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Transport in structured porous media 
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1 INTRODUCTION 

Aggregates, cracks, channels left behind 
by decayed roots, and by animals, and 
layering often have a large influence on 
the transport of water and of solutes in 
soils. Physico-mathematical models for 
transport in soils with such structures 
usually are based on a distribution of 
water and/or solutes among a mobile and a 
stagnant phase, roughly corresponding to 
networks of large and of small pores. For 
any constituent the combined balances of 
mass for the mobile and stagnant phases 
can be written as 

3t 9t (1) 

where t is the time, V is the vector 
differential operator, pm is the mass of 
the constituent in the mobile phase per 
unit bulk volume (including the volume 
occupied by the solid phase of the porous 
material), ps is the mass of the constit
uent in the stagnant phase per unit bulk 
volume, and F is the flux of the constit
uent in the mobile phase. Important 
further ingredients in these models are 
the mechanisms of transport in the mobile 
phase and the nature of the storage 
capacities of the phases and the asso
ciated mechanisms of exchange between the 
phases. 

2 MECHANISMS OF TRANSPORT IN THE MOBILE 
PHASE 

In the literature the transport is often 
assumed to be either purely convective or 
purely diffusive, but sometimes it is 
assumed to be simultaneously convective 
and diffusive. Purely convective transport 

has been assumed to describe mass transport 
in packed beds (Klinkenberg 1948) and 
soils (Gardner and Brooks 1957; Raats 
1973); it also appears in mathematically 
related theories for heat exchangers 
(Nusselt 1911; Anzelius 1926) and for 
transport of sediment (Einstein 1936; 
Polya 1937). Purely diffusive transport 
occurs in theories describing the influ
ence of tides along coasts and in rivers 
on water levels in adjoining aquifer 
systems (Steggewentz 1933; van der Kamp 
1973), transport of water and oil in 
structured porous media (Barenblatt and 
Zheltov 1960; Barenblatt et al. 1960; 
Raats 1969; Streltsova 1976), secondary 
consolidation in soil mechanics (Taylor 
and Merchant 1940; Gibson and Lo 1961) 
and in mathematically related theories 
describing heat transfer in media with 
two temperatures (Maxwell 1867; Chen and. 
Gurtin 1968). Simultaneous convective and 
diffusive transport has been used to 
describe transport of solutes /in packed 
beds (Lapidus and Amundson 1952) and 
soils (see Bolt 1979 and Van Genuchten 
and Cleary 1979 for reviews). In the '' 
context of this paper, no special compli
cations arise from assuming simultaneous 
convective and diffusive transport. For 
definiteness, all equations will be 
written for a solute dissolved in water, 
but the results are easily adaptable to 
any entity, including solutes, water and 
heat, and to either purely convective 
or purely diffusive transport. Thus the 
flux F is assumed to be given by 

F = Dm Vc, (2) 

where 0m is the volumetric water content 
of the mobile phase, v is the velocity of 
the water in the mobile phase, c is the 
concentration of the solute in the mobile 
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phase, and D m is the dispersion coeffi
cient associated with the mobile phase. P s = K P„ 

3 SOME SIMPLE CAPACITY RELATIONSHIPS 

The bulk density p m and the concentration 
c are assumed to be related by 

(em + k) c, (3) 

where k describes instantaneous, linear 
adsorption. A vanishing storage capacity 
in the mobile phase (8m + k •+ 0) repre
sents an important special case (e.g., 
Anzelius 1926; Steggewentz 1933; Polya 
1937; Raats 1969, 1973). Introducing 
equations (2) and (3) into equation (1) 
and using the mass balance for water in 
the mobile phase (assuming there is no 
exchange of water between the mobile and 
stagnant phases), 

3t 

gives 

V-(6m v ) , 

<*s 

3t ' 

(4) 

(5) 

3PS 3Pm 
_ = K _ - K. (6 m + k) 

3c 
3t 

(8) 

Some studies suggest that the effect of 
structure upon transport of solute can be 
represented by an equivalent dispersion 
coefficient De proportional to v 
(Passioura 1971 ) : 

