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SUMMARY 

Spatial distribution patterns and dispersal process play an important role in the population dynamics of pests 

and the epide.miology of diseases. To account for this, different approaches can be taken. Three possible 

approaches are illustrated in this paper by means of case-studies. The first example concerns the flight of 

fungal spores in a forest. The problem is treated with diffusion and flux equations which describe the behaviour 

of spore masses but not that of individual spores. In the second example, predation and egg production by 

carabid beetles is simulated on the basis of a motivational and behavioural model which explains walking paths 

and attack rates in terms of the beetle's gut satiation. In the third example, the processes underlying the 

spread of viruses in sugarbeet are studied, using a simulation model which describes the walking, feeding and 

virus transmission activities of individual aphids as well as the progression of disease in individual plants. The 

degree of complexity simulated and the concomitant computing time increases from the first example to the 

third. Each of the approaches presented here has its merits and shortcomings. The choice of the approach 

depends upon the aim of the study and the available experimental data for model construction and validation. 

1. INTRODUCTION 

Biological populations vary in density over their habitat. This spatial heterogeneity results first of all 

from spatially variable abiotic conditions such as soil type, microclimate and availability of nutrients. 

Furthermore, individuals aggregate to find mates or protection. Limited dispersal of offspring results 

in aggregation as well. Final!~, interactions with spatially distributed competitors, predators or food 

adds to spatial variability. Spatial distributions and spatial dynamics need to be studied and simulated 

to obtain a good insight into population density and its fluctuations in time and space. 

The most appropriate approach to accounting for spatial heterogeneity depends on the purpose of 

the study. Statistical methods are adequate when determining minimum sample sizes for the 

estimation of disease severity or pest attack (DAAMEN, 1986a,b; WARD eta/.,1985a,b, 1986). 

This approach deals with dispersion, i.e. the pattern of distribution of organisms over patches 

(SOUTHWOOD, 1978), but not with the process that leads to it, dispersal. Methods to describe 

dispersion have been adequately treated by SOUTHWOOD (1978) and by UPTON and 

FINGLETON (1985) while RABBINGE eta/. (1989) describe methods to account for the effects of 
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spatial variability in simulation models. 

This paper will concentrate on the dynamic simulation of dispersal. In studies of temporal dynamics 

of pests and diseases insight into spatial dynamics may be crucial to explain processes on the 

population level and to allow the construction of realistic models (KAREIVA and ODELL, 1987). 

Furthermore, in a variety of systems, spatial dynamics per se is the topic of the study, e.g. in the 

case of the spread of diseases in crops. 

Three examples will be given of explanatory dynamic simulation models which incorporate a detailed 

treatment of spatial dynamics to explain system behaviour in time and space. The first example -

distribution and flight of fungal spores inside a forest - applies diffusion and flux equations without 

making reference to the behaviour of individual spores. In the second example - predation by 

carabid beetles- detailed observations on behaviour of individuals are integrated in a motivational 

and behavioral model as part of a population model to calculate predation and beetle population 

dynamics. In the last example, we describe a first attempt to model the spread of viruses in a way that 

accounts for the walking and feeding behaviour of the vector. 

2. MODELLING AERIAL SPORE TRANSPORT OF SILVERLEAF 
FUNGUS, Chondrostereum purpureum 

2.1 Introduction 

'American' black cherry, Prunus serotina, was introduced into the Netherlands between 1920 and 

1950 to improve the understory of coniferous forests on poor sandy soils. However. the species 

became a serious competitor for native tree species and hampered forest regeneration. Cutting 

blackcherry trees and inoculating the stubs with silverleaf fungus, Chondrostereum purpureum, 

was considered as a possible means of biocontrol. Before this could be undertaken, the possible 

Fig. 1: Schematic presentation of life cycle of Chondrostereum purpureum. 
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escape of spores of the fungus to susceptible Prunus species outside forests, e.g. ornamental 

trees and fruit trees, had to be quantified (WAGENMAKERS, 1984; DEJONG and SCHEEPENS, 

1985; DEJONG, 1988; DEJONG et a/.,1988). To accomplish this, the life cycle of the fungus was 

divided into five main phases (Fig. 1 ). The processes in each phase were quantified. Here the 

approach adopted to quantify spore dispersal is outlined. 

DE JONG (1988) described the dispersal of spores outside the forest with the Gaussian plume 

model while he calculated the place and extent of spore emission from the forest by a quantitative 

evaluation of the relevant spore exchange mechanisms, based on crop micrometeorological studies 

of GOUDRIAAN (1977, 1979). Spores can be emitted from the forest vertically by turbulent diffusion 

and horizontally with wind currents (mass flow) downwind of the forest and diffusion. The 

importance of horizontal emission decreases with forest size. Vertical and horizontal spore emission 

are functions of forest size and weather, notably wind speed and temperature profile. DEJONG 

used a multi-layer model of the forest for his calculati1ns. Here, the essential elements of the model 

are illustrated by means of a one-layer model. 

2.2 One-layer model. 

As a first approximation the forest is treated as a single vegetation layer. It is assumed that the spore 

concentration is the same over the whole forest area. The spore concentration in the forest is the 

result of seven exchange processes with the environment (Fig. 2). Along the vertical axis the 

density of spores (spores m-2 forest area) changes due to (1) turbulent exchange with the 

atmosphere, (2) sedimentation from the atmosphere, (3) sporulation by C. purpureum 

basidiocarps, (4) sedimentation on the ground and (5) deposition on branches and needles. In the 

horizontal plane spores are transported due to (6) air mass flow (wind) and (7) turbulent diffusion. 

