



# Impacts of cross compliance measures on environmental indicators

An assessment tool to evaluate environmental impacts at the European scale

Alterra Report 2323 ISSN 1566-7197

W. de Vries, J. Kros, J.P. Lesschen, M. Follador, M. van der Velde, A. Leip, M. Kempen and B.S. Elbersen

Impacts of cross compliance measures on environmental indicators This research has been carried out in the context of the EU project CCAT with co-financing of the Dutch ministry of EL and I Project code 5233011

## Impacts of cross compliance measures on environmental indicators

An assessment tool to evaluate environmental impacts at the European scale

Wim de Vries<sup>1</sup>, Hans Kros<sup>1</sup>, Jan Peter Lesschen<sup>1</sup>, Marco Follador<sup>2</sup>, Marijn van der Velde<sup>2</sup>, Adrian Leip<sup>2</sup>, Markus Kempen<sup>3</sup> and Berien Elbersen<sup>1</sup>

- 1 Alterra, Wageningen University and Research centre, P.O Box 47, 6700 AA Wageningen, The Netherlands
- 2 European Commission, DG Joint Research Centre, Institute for Environment and Sustainability, Climate Change Unit, Via E. Fermi 2749, I-21027 Ispra, Varese, Italy
- 3 Institute for Food and Resource Economics, University Bonn, Nussallee 21, D-53115 Bonn, Germany

#### Alterra Report 2323

Alterra, part of Wageningen UR Wageningen, 2012

#### Abstract

De Vries, W., J. Kros, J.P. Lesschen, M. Follador, M. van der Velde, A. Leip, M. Kempen and B.S. Elbersen, 2012. *Impacts of cross compliance measures on environmental indicators. An assessment tool to evaluate environmental impacts at the European scale.* Wageningen, Alterra, Alterra Report 2323. 86 pp.; 11 fig.; 14 tab.; 41 ref.

The EU cross-compliance (CC) instrument implies that farmers receive payments subject to meeting Statutory Management Requirements (SMRs) related to environment, food safety, animal and plant health and animal welfare, as well as standards of good agricultural and environmental conditions (GAECs). This report describes the approach and application methodology of an environmental impact tool to evaluate cross compliance measures on environmental effect indicators. It consists of a selection of the effect indicators to be applied and assessment tools to be used with a review of the CC measures to be evaluated in assessing the environmental impacts. Furthermore, it includes an evaluation of CC measures related to the Nitrates Directive and selected GAECs with the coupled CAPRI-MITERRA model for the prototype of the environmental impact tool.

Keywords: cross-compliance, environmental effect, Nitrates Directive, Ammonia, greenhouse gases, gross balance, nitrogen, phosphate.

#### ISSN 1566-7197

The pdf file is free of charge and can be downloaded via the website www.alterra.wur.nl (go to Alterra reports). Alterra does not deliver printed versions of the Alterra reports. Printed versions can be ordered via the external distributor. For ordering have a look at www.rapportbestellen.nl.

- © 2012 Alterra (an institute under the auspices of the Stichting Dienst Landbouwkundig Onderzoek) P.O. Box 47; 6700 AA Wageningen; The Netherlands, info.alterra@wur.nl
- Acquisition, duplication and transmission of this publication is permitted with clear acknowledgement of the source.
- Acquisition, duplication and transmission is not permitted for commercial purposes and/or monetary gain.
- Acquisition, duplication and transmission is not permitted of any parts of this publication for which the copyrights clearly rest with other parties and/or are reserved.

Alterra assumes no liability for any losses resulting from the use of the research results or recommendations in this report.

Alterra Report 2323 Wageningen, June 2012

## Contents

| Prefa | ace                                |                                                                                                                                                                                                                   | 7                          |
|-------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Sum   | mary                               |                                                                                                                                                                                                                   | 9                          |
| 1     | Introdu                            | iction                                                                                                                                                                                                            | 11                         |
| 2     | Selecte<br>2.1<br>2.2              | ed environmental effect indicators<br>Relevant indicators for soil-, air- and water quality and climate<br>Indicators to be evaluated by the environmental impact tool                                            | 13<br>13<br>14             |
| 3     | Modell<br>3.1<br>3.2<br>3.3<br>3.4 | ing approach, modelling tools and input data<br>General approach<br>Modelling tools<br>Use of meta models of EPIC and DNDC in CCAT<br>Model input data                                                            | 17<br>17<br>19<br>25<br>29 |
| 4     | Cross<br>4.1                       | compliance measures to be analysed with the environmental modelling tools<br>Relevant Statutory Management Requirements and Good Agricultural and Environmental<br>Conditions                                     | 31<br>31                   |
|       | 4.2<br>4.3                         | Selected environmental effect indicators for the Statutory Management Requirements and their modelling approach<br>Selected environmental effect indicators for the Good Agricultural and Environmental Condition | 33                         |
|       | 4.3                                | and their modelling approach<br>Selected environmental effect indicators                                                                                                                                          | 33<br>34                   |
| 5     | Integra<br>5.1<br>5.2<br>5.3       | ted evaluation of measures in the nitrate directive with CAPRI-MITERRA<br>Introduction<br>Interactive approach between MITERRA Europe and CAPRI within the prototype<br>Summary of main results                   | 37<br>37<br>37<br>43       |
| Liter | ature                              |                                                                                                                                                                                                                   | 47                         |
| Арре  | endix 1<br>ground                  | Expected environmental impacts of Statutory Management Requirements (SMRs) in the<br>Iwater protection directive, sewage sludge directive and nitrate directive                                                   | 51                         |
| Арре  | endix 2<br>(SMRs)                  | Selected measures in the Nitrate Directive, Sewage Sludge Directive and Groundwater Directive and the models in the CCAT tool that will evaluate the measures                                                     | ctive<br>59                |
| Арре  | endix 3<br>Condit                  | Expected environmental impacts of measures related to Good Agricultural and Environmentations (GAECs) for soil erosion, soil organic matter and minimum level of maintenance                                      | al<br>75                   |
| Арре  | endix 4<br>or mor                  | Selected measures in GAECs and the way in which effect indicators will be calculated with or<br>re models in the CCAT tool                                                                                        | пе<br>79                   |

## Preface

This report is based on a progress report for the CCAT project carried out in the period 2006-2010. The main objective of this project was to develop an analytical tool that enables the integrated assessment of the impact of Cross Compliance (CC) at regional level. Impacts assessed by the tool include effects on agricultural markets, producer's income, consumer's welfare, land use, soil, water, air, climate, biodiversity and landscapes, as well as food safety, animal welfare and health. The project included an evaluation of the impact of cross-compliance since 2005. The analytical tool enables the assessment of impacts of CC given different implementation pathways and specific national and regional conditions. This report describes the approach and application methodology of the environmental impact tool to evaluate cross compliance measures on environmental effect indicators.

## Summary

The EU cross-compliance (CC) instrument implies that farmers receive payments subject to meeting Statutory Management Requirements (SMRs) related to environment, food safety, animal and plant health and animal welfare, as well as standards of good agricultural and environmental conditions (GAECs). This report describes the approach and application methodology of an environmental impact tool to evaluate cross compliance measures on environmental effect indicators. It consists of a selection of the effect indicators to be applied and assessment tools to be used with a review of the CC measures to be evaluated in assessing the environmental impacts. More specifically, the report presents:

- A characterization of selected environmental effect indicators for soil-, air- and water quality and climate, including (Chapter 2).
- An overview of the overall modelling approach and the use of different models to calculated the selected environmental effect indicators, i.e. MITERRA Europe, EPIC and DNDC, coupled to the economic CAPRI model (Chapter 3).
- An overview of the selected cross compliance measures in the various SMRs and GAECs, to be analyzed with the modelling tools (Chapter 4).
- An evaluation of CC measures related to the Nitrates Directive and selected GAECs with the coupled CAPRI-MITERRA model for the prototype of the environmental impact tool (Chapter 5).

The model results include:

- Air: Emissions of (i) ammonia in kg NH3-N/ha/yr and (ii) greenhouse gases N2O and CH4 in kg N2O-N/ha/yr and kg CH4/ha/yr
- Soil: gross balance of: (i) C allowing to calculate the change in soil organic carbon content in the topsoil in g/kg (ii) the nutrients N in kg N/ha/yr and P in kg P/ha/yr and (iii) the metals Cd, Cu and Zn in g/ha/yr, including inputs of these metals to soil by fertilizer, manure and sewage sludge and the output by crop removal.
- Water: Nitrates in water, including leaching in kg N/ha/yr and concentrations in mg NO3/l.

The potential environmental impacts of all measures in SMRs and GAECs and the selected measures in SMRs and GAECs, including the way in which effect indicators will be calculated with one or more models in the CCAT tool, are presented in annexes.

## 1 Introduction

The 2003 Mid-Term Review (MTR) of the Common Agricultural Policy (CAP) introduced a number of adjustments to agricultural support. One of the most substantive changes was the introduction of a system of decoupled payments per farm (Single Farm Payment). Moreover a cross-compliance (CC) instrument was to accompany this system making the payments conditional on meeting Statutory Management Requirements (SMRs) related to environment, food safety, animal and plant health and animal welfare, as well as standards of good agricultural and environmental condition (GAECs). The CC instrument has been implemented from 2005 onwards in the EU-15. It specifies that all farmers receiving direct payments are subject to compulsory cross-compliance (Council Regulation No 1782/2003 and Commission Regulation No. 796/2004).

The primary objective of the whole policy reform of 2003 was to promote a more market-oriented and sustainable agriculture. However, it remains largely unknown how the introduction of cross-compliance affects producers' income, consumers' welfare and environmental aspects. Overall, little knowledge is available until now on the effects of CC on sustainability, because it has only recently been implemented in a selection of the EU Member States (MS) and also because of the variation across MS, with respect to minimum standards for GAECs. In addition, the impacts of CC may largely vary as a result of a combination of practical implementation within a specific national and regional context and farmers' decisions. Although some estimates are available about the costs of CC, information on their benefits is hardly available. The CCAT project aims to clarify this latter aspect, thus contributing to a more balanced picture of both benefits and costs of CC.

The work in task 4.2 of the project focuses on the development of an environmental impact tool to evaluate cross compliance measures. It is divided into four major activities (1) selection of the effect indicators and assessment tools with a review of the CC measures to be evaluated in assessing environmental impacts; (2) implementation of particular CC measures into the models; (3) evaluation of the environmental impacts of particular CC measures at the regional scale and (4) derivation of simplified measure-impact relationships to be implemented in the analytical tool. In this text, we focus on the first task by presenting:

- A characterization of selected environmental effect indicators for soil-, air- and water quality and climate (Chapter 2).
- An overview of the overall modelling approach and the use of different models to calculated the selected environmental effect indicators (Chapter 3).
- An overview of the selected cross compliance measures, related to the SMRs and GAECs mentioned, to be analyzed with the modelling tools (Chapter 4).
- An elaborated approach to evaluate CC measures related to the Nitrates Directive and selected GAECs for the prototype of the environmental impact tool, being part of the overall impact assessment tool (Chapter 5).

## 2 Selected environmental effect indicators

#### 2.1 Relevant indicators for soil-, air- and water quality and climate

EU agriculture has experienced important changes which has generally lead to both intensification, extensification and land abandonment. In most European countries, agriculture is also one of the most important land use activities and can be considered as a sector with important impacts on the quality of water, air and soil and on climate.

