2/3): 1 M edian 9 res idues no

P rogram  s ett ings  y es
S eq.  day  res t ric t ions : no s eeds  for ps eudo-random  s am pling
if y es ,  res t ric t  to  c ons um pt ion data (c hoos e 0 fo r t im e-bas ed values )
o f day  (1 or 2): 1 day s 0

pers ons 0
c onc entrat ions 0

Figure 4. Possible main input sheet of a Monte Carlo Exposure Analysis model. 
 

 variability 
 pesticide RAC unit weight # units in   variability 

   (wu)  comp. sample       v 
    nom upp    nom upp 
 captan  apple 150 160        20      5   7 

 
processing factors  
pesticide RAC processing fk,nom fk,upp 
captan  apple washing 0.5 0.7 

 
In principle, uncertainty analyses take a model as given and calculate the contribution of 
uncertainties in the model inputs to the uncertainty of specified model outputs. Stochastic 
exposure analysis itself is already a kind of uncertainty analysis, where uncertainties about food 
consumption and pesticide levels are translated to uncertainties in pesticide exposure. It is 
therefore natural to extend this basic model with other uncertainties relevant for pesticide 
exposure assessment, such as uncertainties on processing effects, on pesticide levels < LOR, 
due to limited amount of data, etc. As relevant model outputs, in pesticide exposure assessment 
usually properties of the upper tail of the pesticide intake distribution are specified, e.g. P95 or 
the proportion of daily intakes exceeding a reference value. Basically, uncertainties in the inputs 
can be specified in three ways: 
1. By a direct specification of an input distribution, e.g. a normal distribution with mean and 

standard deviation. 
2. By specifying alternative conditions that may apply, e.g. ND measurements may all have a 

pesticide level equal to zero or LOR. 
3. Implicitly, by giving uncertainties if the data necessary for the model are limited (e.g. only a 

few measurements on a certain product). Re-sampling procedures (e.g. bootstrap) can be 
used to quantify the uncertainty in the model outputs due to this factor. 
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3.2 How to deal with limited information 
 
In a probabilistic model, a distribution of both food consumption data and residue level data are 
used. When residue data are scarce parametric modelling becomes important. 

3.2 1 The choice between a parametric and non-pa ametric app oach .  r r

.  

How many residue data are required for a sensible calculation of upper-tail percentiles in the 
exposure distribution based on a non-parametric approach? The rule of thumb can be used that 
the chosen percentile should be contained directly in the data. For example, at least 20 
measurements are needed to estimate P95 and at least 100 measurements to estimate P99. 
More generally, the number of measurements per food commodity (n) should at least equal 1÷(1-
P/100) to allow a rough estimate of P of the residue concentration distribution to be made. Of 
course, exposure assessments are only coarse with this minimum amount of data and larger 
sample sizes per food commodity are certainly worthwhile. 
 
In situations where the number of measurements poses a problem, an appropriate exposure 
analysis should be based on further modelling. Essentially, lack of data is compensated by a priori 
assumptions. Assuming a simple distributional form for residue data, the number of 
measurements can be smaller (at least 10). Because NDs provide no information about variability, 
we should count the number of positive measurements. Figure 5 shows which approach can be 
used best depending on the total number of measurements and the number of measurements � 
LOR. In principle, such a choice can be made separately for each food commodity. 
 
3.2 2 Grouping of products
Rationale 
When data are limited, the parametric approach may have potential. The distributional form of 
pesticide residue level data is modelled lognormal (see §3.1.1) with parameters � (mean) and � 
(standard deviation). However, estimation of these parameters for all products is often difficult 
because data on residue levels in specific products are scarce or even missing. In those cases, 
grouping of products into product groups consisting of ‘comparable products’ increases the 
number of measurements per group and may give sufficient data to estimate both parameters. 
For this we assume that residue distributions are the same for the grouped products. A related 
question is the reliability of estimates based on a small number of degrees of freedom (df). The 
following procedure is designed to cope with the above problems (figure 6). 
 