Wind 

(1) Vertical 
turbulent 
diffusion 

(7) Horizontal 
turbulent 
diffusion 

(2) Sedimentation 

(6) Wind 
transport 
(mass flow) 

(4) Sedimentation 

(3) Sporulation (S) Deposition 

Fig. 2: Box representation of one-layer approach to modelling spore emission from a forest. H: height; L: 

length and W: width of forest. 
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Accounting for these seven processes the net rate of change of spore density (spores m-2 s-1) in 

the forest can be formulated as: 

H * Cj' = - Aturb + Asedin - Asedout + Aspor - Rdep - Awind - Rdif (1) 

where H is the height of the trees, Ci the spore concentration in the forest and Cj' the net rate of 

change of Ci· 

A b is the rate of vertical turbulent spore exchange between the forest and the atmosphere, 
tur 

Asedin is the rate of spore sedimentation into the forest from the atmosphere, 

Rsedout is the rate of spore loss from the forest by sedimentation on the ground, 

Rspor is the rate of spore production by C. purpureum basidiocarps 

Rdep is the rate of spore loss from the forest by deposition on needles, branches and soil, 

Rwind is the rate of sidewards spore emission due to mass transport by the wind, and 

Rdif is the rate of sidewards spore emission due to turbulent diffusion. 

The rate of vertical turbulent spore exchange between the forest and the atmosphere depends on 

the difference in spore concentration as driving force and the exchange resistance r (with 

dimension s m-1): 

(2) 

where Ca is the spore concentration in the atmosphere. 

The rate of spore sedimentation is proportional to spore concentration and the sedimentation 

velocity (m s-1). 

Asedin = V sed * Ca 

Asedout = V sed * Ci 

(3) 

(4) 

Aspor is a function of temperature and basidiocarp area, derived from data of GROSCLAUDE 

(1969). 

The rate of spore deposition in the forest depends on wind speed, u (m s-1 ), the deposition 

efficiency of needles, branches, etc., edep (-),the area of branches, needles, etc. with respect to 

ground area, A (m2 m-2) and the spore concentration, Ci: 

(5) 

The rate of horizontal mass transport of spores is 
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(6) 

in which L is the length of the forest. The rate of horizontal diffusion equals 

(7) 

where rh is the resistance to horizontal diffusion, which increases linearly with the size of the forest. 

Typical values for the parameters in these equation are: Rspor = 20 spores m-2 s-1, Ca = 100 spores 

m-3, r = 20 s ITf\ Vsed = 1 mm s-1, u =2m s-1, edep = 0.01, A= 2m2 m-2 and rh = 1000 s m-1. 

Now equation 1 can be written explicitly 

H * Ci' = Rspor + Ca/r + Vsed * Ca- (1/r + Vsed + u * edep *A+ u * HIL + 1/rh) * Ci (8) 

or, more briefly 

(9) 

Here b denotes rates independent of Ci while a denotes rates that vary with Ci. At equilibrium , when 

Ci'=O, Ci equals b/a: 

Ci = (Rprod + Ca/r + Vsed * Ca)/(1/r + Vsed + u * edep * L + u * H/L + 1/rh) (10) 

ci = (20. + 1 oo120 + .oo1 • 1 oo)t(1t2o + o.oo1 + 2 • o.o1 * 2 + 2 • 17/250 + 111 ooo) 

ci = 25.1/0.228 = 110 spores m-3 

For this steady state the contribution of the seven transport processes to spore emission from the 

forest can be calculated with Eqs. 2- 7. Some examples of results from the one-layer model are 

given in Fig. 3. 

This simple model gives a reasonable first impression of the importance of the different processes in 

spore dispersal. Apparently, under the conditions chosen, sporulation, turbulent vertical transport, 

horizontal mass flow and deposition are the only processes of practical importance. At very low wind 

speeds sedimentation may be also important. 

The assumption of a homogeneous spore density over the whole forest area is not justified. When 

air without spores is blown into the forest, Ci will be very low at the upwind side while the calculated 

value ci,eq is reached at some distance in the forest. How large is this distance? This question could 

be answered by horizontal compartmentalization of the forest. 
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Fig. 3: Spore emission from a forest calculated with the one-layer model for two forest sizes and two 

atmospheric spore concentrations. A: L = 250 m and Ca;., 100 spores m-3; B: L = 1 0000 m and Ca = 100 spores 

m-3; C: L = 250 m and Ca = 0; 0: L = 10000 m and Ca = 0. In- and effluxes are expressed in%. 

However, a rough estimate may be obtained in a simpler way. According to Eq. 1, the partial 

derivative of Ci with respect to time is: 

oCi/ot={ Rspor + Ca/r + Vsed * Ca- (1/r + Vsed + u * edep *A+ u * H/L + 1/rh) * Ci}/H (11) 

The air traverses the forest at a rate dx/dt = u where x denotes distance along the wind axis with x = 0 
at the upwind side of the forest. Therefore ot equals ox/u, so that 
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SCV8x = { Rspor + Calr + V sed* Ca- (1/r + Vsed + u * edep *A+ u * H/L + 1/rh) * Cj}/(H * u) (12) 

or shorter: 

ocvox = (b- aCi)/(H * u) I (13) 

Equation 13 describes an exponential convergence of Ci to Ci,eq along the wind axis. The 

equilibrium concentration is closely approximated when x equals 3 times H * u/a, i.e. in the example 

given in Fig. 3A (L =250m and Ca = 100 spores m-3) at: x = 3 * 17 * 210.228 = 447 m 

Apparently the equilibrium concentration is not reached in this small forest. The error which results 

from this mistake is small because Ca and Ci,eq differ little. For the large forest of Fig. 38 the 

assumption that air leaving the forest at the lee edge contains spores at the equilibrium 

concentration is fulfilled (x << L). However, in this situation the assumption implicitly made in Eq. 5 

that spore emission through mass flow affects the spore concentration in the whole forest is not 

fulfilled. Again this problem could be solved by horizontal compartmentalization. Nevertheless, the 

one-layer approach outlined here allows a useful first approximation of spore emission under 

different circumstances. Spore concentrations and fluxes can be easily obtained with a pocket 

calculator. However, for a deeper insight into the spore dispersal processes in a forest a multi-layer 

approach is necessary. 

2.3 Four-layer model 

A more realistic representation of the system is obtained by distinguishing three vertical forest 

layers: (1) a spore production layer near the ground, (2) a stem layer and (3) a crown layer in which 

spores may be deposited on needles and branches (Fig. 4). Above the forest, distinction is made 

between a thick upper atmosphere layer without spores and a thinner boundary layer, just above 

the forest, in which air movement is slowed down by drag exerted by the canopy. The free 

atmosphere does not take part in the spore exchange processes and is excluded from the model 

equations. The resulting four-layer model is essentially the same as the one-layer model described 

above. The only difference is that rates are now calculated for four layers in stead of one, resulting in 

a matrix formulation of the problem (WAGENMAKERS, 1984; DEJONG, 1988). 

