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SUMMARY 

Simulation models can improve insight in the ecology of entomopathogenic 
nematodes (EPNs) and their potential as biocontrol agents of soil pests. Models that 
include environmental and behavioural factors that are critical for the efficacy of an 
inundative release, may be used for guiding application strategies, EPN biocontrol­
product formulation and genetic engineering of EPNs. Multi-generation population 
dynamical model provide a tool for estimating persistence, thus allowing assessment 
of risks associated with releasing genetically modified EPNs into the environment. 
Constructing a simulation model for one or more species of entomopathogenic 
nematode requires the retrieval and integration of existing knowledge of the 
quantitative ecology and behaviour of EPNs. Additional process-oriented research 
must be carried out to fill gaps in the available knowledge. The validation of simulation 
models will involve experiments under field conditions. 

INTRODUCTION: MODELLING APPROACHES 
IN ECOLOGY AND CROP PROTECTION 

A model is a simplified representation of a system and a system is a limited part of 
reality. Mathematical models represent numerical relationships between elements of a 
system. There are many different types of mathematical models and many criteria to 
classify them, e.g. process-based versus statistical; dynamic versus static, 
deterministic versus stochastic, and spatially explicit versus temporal (Peters, 1991; 
De Wit, 1 993; Hurd & Kaneene, 1 993). The character of a model depends foremost on 
its purpose. In crop p~otection ecology, three categories of models are prevalent: 
analytical models, simulation models, and descriptive models. These models differ in 
many aspects, including the level of aggregation and simplification, structure, purpose, 
methodology and data requirements (Table 1 ). These three modelling approaches 
could be characterized as speculative, mechanistic and correlative. 
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Table 1: Characterization of analytical models, simulation models and descriptive models in crop protection ecology 

Analytical models Simulation models Descriptive models 

Characteristic dynamic dynamic seldom dynamic : 
one to few equations many equations one to few equati~ns 

4 

Level of aggregation high low high or intermediqte 
and simplification elaborate biological detail 

hierarchical: two levels, 
system & process level 

Purpose abstraction relationship processes <-> system prediction 
generalization influence environment 
insight in principles insight in specifics 

Examples exponential & logistic growth SeMNPV (see text); Nachman Yellowing viruses, cereal 
predator-prey models (1991) van den Bos & Rabbinge diseases (see text) 

~ Janssen & Sabelis (1992) (1976); van der Wert et al. (1989) w 

Methodology mathematical analysis: simulation of dynamics statistical regression 
analytical integration numerical integration 
stability analysis of equilibria sensitivity analysis 

simplification into decision rules 

Required skills mathematics experimentation & programming data survey and statistics 

Data requirements often loose relationship to data detailed knowledge of life cycle elaborate data set 
(process level) 
data for model validation 
(system level) 

Disadvantages oversimplification, irrealistic lacking data little or no insight 
difficult to understand for biologists laborious to verify code little generality 

lengthy documentation 
difficult to keep overview 



Analytical models summarize the main components of dynamic biological systems 
in a few equations that characterize the rates of change of the state variables. The 
foremost aim of analytical models is to study general principles underlying dynamic 
systems behaviour. Analytical models characterize a whole class of systems and their 
predictions, formulated as general insights, have wide validity. Such predictions may 
be difficult to operationalize in a specific system. An example of an analytical model of 
interacting pest and enemy populations is the system of differential equations 

where x is the state variable prey density and dx/dt is its rate of change 
y is predator density 
a is the relative growth rate of the prey population (assuming unlimited resources) 
~ is the prey consumption rate per predator (assumed to be independent of prey 
density) .. ·· ... ~ ··· .. 

y is the relative growth rate of the predator population (assuming unlimited food) 

This simple set of equations characterizes some fundamental aspects of the 
interaction between spider mites and predatory mites in local patches (Janssen & 
Sabelis, 1992}. Analytical integration of the differential equations yields general and 
testable predictions about the future course of the dynamics of the system. For 
example, it can be shown that the prey will finally be eradicated if the initial 
predator/prey ratio is greater than · 

a-y 
-~-

The equation shows how the critical initial predator/prey ratio is affected by the relative 
growth rates of the prey and predator populations and by the feeding rate of the 
predator. These parameters are - of course - dependent upon conditions, such as 
temperature and host plant quality. This model serves the purpose of providing insight 
quite well. 

