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EXECUTIVE SUMMARY 

This is the final report from the Dutch component of the CEC project 

entitled 'Spatial Variability of Land Surface Processes' (SLAPS I). 

The report starts with the Introduction in which the Dutch contribution is 

outlined. In the successive chapters the activities are described in a 

concise way. Extended descriptions of the studies can be found in the 

reports and articles referred to. 

Although each chapter discusses a single topic, they are strongly 

interconnected by the overall objectives of the contribution. 

Chapter 2 to 5 have been given more or less the same structure. Chapter 2 

presents work on the application of scaling to account for soil hydraulic 

variability in a statistically homogenous soil. Chapter 3 reports on a new 

measurement technique and its critical evaluation for estimating soil 

hydraulic properties. 

In Chapter 4 the first results are discussed on the estimation of regional 

'effective' hydraulic properties, by using the Inverse Method. 

Chapter 5 concentrates on large scale land surface parameterizations and 

their testing. To two studies, on pedo-transfer functions and climate 

change respectively, attention is paid in Chapter 6. 

Chapter 7 contains a summary of conclusions and an evaluation. A listing of 

written documents and presentations is given in Appendix I and II. 
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1 INTRODUCTION 

1.1 Context 

Within the CEC-Climatology Programme an international project was financed, 

entitled 'Spatial Variability of Land Surface Processes'. It brought 

together several research groups from the atmospheric and hydrologie 

community in order to make a joint scientific effort on an unsolved problem 

in larger scale atmospheric/hydrological modelling. 

1.2 Scope of the project and contribution 

The unsolved problem may be defined as follows. Terrestrial hydrologie 

processes like rainfall, infiltration rate, surface runoff, soil water flow 

and évapotranspiration vary in time and space. Numerical climate models are 

computationally characterized by relatively small time steps (~ 15 min) and 

large grid sizes (« 300 km or more). 

Although the mentioned hydrologie processes encounter certain 

conceptualization problems related to the, let say, 15-min time scale, it 

is felt that the main problems are connected with the question of how to 

parameterize processes at a certain spatial scale and how to account for 

sub-scale variability. 

The contribution of the 'Wageningen' group focuses on the role of 

subsurface flow in hydrologie modelling with special attention to spatial 

variability of soil hydraulic characteristics. 

Soil moisture availability, a crucial factor in climate models, depends 

mainly on the hydraulic properties of the soil. However, climate models 

need in principle simple parameterizations of processes. These two facts 

lead to the following two-step approach. Develop methods for representing 

variability of soil hydraulic properties in physically based subsurface 

flow models and, preferably if possible, derive soil-effective properties. 

Secondly, search for (scale-dependent) parameterizations and validate them 

against the physically based approach. This two-step approach is the 

central idea in the Wageningen contribution (see Fig. 1.2.1). Part of its 

realization forms the main objective of the here reported work. 



A WORK HYPOTHESIS ON SOIL MOISTURE CODES 

SOIL TYPE 

VARIETY OF 
MET. CONDITIONS 

SOIL PHYSICAL 
INFORMATION 

PHYSICALLY BASED 
MODELS 

STOCHASTIC 
APPROACH 
(VARIABILITY) 

PARAMETERIZATION 
MODELS 

OUTPUT 

DèXÏNAGE 
RUNOFF 

1 
TUNING CONSISTENT! 

SET OF 
PARAMETER 
VALUES PER 
SOIL TYPE 

Fig. 1.2.1 Flow diagram on testing and improving large scale soil moisture 
parameterizations. 

1.3 Outline of the report 

The effect of spatial variability on the subsurface hydrologie regime at 

small catchment scale is described in Chapter 2. The apparently successful 

application of a scaling approach in that study led to the necessity of 

further validation on other soils and spatial scales. This posed a 

measurement problem on which will be reported in Chapter 3. 

Partly as a consequence of the outcome of Chapter 3 and partly by ideas, 

expressed in literature, the Inverse Modelling approach is further 

investigated in Chapter 4, being a potential tool for deriving areal 

effective parameters in classical models. Referring to Fig. 1.2.1, Chapter 

2 to 4 are related to the left hand side of the flow-diagram, while Chapter 

5 on parameterizations is related to the right hand side. 

In Chapter 5, also in relation to future plans, attention is paid to some 



land surface parameterizations in existing climate models. 

Chapter 6 contains some miscellaneous studies. The usefulness of pedo-

transfer functions, as an alternative to the physical based measurement 

techniques for estimating soil hydraulic properties, is discussed. Also 

some work on climate change effects upon the hydrologie behaviour of a 

small Dutch catchment is reviewed. 

