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1 . Introduction 

Watt ( 196la, b, 1963, 1964) was one of the first people to 
realise the full potential of agricultural pest modelling. Watt's main 
interest was to use models to evaluate different control strategies, and 
he was able to show theoretically that pest populations could reach 
higher levels after the application of a pesticide than in its absence 
(Watt, 196la). Watt (196lb) was also concerned with modelling field 
populations and later extended his ideas to resource management 
(Watt, 1968). 

Conway (1973, 1977) criticised many of the existing mathematical 
pest models for being too general (producing only obvious or trivial 
results), for ignoring the economic aspects of control, for failing to 
initiate the interaction between modelling and experimentation and for 
their irrelevance to pest management systems. The first criticism is 
now less in1.portant as systems teams start to tackle specific problems 
with specific objectives. The analytical approach however is still 
interested in general models e. g. to account for the searching strategies 
of predators and parasitoids. The second point is a reflection of two 
considerations; most modellers are trained in one subject, in this case 
biology, and know little of economics and the economic aspects of crop 
protection have not often been calculated. These considerations are 
changing as entomologists and phytopathologists realise the importance 
of damage levels, economic thresholds and action levels. The third 
criticism is possibly unjustified. Model builders quickly realise what 
experimental work needs to be done to provide the missing data for their 
models. Very often however with an analytical approach the importance 
of directly unmeasurable variables and parameters are stressed, e. g. 
the mutual interference constant of predators. These values are usually 
calculated from graphs and are very often an incorporation of many 
biological processes into one variable or parameter. Thus they are 
purely descriptive 'with little explanatory value. Analytical models are, 
because of their abstract character, usually difficult to validate in the 
real world. Very often the author gives examples where his model fits 
observations in the field but this does not answer the question as to 
whether his theoretical considerations are valid. This makes the value 
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of these analytical models for interpretation of a specific field situatiorl 

limited, and conclusions on the mode of action of a system speculative 
and dangerous. Finally, models are now being employed in pest 
management systems. 

2. Types of models 

Mathematical models can be classified into three partially 
overlapping types; analytical, statistical and simulation. The 
analytical models mentioned in the introduction are of interest in 
theoretical considerations of ecological concepts but quickly become tc.o 
complex if applied to field populations. In many cases knowledge and 
insight of the ecological processes are lacking or are of a rudimentary 
nature. Statistical models, usually regression type, are purely 
empirical not relying on causal relationships and hence describe rather 
than explain processes. They are rarely consistent in the long term arrl 
when they do fail, the model itself cannot be used for explanation. They 
are therefore of limited use in plant protection. Simulation modeis a.;;:: 

dynamic and can either be deterministic (based on mean values) or 
stochastic (based on probability distributions). The majority of pest 
simulation models are deterministic, as the use of stochastic mod<>ls is 
very expensive in computing time and often unnecessary. Fransz. (197-i} 
discusses stochastic processes in relation to his work on the pr - -y 
behaviour of mites. He gives a number of ways that stochastic 
variables can be simulated either v:.>ith single or population processes. 
He concludes that when some characters of the animals with stochastic 
variation have curvilinear relations with other variables (i.e. rate 
variables) the outcome of a deterministic model in which averages arc: 
used may deviate from the expectation value of a stochastic model. 
Thus, generally there are two reasons to use stochastic models: l) 
when a reliable estimate of the expectation value is desired and 
curvilinear relationships between a stochastic characteristic and one of 
the state variables are present, Z) when interest lies in the va:riance of 
model output. Unfortunately many biological properties show 
curvilinear relationships and the high variation in these characteristics 
often necessitates the use of stochastic models. Since these models 
are very time consuming and therefore expensive to run, several 
techniques have been developed to prevent the use of exper_sive, and 
often inappropriate, Monte Carlo methods. Fransz ( 197 4) developed 
1 compound simulation 1 , which is the application of deterministic 
simulation models to classes of individuals. Within each class the 
relation is assumed to be linear. The number of classes dP;:>ends or~ tre 
required balance between accuracy and computer time. The calculatio:-1 
of each class of individuals is made at each time step of integration, 
after which the contents of the classes are updated and another 
computation starts. In this way only one simulation needs to be 
carried out for each set of conditions, instead of 1000 times in Monte 
Carlo methods. Sabelis ( 1981) describes the application of Fransz 1 s 
methods, Monte Carlo techniques and queuing techniques, to the 
predation process of mites. The latter method is an especially powe riul 
approach that requires only a limited amount of computer time. 
Basically, this method may be compared with calculating the waiting 
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time of a client in the waiting room of a dentist. The client may enter 
the waiting-room (gut) at a certain rate in expectance of the service 
(digestion). An evaluation of the mentioned models, i.e. deterministic, 
stochastic compound or queuing. is done in an acarine system by Sabelis 
~ 9811- He shows that the deterministic model gives erroneous results 
and that the outcomes of the three other models fall within the confidence 
intervals of the measurements, the latter with the least computing time. 

