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This investigation deals with the development and operation of a simple
radiation budget model at a point on a surface in snow covered mountainous
terrain. Net radiation is usually the most important component of the surface
energy balance in alpine environments, both with respect to its magnitude and
with respect to its temporal and spatial variability. A positive energy
balance at the snow surface will cause snowmelt once the snow pack is in
thermal equilibrium. A radiation budget model can therefore provide an
estimate of the snow surface energy balance and the associated snowmelt.

To allow easy incorporation into operational snowmelt runoff models,
snowmelt factors should be simple with respect to the amount of required input
parameters and their temporal resclution. Most deterministic snowmelt runoff
models employ a degree-day factor for computing the amount of snowmelt from
a watershed. It is postulated that the incorporation of a radiation balance
algorithm will provide a more physically based snowmelt factor than the
presently applied temperature index methods, which may reduce the parameter
variability associated with local calibrations and adjustments based on
observations of snow preoperties or hydrological Jjudgments of the model
operator.

To maintain a high operational capability under a variety of atmospheric
conditions and terrain configurations without the need for extensive
measurements, a Radiation Budget Module (RBM) was developed based on broadband
radiative transfer parameterjizations. Topographic¢ complexity associated with
the effects of obstruction, reflection and emission by surfaces surrounding
the model point is accounted for by means of isotropic conversion factors. The
complex physical processes associated with snowmelt that take place underneath
the snow surface are not modeled explicitly.

The independent input variables required to drive RBM are: (1) Fixed
geographical parameters which need to be determined only once from topographic
maps and/or digital elevation data: Latitude, longitude, altitude, slope,
aspect and local horizon of the surface in question; (2) Temporal variables:
Day of the year, time of the day and amount ¢of days since the last snow
accumulation event occured; (3) Atmospheric/meteorological variables which
need to be determined at least on a daily basis from ground truth or remote



sensing measurements: Optical depth of the atmosphere, air pressure, surface
temperature, air temperature, vapor pressure and mean fractional cloudcover
(and/or duration of sunshine). RBM provides means of estimating the first
three atmospheric variables on a daily basis.

Computed twenty minute values of incoming shortwave and net radiation for
a whole day were compared with observations taken over a uniform wheat field
under clear skiesa. RBM performed satisfactorily under these ideal topographic
and atmospheric conditions. Computed daily averages of incoming shortwave
radiation for a complete ablation period were compared with observations taken
over an unobstructed horizontal snow covered surface in a Swiass alpine
watershed under highly variable atmospheric conditiona. Although RBM performed
rather accurate on a seasonally averaged basis, the model could not explain
the large variability of the measured valuee: It generally underpredicted high
values and overpredicted low values. More realistic cloud treatment procedures
than the current daily average corrections will undoubtedly improve RBM's
simulation capacity. Computed daily averages of point snowmelt depth for a
complete ablation period were compared with cbgerved lysimeter outflowe. Three
different snowmelt prediction methods were compared: (1) The original degree-
day method; (2) A combined temperature index-radiation budget approach,
referred to as the restricted degree~day method; (3) The reduced energy budget
method which contains the radiation balance and bulk turbulent transfer
parameterizations. In addition to a direct comparison, the simulated snowmelt
depths and measured lysimeter outflows were used to generate artificial
hydrographe for a complete watershed by means of the Rango-Martinec Snowmelt
Runoff Mcdel (SRM). Although all three methods performed equally well on a
seasonally averaged basis, the original degree-day method could not explain
the variability associated with snowmelt and the consequent runoff to the same
extent as the other two methods. The restricted degree-day method performed
even slightly better than the reduced energy budget method.

Although this investigation deals with the development of a point radiation
budget model, it is envisioned that distributed models using digital elevation
data should become operational in the near future. The hydrological character
of the currently available operational snowmelt runcff models however, should
become more distributed in order to take full advantage of the benefits of a
snowmelt factor based on the radiation budget.
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Dit onderzoek behelst de ontwikkeling en werking van een eenvoudig
stralingsebalansmodel voor een punt op een oppervlak in met sneeuw bedekt
bargachtig terrein. Netto straling is gewconlijk de belangrijkste component
van de energiebalans aan het aardoppervlak in alpiene milieus, zowel wat
betreft grootte als wat betreft temporele en ruimtelijke resolutie. Een
positieve energiebalans aan het sneeuwoppervlak zal sneeuwsmelt verocorzaken
zodra het sneeuwpakket in thermisch evenwicht is. Een stralingsbalansmodel kan
daarom een schatting geven van de energiebalans aan het sneeuwoppervlak en de
daarmee samenhangende sneeuwsmelt.

Om een gemakkelijke inpassing in operationele sneeuwsmelt-afvoermodellen
mogelijk te maken, dienen sneeuwsmeltfactoren eenvoudig te zijn wat betreft
het aantal vereiste invoerparameters en hun temporele resolutie. De meeste
deterministische sneeuwsmelt-afvoermodellen gebruiken een graad~dag factor om
de hoeveelheid sneeuwsmelt in een stroomgebied te berekenen. Hier wordt
gesteld dat de toepassing van een stralingahalansalgofitme tot een meer
fysisch gebaseerde sneeuwsmeltfactor zal leiden dan de huidige temperatuur-
index methoden, hetgeen de parametervariabiliteit zal reduceren die samenhangt
met locale calibraties en aanpassingen die gebaseerd zijn op waargenomen
sneeuweigenschappen of het hydrologisch cordeel van de gebruiker van het
model .

Om in hoge mate operationeel te kunnen blijven onder een verscheidenheid
van atmosferische omstandigheden en terreinconfiguraties =zonder dat
uitgebreide metingen nodig zijn, is een stralingsbalansmodule (RBM) ontwikkeld
die gebaseerd is op parameterisaties van de voortplanting van kort- en lang-
golvige straling in de atmosfeer en aan het aardoppervlak. De topografische
complexiteit die esamenhangt met de effecten wvan onderbreking, reflectie en
emissie van straling door opperviakken die het gemodelleerde punt omringen
wordt in rekening gebracht door middel van conversiefactoren die gebaseerd
zijn op een uniforme stralingsverdeling. De gecompliceerde, door sneeuwsmelt
geinduceerde fysische processen die in het sneeuwpakket zelf plaatsvinden
worden niet expliciet gemodelleerd.

De benodigde onafhankelijke invoervariabelen ten behoeve van RBM zijn: (1)
Vaste geografische parameters die slechts eenmalig bepaald behoeven te worden



van topografische kaarten en/of digitale terreinmodellen: De breedtegraad,
langtegraad, hoogte, helling, richting en locale horizon van het betreffende
oppervlak; (2) Temporele variabelen: De dag van het jaar, de locale tijd en
het aantal dagen sinds de laatste sBneeuw is gevallen; (3) Atmosferische/
meteorclogische variabelen die tenminste op daghasis bepaald dienen te worden
uit waarnemingen aan het aardoppervlak of uit teledetectiegegevens: De
optische diepte of transmissiviteit van de atmosfeer, de luchtdruk, de
oppervlakte- en luchttemperatuur, de dampspanning en de gemiddelde
bewolkingegraad (en/of zonneschijnduur). RBM biedt de mogelijkheid om de
eerste drie atmosferische variabelen op dagbasis te schatten.

Berekende twintig minuten waarden van inkomende kortgolvige— en netto
straling voor een hele dag zijn vergeleken met metingen gedaan boven een
uniform tarweveld onder een onbewolkte hemel. RBM presteerde naar behoren
onder dergelijke ideale topografische en atmosferische omstandigheden.
Berekende daggemiddelden van inkomende kortgolvige straling voor een heel
sneeuwsnmeltseizoen zijn vergeleken met metingen gedaan boven een horizontaal
met sneeuw bedekt oppervlak in een 2Zwitsers alpien stroomgebied onder zeer
variabele atmosferische omstandigheden. Alhoawel RBM tamelijk goed presteerde
met betrekking tot de speizoengemiddelden, bleek het model niet in staat om de
grote variabiliteit in gemeten waarden te verklaren: In het algemeen werden
hoge waarden onderschat en lage waarden overschat. Meer realistische
procedures ter correctie van bewolking dan de huidige daggemiddelde
correctiefactoren zullen de simulatiecapaciteit wvan RBM ongetwijfeld
verbeteren. Berekende daggemiddelden van sneeuwsmelt wvoor een conmpleet
sneeuwsmeltseizoen zijn vergeleken met gemeten lysimeterafvoeren. Daarbij is
een vergelijking  gemaakt tussen drie  verschillende sneeuwsmelt-
voorspellingsmethoden: (1) De originele graad-dag methode; {2) Een
gecombineerde temperatuur index-stralingabalans methode, waaraan gerefereerd
wordt als "de beperkte graad-dag methode"; (3) De gereduceerde energiebalans
methode die de stralingsbalans en parameterisaties voor de turbulente
uitwisseling bevat. Naast een directe vergelijking zijn de gesimuleerde
sneeuwsmeltdiepten en gemeten lysimeterafvoeren gebruikt om kunstmatige
hydrografen voor een heel stroomgebied af te leiden met behulp van het Rango~
Martinec sneeuwsmelt-afvoermodel (SRM). Alhoewel alle drie de methoden even
goed presteerden met betrekking tot de seizoengemiddelden, bleek de originele
graad-dag methode niet in staat de variabiliteit die samenhangt met
sneeuwsmelt en de resulterende afvoer in dezelfde mate te verklaren als beide
andere methoden. De beperkte graad-dag methode presteerde zelfs enigszins
beter dan de gereduceerde energiebalans methode.

Alhoewel het hier een onderzoek naar de ontwikkeling van een
stralingsbalansmodel voor een punt betreft, zullen gedistribueerde modellen
die gebruik maken van digitale hoogte gegevens in de nabije toekomst
operationeel worden. Het hydrologische karakter van de huidige generatie
cperationele sneeuwsmelt-afvoermodellen zal echter meer gedistribueerd dienen
te worden om ten volle gebruik te kunnen maken van de voordelen die een op de
stralingshalans gebaseerde (gedistribueerde) sneeuwsmeltfactor biedt.
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CHAPTER 1.

UCT

Net radiation is normally the most important term in the surface energy
balance at a point in snow covered mountainous terrain [Zuzel and Cox, 1975].
Results of previous investigations have shown that net radiation remains the
dominant energy source under a wide range of microclimates and terrain
configurations [Granger and Male, 1978; Olyphant, 1984; 1986b; Marks, 1988].
Hence, the reliability of senowmelt predictions depends largely on the accuracy
of radiation measurements, simulations and forecasts.

The general energy budget equation of a snow cover may be expressed in
terms of energy flux densities as follows {e.g., U.S. Army Corps of Engineers,
1956; Male and Gray, 1981; Brutsaert, 1982]:

oQ =R, + @ +Q + G + Ay (1)

where!

oQ = Change in internal energy
Net radiation

Sensible heat flux

Latent heat flux

Heat flux by soil conduction
Heat flux by advection

F oo
I U I

! Unit of energy flux density is [WmZ2].

The advection term is mainly associated with rainfall, however it includes
the total energy flux associated with water flowing in or out of the system
to which (1) is applied. If the energy fluxes toward the snow layer are
defined as positive and those away from it as negative, then positive values
of oQ result in snowmelt once the entire snow cover is isothermal at 0°C

[Marks, 1988].

Since the temperature gradients in a melting snow cover and the soil
directly beneath it are always small, the heat flux by scil conduction can be
neglected for most purposes [Male and Gray, 1981). The same holds for the
energy contribution as a result of advection (due to the release of latent
heat by freezing or cooling rain), since precipitation occuring during the
snowmelt season tends to have a temperature close to 0°C [Marke et al., 1986}.

These theoretical considerations are confirmed by the experimental findings
of several investigators [Granger and Male, 1978; Marks, 1988]).

The turbulent exchange terme, Q, and Q. may be major components relative
to the other terms in (1) just before the actual beginning of the snowmelt
season, when the daily radiation balance changes from a net energy lcoes to a
net gain [Marks, 1988]). Moreover, advection of sensible heat (not to be
confused with A,) may have a considerable influence on the melting process



over remaining snow covered areas towards the end of the snowmelt season
[Granger and Male, 1978; Olyphant and Isard, 1988]. But for most of the
snowmelt season the net turbulent heat transfer is small, since Q, and Q, are
partly counterbalancing one another due to their opposite signs [Marks, 1988]).
During the snowmelt season, the former is namely associated with an energy
input, whereas the latter is associated with an energy losas due to
evaporation. Therefore net radiation is usually the dominant energy source.

Various investigators have used an empirical temperature index approach for
“modeling snowmelt [e.g., Martinec, 1960; Pysklywec et al., 1968; Granger and
Male, 1978; Kuusisto, 1980; Martinec et al., 1983; Martinec and Rango, 1986;
van Katwijk and Rango, 1988; Moussavi et al., 1989). Such an approach assumes
the existance of a linear relationship between the ambient air temperature and
the snowmelt resulting from a positive energy balance. Although air
temperature may be correlated to the energy budget, it cannot account for ites
temporal or spatial variability in mountaincus terrain, which is mainly
asgociated with the radiation budget [Pysklywec et al., 1968; Zuzel and Cox,
1975]. Conceptual snowmelt models based on an empirical temperature index
therefore require local calibrations for the identification of their
parameters. Hence, their simulation and forecast reliability will be inferior
under extreme conditions. Moreover, the application of a temperature based
approach is restricted to lumped or quasi-distributed hydrologic models, but
will not comply with the input requirements of forthcoming distributed models.
In an effort to improve snowmelt modeling by reducing parameter variability,
some invesigators have used a combination of a temperature index and a surface
radiation budget ([Martinec and de Quervain, 1975; Ambach, 1988; Martinec,
1989]. Generally, a mora physically based snowmelt factor has distinct
advantages over the empirical degree day factor, particularly when the
atmospheric conditions are variable and the topography is rough [Charbonneau
et al., 1981].

Bacause a snowmelt factor based on net radiation accounte for atmospheric
and geographic variability, its determination is more complex than merely
determining an empirical factor. General problems related to modeling
radiation are concerned with the partition of solar radiation into a direct
and a diffuse component, the effect of cloud cover on incident solar and
thermal radiation, the angular distribution of the diffuse radiation
components and the spatial, temporal and spectral dependency of the
reflectivity of sasnow [Dozier, 1980]. Moreover, modeling radiation in
mountainous areas bringe about specific topographic difficulties due to the
effects of obstruction, reflection and emiseion by surrounding terrain.

This investigation deals with developing a (spectrally and geometrically)
simplified approach as a first step towards mcodeling the radiation budget in
complex terrain, in order to limit the required number of input parameters.
This will reduce the need for extensive measurements and facilitate the
incorporation of bagin scale energy budget estimates in operaticnal snowmelt
runoff models. It is envisioned that future radiation budget estimates will
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be the result of distributed modeling efforts combining digital terrain models
and satellite remote sensing scenes in the environment of gecgraphic
information seystems [Dozier, 1987; Leavesley, 1989). However, recent
investigations have shown that broadband radiation models in combination with
simple terrain models can yield acceptable results [Olyphant, 1984; 1986a].
Olyphant [1986b] argues that in mountainous terrain the effecta of terrain
heterogenity must be nearly as great as the effects of spectral variation in
determining variations in the surface radiation budget. Moreover, modeling the
complex spatial and spectral properties of radiative transfer through an
atmogphere containing c¢loud layers reguires a large amount of detailed
information and has rarely been applied in an operational environmment {e.g.,
Lacis and Hansen, 1974; Kimball et al., 1982].

In the next chapter the general theory of radiation modeling and its
application to uniform surfaces and complex terrain will be discussed. The
third chapter presents an outline of the developed computer simulation model
RBM (Radiation Budget Module) and ita model assumptions and input
requirements. Chapter four deals with the validation and verification
{testing) of RBM, and presents its application to various sites and a
comparison between a simplified energy budget method and two temperature index
methods for the simulation of point snowmelt for a complete ablation period.
In the final chapter a summary and conclusions of this investigation will be
presented and remarks will be made with respect to future work in this field.




CHAPTER 2.

O ING ATIO!

2.1. General Theory

The net allwave electromagnetic flux density at a point at the surface-
atmosphere interface is defined as the total incident monochromatic radiation
(irradiance) less the total exiting monochromatic radiation (upward)
integrated over all wavelengths [e.g., Marka et al., 1986]}:

]

R, = [ (I[1] - E{1]) * dl (2)

1=0
where:

R, = Net allwave radiation [quj

1l = Wavelength [um}

Monochromatic irradiance {WmapmJ]
Exiting monochromatic radiation
(v 2! )

I
E

For the purpose of modeling the surface radiation budget, it is both
reasonable and convenient to separate the total electromagnetic spectrum into
two dietinct spectral regions, i.e. one emitted by the sun and cne emitted by
the earth and ite atmosphere. That is to say, their overlap is negligible and
their behaviour in the atmosphere and at the earth’'s surface differs markedly.
According to Wien's displacement law, the product of the absolute temperature
of a perfect emitter (black body) and the wavelength of the most intense
radiation, is a constant [e.g., Liou, 1980). Hence, since the effective
radiative temperature of the sun (between 5800 and 6000 K [Fritz, 1951]) is
much higher than that of the earth (approximately 288 K [Ramanathan et al.,
1989]}) and the earth-atmosphere system (approximately 250 K [Liocu, 1980]), it
emits at shorter wavelengths (effectively in the range from 0.3 to 4.0 um,

with an energy peak at 0.47 pm) than does the earth and its atmosphere
(effectively in the range from 4.0 to 50 ugm, with an energy peak at 10 um)

{Marke et al., 1986].

Not only do the origins of shortwave (sclar) and longwave (terrestrial)
radiation differ, but also their behaviour in the earth's atmosphere and at
its surface: shortwave radiation is attenuated due to absorption and
scattering by terrestrial materials, but it is not emitted; longwave radiation
on the other hand is absorbed and emitted, without appreciable scattering.



2.1.1. Radiation in the Earth's Atmosphere

The atmosphere consists of a group of nearly permanent gases (nitrogen,
oxygen and carbon dioxide, among others), a group of gases with variable
concentration (mainly water vapor and ozone) and variocus liquid and solid
particles (water drops, ice crystals and aerosols). They are responsible for
the radiative processes (scattering, absorption and emission) in the
atmosphere.

The main absorbers of shortwave radiation are water vapor in the
troposphere and ozone in the stratosphere, accounting for appoximately 7 and
2 percent attenuation, reepectively [Kimball, 1928; List, 1966]. The former
absorbs primarily in the near infrared wavelength region, whereas the latter
is the main gaseous absorber in the shorter visible and ultraviolet
wavelengthe [Lacis and Hansen, 1974). Absorption by miscellaneous gases
{oxygen, carbon dioxide and nitrogen compounds) is of minor importance in this
spectral region. The most important longwave absorbing (and consequently
emitting) constituents are water vapor in the lower atmosphere, and carbon
dioxide and ozone in the upper atmosphere [Idso and Jackson, 1969]).

It is common in radiation modeling to distinguish between two types of
scattering, namely molecular or Rayleigh scattering and aerosol scattering.
The former is cauesed by air molecules that tend to scatter equal amounts of
electromagnetic waves (radiation) forward and backward (iscotropic scattering);
its intensity is inversely proportional to the fourth power of the wavelength.
The latter is caused by particles whose sizes are much larger than the
wavelength of the incoming solar radiation, partly by dust particles that tend
to affect radiation at longer wavelengths than air molecules (Mie scattering),
and partly by water droplets that scatter all wavelenghts in egqual amounts
(non selective scattering) [Liou, 1980). Rerosol scattering is generally
peaked forward [Fritz, 1951; Lo, 1986]. The purpose of using the terms forward
and backward instead of downward and upward is that the atmosphere as a whole
scatters both the incoming soclar radiation and the upcoming surface
reflection.

Since the atmosphere is a scattering volume containing many particles, each
particle is exposed to and also scattere radiation which has already been
scattered by other particles. Multiple scattering is of great importance to
radiative transfer in the atmoephere. The result of atmospheric scattering is
that part of the total amount of shortwave radiation reaches the surface as
direct radiation, and part of it as diffuse radiation. This partition and the
hemispherical distribution of the diffuse component are of great importance
to the surface radiation budget, the latter especially in mountainous terrain.

Clouds can contain considerable amounts of water, both in the form of water
vapor and of liguid droplets, and in some cases also asg ice and snow particles
{Fritz, 1951). Therefore, they enhance the mentioned radiative effects of the
atmosphere due to increased scatter of shortwave radiation (both downcoming
solar radiation and upcoming surface reflection} and increased absorptance and
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emittance of longwave radiation. The former generally has an effect of net
cooling, whereas the latter has a net warming effect [Ramanathan et al.,
1989]. The net result of these opposing feedback mechanisms however, is still
very much in doubt among researchers. Since cloud-radiative interaction is a
very complex phenomenon both for large scale climate applications and for
small scale radiation budget studies, it ies common among investigators to
either simplify or even completely omit the influence of clouds on the surface
radiation budget [e.g., Marks and Dozier, 1979; Dozier, 1980; Bird and
Riordan, 1986]. Although omitting cloud effects may be useful for theoretical
purposes, it is not acceptable in operational radiation budget models [e.g.,
Munro and Young, 1982).

2.1.2. Radiation at the Earth's Surface

When the various radiation components eventually reach the earth after
their modification by the atmosphere, a complex interaction with its surface
and the features upon it takes place. Depending on the spectral and spatial
distribution of the incoming radiation and on the intrinsic and geometric
properties of its recipients, this process consists of different amounts of
scattering (eventually resulting in upwelling reflection)}, absorption and
transmiesion. The intrinsic properties of the surface (such as chemical and
mineral composition, texture {(grain size), structure (roughness) and content
of moisture and organic matter) determine the radiation-surface interaction
on a microscopic scale and consequently influence both the spectral and the
spatial characteristics of this process; they are gquantified by means of such
well known terms as reflectivity, emissivity and albedo. The surface's
geometric properties (terrain relief) on the other hand, determine the
radiation-surface interaction on a macroscopic scale and consequently mainly
influence its spatial characteristics; they are quantified by means of
conversion factors (section 2.3.2.).

When a ray of electromagnetic radiation strikes the surface of an object,
it may be absorbed, transmitted or reflected. What kind of interaction or
combination of interactions (reflection, refraction of diffraction) actually
takes place at the surface-atmosphere interface depends on the microstructure
of the surface layer, i.e. itse roughness and homogeneity observed on a
microscopic scale. The amount of {intrinsic) microrelief relative to the scale
of cbservation determines whether the surface appears as a specular (Fresnel)
or as a diffuse reflector, and if the latter is the case whether it appears
as an isotropical (Lambertian) or as an anisotropical reflector. It follows
from Rayleigh's criterion (which distinguishes optically smooth surfaces from
optically rough surfaces by relating the dimenaions of aurface perturbations
on a molecular scale to the wavelength of the incident radiation), that most
natural surfaces appear to be diffuse reflectors. Specular reflection of
direct insolation is therefore often ignored, since it cccurs too infrequently



to be of importance in the radiation budget [Dozier, 1980). The exact
distribution of reflected radiation, however, is a complex function of the
direction of the incident rays and of the microstructure of the surface layer,
which is determined a.o. by its mineral compostion, texture, moisture content
and organic matter content. The relationship between the surface reflectance
on the one hand and the incident and reflected beam geometry on the other hand
is known as the Bidirectional Reflectance-Distribution Function (BRDF)} [Horn
and Sjoberg, 1979). The amount of (geometric) macrorelief and the position of
the sun determine the socurce-object-receptor gecmetry and consegquently the
occurence of obstruction (shading), reflection and emission by adjacent
surfacese. Even for the simplified case where the intrinsic surface would
behave like a Lambertian {(perfect diffuse) reflector, the surface roughness
ohserved on a macroscopic scale would always cause the entire land surface to
raflect the incident radiation nonuniformly as a result of the complex
geometric effects at the land surface [Dozier and Frew, 1989].

Particularly in the case of snow, reflection ie the dominant component in
the shorter (ultravioclet and visible) wavelengths, whereas absorption and
transmission are dominant in the longer (infrared) wavelengths [Geiger, 1959;
Kondratyev, 1973; Kondratyev et al., 1982; Dozier et al., 1989]. According to
Kirchhoff's law, the emisgivity of a medium under 1local thermodynamic
equilibrium equals its absorptivity for a given wavelength [e.g., Liou, 1980].
Hence, snow acte as a nearly perfect emitter, as do most terrestrial materials
[Geiger, 1959; Kondratyev et al., 1982). Although the distinctive spectral
dependency of the reflectivity of snow and of the optical properties of the
substances in the atmosphere will not be taken into account in this study,
their interaction affects the spectrally integrated reflectivity (albedo) of
snow and thus significantly influences the radiation budget at the surface.
For instance, the fact that the reflectivity of snow for near infrared
radiation is much smaller than its reflectivity for ultraviolet or visible
radiation (roughly 0.2 versus 0.8) [Dozier, 1980) causes (1) attenuation of
80lar radiation by water vapor in the near infrared wavelength region to
result in a markedly higher reduction of the surface radiation budget than the
same amount of attenuation by aercscls in the ultraviolet and wvisible bands,
and causes (2) diffuse radiation to consist of shorter wavelengths than direct
radiation as a result of multiple reflections between the snow surface and the
atmosphere (in particular the cloud bases). Hence, the snow reflectivity for
diffuse radiation is generally higher than that for direct radiation, and the
snow albedo consequently increases with an increasing cloud cover [Petzold,
1977].

The roughness of a snow surface is mainly a function of its mean grain
size, which increases during thes snow melt season. Grain growth and
contamination bring about a decay of the snow reflectivity for both the direct
and the diffuse radiation during the melt season: The snow grain size mainly
affects the snow reflectivity in the near infrared wavelength region, whereas
absorbing impurities mainly affect snow reflectivity in the visible wavelength
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region [Dozier, 1987]. The liquid water content of snow does not appreciably
affect its bulk radiative transfer properties [Dozier et al., 1989]. The
diffuse reflectivity for direct insolation is also dependent on the angle of
incidence as determined by the sun'se position [Kondratyev, 1973; Kondratyev
et al., 1982). Reliable parameterizations of this relationship have yet to be
developed for moat land surface types [Briegleb et al., 1986). As for sanow
however, several investigators have presented empirical formulae which allow
the determination of the albedo as a function of grain eize and solar zenith
angle [Petzold, 1977; Marks, 1988; Williams, 1988]. Although the intrinsic
reflection of solar radiation from a snow cover is more closely isotropical
than scattering by vegetation [Eyton, 1989], it contributes along with the
geometric effects in mountainocus areae to the complex anisotropic properties
of reflection from adjacent terrain [Dozier and Frew, 1989; shoshany, 1989).

The radiation balance at a point can be written as the sum of net shortwave
and net longwave radiation and their respective components [e.g., Garnier and
Ohmura, 1970; Marks and Dozier, 1979; Marks et al., 1986]:

Ry = K, + Ly (3)
= K{ - Kt + L - Lt

Ki = Kgie + Kgie + Ky
Kt=a * Ki

Li= Ly, + Ly

Lt=1Lg + (1 - €) * Li
where!:

R, = Net radiation

K, = Ret shortwave radiation

L, = Net longwave radiation

K! = Downward shortwave radiation
Kt = Upward shortwave radiation
Li Downward longwave radiation
Lt Upward longwave radiation
K4ir = Direct solar radiation

[
&

K4r = Diffuse sky radiation
Kyn = Reflection from adjacent terrain
a = Surface albedo [-]
Liy = Emission from atmocsaphere
= Emission and reflection from adjacent terrain
Ly = Surface emigsion

€ Surface emipsivity [-]

| Unit of radiative flux density
is [Wm2].

This is a more convenient set of equations than expression (2) since it
consists of components which are more easily defined in terms of broadband
radiative flux densities.



2.2. Uniform Sur 8

2.2.1. Direct Solar Radiation

The instantaneous solar radiative flux density at the top of the atmosphere
is tranaformed in two ways to provide the direct sclar radiation incident on
a uniform (i.e. horizontal and unobstructed) surface under cloudless
conditions: (1) through a modification due to the fact that its direction is
rarely perpendicular to the receiving surface, and (2) through an attenuation
in the earth's atmosphere, as described in section 2.1.1. The former requires
the application of spherical trigonometry, whereas in broadband radiation
modeling the latter is accounted for by means of a generalization of the Beer-
Bouguer-Lambert law for the exponential extinction of monochromatic radiation
traversing a homogeneous absorbing medium. The solar radiation at the top of
the atmosphere, corrected for the angle of incidence, is usually referred to
as extraterrestrial radiation. The direct insolation on a horizontal surface
under cloudless . conditions (potential insolation) can be expressed as the
product of the extraterrestrial radiation and an attenuation factor accounting
for atmospheric absorption and scattering [e.g., Kondratyev, 1973):

K, =S, * r2 * cos[8,) (4)
Kio = Ko * @xp[-M, * p * pg' * 7]

=K, * qMa*p*po-1) (5)
where:

X, = Extraterrestrial radiation [wma]

K4 = Direct insolation under cloudless conditions [Wm?Z)

8, = Solar constant {Wmal

r = Earth's radius vector (-]}

8, = Solar zenith angle [rad]

M, = Relative optical airmass or relative path length

of atmosphere [-)

Air pressure at surface [Pa])

Standard air pressure at mean sea lavel [Pa]

Integral atmoepheric extinction coefficient

or normal optical depth (-]

= Zenith path transmiasivity or transparency of
atmosphere [-]

g
Q
L.

=
|

S, is the flux density of solar radiation perpendicular to the rays at the
mean earth-sun distance. A value of 1353 (+21) Wwm? issued by the National
Aeronautice and Space Administration (NASA) has been accepted as a standard
solar constant, which happens to be exactly the same value as proposed earlier
by the Smithsonian Institution [(List, 1966; Liou, 1980]. Moreover, it is in
good agreement with experimental findings resulting from recent investigations
as part of the Earth Radiation Budget Experiment (ERBEj): they show 1365 Wi 2

to be a reasonable average for the second half of the 1980's [Ramanathan et
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al., 1989; Barkstrom et al., 1990).

The radius vector of the earth quantifies the deviation from the mean
earth-sun distance. Its value as a function of the day of the year can be
found from tablee prepared by List [1966], from Fourier series representations
as derived by various authors [e.g., Spencer, 1971)], or from repraesentations
based on the theory of conice [Whiteman and Allwine, 1986 {appendix A.}. None
of these formula types explicitly takes into account the effects of leap
years, precession and fluctuations in the earth's orbital eccentricity and the
inclination angle of the axis of the earth's rotation. Blackadar [1984]
therefore proposed a more accurate algorithm which gives the radius vector of
the earth and the solar declination as a function of the Julian date. However,
since the value of r? never differs more than about 3.5 percent from unity,
assuming r to remain constant during the day is only a minor approximation.

From epherical trigoncmetry it can be seen that the cosine of the solar
zenith angle with respect to a horizontal surface is a function of the
corresponding date and time and of the latitude of the receiving surface
[e.g., List, 1966; Kondratyev, 1973; Liou, 1980):

cos{8,] = sin{®) * Bin(6) + coa[P) * cos[d] * cos[H] (6)
where!:
6, = Solar zenith angle [rad]

¢ = Latitude of receiving surface [rad])
§ = Solar declination [rad]
H = Hour angle [rad]

| Latitudes in the northern hemisphere are taken ae positive;
thoge in the southern hemisphere ae negative.

