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SUMMARY 
Spatially implicit and explicit techniques are used for describing aspects of spatial 
variability of pests, natural enemies, diseases, plants (weeds) and other biotic and 
abiotic factors in agricultural fields and natural terrain. The choice of technique 
depends upon the purpose of the study and the possibility to gather the required data. 
We present basic concepts underlying geostatistical analysis of disease patterns and 
the description of sampling and monitoring processes with probability distributions and 
other models. The mathematical methods are used for designing efficient pest 
sampling protocols. This is illustrated with case studies on the spatial pattern of a 
bacterial disease in cabbages, the design of monitoring systems for pest mites in 
apple and the detection of cyst nematode patches in potato. 

INTRODUCTION 
Densities of pests and their natural enemies (e.g. entomopathogenic nematodes) vary 
over space. Insight in the spatial dimension of pest attack is required yvhen developing 
reliable and efficient methods for detecting pest presence and determining the 
average density. Spatial patterns may suggest the mechanisms underlying the 
introduction and spread of disease or pest in a field. Control measures may be 
targeted to hot spots, where density is highest. 

Observations on the density (or some other expression of 'presence') of a pest or 
disease can be collected in two fundamentally different· ways; with or without the 
spatial coordinates of the observation. In the first case, a map can be drawn of pest 
density in space and techniques may be used to analyse and describe the spatial 
pattern. In the second case, the result of the observations is a collection of numbers. 
Analysis and description then focus on the frequency distribution of these numbers, 
disregarding the spatial coordinates. When spatial coordinates are not recorded, the 
data become spatially implicit, i.e. spatial relationships cannot be retrieved from the 
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data set, although .they still underly its statistical attributes. When spatial coordinates 
are retained, the resulting spatial analysis and relationships are explicit. Spatially 
implicit and explicit techniques are both used in research on pest ecology, but for 
different purposes. Spatially explicit techniques are primarily used for describing and 
mapping disease patterns and studying mechanisms underlying the initiation and 
spread of disease in field crops. A practical application of such studies is the derivation 
of optimal sampling distances and patterns. Spatially implicit techniques are used for 
describing, analysing and predicting the statistical properties of sampling methods and 
for developing sampling methods that strike an optimal balance between sampling 
effort and sampling accuracy. 

The next section of this paper is methodological. We present here some important 
concepts in the analysis of spatial variability in pest management. The application of 
these concepts is illustrated in a section with three case-studies. The overall aim of this 
presentation is to highlight approaches that are potentially useful and can be easily 
adapted for the study of entomopathogenic nematodes. 

METHODOLOGY 

Principles of geostatistical analysis 
Two approaches to explicit spatial analysis of pest and disease patterns dominate the 
phytopathological literature. One is based on geostatistics (Burrough, 1987) while the 
other is based on auto-regressive integrated moving average (ARIMA) models 
(Hudelson et a/., 1989). Geostatistics was originally ,developed for spatial 
interpolation and mapping in geology and mining. It is now widely used in soil science. 
Spatial autocorrelation analysis evolved from time series analysis. Despite their 
different origin, terminology and calculation methods, the two approaches have 
several conceptual similarities. Geostatistics is becoming an accepted technique for 
mapping disease patterns (Chellemi eta/., 1988; Lannou & Savary, 1991; Munkvold 
eta/., 1993; Nelson et al., 1994; Stein eta/., 1994). 

The purpose of geostatistics is to create a (contour)map of the spatial pattern of a 
spatially varying characteristic, using interpolation between observed data points. The 
interpolation is done in such a way that the obtained estimates are unbiased and have 
minimum variance. The first step in a geostatistical analysis is the description of the 
statistical relationship between data points as a function of their distance. (As a rule, 
the correlation diminishes with distance.) The statistical descriptor of (un)relatedness, 
used in geostatistics, is the semi-variance: 

J{h) = t E[Z(x+h}-Z(x)]2 
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where 
l{h) 
Z(x) 
E 

is the semi-variance for a spatial distance h 
is the value for a characteristic (say pest density) at a location x 
denotes the statistical expectation 

range 

semi variance 

sill 

distance 

Fig. 1 Semivariogram. Horizontal axis denotes spatial distance, vertical axis the 
semi-variance, which is a measure of the average squared difference between 
observations made at a given distance. Points are calculated from a spatially indexed 
data set. The drawn line is a non-linear regression equation. 