Chapter 7 contains the conclusions which can be drawn from the results and 

an evaluation of the objectives of the study. Appendix I and II give an 

overview of publications and presentations of the participants contributing 

to the project. 



2 SPATIAL VARIABILITY 

2.1 The problem 

Vertical soil water movement follows the so-called Richards equation for 

quantifying the flow. 

The equation is highly non-linear in a mathematical sense due to the 

definition of the soil hydraulic properties on which the solution of the 

equation depends. The properties are the water retention function (h-0) and 

the hydraulic conductivity function (k-0). Determination of these functions 

has been and still is a point of major attention in soil 

physical/hydrological studies. 

It appears from field studies (Warrick et al., 1977, Hopmans & Strieker, 

1986) that these functions show a large spatial variation, even over small 

length scales. This poses the problem how to implement or account for this 

variability in computational studies on soil water movement and how to 

collect the set of soil hydraulic functions. 

2.2 Scaling approach 

Spatial variation of the soil hydraulic properties can be expressed by 

scaling factors. The use of scaling factors originates from the work of 

Miller & Miller (1955) who introduced the similar media concept for porous 

media. The concept states that similar soils only differ in the scale of 

their internal microscopic geometries and have equal porosities. 

Following Hopmans (1987) we define a scaling factor ar as the ratio of the 

macroscopic length scale Ar of a soil at position r and the characteristic 

length Am of a reference soil: 

"r - Ar/Am for r = 1 N 

From the similar media concept it follows that for a given water content, 

6, at any location r the soil water pressure, hr, can be expressed as 

nr ~ Ki/ar 

and the hydraulic conductivity kr as 

kr
 = kin a r 



where h^ and k,,, are the values of the reference soil for that particular 

water content. However soils are not fully similar, neither have equal 

porosities. Thus, instead of using water content, h and k are written as 

functions of the degree of saturation S: S — (SSt)/(6s-6r) , where 6Z is the 

residual and 8S the saturated water content. 

Given now a set of observed hydraulic functions from soil samples of a 

statistical homogeneous soil the objective is to derive by mathematical 

means the k„,(S) and h^S) reference curves and a set of scaling factors ar. 

This is done by optimization techniques. Scaling factors may obey a certain 

probability density function. 

To characterize the spatial variation of the hydraulic properties of a soil 

one ends up with reference curves for k and h, as function of S, a 

probability distribution for the scaling factors and a probability function 

of es. 

2.3 Application and results 

In the experimental catchment Hupselse Beek water balance studies were 

undertaken over a length of years. To study the unsteady water flow in the 

unsaturated zone of the whole catchment an intensive measurement campaign 

was undertaken to collect experimental h(0) and k(0) data. These data were 

taken from undisturbed soil samples for three horizons and at three 

different spatial scales. Full account of the applied methods and results 

of the measurements was given by Hopmans and Strieker (1986). The measured 

hydraulic data, both for water retention and conductivity, were fitted to 

the closed-form Mualem-Van Genuchten expressions (1978). 

Once the fitting was done, the curves were scaled for the saturation degree 

instead of water content. 

Fig. 2.3.1 and 2.3.2 show the results of scaling. Both the reference h(S) 

and k(S) lines have been drawn. The scaling factors, ar, appeared to be 

lognormally and the saturated water content, 6S, normally distributed. 9S 

and ar have been proven to be statistically independent. 
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Fig. 2.3.1 Unsealed (a) and scaled (b) retention data. 
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Fig. 2.3.2 Unsealed (a) and scaled (b) conductivity data. 

With these ingredients stochastic analysis of the one-dimensional 

unsaturated flow can be accomplished. Departing from a dynamic one-



dimensional numerical model we generate a representative sample of soil 

profiles by applying Monte Carlo techniques to the a- and ̂ -distributions. 

Each randomly generated soil profile is used in the selected numerical 

model to produce the water balance terms over chosen time intervals. 

This application has been done for the Hupselse Beek catchment and is fully 

described by Hopmans & Strieker (1989). One of the additional complicating 

factors in this study was formed by the shallow groundwater levels in the 

watershed, influencing the vertical waterbalance at the lower boundary. 

This complication was solved by introducing an extra scaling procedure for 

the discharge-groundwater level relationship, q(h). 

Another complication was the occurrence of a 'boulder' clay-horizon in the 

profile which may hamper upward flow to the rootzone. This resulted in an 

areal map of the catchment showing the distribution of the profile types 

(see Fig. 2.3.3). 
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Fig. 2.3.3 Distribution of profile types over the area and in percentages 
in the Hupselse Beek catchment. 



For each of the five soil profile types (see Fig. 2.3.3) 30 Monte Carlo 

simulations were performed for the growing seasons of 1982 and 1976, a dry 

and a very dry year respectively. 

