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1. A new concept of endolymph flow in the vertebrate vestibular system is 
presented. This approach describes quantitatively the flow in the entire system of 
three semicircular ducts interconnected by the utriculus and the crus commune. 
This approach· is quite distinct from the classical theory in which the labyrinth is 
generally conceived to consist of three separate duct circuits. 

2. The present approach shows the following set of distinct differences to the 
classical view: 

(a) In a labyrinth composed of three ducts perpendicular to each other the flow 
is non-zero in the other ducts when the labyrinth is rotated in the plane of a particular 
duct. 

(b) In a labyrinth with two equal ducts and with the duct planes under =73° the 
flow in one duct is zero when the rotation takes place in the plane of the other duct. 
Previous measurements of duct angles reflect this value surprisingly well. 

An obtuse or sharp angle between duct planes can lead to better performance of 
a particular labyrinth because the "external impulses" in the different ducts may 
amplify or compensate each other. 

(c) The behaviour of the flow in the entire labyrinth is a non-linear function of 
direction or rotation (cf. points (d), (e)). 

(d) Six time constants for the entire labyrinth can be distinguished (three long, 
three short); the flow in a particular duct is composed of six terms with these time 
constants. The composition of this flow and thus tlie relative importance of the 
terms depends on the positioning of the labyrinth with respect to the rotation vector. 

(e) The time constants also depend, for different labyrinths, on a shared influence 
of the dimensions of the ducts and the elastic properties of all three cupulae. 

(f) The forces in a particular duct depend also on the amount of motion the fluid 
will acquire in the other ducts. 

(g) The sensitivity of a particular duct depends also on the dimensions of the 
other parts in the vestibular system. 

3. Equations for a system consisting of two ducts and for the classical single duct 
system are also given. Both systems are special cases of the three-duct system. The 
single duct equations are equivalent with equations given by Oman (1980) and 
Oman et al. (1987) which include the contribution of a wide utriculus. 

4. The present theory of endolymph flow is mainly supported by the outcome of 
previously performed experiments concerning time constants and rotation of human 
subjects in different planes. Measurements of relative dimensions of ducts, utriculus 
and crus commune are in accordance with considerations about sensitivity of the 
labyrinth which follow from our theory. However, additional evidence to verify our 
theory is needed. 
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I mm 
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e: Columbo domes/leo (Aves) 

10 mm 

f: Cynocephalus popio 
(Mammalia) 

cochlea 

FIG. 1. Vertebrate labyrinth types; right side, from lateral unless otherwise indicated: a: river lamprey, 
Lampetrafluviatilis (L.) (Agnatha, Petromyzoniformes), after De Burlet & Versteegh (1930); b: thornback 
ray, Raja clavata L. (Elasmobranchii), after Retzius (1881); c: bowfin, Amia calva L. (Halecomorphi), 
after Retzius. cl: from lateral, c2: from dorsftl; d: green frog, Rana esculenta L. (Amphibia, Salientia), 
after Retzius; e: pigeon, Columba domestica (Aves), after Retzius;f: yellow-faced baboon, Cynocephalus 
papio (Mammalia, Primates), after A. A. Gray (1907). Abbreviations: a= anterior duct, aa =ampulla 
anterior, ah =ampulla horizontalis, ap =ampulla posterior, c =crus commune, ch =ciliated chambers, 
de= ductus endolymphaticus, h =horizontal duct, 1 =lagena, p =posterior duct, s =sacculus, u = 
utriculus. 

Note the oblique angle (ca. 120°) between anterior and posterior duct in picture c2, the non-plan.arity 
of some ducts, the separate posterior duct in the Ray's labyrinth (picture b), the relatively big cross­
sectional area ()f the crus commune and the peril.,Ymphatic ca11als in picture f. 
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1. Introduction 

The study of the mechanics of the semicircular ducts is a classical example of 
the application of physical laws to a biological system. Extensive reviews are given 
in for example de Burlet (1931; morphology), 0. Gray (1951, 1955; phylogeny), van 
Egmond et a/. (1952; physiology), ten Kate (1969; biophysics), Dohlman (1980; 
function of cupula) and Wilson & Melvill Jones (1979; general information). All 
the preceding physical' approaches started from the assumption of a single closed 
duct filled with endolymph ( cf. De Vries, 1956), often a circular ring with at the 
sensor site an elastic element: the cupula. This system behaves as a torsion pendulum 
and can be described by an overdamped second order equation of motion. From 
this equation two time constants can be derived (van Egmond et al., 1949). The 
corresponding frequency response of the duct shows that it acts as an angular 
velocity transducer with a bandwidth determined by the time constants (Mayne, 
1950; Melvill Jones & Milsum, 1971). Simonovitch (1966), Van Buskirk (1977), 
Oman & Young (1972), Oman (1980) and Oman et al. (1987) have extended the 
torsion pendulum model, also considering the influence of a wide utriculus and an 
elliptical cross section of the ducts. 

The three-dimensional system has been treated previously as a combination of 
three separate circuits "almost" perpendicularly positioned to each other ( cf. e.g. 
Valentinuzzi, 1967). 

The present approach describes the flow in the entire labyrinth i.e. in the system 
formed by the interconnection of all three semicircular ducts with the common crus 
and the utriculus. It will be shown that this concept reveals rather large differences 
from previous mechanical descriptions, viz. non-linear behaviour of the flow as a 
function of direction of rotation, a set of six time constants with influence on the 
flow in each duct, an influence of the size of utriculus, crus commune and the other 
ducts on the sensitivity of a particular duct, and a shared influence of the elastic 
forces of the three cupulae upon the flow inside the system. 

Retzius (1881), De Burlet (1931), A. A. Gray (1907), 0. Gray (1951), Werner (1960) and Ramprashad 
et al. (1986) gave an extensive comparative description of labyrinth shapes. Although some of these 
references are rather old these descriptions are considered quite valid. Concerning phylogeny we follow 
mainly 0. Gray (1951). In Agnatha Uawless fishes) a two-duct labyrinth exists with a rather unusual 
shape. In Myxine (hagfish) the two ducts, each with an ampulla, form a single ring. In the Petromyzoni­
formes (lampreys) the two ducts meet in a common part, as in a crus commune. At the point of their 
confluence a valve-like organ (spindle organ) is present (Lowenstein et al., 1968). 

In Elasmobranchii (sharks and relatives) the third (i.e. horizontal) duct is found in a highly derived 
form (0. Gray, 1951; Werner, 1960). It appears to be closely connected to the anterior vertical duct. The 
posterior duct in this group is rather separate. · 

In Teleostei (bony fishes) and higher vertebrates we find the well-known general labyrinth shape (with 
regard to the semicircular ducts) although there are many modifications concen1ing shape, diameter, 
duct planes and connections between ducts. 

The connection of the horizontal duct with the common crus (point A in the model) is subject to 
considerable variations; for this reason we chose points B and C in our model for the solution of the 
eqn of continuity. Inside the common crus the flow then becomes more complex, but with our theory it 
can still be solved for all cases. Also, labyrinths with highly modified connections, for example found 
in birds, (Fig. le) can be treated with our theory. 
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When the ducts are mutually perpendicular and rotation takes place in the plane 
of one of the ducts, flow may also occur in the other two ducts. 

In this paper the physical essentials of this new flow model are given together 
with experimental evidence from other publications supporting the validity of the 
present approach. A detailed mathematical treatment will be published separately 
(Muller & Verhagen, 1988). 

