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|, INTRODUCTION

One of the conclusions of ICW-nota 1682 (RITSEMA, 1985) is that

dissolution, ¢.q. weathering, of minerals can be written as:

J =Kt . (Cg—Cb) = Ke . (Cs—Cg)™ (1)

mass flux of species C (mole/cmz.s)

where: J

Ke = diffusion velocity of species C {(cm/s)

Jg = concentration of species C in the diffuse boundary layer
near the solid phase (mole/ml)

Ch = concentration of species C in the soil solution (mole/ml)

Kc = chemical velocity constant C(if n=1 ¥c has the dimension
cmfs, if n=2 cm.ml/mole.s)

Cs = concentration of species C at the solid surface (mole/ml)

a dimensionless exponent

[

n

The value of n is variabel and depends on the specific mineral and
the prevailing pH. STUMM and MORGAN (1970} give n~values for potassium
chloride (n=1), magnesium oxalate (n=2}, silver chloride (n=2) and
silver -hromate {n=3). The n-values cited in literature for CaCO3 vary
from author to author. For example, according to WIECHERS et al (1975),
SJOBERG and RICKARD (1984} and MORETO et al {(1984) n=1. These authors
are considering the ion product [Ca++].[CO§_] in their investigations
and not the Ca++ concentration alone.

When taking into account only the ca'’ concentration, according to
NANCOLLAS and REDDY (1971), PLUMMER et al (1976, 1978) and REDDY (1978),
n will have the value 2. According to PLUMMER et al (1976) this value
is valid till a pH-value of 5.94. Above this lower pH region n will
receive the value 4 (see Fig. 1),

Recert investigations carried out by GOBRAN and MIYAMOTO (1985),

however, show that the solution of CaCO, up to a pH value of 7 can be

3
deseribed by equation | with n=2.
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Iu: this papar equatlon | will be elaborated for the a-values 1, o
and 4. Next the variables necessary to quantify the CaC0, wearherins
process are formulated., Finally a model is presented with which it is

possible to simulate the weathering of CaCO, in dependance of the ph,

3

HCO3 corcentration, flow velocity etc. The model describes one dimensie:ns

flow, lgno<es adsorprion, and is baged on the mixing—cell coucept.

1
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2, THEORETICAL BACKGROUND

2,l. First order dissolution processes
If n=1 it follews that relation | can be written as:
C Cb Cs C
C . . _‘E_'—": . . '_'_'-_E' 2
e Ke (Ce Ce) Ke Cs (Cs Cs) 2)
Assuning that the concentration of the chemical component at the

solid sarface, Cs, equals the (theoretical) equilibrium concentration

of the bulk solution, Ce, it follows that:

Ca _ Cby _ _Lg
Ce . Kt . (Ce Ce) Ke . Ce . (1 Ce) (3)
Suppcsing
- Cb - Cs .
X = Ce and Y = o {4)

equarion 3 can be written as:

Ce . Kt . (Y-X) = Kc . Ce . (1-Y) ' (5)
or
Kt
*e - (0 = (1-1) (6)

X and Y are dimensionless analogs of respectively the bulk solution and
surface boundary layer concentrations.

If
P = (7

it follows that equation I, with the introductioa of the dimensionless

parameters X, Y and P, can be written as:

(1-Y) =P . (¥Y-X) (8)
or

_ 1+ 2X
Y=y 9)




i owhiioh §a nocesency Fooreach s ceeinin aegess 0f pariess s
af the wulk zoliutise can be calculated supposinog so ichibition iz ¢
pirace
Combinazion of equation ! and

vV dCh
J = -, syl o'i('_.\
A " dc M
results in:
Y e . P
- - = Kt . {Cg~Tb .
A " dc ¢ - {Cgth) e
. . 3
where: V = volume cf soil water {(cm™)
. . 2
A = 80il mineral surface {(cm )
Dividing equation 11 by Ce results in:
dCh/Ce ARt C Chb
fce L& -2 (2
dt v Ce Ce
or
dX _ A.Vx er ' e
Frali A G
When assuming that

