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Abstract. Models are tools in which knowledge about agricultural systems is integrated. The 
process of model building and the application of completed models are important. The models are 
used for the analysis of agricultural, biological and ecological systems, for prediction of future 
developments and for exploration of possible behaviour of such systems. 

Phases of development of explanatory models are distinguished: preliminary models, 
comprehensive, summary models. The values of these phases for practical applications, for 
education and for science are markedly different. Models for exploration and prediction are 
different in nature than those for disciplinary research and analysis. 

modelling has gained wide acceptance as a tool in research. It is also used education programs, 
and is a widely accepted instrument for policy making. Examples are given of models in research (for 
priority setting, development of science), in education, and of use for explorative studies (such as 
quantitative land evaluation). 

While development of crop simulation models per se continues, their association with other 
quantitative techniques is already emerging. There is much potential for the combined use of models 
with Geographic Information Systems (GIS) and Linear Programming (LP) techniques for strategic 
planning, but current limitations of these tools are generally underplayed. User-friendly 'shells' are 
beginning to bring a wealth of possibilities for simulation and for analysis to many users. The 
number of applications could therefore grow exponentially. 

As bottlenecks for applying models at a wide scale are recognised: scarcity of basic data, lack of 
data for evaluation ofthe models, hardware, and the number of trained scientists. Which of these 
factors limits progress most differs among countries. Scarcity of basic data and lack of trained staff 
often count most, particularly in developing countries. 

Introduction 

Building models is a way to integrate knowledge and to make it available for 
various purposes. Both process and product are important because they 

help to define and categorise the state of knowledge of the subject; 
help to set priorities for research, by helping to locate gaps in knowledge and 
to link scientists across disciplines, levels of aggregation and from 
fundamental and applied sciences; 
provide a means for disseminating knowledge; 
provide a tool to make integrated knowledge operational for policy making 
and for resource management. 
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This introductory paper recalls briefly relevant definitions and concepts, and 
categorises models in relation to their uses. In this way, it provides a framework 
for the following chapters. 

It is no coincidence that the various subjects in this volume are regarded from 
the experimental and also from the modelling side. Modelling has gained wide 
acceptance as a tool in research. It is also no longer restricted to the research 
environment, but has entered education programs, and is an instrument for 
policy makers. We will give some typical examples of use of models in research 
for priority setting and for development of scientific knowledge, of models in 
education, and of models used for quantitative land evaluation. 

Finally, we address briefly new opportunities for linking crop models with 
Geographic Information Systems (GIS), Linear Programming (LP) and 
remote sensing (RS). Limitations for wide scale application of models are 
discussed, among which are prominent the lack of basic data and the shortage 
of scientists that are familiar with modelling approach and with uses of the 
available tools. 

Concepts in Modelling 

Syste1ns 

'One way of considering the real world is to divide it into systems. A functional 
description of a system is: a part of reality with strongly interacting elements, 
but with little influence on its environment. What part of the real world is 
singled out as a system depends first of all upon objectives. However, some 
elements of a system interact more than others, co-determining the shape of a 
system. Upon delimiting a system, one should thus take into account such 
natural contours, and consider all essential parts.' (Penning de Vries 1983). The 
boundaries of a system can move to expand or shrink the system under 
investigation in relation to the objective of the study. Ideally, boundaries are 
chosen such that the environment influences processes of the system, but the 
system itself does not influence its environment. 

A theoretical delimitation of crop systems of growing crops was proposed by 
De Wit (De Wit and Penning de Vries 1982). He distinguished four levels of 
production, and corresponding systems (for their relational diagrams, see 
Penning de Vries et al. 1989): 
- Production Ievell: growth in conditions with ample soil water and nutrients. 

The crop growth rate is limited by weather conditions and amounts to 100-
350 kg ha -ld - 1• This situation is sometimes approached on the best farms 
and in glasshouses. 

- Production level 2: growth is limited by shortage of water for part of the 
growing season. This occurs on well fertilized soils in semi-arid regions and 
in temperate climates, but is not common in natural ecosystems. 