The solar declination is the terrestrial latitude of the point where the
sun le in the zenith at true solar noon, i.e, when ¢, = 0 and H = 0 in (6).

As for the approximation of § as a function of the day of the year, the same

sources may be consulted as mentioned in the case of the earth's radius
vector. However, the variation of the solar declination over the year is an
order of magnitude larger than that of the radius vector: ite maximum, which
occurs around June 22, is approximately 0.41 rad (23.44°), whereas its

minimum, occuring around December 22, is -0.41 rad. Between these so-called
(summer and winter) solstices occur the (vernal and autumnal) egquinoxes, at
which the solar declination becomes 0 {approximately March 21 and September
23) [List, 1966].

The hour angle is the angular distance between the solar longitude and the
meridian of the observer. By definition, H is 0 at true solar noon and is -«

rad or » rad at true midnight. The hour angles of sunrise and sunset on a
horizontal surface are found by setting 8, equal to n/2 (cos([8,] = 0) in (6)

and then solving for H. As a result, (4) can be integrated analytically
between sunrise and sunset (with the minor approximations that § and r are
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fig. 2.1.1. Total daily solar radiation reaching a horizontal surface at
the topz of the atmosphere. $olid curves repreeent lines of equal radiation
[calem?d! =~ 4.184 * 104 Jmad']; shaded areas represent regions of

continuous darkness [List,1966].
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constant during the day) to yield the total daily radiation reaching a

hypothetical horizontal surface at the top of the atmosphere [List, 1966;
Liou, 1980] (appendix C.; figure 2.l.l1l.). Since (5) cannot be integrated
analytically, it has to be evaluated numerically when daily totale are
required. Garnier and Ohmura (1968, 1970] and Isard [1983] apply integration
steps of 20 minutes (dH = x/36) with reasonable accuracy, whereas Olyphant

[1986b] uses Simpeon's rule with integration steps of one hour (dH = n/12).

True sclar time is generally not the same as local standard time (zone
time). The first reason for this deviation is that each degree of longitudinal
difference from the standard meridian results in a time difference of 4
minutee. The second reason is related to the irregular motion of the earth
around the sun, known as the equation of time. The maximum departure from the
longitudinally corrected time is about 17 minutes and occurs presently in the
beginning of November. The equation of time can be approximated as a function
of the day of the year by means of tables [e.g., List, 1966] and Fourier
series representations as derived by various authors [e.g., Spencer, 1971;
Whiteman and Allwine, 1986] (appendix A.}.

The relative optical airmass is the path length traversed by the sun's rays
in the atmosphere relative to this length when the sun is in the zenith. For
solar zenith angles less than x/3 rad (60°), M, may be approximated with an

accuracy of 0.25 percent by the secant of B, (cosq[e,]) [Kasten, 1966].

However, for lower solar elevation angles, the curvature of the earth and its
atmosphere and atmospheric refraction cannot be neglected. Tables based on
Bemporad's computations made in the beginning of this century (e.g.,
Kondratyev, 1973], have been widely used for this purpose. More recently,
Kasten [1966] developed a table for the relative optical airmass based on a
new model atmosphere and provided the following approximation formula which
generally deviates no more than 0.1 percent from the tabulated values:

M, = (cos(8,] + 0.1500 * (93.885 - @, * 180 * x'1)1.253)-1 (7

where:

M, = Relative optical airmass or path length of atmosphere [-]

6, = Solar zenith angle [rad]

Especially in mountainous terrain, the actual ajir pressure at the surface
{p) is generally different from the standard air pressures at sea level (p,)

on which the airmass tables are based (105 Pa for Bemporad's and 1.01325 * 10°
Pa for Kasten's table, respectively). A common altitude correction for M,
coneists therefore of multiplying the tabulated values by the relative air
pressure (p/p,) [List, 1966; Kondratyev, 1973]. If no ajr pressure
measurements are available, a relative air pressure can be approximated by one
of the following expressions, based on the hypsometric formula for a dry
atmosphere. Equation (8) assumes a constant temperature lapse rate (T;*TJ'=1-
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P*T;J*h) {Marks and Dozier, 1979}, whereas (9) assumes a nearly constant
exponential temperature decay with altitude (T;*T;l=exp[-F*T;1*h]) (Willet and
Sanders, 1959]):

P* P! = expl-g * (T * Ry * ln[1 + T * h = 1,7]) (8)
~ exp[-g * h * (Ry * 13)4] (9

where:

Air pressure at surface [Pa]

Standard air pressure at mean sea level [Pa}
Gravitational acceleration [= 9.81 msa]
Temperature lapse rate [= 0.0065 KmJ]

Gas constant for dry air (= 287.04 Jkg4K4]
Surface altitude above mean sea level (m]
Absolute air temperature at surface (K]

Mean air temperature at sea level [= 288.15 K]

oi-:l’t-l ::‘z '-nn;ﬂ'd
y

Van Katwijk and Rango {1988] and Leavesley [1989] suggested that the
assumption of a constant temperature lapse rate in snow covered mountainous
terrain may not be accurate, especially in the vicinity of transition zones
between snow covered and snow free areas. However, values close to the
standard lapse rate for the troposphere of 0.0065 Kl (Brutsaert, 1975; Liou,
1980]) have been applied in alpine areas yielding reasonable results [Dozier
and Outecalt, 1979; Marks and Dozier, 1979; Munro and Young, 1982; Running et
al., 1987]. Moreover, (8) is relatively insensitive to departures from the
standard lapse rate, whereas (9) does not contain a lapse rate at all.

If accurate solar photometer measurements are not available, the optical
depth (r) or transmissivity (T) of the atmosphere for clear sgkies may be

approximated by integrating standard monochromatic tranemission
parameterizations of the various constituents of the atmosphere over all solar
wavelengths [{e.g., Fritz, 1951; Leckner, 1978; Dozier, 1980; Bird and Riordan,
1986]). Rearranging (5) to obtain r or T as a function of K, yields

reasonable approximations when daily averages of direct solar radiation are
available [Garnier and Ohmura, 1970]). As a first approximation of the
atmospheric tranemissivity for clear sky conditions at high altitudes, a value
of 0.75 (corresponding to an optical depth of about 0.29) aseems appropriate
[Isard, 1983). Using the shortwave radiative transfer parameterizationa of
Lacis and Hansen [1974), Dozier and Outcalt {1979], Munro and Young [1982] or
Stuhlmann et al. [1990] to determine K;,, valuee for r or T close to these

average values can be obtained.

Substituting the equations (4) and (6)-{%) in {5), thereby making use of
the approximation formulae for the earth's radius vector, the sun’'s
declination and the equation of time {appendix A.), and of the mentioned
typical values for the solar constant and the atmospheric tranemissivity, one
yields an estimate of the desired potential direct insolation. The regquired
input parameters are the latitude, longitude and altitude of the surface, and
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the time and day of the year.

2,2.2, Diffuse Sky Radiation

A8 mentioned in section 2.1., diffuse sky radiation has two eourceé, which
cannot be measured separataly, but need both be taken inte account when
modaling radiative transfer: (1) radiation that is scattered downward out of
the sclar beam, and (2) radiation that is reflected upward from the earth's
surface and subsequently backscattered by the atmecsphere (referred to as
multiple reflection or multiple scattering). The latter is especially
important over snow covered surfaces, because of the highly reflective nature
of snow. Diffuse B8ky radiation on an uncbstructed horizontal surface
contributes about 25 percent to the global insolation on an average clear day
[e.g., Becker and Boyd, 1957) and offsets roughly half of the reduction of
direct insolation during periods of partial cloud cover [Olyphant, 1984]. Over
snow covered surfaces these figures are generally even more pronounced.

Different methods have been developed for determining the amount of diffuse
sky radiation reaching horizontal surfaces, ranging from more physically based
scattering models to more empirically based parameterizations. The latter
usually relate the ratio of diffuse and global insclation on an unobstructed
horizontal surface (K /K¢} to the ratio of glcbal and extraterrestrial

insolation corrected for the incidence angle (Ki/K,), which ia interpreted as

a clearness index [Liu and Jordan, 1960; 1961). These relationships are based
on the observation that the fraction of diffuse sky radiation decreases from
1 to about 0.15 as the global transmission increases from 0 to about O0.8.
These parameters have been correlated through polynomial regression functions
for averaging intervals of one minute [Smietana et al., 1984), an hour [Erbs
et al., 1982), a day (Liu and Jordan, 1960; 1961; Erbs et al., 1982) and a
month [Liu and Jordan, 1960; Erbs et al., 1982]. The scatter of measurements
about these regression lines is significant, particularly for the shorter
intervals. Hay and Davies [1978] suggested that a major part of the spatial
and temporal variability associated with these relationships might be
attributed to the effect of multiple scattering between the earth's surface
and the atmosphere. However, Olyphant [1984] compared his measurements to the
one hour correlation of Erbs et al. [1982] and concluded that "the
relationship is indeed location independent”. Moreover, the agreement between
this one hour standard correlation and the curves obtained by Stuhlmann et al.
(1990], both from radiation measuremente and model simulations, is striking.
Although these empirical parameterizations allow easy adjustment for the
influence of cloudiness on the amounts of direct insolation and diffuse sky
radiation (section 2.2.3.), the simplified assumption that the amount of
diffuse sky radiation under clear skies is a constant fraction of the global
insoclation is insufficient for application in radiation models that do not
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require radiation measurements as input data.

Lacis and Hansen [1974] daveloped a monochromatic radiative tranefer model
and broadband parameterizatione for absorption and scattering in the
atmosphere and at the earth's surface based on accurate multiple scattering
computations in a plane-parallel atmosphere (e.g., Licu, 1980). However, their
parameterization for the incident solar radiation at an unobstructed
horizontal surface does not allow the required separation into a direct and
a diffuse flux density. Leckner [1978]), Dozier [1980] and Bird and Riordan
(1986] among others applied exponential decay functions based on the Beer-
Bouguer-Lambert law to meodel absorption and scattering by substances in the
atmosphere. Although these models distinguish between direct and diffuse
radiation, they cannot easily be generalized to broadband parameterizations.

A simple but physically based algorithm for estimating the amount of
scattered sky radiation reaching a uniform surface on a daily baeis was
originally proposed by Fritz [List, 1966). He stated (1) that the total amount
of radiation scattered from the solar beam may be expressed as the difference
between a fictitious radiative flux, subject to atmospheric absorption only,
and the direct beam, subject to both absorption and scattering, and (2) that
half of the resulting flux is scattered downward towardas the earth's surface.
The latter is strictly only a correct assumption when the scattering takes
place in a pure Rayleigh atmosphere (a clear dry atmosphere without dust
particles or water vapor). The actual fraction of the total scattered
radiation that reaches a uniform surface under clear sky conditions is
increased by aeroscl scattering and decreased as a function of the solar
zenith angle. According to Blackadar [1985b], this fraction amounts to only
about 36 percent on a daily basis. On the other hand, the relative amcunt of
diffuse sky radiation generally increases with increasing solar zenith angle
due to increased scattering of the direct beam with increasing path lengths
[Fritz, 1951]).

Robinson [1966] introduced an empirical correction factor to account for
the zenith angle dependency of the fraction of the total scattered radiation
reaching the earth's surface [Dozier, 1980). Temps and Coulson (1977) proposed
an additional correction factor to account for the circumsolar or aureole
component, i.e. for brightening of the sky in the vicinity of the sun.
Applying these factors to Fritz's algorithm and neglecting absorption of solar
radiation by miscellanecus gases in the atmosphere leads to the following
expression for the instantaneous scattered radiation reaching an unobstructed
horizontal surface under clear sky conditions:

Keto = €z * G4

* K, ¥ (1 - Ay[My, * W] - AGIM, ¥ (03)]) - Kgi) (10)
c, =0.5~» cos”g[ed
C, =1 + cos?[8,] * sin’[@,]
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where:

K10 = Radiation scattered downward from direct beam under cloudless
conditions [wm4]

C, = Fraction of scattered radiation reaching surface (-]

€, = Correction for sky brightening in vicinity of sun (-]

K, = Extraterrestrial radiation [Wma}

A, = Fraction of radiation absorbed by water vapor or abaorptivity
of water vapor [-])

M, = Relative path length for water vapor (-]

w = Zenith path water vapor content of atmosphere or normal path
length for water vapor [kgma]

A, = Fraction of radiation absorbed by ozone or absorptivity of ozone
(-]

M, = Relative path length for ozone [~]

{O;) = Zenith path ozone content of atmosphere [m(NTP)]

K4o = Direct solar radiation under cloudless conditions

(w2
Soclar zenith angle {rad)

[+ 4}
L ]
]

Alternative parameterizations for determining the amount of scattered solar
radiation reaching an uncbstructed horizontal surface under clear skies are
provided by Dozier and Outcalt ([1979) and Munro and Young ([1982].

Absorption of soclar radiation by water vapor is more difficult to
parameterize than absorption by ozone, because (1) the absorption spectrum of
water vapor is more complicated, (2) the abeorption by water vapor occure in
the lower atmosphere where there is both absorption and significant
scattering, and (3) the abhsorption by water vapor depends strongly on
temperature and pressure [Lacis and Hansen, 1974; Wang, 1976]. Yet, various
authors have derived simple parameterizations, either as a function of the
actual (precipitable) water vapor content of the atmosphere or as a function
of the effective (temperature and pressure scaled) water vapor amount. Wang
[1976] presented an empirical expression that includes the effects of
atmospheric inhomogeneity:

logiolAy] = —1.6754 + 0.5149 * logy[M, * w]
- 0.0345 * (loggyl(M, * w])? (11)
where:
A, Absorptivity of water vapor [-]

Relative path length for water vapor (-]
= Actual zenith path water vapor content of atmosphere or
normal path length for water vapor [kgmq]

M,
w

Although this parameterization is based on a tropical model for both the
water vapor profile and for the temperature and pressure distributions, it
retains ite reliability for a subarctic winter atmosphere and for the case of
a high (snow) surface albedo. Moreover, it remains a satisfactory
approximation for water vapor contents outside the fitting interval of 0.08
<= M, *w <= 41.5 kgm“a, which may occur at high solar zenith angles ([(Wang,
1976]).
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Various inveetigators assume the relative path length for water vapor to
be equal to the relative optical airmass (Leckner, 1978; Bird and Riordan,
1986). Although this is a reasonable approximation, Kasten [1966] adjusted the
coefficients of his air mass formula to provide an expression for the relative

water vapor path length:

M, = (cos[8,] + 0.05480 * (92.650 - §, * 180 * x'1)-1452)-1 (12)

where:
M, = Relative path length for water vapor (-]

8, = Solar zenith angle [rad)

The zenith path precipitable water vapor content of the atmosphere above
the surface can be approximated by assuming an exponential decay of the water
vapor density with the altitude. Combining this assumption with the equation
of state of moist air and integrating over the appropriate altitudes, yielde
the water vapor amount in the atmosphere as a function of the gurface air
temperature and vapor pressure (appendix B.):

w = 0.622 * @ * (k, * Ry * T,)"} (13)
= 0.622 * e, * (k, * Ry * (T, - ' * h))! ==>

W, = 0.017 * e,

where:

w = Actual zenith path wataer vapor content of atmcaphere or
normal path length for water vapor [kng]

e, = Vapor presasure at surface [Pa]

k, = Water vapor density decay coefficient [~ 4.4 * 10 mJ]

R; = Gas constant for dry air (= 287.04 JngKJ]

T, = Absolute air temperature at surface (K]

T, = Mean air temperature at sea level [~ 288.15 K]

I' = Temperature lapse rate [= 0.0065 Km“]

h = Surface altitude above mean sea level [m])

w, = Actual zenith path water vapor content of atmosphere at sea
level [kgm?)

e, = Vapor pressure at sea level [Pa]

Since the vapor pressure decay with increasing altitude is an order of
magnitude larger than the temperature decay (due to its strong temperature
dependence), (13) implicitly accounta for the decrease of the amount of
precipitable water vapor in the atmosphere above a surface with increasing
altitude.

In order to obtain the last expression, the indicated representative values
were substituted for k, and T, (Brutsaert, 1975). The resulting approximation
for the amount of water vapor in a vertical path through the atmosphere at sea
level is consistent with previous results [Kimball, 1928; Monteith, 1961;
Leckner, 1978; Munrc and Young, 1982; Igbal, 1983]. The approximate nature of
the assumed vertical water vapor density profile does not allow application
of (13) for instantaneous values. Howeﬁer, these formulae may be expected to
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yield reascnable approximations of daily or weekly averages.

The total absorption of visible and ultraviolet radiation by ozone in the
stratosphere can be accurately parameterized because it is primarily the
result of exponential attenuation at each wavelength with negligable
scattering or temperature and preesure dependence [Wang, 1976}. Lacis and
Hansen [1974] derived parameterizatione for the visible and ultraviolet bands

with an accuracy exceeding that with which the oczone amount in the atmecsphere
is likely to be known in most cases:

A, = a) 4+ A (14)
AYE = 2,118 * M, * (0) * (1 + 4.2 * My * (O3) + 3.23 * (M, * (03))%)!
AM = 108.2 * M * (O3) * (1 + 1,386 * 10% » M *» (0,)) 085

+ 6.58 * M, % (O3) * (1 + (1.036 * 10% * M, * (03))3)!

where:
A, = Total absorptivity of ozone [-]
aA,Y* = Absorptivity of ozone in visible band [-]
A,"Y = Absorptivity of ozone in ultraviolet band (-]

= Relative path length for ozone [-]
(03} = Zenith path ozone content of atmosphere [m(NTP)]

According to Lacis and Hansen [1974], Rodgers [1967]) proposed a simple
formula for the relative ozone path length, which is in close agreement with
Kasten's [1966] expression for the relative optical air mass (7):

M, = 35 * (1224 * cos?(8,]) + 1)1?2 (15)
where:

M, = Relative path length for ozone [-]
8, = Solar zenith angle [rad]

Since the amount of ozone in a vertical path through the atmosphere shows
typical spatial and temporal variations between about 0.002 to 0.006 m(NTP),
it can be estimated with reasonable accuracf. Briegleb et al. ([1986) used a
simple trigonometric approximation that is a function of the latitude only
{(03)=0.0031+0.001*sin{®]). Van Heuklon [1979]) developed a more accurate

empirical formula that describes the seasonal, latitudinal and longitudinal
variations in Northern America. However, it neglects the short term variations

in the lower atmosphere and the long term trends in the upper atmosphere
associated with air pollution:

(03) = 0.00235 + ein?(1.28 * &) * (0.0015 + 0.0004
* 8in(0.0172 * (D - 30)] - 0.0002 * sin[3 * 1]) (16)
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where!:

(03) = Zenith path ozone content of atmosphere [m(NTP)]
T = Latitude of surface [rad])

Day of year [~}

Longitude of surface [rad]

D
1l

! Longitudes west of the meridian at Greenwich are taken as
positive; those east of the meridian at Greenwich as negative.

[}

Since the czone absorption of solar radiation mainly takes place in the
upper atmosphare (stratosphere), it is assumed that the altitude dependency
of (l1é) ie negligible.

Substituting the equations (4), (5) and (11)-(16) in (10), thereby making
use of the approximation formulae for the earth's radius vector, the sun's
declination and the equation of time (appendix A.}, and of the mentiocned
typical values for the solar constant and the atmoapheric transmissivity, one
yields an estimate of the desired scattered sky radiation on an unobstructed
horizontal surface under clear sky conditions. The required input parameters
are the latitude, longitude and altitude of the surface, the time and day of
the year, and the vapor pressure at the surface.

The remaining fraction of the diffuse sky radiation is a result of an
infinite converging series of multiple reflectiona between the earth's surface
and the atmosphere [Hay and Davies, 1978; Dozier, 1980; Liou, 1980; Bird and
Riordan, 1986]. With the rough approximations of isotropic reflection by the
snow covered ground and isotropic backscatter from the atmosphere, this

phenomenon can be modeled as follows:

Kock = (gir * Kgir + agir * Kye) * agy
(2g; * Kgo + agp * Ko * a5y * (1 - age * ag)’! (17)
= (Kge + Kg) * ((28 * ag)! - 1!

where:
K.y = Backscatter from atmosphere (Wm2)
ay, = Diffuse surface reflectivity for direct radiation {[-]
K4 = Direct insolation [WmQ]
ay¢ = Surface reflectivity for diffuse radiation [-])
Ky¢ = Diffuse sky radiation (wm2), which can be computed from:
Kgit = Kot + Kpok

K., = Radiation scattered downward from direct beam [ W2}
By = Fraction of surface reflection backscattered by atmocaphere or

effective sky albedo [-~]
a = Surface albedo [-], which can be computed from:

a = (ag * Kg + ag * Kgp) * (Kgi + Kgp)™! (18)

The above egquations imply that the area surrounding the model point is
uniformly covered with snow. Since this does not always have to be the case,
the application of an estimate of the (significantly lower) areal average
surface albedo (a=a_,) would probably yield more accurate results (section

3.302.).
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Parameterizations for the reflectivity of snow for direct and diffuse
radiation will be presented in section 2.2.3. The (broadband) surface albedo
is generally defined as a weighted average of the spectral surface
reflectivities, using all monochromatic irradiances as weightas. For the snow
reflectivity parameterization used in this investigation, this results in a
weighted average of the reflectivities for direct and diffuse radiation, using
the direct insolation and the diffuse radiation as weights. The albedo of snow
ranges roughly from 0.4 for old (contaminated), wet snow to 0.9 for fresh, dry
ganow [U.S. Army Corps of Engineers, 1956; List, 1966; Kondratyev, 1973;
Kondratyav et al., 1982; Brutsaert, 1982].

The term effective sky albedo in (17) and (18) is used instead of sky
albedo to denote the difference between reflection from a flat surface and
that from a nonhomogeneous, transparent slab of air. The latter is a combined
result of {multiple) backscattering of part of the surface reflection and
abgorption of part of the backscattered radiation, integrated over the entire
spherical solid angle and over all appropriate altitudes and wavelengths.
Several investigators assume backscattering to be entirely the result of
Rayleigh scattering, since aerosol scattering is generally forward peaked
[Lacis and Hansen, 1974; Dozier, 1980].

According to Hay and Davies {1978], the effective sky albedo can be
adequately expressed as a weighted average of the effective albedo of an
overcast aky and that of a cloudless atmosphere, using the mean fractional
cloudcover and its complement as weights:

Agy =W *a + (1 -m) *a, (19)
where:

ayy = Effective sky albedo (-]

m, = Mean fractional cloud cover [-]

a, = Effective albedo of overcast eky [~ 0.5]

a, = Effective albedo of clear sky [= 0.15)

The mean fractional cloudcover can be defined as some kind of projection
of the fraction of the part of the sky dome unobstructed by terrestrial
objects that is covered with clouds on a point at the earth's surface. It may
be estimated from the earth's surface by means of human observations or whole
sky photography, or from the sky by means of satellite observations. However,
gserious discrepancies between estimates may arise from differences in applied
projection methods and from the fact that observers tend to overestimate the
angular distance between points in the sky closer to the horizon in comparison
with points closer to the zenith. The actual effect of thie phenomenon depends
on the cloud type, since for some types the apparent fractional cloudcover
tends to increase towards the horizon, wherears for others it tends to decrease
[McGuffie and Henderson-Sellers, 1989]. Although the anisotropy that is
characteristic for surface reflection is not taken into account in this study,
the projection of the fraction of the sky covered with clouds should actually
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be weighted for the angular distribution of the surface reflection that
reaches the cloud bases [Unsworth and Monteith, 1975]. Munro and Young [1982]
successfully applied an effective mean fractional cloudcover, defined as a
weighted average of the actual obeerved mean fractional cloudcover and 1 minus
the relative sunshine duration.

The fraction of the surface reflection that is backscattered by the base
of the cloud cover, is commonly approximated by the cloud top albedo as
measured by airborne or spaceborne instruments [Miiller, 1985). Although the
albado of the base of a cloud cover is a function of the cloud's water content
(as determined by ite thickness and density) and of ite altitude (as
determined in part by the cloud type), fixed mean values are usually applied
(Hay and Davies, 1978].

Cloud base and clear Bky albedos are markedly higher when the underlying
gurface is Bnow covered, since the reflection from anow is shifted towards the
shorter visible and ultraviolet wavelengthe that are more effectively Rayleigh
backecattered and not absorbed by water vapor. Obviously, multiple reflections
contribute a considerable amount of diffuse sky radiation to snow covered
terrain [Fritz, 1951). Kondratyev (1973] even reports cloud base albedo's
above snow of 0.51 to 0.86 and clear sky albedos of (.45 to 0.79. From tables
prepared by List [1966] and Kondratyev {1973] a cloud base albedo averaged
over different types of clouds of about 0.55 can be derived. This figure is
in close agreement with the average value of 0.5 to 0.55 mentioned by Fritz
[1951] and that of 0.6 used by Hay and Davies {1978} and Munro and Young
[1982]. Hay and Davies, however, propose a mean clear sky albede of 0.25,
which is very different from the value of 0.13 that Williams [1988) uses above
snow covered terrain, from a value between 0.08 and 0.13 that Fritz [1951)
derives and from the value of 0.0685 that Lacis and Hansen [1974]) derive as
"the albedo of the Rayleigh atmosphere for illumination from below".

With conservative values for the snow albedo (0.7), the effective (single
scattering) sky albedo under overcast conditions (0.5}, and the effective sky
albedo under cloudless conditions (0.15), the use of (17) results in
insolatjon increases from more than 10 to more than S0 percent compared with
a pituation without multiple reflections. Thus, the atmospheric backscatter
on an uncbstructed horizontal surface can be estimated by subsatituting
equation (19) in (17), when the direct insolation, the scattered radiation,
the mean fractional cloudcover and the surface reflectivities for direct and
diffuse radiation are known.

2.2.3. Global and Net Solar Radiation

Since reflection from adjacent terrain does not play a role in the
radiation budget at a point of an unobstructed horizontal surface, the total
shortwave radiative flux received per unit area (global radiation) is the sum
of the direct insolation and the diffuse aky radiation. Combining equation {3)
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with (17), yields for the glcbal radiation under clear skies:

Kiy = Ko + Keato *+ Kieko (20)
= (Kgio * Kypo) * (1 = a * a)°!
where:

X!, = Downward shortwave radiatjon under cloudless
conditions [Wm4]

Kiiro = Dirgct Bolar radiation under cloudlese conditione
(W2)

Ky = Radiation scattered downward from direct beam under
cloudless conditions [Wmal

Kyxo = Backecatter from atmosphere under cloudless
conditions [Wma]

a = (Areal average) surface albedo [-]

a, = Effective albedo of clear sky [-]

]

In the previous sections of this chapter, simple expressions are presented
for computing Ky, and K., for cloudless conditions and K, for cloudy
conditions. As stated before, when a model is to become truly operational it
should provide some means to correct for the complex effects of clouds.
However, a physically based (e.g., effective sky albedo) approach as commonly
used for modeling atmospheric backscatter has not yet been developed for
providing cloudcover corrections for direct and scattered solar radiation.
Hence, investigators dealing with the influence of (partial) cloudcover on
global radiation have developed several empirical correction formulae. Apart
from some temperature based corrections [Bristow and Campbell, 1984; Zuzel,
1989, personal communication], they are generally linear relationships between
(1) the gquotient of the daily average globa)l radiation under cloudy to that
under clear skies and (2) either the relative duration of sunshine or the mean
fractional cloud cover [Fritz, 1951; Geiger, 1959; List, 1966; Kondratyev,
1973; Brutsaert, 1982). Although local calibration will probably yield more
accurate results, various tables are available from which the coefficients of
these relationships can be found as a function of the cloud type, cloud
height, and surface latitude.

A nonlinear expression that guarantees a reasonable accuracy has been
developed by Berlyand [Kondratyev, 1973):

RKé * Ri1 =1 - (¢ +¢cy *m) *m (21)
where:

Ké Downward shortwave radiation [WmQ]

Ki, = Downward shortwave radiation under cloudless
conditions [WmJ]

€1,y = Empirical coefficients [cy = 0.38])

m, = Mean fractional cloudcover [-]

The coefficient ¢; is reported to have a value of about 0.40 from the
equator to 60°N and of about 0.15 for higher latitudes, whereas c, has a fixed
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value of 0.38. Since the decrease of ¢; with increasing latitude implicitly

accounts for the influence of the surface albedo on global radiation, a value
of 0.15 will probably vield more satisfactory results in snow covared alpine
areas of the lower latitudes than a value of 0.40. Nevertheless, c¢; = 0.40 is

in better agreement with the parameter value that Kimball [1928) used for the
linear equivalent of (21), namely ¢, + ¢ * m, = 0.71.

The above expression has serious shortcomings for application in a more
detailed snow surface radiation budget model because (1} it does not
distinguish between direct and diffuse radiation, (2) it does not explicitly
take into account the dependency of the amount of global radiation on the
surface albedo and (3) it does not depend on the optical air mass as
determined by the sun's position. However, (21) and similar empirical
expraessions allow easy operational application since they lack the need for
a significant number of input parameters associated with detailed calculations
by more sophisticated models [e.g., Lacie and Hansen, 1974].

When the global radiation is known as a function of the mean fractional
cloudcover from (20) and (21), estimates of the fractions of direct and
diffuse radiation can be obtained from empirically determined relationships
between the ratio of diffuse to global radiation (XK ;;/K{) and the ratio of

global to extraterrestrial radiation (K{/K)), as mentioned in section 2.2.2.

Olyphant [1984) conducted extensive radiation measurements during different
snow melt seasons in an alpine area and concluded that the one hour standard
correlation of Erbs et al. [1982] (figure 2.2.3.) "provides a convenient basis
for separating the direct and diffuse components of global insolation under
a broad range of atmospheric conditions". The striking agreement between this
one hour standard correlation and curves obtained by Stuhlmann et al. [1990],
both from radiation measurements and model simulations, suggests the same.

Only a part of the global radiation that reaches the snow surface is
absorbed. The absorptivity of a surface is generally determined as the
complement of its reflectivity in the case of a spectral model, and of its
albedo in the case of a broadband model. The albedo of a snow surface
decreases during a snow melt season from about 0.9 to about 0.4 as a result
of grain growth and contamination. The U.S. Army Corps of Engineers [1956] and
Petzold [1977]) among others derived typical snow albedo decay functions for
ablation seasons. As mentioned before, snow reflectivity is not only a
function of the amount of days since the last snowfall occured, but alsc of
wavelength and solar zenith angle. Examples of spectral snow reflectivity
models are the monochromatic model of Dozier [1980] that is based upon actual
measurements and the two band model of Marks ([1988). Williams [1988) used a
phyeically based broadband parameterization for the snow albedo that seems
suitable for the simplified approach of the present study. This scheme
accounts implicitly for some of the distinct spectral properties of snow
reflection because it distinqguishes between the reflectivities for direct
insolation and diffuse radiation:
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fig. 2.2.3. One hour standard correlation between the ratio of diffuse to
global radiation (Ky:/K4) and the ratio of global to extraterrestrial

radiation (K4/K,) [Erbs et al., 1982]:

Kyie/Kd =
Kgit/Kd =

1 - 0.09 * Ki/K, for K¢/K, < 0.22

0.9511 - 0.1604 * KI/K, + 4.388 * (KI/K,)?
- 16.638 * (K4/K;)? + 12.336 * (KI/K;,)}?
for 0.22 < Ki/K, = 0.80

Kgi/Ké = 0.165 for Ki/K, > 0.80

Olyphant [1984] found Ky /K} = 0.12 for Ki/K, > 0.80 to be more appropriate
for high altitude environments.
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A4y = 8girg — (0.083 + 7.27 * r”z) * cosme, (22)

agr = ag, - 6.64 * rif2 (23)
r = (r 2 + 2.52 * 10710 » p )15 (24)
where!:

a;, = Diffuse surface reflectivity for direct radiation [-]

840 ™ Diffuse surface reflectivity for direct radiation at
sunrise or sunset [= 0.965]

r = Mean grain size [m]

8, = Solar zenith angle (rad]

age = Surface reflectivity for diffuse radiation (-)

a4s = Surface reflectivity for diffuse radiation of fresh, dry
Bnow (= 0.96])

r, = Mean grain size before melting occurs [~ 1 - 4*10%m)

D, = Number ¢of days since last snowfall [-]

1 Although "reflectivity” normally refers to the spectral
(monochromatic) scattering properties of a medium, it is used here
to denote the difference between the scattering properties of a
surface for broadband (i.e. direct plus diffuse) radiation
("albedo"} and those for direct and diffuse radiation separately.