The IRENA operation on agri-environmental indicators (EEA, 2005) but also several other studies (e.g. Boatman et al., 1999; EEA, 1999; Jørgensen and Schelde, 2001; Agra CEAS Consulting Ltd., 2003; EEA, 2004; Petit et al., 2004; Carey, 2007 etc.) show that the following indicators are most relevant with respect to the environmental impacts of agriculture:

- Greenhouse gas and ammonia emissions from agriculture caused by high concentrations of livestock, mineral fertiliser consumption and intensive farming practices (tillage and frequent ploughing), affecting both air quality and climate change. Relevant IRENA indictors are atmospheric emissions of ammonia (IRENA 18.2) and greenhouse gases (IRENA 19 and 34.1).
- Diffuse pollution from agriculture affecting the (chemical) quality of soil, ground and surface waters. It contributes significantly to pollution of soil and water through leaching and runoff of nitrogen, phosphorous, heavy metals and pesticides. Key drivers for nutrient losses from agriculture are use of fertilisers, pesticides, concentrate feeding, high livestock densities and farm management practices. Actual losses are further influenced by environmental factors, including soil type and related soil properties, such as organic matter and clay content, hydrological status, temperature climate and precipitation. Relevant IRENA indicators are the gross balance of the nutrients N and P (IRENA 18), nitrates in water (IRENA 30 and 34.2), soil organic carbon content in the topsoil (IRENA 29), inputs of heavy metals (Cd, Pb, Cu Zn, Ni, Cr, Hg) to soil by sewage sludge (IRENA 21), the consumption of pesticides (IRENA 9) and the occurrence of pesticides in soils (IRENA 20) and in water (IRENA 30).
- Soil degradation, caused by soil compaction (IRENA 29) and soil erosion (IRENA 23) affecting the physical quality of the soil. Areas degraded by soil compaction are increasing because wheel loads in agriculture are still increasing (JRC, 2005). Soil compaction of the topsoil or subsoil involves an increase in the density of soil particles and pores. Compaction can reduce water infiltration capacity and, increase erosion risk by accelerating run-off. Soil compaction to ever-greater depth has adverse effects on the soil biodiversity and soil structure and may lead to problems, such as disturbed root growth. At this moment we see that European soils are more threatened by soil compaction than ever before. It is now the first in the ranking of soil damages just before soil erosion (EEA, 2005). Soil erosion in Europe is especially a problem in the Mediterranean region, which is characterised by long dry periods followed by heavy bursts of rainfall, falling on steep slopes with unstable soils (EEA, 2005). Because of the dry summers in these areas, soil cover is also limited in summer which increases the risk for erosion in autumn when the rainfall starts. In the Northern parts of Europe erosion by water is not such a problem as rainfall is spread out more evenly over the year and there are fewer regions with steep slopes and shallow soils. Nevertheless, less crop rotations and increase of maize acreage in the last decades contributed to soil erosion. Beside water erosion, there is also erosion caused by wind. This is a problem in more open, flat or undulating terrain with sandy soils where soil cover is limited over the year and wind-breaking landscape elements are missing.

#### 2.2 Indicators to be evaluated by the environmental impact tool

The objective of Task 4.2 is the assessment of impacts of cross compliance measures on air-, soil-, and water quality. In this context, a choice has to be made which environmental indicators we aim to address. In the analytical tool, we include all aspects that can be quantified in a reasonable way on a European wide scale. The inadequacy of information on pesticide use on a European wide scale and the complexity of modelling pesticide behaviour makes it difficult to make adequate predictions of pesticide accumulation and leaching in response to measures. Furthermore, pesticides are not under cross compliance measures. Consequently, the impact of cross-compliance measures on pesticides is not included in the integrated environmental modelling framework.

Considering the information given above, the overall objective of the modelling framework is to assess the impact of cross-compliance measures on air-, soil-, and water quality in terms of:

- Atmospheric emission of ammonia and greenhouse gases (air quality and climate).
- Soil accumulation or release of carbon (organic matter), phosphorous and heavy metals (chemical soil quality).
- Soil erosion (physical soil quality).
- Leaching and runoff of nitrogen and possibly phosphorus and heavy metals (water quality).

The word possibly for phosphorus and heavy metals is because it is not yet sure whether predictions are feasible in view of the data demand. In Table 1 a more detailed selection of indicators is given in view of the IRENA and OECD indicator frameworks discussed above. Most of the possible indicators are in the pressure category. More specifically the model results will include:

Air

- Emissions of ammonia in kg NH3-N/ha/yr (IRENA 18.2 and 34.1).
- Emissions of the greenhouse gases N2O and CH4 in kg N2O-N/ha/yr and kg CH4/ha/yr (IRENA 19), Soil.
- Soil.
- Soil erosion in m3 soil/ha/yr (IRENA 23).
- Gross balance of C allowing to calculate the change in soil organic carbon content in the topsoil in g/kg (IRENA 29).
- Gross balance of the nutrients N in kg N/ha/yr and P in kg P/ha/yr (IRENA 18).
- Gross balance of metals, including inputs of heavy metals to soil by sewage sludge in g/ha/yr (IRENA 21) but also by other sources and the output by crop removal.

#### Water

- Nitrates in water: leaching in kg N/ha/yr and concentrations in mg NO3/I (IRENA 30 and 34.2).
- Possibly concentrations of metals and phosphate in water (not in IRENA).

| Environmental field of<br>impact | Selected indicator                                                                         | Source (indicator framework)                           | Type of<br>indicator<br>DPSIR |
|----------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------|
| Air quality                      | Total atmospheric emissions of ammonia<br>(NH₃) form agriculture <sup>1</sup>              | IRENA, OECD agri-environmental<br>Indicators           | Р                             |
| Climate                          | Emissions of nitrous oxide by agriculture                                                  | IRENA                                                  | Р                             |
|                                  | Emissions of methane by agriculture                                                        | IRENA                                                  | Р                             |
|                                  | Gross total GHG emission from agriculture<br>in CO <sub>2</sub> equivalents                | IRENA, OECD agri-environmental<br>Indicators           | Р                             |
| Physical soil quality            | Soil erosion by water <sup>2</sup>                                                         | IRENA                                                  | Р                             |
| Chemical soil quality            | Top soil organic carbon content                                                            | IRENA                                                  | Р                             |
|                                  | Gross phosphorus balance                                                                   | IRENA, OECD agri-environmental<br>Indicators           | Ρ                             |
|                                  | Use of sewage sludge (metal input)                                                         | IRENA                                                  | S                             |
| Ground and surface water quality | Gross nitrogen balance                                                                     | IRENA, OECD agri-environmental<br>Indicators, Eurostat | Р                             |
|                                  | Nitrate leaching to ground water and runoff to surface water from agriculture <sup>3</sup> | IRENA, OECD agri-environmental<br>Indicators           | S                             |

Main environmental impacts fields and selected indicators for assessing impacts of cross compliance measures.

Table 1

 $^{1}\,\text{The}$  IRENA indicator gives 'Contribution of agriculture to atmospheric emissions of ammonia (NH\_3).

<sup>2</sup> The IRENA indicator gives 'Annual soil erosion risk by water' and 'Area and share of agricultural land affected by water erosion".

 $^{3}\,\text{The IRENA}$  indicator gives 'Share of nitrates in ground and surface water derived from agriculture'.

Pesticide accumulation (occurrence in soil) and leaching (occurrence in water) is not included as an indicator because: (i) pesticides are not under cross compliance measures, (ii) the information on pesticide use on a European wide scale is inadequate and (iii) the complexity of modelling pesticide behaviour makes it difficult to make adequate predictions of pesticide accumulation and leaching in response to measures at a large scale. Regarding the mentioned indicators, environmental targets relevant to agriculture have been set at country or regional level for atmospheric emissions of ammonia and green house gases, nitrates in water and the consumption of pesticides (IRENA 03).

## 3 Modelling approach, modelling tools and input data

#### 3.1 General approach

An integrated approach focusing on all the impacts mentioned above depends on the availability of models and data at the European scale. For the environmental assessment, existing models will be further adapted and integrated into the framework or modelling outputs will be translated into knowledge rules and integrated into the analytical tool (WP5). The existing and tested models to be used are: (i) MITERRA-Europe in combination with parts of CAPRI, being a set of integrated and relatively simple models for use at the continental (EU) level and (ii) DNDC and EPIC, being detailed biogeochemical and hydrological soil models, for use at the plot level and simplified meta-models based on these models at the continental (EU) level.

The main idea is to extend the MITERRA Europe model with at least the balance of carbon and metals and possibly phosphorous and metal leaching (see below), to assess the impacts on all air, soil and water quality indicators on a European wide scale with the exception of soil erosion. Regarding soil erosion, a separate meta-model in terms of e.g. simplified regression functions will be derived from the EPIC model. The main idea of using DNDC and EPIC is further to derive meta models for N<sub>2</sub>O emission (DNDC), N balance (DNDC), N leaching (DNDC and EPIC) and N runoff (EPIC) to assess impacts of specific CC measures on these air and water quality indicators that cannot be evaluated by MITERRA Europe. Results of measures that can only be evaluated with EPIC or DNDC can be transferred to MITERRA Europe, e.g. in terms of percentage reduction in emission of N<sub>2</sub>O leaching of nitrate or runoff of nitrogen for specific combinations of land use and soil, for including application on a European scale. Furthermore, a comparison will be made between MITERRA Europe and DNDC and EPIC meta-model predictions on a European wide scale for both the present situation and after the inclusion of the same sets of CC measures as one way to evaluate the uncertainty in the MITERRA Europe predictions. The indicators that are predicted by the extended MITERRA Europe model and the meta models of DNDC and EPIC, being relevant in the CCAT project, are given in Table 2.

| Compartment | Indicator                      | Unit                        | MITERRA<br>Europe<br>extended | DNDC | EPIC |
|-------------|--------------------------------|-----------------------------|-------------------------------|------|------|
| Air/        | NH <sub>3</sub> emission       | kg NH <sub>3</sub> -N/ha/yr | Х                             | _1   | -    |
| Climate     | N <sub>2</sub> O emission      | kg N₂O-N/ha/yr              | Х                             | Х    | -    |
|             | CH₄ emission                   | kg CH₄/ha/yr                | Х                             | _1   | -    |
| Soil        | Erosion                        | m <sup>3</sup> soil/ha/yr   | -                             | -    | Х    |
|             | Carbon balance                 | kg C/ha/yr                  | Х                             | _1   | _2   |
|             | Phosphorous balance            | kg P/ha/yr                  | Х                             | -    | _2   |
|             | Metal balance                  | g/ha/yr                     | Х                             | -    | -    |
| Water       | Nitrogen balance               | kg N/ha/yr                  | Х                             | Х    | Х    |
|             | Nitrogen leaching <sup>3</sup> | kg N/ha/yr                  | Х                             | Х    | Х    |
|             | Nitrogen runoff                | kg N/ha/yr                  | Х                             | -    | Х    |

 Table 2

 Indicators predicted by the extended MITERRA Europe, and the meta models of DNDC and EPIC used in CCAT.

<sup>1</sup> DNDC includes modules to assess these fluxes but they are not included in the DNDC meta models used in CCAT since (i)  $NH_3$  and  $CH_4$  emissions are limited to the agricultural soils and do not include the housing and manure storage systems and (ii) the carbon balance calculated by DNDC is still not thoroughly validated.

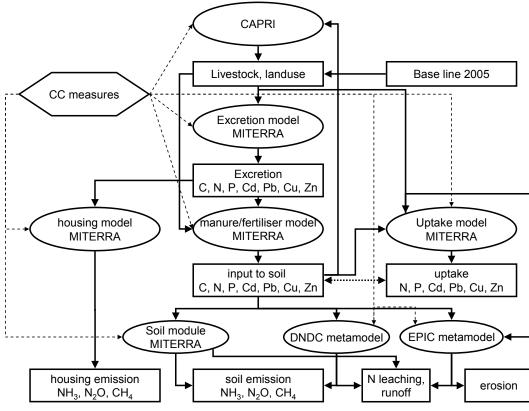
<sup>2</sup> EPIC includes modules to assess these fluxes but they are not included in the EPIC meta models used in CCAT because EPIC is not validated for carbon and phosphorous balance in Europe.

For phosphorous and metal leaching, the prediction by MITERRA Europe is put in brackets, since application on a European scale is doubtful in view of available soil data. The specific approach to predict air, soil and water quality indicators with the aid of extended MITERRA Europe model, making use of the detailed models DNDC and EPIC, is further illustrated in Figure 1. The approach will be to:

- Further develop the MITERRA Europe model as an integrated tool for the assessment of the specific impacts of CC on air (ammonia and greenhouse gas emissions) soil (organic matter, nutrients, metals) and water quality indicators (nutrients and metal loads) by including the carbon and metal balance and possibly phosphorous and metal leaching.
- Further develop, parameterize and apply the *mechanistic models* DNDC and EPIC for the assessment of the impacts of CC measures on air, soil and water quality indicators and perform a sensitivity analysis for the most influential parameters.
- Develop meta models for soil erosion and N leaching/runoff based on EPIC results (See Figure 5) and meta models for N2O emissions, N balance (N input minus net N removal) and N leaching based on DNDC results (See Figure 6) to be used the final CCAT tool.
- Assess impacts of identified CC measures on air, soil and water quality indicators by quantifying the effects
  of these measures on parameters affecting N and GHG fluxes and erosion, as calculated with MITERRA
  Europe and the DNDC and EPIC meta models against the baseline of the year 2005.
- Provide the models to be incorporated in the final CCAT tool (WP5). This will be the combination of the
  extended MITERRA Europe model, the meta model for erosion and the other mentioned meta models in
  terms regression functions between inputs and outputs.