- Production level 3: production is limited by shortage of nutrients and 
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Figure 1. The relationship among potential:, attainable and actual yield and growth defining:, 
growth limiting and growth reducting factors (Rabbinge 1993). 

sometimes by water. This is a common situation in agricultural systems using 
little fertilizer and in natuiral ecosystems. 

- Productionlevel4: production is limited by availabilityofphospohorus or other 
minerals. Growth rates are I 0-50 kg ha - 1 d - 1 during a short growing season. 
This situation occurs in heavily exploited areas where no fertilizer is used. 
In practice, crop growth can be limited by several factors during the growing 

season, while pests may occur any time. It may also not be economical to 
attempt to reach potential yields. A practical, action oriented distinction has 
been proposed by Rabbinge (1993). He distinguished (Figure 1 ): 
- potential yield, with the same definition as De Wit's Production level 1. 

Weather variables, including C02-level, and species characteristics are the 
yield defining factors. Modelling potential yield requires particularly the 
understanding of crop physiology and agrometeorology. 

- attainable yield, roughly 50-20o/o below the potential yield; the reduction is 
caused by limiting factors such as water, nitrogen or phosphorus. Such 
limitations can largely be avoided by yield increasing measures (fertilizer, 
irrigation). Best farms attain this yield level. Soil physics and soil chemistry 
are important disciplines in the study of attainable yield, in additions to crop 
physiology and agrometeorology. 'Attainable yield' includes De Wit's 
production levels 2, 3 and 4. 

- actual yield, roughly 50-0o/o below the attainable yield due to reducing 
factors, such as weeds, pests and pollutants. Yield a reduction can be avoided 
by crop protection measures such as integrated pest management. This 
situation is very common in many of the worlds agricultural crops. 
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Figure 2. Temporal and spatial scales of units of analysis in production ecology. Source: Graduate 
School Production Ecology, Wageningen. 

Systems of crop growth may also be categorised by hierarchical level. 
Typically at higher levels, the physical dimension ('size'), the time scale at which 
key processes react and progress (expressed as time coefficient), and the 
complexity of the system (expressed as the number of disciplines involved) 
increase. Figure 2 shows the scales commonly addressed in agricultural 
research. Important hierarchical levels are: 
- the plot level: the system covers several square meters in surface area; 

processes have characteristic time coefficients of seconds to hours; many 
simulation studies address basic processes such as transport in soil or plants, 
interception, absorption of light and leaf photosynthesis; temporal changes 
of pests, etc.; 

- the field level: the system covers around one hectare in surface area; processes 
have characteristic time coefficients of hours to days; studies address 
integration of basic processes to the field level; such as canopy 
photosynthesis, field evaporation, nutrient percolation, etc; 

- the fann level: the system comprises several fields in one management unit, 
has a time horizon of several years and characteristic time coefficients of days 
to weeks; in addition to the processes at the field level, socio-economics is 
very important, as is management of machinery, stocks, personnel and cash; 

- the regional/eve/: the system comprises all land in a relatively uniform region of 
thousands of hectares, with tin1e coefficients of months to years; socio-econo­
mics and limiting regional natural resources (e.g. water) are considered, 
possibilities and limitations are studies and mechanisms of change investigated. 
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Models 

A 1nodel is a schematic representation of the conception of a system. In the real 
world, the appearance of biological systems changes, and their models are often 
called 'dynamic'. The most obvious change in a crop production system is 
growth. Analysis of dynamic systems is based on the assumption that the state 
of the system at any particular time can be expressed quantitatively, and that 
changes in the system can be described in mathematical terms (De Wit and 
Goudriaan 1974). This leads to formulation of state-determined models in 
which state variables, driving variables, rate variables and auxiliary variables 
are distinguished. State variables characterise and quantify the current state of 
the system, such as the amount of biomass, the leaf surface area, theN content 
of a part of the system etc. Their values change according to rules based on the 
underlying physiological, physical and biochemical processes. Driving 
variables, such as meteorological variables, characterise the influence of the 
environment. The formulation of the relations between all variables is called the 
'structure' of a model. The 'behaviour' of a model is the total of the changes in 
the numerical values of variables during simulation. For a more extensive 
discussion of systems analysis and modelling, see Penning de Vries et al. (1989), 
Leffelaar (1993), and Goudriaan and Van Laar (1994). 