\ -

Ts = ——n id}
® T Axx (ié
it follows that eduation 13 also cam be written as:

dX 1
= — ., (XX 15Y
dt Ts ( ! (153
Substicution of equation 9 in equation 15 results in:
dx 1 1+PX . -
e ~ P43
ac "7 G TR (i
or

dx dt ‘r

= 7 . {17
(l“}() {1+P) . Ts




Integration of this equation results into:

- nQ-x) = m‘ﬁ Lt +e T (18)

For t=0 is X=0 and thus c=0.

Equation 18 can also be written as:

t

X=1-e (1+P) . Is (19)

The gzeneral solution of equation 15 consigsts of a range of curves
depending on the values of P and Ts. For one soil type Ts can be con—
gsidered as a constant. If P reaches very low values the solution con-

verges to equation 20:
X =1 - ¢ t/Ts - (20)

If P reaches very high values the solution of equation 17 approaches

the equation:

x=1-e"=0 B - . @D

Fig., 2 shows a graphical representation of equation 19 for P=0,
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2.2, Second order disgolution processges
I£ n=2 equation 1 can be written as:
.EE - -q)-. = 2 ¥ .(_1’.§..., _C_g, 2
Ge , Kt . (Ce' Ce)' Cs” . Ke . (5o G2 (22)
and assuming Cs = Ce it follows that:
| : 2 2 ,
Ce ., Xt . (Y-X) = Ce” . Ke . (1-Y) (23)
or
Kt ‘ wn2
Ce . Ke (Y-X) (1-Y)
Supposing
Kt ]
Pn=2 Ce . Ke (24)
it follows that
. 2 -
P,o. (YX) = (1-Y) (25)




Expressing Y in X and P2 results in:

vy sy +f%[§2—_y/(p§+§p2(|fg){]‘ o (26)

Only the solution with the negative square root is correct because
Y can only have a value between 0 and 1. -

In this case it 1s also possible to calculate the degree of satura-

tion cf the bulk solution with help of the equation:

X 1 .
a0 | @

Substitution of equation 26 in equation 27 gives the complete

differential equation for the case with n=2, Integrating, ekpressing X

~implicit in t, resulte in:

(28)

£(R %) ! ! £
S L SN S - SR
{f(P 0)} 2 {f(pz,x) f(PZ,O)}' iTs

where:, . . ' ' : o .
> N , :
f(Pz,X) = \/(P§+492(1-X)) - Py ) o _ (29

and where f(Pz,O) is the value of f(PZ’X) for X = 0.

Equation 28 represents the complete solution of equation | in the
case with n=2. If Ts is a constant for a certain soil. type equation 28
consists of a range of curves in dependance of P2

For very low values usz the solution can be written as:

-t/Ts
e

] - X = (30)
If the wvalae ofP2 is very high the solution converges to

X t ‘
I -Xx P,.Ts - (31)
or
X=t+ ;z.Ts (32)
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In the ease the value of P, exceeds the value of & many times

2
equarion 32 will approach 0.

In Fig. 3 a graphical representation of X against t/Ts is given

for different Pz-values

2,3, Fourth order dissolution processes

In the case n=4 equation | can be written as:

e N Cs _ Cpy
Ce . Kt . (0e Ce) Cs . K¢ . (Cs CS) . (33)

Assuming Cs = Ce it follows that

Ce . Kt . (¥-X) = Ce" . Ke . (1-)* | (34)
or

Kt
CeB.Kc

. (K = (1-n*




Suppcsing

p o _Kke

n=4 Cea.Kc

it follows that

~ '__.._4"
P4 . (Y-X) = (1-Y)

or

Y4 ~- 4¥3 + 6Y2 + Y(—&-P4) + 1+ qu =0

This is an equation of the form:

4 ) 2
Y O+ a!Y + a2Y + a3Y + a4 = 0

The only, real, solution of this equation appears to be:

where: a == |
| 2

E{a] - \/;] - 4&2 + 42}
1 2

'E{Z - \/Z - 434}

c

ard

(35)

(36)

(37)

(38)

(39)

N —
-
L X
+
1
=] Py

3
Z. = \/8P4(1+X? +

94(1+x))3 + (8P4(I+x).+-— p?)