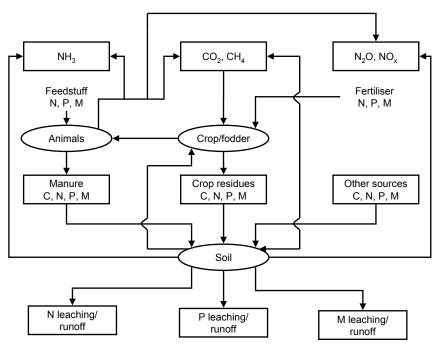
A compilation of the cost of the measures is also needed. With the CAPRI model (see also Chapter 5) an estimation of the costs could be made related to regional specific changes in farming practices and from this the most likely changes in animal numbers and crop areas can be derived that influence the environmental effects. The baseline against which the effects of CC measures are evaluated is the year 2005 CC measures are only related to the implementation of GAECs while the effects of SMRs are not part of CC as they are

based on already existing Directives (no additional compliance since 2005). This aspect is further discussed in Chapter 5.


#### 3.2 Modelling tools

#### MITERRA Europe

The modelling tool that we intend to expand and use at the continental (EU) level is an integrated simple model entitled MITERRA Europe. Where needed, information of CAPRI will be included. Furthermore, the scale of application may in the future change from NUTS2 level (resolution used in MITERRA) to so-called Homogeneous Soil mapping Units (HSMUs), as used in an overall modelling framework entitled INTEGRATOR, in which MITERRA Europe is the agricultural sub-model. This framework also includes the interaction between agriculture and nature by emission-deposition relationships.


*Model description:* MITERRA-Europe is a simple, integrated model (including parameters and data) developed by Alterra in 2006 under a contract from EU Directorate-General Environment and available and operational since March 2007 (Velthof et al., 2007). It is a transparent and simple model to estimate quantitatively the effectiveness of mitigation options and strategies for NH<sub>3</sub> and non-CO<sub>2</sub> greenhouse gas emissions (N<sub>2</sub>O and CH<sub>4</sub>) and N (specifically NO<sub>3</sub>) leaching in agriculture. The model is builds upon data and calculation rules of existing models. The scope and range is EU25 plus Romania and Bulgaria. As with the CAPRI model, MITERRA Europe is programmed in GAMS. This contributes to the flexibility of the tool to be used in CCAT in cooperation with CAPRI. It consists of an input module with activity data and emission factors, a set of (packages of) measures to mitigate NH<sub>3</sub> emission and NO<sub>3</sub> leaching, a calculation module, and an output module presenting results in tables and maps.

*Model extension:* The fluxes to be considered with the extended MITERRA Europe tool are summarized in Figure 2 and Table 3. The expansions are inclusion of the carbon balance, metal balance, including metal leaching and phosphorous leaching. The idea is to include these aspects in MITERRA Europe on the basis of formulations in the INITIATOR2 model developed for the Netherlands. More information on INITIATOR2 is given below.



#### Figure 1

Approach to predict air, soil and water quality indicators with the aid of extended MITERRA Europe model and the meta models of DNDC and EPIC (the DNDC meta model will only predict  $N_2O$  emissions but not  $NH_3$  and  $CH_4$ ).



#### Figure 2

Fluxes considered with the extended MITERRA Europe tool.

The expansions are inclusion of the carbon balance, metal balance, including metal leaching and phosphorous leaching. The idea is to include these aspects in MITERRA Europe on the basis of formulations in the INITIATOR2 model developed for the Netherlands. More information on INITIATOR2 is given below.

#### Table 3

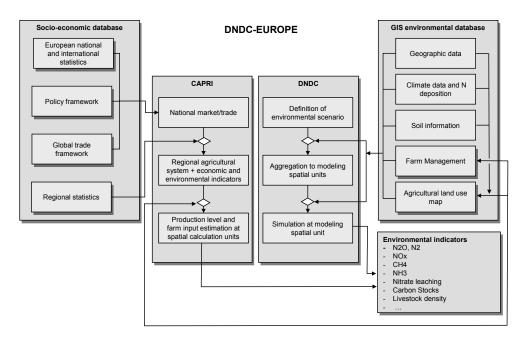
A summary of the fluxes considered in MITERRA Europe in its original and extended form.

| Compartment | Indicator                 | MITERRA Europe<br>Original | MITERRA Europe<br>extended |
|-------------|---------------------------|----------------------------|----------------------------|
| Air         | NH <sub>3</sub> emission  | Х                          | Х                          |
|             | N <sub>2</sub> O emission | Х                          | Х                          |
|             | CH₄ emission              | Х                          | Х                          |
| Soil        | Carbon balance            | -                          | X1                         |
|             | Phosphorous balance       | Х                          | Х                          |
|             | Metal balance             | -                          | Х                          |
| Water       | Nitrogen balance          | Х                          | Х                          |
|             | Nitrogen leaching         | Х                          | Х                          |
|             | Nitrogen runoff           | Х                          | Х                          |
|             | Phosphorous leaching      | -                          | (X) <sup>2</sup>           |
|             | Metal leaching            | -                          | (X) <sup>2</sup>           |

<sup>1</sup> The focus will be on a change in C input due to changes in use of animal manure and in crop residues, assuming no change in C release.

<sup>2</sup> The X in brackets for phosphorous and metals implies that it is not yet sure whether this will be predicted, since the data availability for doing this is limited.

The INITIATOR2 model, which stands for Integrated Nutrient ImpacT Assessment Tool On a Regional scale (De Vries et al., 2005b) is developed as an integrated model to gain insight in all environmental impacts of excessive manure application simultaneously. INITIATOR2 is an extension of the model INITIATOR (Integrated NITrogen Impact Assessment Tool On a Regional scale) that was developed to: (i) gain insight in the fate of all major nitrogen flows in the Netherlands (De Vries et al., 2003), (ii) calculate 'regional specific nitrogen ceilings' (maximum amounts of reactive nitrogen that does not lead to exceedance of critical limits or targets) (De Vries et al., 2001b) and (iii) assess the impacts of improved farming practices and technical measures such as changes in animal housing on nitrogen fluxes in the Netherlands (De Vries et al., 2001a).


Apart from all N fluxes, INITIATOR2 also includes the emissions of all CO<sub>2</sub> and non-CO<sub>2</sub> greenhouse gases, fine particles and odour and the accumulation, runoff and leaching of phosphate, base cations and heavy metals (De Vries et al., 2005b). For carbon a modelling approach comparable to the CESAR model is used (Vleeshouwers and Verhagen, 2002). This is a carbon balance model that considers C flows at field level and allows evaluation of changes in farm management and differences in effects at regional level for the whole EU. The policy aim of INITIATOR2 is to provide information on the effectiveness of specific (single target oriented) policies on the simultaneous reduction of relevant element fluxes (greenhouse gases, nutrients and heavy metals) to atmosphere, ground water and surface water. INITIATOR2 has been applied in the Netherlands to demonstrate: (i) the evaluation of mitigation measures and policies on ammonia and greenhouse gas emissions and on phosphorous and metal leaching (De Vries et al., 2005b, 2006) and (ii) the use of the model to improve the national IPCC based assessments of soil emissions of nitrous oxide (De Vries et al., 2005a). Furthermore, INITIATOR2 was applied at a landscape scale to make an integrated assessment of present farm management on atmospheric emissions, leaching and runoff of ammonia, greenhouse gases and nutrients (De Vries et al., 2007). The model formulations to be used in MITERRA Europe should be such that it can evaluate the changes

in farming measures coming from implementation of CC as these measures may be different from the measures related to management changes already evaluated with the INITIATOR2 model.

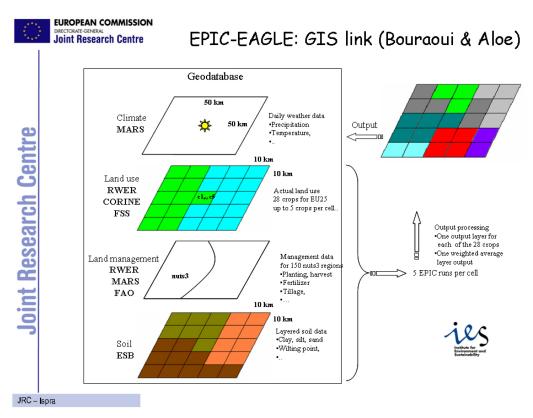
#### The DNDC model

Model description: The Denitrification-Decomposition (DNDC) model (Li et al., 1992; Li, 2000; Li et al., 2004; Li et al., 2006) is a process-oriented mechanistic detailed simulation model of soil carbon and nitrogen biogeochemistry. It is originally developed for use at the field level and further developed for the use at regional scale. DNDC is a multi-ecosystem model designed for assessing the emissions of N<sub>2</sub>O, CH<sub>4</sub>, and NH<sub>3</sub> from the soil into the atmosphere and the stock changes of organic carbon in the soil profile on the basis of mechanistic process-understanding. The model consists of two components. The first component, consisting of the soil climate, crop growth and decomposition sub-models, predicts soil temperature, moisture, pH, redox potential and substrate concentration profiles driven by ecological drivers (e.g., climate, soil, vegetation and farm management). The second component uses the information on the soil environment to calculate the major processes involved in the exchange of greenhouse gases with the atmosphere, i.e., nitrification, denitrification and fermentation. It consists of the nitrification, denitrification and fermentation sub-models and predicts greenhouse gas emissions from the soil ( $CO_2$ ,  $N_2O$ ,  $CH_4$ ), the dynamics in soil carbon pools and  $NH_3$ fluxes based on the modelled soil environmental factors. The model thus is able to track production, consumption and emission of carbon and nitrogen oxides, ammonia, and methane. The model has been tested against numerous field data sets of nitrous oxide (N<sub>2</sub>O) emissions and soil carbon dynamics (Li et al., 2005). DNDC has also been widely used also for regional modelling studies, under other in the United States of America (e. g., Tonitto et al., 2007), China (Xu-Ri et al., 2003; Li et al., 2006), India (Pathak et al., 2005), and Europe (e. g., Brown et al., 2002; Butterbach-Bahl et al., 2004; Neufeldt et al., 2006; Sleutel et al., 2006).

*Model extension:* DNDC will be further developed within the integrated project NitroEurope (started in February 2006) and the data base for application for EU will be compiled. The linkage with the livestock sector will be done using the CAPRI model, within which the representation of NH<sub>3</sub>, N<sub>2</sub>O and CH<sub>4</sub> emissions have been updated / implemented in the EU CAPRI-*DynaSpat* project. In the CAPRI-*DynaSpat* project a link was further established between DNDC and CAPRI in order to better assess the environmental impact of agriculture considering both socio-economic and environmental factors. The modelling framework of the combined CAPRI-DNDC modelling framework is schematically shown in Figure 3.






It includes the generation of (i) agricultural land use maps at the level of so-called homogeneous soil mapping units (HSMUs) for 29 different crops for CAPRI *ex post* or *ex ante* calculations; (ii) the estimation of farm management (in terms of nitrogen application rates) at the HSMU-level; (iii) the definition of environmental scenarios and the set-up of DNDC model runs; and (iv) finally the integration of the results into a common database.

Further improvements are needed regarding the parameterization of measures in DNDC. Improvements will also be necessary for example in the representation of different nitrogen application techniques or tillage systems. If required, the combined CAPRI-DNDC model will be further improved to better represent farm type specific fluxes of pollutants and farm-internal flows of material (leading to pollutant-swapping effects).

#### The EPIC model

*Model description:* The EPIC model was originally focused on the effect of soil erosion on productivity and EPIC was originally named as the Erosion Productivity-Impact Calculator. However, since the model expanded, it is nowadays also known as the Environmental Policy Integrated Climate model (see EPIC website: <a href="http://www.brc.tamus.edu/epic/">http://www.brc.tamus.edu/epic/</a>). EPIC is now an integrated field scale crop-soil model especially well-suited to evaluate crop growth, irrigation requirements (including an option for auto-irrigation), nutrient uptake and cycling and erosion. It is composed of several simulation components for weather, hydrology, nutrient cycling, pesticide fate, tillage, crop growth, soil erosion, crop and soil management and economics (Williams, 1995). It predicts the effects of management decisions on soil, water, nutrient and pesticide movements and their combined impact on soil loss, water quality and crop yields for areas with homogeneous soils and management. EPIC has been thoroughly evaluated and applied from local to continental scale (Gassman et al., 2005). Typical applications including the effect of N and P losses as affected by different tillage systems, crop rotation and fertiliser application, etc. The model had been used to assess crop yield as affected by various farming practices and climate change scenarios.