With the matrix model the distribution of spores at equilibrium can be calculated while the equilibrium 

concentrations can be used to calculate the horizontal and vertical emission rates. However, the 

calculation of an equilibrium state of the system is only valid when the circumstances remain 

constant long enough to establish equilibrium. This will rarely be the case because wind speed and 

direction, the main driving forces in this system, fluctuate in time and space. Therefore, a dynamic 

simulation approach would be appropriate. In a dynamic simulation model horizontal dimensions 

could be added. 
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Fig. 4: Schematic representation of aerial layers in a forest in which Prunus serotina is controlled with 

Chondrostereum purpureum 

The four-layer model, as described, enables an analysis of risks associated with biocontrol of black 

cherry. The transport of airborne material within forest or crop canopies plays a vital role in disease 

epidemiology and constitutes a factor of importance in many other fields, e.g. spraying techniques 

for pesticides and transport of pollen or air pollutants. Moreover, calculation of the spread in the 

environment of genetically engineered organisms, e.g. viruses (CORY and ENTWISTLE, 1988; 

HUBER, 1988), has become an important issue recently. Simulation and systems analysis may help 

to quantify risks and gain insight into the processes involved. 

3. MODELLING DISPERSAL OF THE CARABID BEETLE Pterostichus 
coeru/escens AND ITS CONSEQUENCES FOR PREDATION 

3.1 Introduction 

In many cases food of predators, as of other animals, is not distributed randomly throughout the 

habitat but shows a more or less aggregated pattern (SOUTHWOOD, 1978; UPTON and 

FINGLETON, 1985). As many predators actively search for food, the pattern of movement in relation 

to the density and distribution of the prey greatly affects the rate of feeding and as a consequence 

the rate of reproduction and the spatial and temporal dynamics of the population in the field. 

The predation strategy of the carabid beetle Pterostichus coerulescens L. (=Poecilus versicolor 

Sturm) has been studied in relation to prey availability, to analyse its effect on egg production and 

survival of the species (MOLS, 1979, 1983, 1986, 1987 and in prep.). The beetle lives in heathland 
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and poor grassland where it hunts for aphids, caterpillars and maggots. The internal factors 

governing the beetle's behaviour are analyzed and related to components of behaviour. The results 

are integrated in a simulation model to predict predation, consumption and egg production under 

different sets of external conditions such as prey density, prey distribution and temperature. 

3.2 Modelling motivation and predatory behaviour of Pterostichus 
coerulescens 

In many species behaviour is governed by some internal 'motivational drive' which is related to gut 

content (HOLLING, 1966; FRANSZ, 1974; RABBINGE, 1976; SABELIS, 1981; KAREIVA and 

ODELL, 1987). For P. coerulescens the satiation level of the gut, defined as the actual gut content 

divided by the potential gut content or gut capacity, is a useful measure for the 'motivation' of the 

beetle (MOLS, 1987). The potential gut content can not exceed a physical maximum but its actual 

size depends on the volume of other organs and tissues. The actual gut content changes by 

ingestion, excretion and resorption. The rates of change are predominantly affected by ambient 

temperature and day length, the latter determining the pre-oviposition period. Thus the 

physiological drive for behaviour, i.e. the satiation level or its complement, hunger, results from 

various internal states which in their turn are affected by the amount of prey ingested and climatic 

conditions. A simulation model is developed in which the various relations are quantitatively 

introduced. 

3.2.1 Methods 

The motivational model 

In the relational diagram of Fig. 5 the state variables describing feeding and egg production of the 

carabid beetle are represented. The amount of food ingested depends on the predator's hunger. 

After digestion in the gut, part of the food is excreted as faeces, the remainder being taken up in the 

haemolymph. The assimilated food is used for maintenance processes, converted into egg material 

in the ovaries or stored as fat. From the ovaries full-grown eggs move into the oviduct from where 

oviposition takes place 

The five state variables defining the internal state of the predator (gut content, weight of 

haemolymph, ovaries, eggs in the oviduct and reserves) change with rates depending on internal 

and external conditions. The ovaries start to grow as soon as a critical day length of 14 h and an 

average daily temperature of 10 °C are exceeded. After a pre-oviposition period eggs are laid 

during a period of one to two months, depending on temperature. After this period the ovaries 

regress while most assimilated food is stored in reserves to be used during diapause. During the 

breeding season the ovaries monopolize the assimilated food. The concomitant increase in volume 

may limit full expansion of the gut, thus causing a reduction of the potential gut content during the 

oviposition period. Temperature is the most important external condition affecting rates of change 

of the internal state. 
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State of the predator 

,----------, 

faeces 

respiration 

----------------------------' 

egg production 

Fig. 5: Relational diagram of the motivational model of P. coeru/escens and the behavioural components. 

Rectangles represent states, valves rates and circles auxiliary variables following the conventions of 

FORRESTER (1961 ). Solid lines indicate flow of matter, dotted lines flow of information. 

The motivational model is verified by comparing the simulated egg production with actual data of 

experiments in which beetles are kept in small containers with abundant food supply to exclude 

aspects of searching behaviour. Model results agree with the observed egg production (not shown 

here; MOLS, in prep.). 

Modelling predatory behaviour of P. coerulescens 

MOLS (1986) analyzed walking behaviour of P. coerulescens with video equipment. Three types 

of walking behaviour can be distinguished based on average linear displacement and walking 

velocity (Fig. 6): 

a. Straight walk. This type of walk is associated with a relatively high walking velocity (3 to 5 em s-1). 

It occurs if hunger exceeds 95%. 

b. Random walk. The walking velocity is between 2 and 3 em s-1. This type of walk occurs when 

the satiation level is below 95% and results in a winding walking path. 

c. Tortuous walk. The walking velocity is low (1 em s-1) and the walking path is very winding. This 

type of walk is found just after consumption of a prey. The duration of tortuous walk is a function 

of the satiation level (Fig. 7). At satiation levels of less than 10% this behaviour lasts about 11 

minutes, while at satiation levels between 70 and 80% the duration is only 2 minutes. 