2
+

1-—-
H,
N .
I ]
=
o

Ol

%/ X
+ 3P4(1+X) +,2

3
P, (14X))” + (82, (1+X) +

Pz)2 + 2

Besides equation 39 equation 15 is also valid. This equation can

be written as:

(40)

Which leaves a system of two equations with & unknown variables

(X, Y, annd t/Ts). With help of the computer X and Y have been calcula-

ted in the t/Ta-range from O up till-10 for different values of PA'
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Furtharmore a graphical representation of X against t/Ts is given for

different values ofP4 (see Fig. 4).

3. THE DISSOLUTION OF CaCO3

'3,1. Definition of Ce

The iheoretical solutions in the case n=l, 2 or 4 are al) functions
of X against t/Ts (and P). _
X equals Cb/Ce and is thus a variable expressing the degree of
saturation of the bulk solution, If there is no Ca++ in solution X haj

the value 0; when X=| the bulk solution is completely saturated with
respect to Caz+. In the case of pure equilibrium between CaCO3 and the

liquid phace it follows that:
+ -
CaC0, == caZt + cog (41>

The solubility product can be written as:

10




2+ 2~ (42)
= |C . LCO,
Ko = 1ca 1. [Cop ]

and thua

[ca®*] = i‘;— = Ce - : - (43)
[coy ] ‘ ‘

The legree of saturation of the bulk solution of the soil system
cannot be described in this manner. If one supposes that the increase
in the time of the Ca2+ concentration in the bulk solution is the
result of the weathering of calcite (CaC03) and that this also influen-

ces the possible changes in the HCO, concentration it follows, according

3
to STUMM and MORGAN (1970), BOLT and BRUGGENWERT (1976) and KEMMERS

(1985), rthat

log[CaZT] + Log[tico;] - log{n'] = 1.98 (44)
and thus
R l.98~=pH .
rca® =19 - ce o (45)
[HCO, ]

In the case n=l equation 19 can also be written as:

t
1
S _, _ . (#P).Ts

Combination with equation 45 results into:

L t

1.98-pH S -
++ 1C - . ([—E (I+P)-TS) (46)
[uco; }

Alsoc in the caseé n=2 or 4 it is possible to substitute equation 45

in the theoretical equation cencerned. -



3.7, bBefinicion of P

Wheather a=1, 2 or 4, in eichsr case the value of F is dependent
a7t the ra3fic bstween Ko and Ko and sventually Ca (ses equations 7, 24
and 35). How Ce can be defiped has alveady be shown above.

First of all the definition of Kt will be diascussed. Acgording to
RITSEHA (1585) the diffusion velscity and the diffusion coefficient

are relsted tc each other as follows:

k¥

RN (493
:
ds

vhere

Xt = diffusion velocity (cm/s)
] . .. 2+, 2
L = diffusgion coefficient for Ca =—ious (cm™/3)

dg = thicknesa of the diffyse boundary layer {(cm)

The diffusion coefficient D is dependent on the temperature.

SJOBZRG and RICKARD (1984) give temperature and D values for the
CaCGaudissolution process (s=ze Table 1).