1. Step 1. For each product � and � are estimated. Then, products are assigned to product 

groups composed of related products (e.g. product groups consisting of cabbages or all 
kinds of berries). The homogeneity of variances in different product groups can be assessed 
using Bartlett's test (Snedecor and Cochran 1980). The test statistic determines whether 
variances are to be pooled automatically (p>0.05) or not (p�0.05). For homogeneous 
groups, variances are pooled within product groups. For non-homogeneous groups, products 
are assigned to subgroups (within product groups) manually and the homogeneity of 
variances is tested again. This process of assigning products to subgroups is repeated until 
all groups have homogeneous variances. After pooling the variances, an overall test for 
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total number of measurements on commodity 

parametric or 
nonparametric 

non-parametric

parametric 

not enough data 

100 

10

number 
of 
detects  

0

Figure 5. Use of non-parametric or parametric modelling to estimate the P99 in relation to 
sample size and number of positive measurements. 

differences in means is performed, based on analysis of variance. Means are pooled 
automatically if the probability p>0.05. If not, manual pooling is performed. In figure 6 the 
steps on the right side require a manual assignment of products to product groups before 
variances are pooled. This manual step may be considered optional: when it is decided to 
leave this step out, all original variances and means are maintained. 

2. Step 2. Estimates of variances based on less than 10 df are not considered very reliable. 
Therefore, variances based on less than 10 df are compared to the overall variance (pooled 
over all products except the tested product itself, i.c. corrected) and tested for equality. 
Variances are replaced by the overall variance (uncorrected) whenever the hypothesis of 
equality of variances is not rejected or, if rejected, the original variances are maintained. If 
the variance is replaced for (sub)groups consisting of two or more products, a test for 
differences of means is performed. Means are pooled automatically if p>0.05. If not, the 
original means are maintained. 

3. After performing the above pooling process, there may still be products with less than 10 df. 
These products are considered again. The variances are judged visually and assigned by 
hand to one or more of the products with approximately the same value for the (pooled) 
variance. After testing the variances, they are pooled again, replacing the variance based on 
< 10 df with the pooled one. A test for differences of means is performed, and for those 
cases where p>0.05, means are also pooled. 

4. Finally, we are left with those cases where variances are pooled, but means are not 
considered again. The products may be rearranged into (sub)product groups based on 
similarity of their means. Then, pooled means are calculated replacing the original ones. This 
last pooling step is optional and not indicated in the figure 6. 

 
Once it is decided to perform a parametric exposure assessment, rearrangement of products into 
(sub)groups to estimate necessary parameters is needed. Therefore, it is not possible to compare 

 27



results of a non-parametric exposure assessment with a parametric one as such, because nearly 
always some form of pooling has preceded the estimation. 
 
Methods 
In this study, results of the parametric approach are compared with the non-parametric approach 
using grouping of pesticide residue levels over products. This was done for iprodione, a pesticide 
that has annually a high percentage of detects. Residue levels were derived from the KAP-
database (§3.1.1). The average level of 55 food products for only those samples with levels 
above LOR (14%) was 0.83 mg.kg-1. The average of all values (including NDs) was 0.13 mg.kg-1. 
The highest average residue concentrations were found in oakleaf lettuce, lamb’s lettuce, turnip 
tops/greens and a left-over category ‘other agricultural/horticultural products’ (table 5). Most 
averages were considerably lower. Products for which use of iprodione is registered are indicated 
with an asterix (table 5). 
 
