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FOREWORD 

Shortage of fresh water of adequate quality has been predicted to become one of the most 
pressing problems mankind must face in the foreseeable future. In order to counteract this 
situation storage of surplus flows in reservoirs and the careful management of this 
resource is thus going to gain in importance. In addition, the improved operation of 
existing reservoirs might contribute to postpone the construction of new storage elements, 
thus implicitly helping to mitigate the impact on the natural environment. Consequently 
the management aspects of reservoirs both at the planning and at the operational stage 
form an essential research area. 
The present report summarizes the results of sensitivity analyses related to the application 
of stochastic dynamic programming (SDP) in optimization of reservoir operation in an 
uncertain environment. SDP has a strong potential to be used in deriving robust, detailed 
operational rules for reservoirs. The SDP-based policy is oriented towards the expected 
hydrological situation, thus its adequacy is largely depending on availability and accuracy 
of data and their numerical representation to capture the natural (hydrological) 
uncertainties inherent in the water resources system. 
Artificial inaccuracies and simplifications have been introduced into the mathematical 
processing of inflow data in order to assess the potential impact of possibly biassed data 
both on the optimal reservoir policy itself and on the operational performance of 
reservoirs. 
Next to the natural reservoir inflow uncertainties, objectives to be pursued may change as 
social preferences and aspirations undergo gradual changes. In order to model these 
possible scenarios optimal reservoir operational policies have been derived according to 
different anticipated objective functions and constraint sets. Furthermore alternative 
performance indicators such as reliability-type of criteria have been tested. 
Model uncertainty and its impact are taken into account by testing different versions of 
SDP in the operational studies. All along these analyses both single and multiunit systems 
have been considered. Practical relevance of the results is ensured by using inflow data 
and salient features of existing "real world" reservoir systems. 
Since the computations serve the purpose of clarification of algorithmic details and 
uncertainty aspects the results presented in this study do not refer to the actual operation 
and performance of the respective reservoirs. 
This report is a publication in a series of dissertations, theses and reports concerning 
different research issues in reservoir operation. This broad-based research activities of a 
dedicated international team had started at the Asian Institute of Technology, Bangkok, 
Thailand in the mid eighties and continued at the Wageningen Agricultural University, 
Department of Water Resources from 1989 onwards. 
The present report documents the joint efforts of the research team to provide a detailed 
analysis and practical recommendations towards the applicability of SDP in deriving 
reservoir operational rules. 
Computational work and a draft of the report was done by Mrs. He. Next to the authors 
Prof. Dr. Paul van Beek, Department of Mathematics contributed substantially to this 
report through his advice, corrections and recommendations. His involvement as well as 
the critical review by Drs. PJ.J.F. Torfs, Department of Water Resources, Wageningen 
Agricultural University are most appreciated. 

Prof. Dr.-Ing. J.J. Bogardi, Wageningen, February 1995 
Chairman Department of Water Resources 



Abstract 

Stochastic Dynamic Programming (SDP) technique has been used in the operational policy 
analysis of water resources systems over the past several decades. However, those studies 
indicate that certain algorithmic aspects of SDP have to be studied further to facilitate the 
application of it to real world reservoir operational problems. 

This study focuses on four major aspects of the SDP model: (a) Markov inflow transition 
probability matrix and its role in SDP models; (b) the influence of different decision variables 
and inflow state variables on the performance of the SDP model; (c) the suitability of the 
different inflow serial correlation assumptions; and (d) the appropriateness of the objective 
function in the SDP model and the performance evaluation criteria. 

The characteristics of a Markov chain and the convergence behaviour of the SDP model are 
analyzed through a real world application. Large number of zero elements in transition 
probability matrices seems to be the cause for failing to satisfy the convergence criterion, 
stabilization of expected annual increment of the objective function value, in the SDP model. 
The study shows mat the substitution of these zeros with reasonably small values is a suitable 
method to overcome the above problem. 

Several versions of the SDP model with different decision variables and inflow state variables 
are employed to study their influence on the performance of the SDP model. The variable, 
which is directly related to the objective of optimization, seems to be preferred as the 
decision variable. The choice of the inflow state variable considerably affects the operation 
of the system if the selected decision variable is not directly related to the objective of 
optimization. 

The suitability of different inflow serial correlation assumptions in the SDP model is 
examined through models formulated based on Markov-I, Markov-II, independence and 
deterministic inflow assumptions. The analysis indicates that the SDP model becomes 
insensitive to the above inflow assumptions if the selected decision variable is directly related 
to the objective of optimization. A comparison among the above assumptions is made based 
on the complexity involved in the computations, the length of inflow time series available, 
time step length considered in optimizations and errors possible in inflow forecast. 

Several different objective functions are introduced into the SDP model to study their 
influence on the resulting reservoir operation performance. The selection of the most 
appropriate objective in the formulation of the SDP optimization seems to be important for 
its success. The simulated objective function value is an inadequate indicator to measure the 
performance of the optimization. The study shows that some risk-related performance indices 
such as reliability, vulnerability and resilience are more suitable in the evaluation of the 
reservoir performance. 
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1 Introduction 

1.1 Reservoir Operation Optimization 

The history of man-made reservoirs can be traced back hundreds of years. Perhaps at the 
beginning, the "water reservoir" was not more than a huge tank to store water during the wet 
season for the use during the dry season. Today, with the development of the civilization, 
reservoirs can be found all over the world. The reservoirs can serve single or multiple 
purposes including hydropower generation, water supply for irrigation, industrial and 
domestic use, flood control, improvement of water quality, recreation, wildlife conservation 
and navigation. The effective use of reservoir systems has become increasingly important. 