The difficulty in equation 47 is defining the thickness of the dif-
fuse boundary layer dg. This thickness is dependent on the flow wvelocity
of the bulk solution., Assuming that soil grains can be considered as
very small flat circular plates it follows, according to PLESKOV and

FILINOVSKT (1976), that

nﬁl/a.vlls
1/2
[1\]

1.6¢ (48)

dg =

Table 1. Temperature diffusion coefficient
values according to SJOEERG and

RICKARD (1984)

-

Temperature Diffusion coefficient
(OC} (* !O~& cmzfs}
1 1.66
10 3.49
14 4,71

18 5.82




, , . , 2
where: v = kinematic.vigcosity (cm”/s) -

w = rotational velocity (1/s)

The average flow velocity 'of the bulk solution, V, can be described

v

ags
V = % . 27T . W o . R ' ’ ' : (49)
where: V = average flow velocify of the bulk solution (cm/s)

r = average radius of the CaCO,-grains (cm)

3

By substituting equation 49 into equation 48 it is possible to

eliminate the rotational velocity w. The result is:

/ yl /6
72

1/2

1.61.D . (377)

dg = (50)

2(V)

An increase in the flow velocity consequently causes a decrease in
the thickness of the diffuse boundary layer. Combination of equation

50 and 47 results in:

p. 2% 172

Kt
DI/3.V1/6.(3HE)

]

(51)
1.61. 172 o

Assuming that r = 50 um and the témpérature equalSIIOOC (and thus

= 3.49.10_6 cm2/s and v = 1.31;10-2 cmzls) it follows that:

4 1/2

Kt = 18,7;10? L) (52}

In order to quantlfy the value of P 1n a certain case 1t is neces-—
.8ary to know the value of Ke besides the value of the average flow
velocity. '

- PLUMMER and WIGLEY (1976) and SJOBERG and RICKARD (1984) give
different Ke-yalues in the case n—l, 2 and 4, as can be seen in
Table. 2, 7 |

Substituting these Kc—values Aand equatlon 52 in respectlvely equa~
tion 7, 24 and 35 results in dlfferent formulatlons for P in the case

n=l, 2 and 4 (see Table 3).

13



Table 2. Different values of ¥ in dependence of n

e e

n=1 Ve = 6u5=10-3 cm/ s SJOBERG and RICKARD (1984), page 583
=2 Ke = 3.10E0=2 cm.)/mole.g PLUMMER and WIGLEY (i1976), nage 199

I.d.lO4 cm013/mole3ns PLUMMER and WIGLEY

=
i
I~
-~
]
i}

(1976) , page 196

— —

Table 3. Formulations for P in the case
n=l, 2 and 4

n=l T =2.9.10"" (\7)”2
=2 P=6.0.102 @"?ce

n=b P o 1.3.10°7 (6)1/2/0e3

3.3, Tiefinition of Ts

Ts can be described as:

Vool '
TS-‘A".E (53)
. 3, 3
where: V = moisture content (cm fcm™)
A = soil mineral surface (cmzlcm3)
Kt = diffusion velocity (cm/s)

When the porosity of the soil and the flow velocity of the percola~
ting water are known it is possible to calculate V and Kt.

The variable A is dependent on the soil type but will most probably
exhibit considerable spatial variability within such a soil unit. In
hydrological studies it is uncommon to determine soil mineralogy with
a sufficient gccuracy to quantify the factor A. The consequence is that
the value of Ts is unknown in most of the hydrological surveys, However,
the value of Ts can be calculated afterwards when concentration depth
field data are being compared with theoretical X~t/Ts relations. Thig
is possible because each depth is related to a certain residence time
of the water. By changing the Ts-value one finds one theoretical concen-
tration tim2 relation that will correspond to the concentration depth
field data. If this is the case the CaCOB—weathering model is validated

and simulation calculations can be carried out,



4. MODEL DESCRIPTION

The model is based on the continuity equation and describes one-
—dim=2nsicnal stationary flow,

In mathematical formulation this leads to:

4ch i ' dCb, ;
' — = - . I e 54
£ . Ax . Tt Q.C_,-4q.C, +e. x (dt )w, (54)
where: € = porosity (dimensionless)
Ay, = thickness of the soil layer (m)
Cb = CaZ+ concentration 'in the bulk solution (mole/1)
q = flux (m/s)
C;_] = C32+ concentration of the inflowing water (mole/l)
Ci- = Ca2+ concentration of the outflowing water (mole/l)
(%%E)w = increaserin Ca2+ coqcentration as a result_of the