As with DNDC, EPIC is a mechanistic detailed model, specifically developed for use at the field level. However, much efforts have been made to apply the model also on a regional scale. At the RWER unit of JRC the EPIC-EAGLE interface has been developed, an integrated ARC-GIS front-end to run EPIC (see Bouraoui and Aloe, 2007). EAGLE is short for the European Agrochemicals Geospatial Loss Estimator with most of the parameters required to run EPIC readily available at EU level (Mulligan et al., 2006). A graphic presentation of the GIS link between EPIC and needed databases on climate, land use, land management and soil is given in Figure 4.



#### Figure 4

Graphic presentation of the EPIC-EAGLE GIS link.

*Model use:* The approach chosen here consists of the translating the EPIC modelling results in a metamodelling framework for the specific indicators required. The metamodel approach will provide flexibility to perform repeated policy scenarios without having to rerun the complete model. Metamodels can be thought of as statistical summary functions of generated model output. The metamodeling approach in combination with EPIC has been used before to address agricultural policy issues (see Lakshminarayan et al., 1996). However, the current implementation of EPIC-EAGLE will need also to be calibrated for different parameters. As a first step, the EPIC model will be calibrated on, for example, measured crop yields. Modelled erosion will be harder to 'validate' and here the number of previous studies indicating a good capacity of the model to present erosion and crop yields at the field scale provides a certain degree of confidence in the model output (Wang et al., 2006). After calibration or 'verification' of certain model outputs, the EPIC model will be executed using the EPIC-EAGLE interface at pan-European scale using the current 10 by 10 km grid-cell setup.

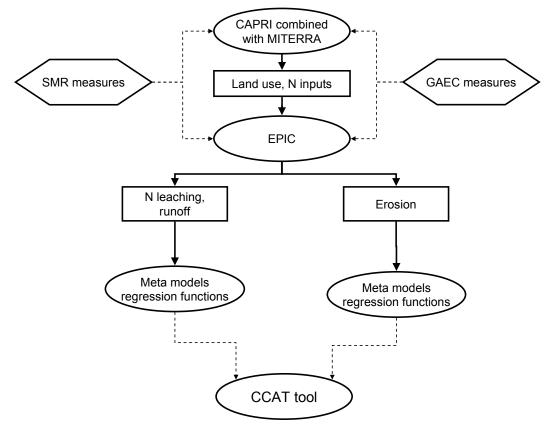
The EPIC output may then be aggregated to the desired regional (NUTS 2) or HSMU level and regression functions will be used to define metamodel relations. For example, if we are interested in erosion, based on

the simulation data, we can specify erosion as a function of a selection of management factors; soil; and topographic properties and climate properties. The metamodel will allow us to get a reasonable confidence in the response of crop yields or erosion to management, landscape and meteorological variables without having to rerun the EPIC model.

#### 3.3 Use of meta models of EPIC and DNDC in CCAT

Meta-modelling involves selecting a statistical approximation of detailed model results to reduce the running time and memory consumption of detailed models, often considered as a black-box by no expert users.

#### The approach used for the meta-models of EPIC


EPIC predicts N leaching, N runoff and Erosion, using regression meta-models or look up tables as described in Van der Velde et al. (2009). The focus of the EPIC model is on: (i) erosion, because EPIC is the only model that can predict this physical soil quality indicator, and (ii) N leaching/runoff, since the model is also best suited for the calculation of crop uptake and thus for the prediction of N balances and leaching. Actually, EPIC also predicts long-term soil compaction due to natural processes, but not the compaction in response to heavy machinery, being the relevant aspect with respect to cross compliance. Furthermore, it predicts pesticide leaching, but only at a plot scale and application of this model on a European scale is not possible (see before).

The approach to predict these outputs is to apply the EPIC model for many combinations of land use, soil type and climate and derive a meta model from the results for inclusion in the CCAT tool as illustrated in Figure 5. With respect to erosion, crop-specific meta-model functions for erosion with and without cross compliance are derived. The evaluations focus on the GAEC issue 'minimal level of maintenance' in particular 'green cover', and the GAEC issue 'soil erosion' specifically the 'depth of ploughing'. In particular, the following steps are carried out to apply the detailed EPIC model for erosion:

- We derive response functions that describe erosion under different crops.
- For CC measures that affect EPIC (related GAEC Minimal level of maintenance: green cover, GAEC Soil
  erosion: depth of ploughing) we derived two functions for erosion under a certain crop, one with and one
  without the CC measures.
- Dependent on the crop shares projected by MITERRA/CAPRI, and the implementation of GAECs these meta models will then be used to quantify erosion.

The following steps were carried out to apply the detailed EPIC model for the N balance, N leaching and N runoff:

- EPIC currently determines fertilizer use from plant nutrient requirements and not from actual national fertilizer rates. It EPIC is run with the so-called automatic fertilizer option; in other words plant nutrient stress is not occurring. This will be adapted in view of actual fertilizer rate estimates; alternatively N leaching (the nutrient focus of EPIC) can only be assessed relatively. EPIC will use independent (CAPRI MITERRA based) fertilizer amounts to derive the N leaching and runoff meta-models
- From the pool of model results a meta-model (statistical model) is derived that includes the major driving factors explaining the majority of the variability of the model results. The information of this meta-model will be included in the analytical tool. The meta model for N leaching/runoff will be derived including the measures.



#### Figure 5

Approach to assess impacts of CC measures on soil erosion and N leaching/runoff by applying EPIC and deriving meta models for inclusion in the CCAT tool.

The measures affecting N leaching/runoff are mainly related to the N directive and these measures are first evaluated by CAPRI (in combination with MITERRA: see Chapter 5) to give changes in land use and N inputs which then will be used in the meta models to assess N leaching/runoff. For the GAECS, related to both N runoff/leaching and soil erosion, we assume that a measure is directly an input for the model without intervention of CAPRI (see Figure 5). The predictors used in the various regression models are given in Table 4. With respect to the type of meta-models that have been derived from EPIC model simulations, a distinction is made between EPIC model outputs that can be simulated using CAPRI-MITERRA outputs as predictor values and those that cannot be evaluated based on such outputs.

#### Table 4

| Predictor                                                   | N leaching | N runoff | Erosion |
|-------------------------------------------------------------|------------|----------|---------|
| Fertiliser N use (kg ha <sup>-1</sup> )                     | х          | х        |         |
| Slope (degrees)                                             |            | х        | Х       |
| Organic matter content of the topsoil (0-30 cm) (%)         | Х          |          |         |
| annual precipitation (mm yr <sup>1</sup> )                  | х          | х        | Х       |
| annual percolation (mm yr <sup>1</sup> )                    | Х          |          |         |
| Mean maximum temperature (°C)                               | х          |          |         |
| Maximum soil moisture content of the topsoil(-)             | х          |          |         |
| Soil hydraulic conductivity of the top soil (mm $hr^{-1}$ ) | x          | x        | х       |

Predictors used in the EPIC meta-models for N leaching, N runoff and erosion.

For EPIC outputs that are dependent on N fertiliser use rates, CAPRI-MITERRA estimates of these rates can subsequently be used as input in EPIC meta-models. This holds for nitrate leaching and organic nitrogen in solid particles transported with runoff for which regression relations have been derived using fertiliser use and other environmental characteristics, such as slope and average rainfall as input (see Table 4). Regression models for these outputs are applied for all SMRs involving a change in N input.

Erosion, however, is not related to N input and can thus not be related to CAPRI-MITERRA outputs, while it is an important EPIC result in relation to cover cropping and no-till practices (GAEC issues). For these practices specific look-up tables have been derived from EPIC simulations for selected crops. More specifically look-up tables operating at NUTS2 level have been derived for all measures that cannot be evaluated with CAPRI-MITERRA, i.e. for (i) Erosion for all GAEC measures (no till and cover crop) and (ii) N runoff and N leaching for the GAEC measure no-till (although no till is evaluated by CAPRI-MITERRA, it does not lead to a change in N input). The EPIC runs included a comparison of:

Cover crop or no cover crop:

- E1 Baseline run with no cover crop for irrigated and non-irrigated maize.
- E2 As E1 with clover as a cover/N fixing crop.

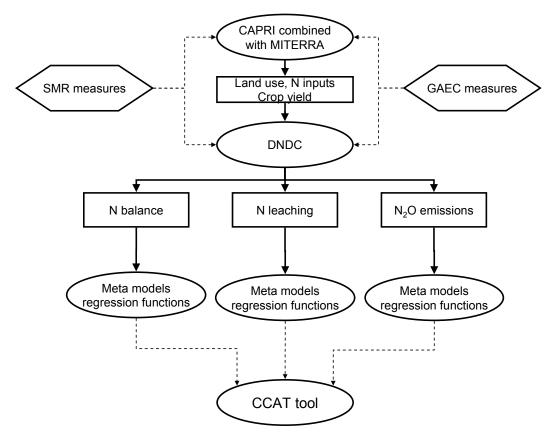
Tillage or no tillage:

- E3 Baseline run with conventional till practices in barley.
- E4 As E3 but with no-till practices.

From the model calculations with the runs E1-E4, the percentage change associated with a change in agricultural practices (tillage versus no tillage and cover crop versus no cover crop) at NUTS2 level was averaged for the three main model outputs, i.e. erosion, N runoff and N leaching. These numbers can than directly be implemented to generate output in the CAPRI-MITERRA platform.

In summary, the approach for the use of EPIC meta-models is such that (see Van der Velde et al., 2009):

- SMRs in the Nitrate Directive that imply a change in the N input by N fertilizer + N manure, as simulated by CAPRI-MITERRA, will directly be evaluated by Multiple linear regressions based on EPIC simulations for N leaching and N runoff. Results of MITERRA for these outputs can be compared to those by EPIC, but the latter results are limited to maize and barley.
- GAEC measures in terms of inclusion of a cover crop or zero tillage is implemented through the use of the look-tables in terms of a percentage change compared to base line, and these results are superimposed on the MITERRA output (in case of N leaching and N runoff) or directly as a change independent of MITERRA output (erosion).


#### The approach used for the meta-models of DNDC-EU

Among the large number of DNDC outputs, we derived meta-model for selected CCAT environmental indicators, i.e. N surplus (defined as soil N input - net N removal),  $N_2O$  emission and N leaching (Figure 6). We run the meta-models to estimate the indicators according to a random forest approach, being a certain statistical approximation. More details on this approach are given in Follador and Leip (2009).

At the beginning the simulations through Europe-DNDC have been carried out at HSMU level. Afterward we had to upscale to CCAT-NUTS level to integrate our meta-model into the final platform. The aggregation of HSMU values have been carried out by means of a weighted area algorithm taking into account both the input and output data on the whole NUTS agricultural land covered by the studied crops.

In this contribution we only present the results for corn and barley crops. To reduce the time and memory consumption, also considering the number of scenarios (7) and the length of the period (1990-99) to simulate, we decided to select a representative sample subset among the entire EU25 agricultural lands. More details about the DNDC-EU meta-model to be included in the CAPRI-MITERRA simulation platform is provided in Follador and Leip (2009). The DNDC meta-models predict N surplus, N leaching and N<sub>2</sub>O emissions using a

range of predictors as shown in Table 5. A description of SMRs and GAECs evaluated by the DNDC metamodels is given in Table 6.



#### Figure 6

Approach to assess impacts of CC measures on  $N_2O$  emissions, N balance and N leaching by applying DNDC and deriving a meta models for inclusion in the CCAT tool.