Simulation is the scientific activity of building and utilising explanatory 
models. Models are called 'explanatory' when their behaviour is based on 
process knowledge at a lower hierarchical level. This contrasts with 
demonstrative n1odels, whose behaviour resembles that of the real system, but 
the rules that make it behave in that way are quite different. For example, 
images of a film may look like the real world, but are only a demonstrative 
model of it. Explanatory and demonstrative models come in many forms: 
dynamic tnathematical models, scale models, graphical models, electric analogy 
models. Each form has particular advantages and disadvantages. We focus at 
explanatory dynamic mathematical models: such models are flexible, have most 
potential for application and for further development. 

In the process of 1nodel develop1nent, one passes from a conceptual phase, 
through a model construction phase to evaluation and application. Skills, data 
requirements, and techniques used are different in these phases. Ten different 
steps can be distinguished in the process of model development (Table 1). 
Typically, modelers go many times back and forth between these steps, and not 
always even reach the end. Indeed, in a long process, completion of each step 
may be seen as a small milestone. The first phase, developing a conceptual 
model, is often the most difficult one. 

Uses of Models 

Automobiles can be very useful when the type of the car matches the task: busses 
for moving people, trucks for bulk transport, and Formula 1 's for racing. The 
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Table 1. Steps in systems research and model building. Source: Rabbinge and De Wit (1989) 

Conceptual phase 
1. formulation of objectives 
2. definition of system boundaries 
3. conceptualization of the system 

Comprehensive modelling phase 
4. quantification of input relations 
5. model construction 
6. model verification 

Evaluation and application phase 
7. model validation 
8. sensitivity analysis 
9. simplification: summary models, decision rules • 

10. feasibility and scenario studies 

same applies to models: they are useful only when the proper type is selected for 
a specific task. 

Models can be useful for development of science, for prediction and for 
instruction, but not all at the same time. Scientifically interesting models are 
often too detailed for application, while models for predictive or management 
purposes are often too trivial or too crude to challenge scientific interest. Three 
'values' can be attributed to models (Table 2): 

Table 2. The relative values of certain uses of models in different phases of development. Source: 
Penning de Vries (1983) 

Predictive Scientific Instructive Simplicity 
value value value 

preliminary model + +++ ++ ++ 
comprehensive model ++ +++ + + 
summary model +++ + +++ ++ 

- the scientific value of a model expresses the extend to which it helps us to 
understand the real world, to integrate the relevant processes of the system, 
to bridge disciplines and aggregation levels, to evaluate alternative 
hypotheses, and to suggest experiments to falsify them; 

- the predictive value of a model expresses the degree in which it simulates 
accurately the behaviour of a system. It measures the usefulness of the model 
as an instrument for application of knowledge in practice and for planning, 
and for explorative feasibility studies. The less detailed the desired results are, 
the simpler the predictive model can be. Simulation for different scenario's of 
the environment, such as for climate change, is a popular form of 
investigating possible consequences; 

- the instructive value of a model refers to its use for disseminating knowledge 
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to graduate and post-graduate student, and to non-scientist end users such as 
extension services, farmers, policy makers. The model should convey the 
cruciaLbehavioural aspects of an entire system in a transparent manner. 

Evaluation 

Evaluation is a broad term to describe the action of judging the value of a model. 
It comprises checking internal consistency and dimensions in computer 
programs, closed balances, comparison of model output with real world data, 
and judgement of practical utility. It is common experience that the behaviour 
of the model 'agrees' with that of experiments except for one of two aspects, 
which is 'corrected' by optimising the value of ode or two parameters. This 
adjustment process, called calibration, should be avoided whenever possible, 
but is commonly used to tie simulation results to benchmark observations (e.g. 
Stol et al. 1992). . 