CaCOB-weathering

' . 2+ .
The last term of equation 54, i.e. the Ca  production term as

result 5f the CaCO_-weathering, can be rewritten. Equation 15 can be

3
written as:
dCb, _ Ce,. _ Cb. : '
(EE")W - TE(Y -Ce) (35)

Assuming n=2 and substituting equation 26 in equation 55 gives

dCb, _ Ce 11 2 - Cby, _ Cb

(_dt ')W = Ts {(l + -E-PZ > \/P2 + QPZV(I a;)) C_e-} (.56)
or

dcb; 1 - 1 ! 2 - Cb \
G = T {ce + 5Py. Ce - 5 Ce \/;; + sz(l_— v cb} (57

Substituting equation 37 in the continuity equation gives:

dCi
€ . M, 96 T ¢, +
I 1 2 “
t 6 . 0% . {Go(Ce + 5 Py Ce - o Ce \/?5 © 4py (1~ Eé) - Cb (58



1535, VAN (eeEd, 1985):

d;:':. {"* Sah - i 3
éLA. - i, A‘: s 3 (53)
s s 2+ . . ; . . .
where: G, = initial Ca” concentration 1n soil layer-y-at-time 3
o 2+ . . . . . .
C; th T the Ca concentration in soil layer 1 at time j+i
Syhetitating saquation 55 in equaiion 58 gives:
t
C =C, . +——., .C. .~q.C, +
1.0+] 1,} E€.0% {a i-1,5 ¢ 193}
At ! ! \f 2 Vi,
i — o Lo+ 5 P,. Ce ~ 5 e . P+ - —2kdy~ G, 60
g v e T By Ce gl By # AR =530 1,3} (60)

As 2 rvounh approach the first calcuslations can be carried ont with

3

In the simulation C, .
1,3+l

- . . 2+ .
with rhickness Ax, at sach timestep At. AFter ths Ca concentraitions

constant pH, HCO, concentration (and thus constant Ce) and P value,

will be calculated for every soil layer

in the whole profile (scil column) have beer caleulated for the fixst
timestep the calculation starts again at the top of the soil column

for timestep 2 etc. The caleulations will continue until a (dynamic)
steady-sitrte concentration—depth profile has been eztablished throughout
tha whole goil column. The calculated steady—-staie situation is the
result of the interaction between the chemiecal rats constant Ke (i.e.
the degree into which a mineral can bz weathered/disaolved), the hydro~
iogical cireumstances (i.e. the degree in whiech & component can bhe
transported) and the specific soil conditions {Te, pH, HCO; temperature
ete.).

Thie type of calculations can be carried out for different hydro-

logical circumstances and soil conditiamns.




5. SENSITIVITY ANALYSIS

For a better understanding of the weathering process of CaCO3 a
serias of graphics is constructed in which the influence of the dif-

ferent variables involved is being shown. The various graphics are:

Fig., 5 until 7 Influence of Ts

Fig. B8 until 10 Influence of the flux q
Fig. 11 until 13 Influence of Ca> -feed
Fig. §i4 until 16 TInfluence of Ca2+—initial

Fig. 17 until 19 1Influence of pH

The data used in the calculations are shown in Table 4.

Figures 5 until 7 show the influence of the quantity of solid
CaCO3 iz the soil on the Ca'  saturation degree with increasing depth.
The Ca  saturation concentration can be considered as a constant fol-
lowing equation 45, With help of the equations 52 and 53 it is possible
to calculate the value of factor A. The Fig. 5, 6 and 7 are related to

respectively an A-factor of 6.5, 13 and 65 cm2 solid CaCO3/cm3 goil.

