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Introduction by shifting cultivation, could be equally important, 

The massive use of fossil fuels, to satisfy the energy but there is a continual debate on the magnitude of 
demands of the industrialized world, leads to the this source. 
emission of a large amount of C compounds into the Estimates based on soil properties, climatic conditions 
atmosphere. Recent estimates place the amount at and changes in land use, lead some authors to figures 
about 5 x 109 t of C per year. The release of C from as high as 5 X 109 t of C released anually from the soil 
soil organic material, following the conversion of -(Burtngh~l979)~wh-erea-rotllers-cla:im-lusses-around­
f()rest fandsc~To -eHh.er grasslE:nicf or araole Tand by 1 x-109 t (Loomis, 1979); 
deforestation in large scale reclamation activities and Most of the Cis released in the form of C02• Part of 
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this, it is not certain how much, is absorbed by the 
oceans, while the remainder leads to increased 
concentrations of it in the earth's atmosphere. 

. C02--also--plays a_vitaL_rolein the ... maintenance of 
human and animal life on earth since these depend on 
the ability of autotrophic green plants to produce 
organic material from C02, water, nitrogen and min­
eral nutrients, through the use of the sun's energy. In 
the light of possible changes in atmospheric C02, the 
influence of the atmospheric C02 concentration on 
the rate of formation of organic compounds is an 
important subject. Conflicting evidence on its etTect is 
reported in the literature, apparently resulting from 
different behavior of difl'erent plant species under 
varying environmental conditions. 
In this contribution, the quantitative consequences of 
various plant strategies towards changing external 
C02 concentrations will be considered. 

Exchange processes 

The formation of organic compounds by plants by 
photosynthesis and subsequent transformations 
requires a supply of the inorganic constituents used. 
Water, nitrogen and mineral nutrients are primarily 
taken up from the soil, or the nutrient solution in 
which the plant is placed, and enter it through its root 
system. C02, however, is supplied by the atmosphere 
and exchange takes place through the stomata. This 
contact with the atmosphere, necessary to maintain an 
influx of C02, results at the same time in an effiux of 
water vapour from the water saturated walls of the 
substomatal cavities. Transpiration and photosynthe­
sis of plants are therefore directly linked and both 
processes may be considered simultaneously. The 
exchange of gases between the atmosphere and the 
substomatal cavity is a diffusion process, governed by 
the difference in concentrations between the outside 
air and that in the stomatal cavity and by the diffu-
sion resistance along this pathway. The latter consists 
of 2 'components: a) the resistance of a laminar layer, 
situated directly above the leaf surface and b) the 
stomatal resistance. The laminar resistance is a func­
tion of the dimensions of the leaf and the windspeed 
near its surface, typical values ranging between 2 and 
50 sec m- 1• Stomatal resistances as dictated by the 
degree of aperture are of the order of 100-300 sec m- 1 

arid constitute, therefore, the major hindrance to the 
exchange of the gases. 
Stomatal resistance may be controlled by the internal 
water status of the plant. Where water is limiting, 
stomata close thus reducing the rate of transpirational 
loss. Direct effects of air humidity on stomatal resis­
tance have also been reported (Lange et al., 1971) 
although light intensity seems to be the main variable 
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suggests that in a number of cases stomatal resistance 
is dictated by the C02 concentration in the substo­
matal cavity and hence by the rate of C02 assimila­
tion_ . 