One outcome of the study is demonstrated in Fig. 2.3.4. Here the average 

reduction of actual évapotranspiration has been presented as a result of 

depth to clay. Also the standard deviation of Eaot has been given for 

identical clay profiles but randomly generated ar, 6S and q(h) . 
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Fig. 2.3.4 Distribution of soil classes as a result of Monte Carlo 
simulations. For each class the mean reduction (/i) of Eact has 
been given together with the standard deviation (CT). 

2.4 Concluding remarks 

From the results of the study of Hopmans & Strieker (1989) it appeared that 

a stochastic-deterministic approach for vertical one-dimensional soil water 

flow is a feasible way for regionalizing unsaturated flow and soil moisture 

distribution. In this approach scaling or functional normalization 

(Tillotsen and Nielsen, 1984) of the spatially variable hydraulic 



properties plays a key-role. 

Applicability of the method strongly depends on a fast and reliable 

technique to determine an experimental set of soil hydraulic properties of 

a particular soil, in order to be able to derive h(S) and k(S)-reference 

curves together with a probability density function for the scaling factors 

and a probability density function for 8S. 

In the next chapter such a technique will be discussed. 



3 MEASUREMENT OF SOIL HYDRAULIC PROPERTIES 

3.1 Problem and approaches 

As stated in Chapter 2 a fast and reliable technique is needed to determine 

a large experimental data set of hydraulic properties. This set should be 

large enough to enable a statistical analysis for the determination of the 

probability density functions of the scaling factors and 6S. 

Many methods or techniques have been proposed in literature, partly field-, 

partly laboratory-oriented. In the last case undisturbed soil samples have 

to be taken. However, all the methods have some disadvantages like time 

consumption, limited range of application or theoretical restrictions. 

More recently a new approach has been proposed together with the outflow 

method. It is based on inverse modelling technique and it needs 

operationally an experimental laboratory set-up, a simulation model for 

unsaturated flow, an optimization algorithm, computing facilities and 

closed-form analytical expressions for the retention- and hydraulic 

conductivity curves. 

The outflow method as we have applied, was first proposed by Kool et al. 

(1985) and is generally referred to as the One-step outflow method. A 

thorough study of the method is reported in section 3.2 and a modified, 

improved version is discussed in section 3.3. 

3.2 One-step outflow method 

The method can be described as follows. An undisturbed soil sample is 

placed in a Tempe pressure cell on top of a ceramic plate (Fig. 3.2.1). 

The soil sample is saturated and the outflow experiment starts by 

increasing pneumatic pressure at top of the sample. This induces 

unsaturated flow in the soil sample while the ceramic plate stays 

saturated. Cumulative outflow Q0(t) is recorded in the burette. This 

procedure of installing the sample, saturation and outflow measurements can 

be done in 5 days. The experiment is not labour-intensive and simultaneous 

measurements can be done for a number of samples, each of them installed in 

a pressure cell. 

The simulation model is a numerical flow model based on Richards' equation: 

60/St = S[k(h) (Sh/Sz - 1)]/Sz 

10 
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Fig. 3.2.1 Cross-section of Tempe-pressure cell. 

where z is the vertical coordinate, downward positive and zero on top of 

the sample. 

The boundary conditions for which the equation should be solved numerically 

are: 

t - 0 h - h0(z) 0 < z < L 

t > 0 Sh/Sz - 1 z = 0 

t > 0 h = h L - h a z = L 

where L is the height of the sample plus ceramic plate, hL is the initial 

moisture potential below the ceramic plate and ha is the applied pneumatic 

pressure. To be able to solve Richards equation the soil hydraulic 

functions have to be known. In our case the analytical description of the 

function is according to Van Genuchten-Mualem (1980). This implies that at 

least three empirical shape-parameters (a, n, 1) have to be estimated 

enabling quantification of the retention- and conductivity expressions. 

However, it turned out that the saturated hydraulic conductivity, Ksat, 

should also be taken as unknown, becoming a fitting instead of a physical, 

measurable, quantity. 

With the numerical model and the analytical expressions, the outflow from 

the soil sample can be simulated by making a first guess of the parameters 

and one or more quantities. By comparing the simulated outflow with the 

11 



experimentally measured outflow and making use of an optimization algorithm 

one may be able to find a final fit between both outflows. This yields the 

best estimates of the unknown parameters and quantities in the Van 

Genuchten-Mualem expressions. 

Van Dam et al. (1990, 1992a) explored the method thoroughly on several 

sources of errors, on non-uniqueness and on instability of the estimated 

parameter values. This was done for four types of soil and for each soil it 

comprised circa fifteen samples. As a reference also independent methods 

for determination of the hydraulic functions were applied to the soils. 