The formulation of (24) implicitly assumes (1) that the surface of a
melting snow pack is wet during the entire day, and {(2) that each new snow
accumulation consists of dry uncontaminated snow with the same mean grain
size. The fraction of the day that the snow surface has been wet ie actually
not a constant, but is determined by the positive feedback between the mean
grain size of the snow surface and the amount of solar radiation it absorbes
(and consequently by the complex feedback mechanisme with the other terms of
the energy budget) [Dozier et al., 1989]). However, (22) and (23) are not very
sensitive to changes in the empirical factor in (24) that accounts for the
daily number of hours that the snow hag been wet. Marks [1988] provides an
alternative grain growth function which is not based on the phyeics of grain
growth either, but which can generate reflectivities that closely fit observed
decays because its asymptotic functional form allows to specify the expected
grain growth maximum (and consequently the expected albedo minimum). For the
model presented above the reflectivity decays with the square root of the mean
grain size and with the cosine of the solar zenith angle however, which is
congistent with Marks' two band model. Lastly, the broadband albedo (a) of a
snow surface can be evaluated as a weighted average of (22) and (23), using
the direct insolation (K ) and the total diffuse radiation (K, + K;,) as
waights (equation (18)). .

The net shortwave radiation on an unobstructed horizontal surface can be
defined as the product of global radiation and the complement of the snow
surface albedo, i.e. the surface absorptivity:

Ky = (1 - ag) * Ky + (1 - agp) * Ky (25)
= (1 - a) * K¢
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where:

K, = Net shortwave radiation [Wm4]
a4, = Diffuse surface reflectivity for direct radiation [-]

Ky, = Direct solar radiation [Wm?)

ayr = Surface reflectivity for diffuse radiation (-]
Ky = Diffuse sky radiation [Wm2)

a = Surface albedo [-]

K¢ = Downward shortwave radiation [Wmdl

The procedure for determining the components of the shortwave radiation
budget at an unobstructed horizontal surface as a function of the ambient

atmospheric conditions can be summarized as follows:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8}

(9}

(10)

(11)

Computation of the potential direct and scattered insolation on an
unobstructed horizontal surface from (5) and (10}, as described in
sections 2.2.1. and 2.2.2.

Computation of the diffuse surface reflectivity for direct insolation
and the surface reflectivity for diffuse radiation from (22)-(24).
Substitution of the computed values in (17) with a,, = a, to obtain the
atmospheric backscatter under cloudleas conditions.

Substitution of the computed values in ({20) to obtain the global
radiation under cloudless conditione; continue to step (5) if the mean
fractional cloudcover is greater than zero, else skip to step (11).
Multiplicaticn by the cloudcover correction factor from (21) tec obtain
the global radiation as a function of the ambient atmocapheric conditions.
Substitution of the ratio of global and extraterrestrial radiation (from
{4)) in the one hour standard correlation of Erbs et al. (1982]) (figure
2.2.3), and multiplicaticon of the result by the glcbal radiaticn te
obtain the diffuse sky radiation.

Subtraction of the diffuse sky from the glcbal radiation to obtain the
direct insoclation.

Computation of the effective sky albedo as a function of the ambient
atmospheric conditions from (19).

Substitution of the obtained values in (17) to obtain the atmospheric
backscatter.

Subtraction of the obtained value from the diffuse sky radiation to
obtain the scattered insolation.

Direct substitution of the obtained values in (25), or computation of the
(broadband) surface albedo from (18) and substitution of the resulting
albedo and the cbtained global radiation in (25), to yield the net
shortwave radiation on an unobstructed horizontal surface as a function
of the ambient atmospheric conditions.
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2.2.4. Longwave Radiation

Longwave radiation in the terrestrial environment originates mainly from
two sources, namely as emimsion from the atmosphere and from the earth's
surface. Although the sun also contributes to the amount of longwave
radiation, this source is generally neglected because it represents less than
one percent of the solar energy received at the top of the atmosphere and is
reduced to a negligible amount at the earth's surface due to atmospheric
absorption. It is therefore reasonable to treat the terrestrial (thermal or
longwave) radiative flux eeparately from the sclar (shortwave) flux [Marks and
Dozier, 1979; Liou, 1980). Since no appreciable scattering takes place at
wavelengths longer than 4 um, radiation in this wavelength region is mainly

associated with emission and absorption. This makes thermal radiative
processes much easier to model than shortwave radiative transfer. Moreover,
thermal infrared radiation does not have the marked diurnal, seasonal or
latitudinal zenith angle dependence that characterizes shortwave radiation
[Liou, 1980].

The three major components affecting thermal radiation in the atmosphere
are water vapor in the lower atmosphere (troposphere), and carbeon dioxide and
ozone in the upper atmosphere (stratosphere). Most of the longwave radiation
originates within the lower hundreds of meters of the atmosphere [Brunt, 1932;
Swinbank, 1963; Unsworth and Monteith, 1975]. The atmosphere therefore acts
as an optically active gas, absorbing and emitting radiation as the atoms and
molecules undergo transitions (quantum jumps) between fixed energy states,
which results in line and band spectra (selective radiation). The earth's
surface on the other hand essentially behaves as a black body in the thermal
wavelength region, generating continuous absorption and emiseion spectra
(continuocus radiation) [Geiger, 1959; Liou, 1980]. Thie implies that the
surface reflectivity is nearly zero for radiation with wavelenghts above 4 um.

For snow this is already the case for wavelenghts as low as 2.5 pm [Marks and

Dozier, 1979}.

Planck's law expresses the emitted monochromatic intensity of a black body
as a function of the wavelength of the emitted radiation and the temperature
of the emitting body [e.g., Liou, 1980]. Integrating this expression over all
,wavelengths and over the entire spherical solid angle (assuming an isotropic
radiation field) yields Stefan-Boltzmann's law, which states that the
radiative flux density emitted by a black body is proportional to the fourth
power of its absolute temperature [e.g., Liou, 1980]). For convenience, the
radiative flux density emitted by a real body can be related to that of a
black body of the same temperature by means of a proportionality factor known
as the emissivity of the body. This can be interpreted as the ratioc of the
actual to the potential thermal radiation. The emission of a point at the
earth's surface is therefore defined as follows:
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Ly =€ * o * T} (26)
where:
Ly, = Surface emiassion [Wm2)
¢ = Surface emiesivity [~ 0.98]
o = Stefan-Boltzmann's constant
[= 5.6697 * 10% wm2k4)

T Abgolute surface temperature [= 273 K)

The average emissivity of the earth's surface can be assumed to be 0.95,
whereas for enow an even higher value of about 0.98 seems appropriate
[Kondratyev et al., 1982). This value is very insensitive to changes in snow
cover properties resulting from grain growth or contamination during the snow
melt season [Marks, 1988). Snowmelt is a result of a net energy input at the
snow surface once the entire snow pack is isothermal at 0°C. Therefore the

snow surface temperature will approximately be constant at 273 K throughout
the snowmelt seascn resulting in a mean surface emission of a little more than
300 Wm2,

Bacause the atmosphere behaves as a band or selective radiator, it is not
feasible to describe its emission analytically. Numerous investigators over
the past 75 years have therefore sought to establish (semi-)empirical
relationships between the actual emission of a cloudless atmosphere and that
of a black body at acreen level air temperature. Although some of them related
atmospheric emission directly to air temperature [Swinbank, 1963; Unsworth and
Monteith, 1975), most of them presented expressions for the effective
emissivity of such an atmosphere as a function of screen level values of
either air temperature or vapor pressure or both, which will be presented
here.

Both Angstrtm and Brunt [1932] developed equations that contained vapor
pressure alone and required the determination of empirical coefficients from
local observations. Angstrdm's formula took the form of a linear relationship
between the effective atmospheric emissivity and an exponential function of
the vapor pressure at screen level. Brunt, on the other hand, established a
relaticnship with the square root of the vapor pressure, based on the analogy
he assumed between radiative tranafer and heat conduction. Theoretical
evidence for this relationship was found by Monteith [1961]) (as cited by Idso
and Jackson [1969]) and Unsworth and Monteith ([1975]. One disadvantage of
these empirical relationships is the wide variation of the "constants" with
locality, which Brunt ascribed largely to differences in experimental
procedure instead of to differences in vertical air temperature and vapor
preassure profiles.

Swinbank [1963] argued that "the correlation between emissivity and vapor
pressure {in both Angstrdm's and Brunt's equations, R.U.) arises, not from any
significant influence of variation of vapor pressure on atmospheric emission,
but from a correlation between temperature and humidity”, and furthermore that
the wide variations in the empirical coefficients with locality are "due to
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differences in the temperature-humidity regime from place to place, and not
to any basic difference in the nature of the incoming radiation". He related
the atmogpheric emissivity directly to the sBquare of the air temperature at
screen level, without making use of empirical coefficients (i.e. he related
the atmospheric emission to the sixth power of the air temperature).

Idso and Jackson [1969%]), questioned the value of the power of the
temperature in Swinbanks relationship. They showed that powers varying from
1 to 10 all yielded very high correlations with Swinbank's original radiation
data and argued that "there appears to be no theoretical justification for the
power of the air temperature being greater than 4 for any air temperature
obtainable on earth". According to Idso and Jackson, the atmospheric
emissivity is symmetrical about a minimum at 273K and tends exponentially
toward unity both for increaeing and for decreasing temperatures, because ice
and snow behave as nearly perfect emitters.

In an effort to reconcile some of the earlier discrepancies and to account
for emission and absorption of longwave radiation in the atmosphere due to
water vapor and carbon dioxide, Brutsaert [1975) took a more physically based
approach that was completely different from the previcusly discussed empirical
parameterizations. By substistuting exponential decay functions for
temperature, pressure and water vapor density (as close approximations of
their mean vertical profiles), he was able to integrate the equation for
infrared radiative transfer in a plane stratified and nonscattering atmeosphere
in local thermodynamic equilibrium to yield the effaective atmospheric
emissivity as a function of both screen level vapor pressure and air
temperature. The result was a relationship which is not very seneitive to
changes in air temperature. The advantages of this formula over empirical
expressions are (1)} that it does not require empirical parameters to be
determined from radiation experiments, and (2) that it allows easy adjustment
for local conditions, both with respect to changes in surface elevation
(appendix B.) and with respect to c¢hanges in humidity or temperature
stratification.

A comparison experiment of Rase and Idso (1978] showed that both Idso and
Jackson's empirical and Brutsaert's analytical formula adequately predicted
longwave radiation from the atmosphere for screen level air temperatures above
0°C. Under freezing conditions however, the former was generally found to

overestimate and the latter was found to underestimate the atmospheric
emissivity. In response to this problem, Satterlund (1979] derived an
exponential formula {again containing both vapor pressure and air temperature)
that improved the agreement with measurements under freezing conditions.
Although Idso (1981] stated like Swinbank that "the relative successes of
all prior equations have been due to general correlations between wvapor
pressure and air temperature®, he took a different approach and developed a
new physically based set of equations for the effective atmospheric emissivity
of the entire spectrum and of two wavelength bands as functions of both air
temperature and vapor pressure instead of air temperature alone. Idso showed
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that "the true effect of increasing temperature (keeping vapor pressure
conetant, R.U.)} is to decrease the effective emissivity of a cloudlees
atmosphere”. He argued that "it is only because screen level vapor pressure
generally increases with screen level air temperature that on a grecss scale
the Idso-Jackson (and Swinbank's and Satterlund's, R.U.) equation appears to
give qualitatively correct results". Idso's equations are based on the
postulation that the variable concentration of water dimers (pairs of water
molecules linked together by weak hydrogen bonds) in the free atmosphere is
the main source of variations in the effective emissivity associated with
water vapor [Liou, 1980]). His equation for the entire spectrum yields accurate
results over a wide range of screen level air temperatures, including freezing
conditions.

Although Satterlund’'s and Idso's equations generally yield more reliable
resulte for freezing conditions, Brutsaert's equation seems preferable not
only from a theoretical peint of view (i.e., it ie not in contradiction with
Idso's (1981] conceptual model) but also because the form of his derivation
allows adjusting for the decreasing amcunt of water vapor in the atmosphere
with increasing surface altitude. Moreover, during the melting season screen
level air temperatures tend not to fall far below zero, thus generally
avoiding the temperature region that causes this equation to deviate slightly
from observations:

€okyo = 0-642 * (e, * T, (27)
where:
€y = Effective atmospheric emissivity under cloudless

conditions [-]
e, = Vapor pressure at surface [Pa]
T, = Absolute air temperature at surface [K]

It can be shown that when Brutsaert's derivation is generalized to yield
the effective atmospheric emissivity at any altitude in the atmosphere as a
function of vapor pressure and air temperature at that altitude, the
functional form of his equation remains exactly the same (appendix B.).
Brutsaert's equation in its original form already implicitly accounts for the
effect of an increasing surface altitude, because it contains the ratio of
vapor pressure and air temperature at screen level above the surface. This
ratio decreases with increaeing surface altitude, since vapor pressure, as a
result of ite significant temperature dependence, decreases much faster than
alr temperature itself (equation (13) and subseguent remarks). A linear
pressure correction in combination with an extrapolation of vapor pressure and
air temperature towards mean sea level (assuming a constant temperature lapse
rate and a constant relative humidity), as proposed by Marks and Dozier [1979]
and Marks [1988), seems therefore inappropriate (appendix B.).

As a result of Kirchhoff's law, the fraction of the incident longwave
radiation that is absorbed by a surface equals its emissivity. Therefora, the
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net longwave radiation at an uncbstructed horizontal surface can be written
as follows:

Ly = € * Lygy = Ly (28)
=€ % g ¥% (e,ky*T_"-T.‘)
where:

L, = Net longwave radiation [Wm2]
€ = Surface emissivity (= 0.98)
Ly = Atmospheric emission (Wm2)
Ly, = Surface emission [Wm'2)
o = Stefan-Boltzmann's constant
[= 5.6697 * 10 wm2K*)
€4y = Effective atmospheric emissivity (-]
T, = Absolute air temperature at surface [K]
T, = Absolute surface temperature [~ 273 K]

Under cloudy skies the atmospheric emission increases, mainly as a result
of the increased water vapor content. An appropriate adjustment for this
effect would be to increase the effective atmospheric emissivity. Yet, variocus
authors apply correction factors to the net longwave radiation under clear
skies instead. These factors often take the form of a reduction of the
longwave radiation budget proportional to the mean fractional cloud cover
[Geiger, 1959; Unsworth and Monteith, 1975; Brutsaert, 1982}. This approach
assumes the net longwave radiation under clear skies to be negative which may
be true in most cases, but may actually be invalid in snow covered mountainous
terrain. This is caused by snow surface temperatures that tend to be
appreciably lower than air temperatures during snowmelt seasons (equation
(28) ). Therefore, an adjustment to the effective atmospheric emissivity seems
more suitable under these conditions.

Such an adjustment basically can take three forms: (1) a linear
relationship between the effective atmospheric emissivity under cloudy
conditions and the mean fractional cloudcover, based upon weighing the
emigsivities for clear and overcast skies over the unobecured and obscured
portions of the whole sky dome, respectively [Unsworth and Monteith, 1975];
(2) a guadratic empirical relationship that seems to be in better agreement
with observations [Geiger, 1959; Brutsaert, 1982); (3) a more physically based
relationship as developed by Kimball et al. [1982] that takes into account the
cloud amount and altitude for up to four cloud layers. The latter is based
upon the emiseivity equations developed by Idso [1981), and on the assumption
that the cloud contribution to the atmospheric longwave radiation has to be
transmitted to the earth's surface through the "atmospheric window". aAlthough
this method has yielded promising results, its relative complexity does not
allow application to simplified operational approaches.

Therefore, the atmospheric emissivity under clear skies is adjusted for the
effect of cloudcover through a nonlinear function of the mean fractional
cloudcover:
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C'ky * Emo-l
where:

€y = Effective atmoapheric emigaivity (=)

€skyo = Effective atmospheric emiseivity under cloudless

conditions [-)
c3; = Empirical coefficient [= 0.22]
m, = Mean fractional cloudcover [-]

Although the coefficient ¢; is actually dependent on cloud type, Brutsaert
{1982] suggested that 0.22 should be a reasonable average. This is in good
agreement with the experimental findings of Kimball et al. [1982] and with
Sellers’ [1965]) remark that cloud layers generally do not increase atmospheric
emission by more than 25 percent [Kimball et al., 1982]. If the atmosphere is
assumed to behave like a perfect emitter for overcast skies (i.e. if €sky is

assumed to become close to unity when m, equals unity}, then a value of 0.22

for c; restricts ey, to a maximum of about 0.82. Under typical atmospheric

conditions however, the effective clear eky emissivity (as can be seen from
Brutsaert's formula, equation (27)) seldom becomes larger than this maximum.

After application of this correction to (27), (28) can be usaed to determine
the net longwave radiation at an unobstructed horizontal surface as a function
of the atmospheric conditions. The required input parameters are the surface
temperature, the air temperature and vapor pressure at the surface and the
mean fractional cloudcover.

2.3. Complex Terrain

2.3.1. Problems Encountered

The difficulties concerned with modeling the radiation budget in
mountainous terrain are mainly associated with an additional topographic
modification of incident electromagnetic radiation as compared to a uniform
surface. The radiation-terrain interaction at a uniform surface is fully
determined by its intrinsic reflective properties, whereas the radiation
budget at a surface in complex terrain also is significantly influenced by
obstruction, reflection and emission of radiation by adjacent surfaces. These
effects are especially important in alpine watersheds where most of the larger
snow covered areas have slopes of 10° to 30° [Olyphant, 1986a). Similar

obetacles as those in topoclimatology are encountered in building and urban
climatology, bioclimatology and solar energy studies [Becker and Boyd, 1957;
Arnfield, 1982). Although most attention in this section will be paid to the
effects of terrain geometry, altitude differences play an important role in
radiation modeling because incoming solar radiation can vary by 25 percent
over an elevation change of order 3000 meterse [Dozier, 1980].

As far as modeling methodology for a point in complex terrain is concerned,
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basically three typee of incident radiation can be distinguished [Dozier and
Frew, 1989): (1) direct insolation, subject to a modification due to its
projection at the surface and to poasible obstruction by neighboring surfaces
and cbjecte superimposed on them (e.g., forest canopy); (2) diffuse radiation
from the sky (both scattered sclar and emitted thermal radiation), subject to
a reduction as compared to a point at a uniform surface due to the partial
obetruction of the sky hemisphere; (3) diffuse radiation from adjacent
surfaces (both reflected solar and emitted thermal radiation), proportional
to the viewed fraction of the hemisphere that is covered by surrounding
terrain. As already mentioned, specular reflection of direct insolation ie
usually ignored. Although it might be of importance at particular combinations
of solar position and slope exposure, its occurence is too infrequent to be
of any significance in the radiation budget [Dozier, 1980; Proy et al., 1989].

The topography induced effect concerning direct insclation in mountainous
areas is twofold: (1) a possible reduction of the day length due to shadowing,
resulting both in large temporal and spatial variabilities; (2) a modification
of the direct beam as a function of sBlope exposure, resulting mainly in large
sepatial variability. Dozier [1980] stated that "at all times of year horizons
reduce the effective day length by intercepting direct beam radiation at low
sun angles”, and Whiteman et al. [1989] found that shadowing "is critical to
the daily radiation totals".

Because multiple reflections are a major contribution to global radiation
in snow covered terrain (section 2.2.2.), partial obstruction of diffuse sky
radiation will cause a significant reduction of global radiation in complex
terrain. Garnier and Ohmura [1970) argued that the interception of reflected
radiation from adjacent surfaces plays a minor role in the energy budget of
surfaces with albedo's less than 0.30. However, Kondratyev and Manolova [1960}
found that the diurnal variation of the sum of scattered sky radiation and
intercepted surface reflection on slopes with albedo's of about 0.20 was
nearly independent of the inclination angle. They attributed their observation
to "the tendency for compensation of the decrease of scattered radiation
inflow (with increase in slope inclination angle) by the increase in the
reflected radiation inflow". In snow covered terrain the latter will have even
greater importance due to the high albedo of snow [Becker and Boyd, 1957;
Shoshany, 1989). Moreover, Olyphant [1986a] concluded that "surrounding
rockwalls enhance the radiation balance of cirque glaciers and snowfields by
reducing the net longwave loss 37-63 percent below that of an unobstructed
horizontal surface".

2.3.2. Conversion Factor Approach

Since being proposed by Liu and Jordan [1961], it has been common practice
to relate the components of the radiation budget in complex terrain to their
corresponding values at uniform surfaces (as presented in section 2.2.) by
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means of conversion factors. Applying the geometrical ray optics approach to
describe the illumination of a terrain cbject and the shadow it casts, the
conversion factor for direct radiation {(or beam shading function) can be
derived analytically. It ie merely of function of the angle of incidence
relative to the surface and of a binary coefficient that determines whether
or not the surface is shadowed by itself or by surrounding slopes. The
geometrical ray optics approach is based on the common assumption that the
incident beam of light may be thought of as consisting of separate localized
rays pursuing their own strait-line paths [Liou, 1980]). Por diffuse radiation
from the sky and from surrounding terrain however, an analytical solution can
only be derived if the radiance (i.e. the broadband radiative flux density per
sterradian of the spherical solid angle)} distribution over the viewed fraction
of the hemiephere is known.

Various authors have proposed semi-empirical radiance distribution
functions for background (i.e. excluding the circumsolar or aurecle component)
gecattered solar radiation [Moon and Spencer, 1942; Steven and Unsworth, 1979;
1980]), for atmospheric emission [Unsworth and Monteith, 1975] and for net
longwave radiation ([Geiger, 1959; Kondratyev and Manolova, 1960). Since
background solar or thermal radiance in most cases do not possess any
significant azimuthal dependence, they are usually given merely as functions
of the zenith angle. A radiance distribution can be conveniently expressed ae
a so—-called anisotropy factor [Dozier and Frew, 1989), defined as the ratio
of the equivalent flux density from a particular solid angle to the flux
density reaching a uniform horizontal surface from the entire hemisphere. It
follows from this definition that the radiance from a direction characterized
by an anisotropy factor equaling unity equals the average radiance reaching
a uniform horizontal surface. The converaion factor that can be derived by
integrating the surface projection of such an anisotropy factor over the
viewed fraction of the sky hemisphere is usually referred to as the sky view
factor. It is expressed as a dimensionless number that falle generally (though
not necessarily) between zero and one.

Under the assumptions that the radiance distribution is isotropical and
that the local topography can be described by a simple terrain model,
integration yields convenient trigonometric conversion factors (appendix E.)
([e.g., Hay and Davies, 1978)}. The validity of such isotropic approximations
however, has been questioned by various authors: Kondratyev and Manolova
(1960] argued that although the isotropic approximation proves to be
satisfactory for overcast sky conditions and for high solar elevation angles,
it usually gives unsatisfactory results for calculating the scattered
radiation fluxes on slopes. Steven and Unsworth [1980) state that "although
the isotropic assumption (for diffuse solar radiation, R.U.) is mathematically
convenient, it is supported neither by theory nor by observation”, and they
show that even for overcast skies it can result in a significant
overestimation of the irradiance of sloping surfaces. On the other hand, they
mentioned that both Fritz ([1955] and Goudriaan {1977] gave a theoretical
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foundation for the fact that the hemispherjical uniformity (isotropy) of
diffuse sky radiance under overcast skies increases with surface albedo,
resulting in a rather weak zenith angle dependence above snow covered terrain!
In any case, the suggestion by Becker and Boyd [1957] that the ratios (of
solar radiation incident upon tilted surfaces to that incident on horizontal
surfaces) would tend toward unity with increased cloudiness completely
overlooks the characteristic phenomenon of terrain obstruction of part of the
sky hemisphere in complex terrain. Olyphant [1986a] compared isotropic and
anisotropic models for the longwave irradiance in a mountainous area and found
that the isotropic assumption doese not yield satisfactory results for longwave
irradiance.

Other investigators have attempted to account for anisotropy without
performing the computationally intenasive spatial integration of radiance
distribution functions {e.g., Tempsa and Coulson [1977]). Temps and Coculson
took a more empirical approach in modeling the anisotropic properties of
scattered solar radiation under clear skies by multiplying the isotropic view
factor by correction factors to account for brightening of the sky in the
vicinity of the sun and the horizon (section 2.2.2.). On the other hand,
Klucher [1979] observed that the isotropic approximation yielde satisfactory
results under overcast sky conditions but underestimates the insclation at
higher intensities, whereas the modified model of Tempe and Coulson provides
an improvement under clear sky conditions but overestimates the insolation
under partly cloudy and overcast conditions. He therefore introduced a
"modulating function” containing the ratio of diffuse to global insclation at
a uniform surface (K ;/K4} to account for the effect of cloudiness. Hay and

Davies (1978) used a similar approach by using the ratio of direct to
extraterrestrial radiation at a uniform surface (K, /K,) for this purpose.

Both models were found to be superior to the isotropic model, although the
model of Hay and Davies showed a smaller difference in seasonal performance
than Klucher's model [Ma and Igbal, 1983].

The conversion factor that can be derived by integrating the surface
projection of the distribution of the intercepted reflection or emission over
the viewed fraction of the hemisphere covered by surrounding terrain is
usually referred to as the terrain configuration factor. As a result of the
complex geometric effects between a point in mountainous terrain and each
point in the surrounding terrain with which it is mutually visible, the
isotropic assumption is unrealistic even if the surrounding terrain is a
Lambertian reflector or a perfect emitter (Dozier and Frew, 1989). Moreover,
radiation received from obscured portions of the sky hemisphere strictly
speaking alsoc depends upon transmission and emission by the slab of air
between source and receptor {Olyphant, 1986a; Shoshany, 198%]. Temps and
Coulson [1977] alego derived an empirical correction factor for application to
the isotropic terrain configuration factor. Since it was based on reflectance
measurements for grass turf however, it does not seem to be suitable for snow
covered terrain. Hence, if no measurements of surface reflection or emission
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are available an isotropic terrain configuration factor remaine the only
option.

Since the interception of reflection and emission from surrounding terrain
do not have a corresponding value at a uniform surface, they are usually
related to the reflected or emitted radiation from a uniform surface. For the
diffusely reflected direct insolation however, this is a rather crude
approximation since the average reflection from surrounding terrain can be
markedly different from the reflection from a uniform surface [Dozier, 1980].
Furthermore, the effecte of multiple reflections between facing slopes are
generally neglected, although an investigation carried out by Shoshany [1989]
suggests that those might be significant for highly reflective (snow) surfaces
facing each other at a relatively steep angle. Proy et al. [1989] state that
interception of reflection from surrounding terrain can be neglected for
directly illuminated sites, but should be taken into account for shadowed
sites. Nonetheless, it is postulated that the average reflection from
surrounding terrain can be adequately approximated by the reflection from a
uniform surface since (1) it is not a major term in the radiation budget and
(2) terrain induced effects tend to cancel out when integrated over space
[Kondratyev and Manolova, 1960; Shoshany, 1989]).

Taking into account the considerations stated above, the shortwave (solar)
and longwave (thermal) components of the radiation balance at a point in snow
covered mountainous terrain can be conveniently expressed as functions of
their equivalents at a uniform snow surface:

K, = (1 - ag) * Vg * Ky + (1 - agy)

Y (Ve * (G %G % Ky + Kog) + Vi * 8y * KV (30)
Ly = €% (Vgy * Ly + Vi * €4 * @ * ') = Lg (31)
where!:
K, = Net shortwave radiation

a; = Diffuse surface reflectivity for direct radiation [«]

Vg = Conversion factor for direct radiation or beam shading function
(-]

K, i, = Direct solar radiation

a4¢ = Surface reflectivity for diffuse radiation [-]

a1 = Conversion factor for background solar sky radiation or sky view

factor [-]

C,' = Correction for sky brightening in vicinity of sun in complex
terrain [~]

C, = Correction for sky brightening in vicinity of sun at

unobetructed horizontal surface [-]
K, = Radiation scattered downward from direct beam
Kyx = Backscatter from atmosphere

Vim = Conversion factor for diffuse radiation from surrounding terrain
or terrain configuration factor [-]
a,, = Average albedo of adjacent terrain (= 0.25]

K} = Downward shortwave radiation
L, = Net longwave radiation

€ = Surface emissivity (= 0.98}

Viy = Conversion factor for atmospheric emission or sky view factor (-]
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Emission from atmosphere
Average emissivity of adjacent terrain [= 0.95]

o = Stefan-Boltzmann's constant [~ 5.6697 * 10 wmZk4)
= Average surface temperature of adjacent terrain [K]
= Surface emigsion

! ynit of radiative flux density is {Wma].

All radiative flux deneities in equation (30) and (31) are already
determined in sections 2.2.3 and 2.2.4. (for substitution in equations (25)
and (28), respectively). The determination of the conversion factors and of
the additional correction factor (C,'/C,) accounting for sky brightening in the
vicinity of the sun will be discussed in the next section.

This additional correction for sky brightening in the vicinity of the sun
is necessary because the radiance distribution functions for scattered solar
radiation mentioned earlier and consequently the sky view factors based upon
them only account for background radiation (both resulting from scattering of
the direct beam and from atmospheric backscatter) but not for the circumsolar
or aureocle component (merely resulting from scattering of the direct beam)
that is present when the direct beam is not obstructed by a local horizon or
a cloudcover. This correction takes the form of a ratio because Temps and
Coulson [1977] proposed different factorse for unobstructed horizontal surfaces
{uniform terrain) and obstructed inclined surfacee (complex terrain). Hence,
for applications in complex terrain, the former, which has been used in
equation (10), should be eliminated and substituted by the latter.

The average surface properties of the terrain surrounding the point at
which the radiation budget is modeled (i.e. albedo, emissivity and surface
temperature) depend largely on the question of whether it is snow covered or
not. In case the adjacent surfaces are completely snow covered, the same
values can be applied as determined for the model point itself. In case of
bare rock or vegetation however, the surface albedo will be significantly
lower {about 0.25-0.30 for rockwalls), the surface emissivity will be somewhat
lower (about 0.95), and the daily average surface temperature will be
presented more adequately by the daily average air temperature than by the
freezing temperature of water [Marks and Dozier, 1979; Olyphant, 1984;
1986a,b]. Such reasonable approximations are accurate enough in most cases,
because terrain configuration factors are usually small when compared to sky
view factors, even in mountainous terrain.

