Propositions

1. The similar constitution of the *Rpi-blb1* gene cluster and the highly homologous sequences in the primitive diploid *S. bulbocastanum* of series *Bulbocastana* and the advanced polyploid *S. stoloniferum* of series *Longipedicellata* strongly suggests the first being one of the ancestors of the second (This thesis).

2. The presence of several resistance genes against late blight and root-knot nematode in *S. stoloniferum* indicates that extensive screening of *S. stoloniferum* may identify material showing resistance to both diseases (This thesis).

3. Obtaining an accurate depiction of the evolutionary history of all living organisms has been and remains one of biology's great challenges (Rokas and Carroll, 2006. PLoS Biology 4: 1899-1904).

4. The durable management of potato late blight seems more complicated than was expected (Andrivon et al., 2005. Plant Pathology 54: 723-732).

5. Being a PhD is the process to explore myself, others and the world. A positive attitude can turn a "Mission impossible" into a "Mission possible".

6. China is a must-visit country for researchers working on diversity.

7. Wageningen is a small "village" with international researchers from many countries, enabling people to access the amazing variety of cultures throughout the world without even stepping out of Wageningen.

Propositions associated with the PhD thesis of Miqia Wang

Diversity and evolution of resistance genes in tuber-bearing Solanum species

Wageningen, June 12th, 2007

Diversity and evolution of resistance genes in tuber-bearing *Solanum* species

Miqia Wang

Promotor:	Prof. dr. M.S. M. Sosef
	Hoogleraar Biosystematiek
	Wageningen Universiteit
Co-promotoren:	Dr. B. Vosman
	Research Group leader
	Plant Research International
	Dr. R. G. van den Berg
	Universitair Hoofddocent
	Wageningen Universiteit
Promotiecommissie:	Prof. dr. ir. E. Jacobsen (Wageningen Universiteit)
	Prof. dr. K. Xie (Chinese Academy of Agricultural Sciences)
	Prof. dr. C. Titti Mariani (Radboud Universiteit Nijmegen)
	Prof. dr. P.H. van Tienderen (Universiteit van Amsterdam)

Dit onderzoek is uitgevoerd binnen de onderzoekschool "Experimental Plant Sciences".

Diversity and evolution of resistance genes in tuber-bearing *Solanum* species

Miqia Wang

Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit Prof. dr. M.J. Kropff in het openbaar te verdedigen op dinsdag 12 Juni 2007 des namiddags te vier uur in de Aula

Miqia Wang Diversity and evolution of resistance genes in tuber-bearing *Solanum* species PhD thesis Wageningen University, The Netherlands, 2007 With references-with summary in English, Dutch and Chinese ISBN 978-90-8504-661-5

Contents

Chapter 1	General introduction	1
Chapter 2	The utility of NBS profiling for plant systematics: a first study in tuber-bearing Solanum species	9
Chapter 3	Genetic diversity in a large set of European potato varieties and identification of resistance gene markers in varieties and their relatives using NBS profiling	27
Chapter 4	Allele mining in <i>Solanum</i> : conserved homologues of <i>Rpi-blb1</i> are identified in <i>Solanum stoloniferum</i>	43
Chapter 5	Diversity and evolution of the late blight resistance genes <i>Rpi-blb1</i> and <i>Rpi-blb2</i> in <i>Solanum bulbocastanum</i> and <i>Solanum cardiophyllum</i>	59
Chapter 6	General discussion	73
	References	79
	Appendix	87
	English summary	91
	Dutch summary	95
	中文摘要	99
	Acknowledgements	101
	Curriculum vitae	105
	Education statement	107

Chapter 1 General introduction

Potato

The potato (*Solanum tuberosum* L. ssp. *tuberosum*) originates from the Andes in South America. Taken by the Spanish to Europe in the 16th century, potato spreads from Europe across the globe (Hawkes 1990). The potato is the world's fourth food crop - after maize, wheat and rice, with a total production of more than 323 million tons in 2005, contributing greatly to the world's food supply, especially to that of developing countries like China. For the top ten producing countries (Table 1), which account for two-thirds of the global potato output, the total value of the crop was estimated at some \$40 billion (http://www.fao.org/ag/magazine/0611sp1.htm). The potato is used for human consumption (cooked, baked, processed into French fries or crisps (chips)) or for industrial purposes (dried products and starch production). Bradshaw et al. (2006) summarize that other new uses can be anticipated for the future such as designer starches (Davies 1998) and biopharmaceuticals (Sonnewald et al. 2003).

Potato Production	MT
1. China	73036500
2. Russian Federation	36400000
3. India	25000000
4. Ukraine	19480000
5. USA	19111030
6. Germany	11157500
7. Poland	11009390
8. Belarus	8185000
9. Netherlands	6835985
10. France	6347000

 Table 1 Top ten potato producing countries, 2005 (Data source: FAO/ESS)

 (http://www.fao.org/es/ess/top/commodity.html)

Potato systematics

The tuber-bearing species of the genus *Solanum* provide the potato crop with a secondary gene pool where a broad spectrum of pathogen resistance (including resistance to late blight, nematodes, bacteria and viruses) has accumulated throughout evolution (Ross 1986; Hawkes 1990). Systematic relationships are important criteria

to select material for breeding. Although many wild potato species display a wide range of morphological characteristics, many other species have a general appearance similar to the cultivated potato (Spooner et al. 1992). Systematics within the tuber-bearing Solanum is an area that gave rise to several disputes regarding species boundaries. A factor, strongly contributing to the widely conflicting taxonomic treatments of wild potatoes, is that many potato species can hybridize with each other and produce fertile F1 hybrids. Recent taxonomic overviews were provided by Hawkes (1990), Spooner and Hijmans (2001), Spooner and Salas (2006). Based mainly on morphological data, Hawkes (1990) classified potato into 227 species in 19 series. Later, with the access of molecular markers, potato taxonomists used restricted fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), simple sequence repeat (SSRs), sequences of 5S ribosomal DNA (rDNA) and transcribed spacer (ETS) (Hosaka et al. 1984; Kardolus et al. 1998; external Bryan et al. 1999; Miller et al. 1999; Volkov et al. 2001; Raker and Spooner 2002; Volkov et al. 2003; Sukhotu et al. 2004) to reconstruct and update the systematic relationships within Solanum sect. Petota. Spooner and Hijmans (2001) reduced the number of tuber-bearing species to 206. One reason to reduce the species number is that many species recognized by Hawkes (1990) are morphologically similar to each other as mentioned above; even potato taxonomists have great difficulty to differentiate them. Another important reason is that differentiation of some species is poorly supported due to the low bootstrap/jackknife value in analyses of molecular data (Spooner and Hijmans 2001). More recently, Spooner and Salas (2006) reduced the number of species further to 188 wild and one cultivated species for section Petota, plus three species in section Etuberosa.

The complex status of potato taxonomy poses the question to potato genebanks in the world, which taxonomic classification to choose. The present status is that most genebanks use the names of the species recognized by Hawkes with some updates from more recent literature. The unclear taxonomic situation makes choosing material difficult for potato breeders and researchers. It also makes studies related to species richness complicated (Gaston and Williams 1996). Recently Spooner et al. (2005), using amplified fragment length polymorphism (AFLP) markers, have put forward evidence that potato was domesticated in Peru.

Phytophthora infestans and its center of genetic diversity

Phytophthora infestans causes late blight, the devastating potato disease responsible for the Irish famine in the mid 1840s (Birch and Whisson 2001). As a consequence one million people starved and another million immigrated to North America (Bourke 1993). At the present time, late blight is still the most devastating disease in potato. The oomycete is currently controlled by frequent applications of fungicides.

P. infestans has been studied extensively. In the pathogen's life cycle, three basic steps are involved: formation of mycelium in the host plant, spread of the infection and formation and dispersal of spores. Zoospores are produced by self-reproduction in the asexual life cycle, while oospores are produced by sexual reproduction. Oospores of *P. infestans* can be produced in all tissues of infected potato crops and wild *Solanaceous* hosts. In the winter the oospores stay alive in the soil and germinate at a later stage (Drenth et al. 1995; Andersson et al. 1998; Turkensteen et al. 2000). The appearance of oospores and the enlargement of genetic variation of the pathogen make the late blight resistance breeding more complex.

The Toluca valley (>2600m above sea level), latitude (19°N), and longitude (99°E) in Mexico is an area which is characterized by almost constant cool temperatures and daily precipitation (Grunwald et al. 2000 and 2002). With average daily temperatures between 5 to 10°C (maximum around 20 to 25°C) and high humidity, the climate is ideal for late blight development (Grunwald et al. 2000 and 2002). The sexually reproducing A2 type of *P. infestans*, was discovered in Mexico, spreading quickly through the USA, Europe, Asia and North Africa in the 1970s and 1980s (Fry et al. 1992). The central highlands of Mexico are considered to be the center of genetic diversity for the potato late blight pathogen (Goodwin et al. 1992; Grunwald et al. 2001; Grunwald et al. 2005).

Late blight resistance genes and quantitative loci

Over the past century, potato breeders have introduced at least 11 late blight resistance (R) genes from *S. demissum* into the cultivated potato (Gebhardt and Valkonen 2001). New races of the pathogen having virulence genes compatible with the R genes in the cultivars soon overcame this type of resistance. In the past fifteen years, researchers and breeders have shifted their attention to species others than *S. demissum*, with the aim to find more durable resistance against *P. infestans*. In Table 2, a summary is

given of late blight resistance genes and quantitative loci detected in cultivated and wild species until now.

Source	Gene or QTL	Chromosome	Reference
S. berthaultii	Rpi-ber	10	Ewing et al. 2000; Rauscher et al. 2006
S. bulbocastanum	RB/Rpi-blb1	8	Naess et al. 2000; Song et al. 2003; van der Vossen et al. 2003
S. bulbocastanum	Rpi-blb2	6	van der Vossen et al. 2004
S. bulbocastanum	Rpi-blb3	4	Park et al. 2005
S. bulbocastanum	R12	10	Sanchez et al. 2000
S. berthaultii	R13	7	Sanchez et al. 2000
S. demissum	R2	4	Li et al. 1998
S. demissum	R3a	11	Huang et al. 2005
S. demissum	R3b	11	Huang et al. 2005
S. demissum	R5	11	Huang et al. 2005
S. demissum	<i>R6</i>	11	El-Kharbotly et al. 1996
S. demissum	<i>R7</i>	11	El-Kharbotly et al. 1996
S. demissum	<i>R</i> 8	11	Huang et al. 2005
S. demissum	R9	11	Huang et al. 2005
S. demissum	R10	11	Huang et al. 2005
S. demissum	R11	11	Huang et al. 2005
R-gene differentials of Black	R10, R11	11	Bradshaw et al. 2005 Leonards-Schippers et al. 1992;
S. demissum	<i>R1</i>	5	Ballvora et al. 2002
S. microdontum	QTL	4/10	Sandbrink et al. 2000
S. microdontum	QTL		Bisognin et al. 2005
S. mochiquense	Rpi-moc1	9	Smilde et al. 2005
S. paucissectum	QTL	10/11/12	Villamon et al. 2005
S. phureja	Rpi-phu	9	Sliwka et al. 2006
S. phureja	QTL	7/12	Ghislain et al. 2001
S. pinnatisectum	Rpil	7	Kuhl et al. 2001
S. tuberosum/S.demissum	QTL	8	Meyer et al. 1998
S. tuberosum/S.spegazzinii	QTL	4/5	Leonards-Schippers et al. 1992
S. tuberosum/S.spegazzinii	QTL	3/5/6/9/11	Oberhagemann et al. 1999
	Rpi-abpt	4	Park et al. 2005
	R2-like	4	Park et al. 2005

 Table 2 Late blight resistance genes and quantitative loci (QTL)

Use of wild germplasm for cultivar improvement

Apart from breeding for Phytophthora resistance a lot of effort has been put into

breeding for other types of biotic stress resistance. Several species have been used in potato virus resistance breeding, including *S. acaule* (Ritter et al. 1991), *S. chacoense* (Marczewski et al. 2004), *S. demissum* (Marczewski et al. 2001), *S. phureja* (Tommiska et al. 1998), *S. tuberosum* subsp. *andigena* (Ritter et al. 1991; Bendahmane et al. 1997; Sorri et al. 1999; Kasai et al. 2000; Celebi-Toprak et al. 2002). S. *stoloniferum* MPI 61.303/34 from the Max Planck Institute in Koln was introgressed into many potato cultivars as the source of resistance to potato virus Y.

Resistance to potato cyst nematodes has been introgressed from *S. tuberosum* subsp. *andigena* (Pineda et al. 1993; Gebhardt et al. 1993), *S. spegazzinii* (Barone et al. 1990; Caromel et al. 2003; Kreike et al. 1993) and *S. vernei* (Jacobs et al 1996). Breeding clone VTN62-33-3 has been used for introgression breeding (directly or indirectly) in many European cultivars like 'Frisia'. *S. tuberosum* subsp. *andigena* accession CPC 1673 confers resistance not only to potato virus X (Bendahmane et al. 1997), but also to cyst nematode *Globodera pallida* (Rouppe van der Voort et al. 1997b). The accession has been the ancestor for many potato cultivars, for example, 'Aziza'. Nowadays, the resistance is effective against *Globodera rostochiensis* in Britain because Ro1 is still the main pathotype there, but its widespread deployment has encouraged the spread of *G. pallida* (Bradshaw et al. 2005). From the information presented above it is clear that the secondary gene pool of potato is widely used for resistance breeding and that many cultivars will contain introgressed genes.

Resistance genes: genome organization and evolution

Plant disease resistance genes encode proteins that detect pathogens and most R genes encode proteins that have a putative amino-terminal signaling domain, a nucleotide-binding (NBS) and a series of carboxy-terminal leucine-rich repeats (LRRs). NBS-LRR proteins have been divided into two major classes: those with an amino-terminal TIR (Toll/interleukin receptor) domain (which are known as TIR-NBS-LRR or TNL proteins) and those that encode an amino-terminal coiled-coiled motif (CC-NBS-LRR or CNL proteins) (Meyers et al. 2005). NBS-LRR proteins are numerous and ancient in origin. There are approximately 150 NBS-LRR-encoding genes in *Arabidopsis thaliana* and over 400 in *Oryza sativa* (Meyer et al. 2003; Monosi et al. 2004). NBS-LRR-encoding genes are frequently clustered in the genome. These clusters are the result of both segmental and tandem duplications (Meyer et al. 2003; Monosi et al. 2004; Richly et al. 2002; Leister 2004).

The rate of evolution of NBS-LRR-encoding genes can be rapid or slow, even within an individual cluster of similar sequences. In lettuce, RGC2 genes exhibit heterogeneous patterns of evolution. Depending on their rate of evolution, R genes have been classified in type I and type II (Kuang et al. 2004). The LRR-encoding regions of Type I RGC2 genes evolve rapidly through frequent sequence exchanges between paralogs. In contrast, Type II RGC2 genes evolve slowly, maintaining obvious allelic/orthologous relationships between clades (Kuang et al. 2004).

NBS profiling

NBS profiling is a PCR-based approach that specifically targets R genes and their analogs (RGAs). In NBS profiling, genomic DNA is digested with a restriction enzyme, and an NBS-specific (degenerate) primer is used in a PCR reaction towards an adapter linked to the resulting DNA fragments. The NBS profiling protocol generates a reproducible polymorphic multilocus marker profile on a sequencing gel that is highly enriched for R genes and RGAs (van der Linden et al. 2004). NBS profiling was successfully used in potato with several restriction enzymes, and several primers targeted to different conserved motifs in the NBS. The protocol was similarly successful in other crops (including tomato, barley, and lettuce) without modifications. NBS profiling can thus be used to produce markers tightly linked to R genes and R gene clusters for genomic mapping and to mine for new alleles and new sources of disease resistance in available germplasm. The efficiency of the NBS-profiling method for generating RGA markers for resistance loci was demonstrated in apple (Calenge et al. 2005).

Scope of this thesis

The aim of this thesis was to study the diversity and evolution of resistance genes in tuber-bearing *Solanum* species. Two approaches were followed. First plant material was analyzed using NBS profiling (chapters 2 and 3). Second, an in depth study was carried out to analyze the dynamics in two specific *P. infestans* resistance genes (chapters 4 and 5),

Wild tuber-bearing *Solanum* species from South and Central America are known as the major sources of resistance towards *P. infestans* but the systematic relationships within the tuber-bearing *Solanum* species obtained with neutral markers have not resulted in a priori identification of the most promising species for *P. infestans* resistance. NBS profiling was used to study the systematic relationships in a set of over 100 genebank accessions, comprising a broad diversity of tuber-bearing *Solanum* species. The results obtained with NBS profiling are compared to those with AFLP (chapter 2).

Chapter 3 presents the development in genetic diversity of a large set of potato varieties grown in North-Western Europe during the last 70 - 80 years as measured by NBS profiling. Changes in diversity are related to introgression of resistance genes and in some cases NBS profiling markers linked to these genes are identified. This chapter also addresses the homoplasy issue for NBS profiling.

In Chapter 4 the presence of two late blight resistance genes, *Rpi-blb1* and *Rpi-blb2*, was analyzed in depth in tuber-bearing *Solanum* species using gene specific primers. In addition the dynamics of the cluster harboring *Rpi-blb1* was studied.

In chapter 5, R gene diversity of the two late blight resistance genes *Rpi-blb1* and *Rpi-blb2* was explored in accessions of *S. bulbocastanum* and *S. cardiophyllum*. The implications of the results described in this thesis for the exploitation of *Solanum* resources and resistance breeding are discussed.

Chapter 2

The utility of NBS profiling for plant systematics: a first study in tuber-bearing *Solanum* species

Miqia Wang^{a,b}, Ronald van den Berg^c, Gerard van der Linden^a, Ben Vosman^a

^aPlant Research International B.V., Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands

^bOil Crop Research Institute, Chinese Academy of Agricultural Sciences, 430062 Wuhan, Hubei, China

^cNational Herbarium of the Netherlands-Wageningen branch, Biosystematics Group, Wageningen University and Research Centre, Generaal Foulkesweg 37, P.O.Box 8010 6700 ED Wageningen, The Netherlands

Abstract

Potato (Solanum tuberosum L.) is a crop with a large secondary genepool, which contains many important traits that can be exploited in breeding programs. Systematic relationships are important criteria for researchers and breeders to select materials. We evaluated a novel molecular technique, nucleotide binding site (NBS) profiling, for its potential in phylogeny reconstruction. NBS profiling produces multiple markers in resistance genes and their analogs (RGAs). In this study we used a set of over 100 genebank accessions, representing 47 tuber-bearing wild and cultivated Solanum species plus two outgroups species. Results of NBS profiling were compared to those of amplified fragment length polymorphism (AFLP). Cladistic and phenetic analyses showed that the two had similar resolving power and delivered trees with a similar topology. However, the different statistical tests used to show this were inconclusive. Visual inspection of the trees showed that, especially at the lower level, many accessions grouped together in the same way in both trees; at the higher level, when looking at the more basal nodes, only a few groups were well supported. Again this was similar for both techniques. The observation that higher level groups were poorly supported might be due to the nature of the material and the way the species evolved. The similarity of the NBS and AFLP results indicates that the role of disease resistance in speciation is limited.

Introduction

The potato (*Solanum tuberosum* L.) is a crop with a large secondary gene pool, which contains important traits that can be exploited in breeding programs. In the last few years the identification and cloning of late blight (*Phytophthora infestans*) resistance genes from wild relatives of the cultivated potato has been the subject of many studies (Ballvora et al. 2002; Song et al. 2003; Huang et al. 2005; van der Vossen et al. 2003 and 2005; Park et al. 2005). Systematic relationships within the group of tuber-bearing *Solanum* species are regarded as important criteria to select interesting material. Based on morphological data, relationships among tuber-bearing *Solanum* species have been studied extensively resulting in a classification of 227 species in 19 series (Hawkes 1990). Spooner and Hijmans (2001) updated this by reducing the number of tuber-bearing species to 206. Recently, Spooner and Salas (2006) reduced the number to 188 wild and one cultivated species for section *Petota*, plus 3 species in section *Etuberosa*. Apparently, the boundaries between some of the species in this group are not very clear.

Relationships within the tuber-bearing *Solanum* species have been studied using different molecular markers resulting in new insights at different levels of potato taxonomy. These studies include Restriction Fragment Length Polymorphism (RFLP) markers of chloroplast DNA (cpDNA) (Hosaka et al. 1984; Sukhotu et al. 2004), RFLPs of the nuclear genome (Debener et al. 1990; Miller et al. 1999), Amplified Fragment Length Polymorphism (Kardolus et al. 1998), Simple Sequence Repeat (SSRs) (Raker and Spooner, 2002), cpDNA SSRs (Bryan et al. 1999), sequence data of 5S ribosomal DNA (rDNA) (Volkov et al. 2001), and external transcribed spacer (ETS) (Volkov et al. 2003).

Recently, a novel molecular technique called Nucleotide Binding Site (NBS) profiling was developed (van der Linden et al. 2004). This technique specifically targets resistance genes and their analogs. Resistance (R) genes containing an NBS are numerous in plants and are distributed over all chromosomes (Meyers et al. 2002 and 2003; Monosi et al. 2004). The technique is based on amplification of DNA fragments starting from the conserved NBS domain towards an adaptor which is ligated to a restriction fragment. Primers based upon several conserved motifs (P loop, the kinase-2 motif, and the GLPL motif) within the NBS domain can be used as a starting point. As a consequence this

technique produces gene targeted markers, while other marker techniques like AFLP produce markers randomly in the genome. NBS profiling generates a reproducible polymorphic multi-locus banding pattern and has already been successfully used to identify and map RGAs in potato, apple and lettuce (van der Linden et al. 2004 and 2005; Calenge et al. 2005; Syed et al. 2006).

In this paper we describe the first use of NBS profiling for phylogeny reconstruction and classification of *Solanum* species. To explore the prospects of NBS profiling for systematic research, previously obtained AFLP data (Kardolus 1998) were used as reference. As NBS profiling targets resistance genes and their analogs, we address the question whether this affects the outcome of the systematic analysis by comparing results from NBS profiling to results obtained from AFLP. The role of disease resistance in the evolution of species is discussed.

Material and methods

Plant material

DNA material of one hundred and three accessions (Table 1) from Kardolus (1998), representing 47 tuber-bearing wild and cultivated *Solanum* species plus two outgroup species, was used for NBS profiling. Origin of the material and number of genotypes per accession are given in Table 1. To facilitate comparison with the previous results from Kardolus (1998), we used the series and species abbreviations according to Hawkes (1990), although we are aware of the synonymy published since then.

NBS profiling procedure

NBS profiling was performed essentially as described by van der Linden et al. (2004) with two minor modifications. Firstly, 200 instead of 400 ng of DNA was digested with a restriction enzyme. Secondly, in the study of van der Linden et al. (2004), the restriction and adaptor ligation reactions were done separately, while in our study, the two were combined into one single reaction of 60 μ l, consisting of 200 ng of DNA, 30 pmol of adaptor, 60 mM ATP, 10 U enzyme, 5 U T4 ligase and restriction and ligation buffer (10 mM Tris.HAc pH7.5, 10 mM MgAc, 50 mM KAc, 5 mM DTT, 50 ng/µl BSA). Afterwards, the restriction/ligation product was two times diluted with MilliQ water and used as template for PCR reactions.

Code ^a	Series	Species	Origin	Source ^b	Chr no	# GT °
ach1	TUB	S. achacachense Cárdenas	Bolivia	B29617	24	10
acl7	ACA	S. acaule Bitter ssp. acaule	Bolivia	B28026	48	10
acl10	ACA	S. acaule ssp. acaule	Bolivia	B27206	48	10
acl12	ACA	S. acaule ssp. acaule	Bolivia	B27361	48	10
acl13	ACA	S. acaule ssp. acaule	Argentina	B16835	48	10
acl18	ACA	S. acaule ssp. acaule	Argentina	B17111	48	10
acl26	ACA	S. acaule ssp. acaule	Argentina	B47627	48	10
acl27	ACA	S. acaule ssp. acaule	Argentina	B17181	48	10
adg1	TUB	S. tuberosum L. ssp. andigena Hawkes	-	B7462	48	10
adg2	TUB	S. tuberosum ssp. andigena	-	B24677	48	9
aem1	ACA	S. acaule ssp. aemulans Hawkes et Hjert.	Argentina	B17129	48	10
aem5	ACA	S. acaule ssp. aemulans	Argentina	PI320280	48	10
ajh1	TUB	S. ajanhuiri Juz. et Bukasov	-	CIP702677	24	10
alb2	ACA	S. albicans Ochoa	Peru	CIP761438	72	1
alb3	ACA	S. albicans	Peru	PI365376	72	10
alb5	ACA	S. albicans	Peru	PI498194	72	10
bcp1	DEM	S. brachycarpum Corr.	Mexico	B8100	72	10
ber1	TUB	S. berthaultii Hawkes	Bolivia	B28009	24	9
ber2	TUB	S. berthaultii	Bolivia	B24578	24	10
ber3	TUB	S. berthaultii	Bolivia	B10063	24	10
blb	BUL	S. bulbocastanum Dunal	Mexico	B8009	24	3
blv3	MEG	S. boliviense Dunal	Bolivia	B27342	24	10
brc1	TUB	S. brevicaule Bitter	Bolivia	B18291	24	10
brc2	TUB	S. brevicaule	Bolivia	B28023	24	9
brd2	ETU	S. brevidens Phil.	Argentina	B17441	24	10
bst1	PIN	S. brachistotrichium (Bitt.) Rydb.	Mexico	B7986	24	10
bst2	PIN	S. brachistotrichium	Mexico	B7987	24	10
buk1	TUB	S. bukasovii Juz.	Peru	B15424	24	10
buk2	TUB	S. bukasovii	Peru	B18294	24	10
can1	TUB	S. canasense Hawkes	Peru	B8105	24	10
can2	TUB	S. canasense	Peru	B7162	24	8
can3	TUB	S. canasense	Peru	B8012	24	9
chal	TUB	S. chaucha Juz. et Bukasov	-	CIP 700145	36	1
cha4	TUB	S. chaucha	-	CIP701568	36	1
chc1	YNG	S. chacoense Biter ssp. chacoense	Argentina	B17034	24	10
chc2	YNG	S. chacoense ssp. chacoense	Argentina	B17018	24	7
cop1	TUB	S. coelestipetalum Vargas	Peru	B7942	24	7
cop3	TUB	S. coelestipetalum	Peru	B7994	24	10
crc	CIR	S. circaeifolium Bitter ssp. circaeifolium	Bolivia	B27058	24	10
dms1	DEM	S. demissum Lindl.	Mexico	B10030	72	10
dms2	DEM	S. demissum	Mexico	B10022	72	10
dms3	DEM	S. demissum	Mexico	B9990	72	10
etb1	ETU	S. etuberosum Lindl.	Chili	B28476	24	9
etb2	ETU	S. etuberosum	Chili	B8082	24	10
fen	LON	S. fendleri A. Gray ssp. fendleri	Mexico	B7230	48	9
gnd	TUB	S. gandarillasii Cárdenas	Bolivia	B7174	24	9

 Table 1 Accessions used for phylogeny reconstruction

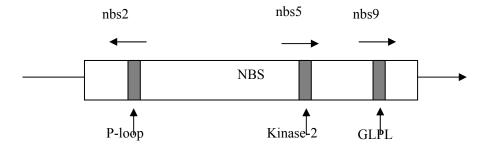
Code ^a	Series	Species	Origin	Source ^b	Chr no	# GT °
grl2	TUB	S. gourlayi Hawkes ssp. gourlayi	Argentina	B17338	24	9
grl4	TUB	S. gourlayi ssp. gourlayi	Argentina	B16837	48	10
hje	LON	S. hjertingii Hawkes	Mexico	B8088	48	9
ifd1	CUN	S. infundibuliforme Phil.	Argentina	B17212	24	4
juz3	TUB	S. juzepczukii Bukasov	-	CIP701895	36	1
ktz1	TUB	S. kurtzianum Bitter et Wittm.	Argentina	B17585	24	10
ktz2	TUB	S. kurtzianum	Argentina	B16861	24	10
ktz3	TUB	S. kurtzianum	Argentina	B17580	24	10
les	POL	S. lesteri Hawkes et Hjert.	Mexico	B55219	24	10
lgl	LIG	S. lignicaule Vargas	Peru	B8106	24	12
lph1	TUB	S. leptophyes Bitter	Argentina	B7184	24	8
lph2	TUB	S. leptophyes	Bolivia	B27176	24	10
lph3	TUB	S. leptophyes	Bolivia	B27211	24	10
mcd1	TUB	S. microdontum Bitter	Bolivia	B31189	24	10
mcd2	TUB	S. microdontum	Argentina	B24649	24	10
mcq1	TUB	S. mochiquense Ochoa	Peru	B32672	24	8
mcq2	TUB	S. mochiquense	Peru	B8142	24	10
mga3	MEG	S. megistacrolobum Bitter ssp. megistacrolobum	Argentina	B17642	24	10
mgl	MGL	S. maglia Schlechtd.	Chili	B23571	24	10
mlt1	TUB	S. multidissectum Hawkes	Peru	B8145	24	10
opl1	TUB	S. oplocense Hawkes	Argentina	B16868	72	10
opl2	TUB	S. oplocense	Argentina	B24650	72	10
opl3	TUB	S. oplocense	Argentina	B16879	72	10
oxc	CON	S. oxycarpum Schiede	Mexico	B53011	48	10
pcs1	PIU	S. paucissectum Ochoa	Peru	B8162	24	6
pcs2	PIU	S. paucissectum	Peru	B55216	24	10
phu1	TUB	S. phureja Juz. et Bukasov	-	B15482	24	10
phu2	TUB	S. phureja	-	B50199	24	10
pne1	ACA	S. acaule ssp. punae Hawkes et Hjert.	Peru	PI365312	48	10
pne2	ACA	S. acaule ssp. punae	Peru	B7958	48	10
pne4	ACA	S. acaule ssp. punae	Peru	PI473442	48	10
pnt1	PIN	S. pinnatisectum Dunal	Mexico	B8168	24	10
qum	CIR	S. circaeifolium ssp. quimense Hawkes et Hjert.	Bolivia	B27034	24	10
rapl	MEG	S. raphanifolium Cárdenas et Hawkes	Peru	B15445	24	10
rap3	MEG	S. raphanifolium	Peru	B7207	24	10
sct1	MEG	S. sanctae-rosae Hawkes	Argentina	B15454	24	10
sct2	MEG	S. sanctae-rosae	Argentina	B17568	24	7
sct3	MEG	S. sanctae-rosae	Argentina	B17051	24	10
spg2	TUB	S. spegazzinii Bitter	Argentina	B24694	24	8
spg3	TUB	S. spegazzinii	Argentina	B16905	24	10
spl1	TUB	S. sparsipilum (Bitt.) Juz. et Bukasov	Bolivia	B8209	24	10
spl2	TUB	S. sparsipilum	Bolivia	B8150	24	10
spl3	TUB	S. sparsipilum	Bolivia	B15455	24	10
stn1	TUB	S. stenotomum Juz. et Bukasov ssp. stenotomum	Bolivia	B27165	24	10
stn2	TUB	S. stenotomum sub. et Bakasov ssp. stenotomum S. stenotomum ssp. goniocalyx Hawkes	Peru	B7478	24	10
sto	LON	<i>S. stoloniferum</i> Schlechtd. et Bche.	Mexico	B7229	48	10
tar1	YNG	S. tarijense Hawkes	Argentina	B17423	24	10
tar2	YNG	S. tarijense	Argentina	B8229	24	6

					Chr	
Code ^a	Series	Species	Origin	Source ^b	no	# GT °
tbr1	TUB	S. tuberosum L. ssp. tuberosum	-	'Certa' x 'Gloria'	48	1
ver1	TUB	S. verrucosum Schlechtd.	Mexico	B8255	24	10
ver2	TUB	S. verrucosum	Mexico	B8246	24	7
ver3	TUB	S. verrucosum	Mexico	B8254	24	4
vid1	TUB	S. gourlayi ssp. vidaurrei Hawkes et Hjert.	Argentina	B16831	24	10
vid2	TUB	S. gourlayi ssp. vidaurrei	Argentina	B18528	24	9
vrn1	TUB	S. vernei Bitter et Wittm.	Argentina	B15451	24	8
vrn2	TUB	S. vernei ssp. ballsii Hawkes et Hjert.	Argentina	B17536	24	10
vrn3	TUB	S. vernei ssp. vernei Bitter et Wittm.	Argentina	B17542	24	10

^a Series and taxon code abbreviations according to Hawkes (1990)

^b Accessions with a prefix of B were obtained from the Braunschweig Genetic Resources Collection; Accessions with prefix CIP were obtained from the International Potato Centre, Peru; Accessions with prefix PI showed the Plant Introduction Number after Bamberg et al. (1996)

^c Number of genotypes used to represent the accession in the DNA sample


The 25 μ l PCR reaction mix consisted of 5 μ l template DNA, 20 pmol of both adaptor primer and NBS primer, 200 μ M dNTPs, 0.4 U HotStarTaq (Qiagen, Germany), and 2.5 μ l HotStarTaq PCR buffer. The PCR program consisted of 30 cycles of 30 s at 95°C, 1 min 40 s at 55–60°C annealing, and 2 min at 72°C. Annealing temperature was 55°C for NBS5 and NBS9 primers and 60°C for NBS2 and NBS3 primers. After this, a second PCR reaction was performed using 5 μ l of the 10 times diluted first PCR product as template, and the same NBS-specific primer but now ³³P radioactively labeled, and cycling conditions similar to the first PCR. Labeled products were separated on 6% polyacrylamide gels. X-ray films were exposed to the gels to visualize individual fragments. The presence or absence of polymorphic fragments was scored on the autoradiograms and transferred into a 1 (present) and 0 (absent) binary matrix for all accessions.

In total, four primers (NBS2, NBS3, NBS5 and NBS 9) and three enzymes (*MseI*, *RsaI* and *AluI*) were used (Table 2). NBS2, NBS5 and adaptor sequences were the same as described by van der Linden et al. (2004). NBS3 and NBS9 primer sequences were as follows: NBS3 5'- GTWGTYTTICCYRAICCIGGCATICC-3' and NBS9 5'-TGTGGAGGRTTACCTCTAGC-3'. Positions of the NBS primers in the NBS domain are shown in Fig.1.

Enzyme/Primer	NBS5	NBS9	NBS2	NBS3
MseI	32	36	66	37
Rsa	31	23	29	ND^{a}
AluI	37	40	ND	31
RGA content (%)	94	57	63	61

Table 2 Number of polymorphic NBS markers for different primer/enzyme combinations.Bottom row shows RGA content for the four primers.

^a ND: no data

Fig. 1 Schematic representation of the nucleotide-binding site (NBS) of disease resistance genes and positions of primers used in this study. P-loop, kinase-2 and GLPL refer to highly conserved motifs in the NBS. LRR refers to the Leucine Rich Repeat. Primer positions are indicated by horizontal arrows.

Annotation of NBS profiling sequences

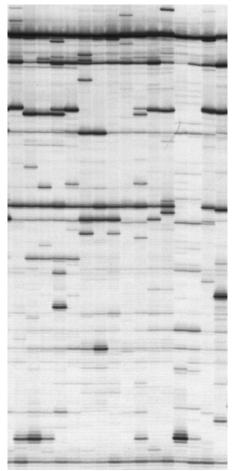
To determine the RGA content of NBS profiling markers, 384 bands were excised from the gel, re-amplified with PCR conditions identical to the first PCR of the NBS profiling protocol and purified with Qiaquick PCR purification spin columns (Qiagen). Fragments were directly sequenced using the adaptor primer as a sequencing primer with the BigDye Terminator kit and an ABI 3700 automated sequencer from Applied Biosystems (USA). Sequences of poor quality were excluded from further analysis, and the remaining sequences were compared to archived sequences in the NCBI nucleotide databases (Jan 11, 2006) using BLASTN and BLASTX (Altschul et al. 1997). Sequences that were significantly similar to known R genes and RGAs (either E value lower than 1e-05 for BLASTN, or E value lower than 1e-03 for BLASTX) were regarded as RGAs.

NBS profiling and AFLP data analysis

AFLP data from three primer combinations were available from Kardolus (1998). Two AFLP datasets E32M49, E35M48 and one NBS profiling dataset were used in this study. Neighbor joining (NJ) and parsimony analyses were performed with PAUP* version 4.0 b10 (Swofford 2001). For the parsimony analysis, we used a two-step search strategy. (1) The first heuristic search was conducted with 10,000 random additions, holding 10 trees, and saving five trees per search replicate. (2) Resulting trees from the first search were used as starting trees to swap to completion with MULTREES and TBR. A jackknife analysis (10,000 replicates) was performed with the same settings as the heuristic search. In the parsimony analyses, three accessions from the series *Etuberosa* Juz. were used as outgroups.

Congruence between AFLP and NBS profiling was assessed in three ways: (1) visual qualitative comparisons of the trees obtained, (2) distance matrix-based comparisons, and (3) character-based comparisons.

For the distance matrix-based comparisons, the program SIMQUAL was used to compute similarity matrices using the DICE option, which ignores shared absent bands, and is an appropriate algorithm for dominant markers like AFLP or NBS profiling markers. A pair wise comparison for these matrices with the Mantel test in NTSYS-pc version 2.10j (Rohlf 1992) was made. For the character-based comparisons, the partition homogeneity test (Farris et al. 1995) was performed in PAUP* version 4.0 b10 (Swofford 2001). This test is also called the incongruence length difference (ILD) test. ILD tests were performed with 100 replicates, the heuristic search option, and TBR and MULPARS in effect.


Results

NBS profiling on *Solanum* species

NBS profiling produced well scorable banding patterns on a gel; part of such a gel is shown in Fig. 2. For the whole set of 103 accessions, ten primer/enzyme combinations were tested. A dataset of 362 characters was produced. Each combination produced 23-66 scorable polymorphic bands (Table 2).

To obtain information on the RGA content of the bands that make up the NBS profiles,

384 bands were sequenced, of which 232 produced readable sequences. Table 2 shows the percentage of RGAderived bands for each primer. The RGA content of the bands obtained with the NBS5 primer was 94%. For NBS9, NBS2 and NBS3, these figures were 57%, 63% and 61%, respectively. For all primer combinations together, the average RGA content was 67%, indicating that NBS profiles indeed largely consisted of markers derived from R-genes and their analogs. Some examples of bands that could be annotated are listed in Table 3. Most of the remaining fragments (33%) could not be annotated. Only in a few cases significant homologies to other known genes, like retrotransposons, were found.

Fig. 2 Part of an NBS profiling gel obtained with primer NBS9 and restriction enzyme *MseI*.

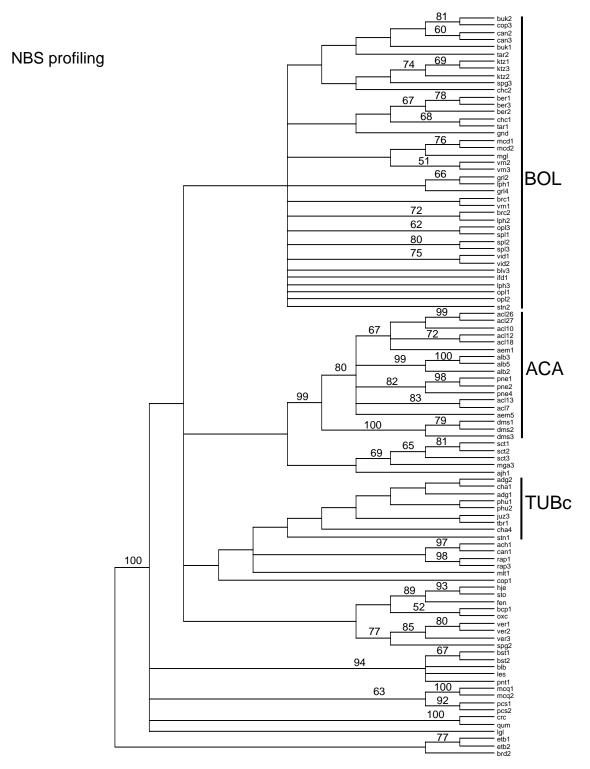
Cladistic results

The NBS profiling dataset was composed of 362 characters, 351 of which were parsimony informative. Sixteen most parsimonious 3,553-step trees were produced, with a consistency index of 0.102 and retention index of 0.464. The strict consensus tree is shown in Fig. 3. Numbers above the branches indicated jackknife values >50%.