The lognormal distribution was selected to model positive concentrations (see §3.1.1). As 
mentioned above, frequently data on residue levels in specific commodities are scarce or even 
missing. In those cases, data on similar products may provide the necessary information on which 
to base the parameters. Pooling of products in product groups to allow joint estimates of 
parameters was applied to the iprodione residue data according to the procedure outlined above. 
Table 5 summarises parameter values at various stages of the pooling process: 
 
1. The variance and mean for each product was estimated, giving sigma1, mu1 and df1. In 

some cases the variance is missing because only one measurement was available (e.g. 
“ROODLOF”, 10801, sigma1 = *). Products were assigned to product groups and within 
each group products were marked to indicate whether the use of the pesticide was 
registered or not. Homogeneity of variances in different (marked) product groups was tested. 
For homogeneous groups, variances were pooled within product groups. This process of 
assigning products to subgroups was repeated until all groups had homogeneous variances. 
After pooling the variances, an overall test for differences of means was performed, based 
on analysis of variance. Means were pooled automatically if the probability p>0.05. If not, the 
original means were maintained. Table 5 shows the above procedure. The variances of 
product group 10701* (table 5) were pooled automatically: sigma2 = 1.31, df2 = 12 (= 5 + 
7). The probability of the test for differences of means exceeded 0.05, so means were 
pooled automatically as well: mu2 = -1.66. The variances of product group 10801* were 
pooled automatically: sigma2 = 1.48, df2 = 439 (= 3 + 91 + … + 16), but here means 
significantly differed. The variances for product group 10904* were heterogeneous, so this 
group was rearranged by hand into two new subgroups (between brackets value of sigma1): 
strawberry (1.14) and blackberry (1.15), and secondly raspberry (1.73), blue berry (1.83) 
and currant (1.87). Now, variances within subgroups were homogeneous and pooled, yielding 
sigma2 = 1.14 for the first and 1.84 for the second subgroup. The means for the second 
group were pooled automatically, mu2 = -0.76. The means for strawberry and blackberry 
were maintained: mu2 = –1.57 and –0.89, respectively. Missing variances, e.g. for “roodlof”, 
were replaced by the pooled variances of the product groups that the product belonged to. 
The missing variance of “kouseband” remained missing, because no (pooled) variance was 
available in the product group to which this food product belonged. Step 4 is optional. 
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Step 1:
� Calculate variances and means for each product
� Classify products into groups
� Test homogeneity of variances and equality of means within groups of products. Results are: not

significant (ns, p > 0.05) or significant (s, p � 0.05)

� test homogeneity of
variances

automatic pooling
� test equality of means

automatic pooling

manual pooling
� test equality of means

manual
pooling

s

 s
automatic
pooling

n
s

s n
s

n
s

Step 2:
� Take products(-groups) with df < 10
� Compare variance with overall variance (corrected). Replace variance with overall variance

(uncorrected) for non-significant testresults.

� test variance(s)

replace variance(s)
� test equality of means

(2 or more)

automatic pooling

manual pooling
� test equality of means

(2 or more)
s

s

no pooling

s

automatic
pooling

n
s

n
s

n
s

Figure 6. Schematic outline of grouping of products into (sub)product groups when the 
number of available data on residue levels is limited. 
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Table 5. Standard deviation (sigma), mean (mu) and degrees of freedom (df) in different 
pooling steps. The asterisk indicates that the use of iprodione on the product is 
allowed. 

ct group sigma1 mu1 df1 sigma2 mu2 df2 sigma3 mu3 mu4 df3
10701* 1.60 -1.17 7 1.31 -1.66 12 1.31 -1.66 -1.66 12
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-2.22 26 0.99 -2.22 -2.22 26
T PEPPER 10805* 1.33 -2.19 6 0.99 -2.22 26 0.99 -2.22 -2.22 26
KIN, 10805* * -2.53 0 0.99 -2.22 26 0.99 -2.22 -2.22 26
R 10805 1.23 -0.94 4 1.23 -0.94 4 1.36 -0.94 -0.94 882
IN/PICKLE 10805* * -3.51 0 0.99 -2.22 26 0.99 -2.22 -2.22 26
EBAND” 10889 * -1.27 0 * -1.27 0 1.36 -1.27 -1.27 882
HOY 10889* 1.29 -0.48 7 1.29 -0.48 7 1.28 -0.48 -0.48 37