Separately, soil water retention data were collected for the soil samples. 

For the One-step outflow method several combinations of unknown parameters 

and quantities in the hydraulic expressions were investigated. See table 

3.2.1. 

Table 3.2.1 Different methods of estimating k(h) from One-step outflow 
data. 

number data objective function 
optimization 

fixed optimized 

1 
2 
3 
4 
5 

Q(t) 
Q(t) + 8(h) 
Q(t) + 6(h)™ 
Q(t) 
Q(t) 

-

6(h) 
B(h) 

a,n,8s,Ks,l™ 

a < 3 > , n < 3 > , K s , I 

(1) Boundaries as sat 1 in labia 4 
(2) Extra weight 
(3) These parameters axe indépendant fxaa those of the retention function 

From this study it is concluded that single use of outflow data, Q(t), from 

the One-step method leads to non-unique and incorrect estimates of the 

hydraulic functions. This may be demonstrated by Fig. 3.2.2 (a to d). 

Although the optimized functions predict the measured outflow equally well, 

the functions differ substantially. 

Supplement of independently determined retention data to the outflow data 

yields much more reliable results. In fact the 6(h) data are needed to get 

unique solutions. 

12 
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3.3 Multi-step outflow method 

The combination of the One-step method (sudden pneumatic pressure increase 

from zero to 1 bar) with independent measurements of retention data for 

getting unique solutions is not a very attractive alternative, as it is a 

time consuming procedure. 

An intermediate approach, proposed by Van Dam et al. (1990, 1992a) is to 

increase the pneumatic pressure step by step from zero to 1 bar. The 

outflow is measured with respect to time and the flow process approximates 

13 



steady state at the end of each step. 

Cumulative outflow from 18 different soil samples of a loamy soil are 

visualized in Fig. 3.3.1 for the One—step method (a) and the Multi-step 

method (b) . Of course, the outflow process for the last case is more time 

consuming, but it contains considerably more information for the 

optimization process to end up with a unique set of hydraulic parameters 

for the Van Genuchten-Mualea hydraulic functions. 

Fig. 3.3.1 Cumulative outflow as a function of tine for (A) the One-step 
experiaent, and (B) the Multi-step experinent. 

The vertical variation of the points resembles the spatial variation of the 

hydraulic properties of the 18 samples, which trigger the outflow process. 

A full description of the experimental set-up and results can be found in 

Van Dam et al. (1992b). Beside the outflow experiments also determination 

of the retention curves were independently done for the 18 samples. These 

data offered subsequently the possibility to validate the Multi-step method 

for estimating correctly h-0 (and, simultaneously, k—9 relation). 

Fig. 3.3.2 shows a typical example of the results from the different 

methods. 

As can be seen the estimated curve by the One-step deviates completely from 

the equilibrium, while the Multi-step estimates the equilibrium data quite 

well. 

Another encouraging result is shown in Fig. 3.3.3 in which the results for 

different combinations of optimized variables are presented for the 

retention curve, taking all 18 samples together. Again, the Multi-step 

14 



approaches behave well with respect to the equilibrium line, while the One-

step result lies far apart. 
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Fig. 3.3.2 Retention function of a typical sample. Shown are equilibrium 
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Fig. 3.3.3 Retention curves optimized by One—step method and Multi-step 
method. In the last case two different sets of parameters in 
Mualem-Van Genuchten were optimized and one on the averaged 
outflow of all samples. 

3.4 Experimental data sets 

In order to be able to follow successfully the strategy, as set out in Fig. 

1.2.1, several data sets of soil physical functions from different soil 

types have to be realized. The data set of the Hupselse Beek catchment has 

15 



already been mentioned and was realized outside the project. Part of the 

project was a field campaign to the Hapex-Mobilhy area in South-West of 

France for collecting a large set of undisturbed soil samples for the two 

main soils in the area. A set of 46 and 47 h—ß and k-0 curves for 

respectively a sandy and a loamy soil were determined. For the sandy 

samples it was still done by applying the One-step method but with 

independent retention data and for the loamy soil by the Multi-step method. 

Full description of the data sets is given in the reports of Droogers 

(1990) and Kim (1991). 

3.5 Concluding remarks 

In search of a fast and reliable measurement technique to determine soil 

hydraulic properties it was found that the One-step outflow method, as it 

was proposed in literature, does not yield unique results. 

It only works if additional information is delivered to the optimization 

process like retention data of the same soil sample. 

However a good alternative is offered by the Multi-step outflow method, 

tested for different soil types. The method is still fast enough to enable 

the realization of relatively large data sets of soil hydraulic properties. 