For many years the rule curves, which define ideal reservoir storage levels at each season or 
month, have been the essential operational rule. Reservoir operators are expected to maintain 
these levels as closely as possible while generally trying to satisfy various water needs 
downstream. If the levels of reservoir storage are above the target or desired levels, the 
release rates are increased. Conversely, if the levels are below the targets, the release rates 
are decreased. Sometimes operation rules are defined to include not only storage target levels, 
but also various storage allocation zones, such as conservation, flood control, spill or 
surcharge, buffer, and inactive or dead zones. Those zones also may vary throughout the year 
and advised release range for each zone is provided by the rules. The desired storage levels 
and allocation zones mentioned above are usually defined based on historical operating 
practice and experience. Having only these target levels for each reservoir, the reservoir 
operator has considerable responsibility in day-to-day operation with respect to the appropriate 
trade-off among storage levels and discharge deviations from ideal conditions. Hence, such 
an operation requires experienced operators with sound judgement. 

To counteract the inefficiency in operating a reservoir system only by the "rule curves", now 
additional policies for operation have been incorporated into most reservoir operation rules. 
Those operation policies define precisely when conditions are not ideal (e.g., when the 
maintenance of the ideal storage levels becomes impractical), the decisions to be made for 
various combinations of hydrological and reservoir storage conditions. For some reservoir 
systems, this type of operation policy has already taken over the rule curves and is acting as 
the principal rule for reservoir operation. 

Over the past two to three decades, increasing attention has been given to system analysis 
techniques for deriving operation rules for reservoir systems. As a result, a variety of 
methods are now available for analyzing the operation of reservoir systems. In general, these 
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techniques lead to models, which can be classified into two categories: optimization models 
and simulation models. These categories are complementary. Simulation models can 
effectively analyze the consequences of various proposed operation rules and indicate where 
marginal improvements in operation policy might be made. The technique is not very 
appropriate in selecting the best alternative rule from the set of possible alternatives. Usually 
there are too many alternatives to be simulated and compared. Therefore, optimization models 
are often used to indicate which alternatives are most likely to be better man the others. 

Linear Programming (LP) and Dynamic Programming (DP) have been the most popular 
among the optimization models in deriving optimum operation rules for reservoir systems. 
Linear Programming is concerned with solving problems in which all relations among the 
variables are linear, both in the constraints and in the objective function to be optimized. The 
fact that most of the functions encountered in problems with reservoir operation are nonlinear 
has been the main obstacle to the successful use of LP in this area. Although linearization 
techniques can be employed, this might not be satisfactory. The degree of the approximation 
required in the linearization process can seriously affect the reliability associated with this 
technique. 

Dynamic Programming, a method that breaks down a multi decision problem into a sequence 
of subproblems with few decisions, is ideally suited for time sequential decision problems like 
deriving operation policies for reservoirs. Hall and Dracup (1970) stated that DP possesses 
substantial advantages for analysis of such a system. Because it can treat the nonconvex, 
nonlinear discrete variables and is generally more amenable to stochastic inputs. However, 
in the DP model, the separability condition of the objective function limits some applications. 
Thus a careful choice of the setup of the model (e.g., stage, state, decision, objective and 
constraint) is essential. 

1.2 Reservoir Operation Optimization Under Uncertainty 

Uncertainty has always been a serious problem in reservoir operation optimization. 
Uncertainty is present in many factors that affect the performance of systems, such as future 
hydrological, economic, human, technological conditions, etc.. Among them the uncertainty 
of future hydrology (i.e., reservoir inflow) is of extreme importance to water reservoir 
systems and is evidently regarded as a major issue in reservoir operation optimization. 

There are many ways to deal with the uncertainty of reservoir inflows, depending on its 
severity and on its influence on the operation of the system. The simplest approach is to 
replace the uncertain inflows, either by their expected mean values or by some critical values, 
and then proceed with a deterministic approach. However, substituting the random inflows 
by an expected mean value is unacceptable when there is a large variation in the inflow time 
series. In this situation, any single value would not be a safe approximation of the inflow 
variable. 

Besides the deterministic approach of using the expected mean inflow value, there exists 
several stochastic models that can be applied to solve the reservoir operation problem 
considering the inflow uncertainty. These models can be classified into two major schemes: 
"implicit" and "explicit". 



In the so called "implicit" stochastic model approach, a number of synthetic inflow sequences 
are generated using a time series model. The system is then optimized for each inflow 
sequence, and operation rules are found by using multiple regression on the optimized 
operation sequences. During the optimization phase the synthetic data series are considered 
deterministic. Monte Carlo Dynamic Programming (Young, 1967) is a well known example 
of the implicit stochastic model approach. A serious drawback inherent in the implicit 
approach is that it may never be possible to derive the theoretical optimum. Besides, the form 
of the equation for regression analysis (the independent variables to be included and the way 
they should be treated) and the error estimation are continuously open to discussion (Loucks 
and Sigvaldason, 1979). 