3. Strategy in model building 

Ruesink (1976) has listed some of the agricultural pest models. 
He proposes that the frontiers of model building lie not with the 
production of more modelst these can be turned out by anyone familiar 
with the techniques, but with the production of improved submodels for 
important processes. This is a view shared by some phytopathologists 
(Rijsdijk & Zadokst pers. comm. ). Ruesink (1976) has produced a 
methodology for developing models which needs further refinement and 
extension. The first step should be to define the objective of the system 
analysis before the objects within the system, and hence the boundar·y 
of the system, are defined. The modeller usually then produces flow
or relational diagrams prior to formulating equations. This latter 
procedure is usually carried out section by section, i.e. submodels, so 
that each part can be checked for accuracy (validated) independent of all 
other parts. There is also at this time a two-way interaction b,etween 
model building and experimentation. Output from the submodels 
indicates the importance of each process so that experimental effort can 
be concentrated on relations that primarily determine the behaviour of 
the system. Once all the submodels have been coupled to produc:e a 
first generation model it has to be verified. Verification means testing 
to see that the computer program in fact operates on input data in the 
intended way (Loomis et al. , 1979 ). Thus the production of negative 
numbers of animals indicates that the model is not working correctly 
but unfortunately not all errors are so easy to spot! Verification is a 
step which is often left out (see Jeger, this volume). Next the model 
has to be validated as it has to be accurate and reliable if prediction is 
the aim. Teng et al. ( 198 0) de scribe some of the procedures they have 
used in validating their model, BARSIM-I, a simulator of barley leaf 
rust epidemics. The most simple test is a subjective comparison of 
model output with field results; preferably from a number of different 
sites over a number of years so that environmental circumstances may 
vary considerably. Not only should the model predict accurately the 
timing and size of the peak population density but the growth curve 
s·hould be of the same type as observed in the field. By plotting a 
scatter diagrarr.~. of field observations against model predictions a 
further impression of the accuracy of the model can be made. 
Regression analysis on these data should yield a regression coefficient 
(b) not significantly different from 1, an intercept (a) close to 0, and a 
correlation coefficient which approaches 1 so that a high percentage of 
the observations is being 'explained' in statistical terms. Sensitivity 
analysis can be carried out once the reliability of the model has been 
proven. This is the process of changing the values of rates, variables, 
parameters and initial conditions in the model to determine their 
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importance. This again leads to feedback with experimentation so that 
model building is an ongoing process. There is some danger in this 
approach as differences between model calculations and experimental 
outcomes at the system level may lead to adaptation of the input 
relations which are not in agreement with the results of experiments at 
the process level. In this way, the process of model building is loosing 
its meaning as simulation has degenerated into a sophisticated way of 
curve fitting. Deviations between model results and experiments at the 
system level should lead to a reorientation of the conceptualisation and 
implicit hypotheses in the model. 

A good, validated and reliable model' :tnay be used in sensitivity 
analysis to test the relative importance of different input relations and 
to pin-point the deficiencies in our knowledge. After this process of 
sensitivity analysis, simplification is usually possible and rna y lead to 
summary models which are used in decision making to predict the 
population dynamics of pests and diseases in a crop protection 
management system. 

A very fundamental question in all types of simulation models 
which use numerical integration methods concerns the choice of the 
time interval of integration. An appropriate time interval is necessary 
as too small time intervals will lead to an overuse of computing time, 
and too big time intervals will lead to erroneous results and in extreme 
cases to oscillations. The time interval is dictated by the time 
coefficient (De Wit & Goudriaan, 1978). It characterises the rate of 
change of the system and is best defined as the inverse of the relative 
rates (De Wit & Goudriaan, 1978). The smallest time coefficient is 
found by writing all rate equations explicitly. If an appropriate time 
interval of integration is used, errors due to the method of integration 
are negligible. However, modellers do not always realise the danger 
of using inappropriate time intervals of integration, and their time 
step is dictated by observation frequencies of the driving variables. 
This rna y lead to considerable calculation errors and even induce 
oscillations with increasing amplitude when the time step of integration 
exceeds twice the time coefficient (Ferrari, 1978 ). 