16 



4 THE INVERSE MODELLING APPROACH FOR REGIONALIZATION OF SOIL MOISTURE 

TRANSPORT 

4.1 Problem and approach 

As already stated in Chapter 1, section 1.2, spatial variation of soil 

hydraulic properties plays an important role in regional estimates of soil 

moisture movement. 

In Chapter 2 and 3 we concentrated on the tools for describing and fastly 

measuring the spatially variable properties. 

However, from the catchment study it appeared that the computational effort 

to produce areal mean values of the water balance terms as a result of 

spatial variation of the hydraulic properties is a quite laborious task, 

using Monte Carlo techniques. 

So, we explored the possibilities to derive effective soil hydraulic 

properties by inverse modelling and by use of the reference curves, 

obtained by scaling, both in order to describe the regional behaviour of 

the unsaturated waterflow by classical theory. 

4.2 Application and results 

Again soil hydraulic data of 32 samples from the Hupselse Beek catchment 

were used. For these data the reference curves were already derived earlier 

(see Chapter 2). Furthermore, two one-dimensional numerical simulation 

models (SWACROP and SFIT) for unsaturated flow, the closed-form analytical 

expressions of Van Genuchten-Mualem and an optimization routine in SFIT 

were used. 

A schematic outline of the study by Feddes et al. (1992) is given in Fig. 

4.2.1. 

First for a bare soil surface the areally averaged water contents and 

evaporative fluxes from the 32 profiles were computed. Then, 'effective' 

single column soil hydraulic functions were generated by inverse modelling 

for three fitting data sets: 

- water contents at several depths and selected times 

- cumulative evaporation/infiltration versus time 

- cumulative evaporation/infiltration versus time plus water content at 

0.5 cm depth at selected times. 

17 
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Fig. 4.2.1 Phase 1; calibration and testing of effective soil parameters 
from a numerical experiment for bare soil. 

Besides these optimization results, the h-0 and k-0 reference curves by 

scaling were available. 

Some testing in Phase I (see Fig. 4.2.1) revealed that results from the 

inverse modelling on water contents (preserving both soil moisture 

distribution and conservation) performed better than the results from the 

inverse modelling on cumulative evaporation/infiltration data. Striking was 

the close agreement between the effective hydraulic properties resulting 

from water content-fitting and the reference curves by scaling. 
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Fig. 4.2.2 Phase II; validation test for a vegetated surface, using 
SWACROP. 

In Phase II (see Fig. 4.2.2) of the study a relative validation was made by 

comparison of simulation results with the model SWACROP. One set of results 

was produced by averaging the individual output of simulations with 32 

columns and other data sets resulted from individual simulation runs for 

the different 'effective' soil profiles by inverse modelling and of the 

reference profile. 

The simulations were done for a vegetated surface. Meteorological time 

series of the dry summer of 1982 and the very dry summer of 1976 were 

imposed as forcing at the upper boundary of the model. 

Thus, the validation conditions were completely different from the 

artificial testing conditions. 

As an example, some of the results are listed in Table 4.2.1. 

It shows the good agreement between all cases considered for simulating the 

cumulative actual évapotranspiration. 
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Table 4.2.1 Summary of SWACROP simulations of the grass covered soil over 
the period 1 April to 1 October of the extremely dry year 1976 
and the fairly dry year 1982 
(mean - 32 profiles (validation data); refer - reference 
profile by scaling; profile - 'effective' soil by optimizing on 
0-profiles; Evap = 'effective' soil by optimizing 
Evaporation only). 

on 

Daynr 

120 
150 
180 
210 
240 
270 

Cuaulative actual tranapiraclon (en) 

Mean 

4.13 
8.76 

13.82 
16.19 
19.23 
21.48 

1976 
<Std> 

0.141 
0.771 
1.213 
1.283 
1.495 
1.334 

Refer 

4.13 
8.61 

13.60 
15.94 
18.95 
21.31 

Profil Evap 

4.16 4.08 
8.82 9.20 

13.91 14.34 
16.26 17.22 
19.34 19.99 
21.63 22.28 

Mean 

3.81 
9.48 

13.81 
18.89 
21.13 
24.65 

<Std> 

0.025 
0.207 
0.813 
1-.343 
1.336 
1.333 

1982 
Refer 

3.82 
9.51 

13.66 
18.58 
20.86 
24.45 

Profil 

3.82 
9.54 

13.90-
18.95 
21.22 
24.81 

Evap 

3.77 
9.25 

14.07 
18.88 
21.64 
24.82 

Daynr 

120 
150 
180 
210 
240 
270 

Mean 

0.85 
1.24 
1.44 
1.56 
1.64 
1.70 

1976 
<Std> 

0.059 
0.186 
0.275 
0.338 
0.386 
0.426 

Cumulât 

Refer 

0.85 
1.19 
1.34 
1.43 
1.49 
1.53 

ive flow 

Profil 

0.84 
1.19 
1.34 
1.43 
1.49 
1.53 

to the 

Evap 

0.75 
1.05 
1.05 
1.09 
1.12 
1.14 

groundwater-table.(cm) 