Carbon dioxide 

The rate of C02 assimilation by an individual leaf at 
low irradiance is determined by the radiant energy 
available for the formation of energy-carrying sub­
stances. With high irradiance, energy is abundantly 
available and the rates of C02 diffusion and absorp­
tion become the limiting steps. C02-enrichment of the 
ambient air, resulting in an increased concentration 
gradient and enhanced diffusion, should then lead to 
higher assimilation rates. The results from measure­
ments on sunflower leaves illustrate this fact 
(figure 1). The considerable success of C02 fertiliza­
tion in the production of crops like cucumber and 
lettuce in glasshouses also indicates this. 
Completely different behavior was found when maize 
was measured by an enclosure method (Louwerse and 
Eikhoudt, ,1975) (figure 2) where the net assimilation 
rate remained constant above about 200 ppm C02 in 
the external air. This saturation type behavior is 
probably the result of C02-induced stomatal closure. 
Under certain conditions, plants regulate their sto­
matal resistance in such a way that the C02 concen­
tration inside the stomatal cavity remains approx­
imately constant. 
Increased C02 diffusion rates, due to higher concen­
tration gradients, produce partial stomatal closure 
which prevents C02-enrichment inside the stomatal 
cavity. The consequence of course is that the net 
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assimilation rate remains constant, while the rate of 
transpiration decreases as a result of the higher diffu­
sion resistance. Where this type of regulation occurs, 
Thein ternal-C02 concen tra tiotr-is-rrx~u-n·earl20-ppm~ 
in plants with the C4-photosynthetic pathway, and 
near 210 ppm in plants of the C3-type (Goudriaan 
and van Laar, 1978a). 
A type of stomatal behavior intermediate between the 
2 mentioned above has been reported for different 
plant species. In those plants, C02-enrichment of the 
external air leads to both increased net assimilation 
and a partial closure of the stomata (Raschke, 1975; 
Goudriaan and van Laar, 1978a). The plants then 
react in such a way that a constant proportionality is 
maintained between the C02 concentration in the 
ambient air and that in the stomatal cavity (figure 3). 
Again there is a difference between C3- and C4-
plants, the former stabilizing the internal concentra­
tion about 0.7 times the external one, the latter about 
0.4 times (Goudriaan and van Laar, 1978a). 
The types of stomatal reaction to increased C02 
concentration in the ambient air (and possibly more 
intermediate situations) described above have been 
reported for different plant species grown under iden­
tical conditions (Goudriaan and van Laar, 1978a), 
and for the same plant species grown under different 
conditions (Louwerse, 1980; Goudriaan and van Keu­
len, 1979). It is beyond the scope of this paper to 
speculate on the possible mechanisms that undcrly 
these differences. But it is ofinterest to examine their 
influence on assimilation and transpiration. 

The effect of different C02 concentrations on assimila­
tion, transpiration and water-use efficiency of crops 

Method. The influence of differences in C02 concen­
tration of the ambient air on crop performance is 
difficult to assess experimentally. Dynamic computer 
simulation models of crop growth that have been duly 
validated may be used for this purpose, by carrying 
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out simulation experiments. The simulation model for 
daily photosynthesis and transpiration described by 
de Wit et al. (1978) was used for this study. However, 

-their--description-of-- stomatal- behavior- given-- in the 
published version (which assumed a constant internal 
C02 concentration) was replaced in subsequent runs 
by the situation where the stomata were assumed to 
be fully open during daytime and completely closed 
during nighttime (absence of any regulation), or 
where a fixed proportionality was assumed between 
external and internal C02 concentration (see appen­
dix). Runs were carried out for C3-plants, using wheat 
as an example, and for C4-plants using data repre­
senting maize (table 4). As a 'standard' day, the 21st 
of June was used, with a maximum and minimum 
temperature of 27.8 oc and 10.8 oc respectively, a 
water vapour pressure of 17.5 mbar and a windspeed 
of 1.2 m sec- 1• The parameters used for the descrip­
tion of stomatal behavior, were those given in the 
previous section. 
A canopy with a leaf area index of 4, representative of 
a mature crop, was assumed, while both completely 
clear and completely overcast days were examined 
(Goudriaan and van Laar, 1978b). The external C02 
concentrations assumed in the model were the present 
level of 330 ppm, and a level of 430 ppm which may 
be reached within the foreseeable future. To evaluate 
the influence of canopy water status, runs were made 
assuming a young active root system or an old 
suberized one. 
Results and discussion. In table 1, the values for total 
daily net assimilation and total daily transpiration, 
both over a 24-h period, and their ratios are given for 
3 latitudes and 2 external C02 concentrations for a 
canopy with C3-type photosynthesis. The same data 
are presented in table 2 for a canopy with a C4-type 
photosynthesis. The transpiration/ assimilation ratio is 
used here as a measure for water-use efficiency to 
avoid difficulties associated with the conversion of 
primary photosynthates into structural plant material. 
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(van Laar et al., 1977). 
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As an approximation, the water-use efficiency in 
terms of dry matter may be found by assuming an 
average conversion efficiency of 0.7 (Penning de 