4. Examples of models 

4. 1 Insect models 

Most insect pests have more than one generation in a season 
and very often the generations overlap, thus preventing the use of key 
factor analyses (Morris, 1959; Varley, Gradwell & Hassell, 1973). 
These, basically graphical, methods are intended to indicate the major 
regulating factor of an insect population. Hughes (1962, 1963) proposed 
an analytical approach, based on the time- specific life table method, to 
study aphid populations. The basic assumption of this method is that 
the population has developed a stable age distribution. Carter~ al. 
( 197,8) were able to show, with the aid of a computer model, that this 
did not occur in the field. The simulation approach appears to be a 
better way to investigate the population dynamics of aphids and many 
other pests. 
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Although Watt proposed the use of the models in 1961, it was not 
until 1968 that Hughes and Gilbert published a paper concerned wi.th 
modelling a specific species the cabbage aphid Brevicoryne brassicae L., 
its predators, parasitoids and hyperparasitoids. One important concept 
that Hughes & Gilbert (1968) introduced into modelling was the use of a 
physiological time scale. This allows the modeller to neglect the daily 
vagaries of temperature. Instead 'time' is measured in day degrees; 
the cumulative total of temperature (above a certain threshold 
temperature) x time (in days). Four assumptions are made when 
dealing with this time scale; i) aphid development is primarily 
dependent on temperature, this is probably reasonable although Hughes 
( 1963) did remark on. the effect of different host plants and different 
physiological conditions of the same host plant on aphid development. 
These effects could be introduced in the model explicitly when their 
effects are known. ii) Development rate is linear with regard to 
temperature over the normal range of temperatures which is true for 
most aphid species studied (Hughes, 1963 ), iii) there is a constant 
threshold temperature below which development is zero, this tempera
ture is only theoretical as development is non-linear at lower 
temperatures and it probably varies for different strains of the same 
species (Carteret al., 1980), and iv) fluctuating temperatures have the 
same effect as a constant temperature. This last assumption means 
that the aphid response to changing temperature is instantaneous. 
There is little information available on this but the evidence collected 
so far indicates that this assumption is justifiable (Rabbinge et al., 
1979). In mites this hypothesis has been verified experimentally 
(Rabbinge, 1976; Sabelis, 1981, 1983) and is valid. However in other 
development processes, e. g. germination of seeds, it is not the case 
(Jansen, 1974). Gutierrez et al. ( 1976) emphasise the importance of 
the non-linear relationship between development and temperature at the 
extremes of the temperature range. Sharpe & DeMichele (1976) have 
produced a stochastic ll"lOdel which explains development processes on 
an enzyme kinetics basis. How important this will turn out to be for 
pest modelling remains to be seen. 

Hughes and Gilbert's model is deterministic and employs no 
direct interaction between the different mortality facto,rs. The model 
uses dis crete time steps to simulate continuous processes and Hughes 
and Gilbert rc..n the model with different time steps to discover an 
accurate but efficient one. The result was a time step one quarter of 
an instar period (the physiological time for any of the first three 
instars). Thus the time interval of integration was determined by trial 
and error. This is the rr:ost appropriate way in large simulation models 
as direct determination of the time coefficient is only possible in small 
models. 

Gutierrez et al. ( 1976) have attempted a truly systems approach 
to pest management on cotton. They started with analytical models to 
clarify what information would be required for ecosystem models. 
Next the team built a model for plant growth (Wang et al. , 1977) which 
can be coupled to a number of pest models. These pests are either 
defoliators or they attack the fruits. This represents one of the first 
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attempts to explain the effects of pests on their host plant and hence the 
final yield. Attempts have been made to add a further level to insect 
models, where the insects are vectors of disease (Gutierrez et al., 
1974). Obviously this further complication increases the ·problems 
involved; the results and conclusions have not been very important, so 
far, in controlling diseases transmitted by insects. 

The increasing economic importance of cereal aphids in Western 
Europe during the last decade has stimulated the development of models 
on the population dynamics of these insects. Carter ( 1978) and 
Rabbinge et al. ( 1979) developed such models; a detailed description of 
these models being given elsewhere (Carter, Dixon & Rabbinge, 1982 ). 
With these models, the population development of cereal aphids during 
a season may be simulated. An explanation for the population dynamics 
of cereal aphids can be given on the basis of insight gained by this 
modelling effort. It has been demonstrated that wing formation induced 
by a shift in assimilate composition during the medium milky ripe crop 
development stage is important in determining peak density. The 
decline in aphid population density induced by emigrating alatae is 
amplified by natural enemies; parasites, predators and Entomophthora 
spp. The simulation studies shows also that immigration is re1ati vel y 
unimportant after flowering, and that the potential of biological c-mtrol 
of cereal aphids with presently available natural enemies is lim 'L 

4. 2 Non-insect invertebrate models 

Most of these models are concerned with the population dynamics 
of mites, which are probably the n~ost important invertebrate pests 
after insects. However, the first model discussed concerns nematodes 
which have special features making them, perhaps, easier for study. 