The three non-tuber-bearing *Solanum* species (outgroup species: brd2, etb1 and etb2) were basal to the tree. Next came a polytomy consisting of (1) the diploid Mexican species (bst1, bst2, blb, les, pnt1), (2) diploid South American species (mcq1, mcq2, pcs1, pcs2), (3) the representatives of series *Circaeifolia* (crc and qum), (4) the species *S. lignicaule*, and (5) all other species. Within the latter group four clades could be distinguished but none of

them had statistical support: a group of Mexican polyploids including the diploid *S. verrucosum*, a group consisting of taxa from series *Acaulia*, including *S. demissum* from series *Demissa*, with a number of species of series *Megistacroloba* as a sister clade, and two groups with mainly species from series *Tuberosa*, divided in a Bolivian and Peruvian group, the latter also containing a number of cultivated species. Only the *Acaulia* group had a high jackknife support of 99%.

The AFLP datasets resulting from the two chosen primer combinations were found to be congruent with each other both for the Mantel test and ILD test (data not shown). For this reason we combined the two AFLP datasets for the comparison with NBS profiling.


The AFLP dataset consisted of 591 characters, among which 539 were informative. Parsimony analysis of AFLP data yielded eight equally parsimonious 1,548-step trees with a consistency index of 0.169 and retention index of 0.542. The strict consensus tree is shown in Fig. 4.

The outgroup species are again at the base of the tree, followed by the Mexican diploids, the taxa of series *Circaeifolia*, and relatively primitive South American species.

The remainder of the tree was subdivided into three clades: a group of Peruvian species of series *Tuberosa* with the accessions of the cultivated species, a group of taxa from the series *Acaulia*, including *S. demissum*, forming a polytomy with a number of species from the series *Megistacroloba*, and a large polytomy including mainly the Bolivian representatives of series *Tuberosa*, with the Mexican polyploids nested within.

Band Code	Primer	Homologue	Identity (no.of nucleotides)	E value for BLASTN
65	nbs2	Solanum tuberosum potato resistance-like protein I2GA-SH23-3	90% (324)	5.00E-82
1	nbs2	Lycopersicon esculentum BAC clone Clemson_Id 127E11	92% (455)	2.00E-162
g0739 mq21	nbs5	Solanum bulbocastum Rpi-blb2 gene	97% (281)	8.00E-137
g0732 mq14	nbs5	Solanum demissum chromosome 11 clone PGEC591C22 map MAP_LOC	96% (457)	0
G14	nbs9	Lycopersicon esculentum Tm-2 ToMV resistant protein (Tm-2nv) gene	92% (276)	7.00E-97
18c-7	nbs9	Solanum acaule Rx2.ac15 gene	97% (223)	1.00E-93

Table 3 NBS profiling bands with high similarity to known resistant (R) genes and R gene cluster members

Fig. 3 NBS profiling strict consensus tree. Numbers above the branches are jackknife supports based on 10,000 replicates (%). Jackknife support values lower than 50% are not shown. ACA and TUB are abbreviations for series *Acaulia* and *Tuberosa* outlined by Hawkes (1990). Clade ACA includes a group of taxa from series *Acaulia* together with *S. demissum* from series *Demissa*. TUBc indicates the cultivated species from series *Tuberosa*. BOL includes accessions from series *Tuberosa* from Bolivia, Argentina and Chile.

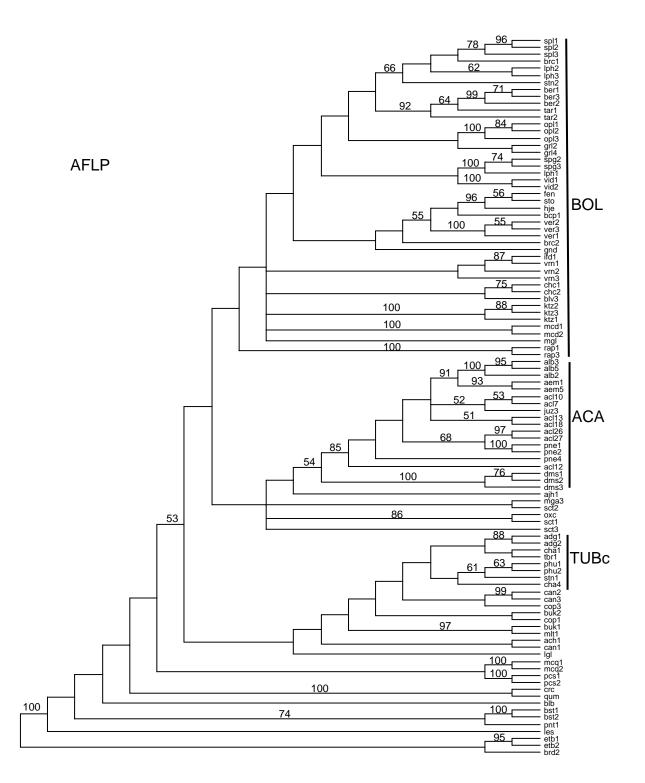


Fig. 4 AFLP strict consensus tree. For details see figure 3.

In both the NBS profiling and AFLP based strict consensus trees, the more basal branches either had poor jackknife support (lower than 50%) or form a polytomy. To investigate the influence of polyploid taxa on the poor resolution of the trees, we excluded all polyploids from the analysis. Two new datasets, containing the marker data of 72 accessions from the diploid species were produced. Parsimony and jackknife analysis were performed in the same way as with the complete dataset. Excluding the polyploid species did not improve the trees, the polytomies and basal nodes with jackknife support lower than 50% were still present.

At the lower (accession) level, common well supported subclades can be found in both the NBS profiling and AFLP strict consensus trees. In total, seventeen subclades (containing two or three accessions) with a jackknife support higher than 70% were observed (Table 4).

Group	Common Groups	NBS Profiling Jackknife(%)	AFLP Jackknife(%)
1	acl 26 acl27	99	<u>97</u>
2	alb2 3 5	99	100
3	alb3 alb5	100	95
4	ber1 ber3	78	71
5	crc qum	100	100
6	dms1 dms2	79	76
7	dms1 2 3	100	100
8	etb1 etb2	77	95
9	hje sto fen	89	96
10	ktz1 2 3	74	100
11	mcd1 mcd2	76	100
12	mcq1 mcq2	100	100
13	pcs1 pcs2	92	100
14	pnel pne2	98	100
15	rap1 rap3	98	100
16	ver1 2 3	85	100
17	vid1 vid2	75	100

 Table 4 Common groups recognized both from AFLP and NBS profiling tree

Phenetic results

NBS profiling and AFLP phenograms had a very high cophenetic correlation coefficient of 0.96 and 0.93, indicating excellent fits of the similarity matrices to the resulting

phenograms. The NJ trees of both NBS profiling and AFLP data basically showed the same groups as the cladograms. Except for the branch leading to the outgroups many of the interconnecting branches were very short and jackknife support was low. Average similarities for AFLP and NBS-profiling were 0.29 and 0.52, respectively.

Congruence between AFLP and NBS profiling derived data

As described above, a visual inspection of the trees produced from NBS profiling and AFLP data showed that they were similar in many aspects, although many details were different. The correlation coefficient between NBS profiling and AFLP similarity matrices was 0.737, and between the cophenetic value matrices derived from the NBS profiling and AFLP trees 0.762. Mantel test showed that both were significantly correlated at α =0.05 (P=0.001), indicating both NBS profiling and AFLP derived similarity matrices and tree topologies are congruent.

In contrast to the Mantel test, the ILD test produced different results. P value of 0.01 was observed, showing that NBS profiling and AFLP were incongruent with each other (α =0.05).

Discussion

NBS profiling in *Solanum*

When introducing a new tool for systematic analysis one first needs to compare the results from the new tool with results from established techniques, like AFLP (Vos et al. 1995; Kardolus et al. 1995). Our study aimed at such comparison. We first investigated whether NBS profiling produces markers derived from resistance genes and their analogs with a high frequency. Table 2 clearly shows that the majority of the bands were derived from resistance genes and their analogs. Most likely, the observed RGA content is even an underestimation as bands can only be identified when sufficiently homologous sequences are present in the nucleotide databases. This was supported by the observation that some bands could not be annotated during our first analysis in August 2004, while the second analysis, with an updated version of the database (in January 2006), yielded a positive identification for several previously unidentifiable bands. Also, the annotation became more accurate. An example was the band g0739 mg21 obtained with the primer NBS5 in

the *S. bulbocastanum* BGRC 8009 (Table 3). The first analysis showed that this band had the highest similarity with the *Mi*-gene of tomato. During the second annotation round, this fragment had the highest similarity (97%) with the late blight resistance gene rpi-blb2 (van der Vossen et al. 2005).

Systematic relationships inferred from NBS profiling and AFLP

The topology of the cladogram from our AFLP analysis is comparable to Kardolus (1998), which is not surprising since we studied a subset of his material (because not all of the DNA was still available). Kardolus (1998) distinguished more groups in his trees but also in his results the Mexican diploid species and primitive South American species like *S. circaeifolium* and *S. mochiqense* are placed in a basal group. Furthermore, a distinct group of representatives of series *Acaulia* can be recognized, closely related to the Mexican hexaploid species *S. demissum*, and the species belonging to the series *Tuberosa* are separated in a Peruvian (including the cultivated material) and a Bolivian group. He only showed bootstrap support values for the groups in his NJ tree, and generally the values for deeper branches are lower than 50%. The pattern from our analyses of the NBS profiling dataset is similar to that of Kardolus (1998).

This general pattern in our AFLP and NBS profiling results supplements the results of the most extensive cpDNA RFLP study of section *Petota* (Spooner et al. 1997). They recovered four clades, with representatives of the Mexican diploids in clade 1 and 2, species like *S. mochicense* and *S. paucissectum* in clade 3, and a large polytomy of the other investigated species in clade 4. Spooner et al. (2005a) performed phylogenetic analyses of AFLP data of 362 individual wild (261) and landrace (98) members of section *Petota*. The strict consensus tree also has bootstrap values lower than 50% for the deeper branches (except the designated outgroup). In rDNA ETS results (Volkov et al. 2003) only three structural variants are found, with variant A present in the non-tuber-bearing species of series *Etuberosa* and in the representatives of the Mexican diploid series, variant B in series *Circaeifolia*, and variant C in all other investigated species. The dendrograms presented show many polytomies, indicating that resolution within the groups is mostly lacking.

When comparing the cladograms from AFLP and NBS profiling data (Figure 3 and 4) visually, there were congruencies at the lower level with accessions grouping together in the same way in both trees. These groups were supported with jackknife values >70% (Table 4). When looking at the more basal nodes, we found only few groups (ACA) which were well supported by relatively high jackknife values. A number of other groups were present, but they lacked statistical support. Again this was similar for both trees. Two different statistical tests were used to evaluate the congruency between the AFLP and NBS profiling based trees. The outcome of the tests was different. Whereas congruency was indicated by the Mantel test, the ILD test indicated incongruency. Similar observations were reported by Spooner et al. (2005b), who compared AFLPs with other markers for phylogenetic inference in wild tomatoes. In their Mantel test, the comparison of cpDNA/GBSSI (granule-bound starch synthase gene) gives a high matrix correlation coefficient (0.831), but fails to pass the ILD test. The suitability of the ILD test is also questioned by other researchers (Graham et al. 1998; Yoder et al. 2001; Barker et al. 2002; Darlu et al. 2002).

The interesting observation that the overall pairwise similarity based on NBS profiling markers was 25 % higher than the overall similarity based on AFLP markers, suggests that NBS profiling markers are more conserved than AFLP markers. Targeting more conserved regions renders the marker system more appropriate than AFLP when materials are more diverse, as it will reduce the chance for homoplasy.

The fact that the basal branches either had poor jackknife support (lower than 50%) or formed a polytomy in both the AFLP and NBS profiling tree, probably results from the nature of the studied material. Apparently, *Solanum* species are more similar to each other than expected on the basis of morphological characters, even when the polyploid species were excluded from the analysis. Extensive hybridization and introgression among species might be the reason for the poor resolution at the more basal nodes. An alternative explanation could be that many *Solanum* species have evolved in a relatively short period of time after rapid radiation over South America, which would result in species with distinct characters but with no clear sequential branching order (apart from originating from the common ancestor).

The role of disease resistance in speciation

Many NBS profiling markers were shown to be RGA-related (Table 2). NBS profiling preferentially generates markers in resistance genes that are likely to be under selection, which might influence the outcome of the phylogenetic analysis. Disease resistance might play a role in the speciation process and it may thus be challenged whether NBS profiling can be used for phylogeny reconstruction. Our results demonstrated that systematic relationships from NBS profiling data do not essentially differ from that from AFLP data. This congruence between AFLP and NBS profiling may not be as unexpected as it appears to be. Plants have to deal with many different pathogens during their lifetime and are thus exposed to selective pressures in different directions. This is also evidenced by the large number of NBS-LRR resistance genes present in plants. However, it is possible that a single resistance gene was essential for species survival, or a speciation event. The Rgene(s) that may have been under selection after a period of disease pressure by a pathogen may have spread relatively fast in neighboring species through hybridization. The specific effect of selective pressure on R-genes will therefore be only detectable on a very short evolutionary time scale, and is diluted when many markers are analyzed phylogenetically. In addition, the selective advantage of retaining a specific R-gene will most likely be reflected by the absence or presence of one or a few markers in NBS profiling. The outcome of the phylogenetic analysis is based on all NBS profiling markers, the majority of which was not affected by selective pressure. A single or a few markers very likely will not influence the outcome.

In conclusion, NBS profiling is at least as good as AFLP for phylogeny reconstruction and might even be superior when more diverse material is used, as it will reduce the chance for homoplasy. The observation that higher level groups were poorly supported might be due to the nature of the material and the way the species evolved.

Acknowledgements

This work was supported by the Joint PhD program between Wageningen University and Chinese Academy of Agricultural Sciences. Miqia Wang was supported by a fellowship from the Netherlands Ministry of Agriculture, Nature Management and Food Quality through the International Agricultural Centre, Wageningen, the Netherlands. We thank David Spooner for valuable comments on an earlier version of this manuscript.

Chapter 3

Genetic diversity in a large set of European potato varieties and identification of resistance gene markers in varieties and their relatives using NBS profiling

Miqia Wang^{a, b}, Gerard van der Linden^a, Elena Kochieva^a, Clemens van de Wiel^a, Ben Vosman^a

^aPlant Research International B.V., Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands ^bOil Crop Research Institute, Chinese Academy of Agricultural Sciences, 430062 Wuhan, Hubei, China

Abstract

In this study we assessed the changes in genetic diversity during the last 70 - 80 years in a set of 456 European potato varieties using NBS profiling. Analysis showed that during that period diversity in markers linked to resistance had increased. Only one marker was lost, whereas several new markers were introduced into the potato gene pool. This most likely reflects the efforts of breeding companies and research institutes to introgress resistances from wild species into cultivated potato. NBS profiling was also used to identify candidate resistance gene markers. Several markers, potentially linked to introgressed R-genes, are identified by linking NBS profiling bands with pedigree data and phenotypic data of the varieties. It is also possible to link these markers to wild tuber-bearing Solanum species as homoplasy in NBS profiling markers turned out to be low. Co-migrating NBS profile marker bands were sequenced to check the identity of the bands. Within the tuber-bearing Solanum species, 91% of the sequences of co-migrating bands were more than 95% homologues to each other, indicating low levels of homoplasy. One of the resistance markers identified was most likely introgressed from Solanum vernei. This is indicated by the correlation between the presence of this marker and the resistance data for the varieties involved, as well as the presence of the same marker in both S. vernei accessions examined.

Introduction

The cultivated potato, *Solanum tuberosum* subsp. *tuberosum* (2n = 4x = 48), is one of the most important food crops in the world. To ensure sustainable potato production in a changing environment, continuous genetic improvement of the cultivated potato is essential.

Varieties used in North America and Europe are derived from a small number of founding varieties. A study on North American varieties showed that, based on the 1996 certified seed acreage, 46 varieties could be identified as founding clones and major contributing ancestors (Love 1999). Similarly, the majority of the European cultivated potato varieties originate from around 30 varieties that were introduced in the nineteenth century, as indicated by the pedigree database (Hutten and van Berloo 2001). It is interesting to see whether the genetic diversity of European potato varieties has been affected by breeding during the last century. This question is particularly interesting with respect to disease resistance. Breeding for resistance towards several diseases has been a focus in potato and has resulted in the introduction of new genetic variation from wild relatives. For instance, late blight resistance was introduced in cultivated potato around 1950, with S. demissum as a major donor species. Potato Cyst Nematode (PCN) resistance was introduced into potato varieties in the late 1960s, for example through the S. tuberosum subsp. andigena accession CPC 1673, which confers resistance not only to the cyst nematode Globodera pallida (Rouppe van der voort et al. 1997) but also to potato virus X (Bendahmane et al. 1997). This accession has been ancestor to many potato varieties, for example, 'Sante'.

On the other hand, the selection for a limited set of traits may have resulted in the loss of important alleles, which increase vulnerability of the cultivated potato for new/other diseases. Genetic diversity at resistance loci can be assessed using NBS profiling (van der Linden et al. 2004). NBS profiling is an efficient and reproducible molecular marker system that specifically targets resistance genes (R genes) and their analogs (RGAs) (van der Linden et al. 2004; Calenge et al. 2005).

For many European potato varieties, pedigree records for the past 30 years are available, which makes it possible to trace the sources of introgression. By linking phenotypic, pedigree and marker data, it may be possible to identify candidate R-gene markers. Several approaches can be used to validate these candidate resistance gene markers: through segregating populations (Michelmore et al. 1991) by association mapping (Malosetti et al.2007; Gebhardt et al. 2004), or by confirming the presence of the marker in the predicted wild species.

This study examines the genetic diversity changes over the last 70-80 years in resistance related markers using a large set of potato varieties. In addition, it explores the possibilities to link molecular markers to specific resistance traits by combining NBS profiling data with the pedigree and phenotypic data. Using this approach, several markers are identified that are potentially linked to introgressed R-genes. Finally, we extended our study (chapter 2) to examine the utility of NBS profiling for systematics by addressing the sequence homology of co-migrating NBS profile bands.

Materials and Methods

Plant material, phenotypic and pedigree data

Four hundred and fifty six potato varieties were collected from various sources. Those originating form the United Kingdom were obtained from morphologically verified tubers from the NIAB potato collection, or from leaves of potato plants in the SASA potato collection. Dutch and German varieties were obtained from four sources: (1) Leaf material of a number of varieties was sampled from test fields of the Bundessortenamt in Germany; (2) Another set of varieties was obtained from IPK as in vitro propagated plantlets; (3) The third set was harvested as light sprouts from morphologically verified tubers from the CGN collection (Wageningen, the Netherlands); (4) The fourth set was obtained as DNA from the Laboratory of Plant Breeding, Wageningen University. Varieties used in this study are listed in Appendix 1.

A set of 44 accessions representing 25 tuber-bearing wild and cultivated *Solanum* species plus one outgroup species was used in the analysis (Table 1). Species names followed Hawkes, although we are aware of the synonymy published since then. A selected set of genotypes from the population SHxRH, which has been used for constructing the potato Ultra High Density (UHD) mapping from the Laboratory of Plant Breeding of Wageningen University (Rouppe van der Voort et al. 1998; Huang et al. 2004; Park et al. 2005), was also included. DNA was extracted from leaf

or tuber material using the DNeasy DNA extraction kit (Qiagen).

Table 1 Species used in the study

Species	Series ^a	BGRC number
S. etuberosum	ETU	8082
S. acaule ssp. acaule	ACA	28026
S. acaule ssp. acaule	ACA	27206
S. achacachense	TUB	29617
S. berthaultii	TUB	28009
S. berthaultii	TUB	24578
S. bukasovii	TUB	15424
S. bukasovii	TUB	18294
S. bulbocastanum	BUL	8009
S. bulbocastanum	BUL	8008
S. canasense	TUB	7162
S. canasense	TUB	8012
S. chacoense ssp. chacoense	YNG	17034
S. chacoense ssp. chacoense	YNG	17018
S. coelestipetalum	TUB	7993
S. coelestipetalum	TUB	7994
S. demissum	DEM	10030
S. demissum	DEM	10022
S. gourlayi ssp. gourlayi	TUB	7180
S. gourlayi ssp. Gourlayi	TUB	17338
S. leptophyes	TUB	27176
S. megistacrolobum ssp. megistacrolobum	MEG	8113
S. megistacrolobum ssp. megistacrolobum	MEG	8125
S. microdontum	TUB	31189
S. microdontum	TUB	24649
S. multidissectum	TUB	15426
S. oplocense	TUB	16868
S. papita	LON	15444
S. phureja	TUB	15482
S. phureja	TUB	50199
S. pinnatisectum	PIN	8168
S. pinnatisectum	PIN	8175
S. raphanifolium	MEG	7207
S. sanctae-rosae	MEG	15454
S. sparsipilum	TUB	8150
S. sparsipilum	TUB	8209
S. stenotomum ssp. stenotomum	TUB	7478
S. stoloniferum	LON	7229
S. stoloniferum	LON	7228
S. tuberosum ssp. andigena	TUB	7462
S. tuberosum ssp. andigena	TUB	24677
S. vernei	TUB	15451
S. vernei	TUB	17542
S. verrucosum	TUB	8255
S. verrucosum	TUB	8246

^a Series abbreviations according to Hawkes (1990)

Phenotypic data for the potato varieties were extracted from http:// www.europotato.org, from variable literature information and from national list publications from the United Kingdom, Germany and The Netherlands during the last 60 years. Pedigree information for the varieties was retrieved from the online pedigree database of the Laboratory of Plant Breeding of Wageningen University, available at http://www.dpw.wau.nl/pv/query.asp.

NBS profiling procedure and sequencing of NBS profiling fragments

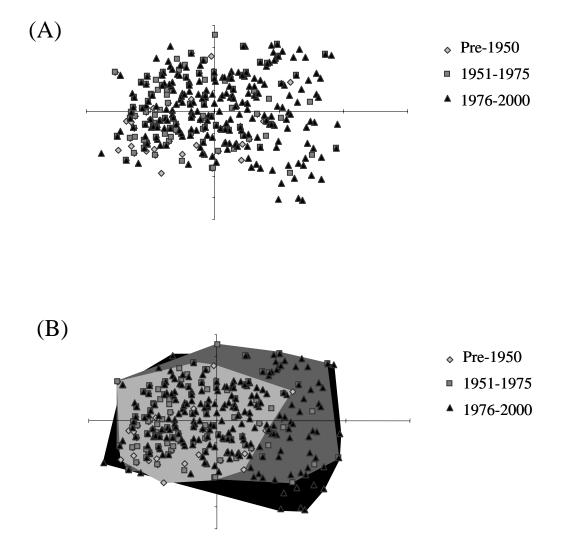
NBS profiling was performed essentially as described by Malosetti et al. (2007). NBS profiling gels were performed by different persons in a range of four years. In total, three NBS primers NBS2, NBS5a6 and NBS9 (Chapter 2) were used on all the materials. A single enzyme *Mse I* was used for NBS profiling of all 456 varieties (Appendix 1). Extra *MseI*-NBS profiles were run with species (Table 1) and a small set of varieties (Appendix 2), ensuring reliably linking variety markers to species markers. In addition, the number of markers was expanded by using three extra primer enzyme combinations (NBS2, NBS5a6 and NBS9 with *Rsa I*).

For sequence comparisons, bands co-migrating at the same positions in varieties, species and the segregating population were excised from the gel, re-amplified using PCR conditions identical to the first PCR of the NBS profiling protocol. Fragments were directly sequenced using either the adaptor or the NBS primer as a sequencing primer with the BigDye Terminator kit and an ABI 3700 automated sequencer from Applied Biosystems (USA). Sequences were analyzed with the seqman module of the Lasergene software package from DNAstar (Madison, USA). Sequences of poor quality were excluded from further analysis, and the remaining sequences were compared to archived sequences in the NCBI nucleotide databases using BLASTN and BLASTX (Altschul et al. 1997).

Data analysis

Changes in genetic diversity were analyzed using NTSYS-pc software version 2.10j (Rohlf 1992). A genetic similarity matrix was calculated using the Jaccard coefficient. A PCO plot was generated from this matrix using the ordination module.

Results


NBS profiling on a large set of potato varieties

The potato varieties used represent the genetic diversity present in the north-western

part of Europe (The Netherlands, United Kingdom, and Germany) during the last 70-80 years. In total 456 varieties were collected and fingerprinted with three primer-enzyme combinations (NBS2, NBS5a6 and NBS9 in combination with *MseI*). The markers were scored as presence/absence, and are therefore dominant. With NBS9, 45 polymorphic markers were scored. NBS2 yielded 23 polymorphic markers, and NBS5a6 51 polymorphic markers.

Genetic diversity of varieties

The varieties were chosen to represent the genetic diversity present in three time periods (pre-1950, 1951-1975 and 1976-2000). Active potato breeding has been practised in north-western Europe for over a century, with introgressions from wild potato species starting in late 1930s, and late 1940s and 1950s. Several important disease resistances were targeted and introgressed from species originating from Central and South America. Changes in resistance gene related genetic diversity were analyzed. Only markers that could be scored in the majority of the varieties were taken into consideration (73 markers), and only varieties that had reliable scores for more than 90% of the markers were included (Fig.1). A genetic distance matrix was calculated with the Jaccard coefficient, and a PCO plot was generated from this matrix. Fig.1A shows a PCO plot visualizing the diversity of varieties grown in each of the three timeframes (up to 1950, early 1970s and late 1990s). To highlight the changes over time in genetic diversity of potato varieties, the extremes for each time frame were connected to form convex hulls (Fig.1B). The areas of the convex hulls indicate that there has been an increase in the genetic diversity linked to resistance genes in potatoes grown in Europe in the past 50 years. When the change in diversity was analyzed per country, the changes were even bigger, 23% of the total number of identified alleles was not present in Dutch varieties before 1950 (32% for German pre-1950 varieties), whereas in Dutch varieties from the 1951-1970 period only 11 of the alleles were missing. In the last period, a mere 9% of the total number of alleles was missing from the Dutch varieties (75 for the German varieties). This illustrates that in each of the three countries, the number of alleles had increased considerably over time. This increase is caused by the introduction of new alleles in all countries (as discussed above, most likely by introgression from their wild tuber-bearing Solanum relatives. The data also reflects the internationalization of potato breeding, as several alleles that were unique to one of the three countries in the 1950s were present

in varieties that were on the market in all countries during the 1990s.

Fig. 1 Genetic diversity analysis of potato varieties. Seventy three NBS profiling markers were used to assess the genetic diversity in 402 potato varieties. (A) The varieties were categorized relative to their introduction date in three groups: pre-1950, 1951-1975 and 1976-2000. (B) To visualize the changes in genetic diversity over time, convex hulls were drawn for each of the three time periods.

Marker changes over time

The presence of each NBS profiling marker in the examined time periods was examined. All markers, except one that was present in the varieties grown before 1950, were still present in those that were grown in 1995-2000, indicating that almost no alleles were lost in the last 60 years. On the contrary, several new markers were introduced into the potato variety gene pool, which may reflect the efforts of breeding companies and research institutes to introgress resistance genes into cultivated potato.

Marker	Rel. presence pre-1950 (%)	Rel. presence 1951-1975 (%)	Rel. presence 1976-2000 (%)	Sequence homology	Similarity (nt/nt)
NBS2-03b	42	22	18	No sequence	
NBS2-04	21	53	57	No sequence	
NBS2-05	61	31	33	Tomato Bac clone; new RGA	166/194 (85%)
NBS2-07	23	57	58	Tomato Bac clone; new RGA	232/265 (87%)
NBS2-07a	17	71	57	No sequence	
NBS2-12a	0	4	4		
NBS5-01	33	11	7	No Sequence	
NBS5-06	13	2	7	Rpi-blb2 (potato)	503/563 (89%)
NBS5-11a	12	0	1	No Sequence	
NBS5-12	0	5	19	No Significant homology	
NBS5-15b	0	2			
NBS5-16	0	2	4	Potato I2 gene	250/274 (91%)
NBS5-17	17	33	40	new RGA	
NBS5-19	81	45	40	No significant homology	
NBS5-20b	33	28	12	New RGA	
NBS5-21	0	3	2	Tomato Chr IV sequence	43/53 (81%)
NBS5-21c	7	0	0	No sequence	
NBS5-22b	2	5	8	I2C-1 (tomato)	100/110 (90%)
NBS5-23	2	13	13	Potato I2 gene	157/172 (91%)
NBS5-29	5	8	13	No sequence	
NBS9-01	4	12	17	No Sequence	
NBS9-01b	2	6	8	No sequence	
NBS9-08	0	8	8	No Sequence	
NBS9-13	2	10	12	Gpa2/Rx/RGC1	234/239 (97%)
NBS9-20a	3	9	10	Gpa2/Rx/RGC1	119/140 (85%
NBS9-31	5	6	11	Wheat NBS-like sequence; similarity to Gpa2/Rx/RGC1	41/42 (97%); sequence short
NBS9-31a	0	3	5	No Similarity (Sequence is short)	

Markers that showed marked increase/decrease over time are summarized in Table 2. **Table 2** Marked increase/decrease of NBS profiling markers over time

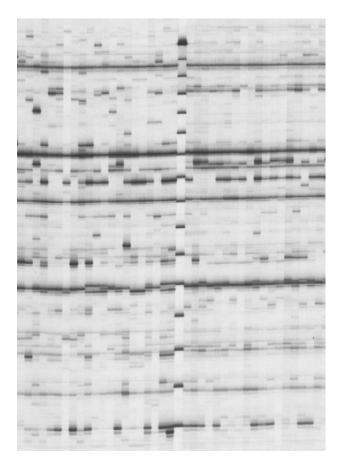
Marker NBS5-12 is not present in any of the varieties that were grown before 1950, and is present in 19% of those that were grown in 1995-2000. This marked increase of NBS5-12 marker presence coincides with breeding efforts to introgress PCN resistance in the 1960s. The earliest introduced variety that carries the NBS5-12 marker is Aladdin, which was introduced in1972. Interestingly, most of the varieties carrying this marker had *Solanum vernei* in their pedigree. *S. vernei* is a donor of *Globodera pallida* resistance, mostly through the breeding line VNT62-33-3 (Ross 1986). In addition, all of the *G. pallida 2/3* resistant varieties in the variety set also carried the marker. Although the data are non-conclusive and for many varieties resistance data are lacking to further support linkage of this marker to PCN resistance, this does suggest that the NBS5-12 marker resides in the introgressed region from *S. vernei* and is physically linked to the *S. vernei* fragment conferring *G. pallida*, and

possibly G. rostochiensis resistance (Table 3).

		Phenotype			
Variety	Ro1	Ro2, Ro3	Pa2	Pa3	S. vernei ^a
Albas	-	R	-	-	1
Arkula	S	-	-	-	0
Caesar	R	-	-	-	0
Calgary	R	-	-	-	1
Calla	R	R	-	-	1
Darwina	R	R	R	-	1
Elkana	R	R	-	-	0
Feska	R	R	R	-	1
Goya	R	S	R	R	1
Harmony	R	-	R	R	1
Hercules	R	-	-	-	1
Kanjer	R	R	S	-	1
Karakter	S	R	R	S	1
Karnico	R	R	R	-	1
Kartel	R	R	R	R	1
Katinka	R	R	R	S	1
Kestrel	R	-	R	R	0
Krometa	R	R	-	-	1
Kurola	R	R	R	-	1
Lady Rosetta	R	-	S	S	1
Midas	R	-	R	R	1
Minerva	R	-	-	-	1
Nadine	R	-	R	R	1
Nomade	S	R	R	R	1
Oscar	R	-	-	-	1
Pallina	R	R	R	R	1
Proton	R	R	R	-	1
Santana	R	S	-	-	1
Santé	R	R	R	-	1
Seresta	R	R	R	R	1
Sjamero	R	R	R	R	1
Spey	R	-	R	R	0
Vebesta	R	R	R	-	1

Table 3 Association between the presence of the candidate Solanum vernei markerNBS5-12 and the phenotype. All the varieties have the marker. R=resistant,S=susceptible

^a When the value is 1, it means that *S. vernei* involves in the pedigree of the variety;


When the value is 0, it means that S. vernei does not involve in the pedigree of the variety.

Another interesting marker is NBS9-13, which is present in only one variety prior to 1950 (Industrie), but is much more prevalent in the later time periods. However, no association of the presence of the marker with disease resistance could be found. Markers NBS5-23 and NBS5-16 were also more often present in modern varieties, but again no clear associations with resistances or pedigrees were observed. A few varieties are found in most of the pedigrees of the varieties carrying the NBS5-23 and NBS5-16 markers. These include the varieties Jubel, Pepo and one of

the parents of Industrie, Simson. NBS5-23 was present in the varieties Industrie and Falke (which has the varieties Jubel and Industrie in its pedigree) from the Pre-1950 group. NBS5-16 was not present in pre-1950 varieties.

Degree of sequence homology among co-migrating NBS profile fragments of different species

Many markers were identified that migrated at the same positions in wild species, potato varieties (Fig.2) and the individuals from the SHxRH mapping population. In total 76 bands (29 markers) from 24 cultivated and wild *Solanum* species, covering all four clade species (Spooner and Castillo 1997) were excised from both variety and wild species profiles, re-amplified and sequenced, and the sequences compared. In addition, several co-migrating markers were excised and sequenced from profiles of the SHxRH mapping population.

Fig. 2 An overview of NBS profiling NBS2/Rsa. Left part to the marker is from tuber-bearing *Solanum* species, right part to the marker is from potato varieties.

Six different marker bands were cut both from Etuberosa and Solanum species.

The sequence homology of three markers between *Solanum* and *Etuberosa* sequences was higher than 95%, indicating that co-segregating markers are most likely originating from the same locus. The sequence of the 4th marker showed 91% homology between the fragments from *Solanum* and *Etuberosa*. The 5th one had indels when compared to corresponding markers in potato species. Excluding the indel, the homology was 95%. The last co-migrating marker was from *Etuberosa* and *S. bulbocastanum*, from which the fragments where 88% homologues to each other.

Considering the tuber-bearing *Solanum* species, potato varieties and the individuals from the segregating population (referred to SHxRH)), interspecific similarities were all higher than 95% for the 64 bands sequenced. In addition there were 6 cases where the homology between bands was lower that 95%, one fragment was 88% homologues to the other fragment, while for the five others, the sequence homology varied between 90% to 95%. Sequence homology among fragments from *Solanum tuberosum*, SHxRH and potato varieties co-migrating markers were all higher than 95% except one, which was 94% homologues to the others.

Candidate resistance gene markers in varieties, tuber-bearing *Solanum* species and segregating population

To gain insight in the origin of the NBS profiling markers that are present in cultivated potato and more specifically of the markers that may have been introgressed during the last 50-60 years, we have compared NBS profiles of varieties with profiles of a broad set of wild tuber-bearing *Solanum* species. For this, extra NBS profiles were produced with wild species as well as a set of varieties with diverse pedigrees on the same gel to be able to link as many variety markers as possible to markers in wild species. In addition, the number of markers was expanded by using three extra primer enzyme combinations (NBS2, NBS5a6 and NBS9 with Rsa I).

The NBS5-12 marker was present in two *S. vernei* accessions examined. This is extra support for this marker to be located in the region from *S. vernei* that was introgressed to cultivated potato for nematode resistance. In addition, the marker could also be identified in the two *S. microdontum* accessions examined. The marker was sequenced and compared to the nucleotide databases. No significant similarity was found with BlastX and Megablast searches.

Marker NBS9-13 was found to be present in the majority of the wild species,

and could therefore not be traced to a specific donor species. The marker was sequenced, and found to be 97% identical to the *RGC1* gene residing in the *Gpa2* cluster (Bakker et al. 2003).

Marker NBS5-23 was present in *Solanum stoloniferum* and in *Solanum demissum*. The marker sequence was highly similar to I2C genes from tomato and genes from the R3 complex locus of potato conferring *Phytophthora infestans* resistance (Huang et al. 2005). This marker was not present in the SHxRH mapping population.

Blast analysis showed that some fragments were highly homologous to cloned potato resistance genes, such as R3a and R1. Marker R206-41-v (236bp) from the variety 'Shepody' was annotated as the potato late blight resistance protein R3a (blastx E value=2e-20). The same marker was also present in the segregating population and located on chromosome 11 position RH11B82-83 (results not shown). The sequence from the fragment segregating in the SHxRH population was exactly identical to the sequence of the 'Shepody' fragment.

Discussion

We have assessed changes in genetic diversity in the cultivated gene pool of potato during the last century, using NBS profiling. Our results show that between 1950 and 1975, the R-gene pool in cultivated potato has slightly widened, which makes sense, as during the last 60-70 years potato breeding has been strongly focused on introgression of R-genes from wild species into the cultivated potato gene pool. The specific advantage of using NBS profiling in this study is illustrated by the fact that when using "neutral" markers (SSRs, and a collection of SNPs), the genetic diversity appears to be unchanged (Reeves et al, 2005).

Homoplasy in co-migrating bands is low

Taking advantage of the diverse set of materials included in this study, the allelic nature of NBS profiling fragments was assessed by directly sequencing co-migrating markers across a wild range of *Solanum* species, together with potato varieties and the segregating population. This is an important issue not only for systematic studies but also for this study as we like to trace back introgressed regions to the donating wild

species. For this it is essential that one can be sure that co-migrating fragments are indeed similar. To our knowledge, the homoplasy issue has not been addressed for NBS profiling.

Within tuber-bearing Solanum species (excluding the Etuberosum accession which is not potato, but often used as outgroup for potato phylogenetic studies), the minimum interspecific identity found was 88%, indicating that some related co-migrating markers might be paralogues rather than orthologs (allelic fragments). Our samples cover four clades of tuber-bearing Solanum species, which are genetically very diverse (Spooner and Castillo 1997). In total, within tuber-bearing Solanum species, 91% of the sequences (58/64) for the same band are more than 95% homologous to each other. Homoplasy in amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) has been studied in the past. In a wild sunflower species complex, 220 co-migrating RAPD fragments were analyzed. Using Southern hybridization and digestion of fragments, it was shown that only 79.1% were homologous (Rieseberg 1996). Homoplasy among AFLP fragments was studied in *Hordeum*, where bands that were identical across species in both signal intensity and migration position were included. The interspecific homology between bands varied significantly, some of them were lower than 40% homologues, others ranged from 82 to 100%. It was suggested to carefully select AFLP bands for systematic study (El-Rabey et al. 2002).

Markers traits association

We have identified the marker NBS5-12 as a putative marker linked to a PCN resistance locus that was introgressed in varieties in the 1960s. Both available resistance data and pedigree information indicated that this marker may be introgressed from *S. vernei*. This marker was also present in *S. vernei* accessions, which complies with a possible *S. vernei* origin of the marker. The NBS5-12 marker is not present in accessions of other wild species except the *Solanum microdontum* accessions. Systematically, *S. vernei* and *S. microdontum* belong to a group of species in series *Tuberosa*, occurring in Bolivia and Argentina. The presence of this marker in both species may indicate a common ancestry of this marker. Bryan et al. (2002) have studied *G. pallida* resistance introgressed from *S. vernei* at the tetraploid level, and identified two major QTLs on Chromosomes V and IX. They produced a PCR marker specific for the resistance locus, although their marker was present only in two of the

three varieties with presumed *S. vernei*-introgressed PCN resistance (Santé and Spey were positive, Nadine was negative). The NBS5-12 marker is present in Santé, Spey and Nadine, indicating that it may be tightly linked to the *S. vernei*-introgressed PCN resistance in these varieties. However, the sequence of the marker does not reveal any information pointing to a specific gene or locus: The sequence is not significantly similar to any entry in the public nucleotide databases, and we could not identify any specific motifs/elements indicating that this marker is part of a resistance gene. The sequence is 93% similar for 120 nt (the marker itself is 269nt) to a cDNA from a late blight-challenged library. This cDNA (Genebank DN590692) is as yet not functionally annotated, and is most likely not a member of the NBS-LRR gene family.