Although the current investigation deals with determining the radiation
budget at a point, simulation of radiation induced snow melt rates for a whele
watershed requires spatial integration of point values. Various investigators
have used digital elevation data as input for solar (Dozier, 1980; Isard,
1983; Olyphant, 1984; 1986b]) and for thermal radiation models [Marks and
Dozier, 1979). Problems related to the efficiency of spatial integration
algorithms [Dozier and Frew, 1989) and to the spatial extrapolation of input
data [Marks and Dozier, 1979; Running et al., 1987] are not within the scope
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of this investigation. Nonetheless, they will be of importance in future
implementations of the present mcdel.

2.3.3. Conversion Factor Determination

As mentioned in section 2.3.2., the conversion factor for direct radiation
incident on a point in complex terrain (beam shading function) is a function
of: (1) a binary shading coefficient that determines whether the observed
peint is in the shadow or not, and (2} the ratio of the cceine of the
incidence angle at the inclined surface which contains the observed point to
that at an imaginary horizontal surface at the same location:

Vge = T * cos[8,') * cos[el]'l (32)
if 8, > H[®%,) then ' = 0, elgse T =1
where!:2:

V4 = Beam shading function (-]
= Binary shading coefficient [-]

8,' = Incidence angle of direct radiation {rad]
= Solar zenith angle [rad]

Zenith angle of local horizon [rad)

= Solar azimuth angle [rad]

B @
]

1 Phe incidence angle is defined as the angle between a unit
coordinate vector normal to the surface and pointing away
from the ground and a unit coordinate vector pointing
toward the center of the solar disk.

Azimuths are measured from north through east,

The cosine of the solar zenith angle (i.e. the incidence angle at a
horizontal surface) is given by equation (6) as a function of surface
latitude, solar declination and hour angle. The cosine of the incidence angle
at an inclined surface can be given either (1) directly as a function of the
golar zenith and azimuth angles and of the surface geometry as determined by
its inclination (slope) and azimuth angles {(aspect), or (2) indirectly as a
function of latitude, declination, hour angle, slope and aspect. The latter
can be derived from the former (equation (36) with ©€=8, and &=%;) when

expresesions for the solar zenith and azimuth angles are substituted (e.g.,
List, 1966; Kondratyev, 1973:; Whiteman and Allwine, 1986), which is shown in
appendix C. Garnier and Ohmura {1968; 1970) took a slightly different approach
and used a coordinate tranaformation following the principles of spherical
trigonometry to derive the same convenient formula.

Local horizon functions can be sampled accurately from digital terrain
models, although traditional brute force techniques result in a huge
computational burden. Dozier and Frew [1989] developed a rapid algorithm for
the calculation of terrain parameters from digital elevation data and found
that 16 directions around the circle (egquivalent with an angular increment of
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x/8 radians or 22.5°) are usually enough to describe the horizon angle

adequately. Given the hypothetical case that only self-shading occurs, the
inclined surface is described by an infinitely long uniform slope, and the
local horizon is merely a function of the inclination and azimuth angles of
the surface itself (equation (41)). The criterion for switching the binary
shading coefficient from zero to one now reduces to: if (cos(H,']<0 or

cos[8,]<0) then I'=0, else I'=l. This geometrical simplification is the basis

for the well-known simple trigonometric conversion factors for isotropically
dietributed diffuse radiation from the sky and radiation from adjacent
terrain.

Because the additional correction factor used in equation {30) to account
for brightening of the sky in the vicinity of the sun is treated geometrically
as part of the direct golar beam, it is discussed here before the actual
conversion factor for background scattered solar radiation. To account for the
possible obatruction of the direct beam by a local horizon or a cloudcover,
the binary shading coefficient from equation (32) and Klucher's [1979]
modulating function (based on variables whose determination has been discussed
extensively in section 2.2.3.) are applied, respectively. As for the rest,
Temps and Coulson’'s [1977] correction factor retains basically its original
form (as given in equation (10)) in complex terrain:

¢, *cl=(1+T*»F » cos?(6,') * sin’[6,})
* {1 + F * cos?(8,] * sin®(8,])! (33)
F =1 - (Kg * K¢'12

C,' = Correction for sky brightening in vicinity of sun in

complex terrain (-]

Correction for sky brightening in vicinity of sun at

unobstructed horizontal surface [~]

Binary shading coefficient [-]

Modulating function for cloudcover (-]

Incidence angle of direct radiation ([rad]

Solar zenith angle [rad]

K4it = Diffuse sky radiation reaching unobstructed horizontal
surface [Wma]

K{ = Downward shortwave radiation reaching uncbstructed

horizontal surface [Wma]

The conversion factor for diffuse radiation from the sky (both for
background scattered solar and emitted thermal radiation) incident on a point
in complex terrain (sky view factor) is by definition the ratio of the
hemispherically integrated aky radiance at the inclined surface which contains
the cobserved point to that at an imaginary horizontal eurface at the same
location. In terms of the previously mentioned anisotropy factor, being the
ratio of the equivalent flux density from a particular direction to the
diffuse radiation reaching a horizontal surface [Dozier and Frew, 1989}, the
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sky view factor can be expressed as follows in the polar coordinates of a
viewer-oriented (global) coordinate system [Kondratyev and Manolova, 1960;
Arnfield, 1982]:

-

2r H(®)
Vdif = ﬂ-l * J Jﬂdif[a,!’] * sin[9] * COE[B'] * d8 » 4o (34)
0 0
Que(0,8] = 7 * R[6,8] * Ry (35)
cos[B8'] = cos{S] * cog(6] + sin[S8] * sin(9] * coe(d - A] ({36)
where:
Vgir = Sky view factor [-]
H = Zenith angle of local horizon [rad]
Ql4r = Anisotropy factor for diffuse radiance from the sky [-]
8 = Zenith angle {rad]
8' = Incidence angle of diffuse radiance from the sky [rad]
$ = Azimuth angle [rad]

R = Diffuse radiance from the sky [Wm‘zsr'll

Ry¢ = Diffuse radiation from the gky reaching unobstructed horizontal
surface [WmQ]

S = Surface inclination angle or slope [rad] (= Zenith angle of
surface normal)

A = Surface azimuth angle or aspect [rad] (= Azimuth angle of
surface normal)

The previously mentioned semi-empirical distribution functions for
background scattered solar radiation and atmoepheric emission usually take the
form of radiance distributions as functions of the zenith angle only (R(8})

instead of anisotropy factors as functions of both zenith and azimuth angles
(Q3[6,2]), i.e. azimuthal dependence is ignored and the convenient anisotropy

factor approach is not applied. However, R[8] can easily be converted to £1[8]
by means of equation (35), because Ry is merely the hemispherical integration
of R[B] at an unobstructed horizontal surface, which can be seen from equation

(34) by setting V=1 when H[$]=n/2 and 8'=0:

2n w/2
Ryi¢ =J J R[B] * 8in(@] * cos[B) * dB * dd
00
1
= 27 * [R[ul * pu* du ; p = cos(8) (37)
0
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where:
Ry = Diffuse radiation from the sky [Wm2]
R Diffuse radiance from the sky [Wmasr4]
Zenith angle [rad]}
Azimuth angle [rad]
Cosine of zenith angle (-]

T & Q
nown

It can be seen from this equation that the term x*R[6,P] in equation (35)

is the equivalent flux density from a hemisphere radiating isotropically like
the sclid angle denoted by the coordinates (8,%). By definition (equation

{35}), this equivalent flux deneity is equal to the actual flux density when
the anisotropy factor equals unity.

In appendix D. the following anisotropy factors are derived on the basis
of widely used radiance distribution functions for background scattered solar
radiation and atmospheric emigsion for varying atmospheric conditions {(figure
2.3.3.):

O [p) = (1 + b * p) * (1 + by * 2/3)71 (38)
Bp) = 1 - b * e * (0.5 - ln[M,]) (39)
where:

)y = Anieotropy factor for background solar sky radiance
(=]

p = Cosine of zenith angle [-]

b, = Empirical coefficient [= -0.87 for clear skies;
=~ 1.23 for ovarcast skies]

f}, = Anisotropy factor for atmospheric emittance (-]

by = Empirical coefficient [= 0.09]
€y = Effective atmospheric emissivity [=]
M, = Relative path length for water vapor [-]

It is noted that the values given above for the empirical ccefficients b,
and b were derived on the basis of extensive measurements pregented by Steven
and Unaworth [1979; 1980] and Unsworth and Monteith [1975], respectively. With
b,=2, this yields the well known "Standard Overcast Sky" {S0C) proposed by
Moon and Spencer [1942]).

It is shown in appendix D, that b, can be determined solely as a function

of gy if it is assumed that the equivalent emissivity tends to unity as p
approaches zeroc (zenith angle 8 approaches x/2), as was reasoned both by Brunt

{1932] and by Unsworth and Monteith [1975]. Within the range of effective sky
emissivities that occur (i.e. that result from equations (27) and (29)), this
approach yields values close to 0.09. Hence, the value proposed by Unsworth
and Monteith can be reconciled with theoretical considerations.

Unsworth and Monteith [1975]) showed the anisotropy factor for atmospheric
emittance to be valid for both clear and overcast skies. Olyphant [1986€b]
proposed a weighted average estimate of the anisotropy factor for background
solar sky radiance under partly cloudy skies, using the shortwave
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fig. 2.3.3. Anisotropy factors for background solar sky radiance ({};) and
atmospheric emittance ({};) as functions of the cosine of the zenith angle
(#) for clear {o) and overcast (c) skies.
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transmissivity of the atmosphere (Ki/K,) and its complement as weights,

respectively. Since this was meant as an indicator of the percentage
cloudiness, direct application of the mean fractional cloudcover (m,) like in
equation (19) seems more obvious. Note that b, equal to -0.87 in equation (38)
accounts for the horizon brightening effect under clear skies (fig. 2.3.3.).
Since the functional form of the horizon function and some of these
anisotropy factors prevents us from integrating equation (34) analytically,
numerical integration methods remain the only alternative. Arnfield (1982]
carried out an error analysis to determine the optimal value {(in the tradeoff
between computing expense and accuracy) of the angular increment used in the
numerical integration over zenith and azimuth angle. He recommended angles of
at most «/36 and x/18 radians to achieve deviations of no more than 5 and 10

percent respectively from the "exact® solution, which was evaluated with an
angular increment of x/180 radiana (1°) using Simpson's numerical integration

rule.

When the anisotropy factor in equation (34) is set egual to cne, the
isotropic approximation of the sky view factor is determined. Dozier and Frew
{1989] showed that in that case {34) can be converted to a more convenient
expresdion that merely requires numerical integration over all azimuth
directions. An even greater reduction in computational effort can be achieved
when the horizon function is described by some integrable expression that is
completely determined by the geometrical properties of the surface in
question, i.e. sglope and aspect. Local topography is than modeled by an
infinitely long uniform slope facing an infinitely long horizontal surface.
The zenith angle of the local horizon is consequently'determined in upslope
direction (cos(®-A]<0) by the zenith angle of a ray that is parallel to the

slope, and in downslope direction (cos[®-A]=0) by an angle of «/2 radians.
Setting @ equal to H and 8' equal to n/2 in equation {36) yields the following

local horizon function for this simple terrain model:

if cos[® - A} = 0 then H[®] = n/2,

else H[®) = arctan[-(tan(S] * cos[{ - A])J] (40)
where:
% = Azimuth angle [rad]
A = Surface azimuth angle [rad)
H = Zenith angle of local horizon [rad]
8 = Surface inclination angle [rad}

This simplification allowsa analytical integration of (34), resulting in the
well known isotropic trigonometric sky view factor approximation [e.g., Hay
and Davies, 1978]. Steven and Unsworth [1979; 1980) even present an analytical
solution for the anisotropic case where the background solar sky radiance
distribution is described by equation (38). An extension of the isotropic
model to an infinitely long V-shaped valley, i.e. two infinitely long uniform
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alopes facing each other leads to the following exact solution of eguation
(34) (appendix E.):

Ve = coB2((S + 8') / 2] = (1 + cos[S + §')) / 2 (41)
where:

Vyir = Sky view factor (-]

8 = Surface inclination angle [rad)

§' = Inclination angle of facing slope or inclination angle of
horizon in direction of facing ridge top [rad])

Obviously, this eguation must also be valid at the valley floor of a V-
shaped valley composed of two facing slopes of finite dimensions. Setting S'
equal to zero yields the solution of (34) for the isotropic case (fi=1) when

the local horizon function is defined according to (40). Olyphant [1984,
1986a] used the sguare of the sine of the average zenith angle of the local
horizon as a sky view factor approximation.

In a preliminary numerical integration study, an intercomparison was made
between the asky view factors for a symmetrical infinitely long V-shaped valley
computed according to the anisotropic formula (34), the isotropic formula (41)
and Olyphant's formula (Vg= sin?[Hm]). Equation (34) (with the anisotropy
factors defined according to (38) and (39)) was integrated numerically over
the appropriate zenith and azimuth angles with angular increments of pi/i8
radians using Simpson's 1/3 rule. The {Microsoft Quick)BASIC computer program
that was conatructed for this purpose ("FACTORS" in appendix E.) has been
validated in 3 ways [Feldman and Rugg, 1988}: (1) When used for simulating a
horizontal surface, the integrated view factors never deviated more than 0.02
percent from unity; (2) When the anisotropy factors were set equal to one, the
integrated view factors never departed more than 0.01 percent from their
isotropic equivalents; (3) When simulating an infinitely long uniform slope
facing an infinitely long uniform surface, the integrated view factors for
background solar sky radiance never deviated more than 0.01 percent from the
analytical solution that Steven and Unsworth derived for this case. It was
found that the isotropic formula is an accurate approximation for the view
factor for atmoapheric emittance for facing slopes of up to 60° (the maximum

error amounted about 3 percent). As an approximation for the view factor for
background solar sky radiance however, it performed slightly less accurate,
resulting in an overestimation for clear skies of 14 (43) percent and an
underestimation for overcast skies of 4 (9) percent for facing slopes of 30°
{60°). Olyphant's formula always drastically overpredicted the sky view
factor, but will probably yield better results in real mountainous terrain.
When the local horizon function defined in FACTORS is delineated from a
topographic map or digital terrain model, this computer program can serve as
a subroutine in a radiation budget model for mountainous terrain (chapter 3.).

The conversion factor for the intercepted diffuse radiation from adjacent
surfaces (both for reflected solar and emitted thermal radiation) incident on
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a peint in complex terrain (terrain configuration factor) is by definition the
ratio of the hemispherically integrated diffuse terrain radiance at the
inclined surface which contains the observed point to the radiation reflected
or emitted by an imaginary horizontal surface at the same location. The
general functional form defining the terrain configuration factor is the same
as that of equation (34) (defining the sky view factor), except that the
surface projection of the terrain anisotropy factor is integrated over all
zenith angles from the local horizon downward to where a ray ie parallel to
the slope in question {(as given by the arctangent expression in (40) without
the mentioned azimuthal restriction) instead of over all zenith angles from
the zenith downward to the local horizon [Dozier and Frew, 1989]). Hence, an
additional component of diffuse irradiance will be contributed to an inclined
surface in complex terrain from the lowaer hemisphere by adjacant surfaces in
the downslope direction [Arnfield, 1982). Thie effect partially compensates
the obstruction of the upper hemisphere by the same surrounding surfaces and
by the receiving surface itself, as quantified by the sky view factor. As
stated-in gsaction 2.3.2., the isotropic approximation remains the only option
for the terrain configuration factor if no measurements of surface reflection
or emission are available. The same (geometric) msimplifications as discussed
for the isotropic sky view factor approximation can be applied to the
isotropic terrain configuration factor approximation, resulting in the
following expression valid for an infinitely long V-shaped valley:

Vin = 8in2[(S + 8') / 2] = (1 + ein[S + §')) / 2 (42)
where:

Vim = Terrain configuration factor ([~]

§ = Surface inclination angle ([rad)

8' = Inclination angle of facing slope or inclination angle of
horizon in direction of facing ridge top [rad]

It can be seen from the equations (41} and (42) and from investigations by
Olyphant [1984, 1986a], who used the square of the cosine of the average
zenith angle of the local horizon as isotropic approximation of the terrain
configuration factor, that the sum of these isotropic approximations of Vg,
and V,, equals unity. Dozier and Frew [1989) state that this sum equals
cosz[sl2], suggesting that the terrain configuration factor for an infinitely
long slope equale zero. The above analysis clearly shows that this is
incorrect.

Finally, it ie noted that from a computational point of view the two basic
differences between the conversion factor for direct solar radiation (beam
shading function) on the one hand and the conversion factors for diffuse
radiation from the sky (sky view factor) and for intercepted diffuse radiaticn
from surrounding terrain (terrain configuration factor) on the other hand are:
(1) that the former represents an instantanecus value whereas the latter
represent daily averages (for anisotropical radiation fields) or even constant
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values only depending on terrain geometry (in case the radiation fields are
agsumed to be isotropic), and (2) that the former does not regquire spatial
integration because the 8olar disk is assumed to be a point 8source
superimposed on a nonradiating background (as far as direct solar radiation
is concerned). Thus its radiation field could be described by an appropriate
anisotropy factor expressed in terms of the Dirac § function [Horn and

Sjoberg, 1979}.
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CHAPTER 3.

RADIATIO *) -

3.1. Model Asgumptions

The simplified approach toward modeling the radiation budget at a point in
anow covered mountainous terrain as presented in the preceeding chapter has
been the basis for the development of the computer simulation program RBM
(Radiation Budget Module), which is implemented in the (MicroSoft Quick)BASIC
programming language [Feldman and Rugg, 1988]. From its source code listing
as presented in appendix E. it can be seen that RBM is a structured computer
program designed according to the method of procedural abstraction (functional
decomposition). That is, the main objective of the program was decomposed into
several subfunctions, most of which are implemented as separate subroutines
{van Vliet, 1988]. The resulting model structure generally follows that of the
radiation budget algorithm as presented in the preceeding chapter.

RBM was actually designed as a module within the framework of the larger
modular computer simulation program EBM (Energy Budget Model). The latter not
only models the diurnal variation of the radiation balance, but also contains
parameterizations for some of the other components of the energy budget as
described in equation (1) (i.c. the turbulent exchange terms) and compares the
capability of the energy budget method with two methods based on the empirical
temperature index approach in simulating daily snowmelt and runoff for a
complete melt season. These last functions however are not directly within the
scope of this research project, and will therefore be discussed in a later
stage (section 4.3.).

Generally, the assumptions of a model should always be given explicitly to
avoid ambiguities and to allow a judgement of the model on its merits.
Although the basic assumptions of the present modeling approach have been
menticned throughout the text, they will be summarized here for reasons of
¢learness and completeness:

3.1.1. Assumptions Concerning the Earth's Atmosphere

- The overlap between the region of the electromagnetic spectrum consisting
of radiation emitted by the sun (shortwave) and the region consisting of
radiation emitted by the earth-atmosphere system (longwave) is negligible
and may therefore be treated separately.

- Scattering of electromagnetic radiation only affectes the shortwave region
of the spectrum, i.e. the longwave region ie merely associated with emission
and absorption.
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Water vapor and ozone are the only constituents of the atmosphere that
absorb shortwave electromagnetic radiation, i.e. absorption of shortwave
radiation by permanent or miscellaneocus gases (nitrogen, oxygen and carbon
dioxide} and by aerosols is negligible.

Water vapor and carbon dioxide are the only constituents of the atmosphere
that absorb and emit longwave electromagnetic radiation.

In a clear atmosphere at high altitudes {i.e. in mountainous terrain) direct
solar radiation is attenuated exponentially with a conatant extinction
coefficient (coptical depth).

- The average vertical temperature profile of the atmosphere is a constant

decay with altitude equal to the standard lapse rate.

The average vertical air pregsure and water vapor pressure and density
profiles of the atmosphere are exponential decays with altitude.

There exists a space and time invariant functional relationship between the
ratio of diffuse to global solar radiation and the ratio of global to

extraterreetrial solar radiation.

The azimuthal dependency of diffuse (both background scattered solar and
emitted thermal} radiance from the sky is negligible.

The atmosphere acte as an isotropically backscattering medium.

3.1.2. Assumptions Concerning the Earth's Surface

Net radiation ia the dominant component in the surface energy budget at a
point in snow covered mountainous terrain.

The surface of a melting snowpack is wet during the entire day.

Each new snow accumulation consists of dry uncontaminated snow with the
same mean grain size.

The earth's surface acts as a perfect diffuse (isotropical or Lambertian)
reflector, i.e. the occurence of specular (Fresnel) reflection of direct
insclation and of anisotropical diffuse reflection resulting from

macroscopic geometric effects (terrain relief) are ignored.

The effects of transmission and emission by the slab of air between
neighbouring surfaces in complex terrain on the one hand and the effect of
multiple scattering between such surfaces on the other hand cancel out when
integrated over space. The average reflection and emission from surfaces
surrounding the model point in complex terrain are therefore equal to the
reflection and emission from a uniform horizontal surface with the same
surface properties (i.e. albedo, emissivity and temperature).
- The possible effects of diffraction and refraction of electromagnetic
radiation at the earth's surface are negligible.
- The direct beam of electromagnetic radiation reaching the earth's surface
consists of parallel rays, i.e. the earth-sun distance ie infinitely large.
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- The apparent position of the sun ae it is observed at the earth's surface
equals the true position of the sun relative to the centre of the earth,
i.e. the apparent reduction of the solar zenith angle close to sunrise and
sunset as caused both by refraction of electromagnetic radiation in the
atmosphere and by parallax is negligible [Blackadar, 1984).

3.2. Requjred Input

The input parameters and variables required for the simulation of each term
of the radiation budget at a point in snow covered mountainous terrain are
given in table 3.2. The firet six (namely the latitude (%), longitude (1),

altitude (h), slope (S), aspect (A) and horizon (H) of the surface in
guestion) are fixed gecgraphical parameters that need to be determined only
once, whereas the day of the year (D, or date), the number of days since the
last snowfall event occured (D,) and the time of the day (t) are variables
that are measured easily and accurately. This leaves six unknown variables
that have to be determined on a daily basis (wich is usually sufficient for
the simulation of the daily radiation budget throughout a snowmelt season) or
with a higher temporal resolution (needed if a more accurate simulation of the
diurnal radiation budget variation is desired). Three of these meteorological
variables (namely the optical depth (r) or transmissivity (T) of the

atmosphere, the air pressure at screen level (p) and the surface temperature
{(T,)) can be estimated with reasonable accuracy as pointed ocut in the
preceeding chapter. The remaining variables serving as input for RBM are the
temperature (T,) and vapor pressure (e,) of the air at screen level and the
mean fractional cloudcover (m;) (and/or relative sunshine duration).

As a result, the radiation budget simulation module in its present form
reguires only three variables to be determined on a regular basis for its
execution, given the values for the constants and parameters mentioned along
with the equations in the preceeding chapter. Hence, it complies with one of
the most important objectives of the current research project, namely the
develocpment of a physically based radiation budget model regquiring only a
limited number of input data in order to remain operational relative to the
Snowmelt Runoff Model (SRM). However, additional input in the form of
measurements of net radiation and other variables may be required for
verification purposes (section 4.1.). Moreover, if the meteorological
variables (air pressure, temperature and vapor pressure) are not determined
at screen level, the altitudes of the measuring devices relative to the
medeling point need to be determined in order to be able to extrapclate the
measurements using standard vertical profiles.
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INPUT PARAMETERS
1 h 8 A ED D tr/TPp T, T, € m

R  Kdir + + F + + 4+ o+ - o+ -+ - ¢
A
D Ksct + +  + + + + =~ + - + + +
I
A Kbck + + £ 4+ 4+ + + + + £ £ - + 4+ +
T
I Kn + + F + + + + + + £ £ - + + +
o
N Lsfc T T - R
T Leky - = = + + 4+ = = = = = = + + +
E
R Ln - = =+ A+ = = = = et o+ o+ o+
M
5§ Rn + + F + + + + + + + £ * + + +

Table 3.2. Input required for the simulation of each term of the
radiation budget at a point in snow covered mountainous terrain,
where + = neceseary, * = useful and - = not necessary (see text

for notation of symbols).

52



CHAPTER 4.

N ON (o] LT

4.1. Model Testing

Thorocugh testing of a computer simulation model can consist of three
phases, namely a validation, a verification and possibly a calibration phase.
Validation ies defined as a means of gtatic analysis that coneists of an
internal consistency check resulting in a proof of the correctness of the
model, which may be accomplished by meana of satructured testing of the
individual refinement steps of the model. In practice this phase reducea to
the check on the syntax and semantics of the program with respect to the
programming language that is performed automatically by the installed compiler
and manually by the author. Verification is defined as a means of dynamic
analysis that consists of an accuracy check by means of a comparison of model
results with standard references and an assessment of the model performance
with respect to the resulting differences ([van Vliet, 1988). Examples of
standard references are obsgervations on the modeled system, analytical
golutions of numerical equations used in the model and results obtained by
other investigatore. Calibration is the optimization of model parameters using
some criterion to minimize the differences between the results of model
simulations and measurements of the modeled system. The Radiation Budget
Module has an option for calibrating the optical depth (or transmissivity} of
the atmosphere using radiation measurements. The optimized values however,
should always be checked to avoid the use of physically unrealistic values.

Apart from the internal consistency checks that were performed throughout
the construction of the computer simulation program RBM, the actual model
testing was basically an extensive verification procedure. This conasisted of
comparisons between simulations and measurements of global and net radiation
for a whole day at a site near Phoenix, Arizona (section 4.2.) and of global
radiation and snowmelt for a complete melt season at a site near Davos,
Switzerland (section 4.3.4.).

4.2. Simulatin iation

The data used for the verification of the Radiation Budget Module (RBM)
were collected at Maricopa Agricultural Research Center (MAC farm, 33.1°N and

112.0°W), which is about 60km south of Phoenix, Arizona. The applied data set

consists of one minute averages of downward shortwave radiation (global
radiation, K!{), net radiation {R,}, air temperature (T,), surface temperature

(T,) and vapor pressure (e,). They were collected over a horizontal wheat field
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with an elevation (h) of merely 358m under ideal atmospheric conditions {m,=0)

at April 10, 1989 between midnight and 16:17h (Local Standard Time, LST) [The
University of Arizona, 1989]). Although measurements of scil temperatures were
available, the canopy temperature was used as an estimate of the surface
temperature in the computation of the thermal emission from the wheat field.
Apart from a few unit conversions, small corrections were applied to the
original data of global and net radiation and canopy temperature to account
for instrumental errors [Kustas, 1989, personal communication]. The corrected
values of global and net radiation range from minima of 0 and -58 Wm? during
the night to maxima of 981 and 668 W2 just after local noon (figures 4.2.1.

and 4.2.2.). The minimum air and surface temperatures amount 11.5°C and 7.2°C
and occur just before local sunrise, whereas their respective maxima of 35.0°C
and 30.5°C lag 2 to 3 hours behind the global radiation maximum. The vapor

pressure of the air lastly ranges from 368 to 1544 Pa, with the lower values
occuring during nighttime and the higher values during daytime.

In order to make an accurate comparison with simulation resulte possible,
RBM converts local standard time to true solar time using the method presented
in section 2.2.1 and sclar ephemeris formulae as presented in appendix A. For
the Maricopa wheat field, this resulted in a total time subtraction of 30
minutes, composed of about 28 minutes to account for the longitude difference
with the standard meridian, about 1.5 minutes for the equation of time and 0.5
minutes for the fact that the one minute averagee were collected during the
preceeding minute. A first verification of the model is provided by the fact
that the amounte of global radiation that were registrated by the radiometar
at the times which RBM computed for the occurence of the apparent sunrise
(corrected for atmospheric refraction) and solar noon, only deviated by 3 and
6 Wm?2 from the minimum (zero) and maximum (about 1 kme) registrations,
respectively. Those values are well within the sensitivity and accuracy of the
applied instrumentation: The latter is commonly found to be around 5 percent
[Garnier and Ohmura, 1970; Morris, 1989; sStuhlmann et al., 1990].

The two most important unknowns are the transmissivity (T) or optical depth
(r) of the atmosphere and the albedo of the surface (a). For the ideal

atmospheric conditions at the MAC test site, values of 0.75 and 0.29 should
suffice for T and 7, respectively. As for the albedo of the wheat field, List

{1966] and Kondratyev et al. [1982] report daily average values of 0.07 and
0.05-0.1 during early spring, respectively. Particularly for clear skies
however, the diurnal variation of the vegetation albedo shows a strong
dependence on the solar elevation. Kondratyev et al. [1982) provide a
parameterization for this phenomenon for grass covered surfacee that accounts
for the attenuating effect of cloud cover by means of the ratio of diffuse to
global radiation. Briegleb et al. [1986) give a simpler expression, which is
merely a function of the solar zenith angle and one empirical parameter. This
parameterization seems to be applicable to various land surface types without
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fig. 4.2.1. Simulated extraterrestrial and global radiation and measured
global radiation as a function of the hour angle at the MAC wheat field for
April 10, 1989 (MBE = 0.6%; RMSE = 3.5%).
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exhibiting much sgcatter in its parameter.

As for the actual verification of the simulated radiation budget at the
surface of the wheat field, RBM grouped the total of 947 one minute averages
of all input variables into 47 congecutive bins of 20 minutes (disregarding
the last 7 measurements) and computed their respective averages. The same time
step was applied for the simulation of the various components of the radiation
budget. Global and net radiation were computed for all moments representing
the center of a measurement bin and were compared with the averagee of their
measured counterparts. Consecutively, RBM computed two statistics to assess
the simulation performance, namely the mean bias error (MBE) and the root mean
square error (RMSE). The MBE is defined as the mean difference between the
computed and the measured values, which is a measure for overestimation or
underestimation on a daily basis. The RMSE on the other hand ie defined as thea
square root of the mean of the squared differences between the simulated and
the measured values, which provides more specific information with respect to
the model accuracy [Ma and Igbal, 1983]. It is common practice to express
these statistics as a percentage of the measured mean for the time period
concerned.

To check the capability of RBM with respect to simulating the thermal
(longwave) radiation budget at the surface of the wheat field, the statistical
analysis was restricted initially to the 17 time steps between local midnight
and sunrise, when the radiation budget is determined completely by its
longwave components. This yielded a MBE and a RMSE of -2.6 and 6.0 percent
respectively, when the surface emissivity was assumed to be 0.95 and the clear
sky effective atmospheric emissivity was computed according to Satterlund
[1979]). The model results showed little senaitivity to small changes in the
former, but were rather sensitive to changas in the latter. Application of
Brutsaert's (1975] formula for the atmospheric emissivity instead of
Satterlund's resulted in an average overprediction ¢f the nighttime net
longwave radiation loss of about 60 percent (MBE). This can partly be
attributed to measurement errors [Kustas, personal communication] and partly
to conditions of temperature inversion, for which Brutsaert's formula is not
intended. However, the other available formula's (appendix B.) generally
vielded deviations of less then 15 percent and moreover, the MBE resulting
from Brutsaert's formula decreased to an underprediction of the net radiation
of merely 10 percent when applied to all 47 time steps instead of only to the
firat 17. With respect to all time steps, Satterlund's formula resulted in a
MBE and a RMSE of 1.7 and 5.1 percent, respectively.