Jones & Perry (1978) have produced a model to describe the 
population build-up of cyst-nematodes within and between years. Cyst 
nematodes are relatively immobile, which makes experimentation and 
modelling easier than with insects and fungi. In northern Europe these 
species only pass through one or possibly two generations per year and 
the observed maximum annual multiplication rate is less than 1 00-fold. 
Problems are encountered in sampling the nematode populations as they 
are aggregated around the roots and are difficult to extract and count. 
Also, eggs may remain unhatched for several years, thus complicating 
predications of population increase from year to year. However, this 
carry over proportion is density-independent and remains virtually 
constant from year to year. 

Jones & Perry (1978) fitted a logistic-type equation for 
population growth within a year. The major density-dependent factor 
in these species is intra-specific competition (delays in growth rate due 
to their struggle for limited resources) and also, possibly, more males 
than females being produced as the density increases. They then 
constructed a model to predict yearly population changes under different 
rotation systems. The input of the model consisted of information about 
the population processes of the nematode and the crop rotation policies. 
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Thus the model can be used to decide on the optimum management 
practices to adopt to regulate the nematode population. The model was 
further modified to include the effects of nematicides on population 
increase. 

In a detailed study, Rabbinge ( 1976) presented an explanatory 
model of the population dynamics of the fruit tree red spider mite 
(Panonychus ulmi Koch) and one of its natural enemies, the predatory 
mite Amblyseius potentillae. Predatory mites are now widely used as 
biological control agents in glasshouse vegetable crops and in fruit 
orchards (Gruys and MiO:ks, 1980). The simulation study was under
taken to explain the regulatory potential of predatory mites and to 
derive guidelines for management. In these models of acarine systems, 
the gut content of the predatory mite plays an important role in 
governing the predation behaviour of the predatory mite. Special sub
models have been developed to deal with the dynamics of gut content and 
the corresponding predatory behaviour. These submodels are based on 
detailed models in which searching behaviour of individual predators is 
included. · This searching behaviour is largely affected by motivational 
state. On the basis of the simulation studies a ranking of phytoseiid 
mites with regard to their prospective use in biological control is 
possible. 

Another important phenomenon introduced in models of acarine 
systems (Sabelis, 1981, 1983) is the distribution of prey mites in space 
and the effect of clustering in webs. These phenomena are introduced 
in the models and their effect on biological control is evaluated. Some 
phytoseiids (e. g. Phytoseiculus persimilis) prefer to search in webbed 
areas whereas other predatory mites (e. g. Amblysei.Ds potentillae) are 
hampered in their monitoring activity due to the presence of webs. 

4. 3 Models of plant diseases 

An early entire plant disease epidemic simulator was that of 
Waggoner & Horsfall ( 1969). Their simulator, EPIDEM, employed a 
number of weather factors j temperature' relative humidity' winds peed, 
sunniness and wetness. Thus the system is more complex than 
invertebrate models where temperature is usually regarded as the main 
driving variable and the effects of other factors, usually known to play 
some role in the system, are not quantified. EPIDEM is updated every 
3 hours and simulates many of the processes occurring in a disease 
epidemic. Although Wa·ggoner and Horsfall found that much of the 
relevant data was already available from the literature, several 
important components had not been measured before. These included: 
the speed with which a germinated spore penetrates the leaf, the 
washing-off of spores by rain, and the fertility of the spore-bearing 
conidiophores. Hence, the simulation model helped direct experimental 
research alon'g certain lines. 

The disease they were concerned with, early blight of tomato 
and potato caused by Alternaria solani, is rather a complex disease 
with different optimum weather conditions throughout its life history. 



-25-

Although the correspondence between model output and field results was 
not complete they were sufficient to demonstrate clearly the relationship 
between the weather conditions and the different life history stages. 
Waggoner and Horsfall also performed sensitivity analysis which 
indicated that the fertility of the conidiophores was very important to 
the final outcome of the simulation. They hoped that their model could 
form a basis for other diseases with similar life histories to J::-. solani. 