#### Table 5

Predictors used in the DNDC meta-models for N surplus, N leaching, and N<sub>2</sub>O emissions.

| Predictor                                                        | N surplus | N leaching | $N_2O$ emissions |
|------------------------------------------------------------------|-----------|------------|------------------|
| Annual N Fertilizer rate (kg ha <sup>-1</sup> yr <sup>-1</sup> ) | х         | х          | х                |
| N manure application rate (kg ha <sup>-1</sup> yr <sup>1</sup> ) | х         | Х          | х                |
| N deposition (kg ha <sup>-1</sup> yr <sup>1</sup> )              | х         | Х          | х                |
| N fixation (kg ha <sup>-1</sup> yr <sup>-1</sup> )               | Х         | Х          | Х                |
| N in residue (kg ha <sup>-1</sup> yr <sup>1</sup> )              | х         | Х          | х                |
| Soil Bulk density                                                |           | Х          | х                |
| Soil Organic Carbon in topsoil (-)                               |           | Х          | х                |
| Soil pH (-)                                                      | х         | Х          | х                |
| Soil clay content (-)                                            | Х         | Х          | Х                |
| Annual precipitation (mm yr <sup>-1</sup> )                      | Х         | Х          | х                |
| Mean maximum temperature (°C)                                    | х         | х          | х                |
| Mean minimum temperature (°C)                                    | х         | Х          | х                |

Table 6

| SMR  | Name                                | Description                                                                                                                                                                  | DNDC scenario and parameterisation                                                                                                            |
|------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| SMR2 | Maximum                             | The amount of applied N in manure and                                                                                                                                        | Comparison of                                                                                                                                 |
|      | manure N<br>application<br>standard | excreted during grazing may not<br>exceed 170 kg N per ha in a region.                                                                                                       | S1: Corn Reference Scenario1 with                                                                                                             |
|      |                                     | Excess manure is transported or                                                                                                                                              | S3: Corn Max Manure scenario <sup>2</sup>                                                                                                     |
|      |                                     | processed.                                                                                                                                                                   | Comparison of                                                                                                                                 |
|      |                                     |                                                                                                                                                                              | S5: Barley reference scenario <sup>1</sup> with                                                                                               |
| SMR8 | Growing winter<br>crops             | Growing catch crops will result in i) less<br>N leaching below rooting zone, ii) less<br>surface runoff, and iii) less requirement<br>of fertilizer N in the following year. | S7: Barley max manure scenario <sup>2</sup><br>Comparison of<br>S1: Corn Reference Scenario with<br>S4: Corn Catch crop scenario <sup>3</sup> |
| GAEC | Name                                | Standards                                                                                                                                                                    | DNDC scenario and parameterisation                                                                                                            |
| GM3  | Minimum                             | Vegetative cover between agricultural                                                                                                                                        | Comparison of                                                                                                                                 |
|      | coverage-                           | crops, which is then ploughed into the                                                                                                                                       | S1: Corn Reference Scenario with                                                                                                              |
|      |                                     | soil, also termed as catch crops, green manure and winter crops.                                                                                                             | S4: Corn Catch crop scenario <sup>3</sup>                                                                                                     |
|      |                                     | manure and winter crops.                                                                                                                                                     | Actually equal to SMR8.                                                                                                                       |
| GM4  | Tillage method                      | Zero tillage.                                                                                                                                                                | Comparison of                                                                                                                                 |
|      |                                     |                                                                                                                                                                              | S1: Corn Reference Scenario with                                                                                                              |
|      |                                     |                                                                                                                                                                              | S2: Corn No tillage Scenario <sup>4</sup>                                                                                                     |
|      |                                     |                                                                                                                                                                              | Comparison of                                                                                                                                 |
|      |                                     |                                                                                                                                                                              | S5: Barley reference scenario with                                                                                                            |
|      |                                     |                                                                                                                                                                              | S6: Barley No tillage scenario <sup>4</sup> .                                                                                                 |

<sup>1</sup> The baseline scenario includes only a corn or barley monoculture, with one tillage application and a tillage depth of 20cm

<sup>2</sup> This scenario limits the N in manure spreading to 170 kg N/ha yr<sup>1</sup> (with few exceptions), compared to the reference scenario. <sup>3</sup> Catch crops scenario includes two cycles of corn-catch crop system which lasts five years (two years of corn + three years of alfalfa). Corn like baseline, alfalfa without tillage and fertilizer application.

4 The no tillage scenario differs from the reference scenario because of the absence of tillage.

#### 3.4 Model input data

The environmental effect indicators calculated with MITERRA Europe, EPIC and/or DNDC focus on balances (inputs, net uptake by crops and leaching) of C, N, P and metals, including atmospheric emissions of N compounds ( $NH_3$  and  $N_2O$ ) and of  $CH_4$ . An overview of major input data in relation to the use of the various models is given in Table 7. In view of these calculations, all models require at least the annual inputs of one or more of these elements by fertilizers, animal manure and biosolids (sewage sludge, compost etc.). It thus implies that we always need to know the application rates and types of fertilizers (nitrogen, phosphate, potassium etc.), animal manure (cows, pig, poultry etc.) and biosolids (sewage sludge, compost etc.) to assess the annual inputs of C, N, P and metals.

Furthermore, information is needed on inputs by atmospheric deposition and  $N_2$  fixation in case of N. Element outputs always include net crop removal, being the product of harvested crop yield and element contents in the harvested crop, and leaching from the root zone being the product of water flux and element concentration in the water.

Table 7

| Indicator                      | Needed inputs                                           | Unit                      | Models involved |
|--------------------------------|---------------------------------------------------------|---------------------------|-----------------|
| General for all                | Application rates and types of                          |                           |                 |
| balances                       | - fertilizers                                           | kg /ha/yr                 | MITERRA Europe  |
|                                | - animal manure                                         | ton/ha/yr                 | DNDC            |
|                                | - biosolids                                             | ton/ha/yr                 | EPIC            |
|                                | Yields of harvested crops                               | ton/ha/yr                 |                 |
| Nitrogen balance               | N2 fixation                                             | kg N/ha/yr                | MITERRA Europe  |
|                                | Atmospheric N deposition                                | kg N/ha/yr                | DNDC            |
|                                | N contents in fertilizers, animal manure, biosolids and | mg N⁄kg                   | EPIC            |
|                                | crops                                                   |                           |                 |
| $NH_3$ emission                | NH <sub>3</sub> emission factors/parameters             | Depends on model          | MITERRA Europe  |
|                                |                                                         | (e.g. % of N excreted)    |                 |
| N <sub>2</sub> O emission      | N <sub>2</sub> O emission factors/parameters            | Depends on model          | MITERRA Europe  |
|                                |                                                         | (e.g. % of N excreted)    | DNDC            |
| Nitrogen leaching <sup>1</sup> | N leaching fraction                                     | Depends on model          | MITERRA Europe  |
|                                |                                                         | (e.g. % of N applied)     | DNDC            |
|                                |                                                         |                           | EPIC            |
| Nitrogen runoff <sup>2</sup>   | N runoff fraction                                       | Depends on model          | MITERRA Europe  |
|                                |                                                         | (e.g. % of N applied)     | EPIC            |
| Carbon balance                 | C/N ratios in animal manure and biosolids (sewage       | -                         | MITERRA Europe  |
|                                | sludge, compost etc)                                    |                           |                 |
| CH <sub>4</sub> emission       | CH <sub>4</sub> emission factors per animal category    | kg CH <sub>4</sub> /ha/yr | MITERRA Europe  |
| Phosphorous                    | Atmospheric P deposition                                | kg P/ha/yr                | MITERRA Europe  |
| balance                        | P contents in fertilizers, animal manure, biosolids and | mg P/kg                   |                 |
|                                | crops                                                   |                           |                 |
| Phosphorous                    | P adsorption parameters                                 | Depends on model          | MITERRA Europe  |
| leaching <sup>1</sup>          |                                                         |                           | (possibly)      |
| Metal balance                  | Atmospheric Cd, Cu, Pb and Zn deposition                | g/ha/yr                   | MITERRA Europe  |
|                                | Cd, Cu, Pb and Zn contents in fertilizers, animal       | mg/kg                     |                 |
|                                | manure, biosolids and crops                             |                           |                 |
| Metal leaching                 | Metal adsorption parameters                             | Depends on model          | MITERRA Europe  |
|                                |                                                         |                           | (possibly)      |
|                                |                                                         |                           |                 |

Major input data needed by MITERRA Europe (extended), and the meta models of DNDC and EPIC.

## 4 Cross compliance measures to be analysed with the environmental modelling tools

## 4.1 Relevant Statutory Management Requirements and Good Agricultural and Environmental Conditions

#### **Statutory Management Requirements (SMRs)**

In total nineteen legislative acts, called Statutory Management Requirements (SMRs), have been established that apply directly at the farm level in the fields of environment, public, animal and plant health and animal welfare and farmers are sanctioned in case of non-compliance. In principle the SMRs are uniform for all Member States and should be implemented in national and regional legislation in a similar way. However, in practice there is still a large difference in the way these are translated in national and regional requirements and standards. An overview of the SMR requirements is given in Annex III of the CCAT report on the Deliverables 2.1 and 2.2 (Jongeneel et al., 2007a). In this context, the following directives are relevant for environment (see also Annex 1 of Jongeneel et al., 2007a):

- Nitrate Directive: Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources (OJ L 375, 31.12.1991, p. 1).
- Sewage Sludge Directive: Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture (OJ L 181, 4.7.1986, p. 6).
- Council Directive 80/68/EEC of 17 December 1979 on the protection of groundwater against pollution caused by certain dangerous substances (OJ L 20, 26.1.1980, p. 43). Articles 4 and 5.
- Habitat directive: Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild flora and fauna (OJ L 206, 22.7.1992 p. 7) Articles 6, 13, 15 and 22(b).

Measures in the Habitat directive cannot be evaluated with the set of available models, since thy all focus on agricultural soils. A summarized overview of the Cross Compliance requirements to be met by the farmer in the other three directives are given Table 8. Details of all the measures defined in these three directives and the possibility to evaluate them with the set of available models is further elaborated in Chapter 4.2 and related annexes.

#### Good Agricultural and Environmental Conditions (GAECs)

In the context of cross compliance, there is specifically the need for compliance with the requirements to maintain land in Good Agricultural and Environmental Condition (GAEC). A summarized overview of the GAECs to be met by the farmer, to warrant appropriate soil protection (prevent soil erosion, avoid loss of soil organic matter and protect soil structure), ensure a minimum level of maintenance of land and avoid the deterioration of habitats, that will be evaluated by the CCAT environmental impact tool (specifically EPIC and DNDC) is given in Table 9. In the context of CCAT, the effects of SMRs will thus not be evaluated as effects of CC. Using the baseline year 2005, we will assume that SMRs are already complied with. It will only be done as an evaluation of the impacts of complying versus not complying with the environmental directives implied in the SMRs.

#### Table 8

The Cross Compliance requirements according to the Statutory Management Requirements (SMRs) in EC directives included in the CCAT tool for environmental impacts.

| EC Directive / Regulation                                                                                                                                                                                                                                                                                                                                                                                                                          | What will be the Cross Compliance requirements to be met by the farmer and included in the CCAT tool?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Council Directive 91/676/EEC of 12<br>December 1991 concerning the protection of<br>waters against pollution caused by <b>nitrates</b><br>from agricultural sources (OJ L 375,<br>31.12.1991, p. 1) Articles 4 and 5.                                                                                                                                                                                                                              | Farmers with land in NVZs should comply with the mandatory measures contained<br>in the Nitrate Directive, i.e. limits to the application of Nitrogen in animal manure,<br>special measures for the storage, application methods and timing of fertilizer and<br>animal manure.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Council Directive 86/278/EEC of 12 June<br>1986 on the protection of the environment,<br>and in particular of the soil, when <b>sewage</b><br><b>sludge</b> is used in agriculture (OJ L 181,<br>4.7.1986, p. 6), Article 3.<br>Council Directive 80/68/EEC of 17<br>December 1979 on the <b>protection of</b><br><b>groundwater</b> against pollution caused by<br>certain dangerous substances (OJ L 20,<br>26.1.1980, p. 43). Articles 4 and 5. | Use only of sludge treated in accordance with the Directive. Observation of specified harvesting intervals and other requirements to prevent contaminants (e.g. heavy metals) reaching the human food chain. Farmers in NVZs will be expected to record the use of sludge in their Fertilizer and Manure Plan and to observe the relevant closed period, as necessary.<br>The major consequence of this Directive is that farmers require authorization for disposal of spent sheep dip and pesticide washings to land. Where List I and List II substances are otherwise used, manufactured, stored or handled, farmers will be expected to comply with relevant legislation, codes of practice or other relevant good practice. |

#### Table 9

The Cross Compliance requirements according to the Good Agricultural and Environmental Conditions (GAECs) included in the CCAT tool for environmental impacts.

| What will be the Cross Compliance requirements to be met by the farmer and included in the CCAT tool? |
|-------------------------------------------------------------------------------------------------------|
| Minimum livestock stocking rates or/and appropriate regimes                                           |
| Protection of permanent pasture                                                                       |
| Protect soil through appropriate measures                                                             |
| Minimum soil cover                                                                                    |
| Minimum land management reflecting site-specific conditions                                           |
| Maintain soil organic matter levels through appropriate practices                                     |
| Standards for crop rotations where applicable                                                         |
| Arable stubble management                                                                             |
|                                                                                                       |

Since there is a large range in agricultural farming systems operating in very different climatic circumstances, a great deal of freedom has been left to Member States and regions to implement GAECs. Unlike the SMRs, Member States are allowed a great level of freedom in selecting the number of GAEC standards and determining how they should be implemented. As with the SMRs, not all measures defined in the GAECs can be evaluated with the set of available models. This aspect is further elaborated in Chapter 4.3.