2. Simplifications 

Figure 1 shows a sample of the enormous variety in existing vertebrate labyrinth 
types (cf. Retzius, 1881; De Burlet, 1931; A. A. Gray, 1907; 0. Gray, 1951, 1955; 
for extensive descriptions). From this picture and the referred literature it is evident 
that the angle between the planes of the different ducts in different species may 
seriously deviate from the 90° value and also that the duct circuits are not always 
planar. We chose as a base for our model the common mammalian type, also because 
of its significance for the human system. In Fig. 2 is shown how the duct system 

c 

(3' 
pi 

o: Cynocephalus b: Model 

FIG. i. Derivation of our model-labyrinth with triangular geometry from a real system (Cynocephalus). 
The horizontal and posterior duct circuits are both connected to the anterior duct circuit. No direct 
interconnection between horizontal and posterior ducts exists. For reasons of clarity we have displayed 
the model labyrinth with equal cross-sectional areas. Also in the Cynocephalus labyrinth p2 and u are 
rather small. Figure 1, however, demonstrates that the lengths as well as the cross-sectional areas of the 
different parts of the labyrinth may vary from species to species. All these parameters can be varied in 
our model ( cf. Table 1 ). In this and the following Figures the spherical shape of the ampullae is not 
included in the model and only chosen to point out the positions of these labyrinth parts (see also 5.2.4). 

We chose for reasons of simplicity a triangular geometry for the duct system; when other forms are 
chosen the geometrical description of the labyrinth demands more parameters. For model construction 
it is recommended to reduce the amount of parameters as much as possible. 

Abbreviations: a= anterior duct; c =crus commune; h1 , h2 =parts of horizontal duct; p 1 , p2 =parts 
of posterior duct (and utriculus); u =utriculus; aa, ap, ah =ampullae; A, B, C, D and E: points of 
connection between ducts, a', {3' =interior angles between duct planes. 
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chosen by us can be derived from a real labyrinth. The angles between the anterior 
and the posterior duct (a') and between the anterior and the horizontal duct (/3') 
are allowed to vary between 0 and 180° in order to simulate different labyrinths. 
The lengths and the diameters of the ducts also can be varied. The elastic properties 
of the three cupulae have been chosen identically (this condition may easily be 
relaxed). The labyrinth is allowed to rotate around an origin by a vector w in all 
possible directions at a particular position in space. For reasons of simplicity we 
have chosen a triangular geometry for the ducts (Fig. 2). The choice of other shapes 
and connections between the ducts does not give rise to fundamental physical 
problems (cf. Muller & Verhagen, 1988). 

3. The Model 

3.1. GEOMETRY 

The canal system representing the labyrinth has been defined by the co-ordinates 
of points A to E (Fig. 3) in a flat (x, z) plane. The triangle ABC represents the 
circuit formed by the anterior duct (a), the crus commune (c) and the utriculus 
(u). The triangle AEB represents the horizontal duct (h = h1 + h2 ), connected to the 
utriculus. The triangle ADC is formed by the posterior duct (p = p1 + p2 ) connected 
to the common crus. The latter definition does not fully cover the anatomical 
definition since p2 is in fact a part of the utriculus. The chosen definition, however, 
facilitates the physical analysis for reasons of symmetry. The position of the cupulae 
is chosen as indicated in Fig. 3. 

x-----

FIG. 3. Definition of the labyrinth circuit in a flat (x, z)-plane. The planes AEB and ACD can be 
rotated around u and c respectively in order to form a three-dimensional labyrinth. This labyrinth is 
rotated by a vector ro along they-axis in M. The plane ABC can be tilted with respect to a (x, z)-plane. 

Abbreviations: x, y, z =co-ordinates in space (the y-axis is perpendicular to the x-axis and z-axis); 
ro =rotation vector; M =origin of earth-bound frame; other symbols are the same as in Fig. 1. 
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The posterior duct (ADC) can be positioned by rotation around the line AC with 
respect to the anterior duct (ABC) by an angle a (Fig. 4); analogously the ho.rizontal 
duct (AEB) can be positioned with respect to the duct (ABC) by an angle f3. The 
whole labyrinth can be positioned in space by translation in the (x, z) plane and 
rotation of this plane around the x-axis with an angle f.t· Choosing a particular a, f3 
and f.t results in a labyrinth shape in a 3D-space. Table 1 lists all parameters that 
describe the labyrinth in space. 

3.2. INPUT SIGNAL FOR THE LABYRINTH SYSTEM 

In order to simplify our analysis we have rotated the labyrinth according to the 
classical cupulometry experiment (Groen & Jongkees, 1948; van Egmond eta/. 1948; 
Hulk & Jongkees; 1948), i.e. a rotation of a relatively long duration was applied 
until the fluid did not move with respect to the labyrinth wall. Then the labyrinth 
was suddenly stopped ( t = 0). The fluid still has an initial impulse (momentum) and 
moves according to the eqn of motion: 

Mx+Fx+Sx=O (3.2.1) 

in which M ("mass") is the mass of the endolymph, F ("friction") is a factor 
describing the friction within the endolymph, S ("spring constant") is a factor 
denoting the elasticity in the system due to the cupula and x, :X, x are respectively 
the endolymph acceleration, velocity and displacement with respect to the wall of 
a duct. 

D 

FIG. 4. Definition of angles between duct planes. The posterior duct (i.e. ACD can be positioned 
with respect to the anterior duct circuit (ABC) by an angle a (or a'). Analogously the horizontal duct 
(AEB) is positioned with respect to the anterior duct using an angle f3 (or {3'). For abbreviations cf. 
Fig. 1. 
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TABLE 1 

Parameters, describing labyrinth model in space ( cf. Figs 2 and 3) 

Cross-sectional 
____. Lengths of areas of 

Co-ordinates ducts ducts Angles 

XA ZA a A a a (ADC) 

XB ZB u A .. {3 (AEB) 

Xc Zc c Ac 
Xo Zo h =hi+ h2 A11 
XE ZE P =Pi +p2 AP 

xA-xE and zA-zE are the co-ordinates that define the shape of the labyrinth in a 
flat (x, z)-plane. The lengths of the ducts follow from the co-ordinates. The duct 
circuit ADC (posterior duct) is positioned with respect to duct circuit ABC (the 
anterior duct) at an angle a. Duct circuit AEB (horizontal duct) is positioned with 
respect to ABC at an angle {3. The whole, three-dimensionally defined, labyrinth 
can be rotated and translated in the ABC-plane. The latter plane can be tilted with 
respect to the rotation vector ro by an angle JL. The result is a 3-dimensionallabyrinth 
in space, rotating around they-axis of the {x, y, z} co-ordinate system. 

For a single duct circuit the time constants of the equation of motion are: 

T1 = F IS (long time constant) and T2 = M IF (short time constant) (3.2.2) 

However, for a system composed of three interconnected ducts such simple formulae 
for the time constants cannot be given (see below, formula 3.5.2). 

The behaviour of the system is yet determined by the initial conditions: x = 0 at 
t = 0 and the values of the impulses in the different ducts at t = 0 (note that these 
conditions do not include friction) and the time constants (in which also the influence 
of friction is expressed). 

There is a considerable amount of literature in which this experiment has been 
carried out and discussed. Our model can thus be checked by the outcome of these 
previously performed experiments. 

3.3. CONTINUITY EQUATION 

In the connections B and C between the ducts the equation of continuity of fluid 
has to be applied. The two continuity equations become: 

xuAu = .XaAa -.X hAll 

XcAc = XaAa - XpAp 

(Fig. 3, point B) 

(Fig. 3, point C) 

In words this means that the sum of the flow rates of the ducts is zero. 