 AGR./HORTI 
10901 
10902 

*
-1.71

8
1.26

-0.83
10903* 0.89

1.14
10904* 168
10904* -1.04
10904* 1.15
10904* 1.83
10904* 1.87

-1.51

16
H-CELERY 10801 1.23 -0.88 3 1.28 -0.58 16 1.28 -0.58 -0.58 16

FLOWER 10802  * * -1.83 0 1.62 -1.83 20 1.62 -1.83 -1.83 20
ELS SPROUT 10802 1.14 -2.70 1 1.14 -2.70 1 1.36 -2.57 -2.57 882
SE CABBAGE 10802  * 1.62 -2.32 20 1.62 -2.32 20 1.62 -2.32 -2.32 20
RT/CONICAL  10802 * -2.30 0 1.14 -2.30 1 1.36 -2.57 -2.57 882
 (SMALL) 10803  * 0.07 -1.66 1 0.14 -1.66 3 0.14 -1.66 -2.09 3
L 10803  * 0.16 -2.38 2 0.14 -2.38 3 0.14 -2.38 -2.09 3
O 10804 0.62 0.19 1 0.59 0.19 50 0.59 0.19 0.19 50
R CARROT 10804 0.62 -2.55 13 0.59 -2.55 50 0.59 -2.55 -2.64 50
T 10804 0.54 -2.71 35 0.59 -2.71 50 0.59 -2.71 -2.64 50

H 10804  * 1.52 -2.91 5 1.52 -2.91 5 1.36 -2.91 -2.91 882
IAC 10804 1.31 -2.07 1 0.59 -2.07 50 0.59 -2.07 -2.64 50

MBER 10805  * 0.80 -1.55 7 0.99 -2.22 26 0.99 -2.22 -2.22 26
-2.50 13 0.99TO 10805  * 0.88



Table 6. Estimates of percentiles of exposure to iprodione using the parametric 
and non-parametric approach. Simulations were performed with GenStat: 
50,000 iterations, repeated three times.  

 percentiles (%) 
iprodione P95 P98 P99 P99.5 P99.9 P99.99 
parametric 0.68 

0.71 
0.71 

2.4 
2.3 
2.1 

4.6 
4.6 
4.1 

7.7 
7.7 
7.1 

23 
20 
20 

66 
55 
58 

non-parametric 
 

0.66 
0.62 
0.64 

2.1 
2.2 
2.0 

4.3 
4.5 
4.0 

7.0 
8.4 
6.6 

18 
22 
16 

64 
74 
44 

 

2. Variances based on less than 10 df were compared to the overall variance (pooled over all 
products except the tested product itself) and tested for equality. Variances were replaced by 
the overall variance (uncorrected; sigma3 = 1.36) whenever the hypothesis of equality of 
variances was not rejected. If rejected, the original variances were maintained. If the variance 
was replaced for (sub)groups with two or more members, a test for differences of means was 
performed. Means were pooled automatically (p>0.05) or not (p≤0.05). Table 5 shows how 
the above was implemented. E.g. brussels sprouts and oxheart/conical cabbage (10802) 
have less than 10 df with sigma2 = 1.14. The variances were tested against the corrected 
overall variance. The probability exceeded 0.05, so their variances were replaced: sigma3 = 
1.36 and df3 = 882. The means, -2.70 and –2.30 were tested (p>0.05) and therefore pooled 
automatically: mu3 = -2.57. Conversely, the variances of onion (small) and fennel (10803*) 
were not replaced. The missing variance of “kouseband” (10889) was replaced: sigma3 = 
1.36 with df3 = 882. 