Waggoner, Horsfall & Lukens (1972) produced a simulator 
EPIMA Y for southern corn leaf blight caused by Helminthosporium 
maydis a fungal disease which caused much yield loss in the U.S. A. in 
1970. Their approach to the problem was almost identical to that which 
they had employed for EPIDEM. The step length employed (3 hours) is 
the same as used in EPIDEM. Much of the similarity between the two 
models is due to the similarity between the life histories of the two 
fungal species. Again, when they tested their model they did not 
compare output directly with field results. One reason for this is the 
lack of detailed field observations especially at the start of the epidemic 
which is needed for input to the model. They do indicate however that 
their model was used in 1971 as an aid for forecasting corn leaf blight. 

Shrum (1975) has developed a model (EPIDEMIC) to simulate the 
growth of stripe rust caused by Puccinia striiformis, West. on wheat. 
The model is hierarchal and comprises three layers, (cellular
organismal-population). This, Shrum claims, is an attempt to produce 
a flexible simulator which can be used for other plant diseases. It will 
be some time, however, before this statement is accepted by other 
disease modellers. He claims to have entered all important factors, 
but by introducing so much detail in one single model there is a danger 
of number- grinding rather than correct simulation. He goes on to list 
the uses of the model if developed further; i.e. prediction, estimation 
of effects of partial resistance, and the effects of fungicide on an 
epidemic. It would be unwise, however, to use an unvalidated model 
for management and this should always be avoided. 

Kampmeijer & Zadoks (1977) and Zadoks & Kampmeijer (1977) 
have developed a model, EPIMUL, to determine the effect of crop 
populations on the course of an epidemic. This is a theoretical attempt 
to model disease epidemics on a time and space scale. It is, therefore, 
a general model and is used to study the properties of a disease. The 
model (written in FORTRAN) has a time step of one day compared to 
the 3 h of the models of Waggoner and Horsfall. This is an arbitrary 
choice but acceptable as the model is meant, not for actual disease:. 
situations, but purely as an academic exercise. It should however be 
realised that since van der Plank 1s equation (a logistic growth formula 
with a latent period delay and a finite infectious period) is applied for 
the different compartments, the relative growth rate of this equation 
dictates the time coefficient. Therefore, the time step should be 
adapted if another relative growth rate is applied. To introduce the 
spatial component, a large square (a field, a country, a continent) is 
divided into a number of smaller square compartments. Basically the 
model applies the same logistic growth equation with time delay to all 
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compartments and used a Gaussian distribution curve to spread the 
spores over the different compartments. The dispersion of spores is 
assumed to take place according to this function. The model thus 
presumes a certain nature of dispersion rather than calculating it on 
basis of the geometrical and physical characteristics of canopy, spores 
and their interrelations. 

Effects of host development are neglected in this model since the 
size of the model in space (20 x 20 = 400 compartments) limits the 
dynamics of the model in time. Nevertheless the model throws some 
light on the effects of spore dispersal. It indicates that the focus of a 
disease expands radially at a constant speed, and that the daily 
multiplication rate has little effect on the rate of displacement of the 
disease front. Also, the model indicates the importance of the initial 
spore pattern in determining the speed an epidemic moves through a 
crop. They warn however that the validation of the model is purely 
qualitative due to the artificial nature of the model and the inadequacy 
of published data. 

5. Discussion 

Although the models in the examples mentioned have been 
developed independently they are, in general, remarkably similar. 

'· · Thii{.is ·a -reflection of the similarity of the biological processes in 
populations of pest and disease organisms and also the shared aims of 
builders in trying to produce a model for prediction purposes. The 
most important aspect of this is the accuracy of the model, but as we 
have seen most models are poorly validated. Modellers compare their 
model output with field results and usually comment that the agreement _ 
between the two is reasonable. No effort is made to use stringent 
quantitative statistical tests and so the accuracy of the models is 
difficult to determine. Thus their reliability is uncertain and, as Way 
( 197 3) has pointed out, their impact in pest control has been limited. 
Some of the distrust that the field worker has against the modeller is 
the lack of the latter's practical experience. This is being remedied in 
studies in England (Carter et al., 1982 ), the Nether lands (Zadoks et al. , 
in press; Rabbinge et al., l979; Sabelis, 1983) and New Zealand-
(Teng et al., 1980). -Detailed field experiments are performed to test 
the model outcome by comparison with the results of independent 
experiments. This test phase has been completed by several pest and 
disease models, so that the next step to simplified and summary models 
is being made. These summary models form the backbone of the pest 
and disease management system EPIPRE implemented in intensive 
wheat cultivation in the Netherlands. Pesticide usage in agriculture 
seems high and more supervised systems of pest and disease control 
should be developed in the near future in order to develop sound 
agricultural methods. 
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