3.4. IMPULSE EQUATIONS 

(3.3.1a) 

(3.3.1b) 

The initial impulse (lex), exclusively resulting from rotation of a part of a duct 
(the "external" impulse) can be determined by the equation: 

I,"x = p. ro, * r A. h,. ds (t = 0) (3.4.1) 
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in which Is is the length of the duct part, pis endolymph density, ws is the component 
of w perpendicular to the duct and hs is the distance vector between w and the duct 
(see Muller & Verhagen, 1988 for derivation). 

The real impulse (I) in a duct (i.e. the real amount of motion the fluid in that 
duct possesses) is not equal to this external impulse but is also influenced by the 
external impulses in the other ducts. To determine the real impulse we first consider 
the pressure differences between e.g. A and C. This pressure difference is equal 
along paths p and c. This results in an equation for the impulses: 

(3.4.2) 

in which p is the pressure due to endolymph movement in a connection between 
ducts (indicated by the subscript; see Muller & Verhagen, 1988 for derivation). 

Analogously, consideration of the pressure difference between points A and B 
yields: 

(3.4.3) 

Addition of (3.4.2) and (3.4.3), also considering the pressure difference between B 
and C gives four possibilities, e.g: 

(3.4.4) 

The impulse eqns (3.4.2), (3.4.3) and (3.4.4) together with the equations of 
continuity (3.3.1a,b) form a system of five equations with five unknown variables 
xa(O), xp(O), x11(0), xc(O), xu(O). 

In matrix notation these five equations become: 

0 mp/AP 0 -me/ Ac 0 xa(O) (Ipex/ Ap- lcex/ Ac) 

0 0 m11/Ah 0 -mu/ Au xp(O) (I hex/ Ah - luex/ Au) 

ma/Aa mp/AP mh/A11 0 0 x11(0) (laex/ Aa + lpex/ Ap + 1/tex/ Ah) 

-Aa 0 Ah 0 Au xc(O) 0 

-Aa AP 0 Ac 0 xu(O) 0 

(3.4.5) 

This system can be solved by conventional procedures. Yet the initial velocities in 
all the ducts of the system are known. With these initial conditions the equation of 
motion for the entire labyrinth can be solved. 

3.5. EQUATION OF MOTION 

For each duct (a, p and h) an equation of motion of the type (3.2.1) can be 
formulated. The same holds for crus commune (c) and utriculus ( u ). The latter two 
equations lack the term with S because there is no cupula in these labyrinth parts. 
These equations of motion can be combined, in a way comparable with that for the 
impulses, according to pressure conditions in the joints of the ducts. For example: 
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for ducts h and u the equation of motion becomes: 

Combination of these equations with the equations of continuity (3.3.1a,b) results 
in the following set of three simultaneous second order differential equations (ref. 
also Kuipers & Timman, 1966): 

[ 

[A1] [B1] 

[A2] [B2] 

[A3] [B3] 

[C1]] [ Xa] 
[C2J xp =O 

[C3J xh 
(3.5.2) 

in which [A1] ... [ C3] are (quadratic) constants, expressed in Cauchy's differential 
operator D (comparable with a Laplace operator) and the dimensions and physical 
constants of the labyrinth (cf. Muller & Verhagen, 1988 for detailed formulae) and 
X is the endolymph displacement in the D-domain. This system of equations is 
equivalent with a sixth order differential equation describing the endolymph motion 
in the whole labyrinth. So, no separate (second order) equations for each duct exist, 
as was the case in the classical approach. Apart from the trivial solutions Xa = xP = 
x 11 = 0, the above system has a solution when the determinant of the left matrix 
equals zero. This gives rise to a characteristic equation (in D) of the 6th degree. 
The solution has the form: 

6 

Xa = L a; . exp (- t I T;) 
i=l 

6 

xP = L: b; . exp (- t I T;) 
'i=l 

6 

xh = L: C; • exp (- t I T;) 
i=l 

(3.5.3a) 

(3.5.3b) 

(3.5.3c) 

in which a;, b;, c; are constants and T; are the six time constants of the labyrinth. 
Xc and Xu follow from the equations of continuity (3.3.1a,b). The flow in each duct 
is thus determined by all six time constants. The terms with these time constants 
may however be of different size in the respective ducts. So, a specific time constant 
may have a most important influence on the flow in a particular duct. 

3.6. COMPUTER SIMULATION 

For numerical calculation we have chosen the labyrinth shape drawn in Fig. 5. 
According to Oman & Young (1972) and Van Buskirk (1977) a "duct ring" of a 
human labyrinth has a radius (R) of 3·0 x 10-3 to 3·2 x 10-3 m. The co-ordinates in 
Fig. 5 have been chosen in such a way that a triangular circuit (e.g. AEB) has about 
the same circumference. 



482 M. MULLER AND J. H. G. VERHAGEN 

(.10-3)2 I 
4 C(4,4) 

(pi) 

(c) (a) 

4 
I ----X 

(.10- 3) 
(u) 

amp. ant. 

(h2) 

E(-4,-4) -4 

amp. hor. 

FIG. 5. Geometry of a labyrinth, chosen for digital computation. A single duct circuit (e.g. AEB) of 
this labyrinth should produce time constants comparable to the values found by Oman & Young (1972) 
for a human labyrinth (horizontal duct). Dimensions in m. For abbreviations cf. Fig. 1. 

The radii of ducts a, p and h have been chosen to be equal with a value of 
1·75 x 10-4 m (i.e .. slightly bigger than the r = 1· 5 x 10-4 m given by Van Buskirk 
(1977) in order to match our choice of geometry with the time constants). The crus 
commune (c) has been made wider by a factor of 1·93. This factor we obtained by 
a regression analysis of the radii of 200 labyrinths of different species (details we 
will publish elsewhere). Similarly, the radius of the utriculus was chosen a factor 
2·42 times ra. 

Choosing the physical constants 'T1 = 8 x 10-4 kg/ (m.s.) (37°C; Steer, 1967), p = 
1000 kg/m3 (Steer, 1967), S = 1·389 x 10-5 N/m (cf. also ten Kate, 1969; Grant & 
Van Buskirk, 1976) results in time constants: 

T1 =20 sec, T2 = 0·005 sec 

according to values given by Oman & Young (1972). 
The value of S is a calculated, not a measured, value. This particular value was 

merely chosen to fit the long time constant T1 to a realistic order of magnitude. It 
is beyond the aim of this paper to derive an accurate value for S. 

With the above values, the maximum endolymph displacement in duct h becomes 
about 1-10 ~ms. This corresponds rather well with values given by Oman (1980). 
Because Dohlman (1980) has argued that the utricular volume may be small (contrary 
to Oman, 1980) we have also made simulations with a relatively narrow utriculus 
(ru = 1·4 X 10-4 m). 
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c 

w 

x----

FIG. 6. Geometrical definition of a two-duct labyrinth. This figure is comparable with Fig. 3. Note 
that here three duct parts are distinguished (i.e. a, c and p ). 

4. Results of some Simple Calculations 

4.1. TWO SEMICIRCULAR DUCTS 

The described general model for three semicircular ducts can be considerably 
simplified when only two ducts (e.g. ABC and ACD) are considered. This enables 
not only the simulation of labyrinths of jawless fishes (Agnatha, Petromyzoniformes) 
but it is also attractive as a relatively simple "help-for-thinking". In this paragraph 
first the general equations for the two-duct labyrinth are given, followed by further 
simplifications for some special configurations. The notation is the same as in the 
preceding chapter. 

4.1.1. General equations 

The geometry of the two duct system is given in Fig. 6. Plane ACD can be 
rotated with respect to ABC by an angle a. The rest of the geometry is analogous 
to section 3. 