Several other markers were identified that either were introduced into the cultivated potato gene pool or considerably increased in frequency over time. However, no clear associations with resistance data could be found for those markers. This may be due to limited resistance data available. Alternatively, resistance data was assembled over a number of years from different sources, scored under varying environmental conditions and possibly using different inoculates, which all would decrease the reliability of the data and the chance of finding a link between markers and resistance. In addition, introgressed R genes might be broken down, rendering the variety susceptible, which will make it more difficult to trace the introgression, because of unreliable resistance data after this.

The NBS5-16 and NBS5-23 markers appear to have been selected in the last 30-40 years in the cultivated gene pool. Sequences of both markers are highly similar to the I2C genes and R3 (Huang et al. 2005) located on Chromosome XI. The R3 locus appears to be a hot spot for disease resistance, harbouring resistance genes against late bight, potato virus A and Y (Huang et al. 2005, Hämäläinen et al. 1997). However, the high similarity does not imply that NB5-16 and NBS5-23 are markers for this locus. As was shown earlier in tomato (Pan et al. 2000), I2C homologs are located at multiple chromosomes, and we have identified a number of NBS profiling markers with I2C similarity at different chromosomal locations (unpublished results). Within the marker set used for the diversity analysis of potato varieties, several other markers with high similarity to I2C were found.

An alternative approach for finding resistance markers in a set of varieties is association mapping, as reported by Malosetti et al. (2007). Using a subset of the varieties presented in this chapter and the same NBS profiling marker data, two markers were identified with significant association to late blight resistance using a mixed model approach. It would be interesting to see the distribution of these markers over the wild accessions. Unfortunately, the markers from this study could not be scored reliably in the wild accessions. One of the markers was mapped in SHxRH and found to be present in the region harboring the R3 complex on Chromosome XI, which complies with an association of this marker with late blight resistance.

Previously, marker-trait associations were successfully used to assess the genetic potential of the potato germplasm collections (Gebhardt et al. 2004). In their study, a collection of 600 varieties and some wild species were used. DNA markers linked to previously mapped QTLs for resistance to late blight and plant maturity were evaluated. A highly significant association with QTL for resistance to late blight and plant maturity was detected with R1-specific PCR marker. In addition, this marker was traced to an introgression from the wild species *S. demissum*. Molecular and late blight phenotype data showed that the R1 marker was also present in another wild species *S. stoloniferum* (Gebhardt et al. 2004), indicating that R1 containing materials cannot with a 100% certainty be traced back to *S. demissum*.

Our study showed that genetic diversity reflected by NBS profiling in European potato varieties did not decrease during the last 70–80 years. On the contrary, several new markers were introduced into the potato variety gene pool, which may reflect the breeding efforts to introgress resistances from wild species into cultivated potato. *Solanum vernei* marker suggests that NBS profiling can be used to identify candidate R gene markers. Low homoplasy (91% sequences have homology higher than 95%) indicates that NBS profiling can be used for systematic studies within tuber-bearing *Solanum* species.

Acknowledgements

We would like to thank Hanneke van der Schoot, Henry van Raaij, Gerard Bijsterbosch for their contribution to the project. Ronald Hutten, Herman van Eck and Bjorn B.D'hoop are thanked for providing valuable information and DNA samples. Funding for this project was provided by the European Union (contract nr. QLRT-2000-00934) for the Gediflux project and by the Dutch Ministry of Agriculture, Nature and Food Quality.

Chapter 4

Allele mining in *Solanum*: conserved homologues of *Rpi-blb1* are identified in *Solanum stoloniferum*

Miqia Wang^{a,b}, Sjefke Allefs^c, Ronald van den Berg^d, Vivianne Vleeshouwers^e, Edwin van der Vossen^a, Ben Vosman^a

^aPlant Research International B.V., Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands

^bOil Crop Research Institute, Chinese Academy of Agricultural Sciences, 430062 Wuhan, Hubei, China

^cAgrico Research, PO Box 40, 8300 AA Emmeloord, The Netherlands

^dNational Herbarium of the Netherlands-Wageningen branch, Biosystematics Group, Wageningen University and Research Centre, Generaal Foulkesweg 37, P.O.Box 8010/6700 ED Wageningen, The Netherlands

^ePlant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands

Abstract

Allele mining facilitates the discovery of novel resistance (R) genes that can be used in breeding programs and sheds light on the evolution of R genes. Here we focus on two R genes, Rpi-blb1 and Rpi-blb2, originally derived from Solanum bulbocastanum. The Rpi-blb1 gene is part of a cluster of four paralogues and is flanked by RGA1-blb and RGA3-blb. Highly conserved RGA1-blb homologues were discovered in all the tested tuber-bearing (TB) and non-tuber-bearing (NTB) Solanum species, suggesting RGA1-blb was present before the divergence of TB and NTB Solanum species. The frequency of the RGA3-blb gene was much lower. Interestingly, highly conserved *Rpi-blb1* homologues were discovered not only in S. bulbocastanum but also in Solanum stoloniferum which is part of the series Longipedicellata. Resistance assays and genetic analyses in several F1 populations derived from the relevant late blight resistant parental genotypes harbouring the conserved Rpi-blb1 homologues, indicated the presence of four dominant R genes, designated as Rpi-stol, Rpiplt1, Rpi-pta1 and Rpi-pta2. Furthermore, we show that Rpi-sto1 and Rpi-plt1 reside at the same position on chromosome VIII as Rpi-blb1 in S. bulbocastanum. Segregation data also indicated that an additional unknown late blight gene was present in three populations. In contrast to Rpi-blb1, no homologues of Rpi-blb2 were detected in any other material examined. Hypotheses are proposed to explain the presence of conserved Rpi-blb1 homologues in S. stoloniferum. The discovery of conserved homologues of Rpi-blb1 in

tetraploid species offers the possibility to more easily transfer the late blight resistance genes to potato cultivars by classical breeding.

Introduction

Late blight is caused by the oomycete *Phytophthora infestans* (Mont.) de Bary and it is one of the most important diseases affecting the potato crop *Solanum tuberosum* L. worldwide. The management of the disease has been estimated to cost \$ 3.5 billion annually (GILB 2004). To reduce the cost of the disease and the environmental damage, it is important to identify resistance that can be used in breeding programs. In the past, 11 major resistance genes (R-genes) were introgressed from hexaploid *S. demissum* into cultivated potato (Black et al. 1953; Malcolmson and Black. 1966) and all these genes confer race-specific resistance. Unfortunately, the resistance based on these genes was quickly overcome by the pathogen. Hence, new sources of resistance are required to develop late blight resistant potato varieties.

More late blight R-genes have been found and mapped in wild diploid species. Examples are *S. pinnatisectum* (Kuhl et al. 2001) and *S. bulbocastanum* (Naess et al. 2000; Song et al. 2003; Van der Vossen et al. 2003 and 2005; Park et al. 2005) from Mexico and *S. berthaultii* (Ewing et al. 2000), *S. microdontum* (Sandbrink et al. 2000), *S. mochiquense* (Smilde et al. 2005) and *S. paucissectum* (Villamon et al. 2005) from Andean countries. In addition, the cultivated diploid *S. phureja* has been described to contain valuable resistance (Ghislain et al. 2001; Sliwka et al. 2006). The presence of late blight R-genes in the above mentioned species indicates that wild and so called primitive germplasm is a rich source for novel R-genes that may be exploited in breeding programs.

To date, four late blight R-genes have been cloned: *R1* (Ballvora et al. 2002), *R3a* (Huang et al. 2005), *RB* or *Rpi-blb1* (Song et al. 2003; van der Vossen et al. 2003) and *Rpi-blb2* (van der Vossen et al. 2005). The latter two genes were cloned from *S. bulbocastanum* and confer resistance to all *P. infestans* isolates tested so far. *Rpi-blb1* is part of a resistance gene analog (RGA) cluster of four members *RGA1-blb*, *Rpi-blb1*, *RGA3-blb*, and *RGA4-blb* on chromosome VIII (van der Vossen et al. 2003). Complementation analysis showed that only the genetic construct harbouring *Rpi-blb1*, *RGA1-blb* and *RGA3-blb* showed that the *Rpi-blb1* gene most likely evolved from intragenic recombination between the ancestral genes of *RGA3-blb* and *RGA1-blb* (van der Vossen et al. 2003). *Rpi-blb2* resides in a locus harbouring

at least 15 *Mi-1* gene homologues on chromosome VI, and the *Rpi-blb2* protein shows 82% sequence identity to the *Mi-1* protein (van der Vossen et al. 2005). *Mi-1* is a gene of tomato that confers resistance to the root knot nematode *Meloidogyne incognita* (Milligan et al. 1998).

This study aims at analysing the allele frequency and allelic variation of *Rpi-blb1* and *Rpi-blb2* in a large number of tuber-bearing *Solanum* species and it explores the genomic organization of the *Rpi-blb1* cluster in these species. Insight into allelic diversity will facilitate discovery of functional homologues that can be exploited in breeding programs and will also help to understand the evolution of R-genes.

Materials and methods

Plant material and DNA extraction

Material was selected to represent most series of the section *Petota*, based on their systematic relationships derived from AFLP and NBS profiling data (Chapter 2). Seeds were obtained from several genebanks (Table 1). Individual clones were surface-sterilized and sown in vitro for at least 6 weeks on MS medium supplemented with 20% sucrose (Murashige and Skoog, 1962) at 18°C. In total, 86 genotypes covering 47 species representing 13 series (three genotypes from series *Etubersosa*) were used (Table 1). DNA was extracted according to the method described by Stewart and Via (1993). Species names and abbreviations follow Hawkes (1990), since the genebank material used is labeled as such. However, we refer to *S. stoloniferum* (sensu Spooner et al. 2004) to indicate their broader species concept, which considers *S. fendleri, S. papita* and *S. polytrichon* as synonyms of *S. stoloniferum*.

Species ^a	Genebank ^b	BLB1F/R	RGA1F/R	RGA3F/R	
S. etuberosum	18242	0	1	0	
S. fernandezianum	18360	0	1	0	
S. palustre	18241	0	1	0	
S. acaule ssp. acaule	BGRC7949	0	1	0	
S. acaule ssp. aemulans	21331	0	1	0	
S. ajanhuiri	18239	0	1	1	
S. berthaultii	20644, 20650	0	1	1	
S. brachistotrichium	17681	0	1	0	
S. brachycarpum	17721(3),18347, CPC7028, GLKS1686	0	1	0	
S. brevicaule	18231	0	1	0	
S. bukasovii	17824	0	1	0	
S. bulbocastanum	17687	1	1	1	
S. bulbocastanum	17691	0	1	1	
S. canasense	17589	0	1	0	
S. cardiophyllum	18326	0	1	1	
S. chacoense	18248-1, 18248-4	0	1	1	
S. chacoense	18248-9	0	1	0	
S. circaeifolium	18133	0	1	0	
S. circaeifolium ssp. quimense	18127	0	1	0	
S. demissum	20571	0	1	0	
S. fendleri ssp. arizonicum	PI497996	0	1	0	
S. guerreroense	18290(2), GLKS1512	0	1	0	
S. hjertingii	18345	0	1	0	
S. hondelmannii	18106, 18182(2)	0	1	0	
S. hougasii	18339(2)	0	1	0	
S. huancabambense	17719	0	1	0	
S. iopetalum	20561	0	1	1	
S. iopetalum	20562	0	1	0	
S. jamesii	18349	0	1	0	
S. leptophyes	18140	0	1	0	
S. lesteri	18337	0	1	1	
S. megistacrolobum	GLKS5422	0	1	0	
S. microdontum	17596	0	1	1	
S. microdontum ssp. gigantophyllum	18046, 18200	0	1	0	
S. mochiquense	18263(2)	0	1	0	
S. oxycarpum	20558	0	1	0	
S. papita	17831	1	1	1	
S. paucissectum	PI590922	0	1	0	
S. phureja	18301	0	1	0	
S. pinnatisectum	17745(3), 23012	0	1	1	
S. polyadenium	17749	0	1	1	
S. polytrichon	22361	0	1	0	
S. raphanifolium	17753(2)	0	1	0	
S. sanctae-rosae	17837, 20576	0	1	0	
S. schenckii	18361	0	1	1	
S. sparsipilum	18221	0	1	0	
S. sparsipilum	18225	0	1	0	

Table 1 Material used for the identification of <i>Rpi-blb1</i> cluster and <i>Rpi-blb2</i> homologues and
amplification of <i>Rpi-blb1</i> cluster members

Species ^a	Genebank ^b	BLB1F/R	RGA1F/R	RGA3F/R
S. stoloniferum	17605, 17606, BGRC60465, CPC28	1	1	1
S. stoloniferum	18333, GLKS592	0	1	1
	17607, 18332, 18334, 18348, 23072,			
S. stoloniferum	CPC12, GLKS512	0	1	0
S. sucrense	18205	0	1	0
S. tarijense	17861	0	1	1
S. tuberosum ssp. andigena	20614	0	1	1
S. vernei	21350	0	1	1
S. verrucosum	20567(2)	0	1	0

Table 1 Continued

^aMaterials are ordered alphabetically with the exception that three genotypes from series *Etuberosa* are listed first as they are non-tuber-bearing *Solanum* species.

^bMaterials starting with a number directly are from Center for Genetic Resources, the Netherlands (CGN). Materials starting with BGRC, CPC, GLKS and PI are from Braunschweig Genetic Resources Collection, the Commonwealth Potato Collection (Dundee, Scotland), Gross Lusewitz, Konrad Schuler (Germany), United States Department of Agriculture Plant Introduction Numbers, respectively. Numbers between parenthesis refer to the number of the genotype within one accession. Genotype number is provided only when PCR patterns within/among the genotypes differ.

R-gene specific primers

All *Rpi-blb1* primers designed in this study (Table 2) were tested on the clone 8005-8 (BGRC accession number 8005, individual plant 8) from which the *Rpi-blb1* gene and its paralogues *RGA1-blb* and *RGA3-blb* were cloned (van der Vossen et al. 2005). *Rpi-blb2* primers (Table 2) were tested on the late blight resistant clone Blb2002, the diploid *S. bulbocastanum* clone from which *Rpi-blb2* was cloned (van der Vossen et al. 2005).

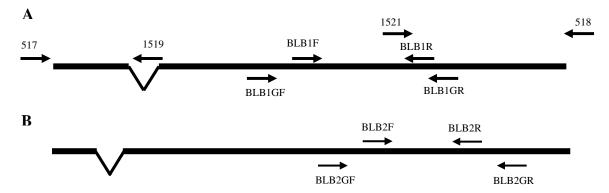
Segregating populations and resistance assays

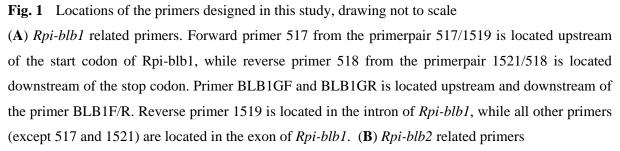
In case of *S. stoloniferum*, a late blight resistant clone CGN17605-4, was crossed with the susceptible breeding clone RH89-039-16, which produces 2n pollen and is frequently used for mapping research at the Laboratory of Plant Breeding of Wageningen University and Research Centre (Rouppe van der Voort et al. 1998; Huang et al. 2004; Park et al. 2005). For the late blight resistance test, detached leaf assays (DLAs) were performed as described by Vleeshouwers et al. (1999). The *P. infestans* isolates IPO82001, 655-2A (Flier et al. 2003) were from the collection of PRI, isolate "Marknesse" was from a diseased potato collected in 2005 near the Dutch village Marknesse.

Primer	her F/R^a Sequence $(5'-3')^b$		Anealing temperature (°C)	length of 72 °C extention	Reference
BLB1F/R	F	AACCTGTATGGCAGTGGCATG	58	50"	
	R	GTCAGAAAAGGGCACTCGTG			
517/1519	F	CATTCCAACTAGCCATCTTGG	58	50"	
	R	TATTCAGATCGAAAGTACAACG			
1521/518	F	GAAAGTCTAGAGTTACACTGG	58	50"	
	R	CAATCACAATGGCAGGAACC			
BLB1F/GR	F	AACCTGTATGGCAGTGGCATG	55	1'40"	
	R	GYTGTTAGGTGCTGCAATCC			
BLB1GF/R	F	GWGMATGGGAACATGTGAGAG	55	1'40"	
	R	GTCAGAAAAGGGCACTCGTG			
RGA1F/R	F	CAGTCACTTTCTTGTTTGCCG	55	55"	
	F	CAGTAGTGAAGTCACTGTGTG			
RGA3F/R	F	CATGCCTTAAGTCTCTAAGTTG	55	55"	
	R	TGGGAGTGAAGTAGCTTCTAC			
BLB2F/R	F	GGACTGGGTAACGACAATCC	58	50"	
	R	GCATTAGGGGAACTCGTGCT			
BLB2F/GR	F	GGACTGGGTAACGACAATCC	55	1'40"	
	R	ATTTATGGCTGCAGAGGACC			
BLB2GF/R	F	ATTGCTGGARTCATTGCTGG	55	1'40"	
	R	GCATTAGGGGAACTCGTGCT			
1+1'	F	CACGAGTGCCCTTTTCTGAC	50	2'	Colton et al. 2006
. –	R	ACAATTGAATTTTTAGACTT		-	
					van der Vossen
CT88	F	GGCAGAAGAGCTAGGAAGAG	60	50"	et al. 2003
	R	ATGGCGTGATACAATCCGAG			

Table 2Primers overview

^a F: forward primer; R: reverse primer


^bNucleotide abbreviations according to the IUB code (M, AC; R, AG; W, AT; Y, CT)


Three other populations were constructed using plant material that is now known as *S. stoloniferum* (sensu Spooner et al. 2004). However, in the genebank catalog these materials are still present under their previous names *S. papita* and *S. polytrichon*. Two tetraploid mapping populations for *S. papita* (Pta), Pta 04-323 and Pta 04-325, were obtained by backcrossing two resistant offspring, Pta 03-390-1 and Pta 03-390-3 respectively, with a susceptible *S. polytrichon* (Plt) pollen donor from accession CGN 17751. Pta 03-390-1 and Pta 03-390-3 were both derived from a cross between a susceptible plant from Pta accession CGN 18319 and a resistant plant from Pta accession CGN 17831. In 2004, 48 plants from this cross, which included Pta 03-390-1 and Pta 03-390-3, were found to be completely resistant in a single DLA with *P. infestans* isolate IPO82001. Similarly, a segregating population of Plt was obtained (Plt 04-281) by crossing the resistant clone Plt 03-369-1 with a susceptible clone from Pta accession CGN 18319. Plt 03-369-1 was derived from a cross between a susceptible plant from Pta accession CGN 18319. Plt 03-369-1 was derived from Pta accession CGN 18318.

Again, this cross showed a fully resistant offspring after screening 72 plants in a DLA with the IPO82001 isolate.

PCR amplification

Three pairs of primers (BLB1F/R, 517/1519, 1521/518, Table 2) were designed based on the Rpi-blb1 homologous sequences (van der Vossen et al. 2003), aiming at specific amplification of the Rpi-blb1 gene. Two degenerate primers (upstream and downstream of the primer BLB1F/R) were designed to determine whether non-amplification with the BLB1F/R primer pair might be caused by a mutation in one of the primer site. In addition, primers for the *Rpi*blb1 paralogues RGA1-blb and RGA3-blb were developed. A similar approach was followed for Rpi-blb2, again by designing specific and degenerate primers. Figure 1 shows the locations for the Rpi-blb1 and Rpi-blb2 primers designed in this study. PCR reactions were carried out in a 15µl reaction system, containing approximately 100ng DNA, 2.25 pmol of each primer, 3 mM of each dNTP, 0.6 units Taq-poplymerase (15 U μ l⁻¹, SphaeroQ, Leiden, the Netherlands), 10 mM Tris-HCl (pH 9), 1.5 mM MgCl₂, 50 mM KCl, 0.1% Triton X-100 and 0.01% (w/v) gelatine. The PCR protocol started with 5 min at 95°C. The 35-cycle amplification profiles were as followed: 30-sec DNA denaturation at 94°C, 40-sec annealing and variable elongation (depending on the primer, Table 2) at 72°C. The PCR was finalized by an extra 5 min elongation step at 72°C. The PCR protocol used for primer 1 + 1' was according to Colton et al. (2006).

The chromosome VIII specific marker CT88 (van der Vossen et al. 2003) was initially tested on the parents of all four segregation populations. Following digestion of the PCR products with specific restriction enzymes, polymorphic markers were subsequently tested in the entire population. All amplification reactions were performed in a Biometra® T-Gradient or Biometra® Uno-II thermocycler (Westburg, Leusden, the Netherlands). PCR products were separated in 1.5% agarose gels and stained with ethidiumbromide.

Data collection and sequence analysis

For selected genotypes, PCR products were sequenced directly to confirm their identity and to identify single nucleotide polymorphisms (SNPs). Each fragment was sequenced from both sides using the two primers as a sequencing primer with the BigDye Terminator kit. Sequencing reactions were analysed using an ABI 3700 automated sequencer (Applied Biosystems, USA). DNA sequences were analysed using DNAstar (Lasergene, Madison, WI, USA).

Results

Primer specificity

All *Rpi-blb1* and *Rpi-blb2* related primers designed in this study (Table 2) were tested on the clone Blb 8005-8), from which *Rpi-blb1* and its paralogues *RGA1-blb* and *RGA3-blb* were cloned, or on clone Blb2002, which was used for the cloning of *Rpi-blb2* (van der Vossen et al. 2005). Sequence analysis showed that all primers amplified the expected fragments with two exceptions: (1) poor sequences for the BLB1GF/R primer product were obtained, suggesting that this primer pair amplified a mixture of related sequences; (2) compared with AY426261 (*RGA3-blb*), double peaks were found at five nucleotide positions. Except for these five SNPs, the remainder of the sequence was identical to AY426261.

RGA1-blb and RGA3-blb homologues

With the RGA1F/R specific primers, *RGA1-blb* homologues were amplified not only from all the tuber-bearing *Solanum* genotypes but also from three non-tuber-bearing *Solanum* genotypes *S. etuberosum, S. fernandezianum* and *S. palustre* (Table 1). RGA1F/R derived sequences from 36 randomly selected genotypes were highly homologous (96%-99%) to that of *RGA1-blb* (results not shown). In contrast, a much smaller set of genotypes contained

RGA3 homologues (Table 1). RGA3F/R derived sequences from different genotypes were highly homologous to *RGA3-blb* AY426261(88%-98%).

Rpi-blb1 in Solanum species

Screening of more than 80 genotypes (Table 1) with three pairs of primers, primer pair BLB1F/R and the two degenerate primer pairs BLB1F/GR and BLB1GF/R (Table 2), showed that the primers BLB1F/R amplified fragments from genotypes in *S. bulbocastanum* and *S. stoloniferum* (sensu Spooner et al. 2004). In these genotypes, primer pairs BLB1F/GR and BLB1GF/R also amplified fragments. Combined sequences from BLB1F/R and BLB1F/GR derived fragments showed that these fragments were highly homologous to that of *Rpi-blb1*. BLB1GF/R amplicons from some genotypes contained the 18 basepair sequence that is characteristic for the *Rpi-blb1* resistance allele (Song et al. 2003), while others did not. This indicated that the BLB1GF/R primer amplified both the R and S allele. In some BLB1GF/R products heterogeneity was observed, indicating that more than one homologue was amplified. All genotypes that contained the *Rpi-blb1* specific allele also contained conserved *RGA1* and *RGA3* homologues.

In some genotypes, primer set BLB1F/R did not amplify fragments, while the degenerate primer set BLB1F/GR did. These genotypes can be classified into three groups: genotypes showing, 1) one single fragment of the expected size, 2) one single fragment of smaller size (data not shown), and 3) one single fragment of the expected size and the other of smaller size (data not shown). Sequences from the first group did not contain the reverse primer BLB1R, which explains why BLB1F/R primers did not amplify fragments. For this reason, these genotypes were excluded in further analyses.

After identifying the *Rpi-blb1* homologues, more accessions and genotypes (Table 3) of the series *Longipedicellata* (Hawkes 1990) were screened for the presence of *Rpi-blb1* homologues with the primers BLB1F/R, 517/1519 and 1521/518. As expected, more accessions and genotypes were found to contain highly conserved *Rpi-blb1* homologues (Table 3), which also harboured the 18bp-sequence that is characteristic for the functional *Rpi-blb1* gene (Song et al. 2003). Based on the obtained partial sequences, three haplotypes were discovered (Table 4). For haplotype 1 and 3, SNPs at positions 64 and 65 together changed the amino acid from Val to Thr, while in haplotype 2, Val was changed to Ala. Another four SNPs at positions 2664, 3134, 3255 and 3588 changed the amino acid, from Lys to Arg, Met to Leu, Ala to Glu and Ile to Asn, respectively.

			Primers for Rpi-blb1	
Species	Genebank ^a	BLB1F/R	517/1519	1521/518
S. papita	17830(3), 18309(2), 18319(2)	0	0	0
S. papita	17831(4)	1	1	1
S. papita	17832-1, 17832-5	0	0	0
S. papita	17832-2	1	1	1
S. polytrichon	18318-(1 to 4), 18318-(6 to 9)	0	0	0
S. polytrichon	18318	1	1	1
S. stoloniferum	17606, 17607, 18332, 18333, 18348(2), CPC12, GLKS512	0	0	0
S. stoloniferum	18334-1	0	0	0
S. stoloniferum	18334-8	0	0	1
S. stoloniferum	17605(4), BGRC60465-3	1	1	1

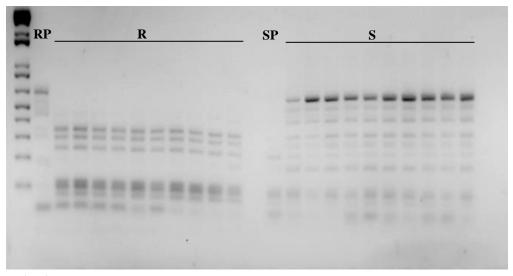
 Table 3 Extended materials used to identify the *Rpi-blb1* and *Rpi-blb2* homologues

^aMaterials starting with a number directly are from Center for Genetic Resources, the Netherlands (CGN). Materials starting with BGRC, CPC and GLKS are from Braunschweig Genetic Resources Collection, the Commonwealth Potato Collection (Dundee, Scotland) and Gross Lusewitz, Konrad Schuler (Germany), respectively. Numbers in parenthesis refer to the number of the genotypes included in that one accession. Genotype number is provided only when PCR patterns within/among the genotypes differ.

Table 4 Nucleotide polymorphisms of *Rpi-blb1* homologues from three pairs of primers BLB1F/R, 517/1519 and 1521/518. Rpi-blb1 sequences are as reference for comparison. Grey background positions mean that the SNP changes the amino acid.

		Sequences amplified fro	m three pairs of pr $2 3 3 3$	imers ^a	
Species	Materials ^b	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Number of SNP	Haplotype
species	Rpi-blb1	<u> </u>	A A C T	5111	Парютурс
S papita	17831-1	ТАССС	G C A	8	1
S papita	PTA 03-390-1	ТАССС	G C A	8	1
S papita	PTA 03-390-3	ТАССС	G C A	8	1
S papita	17831-8	ТАССС	G C A	8	1
S papita	17832-2	ТАССС	G C A	8	1
S. polytrichon	PLT 03-369-1	ТАССС	G C A	8	1
S. stoloniferum	BGRC60465-3	СТ	А	3	2
S. stoloniferum	17605-1	ТАССС	А	6	3
S. stoloniferum	17605-2	ТАССС	А	6	3
S. stoloniferum	17605-3	ТАССС	А	6	3
S. stoloniferum	17605-4	ТАССС	А	6	3

^a Sequences from start codon till position 542 are from the primer 517/1519 and sequences from 1737 till stop codon are from the combination of the primer BLB1F/R and 1521/518.


^b Materials starting with a number directly are from Center for Genetic resources in the Netherlands (CGN).Materials starting with BGRC are from Braunschweig Genetic Resources Collection.Genotype information is given after the genebank number. Detail for three genotypes of the segregating populations PTA 03-390-1, PTA 03-390-3, PLT 03-369-1, see Materials and Methods.

Identification and mapping of the genes Rpi-sto1, Rpi-plt1, Rpi-pta1 and Rpi-pta2

Progenies (33 individuals) of a cross between the resistant *S. stoloniferum* 17605-4 that contained the conserved *Rpi-blb1* homologue and the susceptible breeding clone RH89-039-16 were evaluated for late blight resistance. This test resulted in 19 resistant and 14 susceptible genotypes, indicating that a single dominant R gene segregated in the population, which was designated as *Rpi-sto1*. Four primer pairs for *Rpi-blb1* (BLB1F/R, 517/1519, 1521/518, 1+1') were tested on all the individuals of the population, and all amplified fragments of the expected size co-segregated with the resistance. Figure 2 illustrates co-segregation between the BLB1F/R primer and the resistance. Subsequent digestion of amplicons of marker CT88 with the restriction enzyme *Hinf*I, showed that CT88 co-segregated with *Rpi-sto1* in repulsion phase (Fig. 3), suggesting that *Rpi-sto1* is located on chromosome VIII at a similar position as *Rpi-blb1* in *S. bulbocastanum* (van der Vossen et al. 2003).

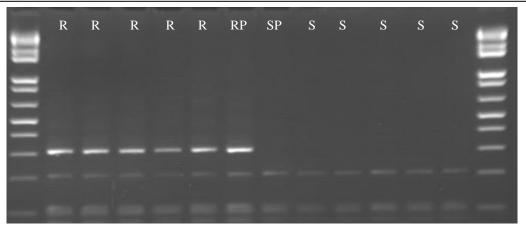

Fig. 2 PCR amplification of primer BLB1F/R co-segregating with the resistance. Product size is 821 bp indicated by arrow. R, S, RP and SP indicate the resistant offspring, susceptible offspring, resistant parent *S. stoloniferum* CGN17605 genotype 4, susceptible parent RH89-039-16, respectively. A marker-size ladder is indicated (1kb+).

Fig. 3 Linkage of *Rpi-sto1* to RFLP marker CT88. The polymorphism is revealed by restriction digestion with *Hinf I*. A marker-size ladder is indicated (1kb+). RP means resistant parent *S. stoloniferum* CGN17605 genotype 4, followed by ten resistant offspring. SP represents the susceptible parent RH 89-039-16, followed by ten susceptible offspring.

Forty offspring clones of each of the populations Pta 04-323, Pta 04-325 and Plt 04-281 were tested in triplicate in two independent DLAs with *P. infestans* isolates 655-2A and "Marknesse". All three populations segregated for resistance to late blight in these assays and for 36, 39 and 37 individuals respectively, a clear phenotype could be determined. The percentages of resistant offspring in the groups were 66, 69 and 73% respectively. For all three populations, the *Rpi-blb1* primer pairs BLB1F/R, 517/1519, 1521/518 and 1+1'(Table 2) produced positive results for some resistance genotypes, while other resistance genotypes produced negative results. None of the susceptible genotypes was positive for any of the *Rpi-blb1* related primers. The fact that all three populations consisted of about 75% resistant offspring, strongly suggests that there are two different R-genes segregating, one of which is highly homologous to *Rpi-blb1*, designated as *Rpi-plt1*, *Rpi-pta1* and *Rpi-pta2*, respectively, and the other an unknown late blight R gene.

*Hinf*I and *FspB*I digestion of CT88 PCR amplicons in population Plt 04-281 showed this marker to be genetically linked in coupling phase with resistance (Fig. 4), confirming that *Rpi-plt1* is also located on chromosome VIII.

Fig. 4 Linkage of *Rpi-plt1* to RFLP marker CT88. The polymorphism is revealed by restriction digestion with *Hinf 1*. Marker-size ladders are indicated on the left and right border of the gel (1kb+). RP means resistant parent Plt 04-281, followed by five resistant offspring. SP represents the susceptible parent *S. polytrichon* CGN17751, followed by five susceptible offspring.

Rpi-blb2 in Solanum species

Using the primer pair BLB2F/R, *Rpi-blb2* homologues were not detected in any of the wild species clones evaluated (Table1, Table 3), but the positive control from which the gene was cloned was indeed found to contain *Rpi-blb2*. For some genotypes both degenerate primer pairs amplified fragments, while for some other genotypes only one degenerated primer pair amplified fragments. Sequence analysis from selected fragments showed that they had a low degree of homology to the sequence of *Rpi-blb2* (data not shown).

Discussion

Genomic organization of the *Rpi-blb1* gene cluster

Many R genes are present within clusters of tightly linked genes (Michelmore and Meyers 1998; Meyers et al. 2003). This is also the case for the *Rpi-blb1* gene (van der Vossen et al. 2003). Investigation of the presence or absence of the three paralogues *Rpi-blb1*, *RGA1-blb* and *RGA3-blb* showed that *RGA1-blb* homologues are present not only in all the tuber-bearing *Solanum* genotypes but also in non-tuber-bearing species (Table 1), suggesting that *RGA1-blb* was present before the divergence of tuber-bearing and non-tuber-bearing *Solanum* species. All 56 *RGA1-blb* fragments sequenced were highly homologous (96%-99% sequence identity with *RGA1-blb*), indicating that *RGA1-blb* is well conserved. As *RGA1-blb* is likely to be expressed (van der Vossen et al. 2003), its presence in such a wide variety of species

suggests that it might be a functional R gene and that it may confer resistance to a very common pathogen. Interestingly, whenever the conserved *Rpi-blb1* gene fragments were present in certain genotypes, both *RGA1-blb* and *RGA3-blb* homologues were also present (Table 1). On the contrary, genotypes that contained both *RGA1-blb* and *RGA3-blb* homologues did not necessarily contain the conserved *Rpi-blb1* gene homologue. *S. berthaultii* CGN 20644 and *S. chacoense* CGN18248 are two examples of accessions that contain homologues of both RGA1-blb and RGA3-blb, but not of *Rpi-blb1*, as judged from the amplification results with *Rpi-blb1* specific and degenerated primers. The presence of *RGA1-blb* and *RGA3-blb* homologues (or their ancestors) seems to be essential for the generation of the *Rpi-blb1* gene homologue, as was suggested previously (van der Vossen et al. 2003).

Allele mining for homologues of *Rpi-blb1* and *Rpi-blb2*

Four species (*S. stoloniferum*, *S. papita*, *S. polytrichon*, *S. fendleri*) in the series *Longipedicellata* as recognized by Hawkes (1990) have been considered conspecific (Spooner et al. 2004), as both morphological characteristics (Spooner et al. 2001) and molecular data (van den Berg et al. 2002) failed to separate them. In this study conserved *Rpi-blb1* homologues were found in *S. bulbocastanum* and *S. stoloniferum* (sensu Spooner et al. 2004). In case of *S. stoloniferum* and *S. polytrichon* these *Rpi-blb1* homologues were confirmed to be linked to resistance and to the chromosome VIII specific marker CT88, which was previously shown to be linked to *Rpi-blb1* in *S. bulbocastanum*. All these data strongly suggest that *Rpi-sto1*, *Rpi-plt1*, *Rpi-pta1* and *Rpi-pta2* are functional homologues of *Rpi-blb1*.

In contrast to *Rpi-blb1*, no conserved *Rpi-blb2* homologues were discovered in any of the genotypes evaluated, indicating that *Rpi-blb2* is probably a gene that has evolved relatively recently. However, it may be possible to find more *Rpi-blb1* and *Rpi-blb2* alleles as our screening was not exhaustive.

Origin of Rpi-sto1, Rpi-plt1, Rpi-pta1 and Rpi-pta2

The sequentially and positionally conserved *Rpi-blb1* homologues were found in the advanced polyploid Central American species *S. stoloniferum* (sensu Spooner et al. 2004) from series *Longipedicellata*, which is considered distinct from the primitive diploid species *S. bulbocastanum* from series *Bulbocastana* (Hawkes 1990; Spooner et al. 2004). Thus, the question arises how the genes *Rpi-sto1*, *Rpi-plt1*, *Rpi-pta1* and *Rpi-pta2* ended up in *S. stoloniferum* (sensu Spooner et al. 2004). The Central American polyploid species from

series *Longipedicellata* are thought to have evolved from amphidiploidisations of a primitive Mexican ancestor with more advanced South American species (Hosaka et al. 1984; Hawkes 1990; Matsubayashi 1991). We propose two hypotheses. (1) *Rpi-blb1* is genetically highly conserved and was present in the wild ancestors of *S. stoloniferum* (sensu Spooner et al. 2004). *S. bulbocastanum* might be one of these ancestors. This hypothesis is supported by the similar constitution of the *Rpi-blb1* gene cluster (*RGA1-blb* and *RGA3-blb*) and the highly homologous sequences in *S. bulbocastanum* and *S. stoloniferum* (sensu Spooner et al. 2004) (Table 4). Furthermore, *Rpi-sto1* and *Rpi-plt1* were mapped in *S. stoloniferum* and *S. polytrichon* to the same chromosomal region of chromosome VIII as *Rpi-blb1* in *S. bulbocastanum*. (2) Alternatively, the *Rpi-blb1* homologues in *S. stoloniferum* (sensu Spooner et al. 2004) are the result of independent recombination events. However, the high level of sequence conservation of the *Rpi-blb1* homologues and previous cytogenetic studies (Hawkes 1990; Matsubayashi 1991) suggests the first alternative as being more likely.

Interestingly, resistance to root-knot nematodes *Meloidogyne chitwoodi* and *M. fallax* is also found to be present in both *S. bulbocastanum* and *S. stoloniferum* (Janssen et al. 1996), indicating that other R genes in *S. stoloniferum* and *S. bulbocastanum* might share common ancestry too.

Potato late blight breeding prospects

The *Rpi-blb1* gene was originally discovered and cloned from *S. bulbocastanum* (Song et al. 2003; van der Vossen et al. 2003 and 2005), a species that cannot be crossed with the cultivated potato *S. tuberosum* directly. Our study suggests that putatively functional *Rpi-blb1* homologues are also present in *S. stoloniferum* (sensu Spooner et al. 2004), a species that can be crossed with cultivated potato directly (Jackson and Hanneman. 1999), although the crossing efficiency is low. Assuming that the *Rpi-sto1* gene has the same specificity as *Rpi-blb1* it may now be easier to introduce the *Rpi-blb1* resistance specificity into cultivated potato from *S. stoloniferum* (sensu Spooner et al. 2004) instead of *S. bulbocastanum*. This is supported by the fact that *S. stoloniferum* (CPC 2093) has been used to breed potato varieties 'Kuras', 'Santé', 'Xantia' and 'Lady Christl' (Hutten and van Berloo 2001). Use of *S. bulbocastanum* is only possible through a tedious and time-consuming breeding scheme, for example, through bridge crosses (Hermsen and Ramanna 1973), or through somatic hybridization (Helgeson et al. 1998).

We anticipate that for other resistance genes present in primitive species, a similar situation may exist, i.e. homologues being present also in more advanced species that can be

more easily used for breeding. Therefore, before starting a breeding program with a species that does not allow an immediate cross with cultivated potato, evaluation of directly crossable germplasm for the presence of that gene may speed up the breeding program and save time and money.

Acknowledgements

This work was financially supported by a grant from the EU (contract nr FOOD-CT-2005-513959 BIOEXPLOIT) to the Bioexploit project.