Evaluation of models remains often limited in depth as a result of too small 
a data base. Some models are only 'evaluated' by establishing a good 
correspondence between 'predicted' and 'observed' results, while the same 
observed results were used to derive constants in the model. This risks to reduce 
the explanatory nature of models. Strong experimentation is indispensable in 
parallel with modelling: experimentation at the explainable level for evaluation, 
and at the explanatory level for further improvement. 

A source of concern is the brevity or inaccessibility of descriptions of many 
models and their programs. Too often, one is asked to believe an author without 
being able to check it. Some of the advantages of modelling are then lost. If 
documentation of a model is not rigorous, one must fear that also its evaluation 
was not thorough. There is a need for a standard of model quality. 

Examples of simulation 

Models in research 

Explanatory simulation models are part and parcel of much of the quantitative 
research in agriculture and biology. Both preliminary and comprehensive 
models are common. The objective is to obtain a tool that explains the 
behaviour of the system. Generic models, such as SUCROS87 (Spitters et al. 
1989), are often a starting point for their development. To account for specific 
processes (e.g. tillering in rice crops) or to target the models to specific objectives 
(e.g. understanding tuber formation dynamics in potato), research models are 
tailored to specific needs and circumstances. The procedure laid out in Table 1 
applies very well to development of research models. Examples of such models 
are WHEAT for spring wheat (Van Keulen and Seligman 1987), and 
INTERCOM for crop-weed interactions (Kropff and Van Laar 1993). 
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Table 3. Categories of pest damage. Sources: Rabbinge (1983), Boote et al. (1983) 

Category 

assimilate sapper 
tissue consumer 
stand reducer 
photosynthetic rate reducer 
leaf senecence accelerator 
light stealer 
turgor reducer 

Process 

tap assimilates 
removal tissue 
removal stem 
damage chloroplast 
premature abcission 
shading 
modify water transfer 

Example 

aphid 
insects 
stem bore 
diseases 
Cercospora 
weeds 
nematodes 

Integration of disciplines leads to unifying principles. An example is the 
distinction of a limited number of categories of damage that the numerous 
species of insects and diseases can cause to crops, which is rooted in 
physiological mechanisms (Table 3). 

Another example is the use of modelling for setting research priorities and for 
structuring of research activities. Simple models can already help to do so for 
broad conclusions, comprehensive models help to do so for specific hypotheses 
or knowledge gaps. For example, modelling identified the need for better 
knowledge of morphological development of crops and of maintenance 
respiration in order to make better predictive models (Spitters and Van Keulen 
1990). However, these gaps have been found difficult to fill. In another case, use 
of models was more successful. Modelling studies hinted at the possibility that a 
sub-optimal N-content of leaves after flowering was a cause of sub optimal 
production in rice (Penning de Vries et al. 1991; Kropff et al. 1993). Yet, this was 
unexpected, since exhaustive experimentation two decades earlier provided the 
bases of the common fertilisation regime. Improving the post flowering N -status 
indeed raised the yield level significantly (Kropff et al. 1993). The cause was 
traced to a modified soil environment, in which the originally optimal fertilising 
regime had become sub-optimal. Stimulated by this result, several modelling 
studies are now ongoing at the International Rice Research Institute (Penning de 
Vries et al. 1991), and much research is organised in programs in which modelling 
provides the backbone (Kropff et al. 1994). 

A third example is the analysis of causes of variability and risk in 
winterwheat due to aphids (Rossing et al. 1994). Careful mathematical and 
statistical analysis of field and laboratory data showed that uncertainty about 
the initial aphid population contributed most to uncertainty about the threshold 
level for spraying. They conclude that better field observations are needed more 
than better models or other types of data. 

Models for instruction 

Simple models are needed for instruction, and summary models are better than 
preliminary models. In addition to the contents, it is desirable that the models 
are packaged in an attractive, user-friendly form. Few products are in this stage, 
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probably because for scientists there is little stimulus to derive summary models 
and for programmers it is a major job of restricted commercial value. 