The continuity equation becomes: 

(3.3.1b) 

Relating the velocities in (a) and (p) by a (time-dependent) factor ka as follows: 

(4.1.1.1) 

gives for the equation of continuity: 

Xc = Xa(Aa- kaAp)/ Ac ( 4.1.1.2) 

The equations for the initial impulses become (analogous to eqns 3.4.2-3.4.4): 

(Jp- lpex)/ Ap = (Jc- lcex)/ Ac = -(Ia- laex)/ Aa = (pc- PA) .f:lt (4.1.1.3) 
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The relations (4.1.1.3) are in fact two equations. They form, together with the 
equation of continuity, a system of three equations with three unknown variables 
xp(O), xe(O), xa(O): 

[ 
ma~ Aa 
-Aa 

(4.1.1.4) 

The equation of motion yet leads to four time constants (see Muller & Verhagen, 
1988). 

4.1.2. Some examples. 

In this paragraph it is assumed that mP = ma = m and all cross-sectional areas 
are equal to A. Rotation takes place around point A in plane ABC, so Ieex = 0. From 
( 4.1.1.4) it follows that: 

k = ( m + me) . Ipex + me . Iaex 
a me . Ipex + ( m + me) . Iaex 

(4.1.2.1) 

A 8 

c c 

amp. /h ~ --- ~ 
0 A 8 

FIG. 7. Example 1. (A) Picture of external impulses. If this labyrinth is rotated in plane ABC by w 
around point A external impulses occur in the ducts which are drawn bold. (B) Picture of flow. In the 
common crus (AC) no flow exists. This is indicated by the x sign. The path of flow is indicated by 
arrows. Abbreviations as in Fig. 1. Further explanation in text (section 4.1.2). 

4.1.2.1. Example 1 (Fig. 7): 

a = oo: the planes of the ducts are folded apart into the same plane, Ipex = Iaex =I, 
so: 

k = ( m + me) . I+ me . I 
a me.I+(m+me).I 

1
' 

so xp(O) = xa(O) and xe(O) = 0. 
In words: the flow occurs along the "periphery" i.e. ducts a and p behave as a 

single circuit. In the common crus no flow occurs. 
A comparable flow (but with another magnitude) is obtained for any other a for 

which the projection of the ducts gives an equivalent picture as Fig. 7. 
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A B 

c c 

~ 
A --

D 
8 

w 

FIG. 8. Example 2. (A) External impulses. (B) Flow picture. This figure is comparable with Fig. 7. 
Further explanation in text (section 4.1.2). 

4.1.2.2. Example 2 (Fig. 8): 

a= 180°: the planes of the ducts are completely folded together, Ipex = -Iaex so, 

k = - ( m + me) · I a ex + me . Iaex 

a -me. Iaex + (m +me). Iaex 

so xp(O) = -.Xa(O) and .Xe(O) = 2 . .Xa(O). 

-1 

In words: in both ducts the endolymph streams towards the apex of the common 
crus. In the common crus the flow of the two ducts is added. Here also a comparable 
flow (with a different magnitude) is obtained for any other a for which the projection 
of the ducts gives an equivalent picture as Fig. 8. 

4.1.2.3. Example 3 (Fig. 9): 

a= 90°, the planes of the two ducts are perpendicular to each other. Ipex = 0 

k = I a ex • me me 
a Iaex • (me + m) me + m 

Thus, in this example, the endolymph flows also in duct p, despite the fact that this 
duct is perpendicular to the plane of rotation. 

A B 

c c 

amp. 

w 

FIG. 9. Example 3. (A) External impulses. (B) Flow picture. This figure is comparable with Fig. 7. 
Further explanation in text (section 4.1.2). 
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If e.g. me= 1 it follows from Fig. 9 that m = 1 +.J2 and ka = 0·29 

{
.Xp(O) = 0·29.Xa(O) 

~ Xe ( 0) = ( 1 - ka) . Xa ( 0) = 0 • 71 . X a ( 0) 

So a considerable flow exists in the posterior duct. 

A B 

c c 

D 

FIG. 10. Example 4. (A) External impulses. (B) Flow picture. This figure is comparable with Fig. 7. 
Further explanation in text (section 4.1.2). 

4.1.2.4. Example 4 (Fig. 10): 

In this example we will search for the angle a between the ducts for which there 
is no flow in p. Therefore we state xP = 0 ~ ka = 0 

~ (m +me} . lpex +me. laex 0 

me. lpex + (m +me). laex 

A condition is that the denominator may not become zero, so: 

Equation ( 4.1.2.4) is fulfilled if: 

(4.1.2.4) 

For me= 1 and m = 1 +.J2 it follows that lpex = -0·29. laex· Substitution of this 
relation in formula (3.4.1) yields wP = -0·29. Wa or w. cos (a)= -0·29. w. This is 
achieved for an angle a of ca. 107°. Thus the sharp angle (a') between the ducts 
is ca. 73° (see also section 5.1.1). 

4.2. ONE (SEMI)-CIRCULAR DUCT (HERE TRIANGULAR) 

This is the classical approach, which is a special case of the theory presented 
here. The geometry is shown in Fig. 11. 
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8 

A amp. hor. 

E 

X---t-

FIG. 11. Geometrical definition of a labyrinth, forming a single duct circuit. This labyrinth represents 
the classical approach (cf. van Egmond et al. 1949; Oman et al., 1987). Abbreviations: see Fig. 1. 

The matrix (3.4.5) for the initial conditions can be simplified to: 

So the initial endolymph velocity in duct (h) becomes: 

lhex • Au/ Ah - luex 

p . ( h . Au + u . Ah) 

The equation of motion for a single duct circuit is equal to: 

(4.2.1) 

(4.2.2) 

(3.5.1) 

Combination of (3.5.1) with the equation of continuity (lower row of (4.2.1)) gives 

wherein: 

M=p.A~. (h/Ah+ujAu) 

F=8. 71'. 'TI· A~. (h/A~+u/A~) 

S=Sh 

(4.2.3) 

( 4.2.4a) 

(4.2.4b) 

(4.2.4c) 
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The factor 8 . 7r. YJ originates from Poiseuille's law; detailed information is given 
in Muller & Verhagen (1988). 

Simonovitch (1966) presented an analysis based on a single duct circuit, composed 
of a narrow duct and a wide utriculus. He found that, due to the inertia of the fluid 
inside the utriculus, the value of M / F is bigger than the values obtained by van 
Egmond et al. (1949). The detailed discussion by Simonovitch accounts also for 
different values of rh and is somewhat complicated. 

Oman (1980) has developed an equation comparable with eqn (3.5.1) for the 
non-homogeneous case. The latter equation contains also a third constant (his 
-1/ D1) due to fluid inertia when an acceleration is applied to the duct circuit (in 
a later paper this constant is, in a slightly different equation equal to -2pA; cf. 
Oman et al., 1987). 

We do not agree with Oman's conclusion that this third constant originates from 
the presence of a wide utriculus because for the homogeneous equation (i.e. when 
the angular acceleration a= 0) it disappears. So the third constant is a consequence 
of the specific input chosen by Oman. It is not a property of the (second order) 
system itself. 

Oman (1980, p. 262) states that: "it is not possible to 'adjust' the two-coefficient 
van Egmond model differential equation for the effect of different size utricles in 
various species simply by manipulating the length of the duct segment and calculating 
a different value of II ... or by assuming a different value of 8". 