Chapter 5

Diversity and evolution of the late blight resistance genes *Rpi-blb1* and *Rpi-blb2* in *Solanum bulbocastanum* and *Solanum cardiophyllum*

Miqia Wang^{a,b}, Anne Sikkema^c, Edwin van der Vossen^a, Roel Hoekstra^d, Sjefke Allefs^c, Ben Vosman^a

^aPlant Research International B.V., Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
^bOil Crop Research Institute, Chinese Academy of Agricultural Sciences, 430062 Wuhan, Hubei, China
^cAgrico Research, PO Box 40, 8300 AA Emmeloord, The Netherlands
^dCentre for Genetic Resources, The Netherlands (CGN), Wageningen University and Research Centre, P.O. Box 16, 6700 AA Wageningen, The Netherlands

Abstract

Late blight is the most devastating potato disease in the world. Among the potato late blight resistance genes cloned so far, *Rpi-blb1* and *Rpi-blb2* originate from *Solanum bulbocastanum*. Both are claimed to confer resistance to a broad spectrum of *Phytophthora* isolates. We explored allele frequency and allelic diversity of *Rpi-blb1* and *Rpi-blb2* in 38 *S. bulbocastanum* and five *Solanum cardiophyllum* accessions. *Rpi-blb1* paralogues *RGA1-blb* and *RGA3-blb* were also examined. Conserved *Rpi-blb1* alleles were found in 24 Mexican accessions, but not in material originating from Guatemala. *Rpi-blb2* was present in eight *S. bulbocastanum* accessions only. Sequence analysis of a randomly selected set of genotypes revealed 19 different *Rpi-blb1* haplotypes. Our results confirm that *Rpi-blb1* belongs to the type II class of resistance genes that evolve slowly. Sequence analysis of the putative susceptible alleles of *Rpi-blb1* suggests that a single mutation event generated this susceptible allele. *Rpi-blb2* was identified at a low frequency only in *S. bulbocastanum* (12% of the genotypes), and all the identified alleles were identical. These data suggest that *Rpi-blb2* has evolved recently.

Introduction

Late blight, caused by *Phytophthora infestans*, is the major disease in most potato growing areas. Mexico is the putative center of origin of *P. infestans*, but also of wild *Solanum* species, that are well known for their resistance to late blight, including *S. bulbocastanum*, *S. demissum* and *S. stoloniferum* (Toxopeus 1964; Howard, 1970; Umaerus, 1973; Ross, 1979; Hawkes 1990; Grunwald et al. 2005). Very recently, one study indicates an Andean origin of *Phytophthora infestans* as well, which was inferred from mitochondrial and nuclear gene genealogies (Gomez-Alpizar et al. 2007).

To date, three late blight resistance genes have been identified in *S. bulbocastanum*: the allelic genes *RB* and *Rpi-blb1* (Song et al. 2003; van der Vossen et al. 2003), *Rpi-blb2* (van der Vossen et al. 2005) and *Rpi-blb3* (Park et al. 2005). From these three genes, *Rpi-blb1* and *Rpi-blb2* have been cloned, and both are members of the NBS-LRR class of resistance genes. *Rpi-blb1* is present in a cluster of four resistance gene analogs on chromosome VIII and is flanked by *RGA1-blb* and *RGA3-blb* (Naess et al. 2000; van der Vossen et al. 2003). Two *Rpi-blb1* alleles, a "resistant" allele and a "susceptible" allele, were 99.8% similar with an 18-bp deletion present in the susceptible allele (Song et al. 2003). *Rpi-blb2* is in a locus harboring at least 15 *Mi-1* gene homologs on chromosome VI, and the *Rpi-blb2* protein shares 82% sequence identity to the *Mi-1* protein (van der Vossen et al. 2005). *Mi-1* is a gene of tomato that confers resistance to the root knot nematode *Meloidogyne incognita* (Milligan et al. 1998). The *Rpi-blb3* gene was identified on chromosome 4 in a gene cluster including three other genes *Rpi-abpt*, *R2*, and *R2*-like (Park et al. 2005).

The distribution of specific resistance genes in natural populations has been studied in a few cases only, for example, *RPS2* and *RPP13* in *Arabidopsis thaliana* (Mauricio et al. 2003; Rose et al. 2004), and *Cf-4* and *Cf-9* in tomato (Kruijt et al. 2005). To our knowledge, late blight resistance gene diversity studies have not been reported yet.

Song and colleagues (2003) suggest that *Rpi-blb1* shows an evolutionary pattern typical to a Type II resistance gene, which implies that *Rpi-blb1* is likely to be highly conserved in different genotypes or closely related species and present in high frequencies in natural populations (Song et al. 2003; Kuang et al. 2004). Distribution

of resistance genes in natural populations is not easy to study phenotypically, as resistance to one particular pathogen might result from the presence of one or more different resistance genes, which is the case for populations of *S. bulbocastanum*. One option is to use *Avr*-genes to determine whether a corresponding R-gene is present. However, at present, the corresponding *Avr*-genes for *Rpi-blb1* and *Rpi-blb2* are unknown, thus one needs to study the distribution of the genes using highly specific molecular markers and deduce the R-gene phenotype from these marker data.

In this paper, we studied the allelic frequencies of the *Rpi-blb1* and *Rpi-blb2* genes in accessions of two species, *S. bulbocastanum* and *S. cardiophyllum*, and the variation within them. Allelic frequencies of the two *Rpi-blb1* flanking genes *RGA1-blb* and *RGA3-blb* were also studied in some *S. bulbocastanum* genotypes. We related the occurrence of the genes *Rpi-blb1* and *Rpi-blb2* to the geographical origin of the accessions. Based on the presence/absence data of *Rpi-blb1* the evolutionary history of the gene is discussed.

Materials and methods

Plant material

Seventeen *S. bulbocastanum* accessions were obtained from the United States potato Genebank, in Sturgeon Bay, WI, USA, and kindly supplied as DNA samples by Dr. A. del Rio, Univ. Wisconsin, USA. Additionally, 21 *S. bulbocastanum* accessions and five *Solanum cardiophyllum* accessions, were obtained as seeds from the Centre for Genetic Resources, the Netherlands (CGN) (Table 1). Three to ten genotypes (Table 1) were analyzed from each accession. Individual seeds from CGN were surface-sterilized and sown in vitro on MS medium supplemented with 20% sucrose (Murashige and Skoog. 1962) at 18°C and allowed to germinate for at least 6 weeks to obtain individual clones. DNA was extracted according to the method described by Stewart and Via (1993).

Table 1 Distribution of *Rpi-blb1* and *Rpi-blb2* allele in accessions. Mexican accessions with coordinates were ordered according to the coordinates, followed by Mexican accessions without coordinates and those from Guatemala.

						F	Rpi-blb1	c		Rpi-blb2 ^d	
Country	State	Taxon ^a	Genebank ^b	Coordinates	Total	No.R	NO.S	Freq	Class	No	Freq
Mexico	Chiapas	ptt	G5323	16°10' N 92°12' W	3	0	0	0.00	1	0	0.00
	Morelos	dph	G35399	19°01' N 99°06' W	4	0	2	0.00	1	0	0.00
	Puebla	blb1	P275190	19°04' N 98°18' W	3	0	3	0.00	1	0	0.00
	Mexico	blb2	C17691	19°13' N 98°48' W	4	0	0	0.00	1	0	0.00
	Mexico	blb3	C22367	19°13' N 98°48' W	5	0	5	0.00	1	0	0.00
	Federal District	blb4	P275185	19°21' N 99°12' W	7	0	4	0.00	1	0	0.00
	Mexico	blb5	B8009	19°29' N 98°54' W	4	0	1	0.00	1	0	0.00
	Michoacan	blb6	C17690	19°50' N 101°43' W	5	0	2	0.00	1	0	0.00
	Federal District	blb7	P275197	19°21' N 99°12' W	8	1	0	0.13	2	3	0.38
	Veracruz	blb8	P365379	18°43' N 97°19' W	8	2	0	0.25	2	0	0.00
	Jalisco	blb9	P590930	21°01' N 102°59' W	6	2	4	0.33	2	0	0.00
	Distrito Federal	blb10	C17689	19°21' N 99°12' W	4	2	2	0.50	2	0	0.00
	Oaxaca	blb11	P498223	17°02' N 96°46' W	9	5	0	0.56	2	9	1.00
	Guerrero	blb12	P545711	17°33' N 99°30' W	10	6	0	0.60	2	4	0.40
	Michoacan	blb13	P498225	19°25' N 100°20' W	8	5	3	0.63	2	0	0.00
	Michoacan	blb14	P347757	19°31' N 100°15' W	8	5	2	0.63	2	0	0.00
	Oaxaca	blb15	P283096	17°30' N 96°46' W	9	6	0	0.67	2	0	0.00
	Jalisco	blb16	P545751	20°59' N 103°10' W	7	5	0	0.71	2	0	0.00
	Oaxaca	blb17	P498011	17°02' N 96°46' W	9	7	1	0.78	2	8	0.89
	Oaxaca	blb18	C17692	17°53' N 96°33' W	5	4	1	0.80	2	2	0.40
	Oaxaca	blb19	P558377	16°16' N 96°41' W	7	6	0	0.86	2	0	0.00
	Oaxaca	blb20	P275195	17°02' N 96°46' W	6	6	0	1.00	3	2	0.33
	Oaxaca	blb21	C21306	17°30' N 96°27' W	4	4	0	1.00	3	0	0.00
	Tlaxcala	blb22	C22698	19°11' N 98°13' W	5	5	0	1.00	3	1	0.20
	Mexico	blb23	C17693	19°43' N 99°47' W	3	3	0	1.00	3	0	0.00
	Michoacan	blb24	P498224	21°13' N 99°02' W	10	10	0	1.00	3	0	0.00
	nd ^e	cph	C18326	nd nd	7	2	0	0.29	2	0	0.00
	Distrito Federal	blb	C17687	nd nd	5	2	2	0.40	2	0	0.00
	Mexico	blb	C23010	nd nd	5	3	1	0.60	2	0	0.00
	Mexico	cph	C22387	nd nd	5	3	0	0.60	2	0	0.00
	Puebla	blb	P310960	nd nd	7	7	0	1.00	3	0	0.00
	nd	cph	B55227	nd nd	3	3	0	1.00	3	0	0.00
	nd	blb	C18310	nd nd	5	0	0	0.00	1	0	0.00
	nd	blb	B53682	nd nd	5	0	3	0.00	1	0	0.00
	Michoacan	cph	C18325	nd nd	8	0	0	0.00	1	0	0.00
	nd	cph	C17697	nd nd	4	0	0	0.00	1	0	0.00
Guatemala	Baja Verapaz	blb	C21363	15°09' N 90°18' W	4	0	0	0.00	1	0	0.00
	Huehuetenango	ptt	G5322	15°10' N 91°31' W	4	0	0	0.00	1	0	0.00
	Baja Verapaz	blb	P604065	15°10' N 90°17' W	8	0	0	0.00	1	1	0.13
	Baja Verapaz	blb	C21364	15°13' N 90°18' W	4	0	0	0.00	1	0	0.00
	Huehuetenango	blb	C23075	15°19' N 91°33' W	4	0	0	0.00	1	0	0.00
	Huehuetenango	blb	C22732	15°19' N 91°31' W	5	0	0	0.00	1	0	0.00
	Huehuetenango	blb	C23074	15°46' N 91°30' W	5	0	0	0.00	1	0	0.00
		sum			249	104	36	0.42		30	0.12

^a Taxon abbreviations follow Hawkes (1990): blb = S. *bulbocastanum* subsp. *bulbocastanum*; dph = S. *bulbocastanum* subsp. *dolichophyllum*; ptt = S. *bulbocastanum* subsp. *partitum*; cph = S. *cardiophyllum* subsp. *cardiophyllum*. Taxon names for Mexican accessions with coordinates were used in Fig, 1.

^bB represents Braunschweig Genetic Resources Collection (BGRC); C represents Center for Genetic Resources, the Netherlands (CGN); G represents Gross Lusewitz, Konrad Schuler (GLKS), Germany; P represents United States Department of Agriculture Plant Introduction

Numbers (PI).

^c No. R: genotype numbers containing putative resistant (PR) *Rpi-blb1*; No. S: genotype numbers containing putative susceptible *Rpi-blb1* only; freq: frequency of the PR allele, freq=No.R/Total; Class: Accessions were grouped into three classes based on the freq (see results in the text for detail)

^d No: genotype numbers containing *Rpi-blb2* determined by primer BLB2F/R; freq: frequency of *Rpi-blb2* containing materials in one accession

^end: no data

Amplification of resistance gene homologs and sequence analysis

The primers used in this study were described by Wang et al. (Chapter 4). Three pairs of primers 517/1519, BLB1F/R, 1521/518 were used to amplify the *Rpi-blb1*. Primers 1 and 1' (Colton et al. 2006) were used to differentiate between the resistant and susceptible allele of *Rpi-blb1*. PCR conditions were as described by Colton et al. (2006). To determine the presence of the genes flanking *Rpi-blb1*, the primers RGA1F/R and RGA3F/R were used for *RGA1-blb* and *RGA3-blb*, respectively, on 23 randomly chosen genotypes from 20 accessions in *S. bulbocastanum*.

An additional primer set (BLB2F/R, Chapter 4) was used to amplify the *Rpi-blb2* gene. PCR reaction conditions and protocol were as described in Chapter 4. All amplification reactions were performed in a Biometra® T-Gradient or Biometra® Uno-II thermocycler (Westburg, Leusden, the Netherlands). PCR products were separated in 1.5% agarose gel and stained with ethidium bromide. The PCR reaction was repeated twice when no amplification product was observed.

For randomly selected genotypes, PCR products were sequenced directly to confirm their identity and to identify single nucleotide polymorphisms (SNPs). Each fragment was sequenced from both sides using the two primers as a sequencing primer with the BigDye Terminator kit. Sequencing reactions were analyzed using an ABI 3700 automated sequencer (Applied Biosystems, USA). DNA sequences were analyzed using DNAstar (Lasergene, Madison, WI, USA).

Distribution of the examined materials

Geographical origin (latitude and longitude information) of the accessions was collected from the website of CGN and from literature (Rodriguez and Spooner. 1997). Twenty-six Mexican accessions with detailed coordinates were located on the map with the software DIVA-GIS (http://www.diva-gis.org).

Results

Detection of the *Rpi-blb1* gene

For the detection of the *Rpi-blb1* gene, three pairs of primers (517/1519, BLB1, 1521/518) were used, which showed congruent results: either all three produced a fragment or none did. When all three pairs of primers amplified fragments, the genotype was considered to contain the *Rpi-blb1* gene.

To investigate whether the resistant or susceptible allele was present, all genotypes were tested with the 1+1' primers (Colton et al. 2006). These results were confirmed by amplification and sequence analysis of fragments obtained with the primers 1521/518. Amplification with the 1+1' primer pair was only observed in the genotypes containing the *Rpi-blb1* gene. When both primer pairs (1521/518 and 1+1') amplified a fragment, the sequence derived from primer 1521/518 was either similar to that of the *Rpi-blb1* resistant allele or could only be read partly. In the latter case, the sequence reads were of high quality up to the point where the 18bp deletion starts, indicating heterozygosity of the locus. When there was no amplification for the 1+1' primers, the sequence derived from the primers 1521/518 was similar to the susceptible allele *rb*, i.e. containing the 18-bp deletion (Song et al. 2003). In these cases the material was considered to be homozygous for the putative susceptible (PS) allele. All genotypes showing positive results for primers 1+1' were considered to contain the putative resistant (PR) allele, either in heterozygous or homozygous state. Results of the analysis are summarized in Table 1.

Distribution of the *Rpi-blb1* in accessions

Based on the presence or absence of the PR allele (Table 1), the forty-three populations were grouped into three classes. Class 1 contained 19 accessions, including 12 accessions without the *Rpi-blb1* gene in any of the genotypes examined and seven accessions where some or all the genotypes examined contained the PS allele. This class included all seven accessions from Guatemala. Class 2 contained 17 accessions, in which there was a mixture of putative resistant (containing the PR allele) and putative susceptible genotypes (either without the *Rpi-blb1* gene or containing the

PS allele). (3) Class 3 consisted of seven accessions, from which all genotypes examined contained the PR allele.

In total, 24 out of the 43 (approximately 56%) accessions contained the PR allele. In all the 249 genotypes examined the number of genotypes containing the PR allele, PS allele or a null allele was 104 (42%), 36 (14%) and 109 (44%), respectively.

Sequence variation in the *Rpi-blb1* gene

To explore the R gene diversity at the nucleotide level, PCR amplicons from all three primer pairs (BLB1F/R, 517/1519 and 1521/518) were sequenced for 41 genotypes from 27 accessions. Four sequences were of bad quality due to the heterozygous state of the locus. These four sequences were excluded from further analysis. For the 37 genotypes from 26 accessions, DNA sequence variability was analyzed using the combined sequences from the three pairs of primers. In total, the aligned sequences shared by all PR genotypes spanned 1709 base pairs (bp), from the start codon to position 520 (the 517/1519 amplicon), and from position 2404 to the stop codon (overlapping BLB1F/R and 1521/519 amplicons) (Table 2), with the exception that an 18bp deletion was present in all the PS allele sequences. The length of the PR allele sequences with that of the susceptible allele of *Rpi-blb1*. No insertion/deletion (indels) polymorphisms were found. All observed polymorphisms were point mutation.

Based on the DNA polymorphisms, the 28 PR sequences were classified into 19 haplotypes (Table 2). Within the 1709 bp, the maximum number of SNPs was eight. All *Rpi-blb1* homologous fragments showed 99.5 to 100% nucleotide identity with the cloned *Rpi-blb1* gene, suggesting that they are true alleles or orthologs of *Rpi-blb1*. Haplotype 19 was identical to *Rpi-blb1*. Alleles within the same accessions were identical or very similar. However, alleles from the same species were not always the most similar to each other. For example, alleles of haplotype 3 from *S. cardiophyllum* were more similar to the allele of haplotype 2 from *S. bulbocastanum* than to haplotype 16 from *S. cardiophyllum*. All nine PS sequences from six *S. bulbocastanum* accessions (two subspecies) were exactly the same, and they were also identical to the susceptible allele sequence described by Song et al. (2003). It is likely that the sample of alleles from *S. bulbocastanum* is not exhaustive, as many haplotypes were identified only once. The sampling of polymorphic positions was much more extensive, as only 9 out of 34 SNPs were found only once, 7 of which

65

Taxon ^a	Genebank	Genotype	Haplotype	42 28 13	65 64	129 123 78	315 210	488 455 387	2818 2809 2745 2607 2407	2981 2908	3180 3134 3021	3376 3314 3255	3517 3481 3442 3390	3588 3574	No. synonymous SNP ^e	No. non- synonymous SNP	No. of all SNP
	Rpi-blb1 ^b			ТСТ	GT	ттс	АТС	C <u>A</u> ^d <u>C</u>	ТАТАТ	CG	ΓAG	СТС	ТАСС	ΓТ			
blb	P590930	2	1	GΤ	С	,	Г		CG					С	3	4	7
blb	C17693	10	2	Y Y ^c		Y			G			С			4	1	5
cph	B55227	1	3	T G		С			G			С			4	1	5
cph	B55227	4	3	T G		С			G			С			4	1	5
blb	P545751	1	4	Т	A C	С	С							Α	5	1	6
blb	P498011	6	5	Т	С	С					С			Α	3	2	5
blb	P498223	9	6	Т	С	С									2	1	3
blb	P347757	9	7	Т	С				G		СС	Т		Α	2	5	7
blb	P545711	1	8	Т	С							А	G		2	2	4
blb	P558377	1	9	Т	С								ТТ		3	1	4
blb	P498224	1	10	Т	С									Α	1	2	3
blb	P365379	10	11	Т	С		Т	Т							3	1	4
blb	C23010	3	12		С	Y			K Y						2	2	4
blb	P310960	2	13		С	S		<u>T</u> <u>T</u>	R	S	S			Α	3	3	6
blb	P310960	5	14		С	G		<u>T</u>	G	С	C C			Α	2	5	7
blb	C17687	5	15		С				G C	Т	С	Т	С		3	4	7
cph	C18326	10	16		С		Т					А			1	2	3
cph	C22387	1	16		С		Т					А			1	2	3
cph	C22387	4	16		С		Т					А			1	2	3
blb	P498223	3	17					G			С			Α	1	2	3
blb	C21306	5	18					G							1	0	1
blb	C17689	3	18					<u>G</u>							1	0	1
blb	P275195	5	18					<u>G</u>							1	0	1
blb	P283096	2	18					<u>G</u>							1	0	1
blb	C21306	1	19												0	0	0
blb	C21306	8	19												0	0	0
blb	C17692	1	19												0	0	0
blb	C17692	2	19											-	0	0	0
														-	54	44	98

Table 2 Nucleotide polymorphisms in *Rpi-blb1* for putative resistant *Rpi-blb1* alleles

^a Nucleotides are numbered beginning at the start of the gene. The sequence spans 1709 base pairs (bp) in total, composed of two separate parts: (1) from the start codon to position 520 (taking *Rpi-blb1* as reference) derived from the primer 517/1519. In this part from the position 428 it is the intron sequence. (2) from position 2404 to stop codon derived from the primer BLB1F/R and 1521/519. Nucleotide changes are indicated by the appropriate letter. Grey background number suggests the SNP in that position changes the amino acid.

^b*Rpi-blb1* sequence is used as reference for convenience only.

^c Nucleotide abbreviations according to the IUB code (K, GT; R, AG; S, GC; Y, CT)); the three 'haplotypes' with these heterozygous positions may or may not be resolved into some of the other alleles upon cloning and sequencing.

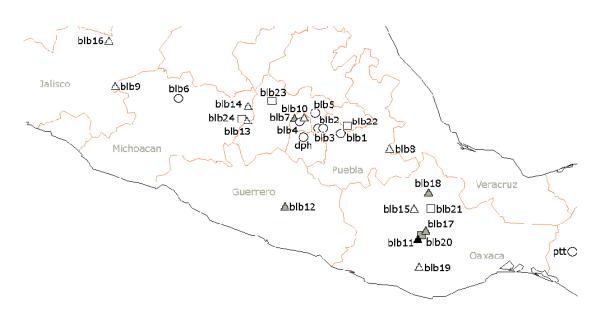
^d Underlined nucleotide means they are located in the intron.

^e Number of SNP includes those from coding sequences only.

were found in two accession (P590930 and P545751) originating from the Jalisco in Mexico.

Presence of RGA1-blb and RGA3-blb

Twenty-one genotypes, originating from 20 accessions, were characterized for the presence or absence of the two genes (RGA1-blb and RGA3-blb) flanking the Rpi-blb1 gene, covering accessions of three classes 1, 2 and 3. Interestingly, RGA1-blb and RGA3-blb were present in all 21 genotypes. Four RGA1-blb and four RGA3-blb derived fragments were sequenced, which were all highly similar within each gene (not shown). Alleles from RGA1-blb and RGA3-blb could be clearly distinguished from each other (data not shown).


Distribution and sequence polymorphism of *Rpi-blb2*

In contrast to *Rpi-blb1*, BLB2F/R primers amplified fragments only from 32 genotypes. All fragments amplified from *S. bulbocastanum* had the expected size of 774bp, while a shorter fragment was amplified from two *S. cardiophyllum* genotypes originating from accession CGN22387.

To explore the variation in the *Rpi-blbl2* gene, PCR fragments from 16 genotypes (14 from *S. bulbocastanum* and two from *S. cardiophyllum*) were sequenced. All 14 sequences from *S. bulbocastanum* were identical to that of the cloned *Rpi-blb2*. The shorter sequences from *S. cardiophyllum* were possibly pseudogenes of *Rpi-blb2* due to the introduction of stop codons in the 5' end of the fragment (not shown). Therefore, only when primer BLB2F/R amplified the expected fragment size, did we consider the genotype to contain *Rpi-blb2*. In total, eight out of 43 accessions (about 19%), 30 out of 249 genotypes (12%) contained the *Rpi-blb2* (Table 1).

Geographical distribution of *Rpi-blb1* and *Rpi-blb2*

Twenty-six Mexican accessions could be located on the map (Fig.1), while six accessions with some genotypes containing the PR allele could not be located due to missing coordinate information (Table 1). Geographically, populations containing the *Rpi-blb1* PR alleles were distributed more widely than those containing the *Rpi-blb2*. Interestingly, accessions without the *Rpi-blb1* gene also did not contain the *Rpi-blb2* gene, except for one *S. bulbocastanum* accession P604065 originating from

Fig. 1 Population distribution in Mexico and gene frequency of the putative resistance gene *Rpi-blb1* and *Rpi-blb2*. Locations for populations having the same coordinates are edited manually to increase the readability in the map. Coordinates and other details are listed in Table 1. Figures in the map represent accessions in which:

- O neither putative resistance *Rpi-blb1* nor *Rpi-blb2* gene is present
- △ some genotypes contain the putative resistance *Rpi-blb1* but not *Rpi-blb2*
- some genotypes contain both the putative resistance *Rpi-blb1* and *Rpi-blb2*
- some genotypes contain the putative resistance *Rpi-blb1* and all genotypes contain the *Rpi-blb2*
- \Box all the genotypes contain the putative resistance *Rpi-blb1* but none of them contain the *Rpi-blb2*
- all the genotypes contain the putative resistance *Rpi-blb1* and some genotypes contain the *Rpi-blb2*

Guatemala. All material originating from the Oaxaca state showed a *Rpi-blb1* PR allele frequency higher than 0.5. The accessions containing the *Rpi-blb2* gene also originated mainly from the Oaxaca state.

Discussion

Distribution of the *Rpi-blb1* and *Rpi-blb2* resistance gene

Using gene specific primers for the *Rpi-blb1* and *Rpi-blb2* genes (Chapter 4) we were able to analyze the distribution of these genes in accessions of *S. bulbocastanum* and

S. cardiophyllum. The *Rpi-blb1* PR allele was found to be present in 67% of the Mexican accessions examined but not in any of the seven accessions from Guatemala. However, no clear center of origin was identified in Mexico, either. Accessions with and without *Rpi-blb1* are scattered all over (Table 1 and Fig 1), with some concentration in the Oaxaca state. In our previous study (Chapter 4) we reported on the presence of PR *Rpi-blb1* alleles in *S. stoloniferum* accessions CGN17605 and CGN17607, both are located in the state Michoacan (coordinates: 19°42' N, 101°07' W) in Mexico, and accession BGRC60465, also located in Mexico (19°07' N, 98°46' W). Taken together these data suggest that Mexico is the center of origin of the *Rpi-blb1* gene.

Some *S. bulbocastanum* accessions/genotypes contain both *Rpi-blb1* and *Rpi-blb2*. However, there was only one population (PI498223) in which all individuals contained the *Rpi-blb2* gene. Most of the populations containing *Rpi-blb2* also contained *Rpi-blb1*. The frequency of the *Rpi-blb1* was much higher than that of the *Rpi-blb2* gene, 42% versus 12% respectively. The number of alleles and the nucleotide diversity of *Rpi-blb1* is also much higher than that of *Rpi-blb2*. These differences might be related to 'age' of the genes. It will be interesting to also include the presence/absence of the *Rpi-blb3* gene (Park et al. 2005) in this analysis once the gene is cloned. The results confirm that *S. bulbocastanum* is a rich source of late blight resistance gene (Budin 2002).

Co-existence of putative resistant and susceptible alleles of *Rpi-blb1*

Co-existence of both PR and PS alleles of *Rpi-blb1* was observed in *S. bulbocastanum* accessions (Table 1). Interestingly, PS phenotypes for *Rpi-blb1*, as determined from the gene specific marker data, did not only originate from the presence of the PS allele of *Rpi-blb1*, but also to the presence of a null allele. Among the 249 genotypes analyzed, 36 genotypes contained the PS allele, but 109 genotypes contained the null allele, indicating that latter situation is more frequent. We interpret the lack of amplification as evidence for complete absence of the gene, rather than the occurrence of an SNP at one of the primer binding sites, as none of the three primer pairs amplified in these genotypes, while all three amplified when PS or PR alleles were detected. The absence of the entire *Rpi-blb1* gene may well be the most primitive situation, as the absence is much more common than the presence of the PS allele, and as the PS allele did not contain any genetic variation, while PR alleles existed in many

allelic variants.

The coexistence of resistant and susceptible alleles might have ecological meaning, possibly in preventing the pathogen breaking the resistance too quickly. Long-lived co-existence of resistant and susceptible alleles was also found across the range of *Arabidopsis thaliana* ecotypes and both alleles frequently occurred together within natural populations (Stahl et al. 1999).

Variation in the *Rpi-blb1* and *Rpi-blb2* resistance genes

Sequence analysis showed 19 haplotypes of the PR alleles of *Rpi-blb1*. In contrast, all the PS allele sequences were identical. For the PS alleles, the SNP at the 454th codon causing the premature stop codon identified by Song et al. (2003) was not studied, as our primers do not cover that sequence. SNPs identified in the sequences (Table 2) are 22 synonymous SNPs, which do not alter the amino acids incorporated. The 12 non-synonymous SNPs involve the following amino acid changes but some of them possibly do not influence the function of the gene. This is already shown by our data in Chapter 4, where non-synonymous SNPs in position 64, 65 (both code for the same amino acid, from Val to Thr), 3134 (from Met to Leu) and 3588 (from Ile to Asn) are present, but the plants show resistance to late blight. Therefore, we anticipated that the 19 haplotypes identified are putatively functional genes.

As far as there is overlap, all the PS allele sequences were identical with the susceptible allele reported by Song et al. (2003), suggesting that all PS allele sequences originate from a single mutation event that might have generated this susceptible allele relatively recently. Previously, we investigated the allele frequency of *Rpi-blb2* in more than 40 *Solanum* species by using the same BLB2F/R primer pair, but none of them contained *Rpi-blb2* (Chapter 4). Also in this study the frequency of the *Rpi-blb2* in *S. bulbocastanum* was low (12%) and the sequence of all fragments obtained was identical. The finding suggests that *Rpi-blb2* has evolved recently.

Rpi-blb1 is a Type II resistance gene

The rate of evolution of NBS-LRR-encoding genes can be rapid or slow. In lettuce, two types of RGC2 genes (Type I and Type II) were distinguished based on the pattern of sequence identity between sequence exchanges and their prevalence in natural populations (Kuang et al. 2004). Sequence exchanges are frequent between Type I genes, therefore, obscured allelic/orthologous relationships are observed. In

addition, due to the frequent sequence exchanges, individual Type I genes comprise diverse chimeras and are rare in natural populations. In contrast, Type II RGC2 genes are highly conserved, evolving slowly and maintaining obvious allelic/orthologous relationships between clades (Kuang et al. 2004). Point mutations are found to be the most common polymorphism between Type II alleles/orthologs.

All PR alleles of *Rpi-blb1* amplified from *S. bulbocastanum* and *S. cardiophyllum* (Table 2) and others from *S. stoloniferum* (Chapter 4) were 99.5 to 100% homologous to each other and to the *Rpi-blb1* gene, showing that PR alleles are clearly orthologs. In addition, where studied, genes flanking the original *Rpi-blb1* gene (*RGA1-blb* and *RGA3-blb*) were also present and highly homologous in all genotypes containing *Rpi-blb1* (Chapter 4). *S. bulbocastanum* and *S. cardiophyllum* are primitive diploid species, distinct from the polyploid *S. stoloniferum* (Hawkes 1990). Taken together our studies indicate that *Rpi-blb1* is present in both systematically close and distinct materials, that all *Rpi-blb1* alleles are highly homologous (>99.5% sequence identity), and that mainly point mutations contribute to the variation. All this confirms the Type 2 nature of *Rpi-blb1*.

Finding from this study together with those from our previous one (Chapter 4) enable us to conclude that *Rpi-blb1* belongs to Type II resistance gene. Taken with the finding that *Rpi-blb2* has evolved recently, our data contributed the understanding for the evolution of the two late blight resistance genes.

Acknowledgements

We would like to thank René Smulders for critically reading the manuscript and Gerard Bijsterbosch for excellent technical assistance. This work was funded by a grant from the EU (contract nr FOOD-CT-2005-513959 BIOEXPLOIT) to the Bioexploit project.

Chapter 6

General discussion

NBS profiling for systematics and identification of candidate R gene markers in wild and cultivated *Solanum* species

Potato (*Solanum tuberosum* L.) is a crop with a large secondary gene pool, which contains many important traits that can be exploited in breeding programs. As the number of species is large, it is not easy to choose the right material for variety improvement. Also, not all wild species are easily crossable with the cultivated potato (Hawkes 1990).

Insight in the systematic relationships within the tuber-bearing Solanum species might help to identify the most interesting materials for breeding purposes. Relationships within this group of species have been studied extensively, using morphological characteristics also different molecular and markers (Hosaka et al. 1984; Kardolus et al. 1998; Bryan et al. 1999; Miller et al. 1999; Volkov et al. 2001; Raker and Spooner 2002; Volkov et al. 2003; Sukhotu et al. 2004). However, the phylogenies obtained with neutral markers like AFLP, RFLP and chloroplast DNA have not resulted in a priori identification of the most promising species for resistance. Apparently there is not a good correlation between these neutral marker-based relationships and the occurrence of disease resistance genes. Functional markers based on diversity in resistance genes might be more predictive. Nucleotide binding site (NBS) profiling is a new marker technique that targets resistance genes and their analogs. The technique is based on selective amplification, using primers designed upon conserved motifs of cloned R genes. The fragments (markers) obtained are highly enriched for resistance gene analogs. The results obtained from NBS profiling data were compared to those from AFLP. Results from cladistic and phenetic analyses showed that the two techniques delivered trees with a similar topology and resolution, indicating that NBS profiling can be an alternative for phylogeny reconstruction. However, no clear effects of targeting resistance genes were visible in the NBS profiling tree. This congruence between AFLP and NBS profiling may not be as unexpected as it appears to be. Plants have to deal with many different pathogens during their lifetime and are thus exposed to selection pressures in different directions. However, it is possible that a single resistance gene is essential for species survival or a speciation event. The R-gene(s) that may have been under selection after a period of disease pressure by a pathogen may have spread relatively fast to neighboring species through hybridization. The specific effect of selective pressure on R-genes will therefore be only detectable on a very short evolutionary time scale, and is diluted when many markers are analyzed phylogenetically. The outcome of the phylogenetic analysis is based on all NBS profiling markers, the majority of which was not affected by selective pressure. A single or a few markers very likely will not influence the outcome. All this makes that NBS profiling, although at least as effective as AFLP for phylogeny reconstruction, does not have a specific advantage in highlighting R-gene related phylogenies. It does have the advantage of low levels of homoplasy (Chapter 3). Co-migrating NBS profile marker bands were sequenced to check the identity of the bands. Within the tuber-bearing *Solanum* species, 91% of the sequences of co-migrating bands were more than 95% homologues to each other, indicating low levels of homoplasy.

Chapter 2 also shows that NBS profiling can be used to identify candidate resistance markers. By sequencing of species-specific markers, one allelic variant of the *Rpi-blb2* gene was discovered in *Solanum bulbocastanum*. The use of NBS profiling for identifying markers linked to resistance genes was further explored in Chapter 3. Several markers, potentially linked to introgressed R-genes, are identified by linking NBS profiling bands with pedigree data and phenotypic data of the varieties. One of the resistance markers identified was very likely introgressed from *Solanum vernei*. This was indicated by the correlation between the presence of this marker and the resistance data for the varieties involved, as well as the presence of the same marker in both *S. vernei* accessions examined. This marker is present not only in the two *S. vernei* accessions, but also in two *S. microdontum* accessions. Systematically, both *S. vernei* and *S. microdontum* belong to a group of species in series *Tuberosa*, occurring in Bolivia and Argentina. The presence of this marker in both species may indicate a common ancestry of this marker.

An alternative approach for finding resistance markers in a set of varieties is association mapping, as reported by Malosetti et al. (2007). Using a subset of the varieties used in Chapter 3 and the same NBS profiling marker data, two markers were identified with significant association to late blight resistance using a mixed model approach. Previously, marker-trait associations were successfully used to assess the genetic potential of the potato germplam collections (Gebhardt et al. 2004). In their study, in which a collection of 600 varieties and various wild species was used, DNA markers linked to previously mapped QTLs for resistance to late blight and plant maturity were evaluated. Highly significant association with QTL for resistance to late blight and plant maturity was detected with PCR markers specific for R1. In addition, this marker was traced to an introgression from the wild species *S. demissum*. Molecular and late blight phenotype data showed that the R1 marker was also present in another wild species *S. stoloniferum* (Gebhardt et al. 2004), indicating that R1 containing materials cannot with a 100% certainty be traced back to *S. demissum*.

In Chapter 3 we also assessed the changes in genetic diversity during the last 70 - 80 years in a set of about 460 European potato varieties using NBS profiling. Analysis showed that during that period diversity in markers linked to resistance had increased. Only one marker was lost, whereas several new markers were introduced into the potato gene pool, which most likely reflects the efforts of breeding companies and research institutes to introgress resistances from wild species into cultivated potato.

Late blight R genes in cultivated and wild Solanum species

Recently, four late blight R genes have been cloned from potato. All these encode a coiled coil (CC)-NBS-LRR class of proteins, including R1 (Ballvora et al. 2002) and R3a (Huang et al. 2005) from *S. demissum* and *RB/Rpi-blb1* and *Rpi-blb2* (Song et al. 2003; van der Vossen et al 2003; van der Vossen et al 2005) from *S. bulbocastanum*.

Allelic frequency and variation of *Rpi-blb1* and *Rpi-blb2* was analyzed in a large number of tuber-bearing *Solanum* species. The genomic organization of the *Rpi-blb1* cluster in these species was also explored. *Rpi-blb1* and *Rpi-blb2* were chosen as they confer resistance to all the *P. infestans* isolates tested so far. Insight into allelic diversity may facilitate discovery of functional homologues that can be exploited in breeding programs and may also help to understand the evolution of R-genes.

Highly specific primers were designed to selectively amplify the R-gene under study. In this way, we expect to amplify R gene orthologs only and exclude the paralogs. PCR amplifications from several pairs and sequence analysis provide an overview of the presence of the two R genes. *Rpi-blb*1 candidates were discovered in two species besides *S. bulbocastanum: S. stoloniferum* (sensu Spooner et al. 2001; Chapter 4) and *S. cardiophyllum* (Chapter 5). The genes *Rpi-stol*, *Rpi-pta1*, *Rpi-pta2*, and *Rpi-plt1* are putative functional homologs of *Rpi-blb*1. An analysis using four segregating populations confirmed that the genes all mapped on potato chromosome

VIII. *Rpi-blb*1 was also mapped on this chromosome in *S. bulbocastanum*. In addition to the identification of *Rpi-blb*1, three out of four segregating populations examined also contained another unknown late blight resistance gene (Chapter 4). Although the detailed characterization of these genes is not available yet and it is unknown whether these genes are similar to other known R-genes or that they are new ones, there is no doubt that these resistant clones represent promising material for breeding. As a first step these genes should be mapped.

In contrast to the presence of *Rpi-blb*1 in *S. bulbocastanum*, *S. cardiophyllum* and *S. stoloniferum*, *Rpi-blb*2 was found only in accessions from species *S. bulbocastanum*. Partial sequences derived from the amplified fragments are all identical to the *Rpi-blb*2 gene. Our observation that the presence of *Rpi-blb*2 is restricted to *S. bulbocastanum* and that the sequences of all fragments obtained are identical suggests that *Rpi-blb*2 evolved recently.