In a data-set of observations, collected at N different sites in a field, there are 
theoretically N (N- 1) I 2 estimates of the semi-variance. The data are grouped in 
distance classes and the semi-variance for a distance class is plotted against the 
distance (Fig. 1 ). The resulting figure is usually a curve that starts at a non-zero value 
for distance 0 (the nugget) and increases in a nonlinear way to a maximum value (the 
si/~. The range is a measure for the distance over which the semi-variance is 
(substantially) smaller than the sill. A smooth curve is drawn through the data points, 
using nonlinear regression with an appropriate function (Fig. 1 ). A variety of functions 
describing semivariograms is used. One of those is the negative exponential: 

l{h) =nugget+ (sill- nugget XI- exp (-hlrange)) 

When there is no spatial interdependence, the semivariogram becomes a horizontal 
line. This is called the pure nugget effect. 

There are some requirements when calculating semivariograms. First, there should be 
at least 50 points per distance class. Second, not all the N ( N- 1) I 2 data pairs may 
be used for the calculation of the semi-variance because the largest distance 
appearing in the semi-variogram should not exceed approximately half of the length of 
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the field. Otherwise only extreme parts of the field would be involved in the calculation, 
so that the result can not be regarded as representative for the whole. When 
constructing semivariograms, it is assumed that the semi-variance is a function of 
distance only, and that the variance is constant over space. Violations of these 
assumptions can be solved by a.o. transformation of data, using moving averages, or 
representing large scale variation in the underlying mean by fitting a spatial response 
surface (Burrough, 1987). 

Spatial interpolation between observation points is done with a technjque called 
kriging after one of its developers, the South African mining engineer D.G. Krige. 
Kriging estimates are a linear sum of weighted observations within a certain 
neighbourhood: 

Z(xo)=~w;Z(x;) 
l 

where Z (xo) is the interpolated function value at location x0 and w; is the weight of 
the ith measurement Z (x;) The weights depend on the semivariogram. They can be 
positive or negative and their sum is 1. They are determined such that the kriging 
estimate of Z (xo) is unbiased and has minimum variance. The actual accuracy of 
Z (xo) depends on the shape of the semivariogram, and on the density and spatial 
pattern of the observations. 

With use of-kriging; it is possible to predict values at unvisited locations. This prediction 
is based on neighbouring observations and the configuration of these observations. 
Kriging finally yields a (contour)map of estimated values and their associated 
prediction errors. More detailed information is given by Journel & Huijbregts (1978). 

Principles of sampling and monitoring 
Interest in pest sampling was spawned by the concept of Integrated Pest Management, 
which emerged in the Western world in the 1960s as a reaction to the alarming side
effects of chemical pest control during the 1950s. It was felt that Integrated Pest 
Management should be primarily based on cultural and biological controls while 
chernical control should only be used as an 'emergency break' in those cases in which 
.these natural controls failed. The concept of the economic damage threshold was 
coined to establish whether pest density was more damaging than the cost of 
treatment (Stern eta/., 1959). Methods were required to determine efficiently whether 
a pest population density was above or below this threshold. This decision problem 
requires a sampling methodology that results in a classification of density (Binns, 
1 994). A classification procedure may be designed such that the probability of a 
misclassification for densities deviating a specified amount from the threshold does not 
exceed a tolerance value (Binns, 1 994; see below). Pests and diseases that pose a 
risk during a whole growing season may require repeated sampling through time. 
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Efficient monitoring can be achieved by linking classification procedures in time 
(Nyrop eta/., 1994; cf. second case study). 

A special case of classification is detection. For instance, it may be asked whether a 
nematode species occurs in a piece of land or not. For a detection procedure, it is 
important to state explicitly the probability of a classification as nematode-free, when in 
fact the species is present (cf. third case study). This probability of misclassification 
decreases with nematode density. It depends also on the spatial aggregation of the 
nematodes and the sampling pattern. Estimation. of density is often the appropriate 
objective in research (Wilson et a/., 1989), e.g. when describing the occurrence and 
dynamics of an organism in time and space. The precision of an estimate can be 
expressed as a standard error or as a variation coefficient. Density estimates (of 
sufficient accuracy) are inputs for maps showing spatial trends and patterns. 