The "explicit" stochastic approach uses the probability distribution of the inflows. It is 
introduced into the optimization formulation by either a substitution of the expected value for 
the system objective or a failure chance permitted for the system. Most of the so called 
explicit models are extensions of well known deterministic models, either LP or DP, to the 
stochastic situation. Well developed explicit stochastic models include the so called Policy 
Iteration Method (Howard, 1960), Stochastic Dynamic Programming (Butcher, 1968), 
Stochastic Linear Programming (Loucks, 1968), Chance-constrained Linear Programming 
(ReVelle et al, 1969), Reliability-constrained Dynamic Programming (Askew, 1974a), and 
Reliability Programming (Colorni and Fronza, 1976). 

1.3 Review of the Explicit Stochastic Models 

Three of the explicit stochastic models, among those mentioned above, can take the serial 
correlation of the random inflow process into consideration. These are Stochastic DP, Policy 
Iteration and Stochastic LP. 

Stochastic DP simply combines the stochastic nature of inflows into the deterministic DP by 
optimizing the expectation of the original objective. In stochastic DP, the release decision is 
found at each stage upon each storage and inflow state, which maximizes the expectation of 
the objective value in the remaining stages (calculated with an appropriate recursive equation). 
The procedure is applied successively at each stage going backward until the policy becomes 
steady. 

The Policy Iteration is, as its name implies, an iteration method. It generally aims to improve 
the expectation of the objective value through a trial-and-error strategy. This method has two 
phases. One is called Value-Determination Operation, and the other Policy-Improvement 
Routine. During the Value-Determination Operation, a set of linear simultaneous equations 
has to be solved to find objective related values for any given release policy. During the 
Policy-Improvement Routine, for each (storage and inflow) state in each stage, a new set of 
policies is determined (through an appropriate recursive equation) based on the previous 
knowledge of the objective related values. The iteration cycle is supposed to terminate on the 
achievement of a steady state policy. 

The Stochastic LP, however, has certain significant differences as compared with the other 
two models. In Stochastic LP, the decision is defined as the steady state joint probability 
instead of steady state policy. Like the other two models, Stochastic LP also maximizes the 
expectation of the objective. The objective function is the sum of all states, stages, inputs and 



decisions (the joint probabilities that the steady state policies have). Therefore, a large set of 
linear equations has to be solved simultaneously to find the set of probabilities that maximize 
the expectation of the objective. Knowing the optimal values of joint probabilities of the 
system states, stages and inputs, the conditional probabilities of the final storage volumes for 
the given initial storage volumes and inflows in the corresponding stages are calculated for 
the derivation of the final operation policy. 

Many comparison studies among these three explicit stochastic models have been carried out 
(Gablinger and Loucks, 1970; Loucks and Falkson, 1970). All the results are in favour of 
Stochastic DP model. Although the information derived from each model yields an identical 
policy, the computational efficiencies of each model differ considerably. Stochastic DP takes 
the least amount of computer time. For a simple problem presented by 
Gablinger and Loucks (1970), Stochastic DP obtained a steady state policy in about one 
twentieth time required by the Stochastic LP. 

Perhaps, the accuracy is more important than the speed. There is no doubt that the number 
of simultaneous linear equations that can be accurately solved on present computers is much 
less than the number that may be required for any real world reservoir operation problem. 
While solving large numbers of simultaneous linear equations, computer round-off and 
truncation errors may result in an initially feasible solution rendering it infeasible. This limits 
the size of the problem that can be examined using techniques such as Stochastic LP and 
Policy Iteration (Chaturvedi, 1987). 

Furthermore, the stochastic DP model is very flexible. It has the ability to adjust easily to 
various problem environments by varying the state variables, decision variables, objective 
functions and constraints, etc., of the model. It can deal not only with Markov inflow process 
(lag-one serial correlation) as it was originally introduced for, but also with more (or less) 
complicated stochastic inflow processes. For example, the model Reliability-constrained 
Dynamic programming is in fact an extension of the version of Stochastic DP that assumes 
inflow as an independent process. The only difference in the Reliability-constrained DP is that 
an additional constraint or a penalty is introduced to limit the failures that could happen 
during the operation horizon. 

The three remaining explicit stochastic models, which were mentioned in Section 1.2, 
i.e., Chance-constrained LP, Linear Decision Rule and Reliability programming can be 
considered as one group. Among this group, Chance-constrained LP model is the basic 
model. Linear Decision Rule is introduced to allow easy formulation of chance constraints. 
Reliability Programming is developed to overcome difficulties in identifying a specific 
reliability as a chance constraint. 

The optimum operation policies designed to maximize expectation of the objective value, if 
followed strictly, may sometimes allow the system to fail on many occasions. The probability 
of such failures may be greater than can be permitted. In the Chance-constrained LP type of 
models, the inflow probability condition is reflected in the constraints. They aim to constrain 
the optimization to those decisions that represent a failure probability smaller than an 
acceptable level. A major advantage of this type of models is that they can be converted into 
deterministic equivalent after the accepted level is specified. 



