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1 INTRODUCTION

Aggregates, cracks, channels left behind
by decayed roots, and by animals, and
layering often have a large influence on
the transport of water and of solutes in
soils, Physico-mathematical models for
transport in soils with such structures
usually are based on a discribution of
water andfor solutes among a mobile and a
stagnant phase, roughly corresponding to
networks of large and of small pores. For
any constituent the combined balances of
mass for the mobile and stagnant phases
can be written as
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where t is the time, V is the vector
differential operator, p, is the mass of
the constituent in the mobile phase. per
unit bulk volume (including the volume
occupied by the seclid phase of the porous
material), pg is the mass of the constit—
uvent in the stagnant phase per unit bulk
volume, and F is the flux of the constit-
uent in the mobile phase. Important
further ingredients in these models are
the mechanisms of transport in the mobile
phase and the nature of the storage
capacities of the phases and the assc-
ciated mechanisms of exchange between the
phases.

Z MECHANISMS OF TRANSPORT IN THE MOBILE
PHASE

In the literature the transpert is often
assumed to be either purely convective or
purely diffusive, but sometimes it is
assumed to be simultaneously convective
and diffusive. Purely comvective transport
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has been assumed to describe mass transpori
in packed beds (Klinkenberg 1948) and
soils {Gardner and Brooks 1957; Raats
1973); it also appears in mathematically
related theories for heat exchangers
(Nusselt 1911; Anzelius 1926) and for
transport of sediment (Einstein 1936;
Palya 1937). Purely diffusive transport
occurs in theories describing the influ-
ence of tides along coasts and in rivers
on water levels in adjoining aquifer
systems {(Steggewentz 1933; van der Kamp
1973), transport of water and oil in
structured porous media (Barenblatt and
Zheltov !960; Baremblatt et al. 1960;
Raats 1969; Streltsova 1976), secondary
consolidation in soil mechanics (Taylor
and Merchant 1940; Gibson and Lo 1961)
and in mathematically related theories
describing heat transfer in media with
two temperatures (Maxwell 1867; Chen and
Gurtin 1968). Simultaneous convective and
diffusive transport has been used to
describe transport of solutes in packed
beds (Lapidus and Amundson 1952) and
golls (see Bolt 1979 and Van Genuchten
and Cleary 1979 for reviews). In the °
context of thig paper, nc special compli-
cations arise from assuming simultaneous
convective and diffusive tramsport. For
definiteness, all equations will be
written for a solute dissolved in water,
but the results are easily adaptable to
any entity, including solutes, water and
heat, and to either purely convective

or purely diffusive tramsport. Thus the
flux F is assumed to be given by

F=06,vec-D, Ve, (2)

where 8, is the volumetric water content
of the mobile phase, y is the velocity of

the water in the mobile phase, c is the
concentration of the solute in the mobile




phase, and Dy is the dispersion coeffi-
cient associated with the mobile phase.

3 SOME SIMPLF. CAPACITY RELATIONSHIPS

The bulk demsity pp and the concentration
¢ are assumed to be related by

Py = (B, + k) «, {3)

where k describes instantaneous, lineatr
adsorption, A vanishing storage capacity
in the mobile phase (8 + k + 0) repre-
sents an important special case (e.g.,
Anzelius 1926; Steggewentz 1933; Polya
19373 Raats 1969, 1973). Introducing
equaticns (2) and (3) into equation (1}
and using the mass balance for water in
the mobila phase (assuming there is no
exchange of water between the mobile and
stagnant phases),

36,
3= v, ()
gives
P,
M= = (5)

where the mebile phase operator M is
given by

M= (6 + k) 22+ By yeVe - Dy Vel (6)

The main concern of this paper is the
exchange between the mobile and stagnant
phasaes, accounted for by the term 3pg/ot
in equations {1) and (5). In meost papers
cited above the rate of exchange is
assumed to be given by an expression of
the form

5= " % (Pg =K P)s (7>

where & is an exchange constant, and K
is the capacity ratio of the stagnant and
mobile phases at equilibrium. Equation
(7) is tantamount to assuming that the
two phases are separated by a membrane
with conductance o and that the phases
themselves are perfectly mixed., If the
time rates of change are very slow, then
the equivalent conductznce medel given
by equation {7} reduces to the equilib-
rium medel given by

pS=Kpms
a9 3p, .
8 m ac
or Et——ﬁw—&(em+k)¥. (83

Some studies suggest that the effect of
structure upon transport of solute can be
represented by an equivalent disgersion
coefficient D, proportional to v
(Passioura 1971):

3pg
Bt
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In this paper the exchange among the
phases will be treated as a full-fledged
diffusion process, As a result, equation
(5) will become a linear, partial
integro—differential equation. It will
be shown that, by using Laplace
transforms, this equation can be converted
to a partial differential equation in
which derivatives with respect to time
of all orders occur. The equilibrium,
equivalent conductance, and equivalent
dispersion models, given by equations
(8), (7), and (9) respectively, will be
shown to be approximations ¢f such
partial differential equations.

4 DIFFUSIVE EXCHANGE BETWEEN PHASES

1 will sketch the theory for the simplest
type of structured medium, namely one in
which the mobile, stagnant and inert
phases occur in layers (Fig. 1).

mohile phase

stagnant
phase

Fig. 1. Layered structure.