#### **Cross compliance and SMRS and GAECs**

According to the commission, effects of CC can only be related to implementation of GAECs and of the obligation to maintain permanent grassland. SMR implementation cannot be related to CC, however, as these

are laws (Directives) that already existed before CC was implemented. CC policy only aims at increasing the compliance with these Directives.

#### 4.2 Selected environmental effect indicators for the Statutory Management Requirements and their modelling approach

The list of Statutory Management Requirements (SMRs) from the CIFAS database was used as presented in the excel sheet 'abf\_smr\_overview.xls'. Regarding environmental impacts we first evaluated the expected environmental impacts of SMRs in the groundwater protection directive, sewage sludge directive and nitrate directive, while distinguishing in the likelihood of an impact (yes, no or possible). The results are given in Annex

- 1. Based on this results, an overview was made of:
- selected measures in SMRs;
- the effect indicators that will be calculated in view of the measures;
- the models included in doing such a calculation;
- the way in which the measures will be evaluated by the MITERRA Europe model.

The result is presented in Annex 2. It are measures that can be parameterized and evaluated with MITERRA Europe, DNDC and/or EPIC. The number of measures was reduced by the following procedure:

- Remove all measures that are basically the same, but e.g. differs in technique (e.g. appropriate fertilization on sloping sites in Austria: Slot sowing, Cross ditches with plant cover; Cross-strip sowing and Slot sowing is considered as one measure).
- Indicate whether a measure can potentially be evaluated with the models MITERRA Europe, EPIC or DNDC.
- Select all measures that are potentially suitable for implementation and briefly describe who this can be achieved.

## 4.3 Selected environmental effect indicators for the Good Agricultural and Environmental Conditions and their modelling approach

The list of Good Agricultural and Environmental Conditions (GAECs) from the CIFAS database was used as presented in the excel sheet 'abf\_gaec\_overview.xls'. Regarding environmental impacts we evaluated the expected environmental impacts of the GAECs for minimum level of maintenance, soil erosion, soil organic matter and soil structure and while distinguishing in the likelihood of an impact (yes, no or possible). The results are given in Annex 3. Based on this review, an overview was made of:

- selected measures in GAECs;
- the effect of the indicators that will be calculated in view of the measures;
- the models included in doing such a calculation;
- the way in which the measures will be evaluated by these models.

The results are presented in Annex 4. These are measures that in principle can be parameterized and evaluated with MITERRA Europe, DNDC and/or EPIC. The number of measures were grouped by the following procedure:

- Measures that potentially can be evaluated with the models MITERRA Europe, EPIC or DNDC were indicated.
- All measures that are potentially suitable for implementation and that are similar in their intended effect were grouped.

#### 4.4 Selected environmental effect indicators

Differences in the first prototype and the final CCAT tool are related to the spatial resolution in the EU wide assessments and the impacts fields considered in relation to the various SMRs and GAECs considered. Regarding the spatial resolution, the model is applied at NUTS2 level. Other impacts, such as market & producer income (M), calculated by CAPRI or impacts on land use, landscape and biodiversity are presented in Deliverable 2.3 (Jongeneel et al., 2007b). Insight in the models used in the CCAT tool (in the prototype, MITERRA Europe is used only) and the results that they will give in view of measures in SMRs and GAECs is given in Table 10. Finally, information on the type of results predicted by each model in the prototype and the final CCAT tool is presented in Table 11 . The explanation of the letters A, S and W is given in Table 10. In general: (i) A or air quality stands for  $NH_3$ ,  $N_2O$  and  $CH_4$  emission in case of MITERRA and for  $N_2O$  emission in case of EPIC and (iii) W stands for N balances and N leaching/runoff for all models.

#### Table 10

Environmental impacts fields in relation to SMRs and GAECs as evaluated by MITERRA, EPIC and DNDC in final CCAT tool.

| SMRs and GAECs                                                                          | Assessments by models in final CCAT tool |                |                |                   |
|-----------------------------------------------------------------------------------------|------------------------------------------|----------------|----------------|-------------------|
|                                                                                         | MITERRA                                  | EPIC           | DNDC           | All models        |
| Nitrates Directive                                                                      | ASW                                      | W              | AW             | ASW               |
| Sewage Sludge Directive                                                                 | S(W) <sup>1</sup>                        | -              | -              | S(W) <sup>1</sup> |
| Groundwater Directive                                                                   | S(W) <sup>1</sup>                        | -              | -              | S(W) <sup>1</sup> |
| Soil erosion-minimum coverage                                                           | -                                        | S              | -              | S                 |
| Soil erosion-minimum land management                                                    | -                                        | S              | -              | S                 |
| Soil erosion-retain terraces                                                            | -                                        | S              | -              | S                 |
| Soil organic matter-standards for crop rotation                                         | SW <sup>2</sup>                          | S <sup>2</sup> | $W^2$          | SW <sup>2</sup>   |
| Soil organic matter- stubble management                                                 | SW <sup>2</sup>                          | S <sup>2</sup> | W <sup>2</sup> | SW <sup>2</sup>   |
| Minimum level of maintenance-minimum livestock stocking density and appropriate regimes | SW <sup>2</sup>                          | S <sup>2</sup> | $W^2$          | SW <sup>2</sup>   |
| Minimum level of maintenance-Protection of permanent grassland                          | SW <sup>2</sup>                          | S <sup>2</sup> | $W^2$          | SW <sup>2</sup>   |

A=air and climate (atmospheric emissions); S=soil quality (carbon, phosphorous and metal balances, erosion); W=water quality (nitrogen balance, leaching and runoff).

<sup>1</sup>S stands for phosphorous and metal balances and W for their leaching when this will be predicted.

 $^{\rm 2}$  S stands for carbon balance (MITERRA) or erosion (EPIC) and W for N balances (all models).

| Compart-ment     | Indicator                 | Unit                         | Prototype 1    | Relevant for SMRs/<br>Directives        | Relevant for GAECs                                |
|------------------|---------------------------|------------------------------|----------------|-----------------------------------------|---------------------------------------------------|
| Air/ climate (A) | NH <sub>3</sub> emission  | kg NH₃-N∕ ha∕yr              | MITERRA Europe | Nitrates                                | -                                                 |
| ,                | N <sub>2</sub> O emission | kg N <sub>2</sub> O-N/ ha/yr | MITERRA Europe | Nitrates                                | -                                                 |
|                  | CH₄ emission              | kg CH₄/ ha/yr                | MITERRA Europe | Nitrates                                | -                                                 |
| Soil (S)         | Erosion                   | m <sup>3</sup> soil/ ha/yr   | -              |                                         | Minimum level of maintenance Soi<br>erosion       |
|                  | Carbon balance            | kg C/ha/yr                   | MITERRA Europe | Nitrates, Sewage<br>Sludge              | Minimum level of maintenance So<br>organic matter |
|                  | Phosphorous<br>balance    | kg P/ha/yr                   | MITERRA Europe | Nitrates, Sewage<br>Sludge              | -                                                 |
|                  | Metal balance             | g/ha/yr                      | -              | Nitrates, Sewage<br>Sludge Ground water | -                                                 |
| Water (W)        | Nitrogen balance          | kg N/ha/yr                   | MITERRA Europe | Nitrates, Sewage<br>Sludge              | Minimum level of maintenance So<br>organic matter |
|                  | Nitrogen leaching         | kg N/ha/yr                   | MITERRA Europe | Nitrates                                | _2                                                |
|                  | Nitrogen runoff           | kg N/ha/yr                   | MITERRA Europe | Nitrates                                | _2                                                |
|                  | Phosphorous<br>leaching   | kg P/ha/yr                   | -              | Nitrates                                | -                                                 |
|                  | Metal leaching            | g/ha/yr                      | -              | Nitrates Sewage<br>Sludge Ground water  |                                                   |

 Table 11

 Indicators predicted by the extended MITERRA Europe, DNDC and EPIC meta models used in CCAT.

<sup>1</sup>The brackets for phosphorous and metals implies that it is not yet sure whether this will be predicted.

<sup>2</sup> In principle, changes in runoff and leaching can be predicted with EPIC but are expected very small.

### 5 Integrated evaluation of measures in the nitrate directive with CAPRI-MITERRA

### 5.1 Introduction

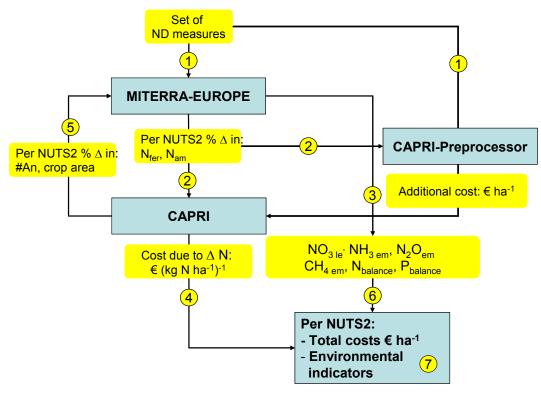
In the prototype, the included SMRs are limited to the Nitrate Directive (ND), that are only evaluated with the MITERRA Europe model in interaction with the CAPRI model. Furthermore, the evaluation will take place at NUTS2 level. This limitation allows a quick start for the first prototype, specifically because the measures are already intensively discussed with the Commission in the context of the EU service contract related to the development and application of MITERRA Europe. In the final version, the impact of measures in the 'Sewage Sludge Directive' and the 'Groundwater Directive' will also be included. Furthermore, several additional measures in the GAECS will be evaluated and again at a much higher spatial detail (HSMUs instead of NUTS2 level), as discussed in the previous section.

Below, we first describe the approach of the evaluation of measures in the Nitrate Directive with a combination of CAPRI and MITERRA Europe (Chapter 5.2) and we then describe how we will assign the selected measures in the 'Nitrates Directive' to one of the eight implemented measures within MITERRA Europe (Chapter 5.3).

# 5.2 Interactive approach between MITERRA Europe and CAPRI within the prototype

#### **General approach**

A schematic overview of the interaction between MITERRA Europe and CAPRI within the CCAT prototype is presented in Figure 7. The CAPRI model in combination with MITERRA predicts: (i) cost of the measures, (ii) the likely changes in animal numbers and (iii) the change in crop shares, whereas MITERRA in combination with CAPRI predicts the emissions of  $NH_3$  and  $N_2O$  and the leaching of N. The interaction between the models is explained below, with the numbers refer to those occurring in the figure.


#### 1. Measures and their parameterization

A set of measures related to the Nitrate Directive (ND) is defined, i.e. which measures are implemented and at which degree of implementation (see number 1 in Figure 7). These measures need to be parameterized by both MITERRA Europe and CAPRI.

The implementation implies that measures are assigned to the NUTS2 regions for which they are applicable and they are parameterized in terms of changes of model parameters and/or model inputs. The degree of implementation implies the fraction of the area of a NUTS2 region for which the measure is applicable.

*Parameterization of measures.* Measures must be parameterized in MITERRA-Europe in terms of changes in N excretion rates, emission fractions from housing systems and land applications etc. The selected measures in the 'Nitrate directive' with MITERRA Europe and their clustering to eight predefined overall measures is given in Annex 2. In the Annex, the almost final column relates to the MITERRA Europe measure, numbered from 1 - 8. These measures are given in

Table 13. By the combination of Annex 2 and Table 12, the various measures in the 'Nitrate directive' are evaluated. For their parameterization, we refer to Velthof et al. (2007).



*Figure 7 Schematic presentation of the interaction between MITERRA Europe and CAPRI.* 

Furthermore measures must be parameterized in CAPRI terms of cost. Here a distinction will be made in fixed costs (e.g. the investment for a manure storage) and variable costs (e.g. cost related with the grown of cover crops). For the fixed costs the yearly burden will be calculated (taking into account costs of capital, depreciation, etc.). Estimates will also be made for the costs of the measures that are not included in the CAPRI model (e.g. the costs for building new manure storage). These will be further determined in the CAPRI-Pre-Processor to be developed (see point 3 *CAPRI-Pre-processor calculations*).