The capability of RBM in simulating the solar (shortwave) radiation
incident at the wheat field was checked thraugh a statiastical analysis of the
30 time steps after local surise. When the zenith path transmissivity of the
atmosphere was assumed to be 0.75, the effective (clear) sky albedo 0.1 and
the surface albedo with the sun in the zenith alsoc 0.1, RBM yielded a MBE and
a4 RMSE of 0.6 and 3.5 percent, respectively. The dependency of the surface
albedo on the solar zenith angle was parameterized according to Kondratyev et
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fig. 4.2.2. Simulated and measured net radiation as a function of the hour
angle at the MAC wheat field for April 10, 1989 (MBE = 1.7%; RMSE = 5.1%).
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al. [1982] (see the appropriate subroutine in the RBM scurce code as listed
in appendix E.).

Unless the surface is snow covered, net shortwave radiation is generally
more important in the daily average surface radiation budget than net longwave
radiation. For this particular teset case, the simulated daily average
radiation budget amounted +163 wma, composed of +222 wm? for shortwave
radiative input and -59 w2 for longwave radiative loes. The daily average

extraterrestrial radiation, integrated numerically using Simpson's 1/3 rule
and a temporal increment of 20 minutes, was found to be 413 Wmd, and deviates
by less than 0.03 percent from the value that results from analytical
integration (appendix C.). The ratio of daily global to daily extraterrestrial
radiation amounted 0.766, which would result in a diffuse fraction of the
global radiation of 0.175 according to the daily standard correlation of Erbs
et al. [1982). RBM yielded a value of 0.148, i.e. about 15 percent lower.
Becaugse the data collected at this particular test gite lack the
topographic and atmospheric complexity for which RBM is actually designed,
additional verifications are required to provide a more exhaustive test of the
main module and its subroutines. This holds in particular for the subroutine
designed to determine the various conversion factors (FACTORS in appendix E.),
which was discussed briefly in section 2.3.3. However, as can be gathered from
the estatistics assessing the simulation performance and from the figures
4.2.1. and 4.2.2., RBM yields encouraging results when applied to a uniform
horizontal surface under clear skies. Its application to a site under less
ideal atmospheric conditions will be presented in the next section. '

4.3. Simulating Snowmelt

The radiation budget algorithm presented in chapter 2., which has been the
baesis of RBM, ims actually developed to provide a first estimate of the surface
energy balance in snow covered mountainous terrain. The latter can provide
snowmelt factors that are more physically based than the present temperature
index (degree-day) method, which will reduce both the parameter wvariability
agsociated with local calibrations and the need for extensive measurements.
Moreover, a simplified energy balance model of the snowmelt at a point with
a limited number of required input parametere will allow eaay incorporation
in operational snowmelt runoff models like the Snowmelt Runoff Model (SRM).
The conaiderations that provided the basis for the development of more
physically based snowmelt factors are discussed below in a short review of the
presently available methods for point snowmelt prediction.

58



4.3.1. The Degree-Day Method

The simplest and still most widely used method both for tha short term
prediction of anowmelt at a point [e.g., Martinec, 1960; Pysklywec et al.,
1968; Granger and Male, 1978; Kuusisto, 1980] and as the basgsis for snowmelt
runoff modeling on a watershed scale [e.g., Martinec et al., 1983; Martinec
and Rango, 1986; van Katwiik and Rango, 1988; Moussavi et al., 1989] is the
so-called degree-day method. This temperature index approach relates the total
daily decrease of the water content of a snow cover directly to the daily mean
air temperature above a certain base temperature (usually taken as the
freezing temperature of water) by means of the more or less empirical degree-
day factor (e.g., Leavesley, 1989]:

M=a*T, (43)
if T, > T, then Ty = T, - T,

else Ty = 0
where:

M
a

Snowmelt rate (water equivalent) [de]
Degree-day factor [mKldl)

Ty Degree-day temperature (K]

T, = Absolute air temperature at surface [K]
T, = Base temperature (= 273.15 K)

The above expression for the degree-day temperature is in fact an
approximation, since the instantanecus air temperature might rise above the
bhase temperature (arcund noon) when the daily mean air temperature is still
lower than the base temperature. This can be accounted for when the daily
minimum and maximum air temperatures are known and a certain linear [van
Katwijk and Rango, 1988] or sinusoidal [Running et al., 1987; Reicosky et al.,
1989] temperature variation throughout the day is assumed. However, this will
require extra input parameters which will reduce the operational capacity of
the model. Moreover, this phenomenon ie not likely to occur very often during
the snowmelt season and may therefore be disregarded.

A disadvantage of equation (43) is the high spatial and temporal
variability of the degree-day factor, which is associated with the fact that
it is actually a bulk melt factor, implicitly accounting for all terms of the
energy budget that affect the mass balance of the snow pack. Hence, it
accounts in some way for the hydrothermal condition of the snow pack itself
(affecting both its hydraulic storage and transmissivity characteristics and
its optical properties), and for microclimatic conditions as determined by
vegetative ground cover and terrain structure. In order to take this
variability into account without depending to much on the hydrological
judgment of the operator, the degree-day factor is sometimes linearly related
to physical parameters that can easily bhe determined, such as snow density
[Martinec, 1960; Kuusisto, 1980], average daily air temperature range
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[Moussavi et al., 1989%), or mean wind spesed (Martinec, 1960). Because snow
density increases during the snowmelt season, a linear relation with the
degree-day factor is found to represent several factors affecting snowmelt
(e.g. increasing liquid water content and decreasing albedo) rather well. The
daily air temperature range has been related to the daily total atmospheric
transmittance of solar radiation [Bristow and Campbell, 1984}, which is an
important term in the snow surface energy budget. Conclusively, although
exceptional conditions may require different values for the degree-day factor,
they generally lie in the range from 3.5*107 to 6.0*10° mkla! and increase
gradually during the snowmelt season as the snow pack ripens (Martinec et al.,
1983; Martinec and Rango, 1986].

A statistical analysis carried out by Zuzel and Cox [1975]) showed that if
only one meteorological variable is available for daily snowmelt prediction,
daily average air temperature is the best predictor. It is probably for this
reasgon that the degree—day method has yielded acceptable results over the past
decades. However, significant deviations from predicted values particularly
occur at days with heavy rainfall or high wind speeds [Martinec, 1960;
Pysklywec et al., 1968; Kuusisto, 1980). This finding ies not surprieing since
heavy rain strongly influences both the mases and the energy balance of a snow
pack, the latter because cooling or freezing rain releases latent heat. Strong
winds not only directly affect the energy and mass balances because they
increase turbulent transfer (sensible and latent heat exchange), but also
indirectly since they can cause blowing snow that can be sublimated and
redistributed (Morris, 1989]). The latter phenomenon however, alsoc causes
problems when predicting snowmelt with more physically based methods.

4.3.2. A Combined Approach: Temperature Index and Radiation Budget

Net radiation is not only the most important term in the surface energy
balance at a point in snow covered mountainous terrain because of its
magnitude, but also because it explaina most of the variation in anowmelt
[Zuzel and Cox, 1975; Granger and Male, 1978). Howaver, Olyphant {1984] found
that "there is no simple proportionality between net radiation and glacier
ablation™, which he partly contributed to the probable importance of other
energy sources, especially the sensible heat flux. Hence, a combination of a
surface radiation budget (as discussed extensively in chapter 2.) and a
temperature index (the so-called restricted degree~day factor) as proposed by
several investigatore [Martinec and de Quervain, 1975; Ambach, 1988; Martinec,
1989) offers a promising perspective: '

if R; >0 then M = ap * Ty + ag * R, (44)
else M = ap * T,
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if T. > Tb then Td = T‘ - Tb
else Ty = 0
ag = 86400 * (SQp * rho, * Lg! (45)
= 2,7 * 10% mdi(wm?)’!

where!:
M = Snowmelt rate (water equivalent) de*]
ar = Restricted degree-day factor [mK -1y
Ty = Degree-day temperature [K]}
ag = Conversion factor for energy flux density to snowmelt
depth [md!(wm?)-l)
R, = Net radiation [Wm?2)
T, = Absolute air temperature at surface (K]
Ty, = Base temperature [~ 273.15 K}
8Qr = Thermal enow quality (= 0.96)

rho, = Density of water [= 1000 kgm4]
Ly = Latent heat of fusion (= 3.337%10° Jkg4]

! The factor 86400 accounts for the conversion of s! to dl.

Male and Gray [1981} suggested that an average value of 0.96 for the
thermal snow quality should account reasonably wall for the contamination of
the snow pack. Applying this value to (45), it can be seen that each watt per
square meter of daily average energy input results in a daily snowmelt depth
of about 0.27 millimeter water equivalent.

The restricted degree-day factor in (44) implicitly accounts for the
remaining terme of the enargy budget at the snow surface as described by (1),
i.e. mainly for the turbulent exchange at the interface between the snow
surface and the atmospheric boundary layer. Martinec and de Quervain [1975]
and Martinec [1989] neglect the transfer of water vapor and the associated
latent heat flux and assume the restricted degree-day factor to be entirely
related to the sensible heat flux. This is in contradiction with obsgervations
published by Granger and Male [1978] and Marks [1988], which show that the
latent heat loss (required to produce the measured evaporation) partly or
almost entirely offsets the sensible heat input during the snowmelt season.
Moreover, Marks et al. [1986] state that even at a high elevation site in the
Sierra Nevada where "radiative transfer ies by far the largest and mest
important form of energy exchange over a snow cover during melt”, measurements
over several yeare indicate that commonly 25 percent of the mass of the snow
cover is loat to evaporation/sublimation during the apring snowmelt. However,
an extensive survey carried out by Morris [198%] shows that the latent heat
losas of a melting enow cover is usually around 10 percent of the net
radiation, whereas the sensible heat input is often around 40 percent of it.
The latter is confirmed by Olyphant and Isard [1988] who simulated turbulent
transfer over alpine snow fields and concluded that snowmelt by radiant energy
will dominate early in the season, while turbulent energy processes will
dominate snowmelt late in the season. This conclusion primarily stems from the
increasing influence of advected sensaible heat as the snow fields decrease in
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area. The relative importance of the latent heat loss of a melting snow pack
in particular and of the turbulent heat exchange in general obviously is a
function of the ambient weather conditions. For instance, Martinec [1989]
found that the net ocutgoing longwave radiation at night promotes refreezing
of meltwater and hence appears to be a significant factor in alpine
conditions. However, Granger and Male [1978] concluded for a melting prairie
snow pack that the positive fluxes of latent and sensible heat that occur at
night actually counteract nighttime radiative loses and thus limit refreezing
of the snow pack. Although there is some disagreement among investigators
about the relative importance of the latent heat loes of a melting anow pack,
they generally agree on the fact that it cannot be neglected. Preliminary
results of Martinec (1989], who found that the values asseesed for the
raestricted degree-day factor generally lie in the range from 2.0%103 to
2.5+¢103% mklda! and exhibit much less variability throughout the ablation
period than the values for the original degree-day factor, suggest that (44}
is a more physically based melt factor. Lower values were generally assessed
on days with little wind (reducing the input of sensible heat) and a low air
humidity (increasing the evaporation and the associated loss of latent heat).

It followe from (44) that snowmelt might occur as a result of a positive
radiation budget at the snow surface, while the degree day temperature still
equals zero. In the beginning of the ablation period, this amount of melt
water will generally not result in immediate runoff, but will rather be used
to saturate the snow pack. Martinec [1989, personal communication] therefore
proposad the application of a certain threshold temperature (taken slightly
lower than 0°C), below which poesible snowmelt resulting from net radiation

is not taken into account. During most of the ablation period however, such
a correction will not be necessary, since the snow pack is isothermal at 0°C,

ite liquid water content is nearly constant and the degree day temperature is
no longer zero.

Ambach [1988] tock a slightly different approach than the parameterization
described by equation (44), deriving an expression for a temperature index
related to the sensible heat flux only. However, the application of this "heat
transfer ccefficient", which is a function of mean air pressure and wind
speed, is basically equivalent with a bulk turbulent transfer approach for
sensible heat, which will be discussed in section 4.3.3 (equation (47)).

4.3.3. The Reduced Energy Budget

The previously mentioned statistical analysis of Zuzel and Cox {1975], also
indicated that daily snowmelt prediction could be significantly improved by
using net radiation, vapor pressure and wind in predictive equations rather
than just an air temperature variable alone. An even more physically based
method for the prediction of point snowmelt than the combined temperature-net
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radiation approach presented in the preceeding section would therefore consist
of parameterizing all terms of the energy balance at the snow surface and
conseguently determining their respective melt water equivalents by means of
{45). However, heat conduction to the soil beneath the snow pack and heat
advection to the snow pack due to precipitation events are of little
importance to the energy budget during the snowmelt season baecause the
temperatures of soil, snow pack and rain tend to be close to 0°C. Hence, a

melt factor was developed based on the reduced energy budget at the snow
surface, consisting of the radiation budget and the turbulent exchange terms
(eensible and latent heat flux):

o = Rn + Qh + Qc

=R, +¢, ~-L *E {46)
if oQ > O then M = ag * oQ

else M = 0

where:

o = Energy available for snowmelt [Wm4]

R, = Net Radiation (Wm2)

Qn = Sensible heat flux {HmQ]

Q. = Latent heat flux [Wm?2)

L, = Latent heat of vaporization (= 2.501*10°% Jkg4]

E = Evaporation [kgm454]

M = Snowmelt rate [mdl)

ag = Conversion factor for energy flux density to

snowmelt depth [md!(wm?Z)-)

This equation holds for equilibrium conditions, when the snow pack is
isothermal at 0°C and its liguid water content is constant. This is normally

the case during almost the entire ablation period (section 4.3.4).

The determination of the radiation budget at a peint in snow covered
mountainous terrain is discussed extensively in chapter 2. Hence, some
attention will be paid here tc the parameterization of the turbulent exchange
at the interface between the surface of a melting snow pack and the
atmospheric boundary layer. One of the main objectives of this research effort
wag to develop and teet more physically based snowmelt prediction methods that
require only a limited number of input data, both with respect to the number
of parameters and to their temporal resolution. Hence, scphisticated methods
for the closure of the vertical eddy transfer egquations based on the Monin=-
Obukhov similarity theory [Brutsaert, 1982] are avoided, although they have
been shown to yield promising resulte in snow surface energy balance models
(Marks, 1988). Moreover, even more advanced methods are generally based on the
assumption of horizontal uniformity, thus neglecting advection of sensible
heat and local (katabatic) pressure gradients, although such phenomena may be
important in mountainous terrain [Olyphant and Isard, 1988; Morris, 1989].

For the simulation of the turbulent exchange at the surface of a melting
snow pack, the convenient energy budget method is generally not directly
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applicable, because the energy flux density (R,~0Q) available for turbulent
exchange (L.*E-Qy) is not known a priori. Only if the mass budget of the
melting snow pack is also taken into account (by means of measurements of
lysimeter outflow and precipitation), oQ can be estimated from the ratio of
the net snowmelt rate {M) and a,. This allows expressing Q, and E in terms of
{R,-0Q) and the Bowen ratio (Q,/Q.), which is a function of the mean vertical
profiles of temperature and water vapor, as can be Been from equations (47)
and (48). In this manner, the energy (plus mass) budget method can be used to
vaerify estimates of the turbulent tranefer terms directly obtained from the
mean vertical scalar profiles.

For the current research effort, the simplified Thornthwaite-Holzman bulk
transfer approach towards parameterizing the turbulent transfer of momentum,
sensible heat and water vapor was applied, in combination with an atmospheric
stability criterion based on the bulk Richardson number [Brutsaert, 1982;
Morris, 1989) (fluxes are defined as positive towards the surface):

Q =P, *C,*rho,*c,*u+ (-8, (47)

P
Q =F *C,*rho, *L *u* (q - q,) (48)
Riz =g*z*u2+ ((8 -6,)*11+0.61*(q-q,))

(1 ~ 58 * Rip)*®

[

if Rig < 0 then F,

else F, = (1 + 7 * Rig)?!
F, = 0.5 *F,
Cp = k% * lna[z * z;ll

rho, =p * (R* T,)!; R=Ry * (1 + 0.61 * q,)

S =cpd*(1+0.84*q‘)
8 =7T=* (p,*p)¥; K=R*c)!
q = 0.622 *e, * (p - 0.378 * g,)"]
where!:2:
O = Sensible heat flux [wm4]
Fy = Ratio of eddy diffuamivities for sensible heat and momentum;
Correction for departures from neutral stability (-]
o = Bulk transfer coefficient for neutral stability [-]

n
rho, = Air density [kgmG]

Cp(Cpa) = Specific heat of (dry) air [= 1005 Jkg*KJ]
Mean wind speed [ms4]

4 =

e = Potential temperature [K]

Q, = Latent heat flux [Wm2]

F, = Ratio of eddy diffuasivities for latent heat and momentum;
Correction for departures from neutral stability [-]

L, = Latent heat of vaporization [= 2.501*10% Jkg!}

q = Specific humidity [-]

Rip = Bulk Richardeon number [-]

g = Gravitational acceleration [= 9.81 msa]

z = Height of wind, temperature and humidity measurements [= 2 m]

T = Absolute temperature {K]

k = von Karmén's constant (= 0.4)
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2z, = roughness lengthe for momentum and for the scalars (sensible
heat and water vapor) [= 5+104 m]

P = Air pressure [Pa]

R(Ry) = Gas constant of (dry) air [= 287.04 Jkg'k!)

Po = Standard pressure [105 Pa)

K = Ratio of gas constant and specific heat of air [=~ 0.286]

e = Vapor pressure [Pa}

| The indices a and s refer to air and surface, respectively.
2 The effect of water vapor in the expressions for Rip, rho,, © and q can
be neglected for practical purposes, thus R=R; and c,=c4.

Although the formulation of the stability parameters (F,, F,) in terms of
the bulk Richardson number and the formulation of the bulk transfer
coefficient according tc Thornthwaite and Holzman are based on some
simplifying assumptions (e.g. one measurement height (z) for wind, temperature
and humidity, and one roughness length (z,} for momentum, sensible heat and
water vapor), similar schemes have baen used with success in energy budget
models for the prediction of snowmelt in different environments [Granger and
Male, 1978; Dozier and Outcalt, 1979; Williams, 1988].

Since Rip will generally be positive during the snowmelt season, which is
associated with stable atmospheric conditions, F, will not show much departure
from unity most of the time ae a result of its functional form. Although
taking F, as half of F, is significantly different from the generally accepted
equality or near equality [Brutsaert, 1982}, Granger and Male [1978] showed
that this wvalue represente both unstable and stable (nearly neutral)
conditiona over a melting snow pack adequately.

During the snowmelt season, the air temperature at the snow surface will
always be close to the temperature of the melting snow pack, i.e.
approximately the freezing temperature of water (T, = 273.15 K), and the air

layer just above the snow surface will generally be saturated. Hence, the
vapor pressure at the snow surface is assumed to be the saturated value that
corresponds to the snow surface temperature (e, =~ 610.78 Pa) [Charbonneau et

al., 1981; Olyphant and Isard, 1988). Parameterizations for the saturated
vapor pressure over water and ice as functiona of the ambient temperature have
been presented by various authors [Idso and Jackson, 1969; Aase and Idso,
1978; Brutsaert, 1982; Kimball and Idso, 1982; Williams, 1988].

4.3.4. Comparison of Snowmelt Prediction Methods:
Verification of the Energy Budget Model - EBEM

For the purpose of comparing the capabilities of the three above presented
methods in simulating daily snowmelt at a point in alpine terrain, a
(Microsoft Quick)BASIC computer simulation program EBM (Energy Budget Model)
was developed based on the radiation budget simulation algorithm of RBM and
additional subroutines based on the parameterizations presented in the
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preceeding sections [Feldman and Rugg, 1988].

In a verification procedure, the performance of EBM was assessed using
outflow measurants from a snow lysimeter at the test site of the Swiss Federal
Institute for Snow and Avalanche Research at Weiesfluhjoch/Davos, Switzerland
(46.8°N, 9.8°E). The applied lysimeter, which has a surface area of smZ, is

situated in a horizontal snow field at an altitude of 2540m above mean sea
level. Its outflow ie intercepted by a steel vessel and reccrded continuocusly
using a tipping bucket gauge. Due to resistances in the unsaturated and
saturated snow layers and in the pipe leading from the vessel to the gauge,
the transformation of a snowmelt depth resulting from a positive energy budget
at the enow surface into a outflow hydrograph from the entire snowpack in the
lysimeter exhibits a certain time lag and attenuation. However, it waes found
that, apart from daily fluctuatione associated with day time wvariations in
snowmelt and nightly refreezing, the liquid water content of the snow pack did
not increase any more after the day on which the lysimeter outflow started.
Consequently, on a daily basis snowmelt depth (water equivalent) approximately
equals lysimeter outflow [Martinec, 198%]).

The data set that was used for the verification of the Energy Budget Model
(EBM) was collected during the 1985 ablation season and consists of daily
averages of air pressure (p), air temperature (T,}), relative humidity (RH),
wind speed (u), fractional cloudcover (m;), sunshine duration (n), global
radiation (K!), precipitation occuring as rain (P,}), precipitation occuring
as snow (P;) and lysimeter outflow (Q;) (Federal Institute for Snow and

Avalanche Research, 1989)]. The entire 1985 snowmelt season lasted from May 9
{start of the decrease in snowpack level) to July 15 (last day with lysimeter
outflow). During the first week however, no lysimeter outflow occured because
the entire snowmelt depth was used to increase the liquid water content of the
snow pack gradually. Hence, equilibrium conditions only occured on the 58 days
between May 16 (start of lysimeter outflow) and July 12, which therefore were
taken into consideration for verification purposes.

Unfortunately, only the data pertaining to the mass (i.e. water) balance
of the snow lysimeter (which was used for the verification of EBM) were
collected on the spot: Q; was measured with the described gauge and lysimeter
and P, was measured by a heated pluviograph. The data pertaining to the energy

balance (which is the theoretical framework of EBM) were collected eleewhere:
p was measured at an altitude of 2667m and T,, RH, u, m, and K at 2693m above

mean sea Jlevel (at the automatic meteorological station of the Swias
Meteorological Office}, i.e. 127m and 153m above the snow field which contains
the lysimeter, respectively. Although p and T, could have been estimated from
their respective measurement altitudes and their mean values at sea level
using standard vertical profiles (e.g., equations (B4} and (BS5)), use was made
of their measurements, which were extrapolated downward to the snow field
using the same profiles. RH was assumed to be constant over this altitude
difference [Marks and Dozier, 1979)], which allowed easy computation of the
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vapor pressure at the lysimeter and is basically the same as assuming an
exponential vertical vapor pressure profile [Brutsaert, 1975]. Although u will
most likely be overestimated when applied directly to the lysimeter because
it was measured at a mountain summit, there seems no alternative due to a lack
of more appropriate data. No correction was made to m, either, which is

supported by the findings of Olyphant [1984], who stated that "the effects of
increasing cloud cover (to global insolation, R.U.) are independent of
elevation”". Finally, K{ will also be overestimated when applied directly to

the lysimeter, because (1) it was measured at a higher elevation at which a
lower amount of solar radiation has been absorbed, and (2) it was measured at
a ridge top where the effects of obstruction by surrounding terrain are
negligible. However, no correction was made to Ki, because it is only needed

for verification purposes and moreover, the effects of obstruction by
neighboring surfaces tc the amount of solar radiation received by the snow
lysimeter were neglected in EBM due to a lack of appropriate topographic data.

Apart from a direct comparison between the simulated snowmelt depths and
the measured lysimeter outflows during the 1985 snowmelt season at the
Weissfluhjoch teset site, a brief sensitivity analysis was carried out through
the intercomparison of generated artificial hydrographs for a complete
watershed. The peoint snowmelt depths simulated according tc the three methods
discusged previously and the outflows measured at the sanow lysimeter were
transformed into their respective runoffs that would occur from the nearby
Dischma basin provided that the inputa were representative for the whole
basin. Although this extension of point inputs to area inputs obviously has
little physical meaning, it will provide some insight into the sensitivity of
the applied snowmelt-runoff transformation model to its input data. The
simplest form of the Snowmelt Runoff Model (SRM), in case the basin is not
subdivided into different elevation zones, was used for this purpose [Martinec
et al., 1983}:

Qi1 = Cp * (Mg * Sy + Py} * R * (1= kyyq) +Q * ki (49)

Kne1 = X * Q7 (50)
where!*Z;

Daily discharge [anJ]

Runoff coefficient [= 0.9)

Snowmelt rate [md*]

Ratio of snow covered area to basin area [-]
Precipitation cq:mt;r:'i.l:n.ﬂ:i.ng2 to runoff [md'I]
Basin area [= 4.33 = 107 m ]

Recession coefficient (-]

Recession factor (= 0.85]

Recegsion exponent [= 0.086]}

¥R PHOEE OO
He nani nn

Y

l The subscript n denotes the sequence of days during the discharge
computation period.
The parameter values given above are typical values for the alpine
Dischma basin in Switzerland, which are not applicable to other
basins.
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A detailed description of the determination of the parameter values in the
above expression exceeds the scope of this document, but the reader is
referred to a paper on this subject by Martinec and Rango [1986]). Although
their publication shows that runoff coefficients for =snowmelt and
precipitation can differ markedly from each other, one value is applied for
the current purpose because the contribution of rainfall will be small as
compared to that of snowmelt and moreover, the contribution of snowfall to the
water balance of the basin is ignored completely. The relative anow covered
area of the basin ie assumed to decrease linearly from 1 to O during the
snowmelt seascn, although analyses of data obtained from aircraft photography
and satellite imagery show that areal snow cover depletion generally follows
an S-curve [Rango and van Katwijk, 1990]. It can eaeily be sean from (49) that
during periods of true recession k;, i=Q;,;/Q,- In SRM, this recession
coefficient is not assumed to be a constant as usual (leading to an
exponential recession), but rather to be a functicn of the discharge on the
day before according to (50).

P T, e, u m, Xi P,
[10%Pa) (K] [Pa) (mel) [-] (wm?Z) [10%mal}
min. 739 270 326 0.5 0.13 57 0 0.5
max. 757 2B5 818 6.9 1.00 458 38.9 59.8
avg. 749 276 605 3.0 0.76 270 2.4 17.0
dev. 4 3 104 1.5 0.29 87 6.6 14.9

Table 4.3.4.1. Minima, maxima, averages and standard deviations of some of
the daily average input variables for EBM collected at the Weissfluhjoch
test site during the 1985 ablation period (see text for notation).

The minima, maxima, averages, standard deviations and coefficients of
variation {i.e. the ratios of the standard deviations and the averages) of
some of the corrected input variables are listed in table 4.3.4.1. Some
interesting facts that can be gathered from these statistice are: (1) The
average vapor pressure of the air (e,=605 Pa) is only slightly lower than the
saturated vapor pressure over melting esnow (e,=611 Pa), indicating that the
latent heat loss of the snow pack resulting from evaporation is probably
small; (2) The large variability in the magnitude of the mean fractiocnal
cloudcover (m,) as compared to the ideal atmospheric conditions at the MAC
test site will provide a thorough test for the radiation budget algorithm; (3)
The range in the values of the daily average global radiation (K!) is of the
game order of magnitude, with extremes of 57 and 458 Wm? that correspond with
atmospheric global transmission (K4/K;) values of less than 12 and more than

95 percent, respectively; (4) The total lysimeter outflow (2Q,) during the 58

equilibrium days of the 1985 snowmelt season at the test site at Weissfluhjoch
amounted 0.98ém, of which 0.136m can be contributed to discharge resulting
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from rainfall (£P,) and the remaining 0.850m conseqguently to actual snowmelt
{ZM), when evaporation loasses are neglected.

To assess the simulation performance of the three previously described
point snowmelt prediction methods, EBM computee three additional statistice
apart from the mean bias error and the root mean square error that were
discussed in section 4.2., namely the coefficient of determination (CD) or
Nash-Sutcliffe parameter and the slope and the intercept (and the associated
residual standard deviation) resulting from a linear regression analysis
between the simulated and measured values. The former is a direct measure of
the proportion of the variance of the measured values explained by the model
[Nash and Sutcliffe, 1970), whereas the latter provide a measure for the
model’'s average overestimation or underestimation as a function of the
magnitude of the measured values. The Nash-Sutcliffe parameter is defined as
one minus the ratio of (1) the sum of the squared differences between the
measgured and the gimulated values and (2) the sum of the squared differences
between the measured values and their average.

For the simulation of global and net radiation, EBM makes use of the
radiation algorithm implemented in RBM. Instantanecus values of global
radiation were generated on the basis of a clear sky zenith path atmeepheric
transmissivity of 0.75, clear and overcast sky albedo's of 0.1 and 0.5,
respectively, and surface reflectivities for direct and diffuse radiation
according to the parameterization presented in section 2.2.3. The obtained
values were integrated numerically from sunrise to sunset using Simpson’'s 1/3
rule with a temporal increment of one hour. Although the resulting daily
averages of global radiation represented the measured values rather well on
a seasonal average basis, as is indicated by a MBE of -1.2 percent, they could
not explain the large variability of the measured values, as is indicated by
a RMSE of 23 percent and a ¢CD of 47 percent. Moreover, a linear regression
analysis of the simulated versus the measured values yielded the poor
statistics of 0.46 for the slope, 143 wm? for the intercept and 42 wm?Z for
the residual standard deviation. As can be seen from figure 4.3.4.1., the
simulated values seem to follow the general trends in the measured values, but
underpredict high values and overpredict low values. This observation is
confirmed by the fact that the standard deviation of the simulated values is
58 Wma, which is almost 30 wWm? less than the standard deviation of the
measured values (table 4.3.4.1.). The measured global radiation on days when
the mean fractional cloudcover equaled unity range from 57 to 365 wm?Z, i.e.
more than a factor 6. These figures illustrate the problems associated with
modeling the variability of global radiation due to cloudcover effects on a
daily average basis without taking into account the diurnal variations or the
cloud type.

The simulated daily average surface albedo decreases from about 0.85 for
each new accumulation of fresh dry snow with a mean grain size of 2*10%m to

0.59 for saturated and contaminated snow at the end of the ablation period
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fig. 4.3.4.1. Time series and scatter plot of simulated and measured daily
average global radiation throughout the 1985 snowmelt season at the
Weissfluhjoch test site (MBE = -1.2%; RMSE = 23%; CD = 47%).
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fig. 4.3.4.2. Simulated daily average brﬁadband snow surface albedo
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(figure 4.3.4.2.). Because the shortwave radiation budget is proportiocnal to
the complement of the surface albedo, it iBs quite sensitive to variations in
the albedo decay during the snowmelt season. For the same reason however, net
solar radiation does not play the same dominant role in the broadband
radiation budget at snow covered surfaces as it does with respect to surfaces
with lower albedo's. Thism increases the sensitivity of the surface radiation
budget to net longwave radiation, whose variability is mainly associated with
the applied formula type for the determination of the effective atmospheric
emissivity. When the emissivity of the snow surface was assumed to be 0.98 and
the clear sky atmospheric emissivity was computed according to Brutsaert

[1975; 1982] then a seasonal average net radiation of +26 Wm? was obtained,
composed of +74 WmZ2 for the shortwave radiative input and -48 Wwnm2 for the
longwave radiative loss. The minimum and maximum daily average net radiation
were found to be -32 and +95 WmZ, reapectively. The sum of the total measured
precipitation and the total esimulated snowmelt occuring as a result of a
positive radiation budget at the snow surface accounts for 67 percent of the
lysimeter outflow during the entire ablation period, i.e. the MBE equals ~33
percent. Since the average energy flux density that is associated with cooling
of precipitation received by the snow pack is less than 0.5 W2 {with a total
melt water equivalent of only 7*104m), it is reasonable to conclude that the
remaining 33 percent of the cumulative lysimeter outflow are the result of net
turbulent heat input at the interface between the snow surface and the
atmospheric boundary layer. The proportion of the variance of the measured
lysimeter outflows explained by the sum of the measured precipitation and the
simulated radiative melt (CD) amounts 69 percent. The RMSE was found to be 48
percent and the slope, intercept and residual standard deviation of the
performed linear regression analysis amount| 0.77, -1.7%107 md! and 4.9*1073
mdt, respectively. These statistics confirm|the findings of several authors

who argue that although net radiation expllaing most of the variation in
snowmelt, there is no simple proportionality between the two [Zuzel and Cox,
1975; Olyphant, 1984].