The exchange among the phases can then be
treated as a one-dimensional diffusion
process over distance L, with an effec-
tive diffusion coefficient D within the
stagnant phase. The ratio L?/D is the
characteristic time of the exchange
process and can be used to define a
dimensicnless time t* by



=—t. {10

Using Duhamel's theorem, the concentration
¢ in the mebile phase can be shown to
satisfy (Skopp and Warrick 1974):

&
M=o,k kL [Be
L2 0 g T
@ 2ok *
z 2 exp - Bn (™= 1) drt, an
n=0
where
T = b T (12)
L2

denotes instants in the past, and

B, = izﬂ_%ﬁllﬁ (13)

denotes a geometry factor. The combina-
tion L2!(D8n) represent a discrete
spectrum of relaxation times. The sum

£ 2exp- 82 (¢* H (14)
n=0

describes the memory of the stagnant phase
for changes of concentration at the
boundary between the mobile and stagnant
phases. Fig. 2 shows successive terms of
this sum.
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Fig. 2. The memory functiom.

Taking the Laplace transform of the
relaxation integral form (11) of the
transport equation gives

— =] 2 pu—
M=-35 — (B, +k)«Ksc, {15}

= #*y
n=0 s By

where M is the Laplace transform of the
mobile phase operator,

M= (0, + k) sc + 0 y-Ve - DV ¢, (16)
and

a¥ = (L¥/D)s. (17)

The infinite series in equation (15) can
be expressed in terms of a tanh function:

¥ o= - (g*)“i tanh (s"")i 6y + K)xksc (18)

The tanh function can in turn be expanded
in another infinite series:

M=-{1-L2s™ R} (9, +Kkxsc (19)
3

where the remainder K, is given by

R =2 (5%

i ls

(20)

)2 - (s*)3 +oeen
315

Inversion of the Laplace transforms in

equations (19) and (20) gives the first

differential form of the transport

equation:
oo -1 EEB
M=- {1 75 5e Byl
I'd
(0_ + K)x 3e (21
m ot ? :
where the remainder R, is given by
2 2
Rl=i{%—}2§+
1s 5¢2
N A S (22)
315 D 9¢3

An alternative form can be derived by
using In equitien (18) the reciprocal
relationship between the tanh and the
ctanh functions:
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1 —
(8%)7 ctanh (87 M = - (§tkiksc. (23)
Expanding the ctanh function in an
infinite series gives:

A+ 5™ e B M= -9, + k)ksT,  (24)

where the remsinder Ez is given by

A T 2 2 %y 3
R, = =y (807 + 50 (7)) + ... (29)

Inversion of the Laplace transforms in
equations (24) and (25) gives the second
differential form of the transport
equation:

2
1 L5 3 -
{l+?5 at+R2}M—
- By + ) K2 (26)
n o’
where the remainder Rjis given by
2 2
R Rt
at?
2 3
2 L% 3 3
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5 TFOUR APPROXIMATIONS

Substituting (6} into {(21), neglecting

the remainder R , and rearranging gives
the first approximate differential form
of the transport equation:

(1 + k) (8, + %) %% + 8y « VeDy Vie
2 2
=§%(em+k)niﬁ. (28)
ac?

Neglecting the right hand side of equation
(28) amounts to assuming that the two
phases are in equilibrium with each other:

(1 %K) (6 + k) 3¢

+0, v - Ve =DV =0 (29)

The second order time derivative on the
right hand side of egquation (28)

describes the negative "inertia" of the
structured medium with regard to changes

of concentration.

Substituting (6) into (26), neglecting
the remainder R,, and rearranging, gives
the second approximate differential form
of the transport equation:

(1 +K) (9 + k) 22+ By + Ve-Dyi’e

m
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This form of the transport equation also
results if equatioms (1), (2), and (3)

are combined with the equivalent
conductance medel given by equation (7),
provided the conductance & is chosen to be

o =—. (310

This result is a nice sutrprise!

The equilibrium equation {29} represents
a zeroth-order approximation, while
equations (28) and (30) are two alternative
first—order approximations. Solving the
zeroth-order equation for Opy - Ve-D Ve
and substituting the result in the last
term of equation (30) gives equation (28).
Thus the right hand sides of equation (28)
and (30) are roughly equivalent, as ome
would hope for two approximations of the
same order.

The zeroth—order equation (29) can be
used in yvet ancther way to modify the
right hand sides of the first orvder
equations (28} and (30). Assuming the flow
is one-dimensicnzl and v is constant and
neglecting the term accouanting for the
dispersion, equation (29) reduces to

9 _ _ Om v dc
ot (1 +K) (B + k) 3x ° (32)

Substituting the proportional relationship
between time and space derivatives implied
in equation (32) into the right hand side

of equation (28) or of equation (30) gives:

dc ac
(1 +r) (0, + K T a.v o
a%e
- (D, * De)AH“; =0, (33)
9x

where the equivalent dispersion coefficient
De is given by:
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D, =

This expression for the equivalent
dispersion coefficient was also obtained
by Fassioura (1971; see also Bolt 1979}.
This result is another nice surprisel

6 CONCLUDING REMARKS

In this paper a variety of linear
theories for transport in structured
porous media were all shown to have a
common basis. The pattern of links between
the various theories is similar to that
long familiar in linear viscoelasticity
(cf., Freudenthal and Geiringer 1958;
Leitman and Fisher 1973). The type of
analysis presented here for a layered
structure cam in principle be carried out
for any geometry. Results for media with
spherical stagnant regions will be pre-
sented at the colloquium Euromech [43.
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