Presence of *Rpi-blb1* and other R genes in more than one species

As described in Chapter 4 and 5, *Rpi-blb1* is present in *S. bulbocastanum*, S. cardiophyllum and S. stoloniferum. By chance or not, the resistance to root-knot nematodes Meloidogyne chitwoodi and M. fallax was also found to be present in S. bulbocastanum, S. cardiophyllum and S. stoloniferum (Janssen et al. 1995). Genes R2, R3, R4 and R6 are also identified in S. stoloniferum (McKee 1962). In addition, R6 was recorded in S. stoloniferum before it was recognized in S. demissum (Black 1960). Recently, the R1 is reported to be present in S. demissum as well as in S. stoloniferum (Gebhardt et al. 2004). S. bulbocastanum and S. cardiophyllum are considered as primitive diploid species in the series Bulbocastana and Pinnatisecta, respectively, distinct from the advanced tetraploid Central American species S. stoloniferum in the series Longipedicellata (Hawkes 1990). The Central American polyploid species from series Demissa and Longipedicellata are thought to have evolved from amphidiploidizations of primitive Mexican ancestors with more advanced South American species (Hosaka et al. 1984; Hawkes 1990; Matsubayashi 1991). The low number of polymorphisms among Rpi-blb1 homologs in S. bulbocastanum, S. cardiophyllum and S. stoloniferum indicates that all these genes from different species may share one common ancestry, and that this gene was already present in the ancestors of the current Solanum gene pool. It also suggests that S. bulbocastanum might be one of the parents of the Mexican polyploid species

S. stoloniferum. This is also supported by the fact that not only *Rpi-blb1* but also the gene cluster members *RGA1-blb* and *RGA3-blb* are conserved in the species (Chapter 4).

Perspectives for resistance breeding

*Rpi-blb*1 confers a resistance against various known *P. infestans* strains (Song et al. 2003; van der Vossen et al. 2003). This suggests that *Rpi-blb*1may have a different molecular mechanism against the late blight pathogen when compared to the other R genes from *S. demissum*. Therefore, *Rpi-blb*1 may provide more durable and effective late blight resistance for potato breeding (Colton et al. 2006). Other homologous R genes (*Rpi-sto1, Rpi-pta1, Rpi-pta2 and Rpi-plt1*) of *Rpi-blb*1 in *S. stoloniferum* (Chapter 4) may also confer broad-spectrum resistance to late blight.

Rpi-blb1 gene was originally The discovered and cloned from S. bulbocastanum (Song et al. 2003; van der Vossen et al. 2003 and 2005), a species that cannot be crossed with the cultivated potato S. tuberosum directly. Our study showed that a functional homolog of *Rpi-blb1* is also present in *S. stoloniferum*, which can be crossed with cultivated potato directly (Jackson and Hanneman 1999), although the crossing efficiency is low. This is supported by the fact that S. stoloniferum (CPC 2093) has been used to breed potato varieties (Hutten and van Berloo 2001). So, the *Rpi-sto1* gene from *S. stoloniferum* should be easier to introduce into cultivated potato than the Rpi-blb1 gene from S. bulbocastanum. In addition, making use of S. bulbocastanum is only possible through a tedious and time-consuming breeding scheme, for example, through bridge crosses (Hermsen and Ramanna 1973) or through somatic hybridization (Helgeson et al. 1998).

As mentioned above, several R genes against late blight and root-knot nematode are present in *S. stoloniferum*. Therefore, extensive screening of *S. stoloniferum* may identify material which confers resistance to other diseases as well. This material can be used for multi-traits resistance breeding in potato.

References

- Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST, a new generation of protein database search programs. Nucleic Acids Res 25: 3389-3402
- Andersson B, Sandstrom M, Stromberg A (1998) Indications of soil borne inoculum of *Phytophthora infestans*. Pot Res 41:305-310
- Bakker E, Butterbach P, Rouppe van der Voort J, van der Vossen E, van Vliet J, Bakker J, Goverse A (2003) Genetic and physical mapping of homologues of the virus resistance gene Rx1 and the cyst nematode resistance gene Gpa2 in potato. Theor Appl Genet 106: 1524-1531
- Ballvora, A, Ercolano MR, Weiss J, Meksem K, Bormann CA, Oberhagemann P, Salamini F, Gebhardt C (2002) The R1 gene for potato resistance to late blight (*Phytophthora infestans*) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant J 30: 361-371
- Barker FK, Lutzoni FM (2002) The utility of the incongruence length difference test. Syst Biol 51: 625-637
- Barone A, Ritter E, Schachtschabel U, Debener T, Salamini F, Gebhardt C (1990) Localization by restriction fragment length polymorphism mapping in potato of a major dominant gene conferring resistance to the potato cyst nematode *Globodera rostochiensis*. Mol Gen Genet 224: 177-182
- Bendahmane A, Kanyuka K, Baulcombe DC (1997) High-resolution genetical and physical mapping of the Rx gene for extreme resistance to potato virus X in tetraploid potato. Theor Appl Genet 95:153-162
- Birch PRJ, Whisson SC (2001) *Phytophthora infestans* enters the genomics era. Mol Plant Pathol 2: 257-263
- Bisognin DA, Douches DS, Buszka L, Bryan G, Wang D (2005) Mapping late blight resistance in *Solanum microdontum* Bitter. Crop Sci 45: 340-345
- Black W (1960) Races of *Phytophthora infestans* and resistance problems in potatoes. Scottish plant breeding station rept: 29-38
- Black W, Mastenbroek C, Mills WR, Peterson LC (1953) A proposal for an international nomenclature of races of *Phytophthora infestans* and of genes controlling immunity in *Solanum demissum* derivatives. Euphytica 2: 173-179
- Bourke A (1993) The visitation of god? The potato and the great Irish famine. Lilliput Press Ltd, Dublin
- Bradshaw JE, Bryan GJ, Lees AK, McLean K, Solomon-Blackburn RM (2005) Mapping the R10 and R11 genes for resistance to late blight (*Phytophthora infestans*) present in the potato (*Solanum tuberosum*) R-gene differentials of Black. Theor Appl Genet 112: 744-751
- Bradshaw JE, Bryan GJ, Ramsay G (2006) Genetic Resources (Including wild and cultivated *Solanum* Species) and progress in their utilisation in potato breeding. Pot Res 49: 49-65
- Bryan GJ, Mcnicoll J, Ramsay G, Meyer RC, De Jong WS (1999) Polymorphic simple sequence repeat markers in chloroplast genomes of Solanaceous plants. Theor Appl Genet 99: 859-867
- Budin KZ (2002) Genetic foci of *Solanum* species, *Petota* Dumort, resistant to *Phytophthora infestans* (Mont.) De Bary. Genetic resources and crop evolution 49: 229-235
- Calenge F, van der Linden CG, van de Weg E, Schouten HJ, van Arkel G, Denance C, Durel CE (2005) Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theor Appl Genet 110: 660-668
- Caromel B, Mugniéry D, Lefebvre V, Andrzejewski S, Ellissèche D, Kerlan MC, Rousselle P, Rousselle-Bourgeois F (2003) Mapping QTLs for resistance against *Globodera pallida* (Stone) Pa2/3 in a diploid potato progeny originating from *Solanum spegazzinii*. Theor Appl Genet 106: 1517-1523

- Celebi-Toprak F, Slack SA, Jahn MM (2002) A new gene, Ny_{tbr}, for hypersensitivity to potato virus Y from *Solanum tuberosum* maps to chromosome IV. Theor Appl Genet 104: 669-674
- Colton LM, Groza HI, Wielgus SM, Jiang J (2006) Marker-assisted selection for the broad-spectrum potato late blight resistance conferred by gene RB derived from a wild potato species. Crop Sci 46: 589-594
- Darlu P, Lecointre G (2002) When does the incongruence length difference test fail? Mol Biol Evol 19: 432-437
- Debener T, Salamini F, Gebhardt C (1990) Phylogeny of wild and cultivated *Solanum* species based on nuclear restriction fragment length polymorphisms (RFLPs). Theor Appl Genet 79: 360-368

DIVA-GIS (http://www.diva-gis.org)

- Drenth A, Janssen EM, Govers F (1995) Formation and survival of oospores of *Phytophthora infestans* under natural conditions. Plant Pathol 44: 86-94
- El-Kharbotly A, Palomino-Sánchez C, Salamini F, Jacobsen E, Gebhardt C (1996) R6 and R7 alleles of potato conferring race-specific resistance to *Phytophthora infestans* (Mont.) de Bary identified genetic loci clustering with the R3 locus on chromosome XI. Theor Appl Genet 92: 880-884
- El-Rabey HA, Badr A, Schafer-Pregl R, Martin W, Salamini F (2002) Speciation and species separation in *Hordeum* L. (Poacease) resolved by discontinuous molecular markers. Plant Boil 4: 567-575
- Ewing EE, Simko I, Smart CD, Bonierbale MW, Mizubuti ESG, May GD, Fry WE (2000) Genetic mapping from field tests of qualitative and quantitative resistance to *Phytophthora infestans* in a population derived from *Solanum tuberosum* and *Solanum berthaultii*. Mol Breed 6: 25-36
- Farris JS, Källersjö M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10: 315-319
- Flier WG, van den Bosch GBM, Turkensteen LJ (2003) Stability of partial resistance in potato cultivars exposed to aggressive strains of *Phytophthora infestans*. Plant Path 52: 326-337
- Fry WE, Goodwin SB, Matuszak JM, Spielman LJ, Milgroom MG (1992) Population genetics and intercontinental migrations of *Phytophthora infestans*. Annu Rev Phytopathol 30: 107-129
- Gaston KJ, Williams PH (1996) Spatial patterns in taxonomic diversity. In: Gaston KJ [eds], biodiversity, a biology of numbers and difference, Blackwell Science, London, pp 202-229
- Gebhardt C, Ballvora A, Walkemeier B, Oberhagemann P, Schüler K (2004) Assessing genetic potential in germplasm collections of crop plants by marker-trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type. Mol Breed 13: 93-102
- Gebhardt C, Mugniéry D, Ritter E, Salamini F, Bonnel E (1993) Identification of RFLP markers closely linked to the H1 gene conferring resistance to *Globodera rostochiensis* in potato. Theor Appl Genet 85: 541-544
- Gebhardt C, Valkonen JP (2001) Organization of genes controlling disease resistance in the potato genome. Annu Rev Phytopathol 39: 79-102
- Ghislain M, Trognitz B, Herrera MR, Solis J, Casallo G, Vásquez C, Hurtado O, Castillo R, Portal L, Orrillo M (2001) Genetic loci associated with field resistance to late blight in offspring of *Solanum phureja* and *S. tuberosum* grown under short-day conditions. Theor Appl Genet 103:433-442
- GILB (2004) Global initiative on late blight, http://www.cipotato.org/gilb/
- Gomez-Alpizar L, Carbone I, Ristaino JB (2007) An Andean origin of *Phytophthora infestans* inferred from mitochondrial and nuclear gene genealogies. Proc Natl Acad Sci USA 104:3306-3311
- Goodwin SB, Spielman LJ, Matuszak JM, Bergeron SN, Fry WE (1992) Clonal diversity and genetic differentiation of *Phytophthora infestans* populations in northern and central Mexico. Phytopathology 82: 955-961

- Graham SW, Kohn JR, Morton BR, Eckenwalder JE, Barrett SCH (1998) Phylogenetic congruence and discordance among one morphological and three molecular data sets from Pontederiaceae. Syst Biol 47: 545-567
- Grunwald NJ, Flier WG (2005) The biology of *Phytophthora infestans at* its center of origin. Annu Rev Phytopathol 43: 171-190
- Grunwald NJ, Flier WG, Sturbaum AK, Garay-Serrano E, van den Bosch TBM (2001) Population structure of *Phytophthora infestans* in the Toluca valley region of Central Mexico. Phytopathology 91: 882-890
- Grunwald NJ, Romero MG, Lozoya SH, Rubio-Covarrubias OA, Fry WE (2002) Potato late blight management in the Toluca valley: field validation of Sim-Cast modified for cultivars with high field resistance. Plant Dis 86: 1163-1168 42
- Grunwald NJ, Rubio-Covarrubias OA, Fry WE (2000) Potato late-blight management in the Toluca valley: forecasts and resistant cultivars. Plant Dis 84: 410-416
- Hämäläinen JH, Watanabe KN, Valkonen JPT, A. Arihara A, Plaisted RL, Pehu E, Miller L, Slack SA (1997) Mapping and marker-assisted selection for a gene for extreme resistance to potato virus Y. Theor Appl Genet 94: 192-197
- Hawkes JG (1990) The Potato, evolution, biodiversity and genetic Resources, Belhaven Press, London
- Helgeson JP, Pohlman JD, Austin S, Haberlach GT, Wielgus SM, Ronis D, Zambolim L, Tooley P, McGrath JM, James RV, Stevenson WR (1998) Somatic hybrids between *Solanum bulbocastanum* and potato: a new source of resistance to late blight. Theor. Appl. Genet. 96: 738-742
- Hermsen JGTh, Ramanna MS (1973) Double-bridge hybrids of *Solanum bulbocastanum* and cultivars of *Solanum tuberosum*. Euphytica 22: 457-466
- Hosaka K, Ogihara Y, Matsubayashi M, Tsunewaki K (1984). Phylogenetic relationship between the tuberous *Solanum* species as revealed by restriction endonuclease analysis of chloroplast DNA. Jap J Genet 59: 349-369
- Howard HW (1970) The genetics of the potato Solarium tuberosum. Logos Press, London
- Huang S, van der Vossen EAG, Kuang H, Vleeshouwers VGAA, Zhang N, Borm TJA, van Eck HJ, Baker B, Jacobsen E, Visser RGF (2005) Comparative genomics enabled the isolation of the *R3a* late blight resistance gene in potato. Plant J 42: 251-261
- Huang S, Vleeshouwers VGAA, Werij JS, Hutten RCB, van Eck HJ, Visser RGF, Jacobsen E (2004) The R3 resistance to *Phytophthora infestans* in potato is conferred by two closely linked R genes with distinct specificities. Mol Plant Microbe Interact 17: 428-435
- Hutten RCB, van Berloo R (2001) An online potato pedigree database. URL: <u>http://www.dpw.wau.nl/pv/query.asp</u>
- Jackson SA, Hanneman REJr (1999) Crossability between cultivated and wild tuber-and non-tuber-bearing *Solanums*. Euphytica 109: 51-67
- Jacobs JME, van Eck HJ, Horsman K, Arens PFP, Verkerk-Bakker B, Jacobsen E, Pereira A, Stiekema WJ (1996) Mapping of resistance to the potato cyst nematode *Globodera rostochiensis* from the wild potato species *Solanum vernei*. Mol Breed 2: 51-60
- Janssen GJW, van Norel A, Verkerk-Bakker B, Janssen R (1995) Resistance to *Meloidogyne* chitwoodi, M. fallax and M. hapla in wild tuber-bearing Solanum spp. Euphytica 92: 287-294
- Kardolus JP (1998) A biosystematic analysis of *Solanum acaule*. PhD thesis. Wageningen Agricultural University, Wageningen, The Netherlands
- Kardolus JP, van Eck HJ, van den Berg RG (1998) The potential of AFLPs in biosystematics, a first application in *Solanum* taxonomy (*Solanaceae*). Plant Syst Evol 210: 87-103
- Kasai K, Morikawa Y, Sorri VA, Valkonen JPT, Gebhardt C, Watanabe KN (2000) Development of SCAR markers to the PVY resistance gene Ry_{adg} based on a common feature of plant disease resistance genes. Genome 43: 1-8
- Kreike CM, de Koning JRA, Vinke JH, van Ooijen JW, Gebhardt C, Stiekema WJ (1993) Mapping of loci involved in quantitatively inherited resistance to the potato cyst-nematode *Globodera rostochiensis* pathotype Ro1. Theor Appl Genet 87: 464-470

- Kruijt M, Kip DJ, Joosten MHAJ, Brandwagt BF, de Wit PJGM (2005) The *Cf-4* and *Cf-9* resistance genes against Cladosporium fulvum are conserved in wild tomato species. Mol Plant Microbe Interact 18: 1011-1021
- Kuang H, Woo SS, Meyers BC, Nevo E, Michelmore RW (2004) Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16: 2870-2894
- Kuhl J, Hanneman R, Havey M (2001) Characterization and mapping of *Rpi1*, a late-blight resistance locus from diploid (1EBN) Mexican *Solanum pinnatisectum* Mol Genet Genomics 265: 977-985
- Leister D (2004) Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends Genet 20:116-122
- Leonards-Schippers C, Gieffers W, Gebhardt C, Salamini F (1992) The *R1* gene conferring racespecific resistance to *Phytophthora infestans* in potato is located on potato chromosome V. Mol Gen Genet 233: 278-283
- Li X, van Eck HJ, Rouppe van der Voort JNAM, Huigen DJ, Stam P, Jacobsen E (1998) Autotetraploids and genetic mapping using common AFLP markers: the *R2* allele conferring resistance to *Phytophthora infestans* mapped on potato chromosome 4. Theor Appl Genet 96: 1121-1128
- Love, SL (1999) Founding clones, major contributing ancestors, and exotic progenitors of prominent North American potato cultivars. Am. J. Potato Res 76: 263-272
- Malcolmson JF, Black W (1966) New R genes in *Solanum demissum* Lindl. and their complementary races of *Phytophthora infestans* (Mont.) de Bary. Euphytica 15: 199-203
- Malosetti M, van der Linden CG, Vosman B, van Eeuwijk FA (2007) A mixed-model approach to association mapping using pedigree information with an illustration of resistance to *Phytophthora infestans* in potato. Genet 175: 879-889
- Marczewski W, Flis B, Syller J, Schäfer-Pregl R, Gebhardt C (2001) A major quantitative trait locus for resistance to Potato leafroll virus is located in a resistance hotspot on potato chromosome XI and is tightly linked to N-gene-like markers. Mol Plant-Microbe Interact 14: 1420-1425
- Marczewski W, Flis B, Syller J, Strzelczyk-Zyta D, Hennig J, Gebhardt C (2004) Two allelic or tightly linked genetic factors at the PLRV.4 locus on potato chromosome XI control resistance to potato leafroll virus accumulation. Theor Appl Genet 109: 1604-1609
- Matsubayashi M (1955) Studies on the species differentiation of the section *Tuberarium* of *Solanum III*. Behavior of meiotic chromosomes in F1 hybrid between *S. longipedicellatum* and *S. schickii* in relation to its parent species. Science Reports of the Hyogo University of Agriculture 2: 25-31
- Matsubayashi M (1991) Phylogenetic relationships in the potato and its related species. In: Tsuchiya T, Gupta PK (eds) Chromosome engineering in plants: genetics, breeding, evolution. Part B. Elsevier, Amsterdam, the Netherlands, pp 93-118
- Mauricio R, Stahl EA, Korves T, Tian D, Kreitman M, Bergelson J. (2003) Natural selection for polymorphism in the disease resistance gene *Rps2* of Arabidopsis thaliana. Genet 163: 735-746
- McKee RK (1962) Identification of R-genes in Solanum stoloniferum. Euphytica 11: 42-46
- Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding Genes in *Arabidopsis*. Plant Cell 15: 809-834
- Meyers BC, Morgante M, Michelmore RW (2002) TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in *Arabidopsis* and other plant genomes. Plant J 32: 77-92
- Meyer RC, Milbourne D, Hackett CA, Bradshaw JE, McNichol JW, Waugh R (1998) Linkage analysis in tetraploid potato and association of markers with quantitative resistance to late blight (*Phytophthora infestans*). Mol Gen Genet 259: 150-160
- Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8: 1113-1130
- Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers

in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88: 9828-9832

- Miller JT, Spooner DM (1999) Collapse of species boundaries in the wild potato *Solanum* brevicaule complex (*Solanaceae*, *S.* sect. *Petota*): molecular data. Plant Syst Evol 214: 103-130
- Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root-knot nematode resistance gene Mi from tomato is a member of the leucine zipper nucleotide binding leucine-rich repeat family of plant genes. Plant Cell 10: 1307-1319
- Monosi B, Wisser R J, Pennill L, Hulbert SH (2004) Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet 109: 1434-1447
- Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15: 473-497
- Naess SK, Bradeen JM, Wielgus SM, Haberlach GT, McGrath JM, Helgeson JP (2000) Resistance to late blight in Solanum bulbocastanum is mapped to chromosome 8. Theor Appl Genet 101: 697-704
- Oberhagemann P, Chatot-Balandras C, Schäfer-Pregl R, Wegener D, Palomino C, Salamini F, Bonnel E, Gebhardt C (1999) A genetic analysis of quantitative resistance to late blight in potato: towards marker-assisted selection. Mol Breed 5: 399-415
- Pan Q, Liu YS, Budai-Hadrian O, Sela M, Carmel-Goren L, Zamir D, Robert Fluhr (2000) comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and arabidopsis. Genetics. 155: 309-322
- Park TH (2005) Identification, characterization and high-resolution mapping of resistance genes to *Phytophthora infestans* in potato. PhD thesis, Agricultural University, Wageningen, The Netherlands
- Park TH, Gros J, Sikkema A, Vleeshouwers VG, Muskens M, Allefs S, Jacobsen E, Visser RG, van der Vossen EA (2005) The late blight resistance locus *Rpi-bib3* from *Solanum bulbocastanum* belongs to a major late blight R gene cluster on chromosome 4 of potato. Mol Plant Microbe Interact 18: 722-729
- Park TH, Vleeshouwers VGAA, Hutten RCB, van Eck HJ, van der Vossen E, Jacobsen E, Visser RGF (2005) High-resolution mapping and analysis of the resistance locus *Rpi-abpt* against *Phytophthora infestans* in potato. Mol Breed 16: 33-43
- Pineda O, Bonierbale MW, Plaisted RL, Brodie BB, Tanksley SD (1993) Identification of RFLP markers linked to the H1 gene conferring resistance to the potato cyst nematode *Globodera rostochiensis*. Genome 36: 152-156
- Raker CM, Spooner DM (2002) Chilean tetraploid cultivated potato, *Solanum tuberosum*, is distinct from the Andean populations: microsatellite data. Crop Sci 42: 1451-1458
- Rauscher GM, Smart CD, Simko I, Bonierbale M, Mayton H, Greenland A., Fry WE (2006) Characterization and mapping of *Rpi-ber*, a novel potato late blight resistance gene from *Solanum berthaultii*. Theor Appl Genet 112: 674-687
- Reeves JC, Chiapparino E, Donini P, Ganal M, Guiard J, Hamrit S, Heckenberger M, Huang XQ, Van Kaauwen M, Kochieva E, Koebner R, Law JR, Lea V, Le Clerc V, van der Lee T, Leigh F, van der Linden G, Malysheva L, Melchinger AE, Orford S, Reif JC, Röder M, Schulman A, Vosman B, Van der Wiel C, Wolf M, Zhang D (2004) Changes over time in the genetic diversity of four major European crops a report from the Gediflux Framework 5 project. In: Proc XVII EUCARPIA General Congress, Genetic Variation for Plant Breeding (Vollmann J, Grausgruber H, and Ruckenbauer P, eds). Tulln, Austria. pp. 3-8
- Richly E, Kurth J, Leister D (2002) Mode of amplification and reorganization of resistance genes during recent arabidopsis thaliana evolution. Mol Biol Evol 19:76-84
- Rieseberg LH (1996) Homology among RAPD fragments in interspecific comparisons. Mol Ecology 5: 99-105
- Ritter E, Debener T, Barone A, Salamini F, Gebhardt C (1991) RFLP mapping on potato chromosomes of two genes controlling extreme resistance to potato virus X (PVX). Mol Gen Genet 227: 81-85

- Rodriguez A and Spooner DM (1997) Chloroplast DNA analysis of *Solanum bulbocastanum* and *S. cardiophyllum*, and evidence for the distinctiveness of *S. cardiophyllum* Subsp. *ehrenbergii* (Sect. *Petota*). Systematic Botany 22: 31-43
- Rohlf FJ (1992) NTSYS-pc, numerical taxonomy and multivariate system. Exeter Publishing, Ltd, New York
- Rose LE, Bittner-Eddy PD, Langley CH, Holub EB, Michelmore RW, Beynon JL. (2004) The maintenance of extreme amino acid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana. Genetics 166: 1517-1527
- Ross H (1979) Wild species and primitive cultivars as ancestors of potato varieties. Proceedings conference broadening genetic base of Crops. Pudoc, Wageningen. pp 237-245
- Ross H (1986) Potato breeding: problems and perspectives. Advances in plant breeding 13. Paul Parey Verlag, Berlin, Germany
- Rouppe van der Voort J, Lindeman W, Folkertsma R, Hutten RCB, Overmars H, van der Vossen E, Jacobsen E, Bakker J (1998) A QTL for broad-spectrum resistance to cyst nematode species (*Globodera spp.*) maps to a resistance gene cluster in potato. Theor. Appl. Genet 96: 654-661
- Rouppe van der Voort J, Wolters P, Folkertsma R, Hutten R, van Zandvoort P, Vinke H, Kanyuka K,Bendahmane A, Jacobsen E, Janssen R, Bakker J (1997b) Mapping of the cyst nematode resistance locus Gpa2 in potato using a strategy based on comigrating AFLP markers. Theor Appl Genet 95: 874-880
- Sanchez GM, Smart CD, Simko I, Bonierbale M, Ewing EE, May G, Greenland A, Fry WE (2000) Identification of two new R-genes to *Phytophthora infestans* from *Solanum berthaultii*. Phytopathology 90:68
- Sandbrink JM, Colon LT, Wolters PJCC, Stiekema WJ (2000) Two related genotypes of *Solanum microdontum* carry different segregating alleles for field resistance to *Phytophthora infestans*. Mol Breed 6: 215-225
- Scanchez MJ and Bradeen JM (2006) Towards efficient isolation of R gene orthogos form multiple genotypes: optimization of long range-PCR. Mol Breed 17: 137-148
- Sliwka J, Jakuczun H, Lebecka R, Marczewski W, Gebhardt C, Zimnoch-Guzowska E (2006) The novel, major locus *Rpi-phu1* for late blight resistance maps to potato chromosome IX and is not correlated with long vegetation period. Theor Appl Genet 113: 685-695
- Smilde WD, Brigneti G, Jagger L, Perkins S, Jones JDG (2005) Solanum mochiquense chromosome IX carries a novel late blight resistance gene Rpi-moc1. Theor Appl Genet 110: 252-258
- Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J (1999) Dynamics of disease resistance polymorphism at the *Rpm1* locus of *Arabidopsis* Nature 400: 667-671
- Stewart CNJ, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques. 14: 748-750
- Sokal RR (1986) Phenetic taxonomy, theory and methods. Annu Rev Ecol Syst 17: 423-442
- Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J (2003) Gene RB cloned from *Solanumbulbocastanum* confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci 100: 9128-9133
- Sonnewald U, Hajirezaei M-R, Biemelt S (2003) Designer tubers for production of novel compounds. Proc BCPC Int Cong Crop Science and Technology I pp 123-132
- Sorri VA, Watanabe KN, Valkonen JPT (1999) Predicted kinase-3a motif of a resistance gene analogue as a unique marker for virus resistance. Theor Appl Genet 99: 164-170
- Spooner DM, Castillo RT (1997) Reexamination of series relationships of South American wild potatoes (*Solanaceae, Solanum S.* sect. *Petota*), evidence from chloroplast DNA restriction site variation. Am J Bot 84: 671-685
- Spooner DM, Hijmans RJ (2001) Potato systematics and germplasm collecting, 1989-2000. Am J Potato Res 78: 237-268
- Spooner DM, Hosaka K (1992) RFLP analysis of the wild potato species, *Solanum acaule* Bitter (*Solanum* sect. *Petota*). Theor Appl Genet 84: 851-858

- Spooner DM, Mclean K, Ramsay G, Waugh R, Bryan GJ (2005a) A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc Natl Acad Sci 102: 14694-14699
- Spooner DM, Peralta IE, Knapp S (2005b) Comparison of AFLPs with other markers for pylogenetic inference in wild tomatoes [Solanum L. section Lycopersicon (Mill.)] Wettst.]. Taxon 54: 43-61
- Spooner DM, Salas A (2006) Structure, biosytematics, and genetic resources. In : Gopal J, Khurana SMP (eds), Handbook of potato production, improvement, and postharvest management. The Haworth Press, Binghamton, New York, pp.17
- Spooner DM, van den Berg RG, Miller JT (2001) Species and series boundaries of *Solanum* series *Longipedicellata* (*Solanaceae*) and phenetically similar species in ser. *Demissa* and ser. *Tuberosa*: implications for a practical taxonomy of sect. *Petota*. Am J Bot 88: 113-130
- Spooner DM, van den Berg RG, Rodrigues A, Bamberg J, Hijmans RJ, Lara-Cabrera, S (2004) Wild Potatoes (*Solanum* Section *Petota*) of North and Central America. Syst Bot Monogr 68: 1-209
- Stewart CNJ, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques. 14: 748-750
- Sukhotu T, Kamijima O, Hosaka K (2004) Nuclear and chloroplast DNA differentiation in Andean potatoes. Genome 47: 46-56
- Swofford DL (2001) PAUP* Phylogenetic analysis using parsimony* and other methods. version 4b10. Sinauer, Sunderland, Massachusetts
- Syed NH, Sorensen AP, Antonise R, van de Wiel C, van der Linden CG, van't Westende W, Hooftman DAP, Nijs HCMD, Flavell AJ (2006) A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers. Theor Appl Genet 112: 517-527
- Tommiska TJ, Hämäläinen JH, Watanabe KN, Valkonen JPT (1998) Mapping of the gene Nx_{phu} that controls hypersensitive resistance to potato virus X in *Solanum phureja* IvP35. Theor Appl Genet 96: 840-843
- Toxopeus HJ (1964) Treasure-digging for blight resistance in potatoes. Euphytica 13: 206-222
- Turkensteen LJ, Flier WG, Wanningen R, Mulder A (2000) Production, survival and infectivity of oospores of *Phytophthora infestans*. Plant Pathol 49:688-696
- Umaerus V (1973) Background paper for the late blight project planning conference of CIP. Report of the late blight planning conference at Mexico (August 1973), CIP, Lima, Peru. pp 22-36
- van den Berg RG, Bryan GJ, del Rio A, Spooner DM (2002) Reduction of species in the wild potato *Solanum* section *Petota* series *Longipedicellata*. AFLP, RAPD and chloroplast SSR data. Theor Appl Genet 105: 1109-1114
- van der Linden CG, Wouters DCAE, Mihalka V, Kochieva EZ, Smulders MJM, Vosman B (2004) Efficient targeting of plant disease resistance loci using NBS profiling. Theor Appl Genet 109: 384-393
- van der Linden CG, Smulders MJM, Vosman B (2005) Motif-directed profiling: a glance at molecular evolution. In: Bakker FT, Chatrou LW, Gravendeel B, Pelser PB (eds) Plant species-level systematics: new perspectives on pattern and process. Regnum Vegetabile 143. ARG Gantner Verlag, Ruggell; Koeltz, Koenigstein, pp 291-303
- van der Vossen E, Sikkema A, Hekkert BL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S (2003) An ancient R gene from the wild potato species *Solanum bulbocastanum* confers broad-spectrum resistance to *Phytophthora infestans* in cultivated potato and tomato. Plant J 36: 867-882
- van der Vossen E, Gros J, Sikkema A, Muskens M, Wouters D, Wolters P, Pereira A, Allefs S (2005) The *Rpi-blb2* gene from *Solanum bulbocastanum* is an *Mi–1* gene homolog conferring broad-spectrum late blight resistance in potato. Plant J 44: 208-222
- Villamon FG, Spooner DM, Orrillo M, Mihovilovich E, Pérez W, Bonierbale M (2005) Late blight resistance linkages in a novel cross of the wild potato species *Solanum paucissectum* (series *Piurana*). Theor Appl Genet 111:1201-1214
- Vleeshouwers VGAA, van Dooijeweert W, Keizer LCP, Sijpkes L, Govers F, Colon LT (1999)

A laboratory assay for *Phytophthora infestans* resistance in various *Solanum* species reflects the field situation. Eur J Plant Pathol 105: 241-250

- Volkov RA, Komarova NY, Panchuk I.I, Hemleben V (2003) Molecular evolution of rDNA external transcribed spacer and phylogeny of sect. *Petota* (genus *Solanum*). Mol Phylogenet Evol 29: 187-202
- Volkov RA, Zanke C, Panchuk II, Hemleben V (2001) Molecular evolution of 5S rDNA of Solanum species (sect. Petota), application for molecular phylogeny and breeding. Theor Appl Genet 103: 1273-1282
- Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP, A new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407-4414
- Yoder AD, Irwin JA, Payseur BA (2001) Failure of the ILD to determine data combinability for slow loris phylogeny. Syst Biol 50: 408-424