The assumption of a constant consumption rate, independent of prey density, is only 
tenable if prey density is high enough. Inclusion of a curvilinear relationship between 
prey density and predator feeding rate would make the model more truthful. If that is 
done, analytical solution of the rate equations is no longer possible and the dynamics 
must be investigated by simulation. By making more realistic assumptions about the 
system, the model gradually develops into a simulation model. 

Analytical models are criticized - and often rightly so - by biologists for being 
oversimplified, which makes their results less credible. Moreover, the mathematics 
involved in many papers on analytical models deters interest by biologists, especially 
if the results of mathematical analysis are not confronted with biologically interesting 
questions. Nevertheless, analytical models are a powerful tool for analysing and 
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demonstrating general principles in biological systems. Hudson & Norman . (this 
volume) give an example of the application of analytical modelling to EPNs. 

Simulation models are complementary to analytical models. They are much less 
aggregated than analytical models. This means that details of the life cycle, such as 
stage structure and spatial processes, are often explicitly represented in computer 
code. The model integrates the processes into a 'grand picture' of the whole system. 
Such models enable the study of the relationship between individual traits, 
environmental factors and the behaviour of the system. Simulation models are system 
specific. Predictions of the model, which are mostly formulated quantitatively, are 
therefore not of general validity. 

An example of such a simulation model is the model for the epidemiology of the 
Spodoptera exigua nuclear polyhedrosis virus (SeMNPV) in a population of beet 
armyworm ( Spodoptera exigua) in glasshouse chrysanthemums (de Moed et a/., 
1990; van der Werf et a/., 1991 ). The model is constructed according to the state 
variable approach (Leffelaar, 1993). 

In the model there is a bookkeeping of the initiation, development and demise of 
insect-infested crop patches. These patches are classified according to time of 
initiation and the presence or absence of virus. State variables that characterize 
patches include the numbers of caterpillars in each stage, the leaf area index of the 
crop and the density profile of virus over the height of the canopy. Processes within a 
patch that are 'modeled include the decay of virus, caterpillar infection by sprayed 
virus, insect feeding, spatial dispersal of caterpillars within and between plants, 
encounters between healthy caterpillars and virus-contaminated leaves, the 
development of caterpillars from one stage to the next, and the development of 
disease in infected specimens. The insect life-cycle is closed when eggs are laid by 
adult moths that emerge from the patches, starting a new generation of patches. 
Depending .. upqn. processes within the patch, and subject to stochastic influences, 
newly laid eggs may be infected or not. Infected eggs close the life-cycle of virus. 

An important limitation to simulation models, based on state variables, is the often 
lengthy code and the difficulty of maintaining a firm conceptual hold of the 
interrelationships between parts and the whole. Good programming practice is an 
important tool to secure such overview and to ensure computational correctness, as is 
mathematical analysis of simplified model versions and limiting cases. Because 
simulation models incorporate biological details, they invite permanent updating as 
new insights and data become available. Such updating may or may not be 
appropriate, depending upon the model's objectives (which is seldom completeness) 
and the consequences of new insights and data for model behaviour. When making a 
simulation model it often becomes obvious that data, that are crucial to the model 
building, are unavailable. Such identification of knowledge gaps is useful for the 
progress of research and prioritization of research efforts, but the lacks of knowledge 
may frustrate the timely development and fruitful use of simulation models. 

Three phases may be distinguished during the construction of a simulation model and 
within those phases there are several steps (Rabbinge & de Wit, 1989). 
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First, there is the conceptual phase. It includes at least three steps: 
1. Formulation of the objectives 
2. Definition of the limits of the system 
3. Conceptualization of the system; determining the level of aggregation, 

simplification and detail, choice of state variables, relationships and external 
influences. 

The conceptual phase results in a conceptual model and work plan for collecting the 
required process data and working out the model in computer code. The second 
phase includes at least three steps: 
4. Quantification of relationships in the model using literature data and new 

experiments at the process level 
5. Writing the computer code; documentation of the model 
6. Testing the components of the model, verification of the code and checking that the 

performance of the simulation program is in agreement with the input data 
The second phase results in a functioning computer program that is in accordance 
with the knowledge about the system and that is usable for the original (or adapted) 
objectives. During the second phase a technical documentation of the model and its 
inputs and outputs must be written. The third phase focuses on further analysis, 
application and (where possible) simplification of the model. 
7. Validation of the model and parts of it, using independent experiments on the 

system level. 
8. Structural and numerical sensitivity analysis 
9. Simplification; development of a summary model; scenario studies with the model 
10. Formulation of decision rules or forecasting tools to be used in management. 