Table 4. Data used in the sensitivity analysis

Figure Ts Por. Flux Ca2+feedCa2+initial pH HCO; CaZ+satur.=Ce

Y e () (w/day)  (mole/1) (mole/1) (=)  (mole/1)  (mole/1)

5 10,00C 0.3 0.004 0.0 0.0 6.0 0.0013 0.0735

6 5,000 0.3 0.004 0.0 0.0 6.0 0.0013 0.0735

7 1,000 0.3 0.004 0.0 0.0 6.0 0.0013 0.0735

8 10,000 0.3 0.004 0.0 0. 6.0 0.0013 0.0735

9 10,000 0.3 0.002 G.0 0.0 6.0 0.0013 0.0735
10 10,000 | 0.3 0.0004 0.0 0. 6.0 0.0013 0.0735
i 10,000 - 0.3 0.004 0.024 0.048 6.0 0.0013 0.0955
12 10,000 0.3 0.004 0.048 0.048 6.0 0.0013 0.0955
13 10,600 0.3 0.004 0.072 0.048 6.0 0.0013 0.0955
14 10,000 0.3 0.004 0.0002  0.024 6.0 0.0013 0.0735
15 10,000 .0.3 0.004 0,0002 0.048 6.0 0.0013 0.0735
16 10,000 0.3 0.004 0.0002 0,072 6.0 0.0013 0.0735
17 5.000 0.3 0.004 0.04  0.070 6.0 0.0013 0.0735
18 5,000 0.3 0,004 0.04 0.070 5.5 0.0013 0.2323
19 5,000 0.3 0.004 0.04 0.070 5.0 0.0013 0.7346

17
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An increase in the amount of solid CaCO3 in the soil causes the
Ca2+ saturation degree depth profiles to steepen. However, when comparing
Fig. 5 andiﬁ.it:becomes cleér that a doubling of the quantity of solid
CaCO3 in soil does not result inm a doubling of the free Ca++ concentra-
tion ir the bulk solution.

A decrease in f£flux (percolation velocity) causes an increase in the
Ca++ concentration in the whole soil column (see Fig. 8, 9 and 10).
Consequently the concentration depth profiles will steepen. In fact,
the inrluence of the flux on the development of the concentration depth
profiles is opposite to the influence of A. However, a halvation of the
flux coes not result in a doubling of the Ca++ concentration in the

bulk solution.

+
Fig. |1 until 13 show the influence of Ca++ feed in the case 032

. . . ++ , . . . .
feed is smaller, equals or is bigger than the Ca  initial., Fig. |l is
an example of dilution of the s¢il solution and Fig. |3 of enrichment,
The steady-state equilibrium profiles are steep as a result of the

great percolation velocity (1.46 m/year).

Fig. 14, 15 and 16 are examples of dilution of the soil solution.
It is striking that in all cases the dilution results in similar
equilibrium concentration depth profiles. The initial ca'’ concentra-
tion in the soil apparently has no influence on the establishment of

the steady-state equilibrium concentration depth profiles.

The Fig. 17 until 19 are graphical representations of concentra-
tion depth profiles under constant hydrological circumstances for
different pH-values. This means that the figures can not be compared
direcrly to each other because of different Ce-values. For example,

a 80% Ca’ ' saturation degree in Fig, 17 refers to an other absolute
Ca++ concentration than is the case in Fig. 18 or 19.

Recalculation of the steady-state equilibrium profiles, however,
shows that a lower pH-value consequently gives rise to ahsolute higher
ca concentrations in the soil profile, This is to be expected, since
it is generally acknowledged that under acid circumstances CaC0, will