3. After carrying out the above pooling process, there were still products with less than 10 df. 
These products were considered again. The variances were judged visually and assigned by 
hand to one or more of the products with approximately the same value for the (pooled) 
variance. After testing the variances, the variances were pooled again, replacing the variance 
based on less than 10 df with the pooled one. Testing for differences of means was 
performed and for those cases where p>0.05, means were also pooled. E.g. pac-choy 
(10889*) had less than 10 df and was assigned to 10903. The pooled variance: sigma3 = 
1.28 with 3 df was 37 (= 30+7), the original mean was maintained. Onion (small) and venkel 
were not assigned to any group, so the original variance was kept (sigma3 = 0.14). 

4. Step 4 is optional for those cases where variances were pooled, but means not. Those 
products may be rearranged into (sub)product groups based on similarity of their means. 
Then, pooled means can be calculated replacing the original ones. For example, product 
group 10801* had a pooled variance of 1.48 (sigma3) but the means were original. Visually, 
with between brackets the estimate of the mean, chicory (-2.69), iceberg lettuce (-1.92), 
cabbage lettuce (-1.44) and curly lettuce (-2.14) were assigned to one subgroup, endive (-
0.91), lollo rossa (-0.99), radicchio rosso (-0.36) and oakleaf lettuce (-0.06) to a second 
group, and lamb’s lettuce (0.80) formed a single group. After pooling, the new means, mu4, 
for the three subgroups were –1.48, -0.83 and 0.80, respectively. 

 
The simulations were performed using GenStat (GenStat 2002). The number of iterations was 
50,000. The estimates are based on the parameter estimates of table 5, produced applying step 
1, 2 and 3 and the optional step 4 of the pooling procedure. 
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Results 
Table 6 summarises the results of the simulations using parametric and non-parametric 
distributions. It is evident that the non-parametric percentiles yielded estimates of exposure that 
were in the same range as the parametric ones. Although vaguely, the parametric approach 
seemed to give slightly less variable results and provided somewhat higher estimates of P95. 
 
Conclusion 
If the amount of information is ample, e.g. more than 20 measurements � LOR, a non-parametric 
approach is preferable. In situations where the number of measurements is limited, an appropriate 
risk analysis should be based on further modelling. Two options can be chosen or combined: 1) 
assume a simple distributional form for the residue data, and/or 2) group products to enlarge the 
number of measurements per group, assuming that residue distributions are the same for the 
grouped products. In the case of parametric modelling the assumptions of equality can be 
restricted to a subset of the parameters (in the chosen binomial-lognormal model: detect 
probability, lognormal mean, lognormal standard deviation). 

3.2 3 Estimation of pes icide exposure using histogram data . t
Rationale 
In the EU residue data are mostly reported in a tabulated (histogram) form. The parameters of the 
lognormal distribution can then be estimated by fitting normal distributions to a set of 
observations or counts. Statistics are n1…nk, representing the number of counts in k classes. The 
group limits are logtransformed and a normal distribution is fitted to standardized normal 
probabilities based on group limits and the numbers n1…nk. Parameters � and � are estimated. 
Group limits ck are given, with c1 = LOR. An example of this procedure is reported below. 
 
Methods 
For the purpose of this study full data of iprodione (§3.2.2) were classified into groups using class 
limits as proposed by EU–standards. Table 7 summarises the results. LOR of these data is 0.02 
mg.kg-1. Normal distributions were fitted to count data using logtransformed class limits. 
 
Results 
In table 8 the estimates for the means (mu) and standard deviations are listed for both the 
histogram data and the full data approach, which fits normal distributions to (quantifiable) 
logtransformed concentration levels. In figure 7 the estimates of the means and standard 
deviations based on the histogram data versus the full data approach are plotted. The diagonal 
indicates that all standard deviations based on histogram data were systematically lower than 
estimates based on the full approach. No systematic effect was found for the means. 
 