3p 

r a K (9m + « || - De (9) 

In this paper the exchange among the 
phases will be treated as a full-fledged 
diffusion process. As a result, equation 
(5) will become a linear, partial 
integro-differential equation. It will 
be shown that, by using Laplace 
transforms, this equation can be converted 
to a partial differential equation in 
which derivatives with respect to time 
of all orders occur. The equilibrium, 
equivalent conductance, and equivalent 
dispersion models, given by equations 
(8), (7), and (9) respectively, will be 
shown to be approximations of such 
partial differential equations. 

where the mobile phase operator M is 
given by 

M = (6 k) 
_3c 
3t 

v V c D m V z c . (6) 

The main concern of this paper is the 
exchange between the mobile and stagnant 
phases, accounted for by the term 3ps/3t 
in equations (1) and (5). In most papers 
cited above the rate of exchange is 
assumed to be given by an expression of 
the form 

at a (p„ - K p m ) , (7) 

where a is an exchange constant, and K 
is the capacity ratio of the stagnant and 
mobile phases at equilibrium. Equation 
(7) is tantamount to assuming that the 
two phases are separated by a membrane 
with conductance a and that the phases 
themselves are perfectly mixed. If the 
time rates of change are very slow, then 
the equivalent conductance model given 
by equation (7) reduces to the equilib
rium model given by 

4 DIFFUSIVE EXCHANGE BETWEEN PHASES 

I will sketch the theory for the simplest 
type of structured medium, namely one in 
which the mobile, stagnant and inert 
phases occur in layers (Fig. 1 ) , 

mobile phase 

stagnant 
phase 

Fig. 1. Layered structure. 

The exchange among the phases can then be 
treated as a one-dimensional diffusion 
process over distance L, with an effec
tive diffusion coefficient D within the 
stagnant phase. The ratio L2/D is the 
characteristic time of the exchange 
process and can be used to define a 
dimensionless time t* by 
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t" = — t. 
T 2 

(10) 

Using Duhamel's theorem, the concentration 
c in the mobile phase can be shown to 
satisfy (Skopp and Warrick 1974): 

Taking the Laplace transform of the 
relaxation integral form (11) of the 
transport equation gives 

M = (6 + k) K sc , (15) 
n=0 s"> 

D (6m + k) K — ƒ -^ 
m L2 » at* 

(X, T-) 

£ 2 exp - ß2 (t-- T") dV; 
n=0 

where 

T"" = T 
. 2 

(ID 

(12) 

denotes instants in the past, and 

_ (2n + l)ii 
Pn 2 

denotes a geometry factor. The combina
tion L /(Dßn) represent a discrete 
spectrum of relaxation times. The sum 

(13) 

E 2 exp 
n=0 

(tv_ Tv} (14) 

describes the memory of the stagnant phase 
for changes of concentration at the 
boundary between the mobile and stagnant 
phases. Fig. 2 shows successive terms of 
this sum. 

where M is the Laplace transform of the 
mobile phase operator, 

M = (6m + k) sc + 6m v.Vc - DmV2 c, (16) 

and 

(L2/D)s. (17) 

The infinite series in equation (15) can 
be expressed in terms of a tanh function: 

M = - (s*)~* tanh (s*)* (9m + k)Ksc (18) 

The tanh function can in turn be expanded 
in another infinite series: 

M = - {1 - - s"+ Rj} (9m + k)Ksc (19) 

where the remainder R1 is given by 

R = — (s*)2 - — (s*)3 + ... (20) 
1 15 315 

Inversion of the Laplace transforms in 
equations (19) and (20) gives the first 
differential form of the transport 
equation: 

M = - {1 
l L2 3 
s D 3t + R l } 

memory f unc t ion 
10 

0 0.1 0.2 0.3 0.4 0.5 
dimensionless elapsed time, t * - r« 

On, + W K 
_8c 
3t ' 

where the remainder R is given by 

R, = 
L2,2 32 

{̂ -) 1 15 D 3t2 

T 2 a3 

_^_ {k }3 3 _ + 
315 D 3 t 3 

(21) 