In our opinion, the constants M and F (corresponding to 8 and II) do contain 
the influence of a wide utriculus and so influence the time constants of the system 
itself but the time-dependent behaviour of the system may be modified by choosing 
a time-dependent input (e.g. Oman's a(t) instead of Van Egmond et al.'s y).t 

The equation of Oman accounts also for the ellipticity of a duct. In order to keep 
our analysis as simple as possible this is not included in our model but can be 
introduced using Oman's results from the Navier-Stokes equation (e.g. his 
formula [14-8]). 

5. Discussion 

The model presented in this paper provides a new view on both the form and 
the function of the semicircular ducts. Verification of the predictions of the model, 
both morphologically and physiologically, is therefore required. We do not have at 
our disposal specially designed laboratory facilities in which we can obtain such 
evidence from experiments. However, in the literature we have found some results 
which can be explained rather well by our theory. 

t The homogeneous equation for a single duct is the simplest equation describing the dynamics of the 
labyrinth. This is only true when prior to t = 0 the labyrinth has a constant angular velocity. Then the 
endolymph velocity at t = 0 is equal to the velocity of the labyrinth. When a constant acceleration is 
present (prior to t = 0), the motion of the endolymph at t = 0 is not equal to the motion of the duct, so 
determination of the initial conditions becomes more complex. 

In eqn ( 19) of Oman eta/. ( 1987), when a delta function is substituted for the acceleration (i.e. a= 8( t)) 
our imaginary cupulometry experiment (cf. section 3.2) is established. Then, Oman's eqn (19) becomes 
(after integration from t = 0- to t = 0+) identical with our initial condition. So, Oman's equation is 
identical to our equation for a single duct when a cupulometry experiment is carried out. 



ENDOLYMPH FLOW IN THE SEMICIRCULAR DUCTS. I 489 

5.1. EVIDENCE SUPPORTING OUR MODEL 

5.1.1. Morphological features (Fig. 1) 

No separations have been found in histological sections of crus commune and 
utriculus. So, there is no anatomical ground for two or three separate duct circuits 
in the general labyrinth form. The elastic forces exerted by the cupulae are very 
small with respect to the forces exerted by the endolymph (except at a very long 
time after stimulation), so the cupulae cannot be serious barriers to the flow. 

Comparing semicircular duct systems of different animals, it is apparent that in 
many animals the angles between the ducts are not 90° (Fig. 1). Sometimes there 
are considerable deviations, e.g. in the labyrinth of Squalus acanthias (a shark) the 
angle between the anterior and posterior duct is about 115° (max. error ±5°, measured 
in one labyrinth). The classical theory cannot give a mechanical explanation for the 
existence of angles other than 90°. Using our theory it can be understood that an 
obtuse or sharp angle in a particular labyrinth can lead to a better performance of 
this sense organ because the external impulses in the different ducts may amplify 
or compensate each other. 

TABLE 2 

Angles between semicurcular duct or canal planes of a labyrinth. The angle between 
anterior and posterior duct is a'. The angle between anterior and horizontal duct is f3' 
(angles in degrees). When known, mean values ±SD. are given. *=angles between 

canals of bony labyrinth. 

Species a' f3' Reference 

guinea pig 76·71±5·5* 122·15±6·1* Curthoys et al., 1975 
rabbit 71·36±4·4 100·64±9·4 Mazza & Winterson, 1984 
cat 90 90 Fernandez & Valentinuzzi, 1968 

90·21±4·1* 89·62±8·7* Blanks et at., 1972 
rat 96 90 Fischer, 1980 
man 83-88* 83-85* Beck & Bader, 1963 

86·16±4·7* 111·76±7·6* Blanks et at., 1975 

The literature reports a variety of angle measurements between the ducts. A sample 
of values is listed in Table 2. Some values of a' reflect our theoretically determined 
value of about 73° surprisingly well. Whatever the functional significance may be, 
there may be a situation of no flow in at least one of the ducts at a particular rotation. 

The value of 73° is a solution for a special set of parameters of the labyrinth (see 
eqn (4.1.2.4). In particular, the width of the common duct (c in this case) influences 
its value. In our example we have chosen rc equal to the radius of the other ducts. 
For a rather wide c the angle between the duct planes (a') will tend to 90°, for a 
very narrow c this angle must tend to 0°. At the moment we are investigating more 
closely the influence of other labyrinth parameters ( cf. Table 1) on a' and on the 
sensitivity of the various semicircular ducts. To make a well-founded choice of sets 
of parameters is however not as easy as one would desire. 
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5.1.2. Time constants 

One of the most striking features of our analysis may be the conclusion that there 
are not two but six time-constants influencing the flow in any peculiar duct of the 
labyrinth i.e. three long and three short ones. Thus in a cupulometry experiment 
the long "time constant" measured may be composed of three different real time 
constants. Therefore we have called the time needed for the endolymph displacement 
to decay from its peak value to 1/10 of that value, times 10log(e), the "decay 
constanf'. 