A parametric simulation was performed using the standard deviations and means listed in table 8. 
Standard deviations and means were pooled automatically and manually (step 1, figure 6). Table 9 
summarises the results. All percentiles using histogram data were comparable to percentiles 
based on a parametric approach using full data. 
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Table 8. Standard deviation (sd), mean (mu) and degrees of freedom (df) based on full 
data and histogram data. Lognormal distributions have been fitted. 

  

 

full data histogram data  
product group sd mu sd mu df 
BEAN 10701 1.60 -1.17 1.48 -1.06 7 
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“SPERZIEBOON” 10701 0.75 -2.33 0.50 -2.30 5 
CHICORY 10801 1.38 -2.69 1.30 -2.61 3 
“ROODLOF” 10801 * -2.30 0.04 -1.95 0 
ENDIVE 10801 1.52 -0.91 1.46 -0.87 91 
ICEBERG LETTUC 10801 1.65 -1.92 1.58 -1.82 7 
CABBAGE LETTUCE 10801 1.46 -1.44 1.42 -1.39 285 
CURLY LETTUCE 10801 1.08 -2.14 0.92 -1.90 3 
OLLO ROSSA 10801 1.53 -0.99 1.37 -0.96 21 
LEAF  LETTUCE 10801 * -1.56 0.06 -1.15 0 
CELERY 10801 1.76 -1.27 1.55 -1.41 2 
SPINACH 10801 1.18 -0.57 1.22 -0.55 9 
CHERVIL 10801 * -1.24 0.06 -1.15 0 
PURSLANE 10801 * 0.41 0.04  0.35 0 
RADICCHIO ROSSO 10801 * -0.36 0.04 -0.34 0 
OAKLEAF LETTUCE 10801 1.65 -0.06 1.51 -0.01 13 
LAMB’S LETTUCE 10801 1.25 0.80 1.16  0.84 16 
TURNIP TOPS/GREE 10801 1.19 1.30 0.94  1.39 2 
BLEACH-CELERY 10801 1.23 -0.88 1.12 -0.75 3 
CAULIFLOWER 10802 * -1.83 0.04 -1.95 0 
BRUSSELS SPROUT 10802 1.14 -2.70 0.71 -2.68 1 
CHINESE CABBAGE 10802 1.62 -2.32 1.42 -2.20 20 
OXHEART/CONICAL  10802 * -2.30 0.04 -1.95 0 
ONION (SMALL) 10803 0.07 -1.66 0.11 -1.61 1 
FENNEL 10803 0.16 -2.38 0.09 -2.34 2 
POTATO 10804 0.62 0.19 0.10  0.00 1 
WINTER CARROT 10804 0.62 -2.55 0.60 -2.46 13 
CARROT 10804 0.54 -2.71 0.50 -2.60 35 
RADISH 10804 1.52 -2.91 1.42 -2.90 5 
CELERIAC 10804 1.31 -2.07 0.71 -1.92 1 
CUCUMBER 10805 0.80 -1.55 0.64 -1.55 7 
TOMATO 10805 0.88 -2.50 0.80 -2.36 13 
SWEET PEPPER 10805 1.33 -2.19 1.17 -2.12 6 
PUMPKIN, 10805 * -2.53 0.04 -2.65 0 
PEPPER 10805 1.23 -0.94 1.01 -0.83 4 
GHERKIN/PICKLE 10805 * -3.51 0.06 -3.45 0 
“KOUSEBAND” 10889 * -1.27 0.06 -1.15 0 
PAC-CHOY 10889 1.29 -0.48 1.10 -0.30 7 
MIXED VEGETABLE 10890 1.37 0.09 0.91  0.12 2 
OTHER AGR./HORTI 10890 2.54 -0.77 2.23 -0.67 4 
KIWI FRUIT 10901 1.96 -0.96 1.77 -0.91 2 
APPLE 10902 2.02 -1.59 1.91 -1.69 3 
PEAR 10902 * -3.51 0.06 -3.45 0 
APRICOT 10903 1.55 -1.71 1.13 -1.50 1 
NECTARIN 10903 1.08 -0.97 1.04 -0.97 8 
PEACH 10903 1.18 -0.74 1.02 -0.63 5 
PLUM, INCLUDING  10903 1.34 -0.69 1.15 -0.74 16 
SWEET CHERRY 10903 0.89 -0.69 0.83 -0.75 11 
GRAPE 10904 1.14 -1.06 1.09 -0.96 24 
STRAWBERRY 10904 1.14 -1.57 1.09 -1.54 168 
RASPBERRY 10904 1.73 -1.04 1.49 -1.06 8 
BLACKBERRY 10904 1.15 -0.89 1.06 -0.88 16 
BLUE BERRY 10904 1.83 -1.24 1.55 -1.41 2 
CURRANT 10904 1.87 -0.62 1.75 -0.56 29 
OTHER FRUIT, NUT 10990 * -1.51 0.06 -1.15 0 