*Base years.* The measures are mainly based on the current parameterization in MITERRA Europe for the years 2000, 2010, and 2020. In the test case the year 2000 will be used as the reference year, because this is already present in MITERRA Europe and the year 2020 as object year. CAPRI actually uses 2002 as base year and 2013 as projection year. For the test case this inconsistency will be neglected. In the future we envisage moving the base year to 2005. The projection year can be any year between base year and 2020. The projection tool incorporated in CAPRI is quite demanding and hence 'harmonized' projection years will be part of Prototype1.

#### 2. MITERRA Europe calculations on changes in fertilizer and manure use

Based on the selected scenario and degree of implementation, the changes in fertilizer use and manure use in %-change as compared to the reference year will be derived for all NUTS 2 regions and disaggregated at specific activity levels (see

Table 13). These results will be used in the CAPRI-Pre-processor, as they influence additional cost, and in the core CAPRI simulation tool, as they affect the changes in animal numbers and land use (crop areas). Furthermore, it will be used in the CAPRI model to predict changes in N fertilizer use and N manure use according to this model, which is used by DNDC and EPIC in the final CCAT tool (but not in the prototype) to assess impacts on N balances, N leaching and N runoff with these models (see numbers 2 in Figure 7). In the final CCAT tool the potential impact of CC-related measures on yields will also be taken into account, where CAPRI will use the yield corrections as provided by MITERRA Europe (and background models like DNDC and EPIC).

| Table  | 12 |
|--------|----|
| 1 4010 |    |

| ND | Name                                                           | Description                                                                                                                                                                                                                 | Parameterisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Balanced N<br>fertilizer<br>application                        | The amounts of applied N fertilizer<br>and manure applied are tuned to<br>the crop N demand, while taking<br>into account the contributions from<br>atmospheric deposition,<br>mineralisation and biological N<br>fixation. | N fertilizer is decreased with the difference between total<br>supply of plant-available N (fertilizer + manure + grazing +<br>N-fixation + N deposition + mineralisation) and N-demand ((N<br>in harvested crop + N in crop residues) * uptake factor) until<br>a minimum fertilizer application rate. When balanced N<br>fertilization is still not accomplished the application rate of<br>manure N is reduced and excess manure is processed and<br>removed from agriculture. |
| 2  | Maximum manure<br>N application<br>standard                    | The amount of applied N in manure<br>and excreted during grazing may<br>not exceed 170 kg N per ha in a<br>region. Excess manure is<br>transported or processed.                                                            | When manure N exceeds 170 kg N per ha, excess manure is divided over NUTS2 regions in the specific country. When there is still an excess the remaining manure is processed and removed from agriculture. However, some derogation to the limit of 170 kg N per ha apply (see Velthof et al., 2007).                                                                                                                                                                              |
| 3  | Limitation to N<br>application in<br>winter and wet<br>periods | If manure is applied during the<br>growing season in stead of the<br>winter, the availability and<br>effectiveness of manure N for crops<br>increases.                                                                      | Reduction of N fertilizer with the amount of N from winter<br>manure, assuming that 25% of the manure is applied in winter<br>and that 50% of the N from this manure is plant-available<br>when applied in spring.                                                                                                                                                                                                                                                                |
| 4  | Limitation to N<br>application on<br>sloping grounds           | The amounts of applied fertilizer<br>and manure N are decreased on<br>sloping land.                                                                                                                                         | N fertilizer and manure is reduced by 50% for steep slopes, 25% for intermediate slopes, 5% for slight slopes, and no reduction for flat areas.                                                                                                                                                                                                                                                                                                                                   |
| 5  | Manure storage<br>with minimum risk<br>on leaching             | Manure and slurry storages without<br>concrete floor and cover are<br>converted into storages with<br>concrete floor and with cover.                                                                                        | All liquid manure storages are assumed to have concrete<br>floors, 50% of solid manure storages without concrete floor<br>are converted to storages with concrete floor and 50% of<br>solid manure storages without cover are converted into<br>storages with cover.                                                                                                                                                                                                              |
| 6  | Appropriate<br>application<br>techniques                       | This measure leads to a higher<br>efficiency of applied N and less<br>leaching.                                                                                                                                             | The leaching fraction is reduced by 10%.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7  | Buffer zones                                                   | Buffer zones are unfertilized zones<br>near water courses, which<br>decrease leaching and surface<br>runoff of N to surface water.                                                                                          | In buffer zones (assumed width of 100 m) the leaching and surface runoff fractions are reduced by 50%.                                                                                                                                                                                                                                                                                                                                                                            |
| 8  | Growing winter<br>crops                                        | Growing catch crops will result in i)<br>less N leaching below rooting zone,<br>ii) less surface runoff, and iii) less<br>requirement of fertilizer N in the<br>following year.                                             | Measure can be applied in 15-25% of the agricultural area,<br>leaching and surface runoff fractions are reduced by 25%,<br>and fertilizer N application is reduced with 10-25 kg N for<br>regions where N surplus > 100 kg N per ha.                                                                                                                                                                                                                                              |

Description of the nitrate directive measures in MITERRA-Europe.

 Table 13

 Changes calculated by MITERRA Europe

| NUTS 2 region | Change in N fertilizer use (%) | Change in manure N use (%) |  |
|---------------|--------------------------------|----------------------------|--|
| A1            |                                |                            |  |
| A2            |                                |                            |  |
| B1            |                                |                            |  |
| Etc.          |                                |                            |  |

#### 3. CAPRI-Pre-processor calculations on additional cost

The CAPRI-Pre-processor calculates all the additional costs related to the applied Nitrate Directive measures and the changes in N input, as calculated by MITERRA Europe. More specifically, the CAPRI-Pre-Processor will calculate total additional cost per activity and region, taking into account the degree of implementation and compliance of all relevant measures. The CAPRI scenario is specified only by this additional cost per activity and region. Input/output coefficients and behavioural parameters remain unchanged in the prototype focusing on the nitrate directive. Elements that are included in the calculations are:

- variable costs: e.g. costs associated with manure transportation and spreading.
- fixed costs: e.g. the amortized costs associated with investment in additional storage capacity and manure handling, treatment or spreading equipment.

The effective percentage cost increases will depend on the degree of compliance assumed in the specific scenario evaluated. As describe before, both MITERRA Europe and the CAPRI-Pre-processor will use the same (consistent) assumptions with respect to base year or reference level of compliance and scenario specific (finally achieved) level of compliance.

#### 4 and 5. CAPRI calculations on changes in animal numbers land cover and variable costs

The change (decrease) in manure application as derived with MITERRA Europe will be translated (scaled) to CAPRI to assess the N fertilizer and N manure use in this model. The details of this linkage are given below. This will influence the manure distribution and the relation of mineral fertilizer and manure for all crops in CAPRI and will be used to assess the need for manure treatment<sup>1</sup>. Given the percentage additional cost increases as estimated in the CAPRI pre-processor, CAPRI calculates the economic effects and changes in agricultural structure, i.e. (see number 4 and 5 in Figure 7, respectively):

- Change in animal numbers, distributed over the various animal categories.
- Change in land cover, both in crop type and crop areas.

In addition CAPRI also calculates the corresponding variable costs (see number 5 in Figure 7). The changes in animal numbers and crop areas in % compared to the reference year are given to MITERRA Europe, as shown in Table 14.

<sup>&</sup>lt;sup>1</sup> The amount of N fertilizer and the N availability from manure in CAPRI are influenced by behavioural parameters in the model which will not be adjusted for the prototype. More work on this field, i.e. translating e.g. manure treatment in shifts of behavioural parameters, will be done for the final CCAT tool.

#### Table 14

Example of table presenting the changes in animal numbers and crop areas in % compared to the reference year calculated by CAPRI and given to MITERRA Europe.

| NUTS 2<br>region | Change ir | Change in animal number per animal type, in % |   |   |   | Chang | Change in crop area per crop type, in % |   |   |   |   |
|------------------|-----------|-----------------------------------------------|---|---|---|-------|-----------------------------------------|---|---|---|---|
|                  | 1         | 2                                             | 3 | 4 | 5 | 1     | 2                                       | 3 | 4 | 5 | 6 |
| A1               |           |                                               |   |   |   |       |                                         |   |   |   |   |
| A2               |           |                                               |   |   |   |       |                                         |   |   |   |   |
| АЗ               |           |                                               |   |   |   |       |                                         |   |   |   |   |
| B1               |           |                                               |   |   |   |       |                                         |   |   |   |   |
| Etc.             |           |                                               |   |   |   |       |                                         |   |   |   |   |

#### 6 and 7 MITERRA-Europe calculations on changes in N fluxes and final results

Using the updated changes in animal numbers and land cover as calculated by CAPRI, MITERRA-Europe calculates the various outputs, including N fluxes ( $NH_3$  and  $N_2O$  emissions and nitrate leaching/runoff in kg N per ha agricultural land,  $CH_4$  emissions, N and P balances (see number 6 in Figure 7). The final result of the scenario is for each NUTS 2 region these model outputs and the additional costs in Euro per ha or head (see number 7 in Figure 7).

#### Linkage between MITERRA and CAPRI

The interaction between MITERRA and CAPRI within the CCAT prototype is driven by: (i the relative changes in amount of animal manure as calculated by MITERRA:  $N_{am}$  (M) and (ii) the relative changes in amount of fertilizer as calculated by MITERRA:  $N_{fe}$  (M). Rather than absolute values, relative changes as calculated by MITERRA are used to establish the linkage between the two models. This procedure is chosen because of its simplicity and to avoid difficulties due to different parameterization of both models which may lead to differences in absolute values. Within CCAT we will use the economic results from CAPRI and the environmental results from MITERRA. Consequently, this inconsistency will not be visible by the results. Nevertheless, the extent of this inconsistency and the effect of this on the presented outputs must be quantified.

#### The CAPRI method

In CAPRI the amount of available N for nutrient uptake for a NUTS2 region,  $N_{av}(C)$ , is calculated as:

$$N_{av}(C) = \sum_{ac} (f_{Nex}(C,ac) \cdot n(ac)) \cdot f_{Nav}(C) + (N_{fe}(C) + N_{fix}(C) + N_{dep}(C)) \cdot A$$

$$\tag{1}$$

where:

| N <sub>av</sub> (C)     | = CAPRI N availability for crop production (kg N Nuts <sup>-1</sup> )            |
|-------------------------|----------------------------------------------------------------------------------|
| f <sub>Nex</sub> (C,ac) | = CAPRI N excretion per animal per animal category ac (kg N head <sup>-1</sup> ) |
| n <sub>(ac)</sub>       | = CAPRI number of animals per animal category ac (head Nuts <sup>-1</sup> )      |
| f <sub>Nav</sub> (C)    | = CAPRI N availability factor for crop uptake (-)                                |
| N <sub>fe</sub> (C)     | = CAPRI N fertilizer gift (kg N ha <sup>.1</sup> )                               |
| N <sub>fix</sub> (C)    | = CAPRI N fixation (kg N ha <sup>-1</sup> )                                      |
| N <sub>dep</sub> (C)    | = CAPRI N deposition (kg N ha <sup>-1</sup> )                                    |
| Α                       | = Area of a NUTS2 region (ha Nuts <sup>-1</sup> )                                |

The demand by crops for a NUTS2 region,  $N_{dem}(C)$ , is calculated as:

$$N_{dem}(C) = \sum_{ct} \left( N_{up}(C, ct) \cdot A(ct) \right) \cdot f_{of}(C)$$
(2)

| where:                 |                                                                    |
|------------------------|--------------------------------------------------------------------|
| N <sub>dem</sub> (C)   | = CAPRI N demand for crop production (kg N Nuts <sup>-1</sup> )    |
| N <sub>up</sub> (C,ct) | = CAPRI N uptake of crop per crop type ct (kg N ha <sup>-1</sup> ) |
| A(ct)                  | = Area of crop ct within a NUTS (ha)                               |
| f <sub>oc</sub> (C)    | = Over fertilization factor (-)                                    |
|                        |                                                                    |

Within CAPRI the amount of fertilizer ( $N_{fe}(C)$ ) is solved by stating:

$$N_{dem}(C) = N_{av}(C)$$
(3)

This may lead to different fertilizer amounts compared to MITERRA.