The SeNPV model was conceptualized by the use of state variables which quantify the 
number or density of individuals or 'amounts' in a certain category. An alternative 
approach in population models is to represent the individuals themselves and build an 
'individual-based model (IBM; de Angelis & Gross, 1992; van der Wert eta/., 1989). 
This approach is especially appropriate for systems with small numbers of moving 
individuals in which spatial interactions and chance processes (encounters) are of 
prime importance. 

Individual-based models hold promise for investigating host finding behaviour and 
movement of EPNs in the soil. The result of an individual based model can be 
summarized in a functional response formula (Fransz, 1974; Mols, 1993; van 
Roermund & van Lenteren, 1993), which, in its turn, can be implemented in a 
simulation model that is based on state variables. When simulating the whole soil­
plant-insect-EPN system, computer-time of an IBM is likely to become limiting as EPNs 
are sprayed in high densities, up to 1 09 individuals m-2 . 

Descriptive models are calculation tools, that are based on a statistical analysis of 
data, without ,.·an··· attempt to unravel the underlying mechanisms. They are 
complementary to analytical and simulation models. Their purpose is to predict an 
'output' variable on the basis of knowledge of one or more 'input' variables. 

Most descriptive models are static. Examples of this are regression equations that 
predict disease intensity on a regional scale, based on preceding weather. To predict 
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mildew severity in winter wheat in the Netherlands, Daamen et a/. ( 1992) give the 
equation 

y=-132+ 12xl + IOx2 

Here, y is predicted percentage of mildew-infested fields, x1 is the average 
temperature in the preceding month of October (°C) and x2 is the average 
temperature over the period december-March. 

To predict the severity of sugarbeet yellows disease in the eastern beet growing area 
of England, Harrington eta/. (1989) give the equation 

y = Ill + 0.20 XI - 68 X2 

Here, y is predicted percentage of virus-infected plants in August, x1 is virus 
incidence in the preceding year, and x2 is the logarithm of the number of days with 
ground frost in January and February. In the equation, arcsine-transformed virus 
incidences are used (Snedecor & Cochran, 1989). Shortly before crop emergence, 
when the virus transmitting aphids Myzus persicae have begun to fly, the equation is 
modified into 

y = 306 + 0.37 x1 - 26 x2- 3.1 x3 + 0.0092 x32 

Here, x3 is the day (counting from 1 January as day 1) when the first M. persicae are 
caught in a suction trap for aphids in the centre of the eastern sugar beet growing 
area, near Bury St Edmunds. 

The above static regression models are based on biological and empirical insight in 
what are the key factors in the system and on a thorough statistical analysis of the data 
set. 

Berryman ( 1991) advocates the use of delayed discrete logistic equations to describe 
time-series of forest insects. These equations can be used to forecast outbreak years 
of these insects. Here again, the approach is correlative, but the model is dynamic. 

Cellular automata models A class of models that are highly abstract and simplified 
representations of reality (like the analytical models) are the so-called cellular 
automata models (Sigmund, 1993). Here, individuals move and perform life functions 

· on a chequerboard, representing the living space. Interactions occur between 
individuals in adjacent or nearby cells. Offspring is often produced into neighbouring 
cells. The rules regulating individual behaviour are generally stochastic (involving 
chance) rather than deterministic. Cellular automata models provide a useful vehicle 
for exploring the behaviour of spatially distributed population systems (insight 
function). They lack the specificity and biological realism required for prediction in 
practical situations. Their role in research is exploratory, like analytical models. 
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CONCEPTUAL STRUCTURE OF A SIMULATION MODEL FOR 
ENTOMOPATHOGENIC NEMATODES 

Simulation models offer great potential for answering two critical questions with regard 
to entomopathogenic nematodes. 1. What are the critical factors determining the 
biological control success of applied entomopathogenic nematodes and how can the 
BC success be raised by more appropriate application techniques, formulation, 
environmental circumstances or genetic modification of EPNs?' 2. Will genetically­
modified EPNs··persisfin the environment and how quickly will they or their genes 
disperse or disappear? 

The first question can be answered with a monocyclic model, spanning a single life­
cycle of the EPN. The investigation of EPN persistence in a given system requires 
insight into a series of such lifecycles. This requires a polycyclic model. 