Simulati-on models in the simulation language CSMP, with clear textbooks 
and exercises, are a good form of instructive models (e.g. De Wit and Goudriaan 
1974; Penning de Vries et al. 1989). They have lead to a wealth of models for 
different subjects and objectives. CSMP has been abandoned by its author 
(IBM), but a compiler has been developed (Van Kraalingen et al. 1994) by which 
CSMP-style models can be used in a flexible FORTRAN Simulation 
Environment (Van Kraalingen 1993). A package for computer aided instruction 
in crop simulation is now commercially available. 

Models for prediction 

'Prediction'· comes in many forms, including straightforward and real time 
prediction of final crop yield during a growing season (e.g. De Koning et al. 
1993), exploration of consequences of 'what if questions on management (e.g. 
Keating et al. 1993), exploration of the impact of climate change (e.g. 
Rosenzweig 1993), and evaluation of new 'designs' of crop ideotypes (e.g. 
Dingkuhn et al. 1993). Special attention should be given to the matching of 
model and objective, to availability of data, and to evaluation of some results. 

An example of use of models for prediction is in quantitative land use 
evaluation. Such models need much geographical referenced data on soils, 
climate, and sometimes on land use. Typically, output (crop production) and 
input (water, chemicals) are computed per soil-climate unit for one or more 
crops and weather patterns; outputs are expressed on maps, as averages or 
probabilities. A good example is a si1nulation study for India (Figure 3). In this 
vast country, consistent guidelines are sought as to where production of wheat 
should be stimulated, about optimum sowing dates, and what quantity of 
irrigation water would be needed (Aggarwal 1993). In a follow up of that study, 
consequences of inaccuracies in basic data (or of their absence) were quantified 
(Aggarwal 1994), thereby identifying the soil parameters (and to a smaller 
extend the crop parameters) of which field measurement would add most to 
accuracy of production redictions. In this way, the study helps agricultural 
planners and guides research services. 

Since variability is more difficult to measure than to simulate, models are 
indispensable to quantify variability at the crop, cropping system, and regional 
level (Penning de Vries 1994). 

For deriving solid advice to decision makers, crop models still have a number 
of weaknesses. It is the responsibility of scientists to cure them. Weak spots are: 
- poor quality control. There is insufficient quality control of models, 

particularly when applied in practice. As a result, results may be wrong or 
irreproducible, and models are sometimes difficult to transfer to others. 
There is a strong need for guidelines for description (including range of 
validity), evaluation, documentation (scientific, technical), maintenance and 
distribution. 
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Figure 3. Iso-yield wheat zones of India based on potential and water limted productivity. Blank 
areas were not simulated. Source: Aggarwal (1993). 

- unknown accuracy. Consequences of inaccuracies in basic inputs and 
uncertainties in model structure are not always determined, so that the 
precision of simulation results is unknown. 

- oversilnplification. Crop plants, pest populations and soils are not 
homogeneously distributed in space. Yet, this is rarely taken into account at 
plot, field or regional level. The consequences need investigation. 
Oversimplification of weather data (by averaging) was shown to cause 
significant deviations in sitnulated yields (Nonhebel 1993). 

Future crop modelling 

Geographic Infonnation Systen1s 

There is a large demand for predictions with models in a spatial context: for 
agro-ecological zoning (Aggarwal1994), to quantify impacts of climate change, 
for regional yield prediction (De Koning et al. 1993) and land use feasibility and 
scenario studies (WRR 1992). The combination of GIS, that stores spatially 
distributed soil characteristics, data bases with weather data, and crop models 
is very powerful. Depending on the purpose, the basic soil, crop and weather 
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data are observed values when explanation is sought, or hypothetical ones when 
new opportunities are sought. GIS-model combinations are ideal for exploring 
possibilitiesTor -hind use, arid for planning. 