	Appen	dix 1 Varieties used in C	Chapter 3	Append	lix 1 continued		Appendi	x 1 continued	
2 Ackar 196 87 Carlia 197 12 Faurina 197 3 Achar 197 68 Carnon 197 13 Febria 197 4 Achara 1970 12 Febria 197 13 Febria 197 5 Achara 1970 12 Febria 197 Febria 198 6 Actar 1970 12 Carnon 1929 17 Febria 193 1 Aubar 1970 12 Carnon 1971 181 <th>A A</th> <th></th> <th>1</th> <th></th> <th></th> <th>Year of release</th> <th></th> <th></th> <th>Year of release</th>	A A		1			Year of release			Year of release
2 Ackat 1976 87 Carkin 1971 12 Favorial 1972 4 Abornal 1979 80 Carkin 1970 13 Febrial 1973 4 Abornal 1979 14 Carkina 1970 15 Febrial 1973 6 Adara 1990 92 Carkina 1970 15 Febrial 1973 5 Akar 1990 92 Carkina 1979 15 Febrial 1974 6 Alara 1970 94 Carkina 1975 158 Febrial 1974 12 Alara 1978 97 Cristin 1973 181 Febrial 1974 13 Alara 1979 101 Carkar 1985 187 Febrial 1975 14 Alara 1970 101 Carkar 1970 197 Febrial 1975 15 Alara 1973				86			171		
4 Adar 199 90 Canaba 197 17.5 Fokan 1982 5 Adarda 197 91 Canaba 1967 17.5 Fokan 1998 6 Adarda 1978 17.8 Fokan 1999 9 Akat 1974 65 Canaba 1997 18.8 1997 18.8 1997 198 10 Ajat 1977 65 Canaba 1983 18.8 Presciont 1984 11 Ajat 1972 68 Canaba 1983 18.8 Presciont 1985 12 Adardinaci Garta 1970 10 Canaba 1983 18.8 Presciont 1985 13 Adardinaci Garta 1970 10 Canaba 1973 1987 1984 1983 198 Prescionta 1983 14 Adaraa 1973 197 1974 Fokaba 1973 1973 1987 1986									
5 Alerta 197 91 Castarova 1976 175 Feska 1998 6 Aleta 1990 92 Catrona 1202 177 Finan 1998 7 Agata 1990 92 Catrona 1209 178 Finan 1998 10 Ajara 1977 92 Castaroba 1981 188 Final 1994 12 Alakaria 1978 92 Christa 1975 188 Final 1997 13 Alakaria 1970 101 Carcora 1986 188 Final 1998 14 Alara 1970 101 Carcora 1986 188 Final 1998 15 Alara 1986 187 Final 1993 193 16 Aranaro 1987 180 Carcora 1983 188 Final 1993 193 17 Alara 1987 116 <	3	Achat	1976	88	Carmona	2000	173	Favorita	1974
6 Acheria 1975 9.2 Catarnia 1963 176 Pieskine 1980 7 Achar 1980 9.3 Catrina 1993 137 Pieskine 1983 10 Ajac 1987 1987 180 Pieskine 1983 11 Ajhar 1992 9.0 Catrina 1981 181 Pieskine 1994 12 Akin 1972 9.0 Catrina 1983 182 Forelac 1977 13 Alkadrin 1972 196 1983 183 Forelac 1976 15 Alkadrin 1970 101 Charan 1986 188 Fraina 1986 16 Andran 1972 102 Catrina 1986 189 Fraina 1986 17 Alarchillascic Gale 1923 103 Catrina 1993 103 Fraina 1986 18 Apha 1923 103 Catrina 1993 103 Catrina 1993 19 Andra 192 104 Catrina 1993 103 Catrina 1993 19 Andra 1970 114 Catrina <t< td=""><td>4</td><td>Admiral</td><td>1999</td><td>89</td><td>Carola</td><td>1979</td><td>174</td><td>Felsina</td><td>1992</td></t<>	4	Admiral	1999	89	Carola	1979	174	Felsina	1992
7 Again 190 92 Carlion 1920 178 File 1986 6 Akia 1944 194 Calinic 1997 178 File 1993 1 Akia 1944 194 1945 1945 1945 1945 1 Akain 1972 95 Calixia 1975 148 Eventor 1999 1 Akainia 1973 02 Calixia 1981 148 Eventor 1995 1 Akainia 1973 1975 Calixia 1973 Filixia 1973 1 Akainia 1973 192 Calixia 1973 1973 1974	5	Adora	1991	90	Casanova	1997	175	Feska	1998
8 Alka 198 99 17 Flace 1993 9 Alka 1977 98 Charka 1997 180 Parata 1995 10 Agin 1977 98 Charka 1987 180 Parata 1995 11 Aladin 1972 08 Clear 1931 181 Parata 1995 13 Aladin 1972 08 Clear 1931 181 Parata 1995 14 Albarox 1996 100 Clina 1983 185 Presch 1995 15 Albarox 1935 104 Clina 1963 193 1931 16 Alcranoz 1935 104 Clina 1952 1931 1931 1931 17 Anades 1937 110 Concarea 1933 197 1933 1932 1933 1933 1932 1933 18 Anades 1937 <td>6</td> <td>Adretta</td> <td>1975</td> <td>91</td> <td>Catarina</td> <td>1966</td> <td>176</td> <td>Festien</td> <td>2000</td>	6	Adretta	1975	91	Catarina	1966	176	Festien	2000
9 Alac. 194 94 Charlow 1955 197 19.4 1955 11 Ajah 1952 62 Charlow 1981 18 19.4 1994 12 Ajah 1957 192 Charlow 1993 193 13 Abbas 1995 190 Charlow 1951 145 Februard 1993 14 Abbas 1993 190 Charlow 1993 185 Februard 1993 15 Abbas 1993 191 Charlow 1993 184 Februard 1994 16 Andrafuse 1925 100 Charlow 1993 184 Februard 1994 1930 13 Andrafuse 1925 100 Charlow 1993 193 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 194	7	Agata	1990	92	Catriona	1920	177	Fianna	1986
10 Ajac 197 95 Charles Downing 1887 180 Portigin 1996 12 Akinin 1978 95 Charlas 1975 182 Portigins 1999 12 Akinin 1978 96 Charlas 1975 182 Portigins 1999 14 Akatinin 1970 101 Cira 1996 185 Price 1993 15 Akatrichsce Gelbe 1922 102 Cira 1996 185 Price 1930 16 Akatrichsce Gelbe 1922 102 Cira 1996 185 Price 1933 12 Anathra 1973 101 Colopatin 1974 193 193 193 12 Anathra 1973 112 Colopatin 1974 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194		Aiko	1989		Celine	1999			1993
11 Ajka 192 96 Charlone Post 181 Hale Posts 193 13 Aladain 1973 98 Ceso 1953 183 Kontel 1979 13 Aladain 1973 197 184 Kontel 1979 14 Albar 1970 101 Cica 1940 184 Kontel 1970 14 Albardibene Gebe 1970 101 Cicatar 1940 184 Field 1980 14 Albardibene Gebe 1972 102 Cicatar 1980 188 Field 1981						1995			
12 Alacim 1978 919 Chavian 1975 182 Fourment 1999 14 Albaria 1993 90 Clean 1981 184 Interment 1985 15 Albaria 1995 100 Clean 1981 184 Interment 1985 16 Albaria 1922 103 Cloapata 1985 188 Finita 1983 18 Alparia 1935 104 Cloapata 1995 189 Pauloria 1935 19 Alwara 1935 104 Cloapata 1935 198 Pauloria 1935 20 Anadry 1972 100 Cloapata 1973 119 Cloapata 1973 21 Anary 1972 110 Concordo 1988 116 Gloapata 1973 22 Anary 1974 113 Concordo 1984 100 Gloapata 1973 23 An	10	Ajax				1887		Florijn	
13 Albadin 1972 98 Cicen 1995 18.4 Forcent 1995 14 Albaros 1996 100 Cinga 1983 18.4 Forcent 1995 15 Albaros 1996 100 Cinga 1983 18.4 Forcent 1995 16 Alcraftinesic Gibe 1923 102 Cinga 1995 118 Fulnoce 1935 17 Albaros 1993 105 Cincia 1902 199 199 199 21 Anadra 1993 100 Ciclea 1993 199 199 199 22 Anadra 1997 110 Conductor 1995 199 190 23 Anadra 1997 110 Conductor 1995 190 110 190 24 Anarch 1997 111 Conductor 1995 190 110 190 25 Anarch 1997 111 Conductor 1995 190 190 25 Anarch 1997 110 Conductor 1995 190 191 26 Anarch 1997 110 Conductor 194		0							
14 Albas 1993 1984 1984 188 Fersor 1995 15 Alberichses Gelbe 1970 101 Circa 1990 188 Fielsander 1993 18 Alpha 1972 101 Cleart 1990 188 Fielsander 1993 18 Alpha 1972 101 Cleart 1990 188 Fielsander 1993 21 Anarby 1972 100 Coleart 1993 1993 1993 22 Anarby 1993 1010 Concorte 1989 198 Gelsa 1993 23 Anarba 1977 111 Concorte 1989 198 Gelsand 1997 24 Anarba 1997 111 Concorte 1989 198 Gelsand 1993 25 Anarba 1997 111 Concorte 1984 198 Genarba 1993 26 Anarba 1990 1									
15 Alcaraia 1990 100 Cingia 1983 1885 Fiesdamér 1990 16 Alcaráia 1992 102 Ciareia 1996 188 Fiela 1998 17 Allerfühlesa Celle 1922 102 Ciareia 1996 188 Fiela 1991 18 Arban 1981 101 Cianas 1932 189 Fiela 1993 12 Anardy 1981 101 Colleans 1933 1912 Fiera 1933 12 Anardy 1984 107 Colleans 1936 1932 Gineke 1933 13 Anbance 1976 110 Concorde 1974 193 Gineke 1932 24 Anara 1977 111 Concorde 1978 197 Gonda 1975 25 Anota 1977 114 Conference 1948 196 Gonda 1975 25 Apolotic 1979 112 Confage Cong 1940 106 Gonda 1975 26 Apolotic 1979 114 Confage Cong 1940 106 Gonda 1975 27 Ap									
16 Alkerfaktos Gelbe 1970 101 Civa 1990 188 Pirkia 1998 18 Alpha 1952 103 Cleoparta 1990 188 Pirkia 1993 18 Alpha 1952 103 Cleoparta 1990 188 Pirkia 1993 19 Alwaria 1972 106 Claura 1993 101 Pirkia 21 Antary 1972 106 Colume 1993 119 Geloka 1993 22 Antary 1996 106 Corpany 1994 193 Gitte 1974 23 Antary 1997 110 Concarcent 1989 196 Gitta 1997 24 Antex 200 Corpany 113 Concarcent 1989 196 Gitta 1997 25 Anota 200 113 Concarcent 1984 200 Genta 1997 25 Anota 1997 113 Concarcent 1984 200 Genta 1997 26 Antaria 1997 113 Concarcent 1984 201 Genta 1997 26 Antaria									
17 Alcridmissa Galise 192 102 Clargara 1990 187 Fuila 1993 18 Alpia Namada 1985 101 Clargara 1993 103 101 Fuila 1993 19 Anadesa 1993 103 Clargara 1993 103 101 Fuerosc 1993 21 Anady 1972 100 Calamata 1993 103 Galiso 1993 23 Anady 1972 100 Calamata 1993 103 Galiso 1993 24 Anany 1972 100 Condenta 1984 1985 196 Golashome 1993 25 Ananosa 1973 111 Condenta 1985 196 Golashome 1993 26 Anata 1974 113 Condenta 1984 198 Golashome 1993 27 Anorosa 1990 113 Bacofary 1994 203 Ganata 1973 28 Anata 1997 113 Condenta 1994 203 Ganata 1973 28 Aria 1993 121 Coniga Condo 1994 204 H					0				
18 Alyan 1925 101 Clognara 1930 188 Finish 1945 20 Anadess 1933 105 Clina 1922 190 Funbole 1933 21 Anady 1933 107 Columb 1931 192 Galabaa 1933 22 Anady 1933 107 Columbo 1936 1933 1933 23 Anady 1933 110 Cocurach 1939 1935 Galabaa 1937 24 Anady 1947 113 Concarvent 1958 1936 1937 25 Anada 1977 114 Concarvent 1938 1937 1936 Goya 2000 23 Anada 1977 114 Condara 1934 203 Goya 2030 23 Anada 1970 116 Condara 1934 204 Hernabaa 1937 3 Anada 1970 11									
19 Alborn 1985 1014 Clinian 1925 189 Punkbore 1934 12 Annaly 1972 106 Cickan 1933 193 Funkbore 1934 12 Annaly 1972 106 Cickan 1933 193 Gelda 1937 13 Anthrace 1996 108 Compageno 1944 1948 Gelda 1937 14 Antes 1972 110 Concodac 1985 1947 Gelda 1937 25 Annabad 1974 113 Condac 1985 1947 Gelda Wolder 1996 24 Anata 1977 113 Condac 1934 200 Genda 1973 197 35 Androtit 1979 115 Condac 1934 203 Genda 1973 198 204 Heathar 1997 35 Ante 1997 115 Conige Denata 1938 194 Heathar									
12 Annules 1995 101's 101's 1902 190 Pathonelles 1930 21 Annuly 1963 107 Colano 1975 192 Cicit. 1930 23 Anbiace 1972 106 Compagnon 1974 194 Citt. 1973 24 Anares 1972 106 Compagnon 1974 194 Citt. 1973 25 Anares 1973 113 Conder 1988 197 Citt. 1973 26 Anares 1974 113 Conder 1988 199 Conder 1990 27 Anora 1975 114 Conference 1948 199 Corano 1991 137 Anora 1975 134 Anora 1970 117 Cosina 1994 201 Granica 1993 25 Anglio 1972 113 Conarge 1984 203 Haina 1993									
12 Analyi 1972 106 Collean 1993 191 Function 1973 23 Anabiance 1966 108 Columbus 1996 193 Giula 1997 23 Annex 1972 100 Concorde 1989 195 Giulatono 1937 24 Annexoa 2000 111 Concorde 1989 195 Golatono 1993 25 Annexoa 2000 112 Condexoa 1937 197 Golatonona 1973 26 Annexoa 2000 113 Condexoa 1937 197 197 197 197 197 197 197 197 197 197 197 198 201 Granta Conde 1993 35 Aria 1977 118 Corarge Condexoa 1988 204 Harmacoa 1993 36 Ariada 1997 118 Corarge Condexoa 1998 204 Harmacoa 1993 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
12 Ambinec 1965 107 Colmo 1975 192 Colum 1975 192 Colum 1974 194 Citte 1973 24 Amtion 1973 110 Concurrent 1984 194 Citte 1932 25 Amtion 1973 111 Concurrent 1985 196 Ciolathone 1973 26 Annabel 1974 113 Confor 1937 198 Colum 1973 27 Amocrosa 2000 112 Confor 1937 198 Confard 1973 28 Anglinet 1971 114 Confor 1937 197 1970 116 Contage 1994 203 Hana 1971 23 Applicit 1970 117 Costage 1982 Anti 1973 140 Harmony 1979 25 Aria 1973 120 Cruiz Conson 1974 140 Harmony 197									
23 Anchance 1996 193 Concel 1994 193 Concel 1947 25 Annics 1977 110 Concorde 1989 195 Cilciton 1937 25 Annicsa 2000 112 Condard 1938 197 Cisken Worder 1903 26 Annicsa 1971 114 Condernee 1948 199 Cisken Worder 1900 28 Annish 1977 114 Condernee 1948 199 Cirauta 1935 30 Anya 1966 115 Bite Congo unknown 200 Cinauta 1935 31 Aptholite 1970 117 Contrage Defance 1988 204 Harmony 1973 35 Aria 1975 120 Craige Defance 1984 204 Harmony 1975 36 Aria 1975 120 Craige Royal 1947 206 Heicle 1976		•							
12 Amex 1972 109 Comparison 1974 194 Gite is is is is is it is it is it is it is is it is is it is		•							
25 Amigo 1973 110 Concruct 1985 1986 Gloria 1997 25 Amorosa 2000 112 Condea 1985 1976 Gloria 1997 27 Amorosa 2000 112 Condea 1985 1976 Gloria 1906 28 Amabel 1974 113 Condea 1984 199 Gandola 1975 30 Arya 1996 116 Corrage 1984 200 Gracta 1975 31 Aptinchi 1997 116 Corrage forma 1994 201 Branca 1995 34 Artenta 1995 123 Corrage forma 1994 201 Harmory 1995 35 Artan 1995 123 Red Craige Royal 1995 208 Helena 1996 36 Artan 1995 124 Carage Royal 1995 214 Hydra 1996 37									
25 Amoroa 1973 111 Concurrent 1985 196 Glohan Wondex 1996 28 Anashel 1974 113 Condor 1937 1986 Gyoyancz 2000 28 Anashel 1977 114 Conference 1937 1986 Gyoyancz 2000 31 Aptrodice 1990 116 Coraco 1934 201 Gratal 1935 31 Apolic 1970 117 Cosima 1939 203 Hamoro 1937 34 Ardentia 1997 110 Corage Definice 1938 204 Hamoro 1936 35 Ari 1937 122 Craige Definice 1938 204 Heala 1946 36 Arinal 1937 123 Craige Definit 1947 208 Heala 1946 37 Arias 1939 123 Craige Definit 1947 214 Herbia 1946									
22 Anabela 1974 112 Condex 1988 1976 Goky Monder 1906 25 Anasta 1977 114 Conderence 1948 199 Granola 1973 30 Arya 1996 115 Blue Congo unknown 200 Granola 1973 31 Aptirodite 1990 116 Cornado 1994 201 Granta 1975 31 Aptirodita 1970 117 Cosima 1994 203 Harsa 1991 32 Apolito 1977 120 Craige Definace 1938 203 Harsa 1993 35 Aria 1995 120 Craige Definace 1934 Ariata 1996 121 Craige Definace 1938 Ariata 1996 123 Red Craige Royal 1995 208 Heclena 1991 34 Arana Samare 1927 126 Copiad 1995 211 Hordra 1969 <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		•							
28 Anambel 1974 113 Condor 1937 1948 1996 Grandifolin 1973 30 Apyroa 1996 115 Blue Congo unknown 200 Grandi of 1975 31 Approfine 1990 116 Coriano 1994 201 Granda 1975 31 Applo 1970 117 Cosima 1994 203 Feats Sort 1971 34 Ardenta 1997 112 Coriage Evolution 1984 204 Harnony 1999 35 Ari 1957 120 Craige Evolution 1947 206 Heida 1946 36 Artanda 1959 122 Craige Evolution 1955 208 Herale 1956 37 Artanda 1956 124 Cupicion 1995 210 Herale 1956 38 Artan Chief 1911 127 Daresa 1995 211 Herale 1996 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
29 Anosta 1976 114 Conference 1948 1996 Granola 1973 30 Applrodite 1990 116 Structory 1994 201 Granola 1973 31 Applrodite 1990 116 Corrando 1994 201 Granola 1995 32 Apolla 1970 117 Cosimo 1994 203 Harnany 1997 35 Arinda 1997 120 Craige Definece 1938 204 Harnany 1993 36 Arinda 1993 122 Craige Royal 1947 206 Heida 1996 37 Arinda 1995 123 Red Craige Royal 1995 208 Heida 1991 38 Aria 1995 124 Capido 1995 211 Heida 1996 39 Arina Piori 1932 Barvina 1995 211 Hochan 1996 4 Arana									
30 Aphychice 1996 115 Blue Congo unknown 200 Granda 1975 31 Apholio 1970 117 Cosina 1994 201 Granda 1975 32 Apolio 1970 117 Cosina 1994 203 Hamaon 1975 33 Ardenta 1997 119 Corarge DeFance 1938 204 Harmony 1993 35 Arinda 1957 121 Craige Evolat 1947 206 Heida 1946 36 Arinda 1956 122 Craige Bouny unknown 200 Heida 1946 37 Arista 1965 123 Red Craige Royal 1955 208 Hermas 1951 38 Artan 1976 125 Craige Bouny unknown 201 Hermas 1976 41 Arma Banner 1927 124 Hyda 1976 121 Horda 1978 42 Arran Chief 1911 127 Darisa 1977 214 Hyda<								•	
31 Appincitie 1990 116 Cornado 1994 201 Grata 1995 32 Apolina 1942 118 Coranso 1994 203 Hansa 1997 33 Andenta 1997 120 Craige Explance 1938 204 Hansa 1997 35 Aria 1997 120 Craige Royal 1947 206 Heather 1993 36 Ariato 1993 122 Craige Royal 1947 206 Heather 1994 37 Ariato 1995 128 Heather 1996 194 407 194 38 Arka 1995 124 Heachas 1995 124 Heachas 1996 30 Artan Binner 1927 125 Cyclon 1996 214 Heydra 1946 40 Arrana Genet 1936 128 Darvina 1981 214 Hydra 1946 41 Arran Foria 1930 130 Darvina 1997 214 Hydra 1949									
32 Aquin 1970 117 Cosima 1995 202 Great Soct 1917 33 Aquina 1942 118 Cosmos 1994 204 Hamony 1997 34 Ardena 1997 119 Craige Royal 1948 204 Hamony 1993 35 Aria 1995 122 Craige Royal 1947 206 Heida 1946 36 Ariada 1996 123 Craige Stourty miknown 197 Heida 1946 37 Ariada 1996 125 Cyclson 1995 208 Herena 1996 38 Ariada 1996 125 Cyclson 1996 211 Herena 1978 40 Arran Chief 1911 127 Daria 1987 214 Herena 1943 414 Arran Denk 1935 129 Daria 1957 214 Hore Graid 1943 454 Arran Chief 1911 125 Daria 1957 144 Hore Graid <td< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		•							
33Arkquin1942118Cosmos1994203Harmaon195734Arkuta1957120Craige Defance1938205Heather193935Arind1957120Craige Royal1947206Heida194637Aristo1995122Craige Royal1947206Heida195438Arka1955124Craige Royal1955208Helena199139Arkula1975124Cupido1995210Hercuelse198640Armada1996125Cycloon1995211Hercuelse198641Arran Banner1927126Dairsia1995211Hercuelse194642Arran Conet1956128Darvina1981214Hydra194143Arran Peak1935129Darura1957124Hydra194844Arran Piot130130Depesche1942215Hola198945Arran Victory1918131Deśriche1952216Ingral198946Arran Victory1918131Deśriche1960196019611989124Hara194747Autarica1971132Deva1942126Indra19891879187948Atca1971132Deva1949120Indra195918									
34Ardenta197110Corage1988204Harmony199335Arinda1993121Craige Evolat1947206Heida194636Arinda1993121Craige Evolat1947206Heida194637Aristo1993121Craige Royal1955208Helena199638Arka1965123Red Craige Royal1955208Hernes197639Arkula1975124Craige Royal1995201Hernes197641Arran Baner1996125Cycloon1996211Hernes198042Arran Chief1911127Darsa1996212Hodpmzenige194344Arran Conet1955128Darvina1957214Hydra196945Arran Pilot1933130Depesche1942215Iode198946Arran Victory1918131Desicié1962216Ingala198947Astoria1971133Dananat1982218Iodarie199951Auk1962135Dirta1989220International Kidney187352Aurora1973137Donald1996223International Kidney187353Auta1973137Donald1996223Isabell197454Avalanc		*			Cosmos				
35 Aria 1957 120 Craige Eval 1947 206 Heida 1946 36 Aristo 1959 122 Craige Royal 1955 208 Helena 1946 37 Aristo 1959 128 Carlois Royal 1955 208 Helena 1941 38 Arka 1975 124 Carlois Carlois Royal 1995 208 Herna 1996 39 Arkula 1975 124 Carlois Carlois Royal 1995 201 Hernika 1973 41 Arran Chef 1911 127 Darsa 1969 212 Hochprozentige 1946 42 Arran Chef 1911 127 Darsa 1957 214 Hocha 1949 43 Arran Chef 1913 128 Darwina 1957 214 Hocha 1949 44 Arran Victory 1918 131 Desche 1942 131 India 1949 45 Arato Victory 1918 133 Dareat 1989 221		-							
36 Arinda 1993 12 Craige Royal 1947 206 Heida 1946 37 Arisa 1965 123 Craiges Royal 1955 208 Helena 1964 38 Arka 1965 124 Capitolo 1995 208 Helena 1991 34 Arran Banner 1996 125 Cycloon 1996 210 Hermes 1973 41 Arran Chief 1911 127 Dartsa 1969 211 Hochpozentige 1944 42 Arran Chief 1911 127 Dartsa 1981 211 Hochpozentige 1944 43 Arran Piot 1930 130 Depesche 1942 215 Iolea 1989 44 Artan Victory 1918 Daita 1953 218 Hodustrie 1990 50 Auk 1976 134 Disco 1993 218 Industrie 1990 47 Astoria 1976 134 Disco 1993 218 Industrie 1990 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>								-	
37 Aristo 1999 122 Craigs Royal unknown 207 Hela 1994 38 Arka 1975 124 Copido 1995 208 Heraules 1996 39 Arkula 1975 124 Copido 1995 201 Herna 1991 41 Arran Banner 1977 126 Dati 1995 211 Herdus 1981 42 Arran Comet 1955 128 Darwina 1997 214 Hydra 1946 44 Arran Pola 1955 129 Datura 1957 214 Hydra 1946 45 Arran Victory 1918 131 Descrit 1942 215 Holo 1949 44 Atica 1971 133 Descrit 1942 215 Industrie 1949 45 Atai 1992 135 Data 1989 220 International Kindry 1873 46 Ataine 1974 135 Data 1989 221 Interational Kindry					•				
38 Arka 1965 128 Cupido 1955 208 Helena 1991 9 Arkua 1975 124 Cupido 1995 209 Hercules 1986 40 Arran Bamer 1971 125 Datia 1995 211 Hercules 1973 41 Arran Comet 1956 128 Darwan 1970 214 Hydra 1946 43 Arran Peak 1933 129 Datura 1971 214 Hydra 1949 44 Arran Victory 1918 131 Deferice 1942 215 Idoite 1989 47 Astoria 1977 134 Disco 1933 218 Industrie 1980 48 Ataca 1971 133 Diamant 1982 221 Incernational Kidney 1879 51 Aula 1974 133 Donald 1996 221 Incernational Kidney 1979 52<	37	Aristo	1959		• •			Hela	1964
40 Armada 1996 125 Cycloon 1996 210 Hernas 1973 41 Arran Chief 1911 127 Darisa 1969 212 Herhan 1948 42 Arran Comet 1956 128 Darwina 1981 212 Hochprozentige 1943 44 Arran Peak 1930 130 Depesche 1942 215 Idole 1989 47 Astoria 1997 132 Deva 1940 217 Indrac 1989 48 Atica 1971 133 Diamant 1982 218 Industric 1999 51 Aula 1973 137 Donald 1996 221 Irregrad 1940 52 Aurora 1973 137 Donald 1996 223 Isabell 1971 53 Ausonia 1989 139 Doneta 1986 224 Isabell 1976 54 Au	38	Arka	1965	123	• •		208	Helena	1991
41 Aran Bamer 1927 126 Dati 1995 211 Herda 1986 42 Aran Conet 1956 128 Darwina 1981 213 Hodprozenige 1943 43 Aran Peak 1935 129 Darwina 1981 213 Hodprox 1943 44 Aran Victory 1918 131 Depesche 1942 214 Hydra 1989 45 Aran Victory 1918 131 Desirée 1942 215 Induita 1981 44 Atica 1971 132 Deva 1942 218 Induitrie 1981 44 Atica 1971 133 Diamant 1982 218 Induitrie 1989 54 Auk 1992 135 Diata 1989 220 Interational Kidney 1879 55 Auror 1987 140 Donafa 1989 224 Isaa 1969 55 Avanit 1973 140 Dorafor 1949 142 Drafo 194	39	Arkula	1975	124	Cupido	1995	209	Hercules	1986
42 Arran Chief 1911 127 Daresa 1969 212 Bochprozenige 1943 43 Arran Peak 1935 129 Darura 1957 214 Hydra 1969 44 Arran Peak 1930 130 Depesche 1942 215 Idore 1989 45 Arran Victory 1918 131 Desiref 1962 216 Impala 1989 47 Astoria 1977 132 Deva 1940 217 Indra 1981 48 Aica 1971 133 Diamant 1982 218 Industrie 1990 49 Aldantic 1976 134 Diaca 1997 221 International Kidney 1879 51 Aula 1974 136 Divina 1997 223 Isabell 1974 53 Ausonia 1984 138 Donella 1989 224 Isaa 1969 54 Avatin 1973 140 Doro Star 1926 235 Isard	40	Armada		125			210	Hermes	
44 Arran Comet 1956 128 Darwina 1981 213 Home Conduct 1943 44 Arran Peak 1935 129 Darwina 1957 214 Hydra 1969 45 Arran Pilot 1930 130 Depesche 1942 215 Idole 1989 46 Arran Victory 1918 131 Désirée 1962 216 Inpala 1989 47 Astoria 1971 133 Diamant 1982 218 Industrie 1999 40 Antantic 1976 134 Disco 1993 219 Inova 1999 50 Auka 1973 137 Donald 1996 222 Irregard 1960 53 Ausoria 1973 140 Donstar 1926 225 Japalitine 1969 54 Avatanche 1989 140 Dorado unknown 226 Japalitine 1969 55 Avatan 1973 140 Dorado Unknown 228 Japalitine </td <td>41</td> <td>Arran Banner</td> <td>1927</td> <td>126</td> <td>Dali</td> <td>1995</td> <td>211</td> <td>Hertha</td> <td>1980</td>	41	Arran Banner	1927	126	Dali	1995	211	Hertha	1980
44 Aran Peak 1935 129 Datura 1957 214 Hydra 1969 45 Aran Victory 1918 131 Depesche 1942 215 Ikole 1989 47 Astoria 1997 132 Deva 1940 217 Indira 1981 48 Atica 1971 133 Diamant 1982 218 Industrie 1990 49 Atlantic 1976 134 Disco 1993 219 Inova 1990 51 Auk 1992 135 Ditta 1989 220 International Kinney 1960 52 Aurora 1973 137 Donatta 1989 224 Isna 1969 53 Avanit 1973 140 Donofta 1926 225 Jaerla 1969 54 Avarit 1973 H40 Donofta 1947 223 Jaueine 1969 55 Avarit 1973 H40 Dord unknown 226 Jaueine 1969	42	Arran Chief	1911	127	Daresa	1969	212	Hochprozentige	1946
45 Arran Pilot 1930 130 Depsche 1942 215 Idoic 1989 46 Arran Victory 1918 131 Désirée 1962 216 Impala 1989 47 Astoria 1997 132 Deva 1940 217 Indira 1981 48 Atica 1971 133 Diamant 1982 218 Industrie 1909 50 Auk 1992 135 Ditta 1989 220 Incrnational Kidney 1879 51 Aula 1974 136 Divina 1997 221 Ircnc 1953 52 Aurora 1973 137 Donella 1989 224 Isabell 1974 54 Avatatche 1989 139 Donetta 1989 224 Isabell 1969 55 Avatit 1973 140 Dorá 1947 225 Jaceta 1969 56 Avatit 1973 140 Dorá 1947 223 Juoia 1990	43	Arran Comet	1956	128	Darwina	1981	213	Home Guard	1943
46 Aran Victory 1918 131 Déxirée 1962 216 Impala 1981 47 Astoria 1997 132 Deva 1940 217 Indira 1981 48 Atica 1971 133 Diamant 1982 218 Indurstrie 1990 49 Atlantic 1976 134 Disco 1993 219 International Kinhey 1989 51 Aula 1974 136 Divina 1997 221 International Kinhey 1950 52 Auron 1973 137 Donald 1996 223 Isabell 1974 53 Ausonia 1984 138 Donella 1989 223 Isabell 1974 54 Avaliache 1989 139 Donetla 1989 224 Isna 1969 55 Avanit 1973 140 Dorado unknown 226 Jackeine 1969 56 Avenir 1994 142 Draf 1947 223 Juriot <td< td=""><td>44</td><td>Arran Peak</td><td>1935</td><td>129</td><td>Datura</td><td>1957</td><td>214</td><td>Hydra</td><td>1969</td></td<>	44	Arran Peak	1935	129	Datura	1957	214	Hydra	1969
47 Astoria 1997 132 Deva 1940 217 Industrie 1981 48 Atica 1971 133 Diamant 1982 218 Industrie 1990 44 Atlantic 1976 134 Disco 1993 210 International Kidney 1879 50 Auk 1992 135 Ditta 1989 220 International Kidney 1879 51 Aula 1974 136 Divina 1997 221 Irene 1953 52 Aurora 1973 137 Donald 1996 222 Irrational Kidney 1974 54 Avalanche 1989 139 Donetla 1989 223 Isabell 1960 55 Avani 1973 140 Donof Star 1926 225 Jaeta 1969 56 Avenir 1957 141 Drakonsh 1944 223 Jaeta 1969 57 Aziza 1994 142 Drof 1947 233 Javena 1	45	Arran Pilot	1930	130	Depesche	1942	215	Idole	1989
48Aica1971133Diamant1982218Industrie190049Atlantic1976134Disco1993219Intova199951Aula1974136Divina1989221International Kichney187951Aula1974136Divina1996221Irene195352Aurora1973137Donald1989223Isabell197454Avalanche1984138Donella1989223Isabell197455Avanti1973140Don Star1926223Jacelia196956Avenir1957141Doradourknow220Jaqueline199657Aziza1994142Doré1947227Jeta196958Ballade1998144Drag1969230Juerena199759Barima1953146Drag1969230Juerena199660Barima1993146Drag1976230Juerena199661Barna1993146Drag1986233Karafer199662Belladona1997148Dumbar Standard1936233Karafer199663Benno Vrizo1994148Dumbar Standard1936233Karafer199664Berber1990165Edipse <t< td=""><td></td><td>Arran Victory</td><td></td><td></td><td></td><td>1962</td><td></td><td></td><td>1989</td></t<>		Arran Victory				1962			1989
49Atlantic1976134Disco1993219Inova199950Auk1992135Ditta1983220International Kidney187951Aula1973137Donald1997221Irene195352Aurora1973137Donald1996222Insacl196053Ansonia1984138Donelta1989223Isabell197454Avalanche1989139Donetta1982224Isna196955Avanti1973140Dora Star1926225Jaerla196966Avenir19957141Doradounknown226Jaqueline199657Aziza1994142Dorá1947227Jeta197658Ballade1998143Drafon1947228Jubel190060Barima1983144Draga1969229Junior199061Barma1993146Drop1976230Juvena199763Benovizo1994148Dunbar Rover1936232Karatop199664Berber1990149Dundrod1987234Kardent198765Beteka1942150Eba1966235Karden198766Bevelander1992153Ersteling1974237		Astoria							
50 Auk 1992 135 Ditta 1989 220 International Kidney 1879 51 Autora 1974 136 Divina 1997 221 Irene 1950 52 Aurora 1973 137 Donald 1996 222 Irgard 1950 53 Avania 1984 138 Donella 1989 224 Isna 1969 54 Avania 1973 140 Dorado unknown 226 Jaerla 1969 56 Avenir 1957 141 Dorado unkown 26 Jagueline 1967 57 Aziza 1994 142 Doré 1947 227 Jetta 1967 58 Ballade 1988 143 Drafato 1944 228 Jubel 1908 61 Barma 1953 145 Dragton 1976 230 Juvena 1997 61 Barma 1993 146 Dropa 1986 231 Karatker 1996	48	Atica	1971	133	Diamant	1982	218	Industrie	1900
51 Aula 1974 136 Divina 1997 221 Irene 1953 52 Aurona 1973 137 Donald 1996 222 Irmgard 1960 3 Ausonia 1984 138 Donella 1989 223 Isabell 1974 54 Avalanche 1989 130 Donetta 1989 223 Isabell 1974 55 Avani 1973 140 Door Star 1926 225 Jaerla 1969 56 Avenir 1957 141 Dorado unknown 226 Jagueline 1996 57 Aziza 1994 142 Dord 1947 227 Jeta 1960 58 Ballade 1998 143 Drdgaton 1976 230 Jurena 1990 68 Banoral 1993 146 Drop 1998 231 Karler 1996 61 Barima 1997 147 Dunbar Rover 1936 232 Karator 1996 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>									
52 Aurora 1973 137 Donald 1996 222 Irmgard 1960 53 Ausonia 1984 138 Donella 1989 223 Isabell 1974 54 Avalanche 1989 139 Donetta 1989 224 Isna 1969 55 Avanti 1973 140 Doors Star 1926 225 Jaerla 1969 56 Avenir 1957 141 Dorado unknown 226 Jaqueline 1996 57 Aziza 1994 142 Doré 1947 227 Jetta 1967 58 Balmoral 1998 143 Dr McIntosh 1944 228 Jubel 1900 60 Barima 1953 145 Drayton 1976 230 Juvena 1997 61 Barlao 1993 144 Draga 1936 233 Kardent 1996 62 Belladona 1997 147 Dunbar Kover 1936 233 Kardent 1996 <								-	
53 Ausonia 1984 138 Donella 1989 223 Isabell 1974 54 Avalanche 1989 139 Donetta 1989 224 Isna 1969 55 Avanti 1973 140 Door Star 1926 225 Jaerla 1969 56 Avenir 1957 141 Dorado unknown 226 Jaqueline 1996 57 Aziza 1994 142 Doré 1947 227 Jetta 1967 58 Ballade 1998 143 Dr McIntosh 1944 228 Jubel 1908 59 Balmoral 1989 144 Draga 1969 230 Juvena 1990 60 Barima 1993 146 Drop P 1998 231 Karjer 1996 61 Barna 1997 147 Dunbar Rover 1936 233 Karatop 1990 62 Beladona 1997 148 Dunbardord 1987 234 Karater 1986									
54Avalanche1989139Donetta1989224Isna196955Avanti1973140Doon Star1926225Jaerla196956Avenir1973140Doradounknown226Jaqueline199657Aziza1994142Dorádo1947227Jetta196758Ballade1998143Dr McIntosh1944228Jubel190859Balmoral1983144Draga1969230Juvena199761Barna1993146Drop1998231Kanjer199663Benno Vrizo1994148Dunbar Standard1936232Karatop199664Berber1990149Dundrod1987234Kardent199665Beteka1942150Eba1946235Karida198766Revelander1925151Eclipse1940236Karlena198867Binije1910152Edzina1974237Karnico198768Blanka1972153Eersteling1900238Karlen199370Bodenkraft1963155Elhud1967240Katinka199871Bolesta1993158Elvira1981243Kestel190773Bonaza1993158Elvira19									
55Avanti1973140Doon Star1926225Jaerla196956Avenir1957141Doradounknown226Jaqueline199657Aziza1994142Dorádo1947227Jetta196758Ballade1998143Dr McIntosh1944228Jubel190859Balmoral1983144Draga1969229Junior199060Barima1953145Drayton1976230Juvena199761Barna1993146Drop1998231Kanjer199662Belladona1997147Dunbar Rover1936233Karatker199663Beno Vrizo1994148Dunbar Standard1936233Karatker199664Berber1990149Dundrod1987234Kardent199665Beteka1942150Eba1966235Karida198766Bevelander1925151Eclipse1940236Karlena198867Binije1910152Edzina1974237Karaida199368Blanka1972153Eclipse1940236Karlena198370Bodenkraft1963155Ehud1967240Katinka199371Bolas1997158Element									
56 Avenir 1957 141 Dorado unknown 226 Jaqueline 1996 57 Aziza 1994 142 Doré 1947 227 Jetta 1967 58 Ballade 1998 143 Dr McIntosh 1944 228 Jubel 1908 59 Balmoral 1989 144 Draga 1969 229 Junior 1990 60 Barima 1953 145 Drayton 1976 230 Juvena 1997 61 Barna 1997 147 Dunbar Rover 1936 232 Karatter 1996 63 Beno Vrizo 1994 148 Dunbar Standard 1936 233 Karater 1990 64 Berber 1990 149 Dundrod 1987 234 Kardent 1996 65 Beteka 1942 150 Eba 1966 235 Karida 1987 66 Bevelander 1925 151 Eclipse 1940 236 Karida 1987									
57 Aziza 1994 142 Doré 1947 227 Jetta 1967 58 Ballade 1998 143 Dr McIntosh 1944 228 Jubel 1909 60 Barima 1989 144 Draga 1969 229 Junior 1990 60 Barima 1953 145 Drayton 1976 230 Juvena 1997 61 Barna 1993 146 Drop 1998 231 Kanjer 1996 62 Belladona 1997 147 Dunbar Standard 1936 232 Karakter 1996 63 Benno Vrizo 1994 148 Dunbar Standard 1936 233 Karatop 1990 64 Berber 1990 149 Dunbar Standard 1936 235 Karida 1987 65 Beteka 1942 150 Edipse 1940 236 Karieta 1987 66 Bernher 1925 151 Eclipse 1940 236 Karieta 1983									
58 Ballade 1998 143 Dr McIntosh 1944 228 Jubel 1908 59 Balmoral 1989 144 Dragton 1969 229 Junior 1990 60 Barma 1953 145 Drayton 1976 230 Juvena 1997 61 Barna 1993 146 Drop 1998 231 Kanjer 1996 62 Belladona 1997 147 Dunbar Standard 1936 233 Karatop 1990 63 Bento Vrizo 1994 148 Dundrod 1987 234 Kardent 1990 64 Berber 1990 149 Dundrod 1987 234 Kardent 1987 65 Beteka 1942 150 Eba 1966 235 Karida 1987 66 Birlije 1910 152 Edzina 1974 237 Karnea 1987 67 Binka 1972 153 Eersteling 1900 238 Kartel 1993 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>								-	
59Balmoral1989144Draga1969229Junior199060Barima1953145Drayton1976230Juvena199761Barna1993146Drop1998231Kanjer199662Belladona1997147Dunbar Rover1936232Karater199663Benno Vrizo1994148Dunbar Standard1936233Karatop199064Berber1990149Dundrod1987234Kardent199665Beteka1942150Eba1966235Kariden198766Bevelander1925151Eclipse1940236Karlena198867Binje1910152Edzina1974237Karnico198768Blanwa Eigenheimer1907154Rode Eersteling1900238Kartel199370Bodenkraft1963155Ehud1967240Katinka199371Bolesta1995156Element1969241Kenrebec196372Bona1944157Elkana1978242Kers' Fink190773Bonaparte1987158Elvira1978244King edward190274Bonaparte1987159Empire1989244King edward190275Bright1988 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
60 Barima 1953 145 Drayton 1976 230 Juvena 1997 61 Barna 1993 146 Drop 1998 231 Kanjer 1996 62 Belladona 1997 147 Dunbar Rover 1936 232 Karatop 1990 63 Benno Vrizo 1994 148 Dunbar Standard 1936 233 Karatop 1990 64 Berber 1990 149 Dundrod 1987 234 Kardent 1996 65 Beteka 1942 150 Eba 1966 235 Kardent 1987 66 Bevelander 1925 151 Eclipse 1940 236 Kardena 1987 67 Binije 1910 152 Edzina 1974 237 Kardia 1983 68 Blanka 1972 153 Erstelling 1900 238 Kartel 1993 70 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
61 Barna 1993 146 Drop 1998 231 Kanjer 1996 62 Belladona 1997 147 Dunbar Rover 1936 232 Karakter 1996 63 Bento Vrizo 1994 148 Dunbar Standard 1936 233 Karatop 1990 64 Berber 1990 149 Dundrod 1987 234 Kardent 1996 65 Beteka 1942 150 Eba 1966 235 Karida 1987 66 Bevelander 1925 151 Eclipse 1940 236 Karlena 1988 67 Bintje 1910 152 Edzina 1974 237 Karida 1993 68 Blanka 1972 153 Eersteling 1900 238 Kartel 1993 70 Bodenkraft 1963 155 Ehud 1967 240 Katinka 1998 71 Bolas 1995 156 Element 1969 241 Kerineka 1907 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
62 Belladona 1997 147 Dunbar Rover 1936 232 Karakter 1996 63 Benno Vrizo 1994 148 Dunbar Standard 1936 233 Karatop 1990 64 Berber 1990 149 Dundrod 1987 234 Kardent 1996 65 Berka 1942 150 Eba 1966 235 Karlena 1987 66 Bevelander 1925 151 Eclipse 1940 236 Karlena 1988 67 Bintje 1910 152 Edzina 1974 237 Karnico 1987 68 Blanka 1972 153 Eersteling 1900 238 Kartel 1993 69 Blauwe Eigenheimer 1907 154 Rode Eersteling 1925 239 Katanka 1993 70 Bodenkraft 1965 156 Element 1969 241 Kennebec 1963 71 Bolesta 1993 158 Elvira 1981 243									
63 Benno Vrizo 1994 148 Dunbar Standard 1936 233 Karatop 1990 64 Berber 1990 149 Dundrod 1987 234 Kardent 1996 65 Beteka 1942 150 Eba 1966 235 Karida 1987 66 Bevelander 1925 151 Eclipse 1940 236 Karlena 1988 67 Binije 1910 152 Edzina 1974 237 Karnico 1987 68 Blanka 1972 153 Eersteling 1900 238 Kartel 1993 69 Blauwe Eigenheimer 1907 154 Rode Eersteling 1925 239 Katahdin 1932 70 Bodenkraft 1963 155 Ehud 1967 240 Katinka 1998 71 Bolesta 1995 156 Element 1969 241 Kennebec 1963 <									
64 Berber 1990 149 Dundrod 1987 234 Kardent 1996 65 Beteka 1942 150 Eba 1966 235 Karida 1987 66 Bevelander 1925 151 Eclipse 1940 236 Kariena 1987 67 Bintje 1910 152 Edzina 1974 237 Karnico 1987 68 Blauxe Eigenheimer 1907 154 Rode Eersteling 1925 239 Katahdin 1932 69 Blauwe Eigenheimer 1907 154 Rode Eersteling 1925 239 Katahdin 1932 70 Bodenkraft 1963 155 Ehud 1967 240 Katinka 1998 71 Bolesta 1995 156 Element 1967 240 Katinka 1997 73 Bonaara 1993 158 Elvira 1981 243 Kestrel 1992									
65 Beteka 1942 150 Eba 1966 235 Karida 1987 66 Bevelander 1925 151 Eclipse 1940 236 Karlena 1988 67 Binig 1910 152 Eclipse 1940 237 Karnico 1987 68 Blanka 1972 153 Eersteling 1900 238 Kartel 1993 69 Blauwe Eigenheimer 1907 154 Rode Eersteling 1925 239 Katahdin 1932 70 Bodenkraft 1963 155 Ehud 1967 240 Katinka 1998 71 Bolasta 1995 156 Element 1967 240 Katinka 1993 73 Bonaza 1993 158 Elvira 1981 243 Kestrel 1992 74 Bonaparte 1987 159 Empire 1989 244 King edward 1902 75 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
66 Bevelander 1925 151 Eclipse 1940 236 Karlena 1988 67 Bintje 1910 152 Edzina 1974 237 Karnico 1987 68 Blanka 1972 153 Eersteling 1900 238 Kartel 1993 69 Blauwe Eigenheimer 1907 154 Rode Eersteling 1925 239 Katahdin 1932 70 Bodenkraft 1963 155 Ehud 1967 240 Katinka 1998 71 Bolesta 1995 156 Element 1969 241 Kennebec 1963 72 Bona 1944 157 Elkana 1978 242 Kerr's Pink 1907 73 Bonaparte 1983 158 Elvira 1981 243 Kestrel 1992 74 Bonaparte 1987 159 Empire 1989 244 King edward 1992									
67 Bintje 1910 152 Edzina 1974 237 Karnico 1987 68 Blanka 1972 153 Eersteling 1900 238 Kartel 1993 69 Blauwe Eigenheimer 1907 154 Rode Eersteling 1925 239 Katahdin 1933 70 Bodenkraft 1963 155 Ehud 1967 240 Katinka 1998 71 Bolesta 1995 156 Element 1969 241 Kennebec 1963 72 Bonanza 1993 158 Elvira 1981 243 Kestrel 1992 73 Bonanza 1993 158 Elvira 1981 243 Kestrel 1992 74 Bonaparte 1987 159 Empire 1989 244 Kingston 1981 75 Bright 1988 160 Epicure 1887 245 Kondor 1985 76 British Queen 1894 161 Erdgold 1928 246 Kondor		Bevelander							
68 Blanka 1972 153 Eersteling 1900 238 Kartel 1993 69 Blauwe Eigenheimer 1907 154 Rode Eersteling 1925 239 Katahdin 1932 70 Bodenkraft 1963 155 Ehud 1967 240 Katahdin 1932 70 Bodenkraft 1963 155 Ehud 1967 240 Katinka 1993 71 Bolesta 1995 156 Element 1967 240 Katinka 1993 72 Bona 1944 157 Elkana 1978 242 Kerr's Pink 1907 73 Bonanza 1993 158 Elvira 1981 243 Kestrel 1992 74 Bonaparte 1987 159 Empire 1987 244 King edward 1902 75 Bright 1988 160 Ericure 1897 245 Konodor 1981									
70 Bodenkraft 1963 155 Ehud 1967 240 Katinka 1998 71 Bolesta 1995 156 Element 1969 241 Kennebec 1963 72 Bona 1944 157 Elkana 1978 242 Kerr's Pink 1907 73 Bonanza 1993 158 Elvira 1981 243 Kestrel 1992 74 Bonaparte 1987 159 Empire 1989 244 King edward 1902 75 Bright 1988 160 Epicure 1897 245 King sdward 1981 76 British Queen 1884 161 Erdgold 1928 246 Kondor 1985 77 Broca 1969 162 Erntestolz 1976 247 Konsul 1999 78 Burmania 1957 163 Escort 1988 248 Koopman's Blauwe 1937 79 Caesar 1994 164 Estima 1973 249 Krometa	68							Kartel	1993
70 Bodenkraft 1963 155 Ehud 1967 240 Katinka 1998 71 Bolesta 1995 156 Element 1969 241 Kennebec 1963 72 Bona 1944 157 Elkana 1978 242 Kerr's Pink 1907 73 Bonanza 1993 158 Elvira 1981 243 Kestrel 1992 74 Bonaparte 1987 159 Empire 1989 244 King edward 1902 75 Bright 1988 160 Epicure 1897 245 King sdward 1981 76 British Queen 1884 161 Erdgold 1928 246 Kondor 1985 77 Broca 1969 162 Erntestolz 1976 247 Konsul 1999 78 Burmania 1957 163 Escort 1988 248 Koopman's Blauwe 1937 79 Caesar 1994 164 Estima 1973 249 Krometa									1932
72 Bona 1944 157 Elkana 1978 242 Kerr's Pink 1907 73 Bonanza 1993 158 Elvira 1981 243 Kestrel 1992 74 Bonaparte 1987 159 Empire 1989 244 King edward 1902 75 Bright 1988 160 Epicure 1897 245 King ston 1981 76 British Queen 1894 161 Erdgold 1928 246 Kondor 1985 77 Broca 1969 162 Erntestolz 1976 247 Konsul 1999 78 Burmania 1957 163 Escort 1988 248 Koopman's Blauwe 1937 79 Caesar 1994 164 Estima 1973 249 Kronia 1974 80 Calgary 1989 165 Evergood 1900 250 Kronia 1974 81	70			155	Ehud	1967		Katinka	1998
73 Bonanza 1993 158 Elvira 1981 243 Kestrel 1992 74 Bonaparte 1987 159 Empire 1989 244 King edward 1902 75 Bright 1988 160 Epicure 1897 245 Kingston 1981 76 British Queen 1894 161 Erdgold 1922 246 Kondor 1985 77 Broca 1969 162 Erntestolz 1976 247 Konsul 1999 78 Burmania 1957 163 Escort 1988 248 Koopman's Blauwe 1937 79 Caesar 1994 164 Estima 1973 249 Kroneta 1993 80 Calgary 1989 165 Evergood 1900 250 Kronia 1973 81 Calla 1990 166 Exempla 1997 251 Krostar 1973 82				156				Kennebec	
74 Bonaparte 1987 159 Empire 1989 244 King edward 1902 75 Bright 1988 160 Epicure 1897 245 Kingston 1981 76 British Queen 1894 161 Erdgold 1928 246 Kondor 1985 76 British Queen 1894 161 Erdgold 1928 246 Kondor 1985 78 Boca 1969 162 Erntestolz 1976 247 Konsul 1999 78 Burmania 1957 163 Escort 1988 248 Koopman's Blauwe 1937 79 Caesar 1994 164 Estima 1973 249 Krometa 1993 80 Calgary 1989 165 Evergood 1900 250 Kronia 1974 81 Calla 1990 166 Exempla 1997 251 Krostar 1973 82 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
75 Bright 1988 160 Epicure 1897 245 Kingston 1981 76 British Queen 1894 161 Erdgold 1928 246 Kondor 1985 77 Broca 1969 162 Erntestolz 1976 247 Konsul 1999 78 Burmania 1957 163 Escort 1988 248 Koopman's Blauwe 1937 70 Caesar 1994 164 Estima 1973 249 Krometa 1993 80 Calgary 1989 165 Evergood 1900 250 Kronia 1974 81 Calla 1990 166 Exempla 1997 251 Krostar 1973 82 Cantate 1999 167 Exquisa 1992 252 Kuroda 1998 84 Cardinal 1972 169 Falke 1943 254 Kuroda 1996									
76 British Queen 1894 161 Erdgold 1928 246 Kondor 1985 77 Broca 1969 162 Erntestolz 1976 247 Konsul 1999 78 Burmania 1957 163 Escort 1988 248 Koopman's Blauwe 1937 70 Caesar 1994 164 Estima 1973 249 Krometa 1993 80 Calgary 1989 165 Evergood 1900 250 Kronia 1974 81 Calla 1990 166 Exempla 1997 251 Krostar 1973 82 Cantate 1999 167 Exquisa 1992 252 Kuras 1993 84 Cardinal 1972 169 Fabula 1997 253 Kuroda 1998									
77 Broca 1969 162 Erntestolz 1976 247 Konsul 1999 78 Burmania 1957 163 Escort 1988 248 Koopman's Blauwe 1937 79 Caesar 1994 164 Estima 1973 249 Krometa 1993 80 Calgary 1989 165 Evergood 1900 250 Kronia 1974 81 Calla 1990 166 Exempla 1997 251 Krostar 1973 82 Cantate 1999 167 Exquisa 1992 252 Kuras 1998 84 Cardinal 1943 168 Fabula 1997 253 Kuroda 1998 84 Cardinal 1972 169 Falke 1943 254 Kurola 1996		•			*			•	
78 Burmania 1957 163 Escort 1988 248 Koopman's Blauwe 1937 79 Caesar 1994 164 Estima 1973 249 Krometa 1993 80 Calgary 1989 165 Evergood 1900 250 Kronia 1974 81 Calla 1990 166 Exempla 1997 251 Krostar 1973 82 Capella 1999 167 Exquisa 1992 252 Kuras 1996 83 Capella 1943 168 Fabula 1997 253 Kuroda 1998 84 Cardinal 1972 169 Falke 1943 254 Kurola 1996									
79 Caesar 1994 164 Estima 1973 249 Krometa 1993 80 Calgary 1989 165 Evergood 1900 250 Kromita 1974 81 Calla 1990 166 Exempla 1997 251 Krostar 1973 82 Cantate 1999 167 Exquisa 1992 252 Kuras 1996 83 Capella 1943 168 Fabula 1997 253 Kuroda 1998 84 Cardinal 1972 169 Falke 1943 254 Kurola 1996									
80 Calgary 1989 165 Evergood 1900 250 Kronia 1974 81 Calla 1990 166 Exempla 1997 251 Krostar 1973 82 Cantate 1999 167 Exquisa 1992 252 Kuras 1996 83 Carella 1943 168 Fabula 1997 253 Kuroda 1998 84 Cardinal 1972 169 Falke 1943 254 Kurola 1996									
81 Calla 1990 166 Exempla 1997 251 Krostar 1973 82 Cantate 1999 167 Exquisa 1992 252 Kuras 1996 83 Capella 1943 168 Fabula 1997 253 Kuroda 1998 84 Cardinal 1972 169 Falke 1943 254 Kurola 1996									
82 Cantate 1999 167 Exquisa 1992 252 Kuras 1996 83 Capella 1943 168 Fabula 1997 253 Kuroda 1998 84 Cardinal 1972 169 Falke 1943 254 Kurola 1996					0				
83 Capella 1943 168 Fabula 1997 253 Kuroda 1998 84 Cardinal 1972 169 Falke 1943 254 Kurola 1996									
84 Cardinal 1972 169 Falke 1943 254 Kurola 1996									
os cama 1972 170 rambo 1985 255 Lady Claire 1996									
	65	Carina	1972	1/0	1 dilloo	1985	200	Lauy Claire	1990