 
C
T
p
 
3
 
R
T
R
th
m
2
E
 
M
T
o
s
tw
T
a
 
G
T
n
ra
s
ye
 

 
Figure 7. Estimates of standard deviations and means based on histogram data versus 

full data approach. 
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onclusion 
he use of histogram data as reported by the EU can be used to estimate the dietary exposure to 
esticides. 

.3 GenStat versus @Risk 

ationale 
o perform some of the studies described above we used the computer programme ’Monte Carlo 
isk Analysis’, developed at the RIKILT to assess the acute and chronic exposure to chemicals 
rough the diet (Voet et al. 2002). In an early stage implementations of a simple non-parametric 
odel were made both in a general-purpose statistical programming language, GenStat (GenStat 
002), and in the currently popular management decision tool @Risk, which is an add-in module in 
xcel. A comparison was made between these two implementations. 

ethods 
he data used were residue levels of iprodione in 55 products (§3.2.2) and the consumption data 
f the second Dutch National Food Consumption Survey (DNFCS; Kistemaker et al  1998). This 
urvey was carried out among a large number of representative Dutch households in 1992. On 
o successive days 6,218 respondents reported their daily consumption of food commodities. 

hese data were transformed into consumed amounts of raw agricultural commodities (Dooren et 
l. 1995). 

.

enStat implementation 
he GenStat programme is fast, due to sampling in parallel data structures. Let n be the chosen 
umber of simulations, and k the number of food products. The programme selects a simple 
ndom sample of n individuals and a simple random sample of n day numbers (1 or 2). The 

election of individuals may be restricted to a specified age range (e.g. only children from 0 to 6 
ars). A typical value of n may be 100,000. Note that each of the 6,218 individuals is likely to  
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Table 9. Estimates of percentiles of dietary exposure to iprodione using a parametric 
approach based on histogram data and full data. Simulations were performed with 
GenStat (50,000 iterations).  

data P95 P98 P99 P99.5 P99.9 P99.99 
histogram  0.75 2.3 4.3 7.2 21 64 

full  0.68 
0.71 
0.71 

2.4 
2.3 
2.1 

4.6 
4.6 
4.1 

7.7 
7.7 
7.1 

23 
20 
20 

66 
55 
58 

 

occur many times in the sample. For each juxtaposed combination of sampled individual and 
sampled day the consumption data are retrieved from an ASCII file, and stored in an n � k matrix. 
Another n � k matrix is constructed to contain simulated concentration data. For all k products the 
total number of measurements (t) and the number of non-zero measurements (w) is determined. 
Then random index numbers (i) between 1 and t are sampled for each cell of the matrix. If i � w, 
then the ith value for this product is selected from an ASCII-file containing non-zero residue data. If 
i > w, then a value 0 is inserted in the concentration matrix. Both n � k matrices are now 
multiplied per element. Summing over the k products and dividing by the n body weights 
corresponding with the n selected individuals will give the simulated exposure distribution as a 
vector of n values. Relevant percentiles can be obtained from this vector. 
 