Table 1 purposes of sampling 

technique 

estimation 
detection 
classification 
monitoring· 
mapping 

question/purpose 

research on population dynamics or spatial pattern 
production of certified nematode-free seed potatoes 
intervene or not at a specific stage of pest phenology or crop growth 
intervene or resample later during a whole cropping season 
visualizing spatial trends, patterns and relationships in pest density 

One of the theoretical cornerstones of practical sampling programs in pest 
management is the description of the frequency distributions of observed pest and 
disease densities by means of statistical relationships (e.g. Taylors Power Law) and 
probability models (e.g. the negative binomial distribution). These mathematical tools 
are derived from an analysis of observations, in which the spatial dimension is 
neglected. This neglect is warranted when the interest of a grower or scout is in the 
overall density and its effect on crop productivity and quality and not in the spatial 
pattern. Some of the most important mathematical tools are presented. The use of 
these tools is illustrated·1n a case study on the development of a monitoring plan, 
based on sequential classification sampling plans. 

Basic tools for describing sampling distributions 
The spatial pattern, the sample size and the spatial distribution of samples affect the 
frequency distribution of sample counts (sampling distribution). If the location of each 
damaging organism were independent of that of the other, the spatial distribution 
would be random. For any size of sample and spatial arrangement of samples, the 
resulting frequency distribution can then be described by the Poisson probability 
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distribution, which is characterized by a single parameter, the average density (J..l}. 

X 

P - -J.L !:_ 
X -e x! 

For the Poisson distribution, the variance of density is equal to the average density. 

Subsequent probabilities of the Poisson distribution are calculated by 

As a rule, however, pests and diseases deposit their offspring close to themselves, 
resulting in patchy distributions. Such spatial patterns result in frequency distributions 
with longer tails than the Poisson distribution. The negative binomial distribution is 
widely used (though not the only usable function} for describing these long-tailed 
frequency distributions. The negative binomial distribution is defined by: 

p =(-k )k(k+x-l)(~)x 
X k+Jl X k+Jl 

The parameter k is called the dispersion parameter. The variance of the distribution 
and the length of the tail decrease with k (for given J..l}. For large k, the negative 
binomial distribution is similar to the Poisson distribution. For the negative binomial 
distribution, the variance of density is greater than the mean: 

(J2 = J.L(1 + ~) 
' ' k 

Probabilities of the negative binomial distribution are calculated with 

{

Po=(-k )k 
k+Jl 

p _ k + X ____1!:_ p 
X+ 1 - k + Jl X + 1 X 
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The negative binomial distribution fits many observed frequency distributions because 
it has a quite flexible shape, ranging from the often bell-shaped low variance Poisson 
distribution (k -> oo) to the monotonously decreasing high variance geometric 
distribution (k = 1) and beyond (k < 1 ). 

In observed data sets, the parameter k usually has some relationship to the mean. 
This relationship can often be described with Taylors Power Law, which draws a linear 
relation between log(variance) and log(mean). For instance, for red mites on apple 
leaves, Nyrop & Binns ( 1 991) used the relationship 

log (cr"'2) =log (4.27) + l.37log (J.L) or cr2 = 4.27 Jll.37 

2 
Using the relationship k = + 

0" - Jl 

k can be estimated from the mean of the distribution. 

Based upon a fitted probability distribution, the probability of the zero class can be 
used to estimate the relationship between the average density and the proportion of 
occupied sample units. This relationship can also be fitted with an empirical 
relationship 

In (-In(l-Pr)) =a+ b In (J.L) 

Here p is the proportion of sample units with more than T specimens of the 
damaging organism, 11 is average density, and a and bare regression parameters. 