In general, the usefulness of this group of Chance-constrained LP models is seriously limited 
due to the following facts: (a) they can only deal with linearly structured problems, whereas 
the problems in reservoir operation are mainly nonlinear; (b) they derive "rule curve" type 
of operating rules than a detailed operation policy, which is more needed in the modern 
reservoir operation; (c) they are based on the too rigid assumption that each inflow in each 
period is critical. 

1.4 Identification of the Task 

The previous review reveals that Stochastic Dynamic Programming (SDP) is a model with 
great potential. Having the nature of Dynamic Programming, SDP can handle non convex, 
nonlinear discrete variables. Furthermore, this approach generates an operation policy 
comprising storage targets or release decisions for all the possible reservoir storages and 
inflow states in each month (i.e., precise operation policy), than a mere single schedule of 
reservoir releases (rule curve operation rules). After all, it is a flexible model that could be 
adjusted easily to various problem environments. 

Since it has inherent merits, SDP has been well received as a long term (monthly or annually) 
reservoir operation optimization model. Over the past twenty years it has attracted 
considerable attention and has resulted in a long list of related studies (see Chapter 2). 

Many of those studies, however, indicate that certain algorithmic aspects have to be studied 
further to facilitate the application of SDP model to real world reservoir operation problems. 
For example, although many SDP formulations (different choices of state variables, decision 
variables, inflow serial correlation assumptions, objectives and constraints, etc.) are feasible, 
the suitability of each formulation for a particular problem at hand is still to be analyzed. Yet, 
another problem experienced is the large number of zero elements in the estimated inflow 
transition probability matrices, due to the absence of long time series of hydrological data. 

It is now an appropriate time to step back and try to view the structure of the model in its 
proper perspective and to develop some guidelines for the appropriate application of the SDP 
model in real world reservoir operation problems. 

1.5 Objectives and Scope of the Study 

The general goal of this research study is to obtain some insight or perception of SDP model 
construction and its application. This research aims at achieving this general goal by focusing 
on the following four specific objectives. 

I. In most applications of SDP based reservoir operation optimization, a Markov inflow 
process has been assumed. The stochasticity of inflow is expressed by inflow transition 
probability matrices for each successive time step, based on observed inflow records. The 
transition probability matrices coupled with the Bellman recursive relation lead to expectation 
oriented optimal strategies. Due to the limited length of the historical inflow time series, the 
estimated numerical values of the elements in the probability matrices are unreliable. Also, 
many elements remain void. Under certain circumstances, it causes the problem that the 
convergence criterion of the SDP model can only be partially fulfilled. 



The first objective of the research is to find effective means to circumvent the problem caused 
by the poorly structured estimation of the Markov inflow transition probability matrices. 

The study attempts to reach the first objective though the following three steps, (a) The 
interconnection between the characteristics of a Markov chain (the discretized presentation 
of the Markov process) and the convergence behaviour of the SDP model is analyzed, (b) The 
influence of the Markov inflow transition probability matrices has on the resulting SDP policy 
is studied through a real world case study, (c) Based on the studies of (a) and (b) a simple 
and effective method that would alleviate the problem is proposed. 

II. For any DP type of model, the careful choice of state and decision variables is crucial 
for the success of the model. There are two versions of stationary SDP models, which have 
been widely applied in reservoir operation optimization. One is the model having release as 
the decision variable, with previous inflow and initial storage as state variables. The other is 
the model with final storage as the decision variable, with present inflow and initial storage 
as state variables. These models have been developed and used by different groups of 
researchers in different problem environments. However, little has been known about their 
relative performance during reservoir operation optimization. Until now, the importance of 
the choice of the decision variable has been neglected. There also exist controversial remarks 
in literature regarding the choice of different inflow state variables. 

The second objective of this research is to study the characteristics of different SDP models 
that are defined with different decision variables and inflow state variables. 

The study attempts to reach the second objective through the following three steps, (a) The 
relevant studies in literature regarding the choice of decision and inflow state variables in 
SDP model are reviewed, (b) Besides the two existing versions, two more alternatives of the 
model are developed and a comparative study between these model versions is carried out 
using the same decision base (thus comparing the different choices of inflow state variables) 
or the same inflow state base (thus comparing the different choices of decision variables), 
(c) The suitability of the choices of decision variables and inflow state variables in the SDP 
model are tested and evaluated through this comparative study. 

III. An important issue in the literature on reservoir operations concerns the appropriate 
serial correlation assumptions for stochastic inflow sequences. When the SDP model was 
originally introduced into reservoir operation optimization, the inflow sequence had been 
assumed to be a Markov (i.e., Markov-I) process. Later, independence assumption has also 
been introduced into SDP based reservoir operation optimization. However, a clear picture 
on the pros and cons of the two assumptions is not available up to date. In theory, the model 
should reflect the nature of the inflow serial correlation, if this correlation has been identified 
as important. Yet, the growing error in parameter estimation with the growing complexity 
of the model sets practical limits to the validation of such a requirement. 

The third objective of the research is to obtain insight into the characteristics of different SDP 
models that are defined by different inflow serial correlation assumptions. 