The seasonal averages of the simulated flux deneities associated with the
input of sensible heat and the loss of latant heat amount 13 and -0.8 Wm4,

respectively. The latter is the result of & net lcass of 13*10°m of water
equivalent from the lysimeter due to evaporation of melt water, which is
negligible in the mass balance of the snow lysimeter in this particular case.
According to the atmospheric stability criterion presented in section 4.3.3.,
stable (near neutral) conditions prevailed throughout the snowmelt season (43
of the total of 58 days taken into account). The correction factor to account
for departures from neutral conditions never departed much from unity. The
average restricted degree-day factor assessed to fit the simulated daily
average turbulent transfer throughout the snowmelt season amounts 1.8+%107 m#
K'al, which is close to the value of 2.0%10° mK!d! that Martinec [1989)

assessed for the same ablation period using measurements of global radiation
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fig. 4.3.4.3. Simulated daily average net radiation, sensible heat flux and
latent heat flux throughout the 1985 an elt season at the Weissfluhjoch
test site.
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instead of simulations. Figure 4.3.4.3. sho@s the seasonal variation of the
three terms of the reduced energy budget.

Finally, the simulation capabilities of the three presented methods for the
prediction of point snowmelt were compared in a statistical analysis of the
malt and flow rates they generated during the 1985 ablation period. Measured
precipitation was added to the simulated snowmelt depths. A constant snow
restricted degree-day factor of 2.0*10° wkld! was used throughout the
snowmelt eseason, whereas the original degree-day factor was gradually
increased from 0.48 mK'd! in May to 0.50 mK!d’! in June and 0.52 mKld! in July
{Martinec, 1989). The resulting statistice are summarized in table 4.3.4.2.
and the generated cumulative snowmelt depths for the lyesimeter and the
artificial discharges for the Dischma basin are visualized in figures 4.3.4.4.
and 4.3.4.5.

Water Equivalent MBE  RMSE CcD Slope Intercept Res.St.Dev.

[%] (%] [¥] (-1 [10%ma )
Melt-a -2.2 55 59 0.88 1.7 9.4
Melt-aT 1.6 42 77 1.01 0.1 7.2
‘Melt-oQ -0.35 4% 73 1.12 -2.1 7.7
Flow-a -1.6 3s 82 0.72 1.9 1.9
Flow-aT 4.0 25 31 0.97 0.5 1.8
Flow-00Q -3.8 25 91 0.94 0.2 1.7

Table 4.3.4.2. Summary statistics for the simulation of the daily lysimeter
cutflow (Melt) and the artificial daily discharge for the Dischma basin (Flow)
according to the original degree-day methcod | (-a), the restricted degree-day
method (~ap) and the reduced energy budget thod (—oQ) from input variablee
collected at the test site at Weissfluhjoch during the 1985 ablation period.

The discharges that result from (49) arg converted to equivalent water
depths for convenience. It can be seen from Hable 4.3.4.2. that the snowmelt-
runoff transformation of equation (49) decreases the RMSE for all three
methods by almost 20 percent, that it increases the proportion of the variance
of the measured water equivalents that is explained by the simulated values
by more than 15 percent and that it decreases the standard deviation of the
residues of the performed linear regressions by more than a factor 4. Although
all three methods perform equally well on a seasonal average basis as is
indicated by their similar MBE's, the original degree-day method cannot
account for the variability associated with snowmelt and runoff to the same
extent as the two other methods. This is probably due to the fact that the
former requires only air temperature as an input variable, whereas the latter
require both air temperature and net radiation as input variables. In this
particular case, the restricted degree-day method performs even slightly
better than the reduced energy budget method:Lalthough the latter requires two

additional input variables, namely mean wind speed and vapor pressure. This
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indicates that when daily averages are used as input variables, net radiation
and air temperature account for a larger part of the variability associated

with snowmelt than any other input variable.
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fig. 4.3.4.4. Cumulative measured lysimeter outflows and simulated snowmelt
depths according to the original degree-day method (MBE = -2.2%;

RMSE = 55%; CD

59%), the restricted degree-day method (MBE = 1.6%;

RMSE = 42%; CD = 77%) and the reduced energy budget method (MBE = -0.35%;

RMSE = 45%; CD = 73%) throughout the 198

Weissfluhjoch test site.
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fig. 4.3.4.5. Artificial hydrographs for the Dischma basin from equations
(49) and (50} with discharges converted t¢ equivalent water depths; Inputs
are measured lysimeter outflows and simulated snowmelt depths according to
the original degree-day method (MBE = -1,/6%; RMSE = 35%; CD = 82%), the
regtricted degree-day method (MBE = 4.0%; RMSE = 25%; CD = 91%) and the
reduced energy budget method (MBE = ~3.8%; RMSE = 25%; CD = 91%) throughout
the 1985 snowmelt season at the Weissfluhjoch test site.
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CHAPTER 5.

SUMMARY AND CONCLUSIONS

This investigation dealt with the development and operation of a simple
radiation budget model at a point on a surface in snow covered mountainous
terrain. Net radiation is usually the most important component of the surface
energy balance in alpine environments, both with respect to its magnitude and
with respect to its temporal and spatial variability. A positive energy
balance at the snow surface will cause snowmelt once the snow pack is in
thermal equilibrium. A radiation budget model can therefore provide an
estimate of the snow surface energy balance and the associated snowmelt.

To allow easy incorporation into operational snowmelt runoff models like
the Rango-Martinec Snowmelt Runoff Model (SRM)}, snowmelt factors should be
simple with respect to the amount of required input parameters and their
temporal resolution. Most currently available deterministic snowmelt runoff
models employ a degree—day factor for computing the amount of snowmelt from
a watershed. It is postulated that the incorporation of a radiation balance
algorithm will provide a more phyesically based snowmelt factor than the
presently applied temperature index methods, which may reduce the parameter
variability associated with local calibrations and adjustments based on
observations of snow properties or hydrological judgments of the model
operator.

To maintain a high operational capability under a variety of atmospheric
conditions and terrain configqurations without the need for extensive
measurements, a Radiation Budget Module (RBM) was developed based on broadband
radiative tranasfer parameterizationa instead of on more sophisticated spectral
schemes. Topographic complexity associated with the effects of obstruction,
reflection and emission by surfaces surrounding the medel point is accounted
for by wmeans of conversion factors. The snow pack itself is treated as a black
box, i.e. the complex melt associated processes underneath the snow surface
are not modeled explicitly. It was found that isotropic or uniform radiance
distributiones provide reasonable approximations for the incident radiation
components in a hypothetical terrain configuration.

The independent input variables required to drive RBM may be clasgified
into three groups: (1) Fixed geographical parameters which need to be
determined only once from topographic maps and/or digital elevation data:
Latitude, longitude, altitude, slope, aspect and local horizon of the surface
in guestion; (2) Temporal variables: Day of the year, time of the day and
amount of days since the last snow accumulation event occured; (3)
Atmospheric/ meteorological variables which need to be determined at least on
a daily baeie from ground truth or remote sensing measurements: Optical depth
of the atmosphere, air pressure, surface temperature, air temperature, vapor
pressure and mean fractional c¢loudcover (and/or duration of sunshine). RBM
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provides means of estimating the first three atmoapheric variables on a daily
bagis.

Ag a first step towards the verification of RBM, computed twenty minute
values of incoming shortwave and net radiation for a whole day were compared
with observations taken over a uniform wheat field under clear skies. RBM
performed satisfactorily under these ideal topographic and atmospheric
conditions. As a second step, computed daily averages of incoming shortwave
radiation for a complete ablation period were compared with observations taken
over an unobstructed horizontal snow covered surface in a Swiss alpine
watershed under highly variable atmospheric conditions. Although RBM performed
rather accurate on a seasonally averaged basis, the model could not explain
the large variability of the measured values: It generally underpredicted high
values and overpredicted low values. This can probably be associated with the
rather unsophisticated manner in which radiation models based on daily average
input variables are bound to account for the complicated radiative affects of
cloudcover. A more realistic cloud treatment procedure will undoubtedly
improve the simulation capacities of such models. As a final verification step
within the scope of thie investigation, computed daily averages of point
snowmelt depth for a complete ablation period were compared with observed
lysimeter cutflows. Three different snowmelt prediction methods were compared:
{1) The original degree-day method; (2) A combined approach which contains
both a temperature index and the simulated radiation budget, referred to as
the restricted degree-day method; (3) The reduced energy budget method which
contains the radiation balance and bulk turbulent transfer parameterizations.
In addition to a direct comparison, the simulated snowmelt depths and measured
lysimeter outflowe were used to generate artificial hydrographs for a complete
watershed by means of the Snowmelt Runoff Model (SRM). Although all three
methods performed equally well on a seasonally averaged basis, the original
degree-day method could not explain the varimbility asscociated with snowmelt
and the consequent runoff to the same extent as the other two methods. The
restricted degree-day method performed even slightly better than the reduced
energy budget method. These preliminary results indicate that the computed net
radiation accounts for most of the observed temporal variability and that a
combined temperature index - simulated radiation budget approach will provide
a simple yet physically based snowmelt factor for operational snowmelt runoff
modeling. However, additional development and testing of RBM both with respect
to its radiative tranafer algorithms and with respect to itse snowmelt and
runoff generating procedures remains necessary to further improve the model's
operational accuracy.

Although this investigation deals with the development of a point radiation
budget model, it is envisioned that distributed models using digital elevation
data should become operational in the near future. This should provide more
reliable estimates of snowmelt on a catchment ecale, since net radiation
accounts for most of the observed spatial and temporal variability. Until ﬁore

accurate methods become available for the extrapolation of peint measurements
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over the whole of a catchment, turbulent transfer on this scale has to be
accounted for by means of a temperature index. The hydroclogical character of
the currently available operational snowmelt runoff mcdels however, should
become more distributed in order to take full advantage of the benefits of a

gnowmelt factor based on the radiation budget.
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APPENDIX A.

DETERMINING RADIUS VECTOR ON D_EQU. ON _OF

The most common formula type for the parameterization of the ephemeris of
the sun is the Fourier series representation, which considers the earth's
radius vector, the sun's declination and the eguation of time to be cyclic
with a period of one year. Although it neglects the effects of the four year
leap year cycle and other longer period variations, it provides approximationsa
that comply with the accuracy required for purposee of modeling radiation
[e.g., Spencer, 1971; Dozier, 1980; Bird and Riordan, 1986). Such a Fourier
series takes the form of a sum of sines and cosines of the day angle, which
can generally be specified as follows (see end of each appendix for notation

of symbolse):

@=2*x % (D-cy) * (365 + ¢! (Al)

In this formula, c4 is a small corection to the day number of the year (D
on January 1 equals 1 and D on December 31 equals 365 or 366 for leap years),
which takes different values from author to author but is alwaye between zero
and one; ¢ may be set equal to 0.25 to account for the fact that one of every

four years is a leap year. The factor 2*1*(365+cﬂ'1 should be interpreted as

the mean angular velocity of the earth in ite orbit about the sun in units of
radians per day.

The general functional form of a n-term Fourier series, either for the
reciprocal of the sguare of the earth's radius vector, for the sun's
declination (radians) or for the equation of time (radians) is the following
{Dozier and Outcalt, 1979]:

n-1
r2, 6, E=3 (a * cos{i * a) + b; * sin(i * a)) (A2)
i=0

Spencer ([1971] carried out Fourier analyses for all threa of those
astronomical variables, with c4 equal to one and ¢ equal to zero, and yielded
the cosine (a;) and sine (b;) coefficients presented in the second and third

column of table Al. He evaluted the maximum errors of the obtained Fourier
series to be 0.0001, 0.0006 radians and 0.0025 radians (about 34 seconds of
time), respectively. Dozier and Outcalt [1979]) on the other hand carried out
Fourier analysee with both c4 and ¢ equal to unity and obtained the

coefficients for r and § presented in the fourth and fifth column of table Al.

They state that their series have accuracies of about four significant
figures.
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Blackadar\[1989] proposed the application of a slightly adjusted day angle
{cy equal to 0.3 and ¢ equal to 0.25) in combination with Spencer's Fourier
coefficients for the solar declination. Although the variation of § over the
year is an order of magnitude larger than that of r or 2, a single value can

be used for each day if an accuracy to the nearest degree in calculated solar
zenith and azimuth angles is sufficient [Spencer, 1971].

i & (s) b; (S) a; (DO) b; (DO}
r?/r 0 1.000110 0.0 0.1000108431+10! 0.0
1 0.034221 0.001280 -0.1673661579*10°! -0.4951856474+*107
2 0.000719 0.000077 -0.1203091198*103 -0.1790695747+10%
3 0.0 0.0 0.3517325527*10% -0.1608389648+107
5 0 0.006918 0.0 0.5796702596*102 0.0
1 -0.399912 0.070257 -0.3999070840+#10° 0.7359755022+*10!
2 -0.006758 0.000907 -0.6068166326*102 0.7560534210%107
3 -0.002697 0.001480 -0.2363085071*%102 0.1389717739*102
E 0 0.000075 0.0 - -
1 0.001868 -0.032077 - -
2 -0.014615 -0.040849 - -

Table Al. Fourier cosine (a;) and sine (b;) coefficients for the
(reciprocal of the square of the) earth's radius vector (ri/e, (-1,
for the sun's declination (6§, [radians]) and for the equation of

time (B, (radians]) according to Spencer {1971] (S) and Dozier and
Outcalt [1979] (DO), to be substituted in equation A2.

Whiteman and Allwine [1986] tock a different approach for the determination
of the radius vector of the earth and the declination of the sun and used the
following convenient formulae, which were originally presented by McCullough
(19681, in combination with a day angle based on values for ¢4 and ¢; both

equal to zero:

r =1-e * cosf[al (A3)
§ = arcein(sin(é,] * sin[l.]) (A4)
l,. =a-a,+ 2 *e* (sin{a) - 8in[a,])

e, =2 *x * D, * 3657

In these expressions, e is the eccentricity of the earth's orbit, §, is the
maximum solar declination (about 23.44°) and 1, is the true celestial

longitude of the earth in its orbit about the sun as measured from the day
number of the vernal equinox (D,). It can be seen from the functional form of

(A3) that o is in fact an approximation for the so-called true anomaly of the

earth's orbit. Since the equation of time ie the difference between the mean
celestial longitude of the earth and the right ascension of the sun
[Blackadar, 1984], which can both be defined in terme of the parameters used
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in the above expressions, E can be expreseed in the same manner as r and §:

E = (1, - dl.) - arctan{cos[d,] * tan{l.]] {A5)
dl, = 2 * e * sin[a - dl,] + 1.25 * e * gin[2 * (a - dl,))

=2 * @ * ginfa -~ dl,] * (1 + 1.25 * & * cos(a - dl ])

=2 * @ * ginfa] * (1 + 1.25 * ¢ * cosl[a])

= 2 * @ * ain[a] (A6)

Here (l,-dl.) and (a-dl ) stand for the mean celestial longitude and the

mean ancmaly, respectively. The maximum error in E obtained from (A5) and (A6)
amounts about half a minute.

i a.i bi
0 0.0 0.0
1 0.00839 -0.12193
2 ~0.05391 -0.15699
3 -0.00154 -0.00657
4 -0.00222 ~0.00370

Table A2. Fourier cosine (a;) and sine (b;)
coefficients for the equation of time (E, [hr])
according to Whiteman and Allwine [1986]), to be
gubsatituted in equation A2.

However, Whiteman and Allwine [1986) did not take this convenient approach
for the determination of the equation of time, but rather carried out a
Fourier analysis and obtained the cosine and sine coefficients for E expressed
in hours presented in table A2. (based on ¢, egqual to 0.4 and ¢ equal to
zero). The maximum error in E evaluated by these Fourier coefficients is
reported to amount about 25 seconds of time (i.e. about 0.0018 radians).

The third and most accurate approach for the parameterization of the
ephemeris of the sun discussed here was implemented originally by Blackadar
[1984; 1985b}. Taking the small year to year variations of the radius vector,
the declination and the equation of time into account, he related the mean
anomaly of the earth's orbit about the sun and the mean celestial longitude
of the earth in (A3)-(A6) to the so-called Julian day number. This is the
number of days (including fractions) since noon, Greenwich Mean Time, on
November 24, 4714 B.C. {(on our modern, Gregorian calendar). Sinott [1984]
published a simple algorithm that converts a Gregorian calendar date into a
Julian day number, which is not only required in order to be able to compute
Blackadar's ephemeris formulae but provides alsc a convenient method to’
determine the number of any day of any year required for Spencer's and
Whiteman and Allwine's formulae. Blackadar'e ephemeris formulae together with
Sinott's Julian date algorithm are implementad in the Radliation Budget Module,
of which a code listing is presented in appendix E (see the appropriate
subroutines).
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Notation

i+

= Day angle [rad]

= Day number of year [-]

= Correction terms [-)

Radius vector of earth [-]

Declination of sun [rad)

Equation of time [rad, hrj}

Term countar in Fourier series [-)

Fourier cosine coafficient [-]

Fourier sine ccefficient [~}

Eccentricity of earth's orbit about sun [= 0.016728]

= Maximum declination of sun [= 0.409095 rad]

= True celestial longitude of earth in orbit about sun as measured from
vernal equinox [rad}

o Day angle of vernal equinox [rad]

Day number of vernal equinox (= 80)

c Difference between true and mean celestial longitude {rad)]

0o
-9
-
e
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[ I I |

i e R
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APPENDIX B.

DETERMIN THE WA v R D_THE SSIVITY
OF THE ATMOSPHERE US EXPONE ECAY FUNCT s

B.1l. The Water Vapor Amount in the Atmosphere
in a Vertical Path above a Surface

The actual (precipitable) water vapor amount in the atmosphere in a
vertical path above an arbitrary surface can be approximated by the integral
of the water vapor density between the surface altitude (h) and infinity,
which can be seen as follows:

Pn Pn @
w, = J q*gl!*dp= J rho, * (rho, * g)'1 * dp = J.rhov * dz (B1)
0 0 h

To simplify the determination of the integral at the upper limit, the water
vapor density profile may be assumed to be given by an exponential decay with
altitude (z), based on exponential decay functions for air temperature and
vapor pressure [Brutsaert, 1975; 1982j:

rho, = 0.622 * e, * (Ry * T,)"! * exp[-k, * (z - h)] ==> (B2)

w, = 0.622 * @ * (Rq * Ty)! *J exp[-k, * (z - h)] * dz
h

o

= 0.622 * e * (Rg * Ty)™! * [—kw‘] * exp[-k, * (z - h)]]
h

0.622 * e, * (k, * Ry * T,)7! (B3)

The effective amount of water vapor scaled for the pressure and temperature
effecte can be determined in an analogous manner when the vertical pressaure
and temperature profiles are assumed to be given by exponential decay
functions, which should be adequate in the lowest 10 km of the atmosphere
[Brutsaert, 1975; 1982}:

P, = Pp * expl-g * (Ry * Ty)l * (z - h)) (B4)

T, =T, * exp[-T' * T, * (2 - h)] ==> (BS)
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o
Wep, = J (pz * Ph-l}NP * (Th * Tz-l)Nl * rhov * dz
h

= 0.622 * e, * (Ry * Ty)"! » Jexp[-km * (z - h)] * dz

h
= 0.622 * e, * (k, * Ry * Tp)"! (B6)
Kye = ky + (N, * g * Ryl = N, * T} » 7,7 (B7)

(0.5 = N < 1.0; 0 < N < 0.5)

As denoted above, the usual practice is to take N, between 0.5 and 1.0
(i.e. a pressure sgcaling ranging between square root and linear) and N,
between 0 and 0.5 (i.e. a temperature scaling ranging between zero and square
root}. For the purpose of computing water vapor absorption in the earth's
atmosphere Lacis and Hansen [1974], Wang [1976] and Leckner [1978] included
a (near) square root temperature scaling, but Wang noted that the effect is
small. Brutsaert (1975, 1982]) and Unsworth and Monteith ([1975] therefore
probably ignored the temperature effect completely for the purpose of
computing the emission of the atmosphere due to water vapor. On the other
hand, they toock scaling for the pressure effect as a square root, whereas
Leckner [1978) applied N, equal to 0.9.

Since both (B3) and (B6) are based on average vertical profiles, they
account for the decrease of the amount of water vapor above a surface with
increasing altitude. As can be seen from equation (B2}, the ratio of vapor
pressure and air temperature decreases with increasing altitude, because vapor
pressure, due to its strong temperature dependence, decreases much faster than
air temperature.

B.2. Altitude Devpendency of the
Clear Sky Effective Atmospheric Emigsivity

The following is a generalization of Brutsaert's [1975; 1982) derivation
of the clear sky effective atmospheric emissivity as a function of screen
level vapor pressure and air temperature from the integration of the equation
for infrared radiative tranafer in a plane gtratified atmosphere by
substituting exponential decay functions to approximate the vertical water
vapor density (B2), air pressure (B4) and temperature (B5) profiles. It is
shown that the functional form of Brutsaert's equation remains exactly the
same at any altitude (h) in the atmosphere and that it therefore implicitly
contains an altitude adjustment accounting for the fact that the water vapor
amount above a certain level in the atmosphere decreases with increasing
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altitude. His equation therefore makes any explicit altitude correction (as
proposged by Marks and Dozier (1979] and Marks (1988]) superfluous when screen

level values for vapor pressure and air temperature are substituted.
The clear sky atmospheric emission and emissivity can be defined in terms

of the slab emigsivity (e,,) as follows, respectively [e.g., Liou, 1980]:

Lokyoh = Eskyoh * @ * Tp' =

(-}

EEM

J L dw, <==>
Sw,

0

eskyoh

a0
Eeshb
= J (T,* T, h¢ dw,
Sw,
0

exp(-4 * T * To'1 * {(z = h)) — dw,
fw,

Se'hb
(B8)
0

The slab emissivity can be conveniently approximated by a power function
of the effective amount of water vapor in the air column from the level z down
to the surface level h scaled for the pressure effect by means of a square

root correction:
6-eaal‘nb
! (B9)

€ = A ¥ W,  T=> =m oA Y W™
bw,

dw, = (p, * pnh'l)”2 * rho, * dz

= 0.622 * e, * (Ry * Tp)! * exp(-ky, * (2 - h)) * dz (B10)
Zz
Weglah = J dw,
h
= 0.622 * g, * (k, * Ry * Tp)"l * (1 - exp[-k,, * (z - h))) (Bll)
(B12)

ke =Ky +g % (2% Ry T

Substituting egquations (B9)-({Bl2) in (B8) and setting z~h egual to 2’
vields the following expression for the clear sky atmospheric emissivity:
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€akyoh = T * A * (0.622 * &, * (ky, * Ry * T H™
* J kye * @xp[-ky,' * z'] * (1 - exp[-k,, * z'])™! * dz'  (B13)
0
Kye' = kyo + 4 * T » 71 (B14)

The above integral can be conveniently expressed in terms of the complete
beta function B{a,b) ([(Abramowitz and Stegun, 1964], when kwe'*kwgl, m and
exp[-ky.*z'] are substituted for a, b and t, respectively. This then yields

Brutsaert's "derivable formula for longwave radiation from clear skies™:

B(a,b) = | t*l » (1 - t)b1 » at

kye * xp[-a * ky, * 2'] * (1 - exp[~ky, * 2'])>! * dz' ==>

O —— 8 O

€ =m*A* (0,622 * * * * pyhym w gee .t * k!, m) (B15)

skych ©h ke Ry h kye kye
=m*A*w,™* Bk, *k,l, m) = 0.521 % wyl!”? (B16)
=~ 0.642 * (g, * T, 17 (B17)

The following altitude correction for the clear sky atmospheric emissivity
based on the assumptions made for the derivation of {(B15) can now be derived
from equations (B2) and (B15):

€skyoz = €skyoh * ©XP[-k. * (z - h)] (B18)
k, =m*k,~k,/ 7=6.3* 10° m! (B19)

It follows from (B19) that the emigsivity of the atmosphere for average
clear sky conditions decreases by about 6 percent per kilometer altitude
increase.

In addition to Brutsaert's formula (Bl7), most of the other functional
relationships between the effective emissivity of a cloudless atmosphere and
the screen level air temperature and/or vapor pressure that have been
developed over the past decades were discussed extensively in section 2.2.4.
With the exception of Angstrbm's and Brunt's equations, they do not require
extensive local calibrations to determine empirical parameters (e, and T, are

expressed in the S.I. units pascal and kelvin, respectively):
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€syon = 9-39 * 106 » 12 (B20)
[Swinbank, 1963)

=1 - 0.261 * exp[-7.77 * 10 * (273 - 1,)?) (B21)
[Tdso and Jackson, 1969])

= 1.08 * (1 - exp[—(e, / 100)TW2016}, (B22)
[Satterlund, 1979]

= 0.7 + 5.95 * 107 * @ * exp[1500 * T,}] (B23)

[Idso, 1981)

Arguing that "in alpine areas the assumption of a standard atmosphere
(which has been the basis for the derivation of Brutsaert's fromula, R.U.) is
not valid", Marks and Dozier [1979]) and Marks [1988) proposed the following
adjusted scheme for the computation of ¢y, as a function of e,, T, and p in

remote alpine areas (assuming a standard temperature lapse rate and a constant
relative humidity):

€y = 0.642 * (e, * T,V » (py * phy (B24)
T

o = Tl'l + F * h
e, =&, * (&[T,] * [Ty

Pn * Bol= expl-g * (T * Ry * 1n(T, * 7,711

Although the derivations of (B20)~(B23) as opposed to that cf (Bl7) are not
based on vertical profiles for vapor pressure, air pressure and air
temperature, their altitude dependency can be quantified when Brutsaert's
[1975, 1982) typical exponential decay functions (equations (B2), (B4) and
(B5) with k. =4.4, g/{R;*T,)=1.3 and I'/T=0.226*10%m!, respectively) are

substituted.

h eh Th p% elkyoh {-]
(10°m) [(Pa] [K] [10°Pa] (B20) (B21) (B17) (B24) (B22) (B23)

0 1278 288 1.013 0.780 0.782 0.795 0.795 0.824 0.839
805 282 0.890 0.745 0.754 0.746 0.694 0.797 0.798
507 275 0.781 0.712 0.740 0.701 0.605 0.770 0.770

319 269 0.686 0.681 0.742 0.658 0.529 0.744 0.750

B W N

201 263 0.602 0.651 0.758 0.618 0.462 0.719 0.736
5 127 257 0.529 0.622 0.784 0.580 0.403 0.695 0,726

Table Bl. Altitude dependency of clear aky effective atmospheric
emissivities from different functional relationships using exponential
decay functions for vertical vapor preseure, air temperature and air
pressure profiles (RH, = 75%).
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For instance, it can be Been easily that substitution of (B5) in (B20)
yvields k,a2*P/T°-4.52*104 m!, equivalent with a clear sky emissivity decay of

about 4.5 percent per kilometer, which is slightly lower than followe from
Brutsaert’'s formula. Since the vertical profiles that Marks proposed are very
similar to the ones Bruteaert proposed, it follows directly from (B24) that
the emiassivity decay coefficient must approximately equal the pressure decay
coafficient, i.e. k,;::'dg/(l?.,d*='.l",)-1.3*10'4 w!. The raesulting 12 percent clear sky

emissivity decay per kilometer is twice as much as results from Brutsaert's
and almest three times as much as results from Swinbank's equation!

Table Bl. gives the emissivities resulting from (B20)-(B24} for altitudes
up to 5 kilometers, when the relative humidity at mean sea level is 75
percent. These figures confirm the observation of Rase and Idsc [1978) that
under moderate atmospheric conditione (B21) and (B17) adegquately predict the
clear sky effective atmospheric emissivity, whereas under freezing conditions
the former tends to overestimate and the latter tends to underestimate. It can
also be concluded that the linear pressure correction in (B24) causes an
emissivity decay with altitude that is considerably stronger than that of the
other equations, and that the scheme of Marke and Dozier [1979) ie therefore
likely to undersstimate the atmospheric emissivity at high altitudes.

Notation
w = Actual (precipitable) zenith path water vapor content of
atmosphere {kgmd]
h = Reference altitude above mean sea level [m]
q = Specific humidity (-]
g = Gravitational acceleration [= 9.81 msa}
rho, = Water vapor density [kgma]
rho, = Air density [kgm4]
P = Air pressure [Pa]
z = Altitude above mean sea level [m]
e = Vapor pressure [Pa]
Ry = Gas constant of dry air [= 287.04 Jkg4kﬂ]
T = Alr temperature [K]
k,, = Water vapor density decay coefficient [~ 4.4 * 104 m4]
T, = Mean air temperature at sea level [~ 288.15 K]
r = Temperature lapse rate [= 0.0065 Km4]
A = Effe%tive (scaled) zenith path water vapor content of atmosphere
[kgm™]
N, = Scaling exponent for pressure [= 0.5]
N, = Scaling exponent for temperature {= 0.0}
Ky = Effective water vapor density decay coefficient
[= 5.05 * 104 mlj
Likyo = Atmospheric emission for clear skies [Wma]
€ skyo = Effective atmospheric emissivity for clear skies [-}
¢ = Stefan-Boltzmann's constant [= 5.6697 * 10°% wWm2K4]
€51ab = Emissivity of slab of water vapor with CO, (-]
= Factor of power function [= 0.54]
Weglab = Effective water vapor content of slab of air [kgm?)
m = Exponent of power function [= 1/7]
Kye' = Decay coefficient ([~ 5.95 * 104 ml)
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Altitude above reference level [m]

Complete beta function with coefficients a and b [= 6.76])
Independent variable [-]

Decay coefficient for clear sky effective atmospheric emigsivity
(= 6.3 * 10 ml)

= Standard air pressure at mean sea level [= 1,01325 #* 10% Pa)

= Vapor pressure at 288,15 K with 75% relative humidity [= 1278 Pa)
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APPENDIX C.

oF C o) RADIATIO NC

The cosine of the incidence angle of direct eolar radiation at an inclined
surface can be given directly as a function of the sun's position in the sky
as determined by its zenith and azimuth angles and of the geometry of the
gurface as determined by its inclination (elope) and azimuth (aspect) angles,
as follows [e.g., Kondratyev, 1973}:

cos(8,'] cos[S] * cog[B,] + sin(S) * ein([6,] * cos([d, - A) {Cl)

coef8) * cos[B,] + sin(8) * sin[8,]

* {cos[A] * cos[®,] + ein[A) * sin[®,])

This equation can be transformed into a for some purposes more convenient
functional form in which the sun's position ia given indirectly as a function
of the latitude of the surface, the date aes determined by the solar
declination and the time of the day as determined by the hour angle. The
following expressions for' the cosine of the solar zenith angle and the sine
and cosine of the solar azimuth angle derived on the basie of spherical
trigonometry [e.g., List, 1966; Kondratyev, 1973] must then be substituted in
{(Cl):

cos([8,] = gin{®] * sin(§] + cos(P) * cos[f] * cos[H] (C2)
gin[®,] = ~cos[d] * ein[H) * sind[es] <==> (C3)
8in(6,] * sin(®,] = -cos[é] * sin[H]

cos[P,] = (gin[§} = sin[®]) * cos[8,]) * (coB[P) * sin[es])4<==>(c4)

8in[8,] * cos[®,] = (8in(d] - sin[®] * coe[6,]) * cosq[@]

It is noted here for reasons of completeness that taking the quotient of
(C3) and (C4) yields the same expression for the tangent of the solar azimuth
angle as Igbal [1983] presented [Blackadar, 1989). Moreover, expressions for
the solar zenith angle at true solar noon and for the hour angles at true
sunrise and sunset at an unobstructed horizontal surface {i.e. neglecting the
phenomena of atmospheric refraction and parallax that determine the apparent
sunrise and sunset) can easily be derived from (C2) by setting H equal to zero
{=> 9,-|¢—5‘) and 6, equal to wf2 (=> Hm’ﬁ”=iarccoa[-tan[@]*tan[&]]),
respectively. The latter allows (C2) to be |integrated analytically between
solar noon {(H=0) and sunset (H=H,) to yield an expression (sin[®]*sin(§)*H,

+cos[®)*cos[§]*sin[H,,]) which after multiplication with the factor S *(x*r2)’]

determines the average daily radiation reaching a hypothetical horizontal
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surface at the top of the atmosphere (with the minor approximations that § and

r are constant during the day). See figure 2.1.1,.