Sequential classification sampling 
For the question whether a pest density or incidence is below or above a threshold, 
Walds Sequential Probability Ratio Test (SPAT) provides an optimal decision 
procedure. Instant recipes (and spreadsheets that do the calculations) are available to 
construct an SPAT -based sampling procedure for a range of sampling distributions, 
including the Poisson, negative binomial, binomial and normal distribution (Fowler & 
Lynch, 1 987). For the negative binomial distribution, the following information is 
required and sufficient to construct an SPAT. 
1. Information defining sampling performance 

The probability a of erroneously deciding that the average density is above the 
threshold T, when the actual density is in reality J.Lo, which is smaller than T. 
The probability 13 of erroneously deciding that the average density is below the 
threshold T, when the actual density is in reality J.Lt, which is greater than T. 

2. Information defining the sampling distribution 
The dispersion parameter k 
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Cumulative count A 1.00 200 
Probability of intervention B 

0.50 

0.00 -1--"---+-----+------f 
0 10 20 30 40 0 5 10 15 

Cumulative number of samples Mean density 

Average number of samples C 

0 5 10 15 

Mean density 

Fig. 2 (A) Stoplines of a sequential sampling plan, based on Walds Sequential 
Probability Ratio test; (B) Probability of intervehtion, as a function of the mean density; 
(C) Average number of samples required ,to make a decision, as a function of the 
mean density. This specific example was generated using a negative binomial 
distribution with k= 0.6; J.Lo = 3.0; J.lt = 5.0; a= p = 0.1. 

The sequential plan is executed by inspecting sample units one by one and plotting 
the cumulative count against the cumulative number of sample units in Fig. 2A. When 
on.e of the· two 'stopllrie·s is crossed, sampling is terminated. When the higher stopline 
is crossed, the decision is to intervene. When the lower stopline is crossed, the 
decision is not to intervene. 

The performance of a sequential sampling plan is judged by the average number of 
samples and the probability of intervention, which are both functions of the true mean 
density. The probability of intervention (Fig. 28) is an increasing function of density, 
with the 50°/o point close to the threshold T. The average number of samples (Fig. 2C) 
is a maximum function. The highest number of samples is required (on average) when 
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the actual density is close to the threshold, because the probability of remaining 
between the stoplines is then greatest. The expected number of samples decreases as 
true density is further removed from the threshold. The two probability statements that 
define the SPAT, mark the position of two points on the probability of intervention
function of Fig. 28: namely the points (J.lo, a) and (J.lt, 1 - ~). As a rule, f.lo and f.ll are 
chosen such that the thresholq, Tis the average of them, while the error rates a and ~ 
are equal. 

Steps in developing a monitoring protocol 
When a pest must be monitored during an extended period of time, a procedure is 
required that ensures timely intervention when required, but that at the same time 
limits the frequency of observations as much as warranted. As an example of the 
practical application of probability and dynamical models, a guideline for developing a 
monitoring protocol is given. Similar guidelines may be developed for other sampling 
techniques, as classification, detection or estimation. 

Step 1 Collect a data set defining the range of possible spatial distributions 
(irregularity in space, patchiness, variability), population dynamics (outbreaks, steady 
state, biological control) and the effect of the pest on growth and yield. This is the basic 
data set. 

Step 2 Describe the sampling process, population dynamics and pest damage with 
mathematical models. These are basic models that serve as tools in the construction 
and evaluation of the monitoring protocol. 

Step 3 Devise a monitoring protocol, using the basic models to take account of the 
spatial distribution, population dynamics and growth reducing effect of the pest or 
disease. The monitoring protocol provides decision support on when to make 
observations and whether or not to intervene. 

Step 4 Simulate usage of the monitoring protocol. Calculate performance 
characteristics taking account of uncertainties in the outcome of sampling and in the 
dynamics of the pest by using stochastic parameters in the basic models. 

Performance characteristics of a monitoring protocol are: 
• total number of sampling occasions ± SO 
• total number of samples ± SO 
• overall probability of intervention 
• cumulative pest density over time ± SO 
• pest density at intervention ± SO 

The first two variables are indices of effort while the others quantify the quality of 
control. Performance characteristics depend on spatial variability and pest dynamics 



Step 5 Re-iterate steps 3 and 4, until an acceptable performance is attained. If no 
acceptable performance can be attained, consider developing alternative protocols for 
specific situations, for instance with and without natural enemies and for cold and 
warm weather. 