Yet, a warning is necessary: 
- basic data in right formats are generally in short supply. Large scale studies 

generally must work with many approximate data. For weather data, large 
historic data sets of daily weather are scarce, and sometimes only 
commercially available. For soils data, international standardisation is an 
issue, and only few pedotransfer functions have been made (Bouma et al. 
1993). A major quantitative and world-wide soil data base (SOTER: 
Oldeman 1994) will therefore not soon be available. For crop species and 
varieties, small data bases exist, but are scattered. The largest collections are 
for crop models of the Decision Support System for Agrotechnology Transfer 
(Uehara and Tsuji 1993) and for WOFOST (Boons et al. 1993). 

- aggregation of simulation results at a plot or field level to the regional level 
has still unresolved questions, like how to deal with temporally and spatially 
varying inputs (e.g. sowing date across a region) and with uncertainty 
(Bouman et al. 1993), and how to deal with feed back between fields (e.g. pest 
populations, water storage). 

- evaluation of simulated results is generally not possible in the traditional way 
(comparing simulated results with experimental data) simply because such 
experiments cannot be done and observations may be inadequate. E.g. in a 
recent study to predict regional crop yields for the Netherlands, we planned 
to compare simulated national crop yields with official statistics. Yet, we 
learned that official statistics are based on visual estimates, and have a 
relative uncertainty as large as that of the best simulations (around 5%, De 
Koning et al. 1993). In addition to testing as many model components as 
possible, new ways of evaluation ecoregional models must be developed. This 
,is a necessity, because simulation without evaluation goes astray. 

Multiple goa/linear progra1nn1ing 

Farms produce food and income to farmers, but can also cause air and ground 
water pollution, and provide employment. These intended and unintended 
'outputs' can be seen as goal variables. The degree in which crop production 
contributes to these goals can be quantified in technical coefficients. Alternative 
cropping systems and farm management practices realise these goals to different 
degrees; technical coefficients link quantitatively every practice considered to 
every goal variable. 

The actors involved (farmers, regional boards, governments) want to 
maximise/minimise these goals, but as these are often in conflict, a compromise 
must be sought. Modelling can provide such an instrument 'to help in 
negotiation' (R. Brinkman, FAO, pers. comm.). In recent years, a technique 
(called multiple goal linear programming) has been developed (De Wit et al. 
1988) in which the production system can be optimised and the exchanges values 
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Figure 4. Differences in land use between four scenarios: A: free trade, B: regional development, C: 
nature and landscape, D: environmental protection. Source: WRR (1992). 

can be determined between goal variables. With this technique, one can select 
from very many possible cropping systems and management practices the one 
that produces the best mix of a high income, low ground water pollution and 
little effort. Very important is that this technique necessitates collaboration with 
socio-economic sciences. In a large study at a regional scale, options for future 
agriculture and land use were quantified for many regions of the 12 EC­
countries (WRR 1992). Optimisation towards main objectives of key actors in 
European agriculture showed how large the window is for policy making 
(Figure 4). Such modelling studies can help policy makers in tactical and 
strategic decisions. 

This optimisation technique typically requires a large number of technical 
coefficients. Crop simulation will often be used to provide such data, as trials 
are expensive and time consuming. For instance Veeneklaas et al. (1990) 
investigated possibilities for future land use in a poor region in central Mali. 
Simulation models provided yields of millet, sorghum and range lands for areas 
that were inaccessible and for situations that could not be tested in trials (e.g. 
fertilisation). Expert judgement proved the behaviour of these models 
acceptable. Clearly, this land use planning study could not have occurred 
without crop models. 

In another attempt, however, it appeared impossible to provide technical 
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Figure 5. Experimental yields (black), simulated potential production (open squares) and simulated 
water limited production (open circles) of sugar beet roots (a) and potato tuber (b). Source: 
Habekotte (1994). 

coefficients by modelling. In this case, a study for farms in the Netherlands, a 
coefficient was required for yield variability as function of crop and 
management. The generic model used did produce reasonable values for yield 
variability of some crops but not for others (Figure 5). This may be due to 
inaccuracy in the model (as not all crop and soil parameters were measured on 
the spot), but also because 'observed yields' have a significant inaccuracy. 
However, as variability was already approximately known and simulation could 
not improve its quality or provide extra data, this optimisation study is carried 
out with coefficients from field trials and expert judgement only (Schans and 
Habekotte 1995). 