A 

y 

cb 
~/ 

-~~-x 
/ 1Jl=4JO 

z PI 
p1tch 

y 

ct: /X 

~~~ 
r lll=430 

roll 

B NARROW u C WIDE U 

lime(sec)-

FIG. 12. Simulations with the Runge-Kutta method of endolymph displacement in a "human-like" 
labyrinth (cf. also Table 3 for numerical information). The geometry is drawn in Fig. 5. The radii of 
ducts a, p and hare 1·75 x 10-4 m, rc is 3·38 x 10-4 m. The angles between the ducts were chosen according 
to Blanks et a/. (1975), so a= 94°, f3 = 68° ( cf. also Table 2). Rotation prior to t = 0 takes place about 
they-axis with 1 rad/sec. The value of S (cupular elasticity) is adjusted to produce a full time scale in 
the graphs of 30 sec. This time scale can be easily changed by a slight variation of S; its value is not critical. 

Column A: type of rotation. Column B: simulations with relatively narrow utriculus (r" = 1·4 x 10-4 m). 
Column C: simulations with relatively wide utriculus (ru = 4·24 x 10-4 m). The time constants are the 
same for each column (cf. Table 3). In Table 3 the approximate values of a "decay constant" expressing 
the total decay in seconds from the peak endolymph displacement about one 10log-unit is given for each 
duct (so this constant is equal to the time in which the endolymph displacement decays to 1/10 of the 
peak value, times 10log(e)). Also the maximum excursions of the endolymph in each duct are indicated. 

In the rows, the responses to a definite type of rotation (yaw, pitch or roll) are given. Only for pitch 
(row 2) have we drawn the endolymph displacement curves for the posterior duct (p) because in yaw 
the endolymph displacement in (p) was very small and in roll the values were negative, due to sign 
conventions (cf. Muller & Verhagen, 1988). 

The scale of the axes is in all graphs the same. Abcissa: time in seconds, Ordinate: endolymph 
displacement (x) in metres times 104 in 10log-units. Abbreviations: see Table 1 and Fig. 1. This figure is 
further explained in section 5.1.2. 
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TABLE 3 

( cf. also Fig. 12) 
A: Parameters, belonging to the simulations of Fig. 12 

ra,p,h = 1·75 X 10-4 m, rc = 3·38 X 10-4 m. 
S = 4 x 10-5 N/m in order to obtain a reasonable time scale. 
T in seconds, (e) = extrapolated value, 
Ta(y) means: decay constant for anterior duct in yaw. 
Other abbreviations are analogous to this one. 
Xmax is maximal endolymph displacement in microns. 

Time constants Narrow u (r" = 1·4 x 10-4 m) Wide u (r11 =4·24x10-4 m) 

Decay const. 

max. excurs. 

X a, max 

xp,max 

xh,max 

ratios of 
decay const. 

TP(p)/ T11 (y) 
Ta(P )/ 7}, (y) 
Ta(r)/ Th (y) 

T,, (p) I T" (y) 
T11 (r)/ T11 (y) 

7·08 7·08 
19·55 6·94 
5·40 4·28 
5·43 X 10-3 6·15x10-3 

4·79 X 10-3 5·11 X 10-3 

3·60 X 10-3 4·79 X 10-3 

Yaw Pitch Roll Yaw Pitch 

4·10 6·08 6·51 4·17 4.15 
6·82 6.75 

7·59 4·21 4·38 6·87 6.60( e) 

8·7 8·3 8·5 6·9 12·5 
0·18 7·6 -7·7 0·08 7·8 
9·9 5·6 5·8 11·1 3·0 

0·90 0·98 
0·80 0·60 
0·86 0·63 

0·55 0·96 
0·58 0·96 

B: Data calculated from Melvill Jones et al. 
(1964, Table 1). 

T(p)/T(y) 
T(r)/T(y) 

sensation 
cupulometry 

0·52 
0·60 

oculomotor 
response 

0·42 
0·26 

Roll 

4.36 

6.62(e) 

12·7 
-7·6 

3·2 
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5.1.2.1. Yaw-pitch-roll experiments. Melvill Jones et al. (1964) carried out a series 
of experiments in which the decay constant was measured in man in yaw, pitch and 
roll. They reported values of about 10·2 sec in yaw, and of 5·3 and 6·1 sec in pitch 
and roll, respectively (sensation cupulometry) and values of 15·6 (yaw), 6·6 (pitch) 
and 4·0 sec (roll) in the oculomotor response. 

With our model, the outcome of these experiments can be reinterpreted. Therefore 
we have carried out two sets of simulations of endolymph displacement curves with 
a "human-like" labyrinth: one set with a relatively wide utriculus (following Oman, 
1980) and the other set with a relatively narrow utriculus (according to arguments 
put forward by Dahlman, 1980). These simulations are presented in Fig. 12 and 
Table 3. 

With a narrow utriculus the flowpath of the horizontal and the anterior ducts 
become more strongly coupled, so the endolymph displacement curves will show a 
more prominent combination of time constants (i.e. a curved shape, see Fig. 12, 
column b). Table 3A shows that the ratios of the decay constants of the different 
rotation directions vary between 0· 55 and 0·90. This agrees with corresponding 
values obtained from the data of Melvill Jones et al. (1964; cf. Table 3B). The values 
from these measurements are however somewhat lower. This is probably due to the 
incomplete matching between our model and a real human labyrinth (for a'-? 90° 
the above ratios become lower). 

For a wide utriculus the horizontal and anterior duct behave more independently. 
So, a single time constant will dominate in the endolymph displacement curves. 
The ratios of the decay constants between anterior and horizontal duct are about 
0·6, also in agreement with the results of Melvill Jones et al. The above reinterpreta­
tion of these experimental results therefore supports our labyrinth model. 

Benson & Bodin (1966) investigated the influence of gravity on post-rotational 
response in human subjects. They applied a rotation, then suddenly stopped the 
subject (with 5 rad/ sec2

) as in an ordinary cupulometry experiment. Yet the subject 
was reoriented in another position. This movement took 2-3 sec. They found striking 
differences in decay constants both for after-sensation and after-nystagmus. These 
results can be reinterpreted using our theory as follows. 

The decay constant of after-sensation Benson & Bodin (1966) measured for yaw 
rotation with a vertical subject was 26·5 sec (their table 1). After reorientation to 
prone, supine, right side down (RSD) or left side down (LSD) this constant was 
about 8·0-9·5 sec. During the rather fast reorientation movement the vertical ducts 
become heavily stimulated. Also the flow in the horizontal duct tends to remain 
horizontal so part of this flow will enter the vertical ducts. The latter effect is probably 
rather small compared with the vertical stimulation. According to Fig. 12 shorter 
time constants will become more prominent in the decay curves (i.e. in the curves 
for pitch and roll). 

Figure 4 of Benson & Bodin ( 1966) shows that for movement from vertical to 
RSD or LSD the decay constants become equally shorter. However a movement 
from vertical to supine produces a longer decay constant (9·7 sec) than a movement 
to prone (7 ·1) sec). Our theory can explain these data rather well. A movement to 
RSD or LSD will cause a roll-component of endolymph flow in the vertical ducts. 
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Following Ewald's law the anterior as well as the posterior cristae respond to 
ampullofugal flow. The left and right labyrinth will behave in an (opposite) sym­
metrical situation for RSD and LSD movements. So, equally shorter decay constants 
will be more prominent in both situations (see above). 

Movements to prone or supine positions will cause a pitch-component of 
endolymph flow in the vertical ducts. Yet both labyrinths behave in an (equal) 
asymmetrical way. Movement to supine will cause an ampullofugal flow in ducts p 
and an ampullopetal flow in ducts a. Movement to prone will produce a reverse 
effect on the flow. The flow situation in prone or supine will be different because 
the radii of the crus commune and the utriculus differ from each other and from 
the radii of the ducts. Also, the simultaneously excited anterior or posterior ampullae 
(following Ewald's law) may cause different decay constants (although this is not 
a consequence of our model). 

The fact that the values of the RSD and LSD decay constants are approximately 
half-way between the values of the prone and supine decay constants can also be 
expected because: ( 1) pitch and roll movements have decay constants of about the 
same order of magnitude (cf. Table 3); (2) the effect of the different radii of crus 
commune and utriculus is "added" or "subtracted" from the vertical flow in 
respectively supine or prone movement. 

Also, the results drawn in fig. 6 of Benson & Bodin can be interpreted with our 
theory. These effects are, however, less conclusive than in the above cases, so detailed 
simulations will be required. 

5.1.2.2. Decay curves. Figure 12B shows that in a labyrinth with a relatively narrow 
utriculus, several time constants appear in the decay curves of the endolymph 
displacement. This is especially the case for yaw (Fig. 12B,y: continuous lines). 

A "decay-curve" measured by Groen et al. (1952, fig. 3) from isolated fibres of 
the horizontal duct of the ray (Raja clavata) shows not only the time constant of 
40 sec reported by the authors, but also a time constant of about half this value in 
the very beginning of the curve. 

A curve of compensatory eye velocity against time elapsed after suddenly imposing 
a post-rotational stimulus of 60° per sec published by Melvill Jones (1965) shows 
also very clearly two long time constants. 

In Fig. 12B,y the dotted line shows how the above authors might have fitted their 