Step 6 Test an acceptable monitoring protocol under field conditions. 

Step 7 Apply the well-tested monitoring protocol in practice. Obtain feedback from 
users and c.ontinuously improve the protocol. 

Variance components 
A technique that is sometimes useful in defining sampling programs is analysis of 
variance and ·estimation of variance components. For instance, Nyrop & Binns (1991) 
discuss the contribution of between-tree-variation and within-tree-variation to total 
sampling uncertainty for a leaf miner species in apples. Based upon this analysis, it 
was concluded that it was more cost effective to inspect many trees and only few 
branches per tree than to sample many branches on a few trees. In the later case, the 
comparatively large variance component between-trees was not compensated for by 
adequate repetition. Based on an estimation of variance components and 
quantification of the costs of sampling trees and branches within trees, the most 
accurate sampling scheme for given cost could be defined. Alternatively, the cheapest 
scheme providing a minimum precision could be identified. 

CASE STUDIES 

Case: geostatistical analysis of black rot patterns in cabbage 
The use of geostatistics is illustrated with data from black rot in cabbage. Black rot is 
caused by the bacterium Xanthomonas campestris pv. campestris (Pammel) 
Dawson 1939 .. The bacterium is seed-borne, and infested seed is an important source 
of inoculum. Cruciferous weeds, plant residue and cabbage volunteers are other 
inoculum sources. The pathogen can spread rapidly with wind and rain storms. The 
main objective of the study was to determine how far sampling intensity and 
observation time could be reduced, without obtaining a 'blurred' image of the spatial 
disease pattern. 

A natural black rot epidemic was studied in a 20 by 20 m red cabbage field near 
Wageningen. The field had been planted with 1600 red cabbage plants in a 50 x 50 
em square arrangement on 15 May 1990. Rows ran nortHeast. Black rot incidence was 
scored visually on all 1600 plants on 24 August. This complete inventory is referred to 
as sampling plan I. To determine sampling with reduced intensity, geostatistical 
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mapping of the disease pattern in the plot was performed on the basis of reduced data 
sets. One set (referred to as sampling plan II) uses the presence/absence data on 
every third plant (yielding 533 data points). The third plan uses data on one in five 
plants (320 observations). 

Semivariograms were calculated and fitted for each sampling intensity (Fig. 3}. 
Exponential models gave the best fit. The calculated range for the three sampling 
intensities differed only slightly, varying from 2.7 with plan I to 2.2 m for plan Ill. An 
optimal sampling distance would be approximately 2.5 m. 

0.30 

0.24 

(J) 

0 
c 0.18 
(1j 

'i: 
(1j 

> .E 
0.12 (J) 

(/) 

0.06 

0.00 
o:tn5· 1.20 2.40 3.60 4.80 6.00 

Distance (m) 

Fig. 3 Semivariograms of black rot disease incidence for sampling plan I ( o --
scoring all the 1600 plants), II ( 0 ··········; scoring one out of every three plants), and 
Ill (A-----; scoring one out of every five plants). 

Directional semivariograms were calculated in northeast and southeast direction, to 
search for anisotropy resulting from predominant south-western winds during rainfall. 
Anisotropy was indeed found (Fig. 4). The semivariogram based on north-east 
distances had an eight times greater range (8.9 m) than the south east semivariogram 
(1.1 m). This result confirms the assumption that disease was spread with splashing 
rain storms blowing predominantly from the south west. 