@Risk implementation 
@Risk is a simulation add-in for Excel and adds Monte Carlo simulations to spreadsheets. 
Uncertain values in the spreadsheet are replaced by @Risk or user-defined probability distribution 
functions. Spreadsheets are recalculated sequentially 10,000 – 50,000 times, each time 
sampling random values from the @Risk functions. The sequential nature of the spreadsheet 
recalculations makes the @Risk implementation much slower than GenStat (hours instead of 
minutes), thereby limiting the practical number of simulations. The result is a distribution of 
possible outcomes, which again can be investigated for relevant percentiles. The Monte Carlo 
simulation in @Risk can be carried out either by simple random sampling or by Latin Hypercube 
sampling. The latter method is in theory more efficient, and was therefore used in this study. The 
practical implementation of risk analysis in Excel and @Risk is an Excel worksheet. This worksheet 
contains references to all necessary input files (ASCII). The worksheet makes calculations 
involving the @Risk functions RiskDuniform and RiskDiscrete, which are recognised by @Risk 
during the simulation, and used for sampling the data in the other sheets. At any time the 
worksheet shows the results of one simulation. 
 
Results 
Table 10 summarises the percentiles of dietary exposure to iprodione of the distributions using 
GenStat or @Risk, applying 50,000 iterations. Of the 6,915 samples analysed only 937 samples 
had levels at or above the limit of reporting (14%). Because 6218 persons were surveyed during 
two days, the incidence matrix contained 87,117 values. A simulation run with @Risk took 2h.9’, 
while GenStat completed the task within 2 min. Between GenStat and @Risk only minor 
differences occurred, no more than between repeated simulations with any one of the 
programmes. Results were relatively stable for the estimates of P95, P98, and P99 of exposure 
to iprodione. Discrepancies occured at the higher percentiles, e.g. estimates of P99.99 ranged 
from 44 �g.kg-1.d-1 to 74 �g.kg-1.d-1. 
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Conclusio
For Mont
package 

 

Table 10. Dietary exposure to iprodione (�g kg d ) calculated with GenStat and @Risk 
using a non-parametric approach (50,000 iterations). 

. -1. -1

 percentile 
method P95 P98 P99 P99.5 P99.9 P99.99 
GenStat 0.66 

0.62 
0.64 

2.1 
2.2 
2.0 

4.3 
4.5 
4.0 

7.0 
8.4 
6.6 

18 
22 
16 

64 
74 
44 

@Risk  0.64 2.1 4.2 7.0 17 47 
n 
e Carlo calculations based on realistic amounts of data the use of a general statistical 
is more practical than the use of @Risk. 
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4 CONCLUSIONS 
 
The following conclusions can be drawn: 
 
1. The lognormal distribution was shown to give an adequate fit for several pesticide levels at or 

above the limit of reporting in several agricultural products. We therefore considered the 
lognormal distribution an appropriate model to present pesticides levels above the limit of 
reporting. This together with the fact that residue data are often skewed to the left and 
originate from mechanisms that generate a lognormal distribution under a variety of biological 
circumstances. 

 
2. Processing has a major effect on the magnitude of exposure to pesticides and should 

therefore be included in the exposure calculations if information is available. 
 
3. Four approaches are described to incorporate variability between units within a composite 

sample in a probabilistic exposure assessment. It is clear that this factor influences the 
outcome of exposure assessment. However, more experience with the four approaches to 
include unit variability in probabilistic models is necessary. 

 
4. When only a limited amount of data regarding pesticide levels in food commodities is 

available, grouping of products may be considered, assuming that residue distributions are 
the same for the grouped products. In this way the number of measurements per (food) group 
is increased. 

 
5. The use of histogram data as reported by the EU can be used to estimate the exposure to 

pesticides through the diet. 
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