.. _Y.de.s_,_l974). The absolute values found in the pres­
ence of stomatal· regulation and normal external C02 -

concentration of ±90 kg H20 kg- 1 (dry matter) for 
C3-plants and ±60 for C4-plants are very low when 
compared with values normally reported. Comparison 
of measured rates of C02 assimilation and transpira­
tion in the field with those predicted by the model (de 
Wit et al., 1978) support, however, the conclusion that 
under certain conditions such values are realistic. 
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The data show firstly that the net assimilation rate of 
C4-plants exceeds that of C3-plants under favourable 
conditions of temperature and irradiance, but that 
potential hardly expresses itself under low light. Un­
der such conditions, liowever, tlieaaily-transpiration 
of C4-plants is substantially lower since at these low 
assimilation rates the lower internal C02 concentra­
tion of the C4 species permits further closure of the 
stomata. The water-use efficiency of plants of this 
type is therefore substantially higher over the full 
range of irradiances (de Wit and Alberda, 1961; 
Downes, 1969). There is in fact very little difference 

Table 1. Simulated values of total daily net C02 assimilation, total daily transpiration and their ratios for a C3-canopy of LA I- 4, 
growing at different latitudes on completely clear and completely overcast days at 2 levels of external C02 concentration 

Lati- Internal C02 concentration Constant proportionality Non-regulating stomata 
tude fixed between external and internal 
north C02 concentrations 

f' f' 
t:" - f' f' I i 

~ ·Bo ~ ·~0 ~ ·Bo 
'a) i tf ~flU i~1 ~t:" 

d u g i 'df!!U 
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.o 11~ ·8 l1~ 18 .~~ 11~ '3. ~ ~ . 1 ~ ~ ~~ !-< j ]· ~ !· ~ ~ ~ !-< ~ ~ - !-< ~ 1-<l:l- f-o ~ 

10 Clear 330 659 4.2 64.2 672 4.6 68.2 771 8.0 104.2 
Overcast 298 1.9 62.7 304 2.2 73.0 408 7.0 172.9 

30 Clear 753 4.8 64.3 769 5.2 68.1 873 8.5 97.2 
Overcast 330 2.0 61.8 337 2.4 72.2 450 7.3 162.0 

50 Clear 785 5.0 63.2 803 5.4 67.0 919 9.2 100.0 
Overcast 329 2.1 63.2 335 2.5 73.5 453 8.0 177.2 

10 Clear 430 663 2.6 39.8 805 4.2 52.3 942 8.0 82.5 
Overcast 298 1.2 40.3 317 1.9 58.9 456 7.0 154.5 

30 Clear 759 3.0 39.8 927 4.8 52.2 1073 8.5 82.5 
Overcast 330 1.3 39.1 352 2.0 57.6 503 7.3 144.6 

50 Clear 791 3.1 39.1 959 5.0 51.7 ll22 9.2 81.8 
. Overcast 329 1.3 40.7 348 2.1 59.2 502 8.0 159.4 

Table 2. Simulated values of total. daily net C02 assimilation, total daily transpiration and their ratios, for a C4-canopy of LAI .... 4, 
growing at different latitudes on completely clear and completely overcast days, at 2 levels of external C02 concentration 

Lati- Internal C02 concentration Constant proportionality Non-regulating stomata 
tude ftxed between external and internal 
north C02 concentrations 
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10 Clear 330 874 3.6 41.7 916 3.9 43.0 1185 9.6 81.4 
Overcast 321 1.3 39.6 324 1.3 41.0 464 7.9 171.2 

30 Clear 1008 4.2 42.0 1057 4.6 43.2 1362 10.3 75.8 
Overcast 356 1.4 38.4 360 1.45 40.2 514 8.2 160.3 

50 Clear 1039 4.3 41.1 1087 4.6 42.4 1408 11.0 78.5 
Overcast 351 1.4 39.6 354 1.45 40.9 506 9.0 178.3 

10 Clear 430 874 2.7 31.3 1028 3.5 34.4 1400 9.6 68.7 
Overcast 321 1.0 30.5 332 l.l 34.0 503 7.9 158.0 

30-----Glear 008 __ 3.2_ 31.5 1189 4.1 34.6 1615 10.3 63.7 
Overcast 356 1.1 29.7 369 1.2 33.0 sss--s~2--1~7~S 