Mean 

0.85 
1.35 
1.64 
1.81 
1.92 
2.00 

<Std> 

0.054 
0.145 
0.291 
0.291 
0.334 
0.370 

1982 
Refer 

0.85 
1.30 
1.55 
1.68 
1.77 
1.83 

Profil 

0.84 
1.30 
1.55 
1.68 
1.77 
1.84 

Evap 

0.78 
1.21 
1.38 
1.50 
1.56 
1.60 

Daynr 

120 
150 
180 
210 
240 
270 

Mean 

0.077 
0.221 
0.064 
0.165 
0.064 
0.144 

1976 
<Std> 

0.058 
0.073 
0.051 
0.068 
0.044 
0.065 

Volumetric water content at ] 

Refer 

0.053 
0.192 
0.048 
0.140 
0.053 
0.121 

Profil 

0.075 
0.218 
0.067 
0.164 
0.067 
0.145 

Evap 

0.123 
0.201 
0.068 
0.145 
0.080 
0.131 

Mean 

0.186 
0.108 
0.262 
0.059 
0.206 
0.172 

. 5-cm 

<Std> 

0.072 
0.067 
0.075 
0.048 
0.071 
0.067 

soil depth 

1982 
Refer 

0.159 
0.080 
0.231 
0.048 
0.179 
0.148 

Profil 

0.187 
0.106 
0.259 
0.066 
0.205 
0.172 

Evap 

0.194 
0.128 
0.241 
0.072 
0.186 
0.155 

4.3 Concluding remarks 

In this Chapter the work has been discussed that was done on investigating 

the usefulness of areally representative or 'effective' soil hydraulic 

functions in the classical flow model (Richards equation). 

One conclusion that can be drawn from the study is that inverse modelling 

opens perspectives to find effective parameters, provided certain 

conditions like absence of surface runoff and the availability of areally 

averaged moisture profiles for optimization. 

Further, a striking point was that in both phases of the study the results 

of simulations by using the reference parameters from scaling were well 
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comparable to the averaged behaviour of the 32 profiles. This would 

indicate the possibility of using reference curves as 'effective' curves 

for a, statistically, homogeneous soil type. Both concluding remarks are 

points for further exploration. 
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5 LAND SURFACE CODES IN ATMOSPHERIC MODELS 

5.1 Problem and approaches 

In atmospheric models, like weather prediction models and General 

Circulation Models, the atmospheric and hydrologie processes are coupled at 

and near the earth's surface. This coupling is necessary because it is 

generally agreed that there is a strong interaction in the behaviour of the 

atmosphere and the hydrologie land surface processes. As an example, the 

partition of net energy at the surface is directly triggered by the soil 

moisture availability at and below the soil surface. A relatively high 

latent heat flux will lead to a higher chance of cloud formation and, by 

that, to a higher chance of rainfall at the surface. This is one example of 

numerous feed-back mechanisms in the land-atmosphere system, in which 

hydrology plays an important role. 

Recognizing this, it is evident that the representation of the hydrologie 

processes in atmospheric models should be an area of study. 

Two main problems arise with respect to the coupling of atmospheric and 

hydrologie processes. 

The first can be related to non-coinciding length- and time-scales. 

Atmospheric models are common to work at much larger length-scales and at 

much smaller time-scales than hydrologie models. 

The second problem focuses on the 'art' of parameterization of processes. 

Due to the large spatial scales and small time-scales over which 

atmospheric models normally integrate, hydrologie modelling has to adapt to 

that scales by use of 'simple' parameterizations. 

Parameterizations are scale-dependent. Inherently to their nature, they 

will integrate implicitly for effects at sub-scale level, whether it is in 

space or time. 

Suppose we have a reliable, well tested, parameterization, acting at a 

certain time- and length-scale. Looking for parameterization at a larger 

spatial scale, one approach may be to use the already tested 

parameterization for the smaller scale as a reference for the proposed 

larger scale parameterization. In that case we have to account for the 

intra-scale variability which is manifest to the smaller scale 

parameterization and should be integrated in the larger scale 

parameterization. One way to do so is by introducing a stochastic component 

22 



to the small scale model, whereby this component accounts for the 

description of the intra-scale variation. This approach is proposed here 

and, again, is depicted in Fig. 1.2.1, with the emphasis now on the right 

hand side of the figure. 