A more detailed description of movement of the beetle, necessary for simulation of prey searching 

behaviour, is obtained by measuring the velocity and direction of walking during successive short 

periods of time, 'time steps'. The velocity of walking as a function of satiation level is shown in Fig. 8, 
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(c) (d) 

Fig. 6: Walking patterns found in P. coerulescens: (a) straight walk, (b) random walk, (c) tortuous walk and (d) 

combination of straight, random and tortuous walk in an area with prey (indicated by dots). 
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Fig. 7. Duration of tortuous walk behaviour of P. 

coeru/escens following consumption of prey, as a 

function of the satiation level. 
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Fig. 8. Relation between the gut satiation and walking velocity 

of P. coerulescens for 'straight walk' and 'random walk'. Bars 

represent standard deviations. 
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not considering tortuous walk. Below a satiation level of 5%, walking velocity increases rapidly. The 

relative direction of walking is measured as the angular deviation from the direction in the previous 

time step. If a small time step is chosen, autocorrelation exists between subsequent angular 

deviations, which complicates the analysis unnecessarily. A large time step yields insufficient 

resolution. By iterative calculations it was found that a time step of 2 seconds is most suitable, 

yielding satisfactory walking paths without autocorrelation between successive angular deviations. 

Using this time step, frequency distributions of angular deviation are constructed from the video 

recordings for beetles with various gut satiation levels. The frequency distributions are used to fit 

the parameters of the Tukey distribution, a symmetric statistical distribution characterized by three 

parameters (Fig. 9). 

0.5 

a 
b 

-10 10 

Fig. 9: Tukey probability distribution for four values of the kurtosis-parameter A.. a: A.= 1 (uniform); b: A.= 

0.14 (normal); c: A.= 0 (logistic) and d: A.= -0.85 (Student's t1 or Cauchy). The Tukey distribution is defined 

by: 

A= ll + cr.Y p where 

(

(p'A- (1 - p)t..)/A when A :;tO 

Yp= P 
In (1i}) when A =0 

A is the angular deviation (in radians), f.1 is the mean change in direction, cr is a scale parameter which 

determines the variance of A together with A., while the kurtosis is determined by A.. The variable p is drawn 

from a standard uniform distribution. 

Further analysis (MOLS, 1987) shows that the parameters determining the shape of the distribution 

can be predicted from the walking velocity of the beetle, low velocities coinciding with a wider range 

of angular deviations: 
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cr = EXP ( -0.173 * V + 0.208) 

/.. == -0.0661 * V + 0.2 

r2=0.69 

r2=0.49 

where Vis the linear displacement (em) per time step of 2 s (see Fig. 9 for further explanation). 

Thus, in the model, the motivational state of the predator determines the velocity of walking which in 

turn determines the concomitant probability distribution of angular deviations. By drawing from the 

distribution, the potential dispersal during one time step can be calculated. The actual dispersal 

depends on the activity of the beetle, i.e. the fraction of time the predator is walking, is negatively 

correlated with the satiation level. 

(-:.' 

Given the distribution of prey, predation occurs if the distance between the predator and the 

nearest prey is less than the reaction distance, the largest distance at which a prey is recognized. 

Experiments by MOL~ (in prep.) show that the percentage beetles reacting to prey decreases with 

increasing distance to the prey and that the reaction is hardly affected by the level of gut satiation. 

Not all encounters with prey result in prey consumption. The success ratio, defined as the 

proportion of encounters resulting in prey consumption, depends on the satiation level of the 

predator because a hungry predator is more eager to attack a prey and will continue the attack 

longer. 

prey prey 
density distribution 

Fig. 10: Diagram illustrating relations between the motivational model (represented by the state variable gut 

satiation) and the behavioural components. For explanation see text. 

These components of behaviour are integrated in a computer model which is linked to the model 

describing the motivation of the predator (Fig. 1 0). Prey is offered in various distributions. For P. 
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coeru/escens the most important prey items are small caterpillars, aphids and maggots 

(HENGEVELD, 1980), which exhibit a very low walking velocity compared to the beetle's. Therefore 

dispersal of the prey can be neglected in the model. 

The simulation model describing the internal state of the carabid and its interaction with predatory 

behaviour is run for aggregated and random prey distribution. Aggregated prey occur in circular 

clusters, each cluster containing 20 prey of 2 mg each. The distribution of prey within the clusters is 

random and the clusters are distributed at random over a large area. Prey density in the clusters is 

not affected by possible cluster overlap. Temperature is 20 °C. Overall prey densities and cluster 

diameters are varied to study the effect on the beetle's egg production during a season of 51 days. 

Each run is repeated at least ten times with different 'seeds' for the random number generator in the 

behavioural model. The average model outputs represent estimates of population averages 

because interaction between beetles is absent due to their low density. 

3.2.2 Results 

Model results (Fig. 11) show that the effect of prey density on average egg production is 

represented by saturation type curves which resemble the Holling type 2 functional response. 

Aggregated prey distributions result in higher average predation and egg production than random 

distributions. The greatest egg production is obtained with a cluster diameter of 40 em. The 

representation of these results in Fig. 12 shows that cluster diameters from 40 to 160 em result in 

similar egg productions. Cluster diameters below 40 em result in a lower average egg production 

due to a low rate of prey encounter. At cluster diameters above 160 em, egg production is low as the 

dispersion pattern of prey approaches the random distribution. Tortuous walk after finding a prey, 

which leads to more frequent visitation of previously searched area, constitutes a disadvantage to 

the beetle when prey is distributed at random. 
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Fig. 11. Average simulated egg production of P. coerulescens during a 51 day period as a function of prey 

density for random and aggregated prey distribution. Temperature is 20 °C. Curves are eye-fitted to the 

simulated results; see also Fig. 12. 
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Fig. 12. Average simulated egg production of P. coerulescens during a 51 day period as a function of cluster 

diameter at various overall prey densities. Each cluster contains 20 prey of 2 mg each. Temperature is 20 °C. 