3
be weathered more intensily than under basic circumstances.
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degree~depth profile.pH = 6.0. The values of the other para-

meters are equal to the values used in the Fig. 18 and 19

31



CHANGE OF THE CA++ SATURATION DEGRSE IN A SOIL PAOFILE AS A RESULT OF THE
WEATHERING OF CACOY UNDER CRATAIN CONSTANT HYOROLOGICAL CIRCUMGTANCES
- SO0 DIAYE (= 0.5 YEAN)
- 1000 DAVS (s 2.7 VEAM)
an 2000 DAYS (= 5.5 vEAM)
e 4000 DAYS (=~ 11.0 VEAR)
X~ 7200 DAVS (= 19./ YEAR)
~  EQUILIBRIUM SITUATION
— 04
g,
P
D
w
3 0
0
r
r,)J 151
-
¥}
a0+
P
) h
:Li %
w0
; 4
= 30+
h )
LT i'
a1,
15
4
504
b
56 4
.
604
h
€S
q
704
[«
75
[
894
]
it
90 ] ﬁ
1]
9s ]
& 4
SO 4= ) 1 1 1 v 1 1 1 1 =
[} 10 20 Kid] a0 50 GO 20 0o qQ 10D
Ca++ SATURATION DEGREE (1)

. . ++ .
Fig. 18, Influence of the pH on the realization of the Ca saturation
degree~depth profile.pH = 5.5. The values of the other para-

meters are equal *o the values used in the Fig, 17 and i9

32



CHANGE OF THE CA++ SATURATION DEGREE M A SOIL PROFLE AS A RESULT OF THE
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6. RESULTS

Calculations are carried out with field data, obtained by the
RIVF. the Netherlands, and are graphically represented in the Fig. 20
throagh 27, The fipures show both the measured field data and the
equilibrium Ca++ saturation degree depth profiles as calculated by the
CaC03-Weathering model. _

All the bore-holes are situated in the High-Veluwe area. Since it
is an infiltrating area the flow direction of the percolating water

will be mainly vertical,

The ph and HCO

.
does not change much at different depths. This implies that the bore-

concentration values measured in the separate bore-holes

-holes are pre-eminently suitable for testing the model. The (actual)
CaCO3-content is usually not known and is therefore optimized in such
way that the calculated concentration depth profiles fit the measured
field data in the most proper way.

Besides values of Ts it is necessary to know values for the following

variables in order to calculate the equilibrium concentration depth

profiles:
flux q - considered as a constant (0.0008 m/day)
Ca2+ feed - considered as a constant (0.00004 mole/1l)

Ca2+ initial - considered as a variable per bore—hole (does not influence
the cazlculated equilibrium concentration depth profile)
pH - considered as a variable per bore~hole (field data used)

HCO ~ considered as a variable per bore-hole (field data used)

It is possible to comsider the hydrological variables flux q and
++
Ca feed as constants because all the used bore-holes are situated

in the central part of the Netherlands.

Table © shows all the data per bore-hole used in the calculations.

As can be seen in Table 5 the value of Ts is in general rather
high. This consequently means that the amount of solid CaCO3 in the
bore-holes is predominantly low. A Ts-value of 20,000 corresponds with
45 cm2 CaCOB/cm3 soil,a Ts—value of 1,000,000 with 0.091 cm2 CaCOB/cm3
soil. Considering a soil consisting of grains with constant radius of
50 uym and uniform specific gravity it follows that Ts 10,000 and Ts

1,000,000 roughly correspond with respectively 1.1 and 0.022 weight
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CIANGE OF THE CA++ SATURATION DEGRGEE WITH MCOCASASNG O6PTH AT BORGHOLE 33C/36
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Fig. 25, Ca saturation degree versus depth at borehole 33D/133
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Talrle 5. Data used to calealate the Ca saturation depree depth profiles at different borelioles situated in the High Veluwe Area