Though a very potent technique, we should not overlook the limitations. 
These are partially the same as we saw previously: lack of basic data, lack of 
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data for evaluation of optimisation results. A specific limitation is that there is 
no procedure yet to translate uncertainty in basic data into uncertainty in end 

--.results~ -Particularly wherfctop moaels,-G IS ancrLPare use<:r all. togetlier~-a. 
number of the mentioned limitation apply simultaneously, and margins of error 
might well exceed 1 00°/o. 

Ren1ote Sensing 

Yet another development is that crop models are used to interpret data collected 
by Remote Sensing. Certain ratios of specific wave lengths, per pixel, can be 
interpreted in terms of leaf area and canopy structure. Such values can serve to 
monitor the status of the crop in a region, or as inputs for a crop model to 
predict the end of season yield (Bouman 1992). In the near future, Remote 
Sensing will help to detect what crops grow where, provide data on the area 
under specific crops, and provide estimates of 'initial biomass' for growth 
simulation (Vossen, ISPRA, pers. comm.) . . 
U serfriendliness 

Over the past decade, some models have grown much in size, most grew in 
complexity. This can make them almost impossible to transport to other 
computer systems and other users. To ease such problems, 'shells' are 
introduced that reduce the need for technical expertise of the user and enable 
transportability. The IBSNAT project (Uehara and Tsuji 1993) has been among 
the first to develop a shell around its crop simulation models, called a Decision 
Support System for Agrotechnology Transfer (DSSAT), of which version 3.0 
has been released. It provides a user-friendly environment to select models, to 
select sets of soil, crop and weather data, to specify crop management 
techniques, and to carry out simulations. DSSAT is widely used (Tsuji and 
Balas 1993). The Agricultural Production system Simulator (APSIM, McCown 
et al. 1995) is a modern shell, nearing completion. It contains several crop and 
soil models, whose structure is geared to cropping systems research. The models 
are accessible to users. For a group of models for rice based cropping systems, 
a first version of the 'SARP-shell' has been released (by the project 'Simulation 
and systems Analysis for Rice Production', Ten Berge 1993). In addition to easy 
selection of alternative crop and soil modules and corresponding data, users are 
free to modify all data and models, switching is possible between simulation of 
state variables or enforcing their values, and uncertainty analysis has been made 
easy. 

Shells provide also interfaces with an increasing number of tools for inputs 
and outputs: weather data generation, GIS, statistical tools, uncertainty 
analysis, add-ons for economic analyses, etc. Much expansion is expected. 
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Training 

-orreof lfie~oottleriec.KsTor~-applying~models is the low number of skilled 
modelers. This is not solved by more user-friendly programs. For running a 
model, a limited amount of technical skill is needed, and this even decreases with 
the advent of more user-friendly models, data bases, and other software. 
However, effective use of these tools requires scientists trained to select the 
model best suited for the objectives, to recognise when sets of basic data are 
appropriate and complete, and to interpret often complex results. We conclude 
that while user-friendly tools bring modelling into the hands of more scientists, 
also more skilled modelers are needed to guide and help users. The Graduate 
School Production Ecology is one of the few locations where such training is 
provided. Another location is the Asian Institute of Technology. Particularly 
developing countries have to too few training centres. SARP (Penning de Vries 
et al. 1988) and IBSNAT (Uehara and Tsuji 1993) have been effective in 
training, but their courses still need institutionalisation (Singh et al. 1994). That 
is why concerted actions among various groups are being initiated. 

Most development in modelling occurs in multidisciplinary groups of 
scientists of 4-6 scientists (cf. Penning de Vries 1983). Indeed, successful 
building of crop production models requires a 'critical mass' of at least 4-6 
scientists from different but related disciplines, who collaborate closely for a 
long period. This concept was confirmed in a recent training and research 
project in Asia, where tnore than 18 modelling teams were formed and proved 
to be productive (Ten Berge 1993). 
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