5.2 Application and results 

Two large scale parameterizations for representing the terrestrial 

hydrologie processes in atmospheric models were investigated. The most 

simple one is the so called Bucket-model as described by Warrilow (1986). 

It is a single soil layer from where water can go in and out by rainfall, 

évapotranspiration and percolation. The second model is the Deardorff-model 

(1977) as modified by Noilhan & Planton (1989). It is an embedded two layer 

model and also in the description of the relevant processes more 

complicated than the first one. However, the model is closed at the lower 

boundary prohibiting percolation. 

For three periods of 180 days, representing wet, moderately dry and dry 

meteorological conditions the Bucket— and Deardorff—models were applied 

together with a physically based, transient flow model, SWATRE. The last 

model was repeatedly run to account for smaller scale soil variability by 

using scaling and Monte Carlo techniques. Data came from the 'Hupselse 

Beek' catchment. Results of this type of study have been presented at the 

EGS-meetings in Copenhagen (1990) and Edinburgh (1992). 

As an example, in Fig. 5.2.1 cumulative results have been depicted for 

potential and actual évapotranspiration. The overall conclusion from these 

simulations is that the large scale parameterizations are too optimistic in 

estimating the available amount of water for the évapotranspiration 

process. Furthermore it is remarkable how relatively well the simple Bucket 

model behaves compared to the Deardorff-model. 

5.3 Concluding remarks 

Land surface parameterizations in meteorological models have to be 

computationally fast and should have a limited number of areally 

representative parameters. 
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Fig. 5.2.1 Cumulative Potential Evapotranspiration and Actual 
Evapotranspiration for three models for three different growing 
seasons. 
P is precipitation over 180 days. 

Physically based, one-dimensional flow models do not yet accomplish the 

first condition. Regarding the second condition, they have a limited number 

of parameters (two hydraulic functions) but these parameters do vary 

substantially in space. 

24 



Simple conceptual parameterizations respond Co the first condition, and 

have in general a limited number of parameters of which the quantification 

is quite an artifact and suggest, not proven, to possess some areal 

representation. In fact, for the last category of models it is tacitly 

supposed that the land surface hydrology is so complex and variable at 

small spatial scales, that at larger scale it will integrate or average out 

(in a kind of analogy to the law of large numbers in statistics) to simple 

regression type formulations governing the water balance. So, to examine 

these parameterizations critically on their behaviour under a variety of 

system and boundary conditions and to improve them where possible, should 

be a major objective of the hydrological community. During the project 

period an initiative was taken to plan a broad intercomparison study on a 

variety of Land Surface Codes, as used in climate models and available from 

hydrologists. 

An outline of the aimed activities is presented in Fig. 5.3.1 in the form 

of a flow diagram. Steps 1 to 6 are under execution now within the EC-SLAPS 

II project. 
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6 ADDITIONAL STUDIES 

6.1 Estimation of soil physical properties by pedo-transfer functions 

To describe quantitatively soil water flow by Richards equation the 

hydraulic functions, h—d and k-0 have to be known. Although there are 

several field and laboratory methods for estimating the functions they are 

in general time consuming and/or expensive. As a good alternative the 

Multi-step method has been proposed (see Chapter 3). However, the whole 

procedure to determine the functions would be further simplified if one or 

both functions could be allocated by relating them to textural 

characteristics of the soil or soil sample. 

In our case we used a set of textural data of 72 soil samples from the 

experimental catchment 'Hupselse Beek'. With these samples also One-Step 

outflow experiments were conducted. 

The set-up of the study was to derive field mean hydraulic functions by a 

combined use of the pedo-transfer approach to estimate separate and mean 

retention curves and the outflow to estimate separate and mean conductivity 

curves. 

The results could be compared with an independently determined mean 

retention curve from an earlier study (see Chapter 2) . The pedo-transfer 

approach can be either empirical, using regression equations between 

textural data and the parameters describing analytically the retention 

curve, or semi-empirical, based on shape similarity between the retention 

curve and the cumulative grain size distribution. Seven pedo-transfer 

models were applied by Moene (1990). 

In Fig. 6.1.1 results are shown for some of the models. 

The main conclusion by Moene was that the results of the comparison of the 

average retention curves of the different pedo transfer models with the 

validation curve was not encouraging. In addition he concluded that the 

pedo transfer models, examined, could not serve as a tool to generate 

retention data in order to supplement the One-step outflow data. 