Each value represents the average of 10 runs with the stochastic model of walking behaviour. Bars represent 

standard deviations. Curves are eye-fitted to the simulated results Data pertain to the same simulation results 

as used in Fig. 11. 

3.3 Simplification of stochastic motivation and behavioural model by 
means of compound simulation 

The models described above can be used to analyze the effect of P. coeru/escens on the 

dynamics of a pest population. Due to the stochastic nature of the model for walking behaviour and 

the small time-step (2 s.) this requires many simulation runs and a large amount of computer time. To 

avoid this, average values for predation by individual beetles, calculated with the stochastic model, 

could be used as input for the predator-pest model. Such an approach assumes that the model 

outcome resulting from average input values is identical to the average outcome with variable 

inputs. This is generally only true when the variation in input parameters is small or when the model 

is linear in its variables. In this case, however, there is a large variation in behaviour between 

individual beetles, especially at lo~ prey densities (Fig. 12) while several relations (a.o. the 

functional response) in the model are non-linear. Thus averaging before simulation is impossible. 

This problem is addressed by compound simulation (FRANSZ, 1974; RABBINGEet al., 1989) 

3.3.1 Methods 

The population of beetles is divided into three classes with walking velocity as classifying criterion. 

Within a class the beetles are assumed to behave identically. To account for the aggregated 

distribution of prey, each class is subdivided into two, corresponding to beetles inside and outside a 

prey cluster. Thus individual beetles belong to one of six classes (Fig. 13). 
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Fig. 13. Schematic representation of behavioural classes of the predator distinguished in the compound 

simulation model. 

The complex stochastic model describing the walking behaviour of individual beetles is replaced by 

relations, calculated from· a large number of runs with this model, which describe residence time 

within a prey cluster as a function of beetle walking velocity and cluster diameter (Table 1). The rate 

of encounters with prey clusters and prey within a cluster is approximated with analytical equations 

for the rate of predation on sessile prey, developed by SKELLAM (1958) and SABELIS (1981). 

Table 1: Average number of steps before leaving a cluster, as a function of cluster radius and predator walking 

velocity, computed with the stochastic model for walking behaviour of Pterostichus coeru/escens. 

cluster ----------------Predator velocity (em s -1 )---------------

radius (m) 0.25 0.50 1 2 4 8 

0.1 245 59 16 5 2 

0.2 919 209 53 12 4 2 

0.4 3335 886 189 40 9 3 

0.8 3176 718 141 26 7 

1.6 2635 524 88 19 

3.2 2021 307 52 

6.4 1144 163 

104 



3.3.2 Results 

To check the validity of the simplifications, the compound simulation model is run at prey densities 

varying between one and 100 individuals per m2. Prey, weighing 0.7 to 2 mg, is distributed at Each 

time step, the simulation model is run for each class of beetles separately and beetle numbers in 

each class are adjusted according to the outcome. Values for output variables of interest are 

obtained by averaging the outputs of the classes, weighed by the respective number of beetles. In 

this way the stochastic model of the individuals' walking behaviour is replaced by a deterministic 

model in which the motivational state of all beetles in a class changes by the same average rate. 

random. Temperature is 20 oc yielding an egg production period of 51 days. Competition between 

carabids is assumed absent. Egg production per carabid is found to be in close agreement with the 

results of the stochastic model for predation. 

Next, the effect of dividing the beetle population into 6 classes by two criteria is evaluated for an 

overall prey density of 5 m-2, each prey weighing 2 mg. Once per day, the initial prey density is 

restored. In Fig. 14 the fraction of total simulation time spent to 'random walk' or 'tortuous walk' is 

shown. 'Straight walk' is not represented in the figure as this type of behaviour does not occur 

under the simulation conditions. Although tortuous walk occurs after each prey consumption, it is 

maintained during 11 minutes at most. Overall, tortuous walk is found during less than 5% of the 

time and mainly within prey clusters. The beetles predominantly exhibit random walk. As expected, 

the time spent in clusters increases with cluster size and density. 

02 0.4 0.8 1.6 0.1 02 0.4 0.8 1.6 

0 
0.2 0.4 0.8 1.6 

cluster radius (m) 

Fig. 14: Fraction of time an individual carabid spends in each of the classes of the compound simulation model 

as a function of cluster radius (m) and cluster density (m-2) at an initial prey density of 5 m·2, each prey 

weighing 2 mg. The initial prey density is restored at the onset of each simulated day. The graphs shown 

pertain to (A) random walk outside a cluster; (B) random walk inside a cluster; (C) tortuous walk outside a 

cluster and (D) tortuous walk inside a cluster. As 'straight walk' behaviour never occurred, the respective 

graphs are omitted. Not all combinations of the independent variables are represented. 

105 



Preliminary runs show that at low prey densities most time is spent to straight walk behaviour as gut 

satiation is low. The results suggest that, when prey density is constant, the behavioural classes can 

be removed from the model as beetles predominantly exhibit one type of behaviour. Then, only the 

location of the predator determines predation, consumption and egg production. 

BAARS (1979) followed radioactively labelled P.coerulescens in heathland and found alternatingly 

straight and tortuous walk. From the insight in the dispersal of the beetle gained by the approach 

presented here, this can be explained by the strongly aggregated distribution of prey in such 

habitats. Experiments of the type BAARS (1979) carried out are extremely time consuming and do 

not yield ,t,nformation on the causes of the phenomena observed. Detailed experiments in 

combination with systems analysis and simulation leads to an understanding of the underlying 

processes and conclusions with greater general applicability. 

4. MODELLING DISPERSAL Of APTEROUS GREEN PEACH APHID, 
Myzus persicae, AND VIRUS SPREAD IN SUGARBEET 

4.1 Introduction 

Virus yellows is an economically important disease of sugarbeet, Beta vulgaris, throughout the 

world, causing yield losses up to 60% (DUFFUS, 1973). The disease can be caused by three 

different viruses: beet yellows virus (BYV), beet mild yellowing virus (BMYV) and beet western 

yellows virus (BWYV). These viruses can occur singly or in mixed infections. BYV is a closterovirus 

(BAR-JOSEPH et a/.,1979) while BMYV and BWYV are luteoviruses (DUFFUS, 1973; DUFFUS & 
RUSSELL, 1975). The only important vector of these viruses is the green peach aphid, Myzus 

persicae. 