The study attempts to reach the third objective through the following three steps, (a) Besides 
the models with Markov-I and independence assumptions, two other models are developed. 
They are used to obtain an overall picture of the relation between the serial correlation 



assumptions and performance of the SDP model. One of the models developed considers the 
serial correlation one step further than the Markov-I assumption: i.e., SDP model with 
Markov-n assumptions. The other model interprets the inflow process even simpler than the 
independence assumption does: the model with the assumption that the inflow is deterministic, 
(b) The inherent connection among each of the transition probability matrices, which 
correspond to different inflow serial correlation assumptions, are discussed from a theoretical 
point of view, (c) The applicability and suitability of each inflow serial correlation assumption 
is tested and evaluated by means of six experiments. 

IV. Simulation studies of reservoir system operation utilizing SDP based rules revealed 
that the simulated objective function value as an inadequate indicator to characterize the 
performance of a reservoir system. Bogardi et al. (1991) have noticed, for example, that for 
the Mahaweli reservoir system in Sri Lanka the value of the simulated average annual energy 
generation varies very little when different objective functions are used in SDP models. 
Besides the simulated objective function value, a number of (reliability-related) performance 
indices can be used to describe the operational behaviour of the reservoir system upon the 
application of a certain release policy (Bogardi and Verhoef, 1991). 

The fourth objective of the research is to obtain more insight and systematic knowledge on 
the subject of objective functions and performance evaluation criterion. This part of the work 
is in fact a continuation of the initial studies by Bogardi et al. (1991). 

The study attempts to reach the fourth objective through the following four steps, (a) The 
difficulties in the selection of the objective functions are discussed and some possible 
improvements are considered, (b) Several reasonable choices of the objective function are 
introduced into the SDP model to study their influence on the resulting reservoir operation 
performance, (c) Besides the often used performance indices of simulated objective values, 
some risk-related performance indices are also adopted as performance evaluation criteria to 
obtain a more complete picture of the reservoir performance, (d) Experiments are carried out 
with a real case study to examine the interaction between objective functions and the 
performance evaluation criterion. 

This report is organized into 9 chapters. Chapter 1 to 4 contain general information and 
background knowledge of the present research. Chapter 1 is a general introduction to the 
research. Chapter 2 gives a "bibliography" of the application of the SDP model in the 
reservoir operation optimization. In this chapter many important related publications are 
briefly reviewed chronologically. Chapter 3 gives a general description of the formulation and 
calculation procedure in the SDP approach. This chapter introduces the terminology and 
concepts for the study reported in the following parts of the report. Chapter 4 describes the 
reservoir systems selected for the case study. In the present research three different reservoir 
systems have been selected as reference systems. The reason for the selection of these 
systems is briefly explained at the beginning of Chapter 4. Chapter 5 to 8 are the four major 
chapters of the report that contain the contribution of the present research with respect to the 
earlier mentioned four research objectives. The Markov inflow transition probability matrix 
is the subject matter of Chapter 5. Decision and inflow state variables are studied in 
Chapter 6. Chapter 7 focuses on inflow serial correlation assumption. Objective and 
performance evaluation are analyzed in Chapter 8. Conclusions and recommendations are 
presented in Chapter 9. References and appendices are provided at the end of the report. 



2 Literature Review 

There are many reviews of mathematical programming models in reservoir operation. 
Yakowitz (1982) has provided a thorough insight on the application of dynamic programming 
models to various water resources problems. Yeh (1985) reviewed the state-of-the-art of the 
reservoir management models. Reznicek and Cheng (1991) presented a review of the 
implementation of uncertainties in reservoir management models. 

This chapter is focused on the literature regarding the application of stochastic dynamic 
programming models in the field of reservoir operation optimization. It aims at giving a 
general view upon the development of optimization models. In this chapter, all the relevant 
studies are listed and reviewed chronologically. The literature regarding the four subject 
matters, i.e., Markov transition probability matrices, decision and inflow state variables, 
inflow serial correlation assumptions, objective function and performance evaluation are 
discussed further in Chapters 5, 6, 7 and 8 respectively. 

The origins of dynamic programming, inventory theory and reservoir management are 
intimately interconnected. Masse (1946) is considered to be the first (Arrow et al., 1958; 
Hadley and Whitin, 1963; and Sobel, 1975) to achieve a satisfactory solution to an inventory 
problem with non negative variables. Masse's study concerned reservoir operations and he 
employed the functional equation approach, which lies at the base of dynamic programming. 
The earliest stochastic reservoir operation optimization study published in english language 
appears (cf., Yakowitz, 1982) to be the work of Little (1955), who has considered the 
operation of a simplified reservoir system. 