6.2 A case study of climate change effects 

Climate models are still suffering from many incomplete descriptions and 

parameterizations of the relevant processes. In spite of these deficiencies 
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Fig. 6.1.1 Comparison of results of some pedo-transfer models with 
independently determined retention data for validation. 

the models are quite consistent in predicting the tendencies of climate 

change due to an enhanced greenhouse effect. A doubling of the C02 content 

in the atmosphere would roughly result in a few degrees temperature rise 

for Western Europe, an increase in rainfall up to 10%, mainly in the winter 

and an increase in potential évapotranspiration. Although these figures 

have to be considered as indicative, for future policy they may be 

important as a base for judgement of effect studies of climate change. One 

class of effect studies concentrates on the hydrological consequences of a 

climate change. However, climate models do not produce detailed and 

accurate information on a future climate, neither in space or time. 
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In fact, for effect studies one needs consistent, future climate scenarios. 

It means that all the relevant atmospheric inputs for hydrological studies, 

like rainfall, radiation, temperature, relative humidity, wind velocity 

etc. have to be statistically quantified by their correct means, variance, 

covariance and persistency, in order to generate 'realistic' future 

climatological time series. No such a 'weather generator' is available. 

Parmet et al. (1991) choose another approach to study the possible 

hydrological effects due to the indicative changes of the climate for 

Western Europe. They selected 'Rennes' (France) being an existing 

meteorological station, which shows from its mean records a fair agreement 

with the actual Dutch climate, corrected for the mentioned, indicative, 

figures. Using an existing station safeguards the condition of internal 

consistency of meteorological data sets. 

For a period of eleven years the water balances were calculated for a Dutch 

meteorological station and 'Rennes'. Calculations were performed by using 

the transient flow model, SWATRE (Belmans et al. 1983) for daily 

meteorological inputs. 

As one of the results, in Fig. 6.2.1, the cumulative évapotranspiration 

deficit is shown for the growing season fron year to year. 
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w 
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Rennes B88 ESS Hupsel 

Fig. 6.2.1 Difference in potential minus actual, cumulative, 
évapotranspiration for the growing season (15/4-15/9) for a 
period of 11 years. 

The overall impression is an increase in magnitude and frequency of 

deficits. 
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CONCLUSIONS AND EVALUATION 

7.1 Conclusions 

Although under each Chapter conclusions have been drawn already, they are 

shortly summarized below. 

- Describing spatial variability of soil hydraulic properties by means 

of reference curves for h-0 and k-0 and a set of scaling factors is a 

feasible way to do. 

- Regionalization of vertical unsaturated flow can be realized by using 

a stochastic-deterministic modelling approach. However one needs an 

inexpensive and fast method for estimating soil hydraulic properties. 

- The One-step outflow method in combination with inverse modelling 

fails to produce a unique solution for the hydraulic functions of a 

soil sample. 

- The Multi-step outflow method appears to be a promising alternative. 

- In principle the inverse modelling technique can be applied to 

spatially small and large scale problems to estimate scale-effective 

hydraulic functions. However, it is still not clear to what extent 

the validity of these 'effective' functions can be extrapolated 

beyond the original boundary conditions for which they were derived. 

- There is no theoretical evidence why the scaled mean reference 

functions would behave fairly well as 'effective' functions for a, 

statistically, homogeneous soil type. Yet, it seems they do. 

- Land surface parameterizations in atmospheric models are still poorly 

validated and should be critically tested and, where needed, 

improved. 

- Testing of land surface parameterization can hardly be done by 

experimental data on the aimed spatial scale. For the time being an 

indirect approach seems to be the most feasible way. 

- Existing pedo-transfer function models do not yield satisfying 

results for estimating (a) soil hydraulic function(s). 

- From a simple climate change scenario study it appeared that the 

hydrologie regime in the Netherlands has a tendency to become more 

critical. However, the study should be considered as being indicative 

due to many uncertainties in the choice of scenarios. 
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7.2 Evaluation 

In section 1.2 the contribution and main objectives of 'Wageningen' were 

outlined. 

Since the start of the project good progress has been made toward 

approaches of regionalization of spatially variable unsaturated flow. 

Scaling in combination with stochastic-deterministic modelling and inverse 

modelling technique have been explored and tested. Both approaches will be 

further investigated and extended. This is only possible if such field data 

are or become available, which are indispensable for making progress on 

these approaches. In the context of the large scale Hapex or Hapex-like 

field experiments several data sets on soil hydraulic properties have been 

realized or will soon be realized. The Multi-step method proves hereby to 

be a valuable tool. 

Finally, joint work on testing and validating large scale land surface 

parameterizations has been initiated during the course of this project. Not 

included in this report is a draft paper by Kim et al. (submitted for 

review) on testing and improving land surface parameterizations by the two-

step approach, described in section 1.2. As memorized already in section 

5.3, further execution of a joint workplan on this topic is presently 

underway. It is interesting to note that recently the topic has got a world 

wide initiative by the PILPS-program (Henderson-Sellers, 1992). 
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