experimental decay curves (i.e. for duct h). It is obvious that this line is not a good 
fit for a time less than ca. 6 sec. So, the above experimental data may be well 
explained by our theory (under the assumption of a relatively narrow utriculus, cf. 
sections 5.1.2.1, 5.1.4). 

One could question whether the smaller long time constant is due to the dynamics 
of the aff~rent neurons (e.g. adaptation and rate-sensitive processes). This is indeed 
a possibility (but see section 5 .1.4). 

5.1.3. Response plane determination 

The present theory implies that in a general case all three cupulae are moved by 
a flow dividing over the entire duct system. Lowenstein & Sand (1940) present in 
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their table I (p. 96) the responses of the semicircular ducts (i.e. the sense organs in 
the ampullae) of the thornback ray (Raja clavata) to angular displacements about 
the three primary axes. t 

From this table it can be seen that the horizontal ampullae give signals only when 
rotation about the vertical axis takes place (as expected in the classical theory) but 
that the vertical ducts (ampullae) respond to any rotation about any of the three 
primary axes. Thus there is also a response of the vertical ducts when the labyrinth 
is rotated about a vertical axis. 

For a completely aligned labyrinth, i.e. with the vertical duct planes oriented 
purely perpendicular to the plane of rotation it is, using the classical theory of three 
single ducts, rather mysterious why there should be a response in the vertical ducts 
when the labyrinth is turned around a vertical axis. With our theory this behaviour 
can be understood, at least for the anterior duct (cf. section 4.1). However, because 
the ray's labyrinth has a highly derived and unusual shape with non-planar ducts 
and an almost separate posterior duct, a detailed discussion about the flow cannot 
be given without accurate specification of the geometrical data and rotation direc­
tions. 

The experiments of Lowenstein (1970) with the labyrinth of the lamprey (Lampetra 
jluviatilis) have revealed that with this two-duct labyrinth, perception in both the 
vertical and the horizontal planes is possible. Lowenstein provides a figure in which 
internal flow inside the ampullae should explain the horizontal response (his fig. 
7). Because of the tiny dimensions of the ampulla and the very low Reynolds number, 
we think it very unlikely that such a flow can occur. Using our theory the vertical 
ducts together with the utriculus form a circuit which is oblique to the horizontal 
plane, so rotation in the horizontal plane may produce flow in both ampullae. The 
complex shape of the cristae in this labyrinth might be an adaptation to enable a 
distinction between the flow along different duct circuits. 

Estes et al. (1975) have investigated responses of the three different ampullae in 
the cat when the ducts are in (respectively out of) the plane of rotation. They report 
that the ducts in this animal behave as separate circuits, as in the classical theory. 
This is, however, not in contradiction to our theory. We do not exclude that for 
certain special cases the three duct circuits behave rather separately but we also 
include other possibilities. In the cat the ducts are almost exactly perpendicular to 
each other (cf. Table 2) and the utriculus in this animal is rather short (as in Fig. 
lf). When the utricular space is relatively wide a pressure difference at the junctions 
of the ducts can hardly be built up, so coupling of duct circuits when they are 
rotated in plane is not necessary. In such labyrinths coupling can, however, become 
very important when the head is moved in pitch or roll (see sections 5.2.1, 5.2.3). 

5.1.4. Conclusion 

Although an unequivocally conclusive verification cannot be given, we think we 
have found enough experimental evidence in the literature to make our theory 

t From Lowenstein (1970, pp. 425, 426), who refers to the paper of Lowenstein & Sand (1940), we 
received the impression that the yawing response of the vertical ampullae discussed here was present in 
the dogfish (Scyllium) but that in the ray (Raja clavata) this response is absent! Despite this confusing 
information we have finally assumed that in the (1940) paper the ray was the correct animal. 
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worthy of further exploration. The interconnection of different labryinth parts 
follows from the numerous morphological descriptions. Also a large variation in 
angles between duct planes has been reported in the literature. In our view, a model 
based on the real shape of the labyrinth (with connected ducts) is more realistic 
than a hypothetical system of three separate ducts for which no morphological 
evidence at all is present. 

Electrophysiological experiments indicate that the responses of the ampullar sense 
organs in different directions of rotation are not limited to single duct circuits. Other 
experiments (see above) seem to confirm that the ducts may operate independently. 
We do not exclude that possibility. However, even in these labyrinths, coupling of 
various circuits of endolymph flow may occur for out-plane rotations. The latter 
fact is well reflected in the yaw-pitch-roll experiments discussed above. 

The appearance of several exponential components in some decay curves might 
partly be ascribed to adaptation and rate-sensitive processes associated with the 
encoding process. We have shown, however, that a decay curve with more long time 
constants can be generated by our model, especially when the utricular volume is 
narrow. This is a controversial point, recently discussed in the literature (Oman, 
1980; Dohlman, 1980). 

amp. post. 

E 

CIOSSICOI model· 
separate ducts 

A 

E 

new model: 
connected ducts 

B 

FIG. 13. Examples of labyrinths with duct circuits of equal size positioned perpendicular to each 
other. The labyrinths are rotated around A in a plane through the peripheral parts of the ducts (about 
the plane of the paper when one considers the drawings as a projection of the labyrinths). The arrows 
indicate the flow. (A) Classical model formed by three separate duct circuits. (B) The flow according 
to our model. The fluid flows along a small "s" path as well as along a large "/" one. This results in 
six time constants depending on the dimensions of the labyrinth (not the angles between the ducts). The 
fluid flow in a particular duct depends on these six time constants and also on the angles between the 
canals and the position of the labyrinth with respect to the rotation vector. This is not the case for 
labyrinth (A). 

When the labyrinth (A) is rotated in the plane of one particular duct no flow occurs in the other ducts. 
In labyrinth (B) flow then exists in all three ducts. 
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5.2. APPLICATIONS OF OUR MODEL VERSUS PREVIOUS VIEWS 

5.2.1. Endolymph flow along different duct circuits (Fig. 13) 

In a general case of the classical view of endolymph flow the fluid flows inside 
each of the three duct circuits (Fig. 13A). When rotation is limited to the plane of 
one duct then only flow in this duct occurs. Fig. 13B shows what may happen in 
the same case following our theory. In this special case there is a "small" flow path 
("s"), limited to the anterior duct and a part of the utriculus (i.e. triangle ABC), 
but there is also a "large" flow path ("I") in which all three ducts are involved as 
well as another part of the utriculus (thus along a path BCDAEB .. . ). A variety of 
different divisions of the flow over the whole circuit is possible depending on different 
positions and rotations of the labyrinth. 

It is questionable whether it is possible to create a situation in which flow is 
restricted to only one duct when the labyrinth is rotated in the planes of the three 
ducts, respectively. Therefore, when the labyrinth is rotated in the plane of one of 
the ducts, flow may also occur in the other two ducts. This flow is caused by pressure 
differences at the junctions of the ducts. These pressure differences are mainly due 
to fluid inertia and friction and, on a very long time scale, also due to elastic forces 
of the cupulae. 

Meyer zum Gottesberge & Maurer (1949) recognized the fact that flow may occur 
over both vertical ducts. However, they considered this flow to be an addition of 
the circulations occurring in the two separate ducts (cf. their fig. 1, "Hintereinander­
schaltung", and their fig. 2, "Parallelschaltung"). This is an invalid physical rep­
resentation also leading to incomplete flow pictures e.g. the flow paths along crus 
commune (their fig. 1) and horizontal duct (their figs 1 and 2) have not been found. 
They finally come to the conclusion that (p. 705): "Die Stromungen in einzelnen 
Bogengangen lassen sich annahernd so betrachten als ob jeder Bogengang ein 
geschlossenes Ringsystem bildet." (etc.). 

De Vries (1956) discussed the possibility of interaction of flow between the ducts 
but did not recognize its importance: "Indeed when the fluid in one duct is propelled 