Little's model departs from the model for deterministic reservoir operation by assuming 
inflows to be observations of a stochastic sequence. Little chose the Markov assumption that 
the conditional probabilities for the present inflows can be defined completely by the previous 
inflow. The Markov assumption was not supported by statistical analysis. But Little 
mentioned that the much more convenient independence assumption was discarded because 
it is "... untenable for river flow". Little applied his model to data from the Grand Cooley 
generation plant on the Columbia River, USA. The time horizon was taken to be one year, 
and it was divided into 26 decision periods with a time interval of 2 weeks. The optimization 
was carried out backward through a recursive equation, and the transition matrix was inferred 
from 39 years of historical flows. The highly nonlinear single-stage loss function for the 
numerical study reflected the amount of water at a given head required to generate a given 
amount of electricity, and the cost of failing to meet a specified demand. His model derived 
the optimal release strategy as a function of the storage volume at the start of each time 
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interval and the inflow at the previous time interval. The computed optimal strategy was 
compared with that of the "rule curves" then in use, over the 39 year historical record. A 
relative improvement using the optimal strategy was detected. 

The early work of Little in this direction was modified by many researchers, based on the 
theory of Dynamic Programming (Bellman, 1957). 

Butcher (1968, 1971) adapted the model of Little (including the Markov inflow assumption) 
to a realistic case study. Butcher (1971) applied the so called (discrete) stochastic dynamic 
programming to find the optimal stationary strategy for operating the Wataheamu Dam along 
the California-Nevada border, USA. In his model the release decision was defined by initial 
storage and previous inflow states. The optimization calculation process was carried out based 
on Bellman's Principle of Optimality. Starting at sometime in future and using the connection 
between the flow in one time period and the adjacent time period, the value of release at each 
time period was calculated backward through a recursive equation. Butcher specially noted 
that under certain circumstances, this policy is said to converge when the values of release, 
which are used to evaluate the objective value, repeat for all of time periods t, as t becomes 
large enough. These steady state releases then form an optimal policy for the operation of that 
reservoir. 

Schweig and Cole (1968) adapted the Little (1955) model to a two-reservoir problem. 
Through discrete stochastic dynamic programming, they computed an optimal strategy for a 
problem based on data from the Lake Vyrnwy, Wales. Despite very coarse discretization 
(e.g., the state coordinates for past inflows were discretized into only two levels), the authors 
reported severe computational difficulties; the so called "curse of dimensionality". 

Gablinger and Loucks (1970) examined discrete stochastic reservoir operating models based 
on serially correlated Markov inflows with both linear and dynamic programming techniques. 
In the original version of the Stochastic LP model, the decision was defined based on the 
initial storage and present inflow instead of the previous inflow. Therefore, to make the two 
models (linear and dynamic) comparable, they introduced a new version of the SDP model. 
It used the present inflow instead of the previous inflow as the inflow state variable. The 
version of SDP assumed that the present inflow was known at the beginning of the period (or 
a forecast is possible with 100% certainty); thus the present return from the recursive relation 
of the SDP model was deterministic. The detailed formulation of the model was well 
described by Loucks et al. (1981). Their comparative study revealed that both DP and LP 
models result in the same optimal policy, but the requirements in computing time are 
different. The stochastic dynamic programming approach seemed faster. The authors 
suggested that the reason for the relatively poor performance of the linear programming 
method was due to its requirement of more solution variables in the transition compared with 
the dynamic programming method. Specially, the number of control values to be determined 
by the linear programming solution equals the product of the number of the discretized points 
in state and policy spaces, multiplied by the number of decision times. Whereas the number 
of control variables to be solved in the discrete dynamic programming formulation is only the 
product of the number of state values multiplied by the number of decision times. If there are 
10 decision times, and if everything in a bivariate space (as in the Little model) is discretized 
into 10 levels, the number of solution variables to be dealt with by dynamic programming is 
103, whereas the number of variables to be dealt with by linear programming is 104. 



Loucks and Falkson (1970) examined three types of discrete stochastic reservoir operating 
models based on serially correlated Markov inflows: linear, dynamic and policy iteration 
(Howard, 1960). They all lead to the same optimal policy but the requirements in computing 
time were different. The stochastic dynamic programming approach was observed to be the 
fastest. 

Arunkumar and Yeh (1973) used SDP to maximize the firm power output accompanied by 
a penalty function for not meeting the specified firm power level. They also proposed a 
heuristic decomposition approach for a multireservoir system. The approach consists of fixing 
a stationary policy for (m-1) reservoirs (i.e., 2, ..., m) and optimizing with respect to 
reservoir 1. The optimized policy of reservoir 1 replaces the initial policy of reservoir 1, and 
then reservoir 2 is chosen for optimization while release rules for reservoir 1,3 m are 
fixed, and so on. This procedure is continued until either the policies do not change or the 
successive improvement in the infinite time horizon return functions are uniformly bounded 
by some desired level. The existence of stationary optimal policies has been shown by Ross 
(1970). Arunkumar and Yeh applied the decomposition approach to a two parallel reservoir 
system, the Shata and Folsom reservoirs of the California Central Valley Project, USA. The 
algorithm started with the determination of the optimal release rules for Shata, independent 
of Folsom. The "flip-flop" decomposition algorithm was applied repeatedly interchanging the 
two reservoirs until the improvement between successive approximations of the reward 
function was uniformly bounded by a small number. 