~50 -~~~crear~~~~-- 1039. ~···3;2 30;9 12l7cc 4;1 -34.0 cl661 11.0 c 6.6.4 
Overcast 351 1.1 30.7 362 1.2 34.3 547 9.0 164.9 
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between the tropical (10° NL) and temperate regions 
(50° NL) both in terms of total net assimilation and in 
terms of daily transpiration. A somewhat higher 

-· raolatlonlevel on com pletelyclea11la-ys-anua-hetter­
light distribution, due to more daylight hours, results 
in both higher assimilation and higher transpiration 
rates farther north, and no change in the transpira­
tion/ assimilation ratio. 
The effect of differences in stomatal behavior on crop 
performance shows ·up dramatically with both photo­
synthetic pathways: absence of C02-induced regula· 
tion leads to higher net assimilation rates accompa­
nied, however, with an even greater proportional 
increase in transpiration rate, resulting in an increase 
of the transpiration/ assimilation ratio by about 60%. 
The calculated transpiration rates in the absence of 
regulation are very high, amounting to between 60 
and 70% of the total global radiation. It should, 
however, be borne in mind that they were obtained 
under the following assumptions: · 
a) Transport of moisture in the soil towards the root 
system and through the plant were nonlimiting. If 
such high rates were encountered under field condi­
tions, it is likely that transport would be rate~limiting 

Experientia 36 ( 1980), Birkhliuser Verlag, Basel (Schweiz) 

and the plants would suffer from moisture shortage at 
least during part of the day, leading to stomatal 
closure and reduced assimilation and transpiration. 
b)-Ali-stomata-over-the -entire canopyproftle-are-fully 
open in the daytime, while in most cases some regula­
tion occurs, so that the stomata of the lower leaves are 
likely to be more dosed. 
c) There is rto feedback to the microclimate inside the 
canopy. Transport out of the canopy could in the field 
become a limitingfactor (Goudriaan, 1977). 
The effect of increased C02 concentration in the 
external air depends completely on the, assumed 
stomatal behavior. When indeed COrgoverned sto~ 
matal regulation is present, increased C02 concentra~ 
tion in the air hardly influences net assimilation rate, 
but it leads to considerably reduced transpiration 
rates and hence to a much more favorable transpira­
tion/ assimilation ratio. The difference between the 
situation with a fixed internal C02 concentration and 
that with a constant ratio between external and 
internal concentrations increases at higher C02 levels. 
The proportionality leads to substantially higher in­
ternal C02 concentrations in the latter case. It is 
obvious _that the 'blessing' is shared here between 

Table 3. Simulated values of total daily net C02 assimilation, total daily transpiration and their values for a C4-canopy of LAI=4, 
at different latitudes on clear days, at 2 levels of external C02 concentration, under water stress 

Latitude Internal C02-concentration Constant proportionality Non-regulating stomata 
north fixed . between external and internal 

C02 concentrations 
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10 Clear 330 810 3.3 40.6 822 3.4 41.0 859 5.4 62.6 
30 Clear 330 · 929 3.8· 40.6 942 3.9 42.0 982 5.8 58.8 
50 Clear 330 988 4.0 40.2 1005 4.1 40.9 1062 6.55 61.7 

10 Clear430 873 2.7 31.4 960 3.2 33.0 1032 5.4 52.3 
30 Clear 430 1004 3.15 31.4 1105 3.65 33.0 1185 5.8 48.9 
50 Clear430 1039 3.2. 30.9 1164 3.8 32.9 1272 6.6 51.6 

Table 4. Characteristics of the most important variables used to calculate photosynthesis and transpiration 

Variable Description C3 plant C4 plant Unit 

EFF Efficiency of C02~ assimilation derivative of C02-assimilation 
versus absorbed visible radiation O.S 0.5 kg C02 ha-1h-1J-1m2sec 

PROP 
RC021M 
C02C 
CWQ 

EFF at saturating internal C02 concentration 0.98 0.917 kg C02 ha- 1h- 1J- 1m2sec 
Maximum internal C02 concentration 210 120 ppm 
C02 compenHation pohH SO 10 ppm 
Michaelis-Menton constunt for internal C02 concentration, 
governing the efficiency 200 100 ppm 