Disease incidence estimates for the three sampling plans were quite similar: 45.6, 
43.1 and 44.9°/o for plans 1-111, respectively. Kriging for plans II and Ill reproduced the 
observed disease incidence pattern accurately (Fig. 5). In this figure, each square 
represents the disease incidence per 4 plants. The distribution of black rot was not 
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homogenous; incidence was higher in the centre of the plot. Kriging based on plan II 
reproduced this pattern well; kriging based on plan Ill reproduced it less well, but the 
representation of the actual pattern is still acceptable. 
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Fig. 4 Directional semivariograms of black rot disease incidence for sampling plan I. 
South west (prevailing wind): ; North west (perpendicular to the wind): __ _. ______ _ 
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Fig. 5 Actual pattern of black rot incidence on 24 July 1990 and kriging maps based; 
on sampling intensities of 33°/o (plan It) and 20o/o (plan Ill). Each square represents a 
quadrate of 2 x 2 plants. The intensity of shading indicates incidence in these 
quadrates, running from 0/4 infected plants (blank) to 4/4 infected plants (black). 
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This example illustrates the usefulness of geostatistics for analyzing and mapping 
spatial patterns. It was possible to reduce the number of samples with 80°/o and still 
obtain sufficient information about the spatial pattern. Sampling effort could probably 
not have been further reduced than this because the range of influence in the 
semivariogram was 2.5 m. When spatial correlation extends further, greater savings in 
sampling effort are attainable. For instance, Lecoustre et a/. (1989) found that a 
sample size of 7°/o of all plants sufficed to assess the spatial pattern of African cassava 
mosaic virus. 

Case: developing and evaluating protocols for mite monitoring 
Fruit tree red spider mite, Panonychus ulmi, is a potential pest in apples worldwide. It 
can be controlled naturally by predators, but biological control is easily upset by 
pesticides. In apple crops in the state of New York, monitoring from early June to late 
August is required to make sure that biological control is effective. Schemes for 
efficient monitoring over time in this system were developed and evaluated by Nyrop & 
van der Wert (1994) and Nyrop eta/., (1994). The approach can be readily transferred 
to other systems. 

time A 
2 2 

0 0 0 0 

0 . high density 
• intervene directly c 

Samples 

0 

3 

0 

high density 
intervene directly 

Samples 

B 

0 0 

D 

Fig. 6 Mite monitoring protocols (A & B) and the constituent sequential sampling 
plans (C & D). For explanation see text. 
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One method (cascaded tripartite sequential classification; TSC; Fig. 6A) was 
constructed by serially combining in time sampling plans that classify density into one 
of three categories with according management consequences 0 (intervene), 1 
(sample at next occasion), and 2 (sample at second next occasion; Fig. 6C). The other 
protocol (adaptive frequency classification; AFC; Fig. 68) was constructed by 
cascading in time sampling plans that are based on a combination of sequential 
classification and estimation of density (Fig. 6D). AFC allows sampling to be 
postponed more than two periods when density is unlikely to grow to damaging levels 
within that time. 

In both schemes, timing and frequency of sampling are adjusted to the demands and 
possibilities of the actual situation, as indicated by sampling observations and a 
prediction of dynamics. The most suitable parameters for both schemes were found by 
simulating monitoring performance for fictitious and historical pest population 
trajectories. According to simulation, both methods scheduled interventions at 
appropria!€3 .... !!~-~?· ... The simulation results for the monitoring based on tripartite 
sequential classification were confirmed in a field evaluation involving 42 orchard 
blocks. Both methods use fewer sampling resources than sampling at pre-defined 
times, which is the usual method in practice. AFC-based plans required less sampling 
than TSC-based plans. Simulation further indicated that the currently used action 
threshold for red mites in the North Eastern USA are too low, resulting in spray 
recommendations when there would still be opportunity for natural control by 
predatory mites. TSC and AFC provide a framework for objectively evaluating and 
optimizing monitoring protocols for a range of pests and diseases. 

Case: developing a detection method for nematode patches 
Potato cyst nematodes (PCN) are not indigenous to Europe. They were introduced 
together with the potato plant from Central and South America. The presence of PCN 
manifested itself only in the 2oth century when potatoes were grown in narrower 
rotations. Fields are free of PCN until an initial introduction occurs, mostly by seed 
potatoes. After .introduction the nematode multiplies every year in which a host is 
grown. Active mobility of the nematode occurs after egg hatch, when the juveniles 
search for root tips to penetrate. This active movement would result in a dispersal of 

· only a few centimeters per year. After maturing, the new generation of PCN overwinter 
as eggs inside the hardened dead body (cyst) of the female. Therefore, PCN are 
concentrated at locations where plant have grown. Horizontal and vertical redis
tribution of nematodes in the soil depends upon farming practices as soil tillage and 
harvesting. Dispersal from field to field occurs by pure chance when clumps of soil with 
cysts adhere to agricultural machinery or harvested potatoes. 