Borehole  Altitude Screen depth Por.  Flux catt feed Ca'' initial pll HC(); ca'? satur. = Ce Ts A Weight
No. below percentage
land surface CaCo
7 3 in sdil
(m+NAP) {m) (-) (mfday) (mole/l} {mole/f1) (-) (mole/1) (mole/1} (s) (em fem™) (%)
33cta 33.27 178.20 0.3 0.0008 0.00004 0.00024 1.80 0.0013 0.0012 12,000 7.576 1.85
31c/27 5G.00 80.50 0.2 0.0008 ©.00004 0.0110 6.93 0.0003 0.0330 2,000,000 0.046 0.01
331c/36 59.3) 79.10 0.3 0.0008 0.00004 0.0045 7.00 0,0007 0.0136 750,000 0.121) 0.03
330/ 16,00 61.00 0.3 0.0008 0.00004 0.0015 7.01 w.0018 0,0045 75,000 1,212 .30
33n/02 $30 136,00 0.3 0.0008 0,00004 0.0060 6.94  0.0009 0.0129 1,000,000 0,09} 0.0z
33p/133 50.70 172.00 0.3 0.0008 0.00004 0.0006 7.37 0.0016 0.0025 70,000 1.299 0.32
3N/ 114 56.71 201.00 0.3 0.0008 0.00004 0.0003 7.58 0.0019 0.0014 20,000 4,545 1.11
1I/135 63,10 196.00 0.3 0.0008 0.00004 0.0004 7.60 0,0022 0.0011 17,000 5.348 1.3

percentage of CaCQ, per unit of soil, The CaCO3 (weight-)percentages

3
given hy the Soil Survey Institute of the Netherlands (1965) for the

top soil layers of the High Veluwe area vary from 0.5 until 0.07.

The calculated values which are shown in the various figures

represent steady-state equilibrium situations. Changes of pH ox H003
concentrations, for example as a result of acidification of the rain,
will cause a corresponding change in the ca'’ saturation depth profiles
in the soil.

However, the CaC0, weathering model as defined in Chapter 4 calcu-

3 -—

lates with constant soil pH and HCO3 concentrations and is therefore

only useful for areas where such conditions prevail.
The veviations from the measured field data with regard to the

calculated equilibrium lines are mainly caused by slight variations

3
] ++ . . :
changes in the Ca  saturation concentration., Nevertheless, it can be

in the soil pH and HCO, concentrations, which directly result in

seen that their exist a good similarity between the calculated equili-

brium profiles and the measured field data.
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CONCLUSIONS

The dissolution (weathering) of soil minerals can have an appreciable
effext on soil water chemistry.

The contribution from soil minerals to the soil solution consists
primarily of calcium, magnesium and bicarbonate (AMRHEIN, 1984). As a
result, infiltrating water in soils will undergo a certain grade of Ca+
enrichment per unit of time. The grade of enrichment depends on the

amount of solid CaCO, in the soil, the velocity of the percolating

3
water, the value of the pH, the HCO, concentration, the temperature etc.

3
The formulated CaCD., weathering model is based on the realization

of a dynamic equilibriui situation. The calculated steady-state situa-—
tion is the result of the interaction between the chemical rate constant
Ke (i.e. the degree in which a mineral can be dissolved/weathered),

the hydrological circumstances (i.e. the degree in which a component

can be transported) and the specific soil conditions (Ts, pH, HCOE,
temperature ete,). Realization of the calculated equilibrium situation
is coﬁsequently a time dependant process.

In the field both under and supersaturated soil water are commonly
found (BACK, 19633 SHUSTER and WHITE, 1972; JACKSON and PATTERSON,
1982: SUAREZ, 1977, 1982; PLUMMER and BACK, 1980). The Ca & saturation
degrees found in the groundwaters of the High Veluwe area are all under
saturated (see Fig. 20 until 27), This is in accordance with the data
of HOOGDNDOORN (1983) who mentiones undersaturation in the high and
inereasing saturation in the lower parts of the Veluwe area,

The, for the different bore holes, calculated Ca++ saturation depth
profiles resemble good with measured field data (see Fig. 20 until 27).
In the calculations optimization has taken place with help of the Ts
parameter.

The results show that the (actual) weight percentages solid CaCO3
in the soils at the different bore holes vary between 0.0l and 1.87
(see Table 5). This roughly corresponds with the data given by the
Soil Survey Institute of the Netherlands (1965).

Intending to calculate Ca' ' saturation depth profiles in heteroge-
neous areas it is necessary to adapt the develeoped model to variable

pH and HCO

3 concentrations.
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