RMES Mesophyll resistance for C02 diffusion 274 107 sec m- 1 

-~--RA· . -- R-esistance~of-boundary;la)'er-for"hea~~~~--c-----------c-----=~J~---c---cc--------c-c--t2 __ ~s=ec'"-c'm.._.___-1----c--__ ~~------
SR W minimum_ __ M!llil1l_\ltl1S_tQll1J1talr~s_istance f()r t~al'lSpirat!oll, 

------ -as-3etefmliie(fby Yilitefpotentiar~ c_ --·~ - ----

WDL 
DPL 

Average width of leaves 
Dissimilation rate of leaves that photosynthesize in daytime 

-Ons 
0.02 
0.2-1.2 

·70 -~~Osee m-··k---· 
0.05 m 
0.2-1.2 kg C02 ha:.. 1h- 1 
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assimilation and transpiration. The former increases, through management practices different properties 
especially at high radiation levels, whereas the latter could be induced for plants growing under different 
decreases by about 10%. The result is again a decrease environmental conditions. 
inth_e~traJlS_~irat_i_o_llfassimilatiQJLIC!!igJ~y abQ!ll_7~·-- Tq_ ml.!_ch _ opti1TliSJl1. with __ r~ga~dto_the beneficial 
Where stomatal regulation is completely absent, the effects or-Tncreased -Cb2-Tn The- atmosphere seems 
higher C02 concentration is completely reflected in unwarranted, however, since under natural conditions 
increased net assimilation, transpiration being at its in many cases nutrient supply is the main limiting 
maximum value. Also in this case, the transpiration/ factor for primary production (van Kculen, 1977; 
assimilation ratio changes to more favorable values. Penning de Vries, 1978). That limitation will remain, 
In situations where plants are under moisture stress, whatever improvements in the momentary growth 
the stomatal opening is governed by the degree of rates or water-use efficiencies may be achieved. 
dehydration of the plant, whatever its normal type of 
behavior. Both assimilation and transpiration are then Appendix 
affected. In table 3 some simulation results are sum­
marized, obtained under the assumption that the 
conductivity of the root system was too low to allow 
unrestricted uptake of moisture from the soil. Under 
the influence of stomatal closure, the C02 concentra­
tion inside the stomatal cavity is lower than without 
water stress. The diffusion of C02 into the intercellu­
lar space is therefore higher at the same stomatal 
conductance. This situation thus leads to a somewhat 
lower transpiration/ assimilation ratio, as was also 
observed by Lof ( 1976) in container experiments. The 
effects are strongest in the originally non-regulating 
situation and they are virtually identical at low and 
high external C02 concentrations. The differences in 
total daily assimilation and transpiration among the 
different types of stomatal behavior are due to the 
fact that the imposed moisture stresses are not of the 
same duration and degree in all types. 

Conclusions 

In the published version of the simulation program 
used in this study (de Wit et al., 1978), stomatal 
behavior was described assuming full regulation at a 
constant internal COrconcentration. In the frame­
work of the present paper the model was adapted to 
handle also the non-regulating situation and the one 
in which a constant ratio between external and inter­
nal C02 concentration is maintained. The necessary 
changes are described below. 
Description. Practically all the changes are in 
MACRO called TRPH (de Wit et al., 1978, p. 97) 
(the program will be found on p. 792). 

The parameter REGPAR indicates whether regula­
tion is assumed ( + 1) or not (- 1 ). When it is assumed 
( + 1) and the stomatal resistance is not governed by 
the moisture status of the canopy (SR W) the calcula­
tion proceeds as previously. If SR W is larger than the 
resistance calculated on the basis of the regulatory 
mechanism or the minimum resistance in the case of 