In the newly reclaimed polder areas of the Netherlands, PCN infestations are young. 
They occur in the form of distinct patches in otherwise uninfested fields. Detection 

27 



methods for these PCN patches are being used in legislation, quarantine, certification 
of potatoes destined for export, and (most important) for guiding nematode control, e.g. 
by growing resistant cultivars. There was a need for estimating the error rates of the 
detection methods and to optimi.ze (if possible) these methods. 

As a first step, the shape of nematode patches was studied. About 40 farmer's fields, 
which, according to the statutory soil sampling protocol, were regarded as PCN 
infested, were sampled twice. The first sample was used to locate the infestation focus. 
The second sample was aimed at accurately mapping the spatial distribution of the 
cysts in the focus. Soil samples of at least 1 .5 kg per m2 were collected and pro
cessed. 

Fig. 7 Two foci of potato cyst nematode on heavy marine clay soil in a recently 
infested area. Above: small focus with a population density of 85 cysts per kilogram 
soil in the center of the focus. Below: large focus with more than 500 cysts per kilogram 
soil in the center of the focus. Both foci were mapped by sampling each square meter 
and collecting 2.5 kg of soil per m2. 
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All foci were more or less elliptical with the largest population densities in the center. 
From this point the densities decreased exponentially. The decrease was slower in 
directions parallel to the rows than across them (Fig. 7), i.e. the patches had the 
greatest extension along the path of the machinery. The spatial extension of foci was 
also greater in the driving direction than in the reverse direction. (Because machinery 
has standard width, farmers may year after year follow the same driving pattern and 
directions over the field.) 

~ ..... 
• (i.i 
c 
Q) 

3 

'1::::l 2 
Q) 

'1::::l 
0 ..... 
as 
E 
Q) 
c 

1 

0 

0 
-16 

0 

0 0 

0 0 
0 

0 

-8 0 8 16 24 32 

distance from the center (m) 

Fig. 8 Linear relationship between logarithm of nematode density and distance from 
the center of the focus. Squares represent actual cyst counts in samples of 2.5 kg soil, 
originating from the middle row of successive square meter plots in the direction of 
cultivation of the large focus depicted in Fig. 7. Samples with fewer than 5 cysts per 
kilogram soil were omitted when fitting the drawn regression line. 

A linear relation between log population density and the distance from the center of a 
focus (Fig. 8) was found and parametrized (Schomaker & Been, 1992): 

E (N x,y) = No,O LX, BY 

where 

E (N x,y) 
(x,y) 

Noo 
' L 

is the expected density at location (x,y) 
is the location relative to the centre of the focus, with x measured in the 
direction of cultivation and y measured across 
is the density in the centre of the focus 
is the fractional decrease of expected density pe~ meter departure from the 
centre along the rows, i.e. in the x direction 

29 



B is the fractional decrease of expected density per meter departure from the 
centre across the rows, i.e. in they direction. 

The frequency distributions of L and B in the 40 fields were approximately normal. 

The frequency distribution of numbers of cysts in 1.5 kg samples from small areas as 
used for mapping the foci, is adequately described by a negative binomial distribution 
with a value of 70 for the parameter k. The probability of finding no cysts in a sample 
is then given by tbe lero~term of the negative binomial distribution. 

An infestation focus is detected if one or more cysts are extracted from it. The detecti'on 
probability of a focus can therefore be defined as 1 minus the probability that cysts 
were found in none of the subsamples taken from the focus. In the Netherlands and in 
most other countries sampling according to a rectangular grid pattern is customary. 
The distance from one core to the next in both directions determines how many 
subsamples are taken from a certain area. Sampling grid and auger size determine 
the ·total amount of soil collected. A sampling grid can be superimposed on a focus in 
many ways. Each overlay pattern of focus and sampling grid results in a different 
detection probability. A computer program was written to calculate the detection 
probability when shifting the sampling grid longitudinally and laterally, relative to the 
focus. 
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Fig. 9 A comparison of the frequency distributions of detection probability using a 6 x 
4 m and a 4 x 12 m sampling grid (length x breadth). The core size was optimized to 
obtain an average detection probability of 90°/o for a nematode focus with 50 cysts per 
kilogram soil in the center. 
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15012 