by an acceleration, part of it may flow through into another duct. The other ducts 
are, however, a shunt with a high resistance on the path they have in common, so 
that the leakage is small. Moreover this effect could easily be taken into account 
by the computing mechanism of the central nervous system, since it is a linear effect." 

Oman et al. (1987, p. 8, note 1) state: "With a canal oriented so as to maximize 
its projection (and hence its sensitivity) in the plane of rotation, the other two nearly 
orthogonal canals will have nearly zero projection area in the plane of rotation, 
and therefore experience negligible net acceleration pressure. Hence negligible 
endolymph flow will occur into or out of these entrances to significantly alter the 
flow in the canal located in the plane of rotation." 

Our example 3 (section 4.1.2.3) falsifies this conclusion because flow may also 
occur in ducts where no external impulse is generated. 

5.2.2. Biophysical characteristics 

Valentinuzzi (1967) gave a mathematical treatment of accelerations and forces 
inside a labyrinth system. Although valuable and interesting, his results are limited 
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to a single fluid ring and not to the complex duct system formed by the entire 
labyrinth. Thus for this latter configuration his calculations have to be modified i.e. 
extra forces occur in a peculiar duct due to acceleration of the fluid in other ducts. 

Since Fernandez & Valentinuzzi (1968) several authors (e.g. Ramprashad et al., 
1986) have calculated the "biophysical characteristics" (e.g. time constants) of the 
semicircu'lar ducts from morphological measurements. These calculations are valid 
for single circuits but have to be reviewed when our theory is followed. 

5.2.3. Time constants 

Jones & Spells (1963) discuss an adjustment of time constants by changing the 
factor R 2 

/ r2 in which R is the radius of the duct ring and r the radius of the duct 
itself. Using our concept, is is also possible to adjust the time constants of the entire 
labyrinth to a certain range of values by changing the lengths and the cross-sectional 
areas of other parts of the labyrinth. As it seems reasonable to expect that the wide 
array of forms of the labyrinth in all 40 000 species of vertebrates is related to its 
functional properties, this new theory opens a way to a functional explanation of 
this form diversity. Also, the three cupulae may have a varying mechanical influence 
on the flow on a relatively long time scale, so the elastic properties of one, two or 
three cupulae may be involved in the balance of forces. This has profound 
consequences for the long time constants of the system. 

5.2.4. Sensitivity 

Ten Kate et al. (1970) define the sensitivity of a single duct circuit as the 
displacement of fluid in the narrow part of the duct per stimulus velocity unit, times 
the ratio of the cross-sectional area of duct and ampulla (Acanl Aamp). In formula 
form: 

G= Ac . A;an 
4. 7T. V. f1 Aamp 

(after ten Kate et al., 1970) (5.2.4.1) 

in which Ac is the area enclosed by the duct circuit, v is the kinematic viscosity of 
endolymph, and 11 is the length of the narrow part of the duct. Although this formula 
adequately describes the sensitivity for a single duct circuit it needs modification 
when our theory is applied. 

In this respect it is interesting that both the crus commune and the utriculus have 
mostly bigger (external) cross-sectional areas than the ducts. Thus it appears that 
in evolution the parts of the labyrinth wherein no cupulae are present, and thus no 
sensitivity is required, have become more voluminous, possibly increasing the 
sensitivity of the semicircular ducts. This view is in fact a confirmation and 
elaboration of earlier ideas formulated by Simonovitch (1966), Van Buskirk (1977) 
and Oman (1980). Dohlman (1980), however, suggested that the utriculus is for the 
greater part filled with a gelatinous matter, not contributing to flow. The gelatine­
filling of the utriculus might be a prevention of internal circulation in this (sometimes) 
wide part of the labyrinth (cf. Muller & Verhagen, 1988). 

Our results concerning angles between duct planes (section 5 .1.1) and time 
constants (section 5.1.2) support the viewpoint of a narrow utriculus, which also 
seems to be experimentally verified by dye-injection experiments ( cf. Dohlman, 
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1980, pp. 17, 18). However, we think the arguments of Oman & Van Buskirk in 
favour of a wide utriculus are also relevant and attractive. To our knowledge there 
is no report of the occurrence of a gelatinous matter inside the crus commune. In 
our opinion the above controversial results need further attention. 

The widening of the duct into the ampulla might, at first glance, be in contradiction 
to some of the above argume1).ts. However, according to Dohlman (1980), the 
ampulla is for the greater part filled with a gelatine-like matter, embedding the 
cupula at its distal end. Also, the cupula itself and the bulge of sensory epithelium 
have a considerable volume. Thus the net volume of endolymph fluid inside the 
ampulla will probably be of the same order of magnitude as that of a duct segment 
of comparable length. 

Considering the labyrinth as a whole, an increase of its sensitivity can be obtained 
by enlarging the lengths of the ducts or by increasing the cross-sectional area of 
some ducts (including crus commune and utriculus). Obviously any change of the 
size of the ducts results in a change of all six time constants ( cf. section 3.5). 

5.2.5. The torsion pendulum theory 

The current torsion pendulum theory, treating the flow in a single duct circuit, is 
expressed in terms of quantities related to rotation, viz. angular velocities, moments 
of inertia, frictional moment of fluid and elastic moment of the cupula ( cf. e.g. van 
Egmond et al., 1949). In this paper we chose for an approach with (curvi-)linear 
velocities of endolymph along the ducts, masses of fluid etc. The question might 
arise whether it is favourable to transform our notation also to a notation concerning 
rotational motion. In fact the torsion pendulum theory is a very special case of our 
approach. We arrived however at the conclusion that a "torsion pendulum rep­
resentation" of our theory would unnecessarily complicate the formulas. We consider 
for a single duct circuit with a uniform diameter the torsion pendulum notation as 
very elegant but for our combined circuit extending in a 3D-space it loses much of 
its charm. 

We agree with Oman et al. (1987) that, aiso for a single duct circuit, "torsion 
pendulum" is an inappropriate characterization because the endolymph fluid does 
not behave as a rigid structure. 
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APPENDIX 

Symbols 

point, connecting ducts, c, u, p 2 and h1 ; cross-sectional area of duct 
(eventually with subscripts) 
term in matrix of equation of motion (idem: [B], [ C]) with index 1-3. 
area enclosed by duct (section 5.2.4) 
anterior duct 
constants in terms of velocity in ducts (idem: b;, c; (i = 1, 6)) 
point, connecting ducts u, a and h2 

point, connecting ducts a, c and p 1 

crus commune 
point, connecting ducts p 1 and p2 

differential operator of Cauchy 
point, connecting ducts h 1 and h2 

coefficient of friction 
sensitivity of semicircular duct (section 5.2.4) 
distance from M to line Is 
horizontal duct 
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parts of horizontal duct ( h = h 1 + h2) 

total impulse in a duct ( evt. with subscripts) 
external impulse ( evt. with subscripts) 
ratio between endolymph velocities in posterior and anterior duct 
ratio between endolymph velocities in horizontal and anterior duct 
length of narrow part of duct (section 5.2.4) 
length of duct (section 3.4) 
coefficient of inertia (mass) in equation of motion: origin 
mass of endolymph (or part of endolymph, indicated by subscripts) 
posterior duct (and part of utriculus); pressure (section 3.5) 
parts of posterior duct (p = P1 + P2) 
position vector of point of endolymph with respect to M 
elasticity coefficient of cupula; intersection of plane with y-axis 
part of a duct (general) 
time constants 
time 
"utriculus" (see also symbol p) 
displacement of endolymph (t-domain); coordinate of x-axis (section 3.1) 
endolymph velocity at t = 0 
endolymph velocity (eventually with subscripts for different ducts) 
acceleration of endolymph 
endolymph displacement (D-domain) 
coordinate of y-axis (section 3.1) 
coordinate of z-axis 
external angle between anterior and posterior duct 
interior angle between anterior and posterior duct 
external angle between anterior and horizontal duct 
interior angle between anterior and horizontal duct 
short period in which the labyrinth stops its rotation 
endolymph viscosity (dynamic) 
angle between plane ABC of labyrinth and (x, z)-plane 
kinematic viscosity of endolymph 
density of endolymph 
rotation vector 
component of w along duct (section 3.4) 
component of w perpendicular to plane of duct 
dot product 
vector product 