Substitution of (C2)-(C4) in (Cl) yields the same formula as Garnier and
Ohmura [1968, 1970] developed on the basis of a coordinate transformation
following the principles of vector algebra. In this expression, latitudee and
declinations north of the equator are taken as positive and scuth of the
equator as negative, the hour angle is measured from sclar noon positively
towards west and negatively towards east, and lastly azimuths are measured
from north through east:

cos[6,'] = (cos[S] * sin(®) + ein[S} * cos[A]) * coa[®]) * sin(f)
+ (cos[S) * cos{®¥] * coa[H] - sin[S] * sin[A] * sein[H]
- gin[8) * cos[A] * sin[®] * cos[H]) * cos{] (C5)

When the surface inclination angle is set equal to zero in (C§5), (C2) can
easjily be obtained. The incidence angle of direct solar radiation at a
horizontal surface by definition namely equals the solar zenith angle.

Notation!

8,' = Incidence angle of direct solar radiation at inclined surface

8§ = Surface inclination angle or slope

8, = Solar zenith angle or incidence angle of direct solar radiation at
horizontal surface

¢, = Solar azimuth angle

A = Surface azimuth angle or aspect

® = Latitude of surface

§ = Declination of sun

H = Hour angle

1

All angles are expressed in units of radians [rad])
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APPENDIX D.

VING SOTROPY FACTORS ST ION FU ONS

D.1., Bac ound So S Radiance

Several authors have described the background diffuse shortwave radiation
field by a fictitious radiance distribution linear in the cosine of the zenith
angle [e.g., Steven and Unsworth, 1979; 1980; Arnfield, 1982):

K[8] = K[0] * (1 + b, * coa[8]) * (1 + b))l <==>
K{p) = K[1) * (1L + b * p) * (1 + by)! ; u = cos[@) (D1)

In these equations K[0] and K[1l] denote the radiance from the zenith and
not the mean radiance from the entire spherical solid angle, which Olyphant
[1986b] incorrectly assumed. The total amount of background solar aky
radiation reaching an unobstructed horizontal surface is the hemispherical
integration of the radiance distribution function:

2x xf2

Kar J J K(8] * sin[8] * cos[B] * d6 * dd

0 @

1
2**[“#]*#*6»
0

1
=21r*K.[1]*(1+bk)'l*J(1+hk*p)*p*dp

o

[ 1

= 2r % K[1] * (1 + b))t » | u2/2 + b * u3/3 ]
0

m * K[1] * (1 + b, * 2/3) * (1 + b))} (D2)

The anisotropy factor for background solar sky radiation is by definition
the ratio of the equivalent flux density from a particular solid angle to the
total amount of diffuse radiation reaching an unobstructed horizontal surface
(Pozier and Frew, 1989]:

Oplp) =« * K{p] * Kgl
= (1+bg *p) * (1 + b *2/3)71 (D3)

95



It can be seen from the above equation that the anisotropy factor becomes
unity when u equals 2/3, i.e. when 6 equals arccos[2/3] = 48.2°. The

equivalent flux density from this representative angle equals the total
hemispherically integrated amount of diffuse sky radiation.

D.2. Atmeaspheric Emittance

Unsworth and Monteith [1975] presented a radiance distribution functien for
incoming longwave radiation in terms of the apparent (or equivalent}
emissivity and the zenith optical water path of the atmosphere, i.e. the
effective water vapor amount scaled for the pressure effect (by a square root
correction as determined by (B6) and (B12)):

€.[6) = a + by * Ilnfw, * cosl{B)]) <m=>

€[] = a+ b * In(w, * ul) (D4)

In these equations the secant approximation is used to account for the
relative path length for water vapor because of its easy integrability. The
atmospheric emissivity is consequently given by the hemispherical integration
of the apparent emissivity of each solid angle, which follows the derivation
of (D2):

Esky = 2 * | € [p] * p % dp

{a + b * (In[w,) = ln[g]))) * p * du

|
|

1
=2 * (a+ b * In[w]) * { p2/2 ]
0

1

1
[\ ]

* b * [,uz/z * (ln[p} - 1/2) ]
0

=a+ b *1In[w,} + bf2 =a4+ Db * (1/2 + 1n[w,]) (DS)

The anisotropy factor for atmospheric emittance is defined as the ratio of
the apparent emissivity to the atmospheric emissivity:

‘l'l[p] ee[p] * esky—

(a + by * (ln[w,] - 1n[g))) * (a + b, * (ln[w,] + 1/2))7] (D6}
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It can be seen from this equation that the representative angle for the
incoming longwave radiation field (the angle for which the anisotropy factor
becomes unity) is determined by setting ln(u] equal to ~1/2, i.e. 8 egqual to
arccos[exp[-1/2]] = 52.7°.

Since €5y Can easily be determined with reascnable accuracy from the screen
level vapor pressure and/or air temperature and the mean fractional
cloudcover, (DS) can be used for the convenient elimination a and w, from
(D6):

a = Egy ~ by * (1/2 + 1n[w,])) ==> (D7)
€elp] = €y = by * (1/2 + ln(p]) ==> (D8)
Mis) =1 - by * egt * (1/2 + 1n[p)) (D9)

Until this point basically the method proposed by Unsworth and Monteith
(1975]) has been followed. However, they stated that (D8) "clearly does not
represent the variation of the emissivity at very large (zenith, R.U.) angles,
since it fails to predict that emissivity tends to unity as 8 approaches 50°".

The reasocn for this deviation is that the secant approximation for the
relative path length for water wvapor (which has been the basis for the
derivation of (DS5)-(D9)) neglects the curvature of the earth and its
atmosphere. Instead of approaching unity for large zenith angles, the apparent
emjisgivity as determined by (D8) tends to infinity. Brunt [1932] inferred from
his measurements of the angular distribution of incoming longwave radiation
that "... just above the horizon, we should expect to find the amount of
radiation practically independent of vapor pressure, since a horizontal
cylinder of the atmosphere will always contain enough water vapor to radiate
effectively as a black body ...". Although setting the apparent emissivity
equal to unity for O equal to n/2 radians may lead to a slight overestimation

of the radiance at large zenith angles because the acreen level air
temperature will generally be higher tham the mean temperature of the
radiating layer, below inversions (which occur frequently in snow covered
mountainous terrain, particularly during the snowmelt season) it leads to an
underestimation because the screen level air temperature is lower than the
mean temperature of the radiating layer [Unsworth and Monteith, 1975). It is
therefore assumed that the approximation that ¢,[n/2] equals unity represents

the average atmospheric conditions with reasonable accuracy. This makes it
possible to eliminate the remaining empirical coefficient (b)) and derive a
standard longwave radiation distribution that is solely a function of the
atmospheric emissivity. Hence, it is obvious that the secant approximation for
the relative path length for water vapor has to ba abandonned in faver of an
expression that ie more accurate at large zenith angles.

The following empirical formula has the same functional form as Rodgers'
(1967] expression for the relative path length for czone [Lacis and Hansen,
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1974), which allows easier integration than the form of Kasten's [1966)
formula:

M, = M [0] * ((M,[0)% - 1) * u? + 1)12 (D10)

For the purpose of computing the absorption of solar (shortwave) radiation
in the atmosphere by water vapor, the maximum relative path length (M, ,[0]) hae
a value of about 75. However, emission of radiation by water vapor occure in
the thermal (longwave) region of the electromagnetic spectrum, where no
appreciable refraction takes place. Hence, M,[0] in (D10) will most likely
have a lower value than 75, although the influence of its magnitude on the
computation of the atmospheric emissivity is small (eguation (D12)).

The derivation of the revised anisotropy factor for atmospheric emittance
on the baesis of (D10) and the assumption that ¢,(n/2] equals unity basically

follows that of (D4)-(D9):

€clp] =a+ by * Infw, * ¥,] ==> (D11)
1

€ky = 2% J (a + b * (ln[w,] + 1n(M,])) * s * dp
0

1
=a+ b * Ilnfw,] + 2 * b * J In[M,] * & * du
0

= a+ b * ln[w, * M,[0]]
1

by * {lnun,,mﬁ -1 xpt 1) pordp
0
B o= (4,[0)2 - 1) * p? + 1 ==>dp’ =2 % (M,[0}2 - 1) ¥ p*du ==>
€hy = @+ by * In(w, + M,[0}]
M, [0]
- by * (2 % (M,[0)2 - 1)) = Jln[P'l * dp’
1

=a + b * ln(w, + M, (0]]
¥, [0)?
- b * (2 % (4,[0)2 - 1))T = [p' * In(p'] - p' L
= a+ b * In[w, + M [0]]
+ by * (1/2 = (1 - M (012 * 1n(M,(01])
=a+ b * ((1/2 - (M,[01% = 1)t * 1n[¥,[0]]) + Ln[w,]) (D12)
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=a+ Db * (0.5 + ln[w,]) == (D5)

a = €4y = b * (0.5 + In[w)) ==> | (D7)
€el#) = €y = By * (0.5 - In[My]) ==> (D13)
€.[0] = €yy — by * (0.5 - In[My[0]}) = 1 <==>

b, = (1= egy) * (In[M,[0])) - 0.5)7 ==> (D14)
€lp] = egy = {€gy = 1) * (0.5 - 1n[M,]) * (0.5 - 1n[M,{0]])"! (D15)
Yp) = 1 = (1 - e4) * (0.5 - 1n[H,)) * (0.5 - Ln{M,[01])"! (D16)

Since (D12) approximately equals (D5), it may be concluded that the
hemispherical integration of (D1l0) is not significantly different from that
of the secant approximation for the relative path length for water vapor.
However, application of (D10) will yield more accurate values for the apparent
emissivity at large zenith angles and moreover, it is necessary in order to
be able to derive b as a function of €sky (equation {D14)). The only empirical

coefficient remaining in the formulation of the anisotropy factor for
atmospharic emittance {D16) consequently is the atmospheric emissivity, which
can be determined from (Bl6) (as a function of the scaled water vapor amount)
or (Bl7) (as a function of vapor pressure and air temperature) and the mean
fractional cloudcover. Application of typical values for €sky (roughly ranging

between 0.6 and 1 as can be gathered from table Bl.) yields values for a (from
(D7)) and b; (from D(14)) that fall within the ranges mentioned by Unsworth

and Monteith [1975], which are based on extensive measurements.

Notation

K = Background solar sky radiance [quer]

e = Zenith angle [rad)

by = Coefficient for background solar sky radiance distribution [-}
7! = Cosine of zenith angle [-]

Kur = Background solar sky radiation [wma]

L = Azimuth angle [rad]

O = Anisotropy factor for background solar sky radiance [-]

m
(4]
"

Equivalent emissivity [-)

a,b = Coefficients for equivalent emissivity distribution (-}

W, = Effegtive {scaled) zenith path water vapor content of atmosphere
[Jegm™)

€ky = Effective atmospheric emissivity [~]

{,/, = Anisotropy factor for atmospheric emittance [~]

M, = Relative path length for water vapor [-])
p* = Integration variable [-])

99



APPENDIX E.

DEVELOPED SOFTWARE

E.l. Microsoft QuickBASIC Com b o ¢\

PRERERARR RN ERERAREANRARARNRERAARRAAEARARARRARRA RN ANAR RN A AN e w

'+ program: conversion FACTORS »
'* objective: computing sky view factor (Vd) and terrain *
'k . configuration factor (Vt} for infinitely long V- *
' shaped valley as functions of different radiance *
'* distributione (anisotropy factors Omega) and site *
'k elevations above valley floor *
'* interface: parameters defined in program; *
'* output to terminal screen *
'+ author: Remko Uijlenhoet *
'* date: August 2, 1989 *

TRRREAERARARENERRERARREERERARRRAE AR ENRERA RS AR ARAARRERANEE AR e h ke

*BEGIN FACTORS
'* definitions and declarations *

CONST pi# = 3.141592654# '* pi [-]

CONST rad = pi / 180 ** radians per degree [rad/deq]

CONST A = O * rad ‘* glope azimuth [rad)

CONST Dsite = 0 '*#* horizontal distance from site to
'* slope base [m]

CONST 8 = 60 * rad '* glope inclination [rad]

CONST 52 = 60 * rad '* jnclination of facing slope [rad]

CONST Yridge = 100 *# ridge top elevation [m]

CONST Yridgez = 100 ** glevation of facing ridge top [m)

CONST stepphiO = pi / 18 '* initial azimuthal integration
' increment [rad]
CONST stepZz0 = pi / 18 ** initial zenith integration increment

K ¥ K H K K EERFENFE RSN RN

'H [rad]
CONST step¥Y0 = 100 '* initial increment of site elevation
'* [m]
CONST startphi = 0 '+ azimuth at start of integration [rad]
CONST stopphi = 2 * pi ** azimuth at end of integration [rad)
CONST startZ = 0 *# zenith at start of integration [rad)
CONST startY = O '* lowest site elevation [m])
CONST stopY = Yridge '* heighest site elvation [m]
COMMON SHARED Y ‘* gite elevation [m)

DECLARE FUNCTION ARCTAN (x1, x2)

DECLARE FUNCTION HfunctionhA (phi)

DECLARE FUNCTION HfunctionB (phi)

DECLARE FUNCTION Omegak (Z, phi, mc)
DECLARE FUNCTION Omegal (Z, phi, mc)
DECLARE FUNCTION PSIfunction (phi)

DECLARE FUNCTION reduce (angle, interval)
DECLARE FUNCTION simpson (stepno%, stepmaxt)
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'* main program *

CLSs

PRINT
PRINT
PRINT
PRINT

Y VdHm vdiso Vdko Vdke vdlo
ve"

2 3 a2 12
<
[+ )
o
Q

PRINT "=————m e mcsesecace e e ————— —mmmm—m—— -

PRINT "=me=———————————— "
stepphimax$ = 2 * CINT((stopphi - startphi) / (2 * stepphil))
stepphi = (stopphi - startphi) / etepphimax%
IF stopY > startY THEN
stepYmax% = CINT((stopY - startY) / stepYO)
stepY = (atopY - startY) / stepY¥Ymaxs
ELSE
stepY¥Ymaxs = O
END IF
¥ = startY

'* (1) compute conversion factors for all site elevations (Y)
' from startY to stopY with increment stepY

FOR stepYno% = 0 TO stepYmax%
Hmean = 0
Vdiso = 0: Vdko = 0: Vdkc = 0: Vdlo = 0: Vdle = 0
Ve = 0
phi = startphi

‘* (1.1) perform integration over all azimuth angles (phi)
'tk from startphi to stopphi with increment stepphi

FOR stepphino% = 0 TO stepphimax$
deltaphi = simpson(stepphino%, stepphimax%)
deltaphi = deltaphi * stepphi / (2 * pi)
H = HfunctionB{phi)
Hmean = Hmean + deltaphi * H
PSI = PSIfunction(phi)
IF Y >= Yridge THEN

slope = 0
ELSE
slope = S
END IF
factorA = TAN(slope) * COS(phi - A)
termvdA = SIN(H) ~ 2
termVdB = H - SIN(H) *.COS(H)
termVtA = SIN(PSI) ~ 2 - termVda
termvtB = PSI - SIN(PSI) * COS(PSI} - termvdB

intphivdiso = termVdA + factorA * termVdB
intphivt = termVtA + factorA * termVtB
Vdiso = Vdiso + deltaphi * COS(slope) * intphivdiso
Vt = Vvt + deltaphi * COS{slope) * intphiVt
sftopZ = H
IF gtopZ - gtartZ > O THEN
IF stopZ - startZ < stepZ0 THEN

stepZ = (stopZ ~ startZ} /[ 2
ELSE

stepZ = stepZ0O
ERD IF

stepZmax$% = 2 * CINT((stopZ - startZ) / (2 * stepZ))
step2 = (BtopZ - startZ) / stepZmax%

intphivdko = 0: intphivdke = 0
intphivdlo = 0: intphivdlc = 0
Z = gtartZ
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'* (1.1.1) perform integration over all zenith angles *
' (2} from startZ to stop?l with increment stepZ *

FOR stepZno% = 0 TO stepZmaxt
deltaZ = simpson(stepZno%, stepimax%) * step?
factorB = SIN(2 * 2} + factorA * (1 - COS(2 * Z))
intzvdko = Omegak(Z, phi, 0) * factorB
intZvdkc = Omegak(Z, phi, 1) * factorB
intZvdlo = omegal(Z, phi, 0) * factorB
intZvdle = Omagal(Z, phi, 1) * factorB
intphivdko = intphivdko + deltaZ * intZvVdko

intphivdke = intphivdkc + deltal * intZvVdkc
intphivdlo = intphivdlo + deltaZ * intZvdlo
* int2Vdlc

intphivdle = intphiVdlc + deltaZ
Z = 2 + step2
NEXT stepZno%

Vdko = Vdko + deltaphi * COS(slope) * intphiVdko

Vdke = Vdke + deltaphi * COS(slope) * intphivVdke

Vdlo = Vdloc + deltaphi * COS(slope) * intphivdlo

Vdlc = vdle + deltaphi * COS(slope) * intphivdlc
END IF

phi = phi + stepphi

NEXT satepphino%
VdHm = SIN(Hmean) ~ 2
PRINT USING " ##f "; Y;
PRINT USING " #.###### "; VAHm; Vdiso; Vdko; Vdkc; Vdlo;
PRINT USING " #.F##### v; vdle; Vt
Y = ¥ + stepY
NEXT stepYno%
vdinfinite = COS((S + 82} [ 2) ~ 2
vtinfinite = 1 - vdinfinite

PRINT "—=—=——mmme— e = e e e o e i
PRINT "—=eeemem—e——————— "

PRINT " vdinfinite (-]: ";

PRINT USING " #.#####¢ "; Vdinfinite

PRINT " vtinfinite [-]: ";

PRINT USING " #.###### "; Vtinfinite

IF 82 = Q0 THEN

dummyA = COS(S / 2) ~ 2

VdkcSOC

dummyB = SIN(S) - S * COS(S) - pi * SIN(S / 2) ~ 2
VdkoSOC = dummyA + 2 * bko * dummyB / ({2 * bko + 3) * pi)
= dunmyA + 2 * bke * dummyB / ({2 * bke + 3) * pi)

PRINT " VdkoSOC (-]

PRINT USING " #.###### "; VdkosSOC
PRINT ™ VvdkcSoC [=]: ":
PRINT USING “ #.###### *; Vdkcsoc

END IF

END'FACTORS
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'* function: ARCTANgent *
'* pbjective: computing arctangent of guotient of x1 and x2; *
v resulting value between -pi/2 and pi/2 *

TRAERATEATERRERREARRNRN RN RRAAARARTR AT ARRARR RN RNk dedhnhdihk

FUNCTION ARCTAN (x1, x2)
IF x2 = 0 THEN
ARCTAN = SGN(x1) * pi / 2
ELSE
ARCTAN = ATN(x1 / x2)
END IF
END FUNCTION'ARCTAN

ThuhhhhhhdhdRhhhblbhrRieRhhkrRerR R R bRl r bR TN RN hhh

'* function: HfunctionA, horizon function A *
** objective: computing zenith angle of local horizon of *
' infinitely long slope in V-shaped valley as *
' function of azimuth (phi), surface azimuth (A) and *
' inclinations of facing slopes (8§, S§2) *
P deh v kW % W e 3k T % o e 9 v o A ke gt vk ok W e vk e e ok i v o T e o O o o o o % e o e Ot o 3 9k W O 3 ok O o ok o e ke ok b e o

FUNCTION HfunctionA (phi)
IF COS{phi - A) <= 0 THEN

Hfunction = ARCTAN(-1, TAN(S) * COS(phi - A))
ELSE

Hfunction = ARCTAN(1l, TAN(S2) * COS(phi - A))
END IF
HfunctionA = reduce(Hfunction, pi)
END FUNCTION'Hfunctiona

PRERKEREEBRRREREERKRRERAA AR RRERAERARRENRAARARA AN AR AARA A ARk dk

'* function: HfunctionB, horizon function B *
'* objective: computing zenith angle of local horizon of point at *
'k slope in V-shapad valley as function of azimuth *
't {phi), surface azimuth (A) and inclination (8), *
Tk site elevation (Y}, ridge top elevations of facing *
'R slopes (Yridge, ¥Yridge2) and Hfunctiona *
"RERKERRREKRKRERRRERRRERRREER RN AN AR RERANNANANRARN IR R ARk Rk kA%

FUNCTION HfunctionB {phi)
Ha = HfuncticnA(phi)
phi2 = reduce(phi + pi, 2 * pi)
Ha2 = HfunctionA(phi2)
IF cos(phi - A) <= O THEN
IF Y >= Yridge THEN
HfunctionB = pi / 2
ELSE
HfunctionB = Ha
END IF
ELSE
IF Y >= Yridge2 THEN
HfunctionB = pi / 2
ELSEIF S8 = 0 THEN
dummyA = Dsite / (Yridge2 * COS(phi - A})
HfunctionB = ATN{TAN(Ha) + dummyA)

ELSE
dummyh = ¥ridge2 / (Yridge2 - Y)
dummyB = ¥ / (Yridge2 - Y)

HfunctionB = ATN{dummyad * TAN(Ha) + dummyB * TAN(Hal})
END IF
END IF
END FUNCTION 'HfunctionBb
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** function: Omegak *
'* objective: defining anisotropy factor for background solar sky *
' radiance as function of zenith (Z), azimuth (phi), =
'e fractional cloudcover (mc) and surface albedo *
e {(albedo) *
IR 22 2 3222222 22 22222222 it sttt R 2t 22

FUNCTION Omegak (Z, phi, mec)

SHARED bko, bkc

CONST albedo = .17

bko = -.87

bke = 2 = (1 - albedo) / (1 + 2 * albedo)

ma = COS(2)

Omegako = {1 + bko * mu) / (1 + bko * 2 / 3)
Omegakc = (1 + bkc * mu} / {1 + bkc * 2 [ 3)
Omegak = (1 - mc) * Omegako + mc * Omegakc
END FUNCTION'Omegak

TR TR R RN R AR AR RN REREN RN RN AT RN RN RET RN RN TR NR

** function: Omegal *
** objective: defining anisotropy factor for atmospheric *
Tk emittance as function of zenith (Z), azimuth (phi)}, *
' fractional cloudcover {mc) and clear sky effective *
te atmospheric emissivity (eskyo) *
TRRERRN AN RN NN AR RRAAN AR A AR R RN RNk bbbk

FUNCTION Omegal (Z, phi, mc)

CONST MwO = 75, kl = .22, eskyo = .7

esky = (1 + k1 * mc * mc) * eskyo

bl = {1 - esky) / (LOG(MwO} - .5)

mu = COS(Z)

Mw = MwO / SQR((MwO ~ 2 - 1) * mu ~ 2 + 1)
Omegal = 1 - bl * {.5 - LOG(Mw)}) / esky
END FUNCTION'Omegal

TRAREERREEERREAERERERAAERRARRREERRRREAAR R R AR R AR R AR AR AN AR
'* function: PS8Ifunction

»*

'* objective: computing zenith angle of sunray parallel tc slope *
' in v-shaped valley as function of azimuth (phi), *
b gurface azimuth (A} and inclination (8), site *
' alevation (Y), ridge top elevation of facing slope *
' (¥Yridge2) and HfunctionB *

TREARARAEEREEERAERAEAREAR AR RN TR Rk kdde e deveddesedrsedrsedrisedededed et edd

FUNCTION PEIfunction (phi)
Hb = HfunctionB(phi)
IF COS(phi - aspect} <= (0 THEN
PSIfunction = Hb
ELSE
IF Y >= Yridge THEN
PSIfunction = pi / 2
ELSE
dummyA = ARCTAN(-1, TAN(S) * COS{phi - A))
PSIfunction = reduce(dummyA, pi)
END IF
END IF
END FUNCTION'PSIfunction

PREARARARREEAKRRAERR TR RREERRAERRR KRR AR R AR TR AR E AR AR h A kAR RN hw

*# function: reduce *
'* objective: reducing value of angle to value between 0 and *
tk interval *

IR 2222222 22 2222 R 2 R a2ttt it il il R )R D]
FUNCTION reduce (angle, interval) ;

modulus = INT(angle / interval)

reduce = angle - modulus * interval

END FUNCTION'reduce
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'* function: simpson *
'* pgbjective: computing coefficients for numerical integration *
'R according to Simpson's 1/3 rule from number of *
g integration steps already performed (stepno%) and *
'k total number of integration steps (stepmaxi) *

*

TR AR ARRAR AR AR TR I AA AR RN IR ERR AR TN AERAN IR ARA AR RRAEA R AR AR AN hh

FUNCTION gimpson (stepno%, stepmaxs)

IF stepno% = 0 OR stepno$ = stepmax% THEN
gimpson = 1 / 3

ELSEIF 2 * INT(stepno% / 2) <> stepno% THEN
simpson = 4 [/ 3

ELSE

. 8simpson = 2 / 3

END IF

END FUNCTION'eimpson
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2. Micropoft QuickBASIC Computer Program RBM

IR EETET ISR L A RS R R R s Rl R R LR} S

'* program:
'* objective:

"%

‘* interface:

(K
(Y
"

RBM, Radiation Budget Module
computing diurnal variation in radiation balance

of obstructed point at inclined surface

input from data-file RBMIN.DAT on current directory

remaining parameters defined in main module;
output to data-file RBMOUT.DAT on current directory *
and/or to terminal screen

*
*
*

*

'* authors: Remko Uijlenhoet *
'* date: July 7, 1989 *
TRRERER R ERERANRNEANRAAARANRRRRRARAERARARNRERRARRRERRRR AR AR Ak Ak kR
'BEGIN RBM

'* parameter definitions *

CONST
CONST
CONST
CONST

CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST

CONST
CONST

CONST
CONST
CONST

CONST
CONST

CONST

CONST
CONST
CONST
CONST

CONST
CONST
CONST
CONST
CONST

CONST

CONST Rd =

CONST

CONST

pi¥ = 3.141592654#
rad# = pi / 180
degt = 2 * pi / 1440

month = 4, day = 10, year
'* date of measurements [m;d;y]

lat = 33.075 * rad
lon = 111.983 * rad
aspact = 0 * rad
slope 0 * rad
heite 358

a=.l1

atrn = a

e = .95

etrn = e

mc = 0
askyo
askyc

.1
.5

agsky = (1 - mc) * askyo +
'* effective sky albedo [~)

kl = .22

"%
LR
LR

L
s
Y
"%
"k
("
(Y
LS
LK 4
"
K
(Y

'k
'k

pi [-]
radians per degree [rad/deq]
radiang per minute [rad/min]
= 1989

gite latitude [rad N)

site longitude [rad W]

slope azimuth angle {[rad]
slope inclination angle [rad)
Bite altitude [m])

average surface albedo [-)
average terrain albedo [-]
average surface emissivity [-]
average terrain emissivity [-]
mean fractional cloudcover (-]
effective clear sky albhedo [-]
effective overcast sky albedo [-]
mc * askyc

longwave cloudcover correction
coefficient [-]

cloudlw = 1 + kl * mc * mc '* longwave cloudcover

ksa = .39, ksb = .38
ks = ksa + keb * mc
cloudsw = 1 - ke * mc

Aoc = .02
Awec = .07

trans = .75

dat 20

dH deg * dt
length% = 1000
muHrisef = -.014539

It

accuracy = .01
countmax = 100
g = 9.81
kelvin = 273.15
kw = ,00044

lapse = .0065
287.04
sigma = 5.6697E-08

S0 = 1365

"k
vk
'
X
1%
"k
(X
LR
L
X
(XY
Y
(F
Y
(K
X
Y
X
(X
LK
L X
(XY
(XY
Y
L
"%

correction [=]

shortwave cloudcover correction
coefficlents [-]

shortwave cloudcover correction
(-1

average absorptivity of ozone [-)

average absorptivity of water
vapor [-}

average zenith path atmospheric
tranemissivity [—]

simulation time step [min)

angular equivalent of 4t [rad])

array length [-)

cosine of aolar zenith angle at
apparent sunrise (-]

iteration accuracy (%]

maximum number of iterations [-)

gravitational acceleration [m/s2)

freezing temperature of water [K)

water vapor density decay
coefficient [/m])

lapse rate {K/m]

gas constant of dry air {J/kg/K}]

Stefan-Boltzmann's constant
(W/m2/K4]

solar constant [W/m2]

107

* » *

% % % % % B % N % X % * B

% % % % % % % % % % % % % % % ¥ % % % % N d X % ¥ X ¥ X N



** array declarations *

OPTION BASE 1

DIM dummyA({length), dummyB{length), dummyC(length), dummyD(length)
DIM dummyE{length), dummyF{length), dummyG(length), dummyH(length)
DIM dummyl(length), dummyJ({length), dummyK(length), dummyL(length)