257 Lady Florina 2000 342 258 Lady Rosetta 1988 343 250 Lekkerlander 1965 344 260 Leo 1969 345 261 Lerche 1950 346 262 leyla 1988 347 263 Libertas 1946 348 264 Likaria 1986 349 265 Linda 1971 350 266 Liurer Delikatess 1975 351 271 Lura 1987 357 272 Lyra 1987 355 271 Lura 1971 359 273 Marisand 1972 363 274 Maris Anchor 1971 362 278 Maris Bard 1972 363 279 Maris Bard 1972 363 270 Maris Macte 1998 370 280 Marise 1971	Code	dix 1 continued Variety	Year of release	Appendi Code
258 Lady Rosetta 1988 343 259 Lekkerlander 1965 344 261 Lerche 1950 346 262 leyla 1988 347 263 Libertas 1946 348 264 Likaria 1986 349 265 Linda 1974 350 266 Linzer Delikatess 1975 351 270 Luna 1982 355 271 Lux 1971 356 272 Lyra 1987 357 273 Majestic 1911 358 274 Manna 1972 363 275 Maris Bard 1971 362 276 Maris Bard 1971 362 277 Maris Bard 1972 363 276 Markies 1997 366 281 Markies 1997 376 283 Mascotte 198 <		•		
259 Lekkerlander 1965 344 260 Leorche 1950 346 261 Lerche 1950 346 262 leyla 1988 347 263 Lindra 1986 349 264 Likaria 1986 349 265 Lindra 1974 350 266 Linzer Delikatess 1975 351 267 Lumper 1806 354 270 Luna 1982 355 271 Lyra 1987 357 273 Majestic 1911 358 274 Manna 1975 360 275 Marabel 1993 360 276 Maris Bard 1971 362 276 Maris Bard 1972 363 276 Maris Bard 1971 362 280 Maris Piper 1963 365 281 Markies 1997				
260 Leo 1969 345 261 Lerche 1950 346 1262 Leyla 1988 347 263 Libertas 1946 348 264 Likaria 1986 349 265 Linda 1974 350 266 Linzer Delikatess 1975 351 276 Lumper 1806 354 270 Luna 1982 355 271 Lux 1971 356 272 Lyra 1987 357 274 Manna 1975 359 275 Marisbel 1993 360 276 Maris Bard 1972 363 365 277 Maris Bard 1972 363 365 278 Marises 1971 362 366 278 Marise 198 368 370 17 284 Masine 1994 369		•		
262 leyla 1988 347 263 Libertas 1946 348 264 Likaria 1986 349 265 Linda 1974 350 266 Linzer Rose 1969 352 268 Liu 1988 353 270 Luna 1982 355 271 Lux 1971 356 272 Lyra 1987 357 273 Majestic 1911 358 274 Mana 1975 359 275 Marábal 1972 363 276 Marís Anchor 1971 362 278 Maris Bard 1972 363 279 Maris Peer 1963 365 280 Marie 1994 369 284 Maxine 1994 369 285 May Queen 1980 370 286 Midas 1977 373 287 Merkur 1935 372 288 Mida				
263 Libertas 1946 348 264 Likaria 1986 349 265 Linda 1974 350 266 Linzer Rose 1969 352 268 Liu 1988 353 269 Lumper 1806 354 270 Lux 1971 336 271 Lux 1971 336 273 Majestic 1911 358 274 Marabel 1993 360 275 Marfona 1979 361 276 Marfona 1979 365 278 Maris Peer 1962 365 280 Maris Piper 1963 365 281 Markies 1997 366 282 Marie 1998 370 283 Mascotte 1998 374 284 Maria 1970 375 391 Mirka 1970 376	261	Lerche	1950	346 I
264 Likaria 1986 349 265 Linda 1974 350 266 Linzer Delikatess 1975 351 267 Linzer Rose 1969 352 268 Liu 1988 353 270 Luna 1982 355 271 Lux 1971 356 272 Lyra 1987 337 273 Majestic 1911 358 274 Manna 1975 359 275 Marábel 1993 360 276 Marís Anchor 1971 362 276 Maris Bard 1972 363 277 Maris Ever 1963 365 281 Markies 1997 376 283 Mascotte 1988 374 284 Maxine 1994 369 285 May Queen 1988 375 286 Mierva 1935 372 291 Mirka 1970 376 292		•		
265 Linzer Delikatess 1974 350 266 Linzer Rose 1969 352 268 Liu 1988 353 269 Lumper 1806 354 270 Luna 1982 355 271 Lux 1971 356 272 Lyra 1987 357 273 Majestic 1911 358 274 Manna 1975 359 275 Marabel 1993 360 276 Maris Bard 1972 363 279 Maris Bard 1972 363 279 Maris Peer 1963 365 284 Maxine 1994 368 284 Maxine 1994 369 285 May Queen 1980 370 286 Merkur 1335 372 287 Merkur 1335 372 288 Midas 1997 373				
266 Linzer Delikatess 1975 351 267 Linzer Rose 1969 352 268 Liu 1988 353 269 Lumper 1806 354 271 Lux 1971 356 272 Lyra 1987 357 273 Majestic 1911 358 274 Manna 1975 359 275 Marabel 1993 360 276 Maris Anchor 1971 362 276 Maris Bard 1972 363 279 Maris Peer 1963 365 280 Maris Peer 1963 366 283 Mascotte 1998 370 284 Maxine 1997 371 286 Meerlander 1947 371 287 Merkur 1935 372 288 Midas 1977 378 291 Miriam 1988 <				
268 Liu 1988 353 269 Lumper 1806 354 270 Luna 1982 355 271 Lux 1971 356 272 Lyra 1987 357 273 Majestic 1911 358 274 Manna 1975 359 275 Maréna 1979 361 276 Maris Anchor 1971 362 278 Maris Bard 1972 363 279 Maris Pere 1963 365 281 Markies 1997 366 282 Marien 2000 371 283 Mascotte 1988 375 284 Maxine 1994 369 285 May Queen 1980 374 290 Miriam 1973 380 291 Mirika 1970 375 292 Mondial 1982 377				
269 Lumper 1806 354 270 Lux 1971 355 271 Lux 1971 355 272 Lyra 1987 357 273 Majestic 1911 358 274 Manna 1975 359 275 Marisel 1993 360 276 Mariseland 1972 363 277 Maris Anchor 1971 362 278 Maris Peer 1963 365 281 Markies 1997 366 283 Mascotte 1998 368 284 Marine 1994 369 285 May Queen 1980 370 286 Merkur 1335 372 290 Miriam 1988 374 290 Miriam 1988 374 291 Miria 1972 379 292 Monialia 1988 380 </td <td></td> <td></td> <td></td> <td></td>				
270 Luna 1982 355 1 271 Lyra 1987 357 272 Lyra 1987 357 273 Majestic 1911 358 274 Manna 1975 359 275 Mariachel 1993 360 276 Mariachen 1971 362 277 Maris Bard 1972 363 278 Maris Peer 1962 364 280 Maris Peer 1963 365 281 Markies 1997 366 282 Marlen 1998 368 283 Maxine 1994 369 284 Maxine 1994 369 285 May Queen 1983 377 286 Micas 1997 373 1 287 Merkur 1935 372 2 288 Midas 1997 373 1 290 Mirka 1973 380 2 291 Monial				
271 Lux 1971 356 272 Lyra 1987 357 273 Majestic 1911 358 274 Marnale 1975 359 275 Marabel 1993 360 276 Maris Anchor 1971 362 278 Maris Bard 1972 363 279 Maris Piper 1963 365 280 Markes 1997 366 281 Markies 1997 366 282 Marlen 2000 367 283 Mascotte 1998 368 284 Maxine 1994 369 285 May Queen 1980 370 286 Meerlander 1947 371 287 Mineva 1989 374 290 Miriam 1988 378 291 Moria 1972 379 292 Moniai 1971 381 293 Moniai 1973 380 294				
273 Majestic 1911 358 274 Manna 1975 359 275 Marabel 1993 360 276 Maris Anchor 1971 362 278 Maris Bard 1972 363 278 Maris Peer 1962 364 279 Maris Peer 1963 365 281 Markes 1997 366 282 Marlen 2000 367 283 Mascotte 1998 368 284 Maxine 1994 369 285 May Queen 1980 370 286 Meerlander 1947 371 287 Midas 1997 373 288 Midas 1997 373 290 Miriam 1988 378 291 Mirika 1970 370 292 Monitor 1973 380 293 Monitor 1973 380 294 Moni 1972 379 295				
274 Marna 1975 359 1 275 Marabel 1993 360 1 276 Maris Anchor 1971 362 1 278 Maris Anchor 1971 362 1 278 Maris Paper 1962 364 1 280 Maris Piper 1963 365 1 281 Markies 1997 366 1 283 Mascotte 1998 368 1 284 Maxine 1994 369 1 285 Meclander 1947 373 1 286 Meerlander 1947 373 1 290 Miriam 1988 375 1 291 Mirka 1970 376 1 292 Monalisa 1982 377 3 30 30 30 293 Mondial 1973 380 30 30 30 30 30 30 30 30 30 30 30 30 30				
275 Marabel 1993 360 276 Mariona 1979 361 277 Maris Anchor 1971 362 278 Maris Bard 1972 363 279 Maris Peer 1963 365 281 Markies 1997 366 282 Marlen 2000 367 283 Mascotte 1998 368 284 Maxine 1994 369 285 May Queen 1980 370 286 Meerlander 1947 371 287 Merkur 1935 372 288 Midas 1997 373 289 Minerva 1989 374 290 Miriam 1988 378 291 Mirika 1970 370 380 292 Monalia 1982 377 380 293 Mondial 1987 382 377 380 382 382 294 Moni 1972 379 380		0		
276 Marís Anchor 1971 361 277 Maris Bard 1972 363 278 Maris Breer 1962 364 279 Maris Piper 1963 365 281 Markes 1997 366 282 Marlen 2000 367 283 Mascotte 1998 368 284 Maxine 1994 369 285 May Queen 1980 371 286 Meerlander 1947 371 287 Merkur 1935 372 288 Mineva 1989 374 290 Minerva 1988 375 291 Miriam 1988 378 292 Monalisa 1982 377 293 Montial 1973 380 294 Moni 1972 379 295 Monitan 1971 381 297 Morene 1985 382 298 Multa 1964 383 300<				
278 Maris Bard 1972 363 1 279 Maris Piper 1962 364 1 280 Markies 1997 366 1 281 Markies 1997 366 1 282 Markies 1997 366 1 283 Mascotte 1998 368 1 284 Maxine 1994 369 1 284 Maxine 1990 370 1 285 May Queen 1980 370 1 286 Meerlander 1947 371 1 287 Merkur 1935 372 1 288 Midas 1997 376 1 290 Mirita 1970 376 1 291 Monalia 1982 377 2 292 Monial 1972 379 2 293 Moniata 1971 381 2 294 Monia 1972 387 3 3 294 </td <td></td> <td></td> <td></td> <td></td>				
279 Maris Piper 1962 364 280 Maris Piper 1963 365 281 Markies 1997 366 282 Marlen 2000 367 1 283 Mascotte 1998 368 1 284 Maxine 1994 369 1 285 May Queen 1980 370 1 286 Meerlander 1947 371 1 287 Merkur 1935 372 1 288 Midas 1997 373 1 289 Mineva 1988 375 1 290 Miriam 1988 377 2 291 Monalisa 1982 377 3 292 Monitor 1973 380 3 294 Monitor 1971 381 3 295 Monitor 1973 380 3 296 Moltal 1987 384 3 301 Nederlander 1942 386<				
280 Maris Piper 1963 365 1 281 Markies 1997 366 1 283 Mascotte 1998 368 1 284 Maxine 1994 369 1 285 May Queen 1980 370 1 286 Meerlander 1947 371 1 287 Merkur 1935 372 1 288 Midas 1997 373 1 289 Minerva 1988 375 1 291 Mirka 1970 376 1 292 Monalisa 1982 377 2 294 Moni 1972 379 2 295 Monitor 1973 380 2 294 Monia 1971 381 2 295 Monitor 1973 380 3 3 296 Montana 1971 381 3 3 3 3 3 3 3 3 3 3				
281 Markies 1997 366 282 Marlen 2000 367 283 Mascotte 1998 368 284 Maxine 1994 369 285 May Queen 1980 370 286 Meerlander 1947 371 287 Merkur 1935 372 288 Midas 1997 373 289 Minerva 1989 374 290 Miriam 1988 375 291 Monalisa 1982 377 292 Monalisa 1982 377 293 Montial 1988 378 294 Moni 1972 379 295 Montor 1973 380 296 Montan 1971 381 297 Morene 1985 382 298 Multa 1964 383 30 300 Navan 1987 384 30 302 Nicola 1975 387 33				
283 Mascotte 1998 368 1 284 Maxine 1994 369 1 285 Meerlander 1947 371 1 286 Meerlander 1947 371 1 287 Merkur 1935 372 1 288 Midas 1997 373 1 289 Minerva 1989 374 1 290 Miriam 1988 375 1 290 Mirian 1988 377 2 291 Mondial 1988 378 1 292 Mondial 1988 378 1 293 Montior 1973 380 2 294 Moni 1972 379 2 295 Montana 1971 381 2 298 Multa 1964 383 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				
284 Maxine 1994 369 1 285 May Queen 1980 370 1 286 Meerlander 1947 371 1 287 Merkur 1935 372 1 288 Midas 1997 373 1 289 Minerva 1989 374 1 290 Miriam 1988 375 1 291 Mirka 1970 376 1 292 Monalisa 1982 377 2 293 Monial 1988 378 2 295 Monitan 1971 381 2 297 Morene 1985 382 2 298 Multa 1964 383 3 301 Nederlander 1942 386 3 303 Nika 1995 387 3 304 Nomade 1997 389 3				
285 May Queen 1980 370 1 286 Meerlander 1947 371 1 287 Merkur 1935 372 1 288 Midas 1997 373 1 289 Minerva 1989 374 1 290 Miriam 1988 375 1 291 Mirka 1970 376 1 293 Mondial 1988 378 2 294 Moni 1972 379 2 295 Monitor 1973 380 2 296 Montana 1971 381 2 297 Morene 1985 382 2 298 Multa 1964 383 2 299 Nadine 1987 384 2 301 Nederlander 1942 386 2 302 Nicola 1975 387 3 303 Nika 1995 398 2 304 Nomade				
286 Meerlander 1947 371 287 Merkur 1935 372 288 Midas 1997 373 289 Minerva 1989 374 290 Miriam 1988 375 291 Mirka 1970 376 292 Monalisa 1982 377 293 Monitor 1971 380 294 Moni 1972 379 295 Monitor 1973 380 296 Montana 1971 381 297 Morene 1985 382 298 Multa 1964 383 300 Navan 1987 384 300 Navan 1987 385 301 Nederlander 1942 386 302 Nicola 1997 389 303 Nika 1995 388 304 Nomade 1997 389 <				
288 Midas 1997 373 1 289 Minerva 1989 374 1 290 Miriam 1988 375 1 291 Mirka 1970 376 1 292 Monalisa 1982 377 2 293 Mondial 1988 378 1 294 Moni 1972 379 2 Monitor 1973 380 2 380 296 Montana 1971 381 2 297 Morene 1985 382 3 298 Multa 1964 383 3 300 Navan 1987 384 3 301 Nederlander 1942 386 3 301 Nederlander 1942 386 3 303 Nika 1995 389 3 3 3 304 Nomade 1977 389 3 3 3 3 3 3 3 3 3				
289 Minerva 1989 374 290 Miriam 1988 375 291 Mirka 1970 376 292 Monalisa 1982 377 293 Mondial 1988 378 294 Moni 1972 379 295 Monitor 1973 380 296 Montana 1971 381 297 Morene 1985 382 298 Multa 1964 383 299 Nacine 1987 385 301 Nederlander 1942 386 302 Nicola 1975 387 303 Nika 1995 388 304 Nomade 1997 389 305 Norchip 1968 390 306 Novita 1994 391 307 Orion 1943 392 308 Oscar 1995 393 310 Ottena 2000 395 311 Paltina		Merkur	1935	
290 Miriam 1988 375 291 Mirka 1970 376 292 Monalisa 1982 377 293 Mondial 1988 378 294 Moni 1972 379 295 Monitor 1973 380 296 Montana 1971 381 297 Morene 1985 382 298 Multa 1964 383 299 Nacine 1987 384 300 Navan 1987 385 301 Nederlander 1942 386 302 Nicola 1975 387 303 Nika 1995 388 304 Nomade 1997 389 305 Norchip 1968 390 306 Novita 1994 391 307 Orion 1943 392 308 308 Oscar 1995 393 309 205 394 310 310 Pattersons Victori				
291 Mirka 1970 376 292 Monalisa 1982 377 293 Mondial 1988 378 294 Moni 1972 379 295 Monitor 1973 380 296 Montana 1971 381 297 Morene 1985 382 298 Multa 1964 383 300 Navan 1987 384 300 Navan 1987 385 301 Nederlander 1942 386 302 Nicola 1975 387 303 Nika 1995 388 304 Nomade 1997 389 305 Norchip 1968 390 306 Novita 1994 391 307 Orion 1943 392 308 Oscar 1995 393 309 Ostote 1933 394 310 Ottena 2000 395 311 Palna				
293 Mondial 1988 378 294 Moni 1972 379 295 Monitor 1973 380 296 Montana 1971 381 297 Morene 1985 382 298 Multa 1964 383 299 Nadine 1987 384 300 Navan 1987 385 301 Nederlander 1942 386 302 Nicola 1975 387 303 Nika 1995 388 304 Nomade 1997 389 305 Norchip 1968 390 306 Novita 1994 391 307 Orion 1943 392 308 Oscar 1995 393 309 Ostote 1933 394 310 Ottena 2000 395 311 Pallina 1995 396 312 Panda 1986 397 313 Patersons Victo				
294 Moni 1972 379 2 295 Monitor 1973 380 380 296 Mortana 1971 381 380 297 Morene 1985 382 382 298 Multa 1964 383 383 299 Nadine 1987 384 385 301 Nederlander 1942 386 386 302 Nicola 1975 387 383 303 Nika 1995 388 304 Nomade 1997 389 305 Norchip 1968 390 305 Norchip 1968 390 306 Novita 1995 393 309 0stote 1933 394 307 Orion 1943 392 308 311 Palina 1995 396 312 Panda 1986 397 313 314 400 314 Patrones 1959 395 311 Palina 1983 400 315 Penta 1983 400			1982	
295 Monitor 1973 380 296 Montana 1971 381 297 Morene 1985 382 298 Multa 1964 383 299 Nadine 1987 384 300 Navan 1987 385 301 Nederlander 1942 386 302 Nicola 1975 387 303 Nika 1995 388 304 Nomade 1997 389 305 Norchip 1968 390 306 Novita 1994 391 307 Orion 1943 392 308 Oscar 1995 393 309 Ostbote 1933 394 310 Ottena 2000 395 311 Pallina 1995 396 312 Panda 1986 397 313 Patersons Victoria 1856 398 314 Patrones 1959 401 315 <td< td=""><td></td><td></td><td></td><td></td></td<>				
296 Montana 1971 381 297 Morene 1985 382 298 Multa 1964 383 299 Nadine 1987 384 300 Navan 1987 385 301 Nederlander 1942 386 302 Nicola 1975 387 303 Nika 1995 388 304 Nomade 1997 389 305 Norchip 1968 390 306 Novita 1994 391 307 Orion 1943 392 308 Oscar 1995 393 309 Ostote 1933 394 310 Ottena 2000 395 311 Pallina 1995 396 312 Panda 1986 397 313 Patersons Victoria 1856 398 314 Patrones 1959 401 317 Pentland Beauty 1995 401 319				
297 Morene 1985 382 298 Multa 1964 383 299 Nadine 1987 384 300 Navan 1987 385 301 Nederlander 1942 386 302 Nicola 1975 387 303 Nika 1995 388 304 Nomade 1997 389 305 Norchip 1968 390 306 Novita 1994 391 307 Orion 1943 392 308 Oscar 1995 393 309 Ostbote 1933 394 310 Ottena 2000 395 311 Pallina 1995 396 312 Panda 1986 397 313 Patersons Victoria 1856 398 314 Patrones 1959 401 1 317 Pentland Hawk 1967 403 3 319 Pentland Vory 1967 404				
299 Nadine 1987 384 300 Navan 1987 385 301 Nederlander 1942 386 302 Nicola 1975 387 303 Nika 1995 388 304 Nomade 1997 389 305 Norchip 1968 390 306 Novita 1994 391 307 Orion 1943 392 308 Oscar 1995 393 309 Ostbote 1933 394 310 Ottena 2000 395 311 Pallina 1995 396 312 Panda 1986 397 313 Patersons Victoria 1856 398 314 Patrones 1959 399 315 Penta 1983 400 317 Pentland Beauty 1995 401 318 Pentland Hawk 1967 403 320 Pentland Havk 1967 404 <		Morene	1985	382 \$
300 Navan 1987 385 301 Nederlander 1942 386 302 Nicola 1975 387 303 Nika 1995 388 304 Nomade 1997 389 305 Norchip 1968 390 306 Novita 1994 391 307 Orion 1943 392 308 Oscar 1995 393 309 Ostbote 1933 394 310 Ottena 2000 395 311 Pallina 1995 396 312 Panda 1986 397 313 Patersons Victoria 1856 398 314 Patrones 1959 399 315 Penta 1983 400 316 Pentland Beauty 1995 401 317 Pentland Hawk 1967 403 320 Pentland Marble 1970 405 321 pentland Kour 1957 401 <tr< td=""><td></td><td></td><td></td><td></td></tr<>				
301 Nederlander 1942 386 302 Nicola 1975 387 303 Nika 1995 388 304 Nomade 1997 389 305 Norchip 1968 390 306 Novita 1994 391 307 Orion 1943 392 308 Oscar 1995 393 309 Ostbote 1933 394 310 Ottena 2000 395 311 Pallina 1995 396 312 Panda 1986 397 313 Patersons Victoria 1856 398 314 Patrones 1959 399 315 Penta 1983 400 317 Pentland Crown 1959 401 318 Pentland Vory 1967 404 320 Pentland Marble 1970 406 321 pentland Squire 1970 406 322 Pinder 1953 407 323 </td <td></td> <td></td> <td></td> <td></td>				
303 Nika 1995 388 304 Nomade 1997 389 305 Norchip 1968 390 306 Novita 1994 391 307 Orion 1943 392 308 Oscar 1995 393 309 Ostbote 1933 394 310 Ottena 2000 395 311 Pallina 1995 396 312 Panda 1986 397 313 Patersons Victoria 1856 398 314 Patrones 1959 399 315 Penta 1983 400 316 Pentland Beauty 1995 401 317 Pentland Hawk 1967 404 320 Pentland Hawk 1967 404 320 Pentland Marble 1970 406 321 pentland Marble 1970 406 322 Pimpernel 1953 407 323 Pink Fir Apple 1850 408				
304 Nomade 1997 389 305 Norchip 1968 390 306 Novita 1994 391 307 Orion 1943 392 308 Oscar 1995 393 309 Ostbote 1933 394 310 Ottena 2000 395 311 Pallina 1995 396 311 Pallina 1995 396 312 Panda 1986 397 313 Patersons Victoria 1856 398 314 Patrones 1959 399 315 Penta 1983 400 316 Pentland Beauty 1995 401 317 Pentland Beauty 1995 402 318 Pentland Ivory 1967 404 320 Pentland Marble 1970 405 321 pentland Marble 1970 406 322 Pimpernel 1953 407 323 Pink Fir Apple 1850 408<				
305 Norchip 1968 390 306 306 Novita 1994 391 307 307 Orion 1943 392 393 308 Oscar 1995 393 394 307 309 Ostbote 1933 394 309 309 304 308 309 309 304 309 309 310 Ottena 2000 395 311 Pallina 1995 396 312 Panda 1986 397 313 Patersons Victoria 1856 398 314 Patrones 1959 399 315 Penta 1983 400 1 317 Pentland Beauty 1995 401 317 Pentland Hawk 1967 403 319 Pentland Hawk 1967 404 320 Pentland Squire 1970 406 321 pentland Squire 1970 406 322 Pimpernel 1953 407 323 323 Pink Fir Apple 1850 <td></td> <td></td> <td></td> <td></td>				
306 Novita 1994 391 307 Orion 1943 392 308 Oscar 1995 393 309 Ostbote 1933 394 310 Ottena 2000 395 311 Pallina 1995 396 312 Panda 1986 397 313 Patersons Victoria 1856 398 314 Patrones 1959 399 315 Penta 1983 400 316 Pentland Beauty 1995 401 317 Pentland Hawk 1967 403 319 Pentland Kory 1967 404 320 Pentland Marble 1970 406 321 pentland Marble 1970 406 322 Pimpernel 1953 407 323 Pink Fir Apple 1850 408 324 Pirol 2000 409 325 Ponto				
308 Oscar 1995 393 3 309 Ostbote 1933 394 3 310 Ottena 2000 395 3 311 Pallina 1995 396 3 311 Pallina 1995 396 3 311 Pallina 1986 397 3 313 Patersons Victoria 1856 398 3 314 Patrones 1959 399 3 315 Penta 1983 400 3 316 Pentland Beauty 1995 401 3 317 Pentland Hawk 1967 403 3 319 Pentland Korvy 1967 404 3 3 30 20 Pentland Marble 1970 406 3 32 10 33 3407 3 32 32 Pink 11 30 20 9 3407 32 32 3407 32		1		
309 Ostbote 1933 394 310 Ottena 2000 395 311 Pallina 1995 396 312 Panda 1986 397 313 Patersons Victoria 1856 398 314 Patrones 1959 399 315 Penta 1983 400 316 Pentland Beauty 1995 401 317 Pentland Beauty 1995 401 318 Pentland Crown 1959 402 318 Pentland Hawk 1967 403 319 Pentland Hawk 1967 404 320 Pentland Marble 1970 406 321 pentland Koguire 1970 406 322 Pimpernel 1953 407 323 Pink Fir Apple 1850 408 324 Pirol 2000 409 32 325 Ponto 1984 410 33 326 Poeyulair 1928 411 33				
310 Ottena 2000 395 395 311 Pallina 1995 396 397 312 Panda 1986 397 396 313 Patersons Victoria 1856 398 314 313 Patersons Victoria 1856 398 314 314 Patersons Victoria 1856 398 314 314 Patersons Victoria 1856 398 314 314 Patersons Victoria 1856 398 314 317 Pentland Beauty 1995 401 317 317 Pentland Crown 1959 402 318 319 Pentland Vory 1967 404 312 320 Pentland Squire 1970 406 322 321 pentland Squire 1970 406 322 322 Pimpernel 1953 407 323 323 Pink Fir Apple 1850 408 324 324 Pirol 2000 409 325 325				
311 Pallina 1995 396 312 Panda 1986 397 313 Patersons Victoria 1856 398 314 Patrones 1959 399 315 Penta 1983 400 316 Pentland Beauty 1995 401 317 Pentland Beauty 1995 401 317 Pentland Crown 1959 402 318 Pentland Vory 1967 403 319 Pentland Warble 1970 406 320 Pentland Marble 1970 406 321 pentland Vory 1967 404 320 Pentland Marble 1970 406 321 pentland Vory 1967 408 322 Pimpernel 1953 407 323 Pink Fir Apple 1850 408 324 Pirol 2000 409 325 Ponto 1984 410 32 326 Populair 1928 411 33				
313 Patersons Victoria 1856 398 399 314 Patrones 1959 399 399 315 Penta 1983 400 316 Pentland Beauty 1995 401 317 Pentland Beauty 1995 402 318 Pentland Crown 1959 402 319 Pentland Hawk 1967 403 320 Pentland Marble 1970 405 321 pentland Marble 1970 406 322 Pimpernel 1953 407 323 Pink Fir Apple 1850 408 324 Pirol 2000 409 325 325 Ponto 1984 410 326 326 Populair 1928 411 332 327 Power 1999 412 332 338 Prover 1999 412 333 330 Procura 1973 415 333 331 Prominent 1968 416 332 704				
314 Patrones 1959 399 315 Penta 1983 400 316 Pentland Beauty 1995 401 317 Pentland Crown 1959 402 318 Pentland Crown 1959 403 319 Pentland Torv 1967 404 320 Pentland Marble 1970 406 321 pentland Squire 1970 406 322 Pimpernel 1953 407 323 Pink Fir Apple 1850 408 324 Pirol 2000 409 325 Ponto 1984 410 326 Populair 1928 411 327 Power 1999 412 330 Procura 1973 415 331 Prodent 1966 413 329 Prima 1966 413 330 Procura 1973 415 331 Prodent 1968 416 332 protea 2000 417	312	Panda		397 5
315 Penta 1983 400 316 Pentland Beauty 1995 401 317 Pentland Crown 1959 402 318 Pentland Crown 1959 402 318 Pentland Hawk 1967 403 319 Pentland Ivory 1967 404 320 Pentland Vory 1967 405 321 pentland Marble 1970 406 322 Pimpernel 1953 407 323 Pink Fir Apple 1850 408 324 Pirol 2000 409 325 Ponto 1984 410 326 Populair 1928 411 327 Power 1999 412 328 Prevalent 1966 413 329 Prima 1966 413 330 Procura 1973 415 331 Prominent 1968 416 332 prota				
316 Pentland Beauty 1995 401 317 Pentland Crown 1959 402 318 Pentland Hawk 1967 403 319 Pentland Hawk 1967 404 320 Pentland Ivory 1967 404 320 Pentland Marble 1970 406 321 pentland Marble 1970 406 322 Pimpernel 1953 407 323 Pink Fir Apple 1850 408 324 Pirol 2000 409 325 Ponto 1984 410 326 Populair 1928 411 327 Power 1999 412 328 Prevalent 1966 413 329 Prima 1966 413 330 Procura 1973 415 331 Prominent 1968 416 332 protea 2000 417 333 Proton 1975 418 334 Provento 1994 <t< td=""><td></td><td></td><td></td><td></td></t<>				
318 Pentland Hawk 1967 403 319 Pentland Ivory 1967 404 320 Pentland Marble 1970 405 321 pentland Squire 1970 406 321 pentland Squire 1970 406 321 pentland Squire 1970 406 322 Pimpernel 1953 407 323 Pink Fir Apple 1850 408 324 Pirol 2000 409 325 Ponto 1984 410 326 Populair 1928 411 327 Power 1999 412 328 Prevalent 1966 413 329 Prima 1969 414 330 Procura 1973 415 331 Prominent 1968 416 332 protea 2000 417 333 Proton 1975 418 334 Provento 1994 419 335 Provita 1967 420				
319 Pentland Ivory 1967 404 320 Pentland Marble 1970 405 321 pentland Squire 1970 406 322 Pimpernel 1953 407 323 Pink Fir Apple 1850 408 324 Pirol 2000 409 325 Ponto 1984 410 326 Populair 1928 411 327 Power 1999 412 328 Prevalent 1966 413 329 Prima 1969 414 330 Procura 1973 415 331 Prominent 1968 416 332 protea 2000 417 333 Proton 1975 418 334 Provento 1994 419 335 Provita 1967 420 336 Prudal 1952 421 337 Quarta 1979 422 338 Raisa 1997 423				
320 Pentland Marble 1970 405 321 pentland Squire 1970 406 321 pentland Squire 1970 406 322 Pimpernel 1953 407 323 Pink Fir Apple 1850 408 324 Pirol 2000 409 325 Ponto 1984 410 326 Populair 1928 411 327 Power 1999 412 328 Prevalent 1966 413 329 Prima 1966 413 330 Procura 1973 415 331 Prominent 1968 416 332 prota 2000 417 333 Proton 1975 418 334 Provento 1994 419 335 Provita 1967 420 336 Prudal 1952 421 337 Quarta 1979 422 338 Raisa 1997 423				
321 pentland Squire 1970 406 322 Pimpernel 1953 407 323 Pink Fir Apple 1850 408 324 Pirol 2000 409 325 Ponto 1984 410 326 Populair 1928 411 327 Power 1999 412 328 Prevalent 1966 413 329 Prima 1969 414 330 Procura 1973 415 331 Prominent 1968 416 332 protea 2000 417 333 Protorn 1975 418 334 Provento 1994 419 335 Provita 1967 420 336 Prudal 1952 421 337 Quarta 1979 422 338 Raisa 1997 423 339 Raisa 1994 424				
322 Pimpernel 1953 407 323 Pink Fir Apple 1850 408 324 Pirol 2000 409 325 Ponto 1984 410 326 Populair 1928 411 327 Power 1999 412 328 Prevalent 1966 413 329 Prima 1966 413 330 Procura 1973 415 331 Prominent 1968 416 332 protea 2000 417 333 Protorn 1975 418 334 Provento 1994 419 335 Provita 1967 420 336 Prudal 1952 421 337 Quarta 1979 422 338 Raisa 1997 423 339 Raja 1994 424				
324 Pirol 2000 409 409 325 Ponto 1984 410 410 326 Populair 1928 411 411 327 Power 1999 412 413 328 Prevalent 1966 413 413 329 Prima 1969 414 416 330 Procura 1973 415 416 332 prota 2000 417 415 333 Protita 1967 418 418 334 Provento 1994 419 419 335 Provita 1967 420 421 336 Prudal 1952 421 421 337 Quarta 1979 422 423 338 Raisa 1997 423 433 339 Raja 1994 424 444				407 \$
325 Ponto 1984 410 326 Populair 1928 411 327 Power 1999 412 328 Prevalent 1966 413 329 Prima 1969 414 330 Procura 1973 415 331 Prominent 1968 416 332 protea 2000 417 333 Proton 1975 418 334 Provento 1994 419 335 Provita 1967 420 336 Prudal 1952 421 337 Quarta 1979 422 338 Raisa 1997 423 339 Raja 1994 424				
326 Populair 1928 411 327 Power 1999 412 328 Prevalent 1966 413 329 Prima 1969 414 330 Procura 1973 415 331 Prominent 1968 416 332 protea 2000 417 333 Proton 1975 418 334 Provento 1994 419 335 Provita 1967 420 336 Prudal 1952 421 337 Quarta 1979 422 338 Raisa 1997 423 339 Raja 1994 424				
328 Prevalent 1966 413 329 Prima 1969 414 330 Procura 1973 415 331 Prominent 1968 416 332 protea 2000 417 333 Proton 1975 418 334 Provento 1994 419 335 Provita 1967 420 336 Prudal 1952 421 337 Quarta 1979 422 338 Raisa 1997 423 339 Raja 1994 424				
329 Prima 1969 414 330 Procura 1973 415 331 Prominent 1968 416 332 protea 2000 417 333 Proton 1975 418 334 Provento 1994 419 335 Provita 1967 420 336 Prudal 1952 421 337 Quarta 1979 422 338 Raisa 1997 423 339 Raja 1994 424				
330 Procura 1973 415 331 Prominent 1968 416 332 protea 2000 417 333 Proton 1975 418 334 Provento 1994 419 335 Provita 1967 420 336 Prudal 1952 421 337 Quarta 1979 422 338 Raisa 1997 423 339 Raja 1994 424				
331 Prominent 1968 416 332 protea 2000 417 333 Proton 1975 418 334 Provento 1994 419 335 Provita 1967 420 336 Prudal 1952 421 337 Quarta 1979 422 338 Raisa 1997 423 339 Raja 1994 424				
333 Proton 1975 418 334 Provento 1994 419 335 Provita 1967 420 336 Prudal 1952 421 337 Quarta 1979 422 338 Raisa 1997 423 339 Raja 1994 424				416
334 Provento 1994 419 335 Provita 1967 420 336 Prudal 1952 421 337 Quarta 1979 422 338 Raisa 1997 423 339 Raja 1994 424		•		
335 Provita 1967 420 421 421 421 421 421 421 421 421 421 421 421 423 423 423 423 423 423 423 423 423 423 423 423 423 423 423 424 42				
336 Prudal 1952 421 7 337 Quarta 1979 422 7 338 Raisa 1997 423 7 339 Raja 1994 424 7				
337 Quarta 1979 422 338 Raisa 1997 423 339 Raja 1994 424				
339 Raja 1994 424		-		422
5				
1		0		
		1		