Su and Deininger (1974) applied the model and methodology of Little (1955). They examined 
both independent and serially correlated Markov flows and derived the probabilities of 
occurrence of the flow intervals from the relative frequency with which the historical data fell 
into these intervals. As the flow intervals and storage state intervals were not of the same 
size, the state transition for a given inflow interval might not fall into a single output storage 
state interval in Su and Deininger's scheme. They proposed a second order interpolation 
scheme to compute the probabilities of occurrence of the output storage states in the 
optimization of the objective function. Data from the Lake Superior served as a basis for their 
computations. They noted that the "unreal" assumption of independent inflows (the inflows 
are serially correlated) did not influence very much the optimal strategy for the studied 
problem. 

Askew (1974a, 1974b) used stochastic dynamic programming (with independent inflow 
assumption) and simulation technique to derive the optimal policy that maximizes the expected 
net benefits. By introducing a penalty function in the recursive equation, to reduce the net 
benefits every time the demand is not met, an amended policy can be derived that has lower 
target releases and hence a smaller associated probability of failure. A simulation technique 
was used to estimate the value of the average number of failure associated with the optimum 
policy. 

Klemes (1977) studied the discrete representation of storage for stochastic reservoir 
optimization. He pointed out that the number of storage states is subjected to some absolute 
constraints. Also, it must increase linearly with the reservoir storage capacity so that 
comparability of results is assured. He demonstrated, both theoretically and with the aid of 
a numerical example, that a too coarse discrete storage representation can not only impede 
accuracy but may completely distort reality in most unexpected ways. 
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Alarcon and Marks (1979) presented a SDP model to study guidelines for the operation of 
the High Aswan Dam in Egypt. The study considered the conflicting nature of the purposes 
for which the dam was to be operated. The policies obtained by the SDP model were tested 
using a simulation model. The results were compared with the ones obtained by operating the 
system using a simple heuristic approach. 

Gal (1979) presented a pilot study of a method for finding an approximation for the optimal 
policy of a system, which contains one surface water reservoir and two underground aquifers. 
In the model, the state of the reservoir was represented by the water storage volume in the 
reservoir at the beginning of each time period and the inflows into the reservoir for the two 
previous time periods. Since this system was too large to be solved by the usual SDP 
approach, a method was devised to obtain an approximate solution that did not consume too 
much time or space. This method was referred to as the parameter iteration method. 
However, it was noted that contrary to the usual SDP approach, the parameter iteration 
method is not fully automatic. Further, the user was expected to have a good understanding 
and intuition about the behaviour of the considered system. Because good results depended 
on successful choice of some parameters. 

Turgeon (1980) proposed two methods to alleviate the problem of dimensionality. The first, 
called one-at-a-time method, consists of breaking up the original problem into a series of one 
state variable sub-problems, which are solvable by DP. The second method, called 
aggregation/decomposition method, consists of breaking up the original n-state variables 
stochastic optimization problem into a n stochastic optimization sub-problems of two state 
variables each, which are also solvable by DP. However, the final result was an optimal local 
(or a sub optimal global) feedback operating policy for each reservoir of the system. 

Loucks et al. (1981) presented a SDP model, which is different compared with the 
Butcher's (1971) version of the model. In Loucks' model, the generated sequential operating 
policies define the final storage volume as a function of the initial storage volume, which is 
known, and the inflows in the current period, which are not known until the end of the 
period. Since the policy is to be implemented starting at the beginning of each period prior 
to a knowledge of the inflow at that period, the above policy cannot be implemented right 
away. One way to implement this type of operating policy in real time operation is to 
reformulate the sequential operating policy in a way that does not depend on unknown future 
inflows. It can be done by identifying either a final storage volume target, subject to 
limitations on the releases, or by identifying reservoir release targets subject to limitations 
on the final storage volumes, in each period. Another way to implement mis type of policy 
is to employ inflow forecast. In spite of additional errors involved in forecasting inflows, the 
model does open the way for reservoir operators to operate the system based on the most 
up-to-date knowledge of inflow. 

Stedinger et al. (1984) presented a stochastic dynamic programming model, which is based 
on Louck's formulation. It uses the best forecast for the current period's inflow to implement 
the reservoir release policy. They claimed that the use of the best inflow forecast as an inflow 
state variable, instead of the preceding periods inflow, results in substantial improvements in 
simulated reservoir operations with derived stationary reservoir operation policies. However, 
the optimal policy derived in this way was conditioned on inflow forecast, which had been 
integrated in the model. This unnecessary additional restraint limited the applicability of the 
model. 
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Goulter and Tai (1985) applied SDP to model a small hydroelectric dam system. They 
addressed the aspect of discretization of the storage space in the modelling process. They 
found that using too small numbers of storage states can result in unrealistic high skewness 
in the storage probability distribution functions and therefore, affect the optimal operation 
policy. On the other hand, the computational burden may limit the number of applicable 
storage states that can be considered in the model. 

Nandalal and Bogardi (Nandalal, 1986; Bogardi and Nandalal, 1988) used a SDP model 
(which is similar to Louck's version with respect to decision and inflow state variables) to 
derive operation policies for two serially linked multipurpose (irrigation and energy 
generation) reservoirs on the Mahaweli River in Sri Lanka. The joint transitional probabilities 
of inflows were defined based on a Markov chain. The discrete time series and their 
probabilities were used to approximate the continuous distribution of the inflows. The model 
has the objective of maximizing expected annual energy generation subjected to the constraint 
of satisfying average annual irrigation requirement. Besides the SDP model, a deterministic 
DP model based on the incremental DP (IDP) was also formulated. The developed operational 
policies based on the SDP model were verified through simulation and were compared with 
the optimum operation of the system obtained by the deterministic method. They pointed out 
again the problem of the "curse of dimensionality". 