Effects of increased C02 assimilation in the atmo- absence of regulation (SRESL), the latter is set equal 
sphere on plant performance, and through that on to SRW (line 10). The total diffusion resistance for 
agricultural production cannot be described by one C02 is calculated next and the internal C02 concen­
general rule. The crucial factor is the plant's stomatal tration is obtained through a series of successive 
behavior and that may be different for different better approximations (lines 13 through 20). A first 
species or under di(ferent environmental conditions. estimate (GCI) follows from the assumption that the 
Where C02-induced stomatal regulation is present, assimilation is light-saturated, and diffusion rate and 
increased C02 concentration will result directly in assimilation rate are equal. On the basis of this value 
lower daily rates of water loss, rather than in higher the light-saturated assimilation rate (AM) and the 
daily rates of production. This phenomenon may initial light-use efficiency (EFFE) are recalculated. 
indirectly lead to higher production levels over the The net assimilation rate follows from these values 
season under conditions where water is the main and the level of irradiance (VIS). Next a new value for 
limiting factor for plant growth, since the available the internal C02 concentration is calculated (FCI) 
moisture is used more efficiently. Where C02-induced and the procedure is repeated until a preset accuracy 
stomatal regulation is absent, plants may benefit from criterion (ERROR) has been satisfied. 
higher C02 levels through increased assimilation The distinction between a fixed internal C02 concen­
rates, which can be maintained only, however, when tration and a constant ratio between internal and 
the moisture supply can also be maintained at near- external C02 concentration is described in section 7 .1. 
optimum levels. In that case, water is used with very The line defming RC02I now reads: 
low efficiencies. RC021=INSW (RGPARl, RIEC02*EC02C, 
The fact that in the same species regulation is found RC02IM) 

---~-

to tie present to a greater orlesserexten~ti~t~-~~~eq~~n~~~~~-~-~-~~-~-
expectation that the trait may be manipulated. This sumed, whereas a fixed concentration results for 
would suggest that either through plant breeding or RGPARl = + 1. 
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01 MACRO TEHL, TSHL,AVTCP,NCRL•TRPH(VIS,NIR,LHR,AREA) 
02 ABSRAD~VIS+NIR+LWR 

03 IF (REGPAR.LT.J) GOTO 600 

04 EVA •AMINI (EFFxVIS/AMAX,46.) 

OS ;: PREVENTS UNDERFLOW 

06 NCRlL Q(AMAX+DPL)x(t.-EXP(-EVA) )-DPL 

07 SR~SL = (68.4x(EC02C-RC021)-RAxl.32xNCRIL)/AMAXI(O.OOI,NCRIL)/1.66 

08 IF (SRESL.GT.SRW.OR.SRESL.LT.O.) GO TO 700 

09 600 CONTINUE 

I 0 SltESL • SRt~ 

II TSR•I.66xSRESL+RA*l.32 

12 GCI•(EC02C/TSR+C02C/~~S)/(J ./RMES+t ./TSR) 

13 ESTIM~AMINI(l., (IOO./SRW)xx2) 

14 CI•IMPL(GCI,ERROR,FCI) 

15 AM•(CI-C02C)x68.4/RMES 

16 EFFE•PRQP;:CI/(CI+CIEQ) 

17 EVAE•AMINI(EFFExVIS/k~,46.) 

18 NCRIL•(AM+DPL);:( 1 .-EXP(-EVAg) )-DPL 

19 FFC!mEC02C-TSR/68,4xNCRIL 

20 FCI=CI+(FFCI-CI)xESTIM 

21 700 SRES =AMINI (RESCW,SRESL) 

22 ENP •0.3tNCRIL 

23 EHL =(SLOPEt(ABSRAD-ENP)+DRYP)/(PSCHx(RAX0.93+SRES)/RA+SLOPE) 

24 SHL = ABSRAD-~HL-ENP 
25 

26 

27 

28 

29 

30 ENDMAC 

TL •TA+SHLxRR 

TEHL •TEHL +AREA*EHL 

TSHL =TSHL +AREAXSHL 

AVTCP •AVTCP+AaEA*TL 

NCRL •NCRL +AREAxNCRIL 

Finally the non-regulating situation is defined by the 
value of the minimum stomatal resistance (70 sec m-t 
for C4-plants, 125 sec m-1 for C3-plants) and that of 
SR W which assumes a very high value at night and is 
governed by the crop water status in daytime. 

The description presented here implies that the values 
of the light satura~ed assimilation rate, AMAX, and 
the initial light use efficiency, EFF, defined in section 

7.1 of the program are obtained from measurements 
on leaves with regulating stomata. Therefore transpi­
ration rates should be measured concurrently with the 
determination of the photosynthesis-light response 
curve, so that the internal C02 concentration can be 
calculated (Goudriaan and van Laar, 1978a). The 
measured values of AMAX and EFF can then be 
adapted when conditions other than the assumed ones 
occur. 
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