The disease typically occurs in patches which vary in size from 1 to 30 m diameter, depending on 

the date of infection (VANDERWERF, 1988). Each patch is presumably initiated by one infectious 

aphid which infects one or few beet plants and starts a vector colony in the early stages of crop 

growth, during May or June. Subsequently, a reservoir of infectious plants is formed around the 

primarily-infected plant(s) while the aphid population builds up. Aphid population growth is 

promoted by the improved nutritional quality of virus-infected plants. Massive aphid dispersal and 

virus spread occurs after mid-June when adjacent plants have made leaf-contact. The aphid 

populations collapse in July due to predation, diseases, parasitism and decreasing suitability of the 

beet plant, resulting in an arrest of virus spread. 

Spread of viruses by vectors constitutes a complicated three-species interaction between a plant­

host, a virus-pathogen and an insect-vector. Often natural enemies are also involved in this 

interaction as they can reduce the number of vectors and alter their behaviour (ROITBERG eta/., 

1979). Because of this complexity, analysis of processes in the field is difficult and observations can 

often be explained in more than one way. Modelling the dispersal and feeding behaviour of M. 

persicae in relation to the development of plant infectivity, provides a means of studying the 

importance of the various processes which are involved in virus spread. Such an approach 
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complements field studies by integrating results of experiments on the process-level. The latter 

experiments concern e.g. walking and feeding behaviour of the vector, virus transmission 

characteristics, latency period and incubation period. 

Here a brief account is given of such a simulation study of virus spread. A more detailed description 

of the model and a program listing is given by RIESEBOS (1988). 

4.2 Structure of the model 

The model describes a 12 x 12 m2 area with 1152 sugarbeet plants (7 .8 plants m-2) and a time­

varying number of aphids. All plants have the same number of leaves and are equidistantly spaced. 

The status of each plant and each aphid is characterized by a memory structure encompassing a 

small number of variables. For a plant, these variables describe (1) the infection date, (2) the number 

of healthy leaves (i.e. those emerged before infection), (3) the proportion of leaves infected, (4) the 

presence of symptoms and (5) the number of aphids on the plant. Variables describing an aphid are 

(1) the time of birth, (2) the time of virus acquisition, (3) the time of latest displacement, (4) the 

position in the field, and (5) morph, apterous (wingless) or alate (winged). 

Model results are compared to data from an experiment in which the effect of sowing date and 

number of introduced M. persicae on spread of BYV was studied (VANDERWERF, 1988). In this 

experiment three plants located near the centre of each plot were infected with BYV on 23 June. 

On these plants 2, 9 or 65 M. persicae were released on 25 June. The plants had been sown on 

either 18 April (regular) or 20 May (late). Each of the six treatments was replicated in four plots. 

Momentaneous temperatures are calculated by fitting sinusoids between measured minimum and 

maximum temperatures (ANONYMUS, 1986). Plant leaf number, which provides an indication of 

physiological age, is a function of accumulated temperature (MILFORD eta/., 1985a,b; VAN DER 

WERF, 1988). 

BYV is a semi-persistent virus. In accordance with this, aphids in the model loose the ability to 

transmit virus at moulting. An aphid moults every 36 hours. Simplifying from SYLVESTER (1961), 

the retention period (RP) is taken as exactly 12 h. following acquisition. Based on data of 

SYLVESTER (1956a,b) and HEATHCOTE and COCKBAIN (1964), the acquisition feeding period 

(AFP), i.e. the feeding time needed for an aphid to acquire virus from an infected plant, is set at 2 h. 

while the transmission feeding period (TFP) is estimated as 1 h. Whenever the feeding time (which 

in the model equals the time not spent to walking) on a leaf equals or exceeds the TFP or AFP, virus 

acquisition or transmission occurs, provided that a non-viruliferous aphid feeds on an infectious leaf 

or an infectious aphid on a healthy plant. M. persicae shows preference for young beet leaves 

(JEPSON, 1983). Various degrees of aphid preference for heart leaves (those smaller than 10% of 

their final area) can be simulated (see below). 

Following infection, plants become infectious after a latency period (LP). The LP increases linearly 

with time, from 4 days in the seedling phase to 12 days in old plants (VAN DER WERF, 1988). 

Counting from infection, symptoms become apparent after the incubation period (IP), which is 
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influenced by plant physiological age and temperature. The IP increases from ca. 3 weeks in June 

to 2 months in August (VANDERWERF, 1988). Aphids can acquire virus from the infectious leaves 

on infected plants, irrespective of the presence of symptoms. No virus can be acquired from a 

healthy or a latent infected plant or from those leaves on an infectious plant that appeared before 

infection. 

Aphid population dynamics is not simulated in this model because insufficient data are available to 

do this with sufficient precision, due to the difficulty of quantifying predation.and immigration. 

Therefore, if a population dynamics module were included it would be difficult to determine whether 

possibly aberrant model outcomes with respect to virus spread resulted from errors in the virus 

dissemination part of the model or from incorrectly simulated population dynamics of the vector. To 

avoid these problems, the model mimics the population development observed in the field. Every 

simulation-day, simulated aphid numbers are compared to field-counts made in the centre of the 

plot or interpolations from these numbers. When the difference exceeds 10%, new aphids are 

added or existing ones removed to compensate the difference. Newly added aphids are 0 h. old 

and non-viruliferous, mimicking births. They are borne on plants which are already infested by 

aphids, in proportion to the number of aphids already present on the plant. Aphids are removed at 

random, assuming that predators do not discriminate between aphid instars and cause a fixed 

relative mortality rate, irrespective of aphid density. (This means that predators aggregate in areas 

with high aphid density, approximately in proportion to the number of aphids present). Winged 

aphids leave the field. No immigration occurs. 