'* dummy variables [?7) *
DIM Hm({length}) '* hour angle at measurement [rad) *
'* measurements: *
DIM Ktotm(length) 'k global radiation [W/m2] *
DIM Rnm(length) T net radiation [W/m2) *
DIM Ta(length) e air temperature (K] *
DIM Ts(length} Tk soil temperature 1 [K] *
DIM TsB({length) Tk s0il temperature 2 [K] *
DIM Tc(length) Tk canopy temperature [K] *
DIM ea(length) T vapor pressure [(Pa] *
'* corrections: *
DIM KtotmB(length) T corrected global radiation *
T* o [W/m2] *
DIM RnmB{length) bR corrected net radiation [W/m2] *
DIM TcB{length) 'k corrected canopy temperature [K]*
'* gimulatione [W/m2]: *
DIM Ko(length} Tk extraterrestrial radiation ¥
DIM Kdir({length) ** direct ingolation *
DIM Kdif(length) Tk diffuse sky radiation *
DIM Ksct{length) b radiation scrattered downward *
TR from direct beam *
DIM Kbck({length) Tk backscatter from atmosphere *
DIM Ktrn{length) TR reflection from adjacent terrain*
DIM Ktot{length) T global radiation *
DIM Kn(length) 'k net shortwave radiation *
DIM Lsky{length) TR emission from atmosphere *
DIM Ltrn{length) TR emigsion from adjacent terrain *
DIM Lafc{length) TR surface emission *
DIM Rn{(length) 'k net radiation *
DIM asfc{length) 'k instantaneous surface albedo [-}*
** common area declarations *
COMMON SHARED anom AS DOUBLE '* true anomaly [rad]) *
COMMON SHARED clon AS DOUBLE '* true celestial longitude [rad] *
COMMON SHARED cor AS DOUBLE '* time correction [4] *
COMMON SHARED dclon AS DOUBLE'* difference between true and mean *
rH celestial longitude [rad] *
COMMON SHARED dec '+ declination [rad} *
COMMON SHARED jday AS DOUBLE '* Julian day number [d] *
COMMON SHARED jdayreduced AS DOUBLE '* reduced Julian day number *
LK (4] *
COMMON SHARED manom AS DOUBLE'?* mean anomaly [rad]) *
COMMON SHARED mclon AS DOUBLE'* mean celestial longitude [rad] *
COMMON SHARED rv *+# earth's radius vector [-) *
*

COMMON SHARED storeA, storeB '* storage variables (-]
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'* function and subroutine declarations *

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION

albedo (2,
Ao (Z, D)
ARCCOS (x,
ARCSIN (x,
ARCTAN (x,
Aw (Z, ea,

Tk, choice)

Y)
Y)
Y)
Ta)

DECLARE
DECLARE
DECLARE
DECLARE

FUNCTION
FUNCTION
FUNCTION

coefficient (Kt)

horizon (phi)

julianday {(month, day, year)

FUNCTION LOG1l0 (x)

DECLARE FUNCTION reduce (angle, interval)

DECLARE SUB average (inarray(), outarray(), ibegin, iend,
sublength)

DECLARE SUB factorse {(mc, VdK, Vdl, Vtrn)

DECLARE SUB position (jday AS DOUBLE, dec, rv, eq)

DECLARE SUB localriseset {(Hlocal, azlocal, altlocal, Hguesg)

DECLARE SUB statistics (Carray(), Marray(), MBE, RMSE, NASH,
ibegin, iend)

DECLARE SUB time (angle, sign§, hour, min, sec)

** main program *
** (1) Input data from measuremente-file "RBMIN.DAT" *

OPEN "RBMIN.DAT" FOR INPUT AS #1
ts = 1
DO UNTIL EOF(1)
INPUT #1, Hm{t%), Ktotm(t%), KtotmB(t%), Ram(t%), RnmB(t%), Ta(ts), Ta(t%),
TeB(t%), Tc(th), TcB(t%), ea(ts)
t% = t% + 1

LOOoP

CLOSE #1

Hstart = Hm(l) * rad + dH / 2
tmax = t% - 1

dtin = (Hm(tmax) - Hm(l)) * rad / ((tmax - 1) * degq)
IF dtin < 4t THEN

FOR t% = 1 TO tmax
dummyA(ts) = Ktotm(t%)
dummyB(t%) = KtotmB(t%)
dummyC(t%) = Rnm(t%)
dummyD (t%) = RnmB(t%)
dummyE (t%) = Ta(ts)
dummyF (t%) = Ts(t%)
dummyG(t%) = TsB(t3%)
dummyH(t%) = Tc(t%)
dummyI(t%) = TcB(t$%)
dummyJ (t%) = ea(t$)

NEXT t%

sublength = CINT(dt / dtin)

nmax = INT{tmax / sublength)

ibegin = 1: iend = sublength * nmax

'iend = tmax: ibegin = iend - sublength * nmax + 1
Hstart = Hm(ibegin) * rad + dH / 2

average (dummyA(), Ktotm(), ibegin, iend, sublength)
average (dummyB(), KtotmB(), ibegin, iend, sublength)
average (dummyC(), Rnm(), ibegin, iend, sublength)
average (dummyD(), RnmB{}, ibegin, iend, sublength)
average (dummyE(), Ta(), ibegin, lend, sublength)
average (dummyF(), Ts(), ibegin, iend, sublength)
average (dummyG(), TsB(), ibegin, iend, sublength)
average (dummyH(}, Tc(), ibegin, iend, sublength)
average (dummyI(}, TcB(), ibegin, iend, sublength)
average(dummyJ(), ea(), ibegin, iend, sublength)
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'* (2) diurnal variation in instantaneous radiation

' characteristics for dt minute intervals, starting when

'h hour angle equals Hstart

jday = julianday(month, day, year)
jday0 = julianday(l, 1, year)

D = jday - jdayQ + 1

CALL position{jday, dec, rv, eq)
CALL factorse(mc, VdK, Vdl, Vvtrn)
storeA = SIN(lat) * SIN(dec)
storeB = COS(lat) * COS{dec)
dummyA = SIN(slope) * COS{aspect)
dummyB SIN(slope) * SIN(aspect)

storeC = atoreA * COS(slope) + COS(lat) * SIN(dec) * dummyh
= gtoreB * COS(slope) - SIN(lat) * COS5{dec) * dummyA

storeD
storeE = -COS{dec) * dummyB

HO = ARCCOS (-storeA, storeB)

Hrise = -ARCCOS (muHrise - storeA, storeB)
H = Hstart

FOR n% = 1 TO nmax

** (2.1) instantaneocus shortwave radiation characteristics

IF HO > O THEN
mu = storeRA + storeB * COS(H)
dummyA = HO * gtoreA + storeB * SIN(HO)
Kotot = SO * dummyA / (pi * rv ~ 2)
IF mu > 0 THEN

»

'* (2.1.]1) direct solar radiation *

Z = ARCCOS(mu, 1)
refraction = .15 * (93,885 - Z / rad) ~ -1.253
airmass0 = 1 / {(mu + refraction)
Prel = (1 + lapee * hsite [/ Ta(n%)) *~ (-~qg / (lapse * Rd))
airmases = Prel * airmass(
Ko(n%) = (80 f rv ~ 2) * mu
Kdir(n%) = Ko(n%) * trans ~ airmass
dummyA = mu * SIN(lat) - SIN(dec)
dummyB = SIN(Z)} * COS(lat)
az = pi + SGN({H) * ARCCOS (dummyi, dummyB)
IF 2 < horizon(az) THEN
booclean = 1
IF Kdir(n% - 1) = 0 THEN
nrise = n%
Hguess = H - dH / 2
CALL localriseset(Hlocal, azlocal, altlocal, Hguess)
Hriselocal = Hlocal
azriselocal = azlocal
altriselocal = altlocal
END IF
ELSE
boolean = 0
IF Kdir(ns - 1) > 0 THEN
nget = n%
Hguess = H - dH [ 2
CALL localriseset(Hlocal, azlocal, altlocal, Hguess)
Heetlocal = Hlocal
azsgsetlocal = azlocal
altsetlocal = altlocal
END IF
END IF
‘dummyA = COS(slope) * mu
‘mus = dummyA + SIN(slope) * SIN(Z) * COS(az ~ aspect)
mus = gstoreC + storeD * COS(H) + storeE * SIN(H)
vdir = boolean * mus / mu
Kdir(n%) = Vdir * Kdir(n%)
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' (2.1.2) diffuse sky radiation and global radiation *

Cz = .5 *mu ~ (1 / 3)

CBE=1+mu ~ 2 * SIN(Z) ~ 3

‘dummyA = (1 - Awc - Awo) * Ko{n%)

dummyA = (1 - Aw(Z, ea(n%), Ta{n%)} - Ao(Z, D))} * Ko(n%)

Kect(n%) = Cz * Ce * (dummyA - Kdir(n%))
Kbck(ns) = (Kdir{n%) + Ksct(n%)) / (1/(atrn * askyo} - 1)
Kdif(n%) = Kesct(n%} + Kbck(n%)

Ktot(n%) = Kdir(n%} + Kdif (n%)
Tk = Kdif(n%) / Ktot(ns)
IF mc > 0 THEN
Ktot (n%) = cloudsw * Ktot(n%)
Kt = Ktot(n%) / Ko(n%)
Tk = coefficient (Kt)
Kdif{n%) = Tk * Ktot(n%)
Kdir(n%) = Ktot(n%) - Kdif(n%)
Kbck(n%) = atrn * asky * Ktot(n%)
Ksct (n%) Kdif(n%) - Kbck(ns)
END IF
FP=1~Tk ~ 2
Cs =1+ F *#mu ~ 2 *= SIN(Z) ~ 3
Css = 1 + boolean * F * mus ~ 2 * SIN(2) ~ 3

Ksct({n%) = VdK * (Css / Cs} * Kect(n%)
Kbck({ns) = VdK * Kbck(n%)

Kdif(n%) = Ksct(n%) + Kbck(n3)

Ktrn(n%) = Vtrn * atrn * Ktot(n%)
Ktot(n%) = Kdir(n%) + Kdif(n%) + Ktrn(n%)
asfc(n%) = albedo(Z, Tk, 1)

Kn{n%) = (1 - asfc(n%)) * Ktot(n%)

END IF
ELSEIF BO <= 0 OR mu <= 0 THEN
Ko(n%) = 0: Kdir(n%) = 0: Kdif(n%) = OQ: Ksct(n%) = 0
Kbeck(n%) = 0: Ktrn(n%) = 0: Ktot(n%) = 0: XKn(n%) = 0
END IF

** (2.2) instantaneous longwave radiation and net radiation *

characteristics ) *

'eaky = .00000939# * Ta(ny) ~ 2
‘esky = 1 - .261 * EXP(-.000777 * (273 - Ta(n%)) ~ 2)
‘esky = .642 * (ea(n%) / Ta(n%)) ~ (1 / 7)
esky = 1.08 * {1 - EXP(-(ea{n%) / 100) ~ {Ta(n%) / 2016)))
‘esky = .7 + .000000595# * ea(n%) * EXP(1500 / Ta(n$%))
Leky({n%) = Vvdl * cloudlw * esky * sigma * Ta(n%) ~ 4
Lafc{n%) = e * sigma * TcB(n%) ~ 4
Ltrn{n%) = Vtrn * etrn * gigma * TcB(n%) ~ 4
In = ¢ * {Laky{n%$} + Ltrn(n%)}) - Lafc(n%)
Rin{n%)} = Kn{n%) + Ln
IF H<= 0 AND H + dH > 0 THEN

nnoon = n%
END IF
H=H + dH

NEXT n%
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'* (3) aseessment of model performance

CALL statistics(Ktot(), Ktotm(), MBEl, RMSEl, NASHl, nrise, nmax)
CALL statistics(Ktot(), KtotmB(), MBE2, RMSE2, NASH2, nrise, nmax)
statistica(Rn{), Rnm(), MBE3, RMSE3, NASH3, 1, nmax)}
statistics(Rn{), RnmB{), MBE4, RMSE4, NASH4, 1, nmax)
average(Ko(}, dummyhA(), 1, nnoon, nnoon)

average(Ktot(), dummyB(), 1, nnoon, nnoocn)

average(Kdir(), dummyC(), 1, nnoon, nnoon)

average(Kdif(), dummyD(), 1, nncon, nnoon)

average(Ksct(), dummyE(), 1, nnoon, nnoon)

average(Kbck(), dummyF(), 1, nncon, nnoon)

average(Ktrn(), dummyG{), 1, nnoon, nnoon)

average(Kn()}, dummyH(), 1, nnoon, nnoon)

average(Lsky(), dummyI(), 1, nnoon, nnoon)

average(Ltrn(), dummyJ(), 1, nnoon, nnoon)

average(Lefc(), dummyK(), 1, nnoon, nnoon)

average(Rn(), dummyL(), 1, nnoon, nnoon}

CREEERERERERRE

'** (4) resulting data to output—-file "RBMOUT.DAT" on current
'k directory and/or to terminal screen

CLS

PRINT "simulation results:"

PRINT

PRINT "day number of year [-]: "
PRINT USING " #### "; D

PRINT "solar declination [deg]: ":
PRINT USING ™ ####.¥### "; dec [/ rad

PRINT "earth's radius vector [-]: "
PRINT USING " ####.#### "; v '

CALL time(eg / rad, sign$, hour, min, sec)
PRINT "equation of time (hr;min;sec]: "
PRINT sign$; hour; min; sec

PRINT "extraterrestrial radiation [W/m2}: *
PRINT USING " ####.#### "; Kotot

-

PRINT "hour angle at sunrise [deg]: *:
PRINT USING " ####.¥### *; Hrise / rad

PRINT "half day length [deg]: "
PRINT USING " ####.#### v; HO / rad

PRINT "start of simulation [deg]: "3
PRINT USING " ####.#### "; Hetart / rad
PRINT "number of input time steps [-]: ";
PRINT USING " #### "; tmax

PRINT "input time step [min]: =

PRINT USING " ####.#### "; dtin

PRINT "number of simulated time steps [-]: "
PRINT USING " #### "; nmax

PRINT "time step number at sunrise [~]: .
PRINT USING " #### "; nrisge

PRINT "time step number at solar noon [-]: *;
PRINT USING " #### "; nnoon

-

-~

PRINT "Prese any key to continue”

keystroke$ = INKEYS$
LOOP UNTII LEN(keystroke$) <> O
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CLS

" #HEEH
i
#HEE. 4
i id
i id
tE#E. 4

i ii
#HEE £ 8
il

## . #H
. B F

- W W W W

- WS W W W

.
’

daily average radiation budget [W/m2]):"
USING "~ ####.#¢ ;

durmya (1)
dummyB(1)
dunmmyC{1l)
dummyD{1)
dummyE{1)
dummyF (1)
dummyG{1)

asfc

dummyI{l)
dummyJ{1)
dummyK{1)
dummyL{1)

RMSE [%] NASH (%]*

PRINT USING "
PRINT USING "
PRINT USING "
+ PRINT USING "

HEFHE
i i id
HE M
H .t

Hae

MBE1l;
": MBE2; RMSE2;
MBE3;
"; MBE4;

RMSE1l;

RMSE3;
RMSE4;

NASH1
NASH2
NASH3

PRINT #2, USING "####.##"; H / rad; Ta(n%); TcB(n%); ea(n%); Ko{n%);

Ktot (n%); Xtotm(n%); Rn(n%); RnmB({n%)

PRINT “"simulated
PRINT
PRINT "Ko: "; ¢ PRINT
PRINT "Ktot: ": : PRINT USING
PRINT " Kdir: *: t PRINT USING
PRINT ™ Kdif: "3 t PRINT USING
PRINT " Esct: "; : PRINT USING
PRINT " Kbck: "; : PRINT USING
PRINT " Ktrn: ": : PRINT USING
asfc = 1 - dummoyH(1l) / dummyB(1l)
PRINT "asfc [~]: "; : PRINT USING
PRINT "Lsky: *: ¢ PRINT USING
PRINT "Ltrn: ": : PRINT USING
PRINT "Lsfc: ": ¢ PRINT USING
PRINT "Rn: *: : PRINT USING
PRINT
PRINT "assessment of model performance:”
PRINT
PRINT " MBE [%])
PRINT
PRINT "Ktot vs. Ktotm: Al I -
PRINT "Ktot vs. KtotmB: "; :
PRINT "Rn v8. Rnm: I
PRINT "Rn vs. RnmB: "2 o3
NASH4
OPEN "RBMOUT.DAT" FOR OUTPUT AS #2
H = Hstart
FOR n% = 1 TO nmax
H=H+ dH
NEXT n%
CLOSE #2
END®' RBM
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‘* gubroutine: albedo *
'* objective: computing albedo of wheat field as function of *
' solar zenith angle {Z), ratio of diffuse to global *
‘e radiation (Tk) and albedo with sun in zenith *
' (albedol) *
TRHRERAE AR AR RN ETRRNRRR RSN A AR AR AAAARRARAA AR AR TR AR AR AR AR

FUNCTION albedo (Z, Tk, choice)
CONST Ccd = .8
albedol = a
IF choice = 1 THEN

factor = 1 + 2.5 * (1.25 - Tk) * (1 - albedoO) * SIN(1.5 * Z)
ELSEIF choice = 2 THEN

mu = COS(Z)

factor = (1 + ¢d) / (1 + Cd * mu}
ELSE

factor = 1
END IF
albedo = albedo0 * factor
END FUNCTION'albedo

TR R R AR RN RA AR R RN AR TRERANERNAARNARRANRRARRNRR AR T AN

'#* function: Ao, ozone absorptivity *
** objective: computing absorptivity of ozone as function of *
v solar zenith angle (2), day number of year (D} and *
iy latitude (lat) and longitude {lon) of gite *

PR AR AR R R AR AR AR IR R AR ARANE RN AR RA AR AR LN E RN RAA AN Ak h

FUNCTION Ao (Z, D)
Mo = 35 / SQR(1224 * COS8(2) ~ 2 + 1)
IF lat > 0 THEN

cl = .,15: c2 = .04: €3 = -30: ¢4 = 3: c6 = 1.28

IF lon < O THEN

cs = 20 * rad
ELSE
ch =0

END IF
ELSE

cl = ,1: ¢2 = ,03: ¢3 = 152.625: c4 = 2: ¢ = =75 * rad

c6 = 1.5
END IF
dummyA = ¢l + c2 * SIN(2 * pi * (D + c3) / 365.25)
dummyB = (dummyA - .02 * SIN{cd4 * (lon + ¢5})})) * SIN(c6 * lat) ~ 2
o = .235 + dummyB
‘o = ,31 + .1 * SIN(lat)
dummyC = 1 + ,042 * Mo * o + .000323 * (Mo * o) ~ 2
Aovis = ,02118 * Mo * o / dummyC
dummyD = 1.082 * Mo * o / (1 + 138.6 * Mo * o) ~ .805
Aouv = dummyD + .0658 * Mo * o / (1 + (103.6 * Mo * o) ~ 2)
Ao = Aovis + Aouv
END FUNCTION'Ao
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'* function: ARCCOS, ARCCOSine *
‘* gbjective: computing arccosine of quotient of x and y; *
' resulting value within interval 0 <= ARCCOS <= pi *

IR AR RN TR RANEE AN RN RARAAREAANARAAARNARARRRRAAR A AT AR AR AR ARk S

FUNCTION ARCCOS (x, y)
IF y = 0 THEN
dummyA = SGN(x)
ELSE
dummyA = x [/ ¥y
IF ABS{dummyA) > 1 THEN
dummyA = SGN{dummyA)
END IF
END IF
dummyB = ARCTAN(SQR(1l - dummyA ~ 2), dummyA)
IF dummyB < 0 OR dummyA = -] THEN
dummyB = dummyB + pi
END IF
ARCCOS = dummyB
END FUNCTION'ARCCOS

PARARARR AR AR TR A RAER AR IRAERNTELRAREARRRA AL AR RN AN AR AR ARk hdrd

'# function: ARCSIN, ARCSINe *
'* objactive: computing arcsine of quotient of x and y; *
' resulting value within interval -pi / 2 <= ARCSIN *
' <=pi / 2 *

TRENRRTREARAARAR AR IR AR AR R bRk h bk kbR dehhbirn

FUNCTION ARCSIN (x, Y)
IF y = 0 THEN
dummya = SGN{x)
ELSE
dummyAr = x [/ y
IF ABS(dummyA) > 1 THEN
dummyA = SGN(dummyA)
ERD IF
END IF
ARCSIN = ARCTAN(dummyA, SQR(1l - dummyh ~ 2})
END FUNCTION'ARCSIN

TR AR R R TR R RN AN AR AR RN AN AR NRRNANARARERAERR AR AR R AN AN ARk AL

** function: ARCTAN, ARCTANgent *
** objective: computing arctangent of quotient of x and y; *
' resulting value within interval -pi / 2 <= ARCTAN *
"k <=pi /] 2 *

TRAEA AN AR AR RN R AR AR RN FINARRAARRNANARRATARARRRRARRR AR RN RN AN R A AL

FUNCTION ARCTAN (x, y)
IF y = 6 THEN

ARCTAN = SGN{x) * pi [ 2
ELSE

ARCTAN = ATN{x / v)
END IF
END FUNCTION'ARCTAN

115



TRRRRRER A REERAN AR AT RERARRAN NS RRA AN AN R AR AT AL IRAEAR AR A AT ARk dhdR

'* gubroutine: average *
‘% objective: computing averages (outarray) of all subsets with *
TR length sublength within element range ibegin until »*
'k iend of given data set (inarray) *
IR SIS XSRS LA SRR AR E RS SRR R A S R AR R R L ] 2R
SUB average (inarray(), outarray(), ibegin, iend, sublength)
outlength = CINT((iend - ibegin + 1) / sublength)
FOR j% = 1 TO outlength

ocutarray(js) = O

istart = ibegin + (j% - 1) * sublength

istop = ibegin - 1 + 3% * sublength

FOR i% = jastart TO istop

outarray(j%) = outarray(j%) + inarray(is)

NEXT i%

ocutarray(j%) = outarray(3%) / sublength
NEXT 3%
END SUB'average

KRR AR N R RN R R R N TR AR IR RN R I RN RN RNR AR R RN AN AN AT ARN AN RN AT AR RN

** function: Aw, water vapor absorptivity *
‘* objective: computing absorptivity of water vapor as function *
' of solar zenith angle (Z), vapor pressure (ea) and *
' air temperature (Ta) *

TR E AR AR AR IR ERERRAR R AR AR RN RREERN RN RANR AR AR AR AN AT kR
FUNCTION Aw (Z, ea, Ta)

Mw = 1 / (COS(Z) + .0548 * (92.65 - 2 / rad) ~ -1.452)

w= ,622 * ea / (kw * Rd * Ta)

dummyA = .5149 * LOGIO(Mw * w) - .0345 * (LOGLO(Mw * w)) ~ 2

Aw = 10 ~ (-1.6754 + dummyA)

END FUNCTION'Aw

THRERERERRERATARRERR AR R AR RA ARk h e hdehheh ke

'+ function: coefficient *
'* objective: determining ratio of diffuse to global radiation *
'R from ratio of global to extraterrestrial radiation *
LR (Kt) *

U dr v e % J de ok e % ok de o W ve o e o de de v e o i e o e e ok g v o g e e ok o ok o o e ok i ok A e O O e o ok W 3k ok e g e v 9 O g v de e e

FUNCTION coefficient (Kt)
IF Kt <= .22 THEN
coefficient = 1 - .09 * Kt
ELSEIF Kt «= .8 THEN
dummyA = .9511 - .1604 * Kt + 4.388 * Kt ~ 2
coefficient = dummyA - 16,638 * Kt ~ 3 + 12.336 * Kt ~ 4
ELSE
coefficient = .165
END IF
END FUNCTION'coefficient

T o g v o o e % % J ok kv A de ok e ok e v vk O g o Ye 9 B o ok o ok e 9 7 % 9% o I v o e e 9 ale 9 o Y 3 o bkt W e ok 3 e o U ok o Y o e ok B o e o
*%* gubroutine: factors *

'* ghjective: computing sky view factors for background solar *
Tk sky radiation (Vdk) and atmospheric emission {(vdl) +*
TH and terrain configuraticn factor (Vtrn) as function*
T of local topography and fractional cloudcover (mc) *
TRHEERAATRAAREA R AR Rk hxk A hhrhrrhbrdhdddeddhddehhhdddhbkhhrkhdehddhtin
SUB factors (mc, VdK, Vvdl, Vtrn)

Vak = 1

vdl = 1

Vtrn = 0

END sUB'factors
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‘* function: horizon *
'* pbjaective: computing zenith angle of local horizon as function *
1 of local topography and azimuth (phi) relative to *
' north *
TRRRRENKEAARA AR RRRRAREERRRRNRRAX AR AR AR RN A ek hk Rk ry
FUNCTION horizon (phi}

horizon = pi / 2

END FUNCTION'horizon

TR AT RARA AT AAARREARE R REREER AN AR AARNERRARRARRRRARARRRRARN AR IR TR AR

** function: julianday *
'* objective: computing Julian day number from Gregorian calendar *
TR date as defined by month, day and year number *

TRERNRRRRARRRRRRRARRARRRRRRRN RN ARRNR SR AT R AN RN d R

FUNCTION julianday (month, day, year)
dummyA = 367 * (year - 1980)

dummyA = dummyA = INT{7 * (year + INT{(month + 9) / 12)}) / 4)
dummyB = SGN(month - 9)

dummyC = ABS (month - 9)

dummyD = INT({{(year + dummyB * INT(dummyC / 7)) / 100)

dummy® = dummyA - INT{3 * (dummyD + 1) / 4)

dummyA = dummyA + INT(275 * month / 9) + day - .5
julianday = dummyA + 2447689
END FUNCTION'julianday

TR NAEREA RN AR EER AR ERNAKRARRARERARREERAARRER AR AR RRARRT AR AR R AR h ek kd

'* gubroutine: localriseset *
'* objective: computing hour angle (Hlocal}, solar azimuth *
'R (azlocal), and soclar altitude {(altlocal) at local ~*
‘® sun rise or set by meane of iteration procedure *
'k with initial guese for hour angle (Hguesas) *

TR R AR AR R I RARRER AN AAN AR RN AN RN A AR AN ARk Ak dd

SUB localriseset (Hlocal, azlocal, altlocal, Hguess)
muguess = storeA + storeB * COS(Hguess)
Zguess = ARCCOS (muguess, 1)
Z2old = Zguess
improve = 2 * accuracy
count = 0
DO UNTIL improve <= accuracy OR count = countmax
dummy’A = COS(Zold) * SIN{lat) - SIN{dec)
dummyB = SIN(Zold) * COS(lat)
azlocal = pi + SGN(Hguess) * ARCCOS(dummyA, dummyB)
Znew = (Zold + horizon(azlocal}) [/ 2
Hlocal = SGN(Hguess} * ARCCOS(COS(Znew) - storeA, storeB)
altlocal = pi / 2 - Znew
improve = 100 * ABS{Znew / Zold - 1)
Zold = Znew
count = count + 1
LOCP
IF count = countmax THEN
Hlocal = Hguess
dummyA = muguess % SIN{lat) - SIN{(dec)
dummyB = SIN{Zguess) * COS(lat)
azlocal = pi + SGN(Hguess) * ARCCOS(dummya, dummyB)
altlocal = pi / 2 - Zguess
END IF
END SUB'localriseset
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'* function: LOG1l0O *
'* gbjective: computing decimal logarithm of x *
IR XX LI XA LRI LIS SRS 222 2 R X222 R R 22222 d sl R s
FUNCTION LOG1O {x)
IF x > 0 THEN

LOG10 = LOG(x) / LOG(10)
END IF
END FUNCTION'LOG10O

TR TR IRART AR RN RARARENNERAERRAR AN ANRRE AR RN ARk Rk d

'* gubroutine: position, solar position *
'* objective: computing solar position at local noon *
'R from Julian day number (jday)}: declination {(dec), *
' radius vector (rv) and equation of time {eq) *

TR TR AR TN R RA RN RN AEAAARNARANARARRRRAA AR AAR R AR TR AR AR AR

SUB position (jday AS DOUBLE, dec, rv, eq)

CONST parA# = 6.23471229#, parB# = .01720197#, parCF¥ = 4.883766194#
CONST parD# = .017202791#, parE# = .016728, parF# = .409095
jdayreduced = jday - 2444239 + lon / (2 * pi)

cor = 2,.2E-Q8 * jdayreduced + .00059

jdayreduced = jdayreduced + cor

manom = parA + parB * jdayreduced

melon = parC + parD * jdayreduced

_mclon = melon - 2 * pi * INT(mclon / (2 * pi))

delon = 2 * parE * SIN(manom) + 1.25 * parE ~ 2 * SIN(2 * manom)}
anom = manom + dclon

clon = mclon + declon

rv = (1 - parE * 2) [/ (1 + parE * COS{anom))

dec = ARCSIN(SIN(clen) * SIN(parF), 1)

mclon = mclon - pi * INT{mclon / pi)

asce ARCTAN(SIN(clon) * COS(parF), COS{clon))

asce reduce(asce, pi)

eq = mclon - asce

END SUB'position

R 2222222222222 X222 222X 22 22 RS2l R 2] Y
*# function: reduce *
'** objective: reducing value of angle to interval 0 <= angle <= *
'® interval *
IR 2222222122 R 2 Rl R 22 222 sl st s s a8 R 2 2 2 F
FUNCTION reduce (angle, interval)

MODULUS = INT(angle / interval)

reduce = angle - MODULUS * interval

END FUNCTION'reduce
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** gubroutine: estatistics *
** gbjective: computing mean bias error (MBE}, rcot mean square *
'e error (RMSE} and coefficient of determination *
'x {NASH) of calculated data set (Carray) vs. *
‘e measured data set (Marray) from element ibegin to *
te element iend *

TR R AR TN RRARRRARRRERRRAR TR AN NATARAAAARNAREAA AR AR ARTN RN R

SUB statistics (Carray(), Marray(), MBE, RMSE, NASH, ibegin, iend)
DIM dummyA{l), dummyB(l), dummyC(l}, dummyD(1l}
DIM CminusMarray(length), CminusMarraySQR({length)
DIM MminusMarraySQOR(length)
sublength = iend - ibegin + 1
CALL average(Marray(), dummyA(), ibegin, iend, sublength)
FOR i% = ibegin TO iend
CminusMarray{i%) = Carray(i%) - Marray(is)
CminusMarraySQR(i%) = CminusMarray(is) *» 2
MminusMarraySQR({i%) = (dummyA(l) - Marray(is)) ~ 2
NEXT i%
CALL average(CminusMarray(), dummyB(), ibegin, iend, sublength)
MBE = 100 * dummyB(1l) / ABS(dummyA{l))
CALL average(CminusMarraySQR(), dummyC(), ibegin, iend, sublength)
RMSE = 100 * SQR{(dummyC(1l)) / ABS(dummyA(l))
CALL average (MminusMarraySQR()}, dummyD(), ibegin, iend, sublength)
NASH = 100 * (1 - dummyC({l) / dummyD(1))
END SUB'statistics

T ARERRRERERAEREREERRERERERRARR RN ARA A AR AR R AR REAERRRARRTRAARTARERR R ARk n

'*# gubroutine: time *
'* objective: converting angular time (angle, [deg]) to *
v hours (hour), minutes (min) and seconds (sec) *

Ydhdd ke kR A R Ar kA kR dhedhdbhddherhkhhdherkhhrdhihdid
SUB time (angle, sign$, hour, min, sec)
IF angle < 0 THEN

signS =z Y=
ELSE

signs m YW
END IF
dummyP = ABS(angle) * 24 / 360
hour = INT(dummy?A}
dummyB = {dummyA - hour) * 60
min = INT{dummyB)
dummyC = {(dummyB - min) * &0
sec = CINT(dummyC}
IF sec = 60 THEN

min = min + 1

sec = 0

IF min = 60 THEN

hour = hour + 1
min = 0

END IF
END IF
END SUB'time
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