(22) 

An alternative form can be derived by 
using in equation (18) the reciprocal 
relationship between the tanh and the 
ctanh functions: 

Fig. 2. The memory function. 
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(s*)5 ctanh (s*)5 M = - (6m+k)Ksc. (23) 

Expanding the ctanh function in an 
infinite series gives: 

•{1 + I s* + R2}M = -(6m + k)Ksc, (24) 

where the remainder R is given by 

of concentration. 
Substituting (6) into (26), neglecting 

the remainder R2, and rearranging, gives 
the second approximate differential form 
of the transport equation: 

(1 + K ) (8m + k) |f + 9mv - Vc-DmV2c 

T 2 ^2 

D 3 t 2 

R2 = - f ? ( s " V +TTT (s'"r + ••• (25) 

Inversion of the Laplace transforms in 
equations (24) and (25) gives the second 
differential form of the transport 
equation: 

<' +iïï ft- + V M 

On, + k) K 3t' (26) 

where the remainder R-is given by 

r, !_ fit "12 
R2 - '.S b j 

3t2 

rL̂ -,3 33 

915 "D £ v 3t6 
(27) 

5 FOUR APPROXIMATIONS 

Substituting (6) into (21), neglecting 
the remainder R , and rearranging gives 
the first approximate differential form 
of the transport equation: 

O + K) cem + k) | f + emv • v c -Dm v 2 c 

= tïMem + k > R ~ 
dt 

(28) 

Neglecting the right hand side of equation 
(28) amounts to assuming that the two 
phases are in equilibrium with each other: 

i l ' 
3 D 3t 

{9mv Vc - DmV2c (30) 

This form of the transport equation also 
results if equations (1), (2), and (3) 
are combined with the equivalent 
conductance model given by equation (7), 
provided the conductance a is chosen to be 

3D 
j 2 

(31) 

This result is a nice surprise! 
The equilibrium equation (29) represents 

a zeroth-order approximation, while 
equations (28) and (30) are two alternative 
first-order approximations. Solving the 
zeroth-order equation for 8my • Vc-DmV c 
and substituting the result in the last 
term of equation (30) gives equation (28). 
Thus the right hand sides of equation (28) 
and (30) are roughly equivalent, as one 
would hope for two approximations of the 
same order. 

The zeroth-order equation (29) can be 
used in yet another way to modify the 
right hand sides of the first order 
equations (28) and (30). Assuming the flow 
is one-dimensional and v is constant and 
neglecting the term accounting for the 
dispersion, equation (29) reduces to 

_3c 

3t 

6m v 

(i + K) (e k) 3x 
(32) 

Substituting the proportional relationship 
between time and space derivatives implied 
in equation (32) into the right hand side 
of equation (28) or of equation (30) gives: 

(1 + K) (6m + k) -^ 

v • Vc - D„V^c = 0 (29) 

(' +K) (6m + « |f - emv |f 

(Dm
 + D.) 

32c 

3x2 
= 0, (33) 

The second order time derivative on the 
right hand side of equation (28) 
describes the negative "inertia" of the 
structured medium with regard to changes 

where the equivalent dispersion coefficient 
De is given by: 
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De 3D (34) 
(6m + k ) 2 (1 + <)' 

This expression for the equivalent 
dispersion coefficient was also obtained 
by Passioura (1971; see also Bolt 1979). 
This result is another nice surprise! 

6 CONCLUDING REMARKS 

In this paper a variety of linear 
theories for transport in structured 
porous media were all shown to have a 
common basis. The pattern of links between 
the various theories is similar to that 
long familiar in linear viscoelasticity 
(cf., Freudenthal and Geiringer 1958; 
Leitman and Fisher 1973). The type of 
analysis presented here for a layered 
structure can in principle be carried out 
for any geometry. Results for media with 
spherical stagnant regions will be pre
sented at the colloquium Euromech 143. 
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