Predation by ladybirds reduces the number of viruliferous aphids in the field. It is difficult, however, 

to estimate the impact of predators on the basis of predator density (FRAZER, 1988). Therefore, 

the predation rate in the model, 1% predation per hour, was determined in another way, by 

iteratively maximizing the agreement between the simulated and the observed age distribution of 

the aphid population, throughout the season. At lower relative predation rates than .01 h.-1 the 

proportion of older nymphal stages was overestimated while at higher relative predation rates the 

proportion of older stages was too low. 

The dispersal and feeding behaviour of Myzus persicae plays a central role in the model. Aphid 

dispersal activity is expressed by the variable P, the proportion of aphids walking within an hour. 

When the number of leaves is smaller than 12, P has a small value, 0.025. This gives expression to 

the almost complete absence of dispersal in young crops, observed in the field (VAN DER WERF, 

1988), which is probably due to the ~igh nutritional quality of young plants as well as to lack of leaf 

contact between them. When the number of leaves is greater than 12, P is calculated as 

p = .01 X (65- _1!_) 
2.5 

(14) 

where N is the number of leaves on the plant. As 2 to 3 leaves emerge each week, aphid activity 

decreases slowly during the season. Equation 14 is based on calculations of the proportions of 

newly-emerged, expanding and fullgrown leaves on the beet plant throughout the season 

(MILFORD eta/., 1985b) and estimates of the dispersiveness or aphids on these three types of 

108 



temperature 

Q 
~···············································································r 
: !'''''''''''''''''''''''''''''''''''''''''''''"'''''''''''''''"':················~ time 

field counts 

~ ........ 

................ j ! ,.................. ~~·n~~o;:h ! ! 
l ll symptoms l l 

~__, .... , ............ ..!! .......... 6 ... ! 
. ! I infectious I 

i ...................... i .................... i................................... plants without ! 
! ! ! symptoms ! 
: ······················:················: : 
: : : : I r""""' ~~ 

! - """""'~~"' 

............ ., :: :: 

~::::::::::::::::::::::::::::::::~'l'''"''"''"'''""'""'''''"'''"..i.~ 

! I 
............................. !:::::::::::::::::::::::::::::::::::::::::!::::::::::::::::::~ AFP ............................. 

0 
TFP 

RP 

predation 

Fig. 15: Relation diagram of model of virus spread by Myzus persicae in sugarbeet, drawn 
according to conventions of FORRESTER (FORRESTER, 1961; DE WIT and GOUDRIAAN, 1978). 
Boxes ( c:J ) represent states, solid arrows ( _., ) represent fluxes between states, 
valves ( I><J ) in the solid arrows denote rates while hatched arrows ( ........... ~ ) pointing to 
valves denote control of rates by state variables. Circles or ovals denote auxiliary 
variables. External variables, not influenced by the model, are denoted by 0 

leaves (JEPSON, 1983), assuming a homogeneous distribution of aphids over the plant 

(RIESEBOS, 1988). 

The distance covered each hour (D; linear displacement), is an optimum type function of aphid age, 

adult aphids walking more rapidly than young or aged ones, and temperature: 

(15) 
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where A is denotes the age of the aphid in days and T the temperature in °C. The value of Dmax is 

125 em, in accordance with data of FERRAR (1968). The walking direction is drawn from a uniform 

distribution over ( -1t, 1t) 

The main components and relations of the model are summarized in the relation diagram of Fig. 15. 

Runs with the model were made with two purposes: (1) to compare simulation results with field data 

and thus test our conception of the system, and (2) to determine which parameters have the largest 

effect on model behaviour and should therefore be studied in more detail experimentally. 

The model is written in the programming language C (KERNIGHAN & RITCHIE, 1978). The time step 

is one hour. 

4.3 Results 

Simulation results and field data are compared in Figs. 16A and B which show the time-course of the 

number of yellowed plants per plot for each of the six treatments. Fair overall agreement exists 

between the two figures. Agreement is very good in 4 treatments but the model underestimates 

virus spread resulting from release of two M. persicae in late-sown sugarbeet while it overestimates 

the spread resulting from release of 65 M. persicae in early-sown sugarbeet. This suggests that 

parameters related to plant age are more important in reality than they are in the model in its present 

form. 

The overall similarity of simulated and observed spread is a promising result as model structure and 

parameter estimates on the process level are in agreement with the literature. Nevertheless, further 

model validation is needed to obtain a better insight in possible shortcomings of the model. 

Experiment 
Simulation 

600 600 
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.c A 
20 May; 65 Mp 
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ji400 a. 400 
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July Aug. Sept. Oct. July Aug. Sept. Oct. 

Fig. 16: Comparison of observed (A) and simulated (B) increase of number of BYV-infected plants with 

symptoms, in relation to crop sowing date and numbers of Myzus persicae introduced on 25 June 
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Fig. 17: Sensitivity analysis of model of virus spread by Myzus persicae in sugarbeet. (A) latency period, (B) 

virus transmission characteristics, (C) walking activity, (D) walking distance per hour, (E) relative predation 

mortality and (F) leaf age preference as indicated by the factor fpref in the formula p = fpref X Y , where p is 

the proportion of aphids feeding on young leaves and Y is the proportion of young leaf area on the plant. 
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Sensitivity analysis provides a means to determine the influence of model structural components 

and parameter estimates on the results. Here a 'fine' sensitivity analysis (RABBINGE eta/., 1989) for 

six parameters is presented (Fig. 17 A-F). The analysis applies to sugarbeet sown on 20 May and 

infested with 9 M. persicae. For the LP reasonably precise values were available so that Fig.17 A 

illustrates its theoretical importance. The LP has a large impact in our model which confirms results 

obtained with more basic epidemiological models (ZADOKS and SCHEIN, 1979). For the other five 

parameters, only rough estimates could be derived from the literature. The figures 178-F give 

therefore an indication of the uncertainty in predicted epidemics resulting from the imprecision of 

the parameter estimates in the model. For instance, fig. 178 shows that virus acquisition and 

transmission times have a considerable effect on spread. While several authors determined feeding 

times needed for the acquisition and transmission of beet viruses under greenhouse conditions 

with several species of test plants, possible influences of sugarbeet host plant quality (age) in the 

field have been neglected. Therefore, those studies may have limited relevance for the prediction 

of processes occurring in the field. Aphid behaviour, ~ere expressed by two parameters, activity 

and distance covered, has been very little studied, resulting in a considerable uncertainty about 

model predictions (Fig. 17C,D). Predation appears to be a particularly important factor in the model 

(Fig. 17E), indicating that it deserves more attention in experimental research, the more so because 

in the model predators influence only the proportion of aphids which are viruliferous and not the 

total number. Thus, in reality, the impact of natural enemies on virus spread may be even greater 

than indicated by the simulation results. The effect of leaf age preference is relatively small (Fig. 