Budhakooncharoen (1986) studied the operation of a hydro-power plant using the IDP and 
SDP (Louck's version) formulations. The models have the objective to maximize the expected 
annual energy generation. The derived operational policies were compared with historical 
operational records of the Kariba Reservoir on the Zambezi River, Central Afrika. A 
sensitivity analysis was carried out by varying the installed capacity of the power plant, the 
size of the reservoir, and the minimum drawdown level to identify potential increase of the 
installed power generation and/or the reservoir capacity. 

Karamouz and Houcks (1987) formulated two dynamic programming models, one 
deterministic and the other stochastic (Butcher's version), to determine reservoir operating 
rules. These formulations were then tested with 12 cases of monthly operation of single 
reservoirs. The deterministic model (named DPR) constituted an algorithm that cycled 
through three components: a dynamic programme, a regression analysis and a simulation. The 
stochastic dynamic programme (SDP) considered the inflow with a discrete lag-one Markov 
process. To test the usefulness of both models in generating reservoir operating rules, 
real-time reservoir operation simulation models were constructed for three hydrologically 
different sites. The rules generated by DPR and SDP were then applied in the operation 
simulation model and their performances were evaluated. It was concluded that the DPR 
generated rules are more effective in the operation of medium to very large reservoirs and 
the SDP generated rules are more effective for the operation of small reservoirs. They 
showed that the DPR model is more sensitive to the number of characteristic storages and 
requires usually a large number of storage state variables to function properly. Especially 
when the reservoir is fairly large (1.0 - 1.7 times the mean annual flow). 

Tai and Goulter (1987) developed a heuristic stochastic dynamic programming model to 
derive a monthly operation policy for a " Y" shaped hydroelectric system consisting of three 
reservoirs. The unique feature of this system was that it had two upstream reservoirs without 
any hydroelectric generating capacity and with only the storage regulation structures. The 
author concluded that two upstream reservoirs must respond to the requirements of the 
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downstream station. Under this principle, they described a heuristic approach for this 
particular system. The method started with finding an optimum operation of the downstream 
reservoir using the historical data. Then the resulting optimal operation policies were used 
to determine relative weights or targets for finding the optimal operation policies for the 
upstream reservoirs. New input inflows to the downstream reservoir were then computed by 
running the historical inflow records through the optimal policies for the upstream reservoirs. 
Subsequently, optimal policies for downstream units were computed. This resulted in new sets 
of targets for upstream units. This iterative process terminated when the same overall system 
benefits for two successive iterations were achieved. It was shown that the best results with 
respect to accuracy and the requirement of computational efforts, could be obtained with nine 
storage state variables. The authors also mentioned that the number of storage states causes 
the problem of the "trapping states". 

He and Bogardi (He, 1987; He and Bogardi, 1990a; He and Bogardi, 1990b) studied a 
strategy based on a single reservoir stochastic dynamic programming (Louck's version) 
concept to obtain operation policies for a system of three tandem reservoirs in Northern 
China. In the study, the concepts such as hypothetical composite reservoir and iterative 
SDP/simulation were introduced to break up the large and complicated original problem of 
multireservoir optimization into some simpler sub-problems that can be solved separately. 
Besides, the impact of different objective functions such as minimizing reservoir spillage, 
minimizing quadratic deviation from downstream water demand and maximizing reservoir 
releases were investigated. 

Shrestha (1987) applied SDP to derive optimal operation policies for a hydropower system, 
which was in the planning stage. Simulation of the system operation was carried out based 
on the SDP based optimum policy to evaluate the system performance. Finally the optimum 
system configuration was selected by comparing die performance values obtained for the 
different configurations. 

Bogardi et al. (1988) investigated the impact of varying the number of storage and inflow 
classes upon the operational performance of SDP for both single and multiunit reservoir 
systems. Their results indicated that by simply increasing the number of storage classes 
beyond certain limits, the system performance would not improve dramatically. They stated 
that emphasis should be placed on the "synchronization" of the number and size of storage 
and inflow classes, to check whether any improvement can be obtained this way. 

Laabs and Harboe (1988) presented three models based on dynamic programming technique 
including a deterministic model, a probabilistic model and a stochastic model (Butcher's 
version) for finding Pareto-optimal operating rules for a multipurpose reservoir. The complex 
stochastic model included several objective functions and weighting factors for each objective 
as needed in a compromise analysis of multiobjective decision making. As a result many 
pareto-optimal operating rules for the reservoir were obtained. The final selection of an 
optimal policy can be done only after real-time simulations with these operating rules (with 
historical and synthetic flow records) have been performed and a multiobjective selection 
criterion is applied to the results. 

Kularathna and Bogardi (Kularathna, 1988; Kularathna and Bogardi, 1990) extended the two 
serially linked reservoir system of the Mahaweli Development Scheme in Sri Lanka studied 
by Nandalal (1986) to a system comprising three reservoirs. Four different SDP based 
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