In the following a preliminary conceptual model, which is suitable for addressing the 
first question, is outlined. It bears resemblance to an existing model for plant 
pathogenic nematodes (van der Wert et a/., 1986). The system is a column of soil, 
surface area 1 m2, containing spatially distributed insect hosts. The column is 
subdivided in layers to keep track of vertical redistribution of nematodes (Fig. 1 ). 
Vertical redistribution encompasses three processes: 1. mass movement with water 
fluxes, 2. random movement (diffusion), and 3. directed movement to hosts. No 
horizontal distribution of nematodes or hosts is taken into account. The frequency of 
encounters between nematodes and hosts is determined by 1. densities, 2. activity, 3. 
detection distance, 4. spatial clumping, 5. movement pattern of nematodes. 

spray 

; 
highest layer 

2. random movement -t--t-----------
1. mass transport t i 
3. directed movement ti 

ti 

middle layer 

lowest layer 

Fig. 1. Vertical movements of nematodes in a layered soil system, to be taken into 
account in a mono-cyclic model simulating biocontrol by applied EPNs 

Studies on insect host finding behaviour provide good examples of how the encounter 
process may be modeled (Sabelis, 1981; Mols, 1993). Nematodes are subject to 
mortality and loss of vitality (quality), due to aging and biotic factors (Fig. 2). Infection 
success depends on vitality. Infected ho~ts produce a new generation of infective 
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juveniles. Rates of movement, loss of vitality and infection are dependent on 
environmental factors, primarily temperature and water availability. Soil texture and 
structure affects the relationship between water content and suction force (pF). Water 
relationships affect nematode movement and oxygen availability (Wallace, 1963). The 
modelling concept is straightforward. Critical steps include the choice of the level of 
detail which should be both feasible and relevant. The quantification of rates, 
environmental influences and interrelationships in the system will be a challenge. 

.--------

I 

I ----------------------

killed hosts 

infective juveniles 
. with low vitality 

infective juveniles 
with intermediate 

vitality 

infective juveniles 
with high vitality 

t 

t 

t 

Fig. 2. Relational diagram illustrating the infection process (healthy insect hosts 
becoming. !f!.f.~.ct.~q &nd dying subsequently) and the gradual loss of infectivity of EPNs 
With age. Boxes are state variables. Drawn arrows + valves (~) represent rates of 
change of state variables. Hatched arrows indicate that the state variable at the origin 
of the arrow influences the rate(s) of change of (an)other state variable(s). 

PROSPECTS 

There is a wealth of information about temperature requirements and optima, survival 
rates and dose-mortality relationships for a range of hosts for several Steinernema 
and Heterorhabditis species, especially S. carpocapsae and H. bacteriophora. 
Although not all of the available information is optimally suited for parameterizing a 
model, there is at least sufficient information available to construct a preliminary 
model. Despite the knowledge of survival under standardized laboratory conditions, it 
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is still an unresolved puzzle by which process and in which quantities EPNs are 'lost' 
in the soil system after spraying. Recoveries directly after spray are seldom higher than 
50o/o and often much lower. 

There is little knowledge about the quantitative aspects of movement of EPNs in soil. 
Different EPNs have different host finding strategies; some are of the lying-in-wait type, 
others can be characterized as search-and-destroy strategists. The model building will 
require a quantitative concretization of these behaviours under a range of abiotic 
conditions, host distribution and quality, and the internal condition of the nematode. 
Modelling the foraging behaviour will help elucidate what strategies are viable from 
the nematode perspective and which strategies will enhance biological control under 
different conditions. 

The influence of season on life-history parameters and behaviour is yet unknown as 
are interactions between EPNs and other soil biota (plant roots, competitors, 
predators, synergists) 

Modelling the ecology and efficacy of EPNs is a challenging task. A full and detailed 
parameterization of the system will be impossible because it would require decades of 
work to quantify all the relevant relationships for the whole range of environmental 
conditions, even for a single nematode-host interaction. Research priorities must be 
set. This can be done with the aid of a preliminary model. Building such a model with 
literature data will help in structuring the information available and locating essential 
knowledge gaps. Sensitivity analysis of such a model wifl demonstrate which of the 
processes and parameters have the greatest influence on nematode ecology and 
efficacy and deserve therefore research priority. Modelling and systems analysis thus 
help to define spear points and allocate tasks in a network of research groups and 
industries interested in the development of EPNs as biocontrol agents. Models as the 
intermediate and end-products of systems analysis will provide unique tools for 
pinpointing critical factors for biological control success, for designing effective 
application strategies, and for analyzing the risks of persistence and spread of 
genetically-modified EPNs in the environment. 
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