17F). 

Figs. 18 and 19 show the spatial distribution of the aphids and the virus-infected plants at two-week 

intervals in sugarbeet sown on 18 April and 20 May, respectively. Aphids become more numerous 

and infect a greater number of plants in the late-sown crop. These plots clearly show the temporal 

separation of the presence of the aphids and the resulting increase in the number of plants with 

symptoms. Virus spread occurs when the aphids are numerous and disperse over the plot, 

predominantly between mid-June and mid-July in this case. Symptoms only become obvious at the 

end of this period. Spraying against aphids at this point is useless as further spread will be 

negligible, while plants infected at this advanced development stage suffer little damage.The 

appearance of a 'secondary' focus in top right-hand corner of Fig. 18 is worth noting. In field studies 

this would generally be regarded as the result of virus spread by alatae, 'hopping' in the field. This 

simulation shows that such a secondary patch may be also initiated by apterous aphids. 

Figs. 18 and 19 (next pages): Simulated spatial distribution of aphids and virus-infected plants at two-week 

intervals in sugarbeet sown on 18 April or 20 May. In the model the plots are inoculated with BYV on 23 June 

and infested with 9 Myzus persicae 2 days later. Dates: (a) 23 June; (b) 7 July; (c) 21 July; (d) 4 August; (e) 

18 August; (f) 1 September; (g) 15 September; (h) 29 September; (i) 13 October and (j) 27 October. The upper 

plot of each date denotes the spatial arrangement of BYV-infected plants in a 12 x 12 m2 field plot. Numbers 

indicate the percentage of infected leaf area on plants without symptoms: (1) 0-10%, (2) 10-20%, etc. Plants 

with symptoms are indicated by shaded blocks, the four degrees of shading indicating percentages infected 

leaf area of ( ::: ) 0-30%, ( ~ ) 30-60%, ( lfJ ) 60-90% and ( I ) 90-1 oo%. The lower plot denotes the number of 

aphids per plant. Numbers of aphids per plant exceeding 9 are indicated by a shaded area ( ::: ). 
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5. CONCLUDING REMARKS 

The three spatial models of population dynamics, described in his paper, simulate the processes 

underlying system behaviour at different integration levels. The first model - spore dispersal in a 

forest- describes the system with diffusion and flux equations which apply to spore 'masses', while 

neglecting the behaviour of individual spores. In the second example - predation by carabids - a 

detailed analysis of the individuals' motivation and resulting predatory behaviour is made. 

Subsequently, general rules derived from this analysis are used in a compound simulation 

population model which distinguishes six classes of beetles but no individuals. In the third example­

spread of beet viruses- the behaviour of the individual virus vectors is simulated. Computation time 

increases with the amount of detail included, from example 1 to 3. 

The level of complexity that must be simulated in a given case, depends upon the aim of the study 

and on the available experimental data and computing resources. In the risk analysis pertaining to 

biocontrol with silverleaf fungus, simulation of individual spore trajectories would have been 

cumbersome while enormous computing times would have been needed to account for the large 

number of individual spores involved. The simpler approach adopted by DEJONG (1988) suffices 

to obtain the desired estimates of spore escape. In the case of the carabids, detailed information on 

the beetle's motivation and predatory behaviour was obtained in studies aiming at a better 

understanding of the survival strategy of the species in a temporally and spatially variable habitat. To 

evaluate the potential for natural aphid control by populations of a closely related Pterostichus 

species, living in arable lands and exhibiting similar behaviour as the one studied in heathlands, the 

complicated models of the motivational and behavioural processes had to be discarded because of 

their short time step (2 s.). The most important trait, the beetle's residence time in a prey colony, is 

captured in a two way table with the beetle's walking velocity and the prey colony's diamet ~r as 

entries. This enables compound simulation, distinguishing only six classes of beetles. Finally, in the 

beet virus model, the state and behaviour of the individual vectors is accounted for. This is 

necessary because in this case every single vector has a potentially large impact, each infective 

puncture leading to the infection of a whole plant. The relatively large time step in this model (1 h.), 

which is made possible by the large size of the objects the vector is encountering, beet plants, 

allows a detailed representation of the system. 

Simulation models offer the opportunity to integrate large amounts of information, gathered on the 

process level, in a simulation model with behaviour comparable to the real world. In this way the 

correctness of the conception of the system can be tested. It is often found that the behaviour of 

systems which are commonly regarded as 'well understood' cannot be easily predicted. Thus, gaps 

in knowledge are located. If, on the other hand, model predictions are satisfactory, the model can be 

simplified to a tool for decision making. Another merit of the modelling approach is that imaginary 

experiments can be performed. Such imaginary experiments can be used for orienting experimental 

research (beet virus model) or risk analysis (silverleaf fungus model). Experiments with the carabid 

model suggest that Pterostichus species have potential to suppress aphid outbreaks in arable 

crops. 
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Models including spatial dynamics and variability have been developed more recently than 

'homogeneous' models, due, in part, to the large amounts of computing time needed. If a 

homogeneous model for the development of a disease is converted into a 'heterogeneous' model, 

accounting for 1000 interacting patches in a field, the number of state variables and rate equations 

in the model increases also a 1 000-fold. An even greater number than that is probably needed in 

heterogeneous models to account for migration. As computers have become faster (some 

researchers even use 'supercomputers'; ONSTAD, 1988) the possibility for simulating pests and 

diseases in a spatially realistic way becomes much greater. This results in the ability to account for 

density-dependent processes in a more realistic way such that better population models may result. 
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