Appen Code	dix 1 continued Variety	Year of release
341	Rathlin	1994
342	Realist	2000
343	Rebbeca	1984
344	Rector	1968
345 346	Red King Edward	1916
346 347	Red Lasoda Red Pontiac	1952 1970
348	Red Salad	1999
349	Redbad	1974
350	Redskin	1934
351	Redstar	1998
352	Reichskanzler	1886
353 354	Remarka Renate	1992 1993
355	Renova	1972
356	Resonant	1974
357	Resy	1968
358	Rex	1998
359 360	Rheinhort Rikea	1959 1984
361	Rita	1984
362	Robijn	1926
363	Rocket	1987
364	Rode Pipo	1982
365 366	Rode Star	1909 1989
367	Romina Rooster	1989
368	Rosalie	1990
369	Rosara	1990
370	Roscor	1994
371	Roseval	1950
372	Roxy Royal Kidney	1995 1899
373 374	Rubin	1972
375	Russet Burbank	1908
376	Rustica	1988
377	Safrane	1991
378	Sanira	1992
379 380	Santana Santé	1994 1983
380	Saskia	1985
382	Satina	1993
383	Saxon	1992
384	Sebago	1938
385	Secura	1985
386 387	Selma Sempra	1972 1997
388	Seresta	1997
389	Shannon	1994
390	Sharpes Express	1900
391	Shetland Black	unknown
392	Shula Sibu	1986 1993
393 394	Sieglinde	1995
395	Sientje	1938
396	Sierra	1991
397	Simone	1997
398	Sirius	1997
399 400	Sjamero Slaney	1996 1993
400	Solara	1995
402	Solide	1997
403	Sommergold	1987
404	Sommerstarke	1965
405 406	Sophytra	2000
406 407	Spey Spunta	1996 1969
408	Starga	2000
409	Stormont Dawn	unknown
410	Stormont Enterprise	1969
411	Sunbeam	1995
412 413	Surprise Symfonia	1954 1995
413 414	Symionia Taiga	1995
415	Tango	2000
416	Tanja	1967
417	Terra	2001
418	Thyra	1965
419 420	Tiffany Tomensa	1999 1989
420	Toni	1989
422	Triumf	1921
423	Ulla	1970
424	Ulme Ulster Chieftein	2000
425	Ulster Chieftain	1938

Append	lix 1 continued	
Code	Variety	Year of release
426	Ulster Concord	1964
427	Ulster Dale	1950
428	Ulster Ensign	1946
429	Ulster Glade	1961
430	Ulster Premier	1945
431	Ulster Prince	1947
432	Ulster Sceptre	1962
433	Ulster Supreme	1935
434	Ultimus	1935
435	Up to date	1894
436	Urgenta	1953
437	Van Gogh	1989
438	Vebesta	1990
439	Velox	1994
440	Venouska	1987
441	Vento	1994
442	Vera	1943
443	Victoria	1997
444	Vitesse	1997
445	Vivaks	1973
446	Vivaldi	2000
447	Vokal	1974
448	Voran	1936
449	Warinka	1974
450	White Lady	1994
451	Wilja	1967
452	Wilpo	1939
453	Woudster	1960
454	Xantia	1998
455	Yukon Gold	1980
456	Zeeburger	1948

Appendix 2 Varieties repeated for Msel-NBS profiling

Variety
Adora
Aziza
Bintje
Darwinia
Desiree
Escort
Florijn
Frila
Frisia
Kartel
Krometa
Kuras
Kurola
Lady Christl
Nomade
Patroness
Prevalent
Russet Burbank
Sante
Saturna
Shepody
Xantia

Summary

Potato (*Solanum tuberosum* L.) is a crop with a large secondary gene pool, which contains many important traits that can be exploited in breeding programs. As late blight is one of the biggest problems in potato growing areas, the crop needs a large number of applications of fungicides to be able to grow in north–western Europe. There is a strong focus on resistance breeding. This thesis describes the use of nucleotide binding site (NBS) profiling to study *Solanum* systematics and to identify resistance gene markers, which might be applied by the breeding companies. It also studies in depth the diversity and evolution of two late blight resistance (R) genes *Rpi-blb1* and *Rpi-blb2* in a wide range of *Solanum* species.

Chapter 2 evaluates the potential of NBS profiling for phylogeny reconstruction in a set of over 100 genebank accessions, representing 47 tuber-bearing *Solanum* species. Results from NBS profiling are compared with those from amplified fragment length polymorphism (AFLP). Cladistic and phenetic analyses show that the two techniques deliver trees with a similar topology and resolution, indicating that NBS profiling can be an alternative for phylogeny reconstruction. No clear effects of targeting resistance genes are observed in the NBS profiling tree. Within the group of tuber-bearing *Solanum* species, 91% of the intraspecific fragments from the co-migrating bands have sequence identity higher than 95%, indicating that homoplasy is limited (**Chapter 3**).

Chapter 3 presents the changes in genetic diversity at resistance gene loci in a set of 456 European potato cultivars during the last 70 - 80 years. The genetic diversity at these loci increased slightly, which most likely reflects the breeding efforts to introgress resistances from wild species into cultivated potato. Several candidate R-gene markers are identified by linking NBS profiling markers with pedigree and phenotypic data of the cultivars. As homoplasy in NBS profiling markers is low, the markers could also be linked to tuber-bearing *Solanum* species that had contributed the resistance marker to the set of cultivars. One of the markers identified is very likely introgressed from *Solanum vernei*, as indicated by the presence of the marker in *S. vernei* accessions and in cultivars that have *S. vernei* in their pedigree. The marker

also correlates to the resistance data from the cultivars involved.

Chapter 4 describes the allele mining of two late blight R-genes, *Rpi-blb1* and Rpi-blb2, originally derived from S. bulbocastanum. It also analyzes the structure of the cluster that contains *Rpi-blb1*, by determining the presence or absence of the genes flanking Rpi-blb1 (RGA1-blb and RGA3-blb). A wide range of Solanum species was screened for the presence of RGA1-blb and it was found to be present and highly conserved not only in all the tested tuber-bearing Solanum species but also in the non-tuber-bearing species S. etuberosum, S. fernandezianum and S. palustre, suggesting that *RGA1-blb* was already present before the divergence of tuber-bearing and non-tuber-bearing Solanum species. The allele frequency of RGA3-blb is, however, much lower. Highly conserved Rpi-blb1 (>99.5%) homologues are discovered not only in S. bulbocastanum but also in Solanum stoloniferum, a distinct tetraploid species from the series Longipedicellata. A number of dominant R-genes (Rpi-sto1, Rpi-plt1, Rpi-pta1 and Rpi-pta2) are identified in several F1 populations, derived from the relevant late blight resistant parental genotypes harboring the *Rpi-blb1* homologue. Furthermore, *Rpi-sto1* and *Rpi-plt1* reside at the same position on chromosome VIII as *Rpi-blb1*. We propose that the above four genes share the same ancestry with *Rpi-blb1* from *S. bulbocastanum*. Segregation data also indicates that an additional unknown late blight resistance gene is present in three of the four segregating populations. In contrast to Rpi-blb1, Rpi-blb2 is not detected in the examined set of material.

Allele frequency and allelic diversity of *Rpi-blb1* and *Rpi-blb2* is analyzed in accessions from *S. bulbocastanum* and the closely related species *S. cardiophyllum* (**Chapter 5**). Highly conserved *Rpi-blb1* alleles are found in 24 Mexican accessions, but not in material originating from Guatemala. Sequence analysis of a randomly selected set of genotypes reveals 19 *Rpi-blb1* haplotypes. Our results confirm that *Rpi-blb1* belongs to the type II class of resistance genes that evolve slowly (**Chapter 4** and **5**). Sequences of all putative susceptible *Rpi-blb1* are identical, suggesting that a single mutation event generates this allele. *Rpi-blb2* is present in only eight *S. bulbocastanum* accessions but not in other wild species examined. This, taken together with the fact that all the *Rpi-blb2* alleles examined are identical, suggests that *Rpi-blb2* has evolved recently (**Chapter 4 and 5**).

Chapter 6 discusses findings obtained from this study in a context of systematics and evolution. The *Rpi-blb1* gene is originally discovered and cloned from *S. bulbocastanum*, a species that cannot be crossed with the cultivated potato *S. tuberosum* directly. Our study shows that functional homologs of *Rpi-blb1* are also present in *S. stoloniferum*, a species that can be crossed with cultivated potato directly. So, the *Rpi-sto1* gene from *S. stoloniferum* should be easier to introduce into cultivated potato than the *Rpi-blb1* gene from *S. bulbocastanum*. We anticipate that for other resistance genes present in primitive species, a similar situation may exist, i. e. homologs being also present in more advanced species that can be more easily used for breeding. Therefore, before starting a potato breeding program in a species that does not allow an immediate cross with cultivated potato, evaluation of directly crossable germplasm for the presence of that gene may speed up the breeding program and save valuable time and money.

Samenvatting

Aardappel (*Solanum tuberosum* L.) is een gewas met een grote secundaire gene pool waarin vele belangrijke eigenschappen aanwezig zijn, die in veredelingsprogramma's gebruikt kunnen worden. De aardappelziekte, veroorzaakt door de oomyceet *Phytophthora infestans* (Mont.) de Bary, is een van de ernstigste problemen in aardappel productiegebieden. Het telen van aardappelen in noord-west Europa is alleen mogelijk als het gewas veelvuldig behandeld wordt met bestrijdingsmiddelen. Om daarin verandering te brengen is er veel aandacht voor resistentie veredeling. Dit proefschrift beschrijft het gebruik van 'nucleotide binding site (NBS) profiling' om de systematiek van het geslacht *Solanum* te bestuderen en om markers voor resistentie te identificeren, die door veredelingsbedrijven kunnen worden toegepast. Ook worden in detail de diversiteit en evolutie van twee *Phytophthora* resistentie genen (*Rpi-blb1* en *Rpi-blb2*) bestudeerd in een groot aantal *Solanum* soorten.

Hoofdstuk 2 evalueert de mogelijkheid die NBS profiling biedt voor fylogenie reconstructie, gebruikmakend van een set van meer dan 100 genenbank accessies, die 47 knoldragende *Solanum* soorten vertegenwoordigen. De resultaten van NBS profiling worden vergeleken met die verkregen met 'amplified fragment length polymorphisms' (AFLP). Cladistische en fenetische analyses laten zien dat de twee technieken bomen opleveren met vergelijkbare topologie en resolutie, hetgeen er op wijst dat NBS profiling een alternatief kan zijn voor AFLP in fylogenie reconstructie. De NBS profiling boom vertoonde geen duidelijk effect van het zich richten op resistentie genen. Bij deze knoldragende *Solanum* soorten had 91% van de co-migrerende banden sequenties die meer dan 95% similariteit vertoonden, wat er op wijst dat homoplasie beperkt is.

Hoofdstuk 3 presenteert de veranderingen in de genetische diversiteit van resistentie gen loci in een set van 456 Europese aardappel rassen gedurende de afgelopen 70 - 80 jaar. De genetische diversiteit op deze loci nam iets toe, vermoedelijk door de veredelingsactiviteiten waarbij resistenties vanuit wilde soorten in de gecultiveerde aardappel werden ingebracht. Verscheidene kandidaat R-genen werden geïdentificeerd door de NBS profiling markers te koppelen aan afstammings en fenotypische gegevens van de rassen. Daar de homoplasie in NBS profiling markers laag was konden de markers ook gekoppeld worden aan de knoldragende *Solanum* soorten die de resistenties bijdroegen aan de rassen. Een van de geïdentificeerde markers is zeer waarschijnlijk afkomstig uit *Solanum vernei*, gezien de aanwezigheid van de marker in zowel *S. vernei* accessies als in rassen die *S. vernei* in hun stamboom hebben. De marker was ook gecorreleerd met de resistentie data van de betrokken rassen.

Hoofdstuk 4 beschrijft 'allele mining' van twee Phytophthora R-genen, Rpi-blb1 en Rpi-blb2, oorspronkelijk geïdentificeerd in S. bulbocastanum. Ook wordt de structuur van de cluster die Rpi-blb1 bevat geanalyseerd, door de aan- en afwezigheid van de genen die Rpi-blb1 flankeren (RGA1-blb and RGA3-blb) vast te stellen. Een groot aantal Solanum soorten werd getest op de aanwezigheid van RGA1-blb en dit gen bleek aanwezig en sterk geconserveerd, niet alleen in alle geteste knoldragende Solanum soorten, maar ook in de niet-knoldragende soorten S. etuberosum, S. fernandezianum en S. palustre, hetgeen suggereert dat RGA1-blb reeds aanwezig was voor de divergentie van knoldragende en niet-knoldragende Solanum soorten. De allel-frequentie van RGA3-blb was echter veel lager. Sterk geconserveerde Rpi-blb1 (>99.5%) homologen werden niet alleen in S. bulbocastanum aangetroffen maar ook in S. stoloniferum, een tetraploide soort uit de serie Longipedicellata. Een aantal dominante R-genen (Rpi-stol, Rpi-plt1, Rpi-ptal en Rpi-pta2) werd geïdentificeerd in F1 populaties, welke gebaseerd waren op resistente genotypen die de Rpi-blb1 homoloog bevatten. Rpi-stol en Rpi-pltl blijken op dezelfde positie op chromosoom VIII te liggen als *Rpi-blb1*. De vier genoemde genen delen hun afkomst met *Rpi-blb1* uit S. bulbocastanum. Gegevens over uitsplitsing geven ook aan dat er een additioneel *Phytophthora* resistentie gen aanwezig is in drie van de vier uitsplitsende populaties. Anders dan *Rpi-blb1* werd *Rpi-blb2* niet aangetroffen in het onderzochte materiaal.

De allel-frequentie en de allelische diversiteit van *Rpi-blb1* en *Rpi-blb2* werd onderzocht in accessies van *S. bulbocastanum* en de nauw verwante soort *S. cardiophyllum* (Hoofdstuk 5). Sterk geconserveerde *Rpi-blb1* allelen werden aangetroffen in 24 Mexicaanse accessies, maar niet in materiaal afkomstig uit Guatemala. Met sequentieanalyse van een set genotypen werden 19 *Rpi-blb1* haplotypen ontdekt. De resultaten bevestigen dat *Rpi-blb1* behoort tot de klasse van type II resistentiegenen, die langzaam evolueren (Hoofdstuk 4 and 5). Alle

vermoedelijk vatbare *Rpi-blb1* sequenties zijn identiek, hetgeen suggereert dat dit allel door slechts één mutatie-gebeurtenis is ontstaan. *Rpi-blb2* is aanwezig in slechts acht accessies van *S. bulbocastanum* en niet in de andere onderzochte wilde soorten. Samen met het feit dat alle onderzochte *Rpi-blb2* allelen identiek zijn, suggereert dit dat *Rpi-blb2* recentelijk is geëvolueerd (**Hoofdstuk 4 and 5**).

Hoofdstuk 6 bespreekt de uitkomsten van dit onderzoek in de context van systematiek en evolutie. Het *Rpi-blb1* gen werd oorspronkelijk ontdekt in en gekloneerd uit *S. bulbocastanum*, een soort die niet direct kruisbaar is met de cultuuraardappel. Dit onderzoek heeft aangetoond dat functionele homologen van *Rpi-blb1* ook aanwezig zijn in *S. stoloniferum*, een soort die wel direct kruisbaar is met de cultuuraardappel. Het *Rpi-sto1* gen uit *S. stoloniferum* zou makkelijker in de cultuuraardappel geïntroduceerd moeten kunnen worden dan het *Rpi-blb1* gen uit *S. bulbocastanum*. Het is te voorzien dat dit ook kan gelden voor andere resistentie-genen die aanwezig zijn in primitieve soorten, n.l. dat homologen aanwezig zijn in meer afgeleide soorten die makkelijker in de veredeling kunnen worden gebruikt. Het zal daarom nuttig zijn om, voor een aardappel veredelingsprogramma wordt gestart in een soort die niet direct kruisbaar is met de cultuuraardappel, direct kruisbaar germplasm te evalueren op de aanwezigheid van dat gen, zodat het veredelingsprogramma kan worden versneld, waardoor tijd en geld kan worden bespaard.

中文摘要

马铃薯是有巨大的次生基因资源的作物,资源中有很多重要的性状能用于马铃薯 育种。晚疫病是马铃薯种植区最大的问题之一,在北欧和西欧国家,马铃薯生长 中使用大量的药物,因此,抗病育种是马铃薯育种的重点。该论文用核苷酸结合 位点图谱研究了茄属的系统发育和抗病基因标记的发掘,这些标记有可能被育种 公司应用。论文还利用很多茄种资源详细研究了两个晚疫病抗病基因 *Rpi-blb1* 和 *Rpi-blb2* 的多态性和进化。

第二章利用 100 多份基因库资源 47 个种,评估了核苷酸结合位点图谱在系统发育重建的可能性。比较分支系统和表型分析结果,核苷酸结合位点图谱和扩增片断长度多态性图谱产生相似的系统发育树,表明核苷酸结合位点图谱能够用于系统发育重建。核苷酸结合位点图谱系统发育树不能明显区分出抗病基因资源和非抗病基因资源。马铃薯种的共分离片断序列分析表明,91%的共分离片断同源性在 95%以上,说明核苷酸结合位点图谱非同源相似程度低 (第三章)。

以过去七八十年中456个欧洲马铃薯品种为材料,第三章报告了抗病基因位点遗 传多态性的变化。遗传多态性轻微增加,这在很大程度上是因为野生的马铃薯种 被用于了马铃薯的育种。通过结合核苷酸结合位点图谱标记和品种的系谱及表型 分析发现了几个候选抗性基因标记。由于核苷酸结合位点图谱的低非同源相似程 度,这些标记也被用于马铃薯种和品种之间的比较,其中,这些马铃薯种贡献了 抗病基因标记给马铃薯品种。一个标记有可能来自种Solanum vernei,因为此标 记既存在于S. vernei资源中,也存在于系谱中有S. vernei的马铃薯品种中。此标 记的存在也与品种的表型数据相关。

第四章描述了两个晚疫病抗病基因 *Rpi-blb1* and *Rpi-blb2* 的等位基因发掘。这两个抗病基因起源于 *S. bulbocastanum* 种。通过判断 *Rpi-blb1* 侧翼区 *RGA1-blb* and *RGA3-blb* 的存在与否,第四章还分析了 *Rpi-blb1* 基因家族的结构。*RGA1-blb* 序列高度同源,不仅存在于所有研究的结薯马铃薯种中而且还存在于非结薯马铃薯种 *S. etuberosum*, *S. fernandezianum* 和 *S. palustre*,这些表明 *RGA1-blb* 在结薯马

99

铃薯种和非结薯马铃薯种的分化之前就已经存在。相对而言, RGA3-blb 的位点 发生频率较低。在两个种 S. bulbocastanum 和 Solanum stoloniferum 中发现了高 度同源的 Rpi-blb1 (>99.5%)。Solanum stoloniferum 是属于分类单元 series Longipedicellata 中的一个四倍体种。在几个以含有 Rpi-blb1 同源类似物抗病植株 为亲本的 F1 群体中发现了几个显性抗病基因 Rpi-stol, Rpi-plt1, Rpi-ptal and Rpi-pta2。另外,与 Rpi-blb1 相同, Rpi-stol 和 Rpi-plt1 也位于 8 号染色体。 我 们认为,以上四个基因和来自于 S. bulbocastanum 的 Rpi-blb1 有共同的祖先。分 离数据也表明,在三个分离群体中各含有另外一个未知的晚疫病抗病基因。和 Rpi-blb1 不同的是,在所有研究的材料中都没有发现 Rpi-blb2 等位基因。

第五章分析了 *Rpi-blb1* 和 *Rpi-blb2* 在种 *S. bulbocastan* 和近缘种 *S. cardiophyllum* 的发生频率和多态性。在 24 份墨西哥资源中发现了高度保守的 *Rpi-blb1* 等位基因,在来自危地马拉的资源中没有发现 *Rpi-blb1* 等位基因。随机选取 *Rpi-blb1* 等位基因,序列分析识别到了 19 个单元型, *Rpi-blb1* 属于进化慢的 II 型抗病基因 (第四章和第五章)。所有推定的感病 *Rpi-blb1* 序列均相同,意味着单个突变事件产生了这个感病位点。只是在 8 份 *S. bulbocastanum* 资源中发现了 *Rpi-blb2* 等位基因,并且所有的 *Rpi-blb2* 等位基因具有相同的序列。所有这些表明 *Rpi-blb2* 进化发生在不久以前 (第四章和第五章)。

第五章在系统发育和进化的基础上讨论了论文的研究结果。基因 *Rpi-blb1* 最先 在种 *S. bulbocastanum* 中被发现和克隆,这个种不能直接用于与栽培马铃薯的杂 交。论文的研究结果表明,有功能的 *Rpi-blb1* 等位基因也存在于能与栽培马铃 薯直接杂交的种 *S. stoloniferum* 中。 因此,相对于来源于 *S. bulbocastanum* 的 *Rpi-blb1* 抗病基因,来源于 *S. stoloniferum* 的 *Rpi-blb1* 等位抗病基因 *Rpi-sto1* 能 够较为容易转入栽培马铃薯中。我们预测在其他的原生种中其它抗病基因也有可 能有类似情况,即:抗病基因同源类似物存在于相对较为高级的种中,而这些种 又能比较容易的应用于育种。因此,在开始一个不能直接用于杂交育种的马铃薯 种的育种项目时,研究该抗病基因在其他可直接用于杂交育种的种有可能加速育 种进程,节省时间并降低费用。

Acknowledgements

Acknowledgements

In the last minute of the PhD study, it is my honor to thank all who helped and contributed to the completion of my thesis.

Prof. Dr. Zhou Xin'an, I am so lucky to have you as my promoter in Chinese Academy of Agricultural Sciences (CAAS). Thank you for your kindness, generosity, financial and administrative support. At the moment you urgently needed a PhD student for the research, you agreed to let me participate the Sino-Dutch project for the benefit of my future. Every time I visited the Netherlands, you help me to provide the financial guarantee that I will be back in China. When I wrote research proposals, you helped me tremendously.

I would like to thank Ben Vosman, my co-promoter, for all he has done for me during the four years' study, including help on visa and funding application, daily supervision and guidance. Despite my worries, everything went smoothly. Your optimism inspired me so much and will influence me in the future. My writing period was a challenge to you, too. For three weeks, you got "evening homework" almost every day. Without your contribution, I would never have finished the thesis in time. I also very much appreciated the guidance and help of my other co-promoter Ronald van den Berg. Thank you for the comments on the manuscript, Dutch summary translation, arrangements for my graduation and promotion.

Prof. Dr. Marc Sosef, my promoter, I owe you gratitude for your critical comments on the thesis and help during the final period of my PhD research. Even when you were busy, faraway in Africa, you remembered my graduation and helped to arrange everything very well.

Gerard, although officially you were not my supervisor, you helped me whenever you could and contributed a lot to the thesis. Thanks to your directness, I got used to the Dutch culture very quickly. Edwin, with your input, our project made quick progress. I learned much from you in our discussions. I also want to thank you for letting me join your group during the last part of my research. Your critical comments contributed much to my thesis. Vivianne, thank you for the guidance on *Phytophthora infestans*. Your help enables me to do the late blight screen in China. In addition, without the segregation population from you, the "sto paper" would have been much weaker. Sjefke and Anne from Agrico, I owe you a lot for two chapters of the thesis. Sjefke, thanks for providing three segregation populations and the valuable suggestions. Your critical view on science impressed me deeply. Anne, you did such an excellent job! Your efficiency was really amazing to me. I am very happy with our co-operation. Roel, I appreciate your contribution to the thesis. You also for offering me the chance to participate the 'Day of the cultivated plant' 2003 potato - Organized by an NGO

in Hamm, Germany.

Prof. Dr. Xie Kaiyun, you became my co-promoter in China after I joined the Sino-Dutch project. I will never forget what you have done for me, picking me up in Kunming airport and arranging accommodation for me in the 5th World Potato Congress, helping to contact researchers in Yunnan Academy of Agricultural Sciences for the late blight screen field test. I am very happy that you can be present at my PhD promotion ceremony in Wageningen.

Thanks should go to colleagues in PRI and plant breeding. I would like to thank Mirjam for the help on the systematic part. Gratitude goes to Paul and Martijn for their help with the software. Clemens, I appreciate your contribution to one chapter. Herman and Björn, thank you for providing DNA samples. Rene, your valuable comments helped me a lot. Ronald, it is so nice to have a potato expert like you around. Henry and Gerard, thanks for your contribution to the NBS profiling work. Joao, Ralph and Roeland, thank you for the help on the statistics. Richard, participation in the same course in CENTA made me realized what a tight schedule I have. I am very glad that finally I made it in time. Mariame, Annie and Letty, thank you so much for helping me with filling in all kinds of Dutch forms and making calls now and then.

The lab work became much easier with the help and advice from Wendy, Martijn, Hanneke, Danny, Yolanda, Ria and Gerda (the former Biodiversity and Identity group). Later, after the integration, I benefited much from sharing the lab with Koen, Fien, Petra and Marjon. In addition, I also get many help from Gert and Annelies.

Gratitude should go to Prof. Evert Jacobs and Prof. Qu Dongyu who initiate the Sino-Dutch program. Guusje and Andy, we spent many happy times together in Beijing and the Netherlands. Guusje, you were very kind to all PhDs in the Sino-Dutch program and willing to help all the time. Maarten, thanks for bringing the Chinese food to me which actually made me less homesick.

PRI is an international place where I am glad to have worked. I shared office with many international faces: Wendy, Martijn, Adriana, Zifu, Reza, Guillermo, Anoma, Alireza, Marteen and Zusaza. Thank you for the help in many ways and sharing information about your home country culture.

I would like to thank teachers in oil crop institute (CAAS) for their help during my study in Wuhan, especially Prof. Li Guangming, Hua Fang and all teachers in the soybean group. Thanks go to teachers in CAAS graduate school, especially Prof. Lu Qingguang, Yu Zirong, Wang Chunxia, Jiang Xiwen and Wen Yang. I will never forget the help from IVF, especially Prof. Wang Xiaowu, Liu Guangshu, Prof. Sun Rifei and Jin Liping, Zhang Yanguo, Yang Baojun, Kang Jungen, Li Ying and Liu Yanling. Teachers in International Co-operation Agency are acknowledged for the help on funding application.

Prof. Sui Qijun, thanks for providing the field for late blight screen in Yunnan. Xianping,

you were so kind to arrange my stay in Kunming. I benefited much from our co-operation. Unfortunately, due to the extremely dry weather in Kunming in 2005, our second year late blight field test failed. Therefore, one chapter which should have your name on the author list aborted. I feel sorry for this. I hope the materials I introduced to you will help your breeding program. Zhijian, we knew each other from the Sino-Dutch summit meeting in Beijing, 2003. Later, you kindly offered the *phytophthora* isolates to me for free. Without your help, my late blight screen in China would have been impossible. I am so excited that in 2006 you visited Netherlands, giving me the chance to show my gratitude. These pathogen experts should be mentioned: Prof. Li Baoju and Li Xixiang (IVF), Yang Yanli (Yunnan Agricultural University), Zhu Jiehua (Hebei Agricultural University). Thank you all for your help when I visited your labs.

Far away from home, many friends around make the time in Wageningen less alone: Liying, Yehong, Jianjun, Junming, Wu Jian, Aiguo, Guo Jun, Chengwei, Limei, Yongyan-CAAS PhDs in the Sino-Dutch program; Jifeng, Lou Ping, Ningwen, Yuling, Wan Xi, Guangcun, Zhang Lu, Zhongkui, Xingfeng, Xiaomin, Caiyun, Jiayou, Jing Qi; Zhihui, Zhongshan, xuekui, Danfeng, Shujun. Jack, I am grateful for the accommodation in Gouda. I also enjoyed very much the travel with you. Herman, thanks for the information about Paris which made my travel very safe.

Andrew and Wilmi, thanks for giving me a "home" in the Netherlands. Whenever I have trouble, I can't help calling you or just dropping by without any appointment. So many memories are in my mind: You drove me to Ede hospital after I was bitten by the dog; you accompanied me to visit the dentist; Every Christmas I was in your house sharing dinner with you; I had wonderful time with your family members. Wilmi, I wish you good luck for your study.

I would like to thank teachers and friends in China. My master supervisor Prof. Du Guoqiang and your family (Shi Xiaoxin and your parents-in-law), master supervisor Prof. Ge Huibo, Zhang Xueying, Shi Yun, your trust, encouragement and help make me realized how wonderful the world is. Zhanglan, I am so lucky to have had you as classmate. We have known each other for 12 years. I am so happy that you got married during the May holiday this year. Wish you a very happy time. Guochao, 15 years passed since we first met. Glad to know that what I have done influenced your decisions again and again, which made two of us be together much longer. Thanks for listening to my complaints before my going abroad and after my going back to Beijing in 2003. Yifan, Mada and Wenzhen, distance is never a problem for you to reach me. You shared much more tears than laughs with me during my stay in the Netherlands, but none of you ever complained. Without your mental support, I would have never finished my PhD study.

During the PhD journey, I owe too much to my family. Grandma, you left me without me

by your side, but your love and spirit are always with me; I am in debt to my sisters and brothers-in-law. Thanks for taking care of our parents when I am not around. Mom and Dad, I can imagine how tough it is for you when I am far away for such a long time. Thank you for your love and support for so many years. I am back at home soon, so please don't worry.

Miqia Wang 王密恰 Wageningen, the Netherlands May, 2007

Curriculum Vitae

Miqia Wang was born on August 13, 1976, in Raoyang, Hebei Province, China. She started her bachelor study in Hebei Agricultural University in 1999. As a distinguished graduate, she commenced her master study in the same university without exam and obtained the MSc degree majored in horticulture in 2002. Afterwards, she entered Chinese Academy of Agricultural Sciences (CAAS) in Beijing as a PhD student. She finished the study (compulsory for the graduation of PhDs in China) in Beijing, CAAS. In the end of 2002, she got the chance to participate the Sino-Dutch PhD program. In early 2003, she worked on soybean in Oil Crop Research Institute in Wuhan, CAAS. She started to work in Plant Research International (PRI) in mid-April in 2003. After seven months, she went back to China working on late blight screen in the Sino-Dutch joint lab in Beijing. After obtaining two scholarships, she came to PRI in mid-April 2005. The project she worked in PRI ended up with the completion of this thesis.

Email: miqiawang@hotmail.com

Education Statement of the Graduate School

Experimental Plant Sciences

ssued to: Date: Froup:	Miqia Wang 12 June 2007 Biosystematics and Plant Research International Wageningen University and Research Centre	
) Start-up	phase sentation of your project	date
	n of resistance gene analogs in <i>Solanum</i>	Aug 13, 2003
	or rewriting a project proposal	Aug 12 22 2004
	NBS profling on systematics, fellowship programme of the netherlands ministry of agriculture, anagement and food qualtity	Aug 13-23, 2004
	n of late blight genes in Solanum, National abroad association funding of China	Dec 15-25, 2004
	a review or book chapter	
MSc cou		
	ory use of isotopes dling with radioactive materials and sources	May 19-23, 2003
Sale han	Subtotal Start-up Phase	9.0 credits*
) Scientific	Exposure	<u>date</u>
	D student days	
	S PhD Day, Radboud University Nijmegen (Netherlands)	Jun 2, 2005
	nch PhD Day, Paris (France)	Jun 9, 2006
	me symposia ne 2 symposium 'Interactions between Plants and Biotic Agents', Leiden University (Netherlands)	Jun 23, 2005
	ne 4 symposium 'Genome Plasticity', Wageningen University (Netherlands)	Dec 9, 2005
	unteren days and other National Platforms	
	LW, Experimental Plant Sciences, Lunteren (Netherlands)	Apr 4-5, 2005
	s (series), workshops and symposia	G 26 2005
	minar: Discovery of funcitoanl elements in the Arabidopsis genome minar: small RNA, chormosome organization and gene expression	Sep 26, 2005 Oct 23, 2006
	variation: genomics and evolution	Nov 16, 2006
flying se	minar: RNA silencing pathways-mechanisms and functions	Mar 26, 2007
Seminar	-	
	ional symposia and congresses	
-	nomics: from crop production to healthy food, Beijing (China)	Nov 9-11, 2003
	l Potato Congress, Kunming (China) xploit Project symposia, Amsterdam (Netherlands)	Mar 24 - 30, 2004 Apr 12, 2006
Presenta		1 ,
Oral: Uti	lity of NBS profiling on systematics, Wageningen (Netherlands)	Sep 9, 2003
	oster: Systematic relationship based on resistance gene analogs in Solanum, Beijing (China)	Nov 9, 2003
	sentation, late blight screen on Solanum species in Yunnan (China)	Apr 16, 2004
	lity of NBS profiling for plant systematics, Wageningen (Netherlands) elic diversity for late blight resistance genes in tuber bearing <i>Solanum</i> , Amsterdam (Netherlands)	Dce 9, 2005 Apr 12, 2006
	elic diversity of <i>Rpi-blb1</i> and <i>Rpi-blb2</i> in <i>Solanum</i> , wageningen (Netherlands)	Sep 25, 2006
IAB inte		Jun 21, 2005
Excursio		
Tomato	& potato late blight in China, Inst. Vegetable and Flowers (IVF), CAAS, Beijing (China) Subtotal Scientific Exposure	Nov 17-21, 2004 12.8 credits*
In-Depth	Studies	date
EPS cou	rses or other PhD courses	
	ar phylogenies: construction and interpretation, Wageningen (Netherlands)	Nov 4-7, 2003
Advance Journal	d biochemistry, graduate school of CAAS (China) club	Oct 7-11, 2002
weekly l	terature discussion in IVF, CAAS or PRI (Netherlands and China)	2003-2007
	al research training	Dec 10 14 2004
Overview	v of pathogenPhytophthora infestans, Yunnan Acad. of Agric. Sciences, Yunnan Agricultural University, China Subtotal In-Depth Studies	Dec 10-14, 2004 7.2 credits*
Personal	development	date
Skill tra	ining courses	
	vrite scientific proposal, CAAS (China)	Nov 21-25, 2002
	petence test (Netherlands) 9.0 introduction (Netherlands)	Nov 8, 2005 Oct 10, 2005
	9.0 introduction (Netherlands) entic writing, CENTA language center, Wageningen (Netherlands)	Sep 26-Oct 14, 200
	ation of PhD students day, course or conference	-
	n molecular techniques, Beijing (China)	Nov 10-14, 2004
Member	ship of Board, Committee or PhD council Subtotal Personal Development	5.4 credits*
	TOTAL NUMBER OF CREDIT POINTS*	34.4

TOTAL NUMBER OF CREDIT POINTS* Herewith the Graduate School declares that the PhD candidate has complied with the educational requirements set by the Educational Committee of EPS which comprises of a minimum total of 30 credits

* A credit represents a normative study load of 28 hours of study

Layout and design: Miqia Wang

Printing: Printpartners, Ipskamp, Enschede