Fig. 10 A comparison of the sample size per 0.33 ha when the sampling grid was 
varied between 2 x 2 m and 14 x 14 m. For each grid, the core size were determined 
that yielded a 90°/o chance of detecting a single focus with 50 cysts per kg soil in the 
center. The total sample size is the product of core size and the total number of 
samples as determined by the grid. 

Fig. 9 shows the frequency distributions of detection probabilities of two different 
sampling grids. The program uses the exponential equation that describes the spatial 
profile of foci to calculate the expected population densities throughout a predefined 
focus. The probability of detecting no cysts at a certain location in the focus was 
calculated with the negative binomial distribution. As detection with a low failure rate is 
required, the parameters L and B were set to relatively small values ( 1 Oo/o 
percentiles of the observed distributions of L and B ), reflecting steep gradients. This 
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'worst case approach' ensures that for 90°/o of the patches, the specified detection 
probability is actually attained. For 1 0°/o of the patches (the steepest ones), the 
detection chance will be lower than specified, and the overall detection chance for the 
whole population of patches will be better than specified. Calculations for a given 
sampling grid were made of the amount of soil per core and in total that had to be col
lected for a 90°/o detection probability of the predefined focus. 

In Fig. 10, the required ··total sample sizes (g soil) per one third of a hectare are 
compared, when using different sampling grids. The narrowest grid had sampling 
intervals of 2 x 2 m; the widest grid 14 x 14 m. Iterations were made for sample size 
until, with each grid, a focus of 50 cysts per kg soil in the center was detected with 90°/o 
probability. The optimal sampling grid (in terms of the required amount of soil) was the 
6 x 4 m grid (length x breadth), which required a total sample of 6 kg soil. To obtain the 
same 90°/o detection chance with a 4 x 12 m grid, 11 kg soil had to be collected and 
analysed. 

Potato cropping frequencies differ among growing areas in the Netherlands, and 
among European countries. It is likely that the differences in cropping practices are 
reflected in spatial patterns of PCN, which affects the performance of sampling 
patterns. The required detection probability depends upon the product. Seed potato 
growers, always alert with regard to export requirements, require more precise 
detection methods than consumption potato growers. As a result of differences in 
spatial patterns and required detection probability, tailor-made sampling methods are 
desirable. The presented approach allows the design of sampling methods that are 
tailor-made for the respective target areas and product groups. 

EPILOGUE 
This paper draws together some techniques that are used in the study of plant pest 
and diseases, and could be profitable in the young research field of 
entomopathogenic···nematodes. Progress in ecological research on EPNs is presently 
hampered by technical difficulties in retrieving nematodes from soil and by lack of 
knowledge on spatial patterns and sampling distributions. For entomopathogenic 
nematodes, most of the basic work on spatial patterns and sampling distributions that 
is necessary for the design of efficient sampling plans has still to be done. It is hoped 
that this presentation of research on pests and diseases provides ideas and stimulus 
to undertake such work and provide a sound basis for further ecological work. 

The selection of techniques in this paper is necessarily restricted. A comprehensive 
treatise of techniques for spatial statistical analysis is given by Upton and Fingleton 
(1985; 1989). No mention is made here of techniques for modelling spatial 
processes. Such spatial modelling may explain spatial phenomena in relation to the 
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causal relationships and processes, contrary to statistical analyses, that can only 
describe and quantify correlations and trends, but cannot explain them. Overviews of 
approaches to spatial modelling are given by van der Wert et a/. (1989) and Holmes 
eta/. (1994). A potentially relevant new development are techniques of precision 
farming or site-specific management. These techniques are targeted at providing the 
appropriate management action to each site in a field, e.g. in response to soil fertility 
level (Wollenhaupt et a/., 1994; Bouma et a/., 1995) or weed development 
(Christensen eta/., 1994). 
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