#### The linkage with MITERRA

Within the CCAT analytical tool we will use the relative changes in animal manure application ( $N_{am}$  (M)) and fertilizer use ( $N_{fe}$  (M)) from MITERRA as input for the optimization and the cost calculations in CAPRI. The amount of excretion in CAPRI for a NUTS region is adjusted as:

$$N_{\text{am,scen}}^{M}(C) = N_{\text{am,ref}}^{M}(C) \cdot \frac{N_{\text{am,scen}}(M)}{N_{\text{am,ref}}(M)}$$
(4)

With

$$N_{am,ref}^{M}(C) = \sum_{ac} (f_{Nex}(C) \cdot n(ac)) - N_{em,h}(C)$$
(5)

where:

| $N_{ex}^{M}(C)$          | = | MITERRA results adjusted excreted amount in CAPRI (kg N Nuts <sup>-1</sup> )                                                                       |
|--------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------|
| N <sub>am,scen</sub> (M) | = | the amount of animal manure applied in a NUTS region as calculated by MITERRA for a specific scenario (set of measures) (kg N Nuts <sup>-1</sup> ) |
| $N_{\text{am,ref}}(M)$   | = | Amount of animal manure applied in a NUTS region as calculated by MITERRA for the base year (kg N Nuts <sup>-1</sup> )                             |

An important reason for using the relative changes from MITERRA in CAPRI is that CAPRI is using slaughtered number of animals, whereas MITERRA is using real animal numbers. Furthermore, CAPRI is using its own excretions rates which may differ from those of MITERRA. Both aspects may cause serious differences and thus the pragmatic solution of transferring relative changes was chosen for the prototype. For the final version the transfers of absolute numbers might be considered.

The amount of fertilizer use in CAPRI in a NUTS region is adjusted as:

$$N_{fe}^{M}(C) = N_{fe}(C) \cdot \frac{N_{fe,scen}(M)}{N_{fe,ref}(M)}$$
(6)

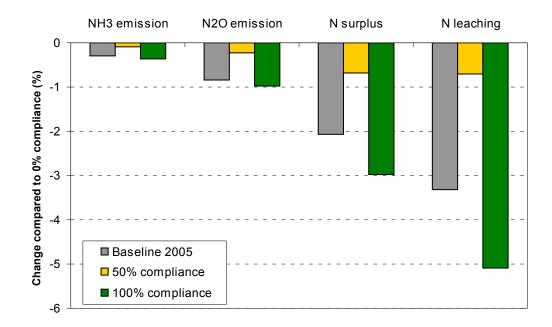
where:

- N<sub>fe,scen</sub> (M) = N fertilizer gift applied in a NUTS region as calculated by MITERRA for a specific scenario (set of measures) (kg N Nuts<sup>-1</sup>)
- $N_{fe, ref}(M) = N$  fertilizer gift applied in a NUTS region as calculated by MITERRA for the base year (kg N Nuts<sup>-1</sup>)

Next Eq. (4) is substituted in Eq. (1) and Eq. 5 in Eq. (2). Subsequently, Eq. (3) is solved while keeping  $N_{fe}(C)$  fixed to the reference value and  $f_{of}$  (C) variable. This guarantees that CAPRI does alter the ratio animal manure to fertilizer in the same way as it was calculated by MITERRA.

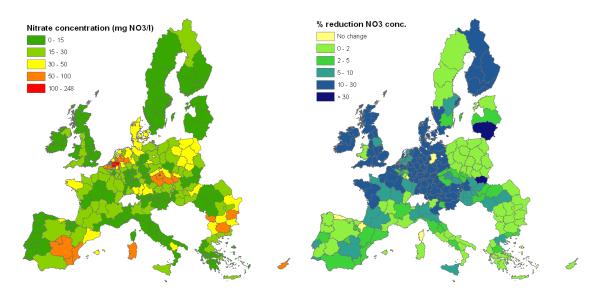
### 5.3 Summary of main results

In this prototype of the CCAT tool the impacts of the Nitrate Directive on the environmental indicators were assessed. There were six compliance scenarios included in the CCAT tool for which the environmental indicators were calculated:


- Baseline compliance in 2005 (differs per Nuts 2 region)
- 50% gap closure (halve way between 2005 baseline and 100% compliance)
- 0% compliance
- 50% compliance
- 75% compliance
- 100% compliance

In the figures below some first results of the impact assessment for the Nitrate Directive are shown. Figure 8 presents the change in  $NH_3$  emission,  $N_2O$  emission, N surplus and N leaching for the EU27 for the different compliance scenarios compared to zero compliance. The largest decrease occurs for N leaching, for which the Nitrate Directive is intended. However, the figure also shows that the Nitrate Directive has positive influences on other emissions and the N surplus, mainly because of a decrease of the N input. For the 2005 baseline compliance the N leaching is about 3.2% lower, but with full compliance it could be up to 5%.

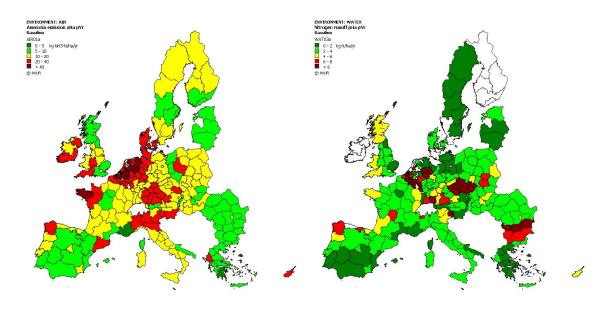
In Figure 9 the spatial distribution of the nitrate concentration in groundwater is given for the 2005 baseline. In several regions with intensive livestock, e.g. The Netherlands, the health limit of 50 mg NO<sub>3</sub>/I, as set by the WHO, is exceeded. Also some regions in southern Europe with low precipitation surpluses have NO<sub>3</sub> concentrations that are too high. The other map of Figure 9 shows the relative decrease in NO<sub>3</sub> concentration compared to zero compliance.


Besides the  $NO_3$  concentration in groundwater also the spatial distribution of the other environmental indicators is included in the CCAT tool. In Figure 10 the  $NH_3$  emission and the N lost by surface runoff are shown as example. Livestock intensive regions (the Netherlands, Bretagne, Northern Italy) have the highest  $NH_3$  emission, while N lost by surface runoff is more related with the environmental conditions.

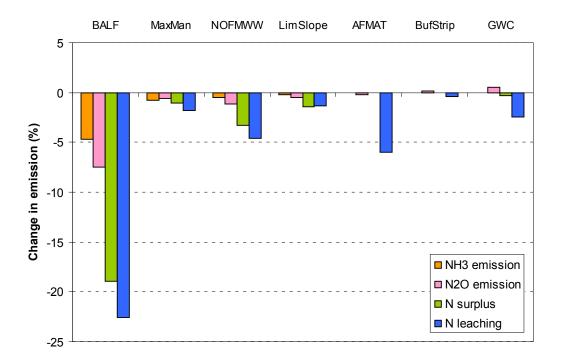
Besides the complete package of measures for the Nitrate Directive (except balanced fertilization), we also assessed the impact of individual measures on the environmental indicators.



#### Figure 8


Change in NH<sub>3</sub> emission, N<sub>2</sub>O emission, N surplus and N leaching compared to zero compliance for the EU27.




#### Figure 9

Nitrate concentration in groundwater for the NUTS2 regions in Europe (left) and the reduction of the  $NO_3$  concentration due to the Nitrate Directive compared to zero compliance (right).

Figure 11 shows the results of the individual measures assuming full compliance for the EU27. Balanced fertilization, i.e. tuning the amounts of applied N fertilizer and manure to the crop N demand, is by far the measure with the highest reduction in emissions, N surplus and N leaching. Appropriate application techniques, e.g. split applications, and limitation of fertilizer application in winter and wet periods are also effective measures to decrease N leaching.



*Figure 10 NH*<sub>3</sub> *emission (left) and N lost by surface runoff (right) per NUTS2 region.* 



#### Figure 11

Impact of individual measures for full compliance on the environmental indicators (BALF=Balanced N fertilization, MaxMan=Maximum manure application, NOFMWW=Limitation of fertilizer application in winter and wet periods, LimSlope=Limitation of fertilizer application on sloping grounds, AFMAT= Appropriate application techniques, BufStrip=Buffer zones, GWC=Growing winter crops).

### Literature

Agra CEAS Consulting Ltd., 2003. *Accession of Central and Eastern European Countries to the EU and its impact on land use and the environment.* Wye. Final report for the Royal Society for the Protection of Birds.

Boatman, N., C. Stoate, R. Gooch, C.R. Carvalho, R. Borralho, G. de Snoo and P. Eden, 1999. *The environmental impact of arable crop production in the European Union. Practical options for improvement.* Allerton Research and Educational trust. EC-study contract B4-3040/98/000703/MAR/D1.

Bouraoui, F. and A. Aloe, 2007. *European Agrochemicals Geospatial Loss Estimator: Model Development and Applications*. European Commission, Directorate-General Joint Research Centre, Institute for Environment and Sustainability.

Brown, L., B. Syed, S.C. Jarvis, R.W. Sneath, R.L. Phillips, K.W.T. Goulding and C. Li, 2002. *Development and application of a mechanistic model to estimate emission of nitrous oixde from UK agriculture.* Atmos. Environ. 36 (6), 917-928.

Butterbach-Bahl, K., M. Kesik, P. Miehle, H. Papen and C. Li, 2004. *Quantifying the regional source strength of N-trace gases across agricultural and forest ecosystems with process based models.* Plant Soil 260 (1-2), 311-329.

Carey, P., 2007. *A review of research into the environmental impacts of arable cropping systems for biofuels and crops used for biomass. Background report to the study.* In: Elbersen, B., et al. (Ed). Large-scale biomass production and agricultural land use - potential effects on farmland habitats and related biodiversity. Technical report. (Contract EEA/EAS/03/004, expected, July 2007).

De Vries, W., J. Kros and O. Oenema, 2001a. *Modeled impacts of farming practices and structural agricultural changes on nitrogen fluxes in the Netherlands.* The Scientific World 1 (12-S2), 664-672.

De Vries, W., J. Kros, O. Oenema and J.W. Erisman, 2001b. *Assessment of nitrogen ceilings for Dutch agricultural soils to avoid adverse environmental impacts.* The Scientific World 1 (12-S2), 898-907.

De Vries, W., J. Kros, O. Oenema and J. de Klein, 2003. *Uncertainties in the fate of nitrogen II: A quantitative assessment of the uncertainties in major nitrogen fluxes in the Netherlands*. Nutr. Cycl. Agroecosyst. 66 (1), 71-102.

De Vries, W., J. Kros, P.J. Kuikman, G.L. Velthof, J.C.H. Voogd, H.J.J. Wieggers, K. Butterbach-Bahl, H.A.C. Denier Van Der Gon and A.R. van Amstel, 2005a. *Use of measurements and models to improve the national IPCC based assessments of soil emissions of nitrous oxide*. Env. Sci. 2 (2-3), 217-233.

De Vries, W., J. Kros and G. Velthof, 2005b. *Integrated evaluation of agricultural management on environmental quality with a decision support system.* In: Zhu, Z., K. Minami & G. Xing (eds). 3rd International Nitrogen Conference, October 12-16, 2004. Nanjing. China, Science Press, pp. 859-870.

De Vries, W., J. Kros and G. Velthof, 2006. *Integrated evaluation of impacts of a transition in agricultural management on environmental quality.* In: Van den Burg, S., R. van der Ham and J. Grin (eds). Proceedings SWOME/KSI Marktdag 2006: Beleid in transities. pp. 94-102.

De Vries, W., J. Kros, G. Velthof, E. Gies, J.C. Voogd, A. Bleeker, J. Schröder and M. Sonneveld, 2007. *Integrated assessment of atmospheric emissions, leaching and runoff of ammonia, greenhouse gases and nutrients at a landscape level.* In: Monteny, G.J. & E. Hartung (Eds). Ammonia emissions in agriculture. Wageningen Academic Publishers, The Netherlands, pp. 251-253.

EEA, 1999. *Environment in the European Union at the turn of the century.* Copenhagen, EEA. Environmental assessment report No 2.

EEA, 2004. *Agriculture and the environment in the EU accession countries.* Copenhagen, EEA. Environmental issue report No 37.

EEA, 2005. Agriculture and environment in EU-15-the IRENA indicator report. EEA Report, no. 6/2005.

Follador, M. and A. Leip, 2009. *Derivation of DNDC meta-models to evaluate the impact of cross compliance measures on nitrogen N surplus, N leaching and*  $N_2O$  *emissions at EU25 scale.* CCAT Deliverable (report) 4.2.3.1.

Gassman, P.W., J.R. Williams, V.W. Benson, R.C. Izaurralde, L. Hauck, C.A. Jones, J.D. Atwood, J. Kiniry and J.D. Flowers, 2005. *Historical development and applications of the EPIC and APEX models.* Center for Agricultural and Rural Development Iowa State University. Working Paper 05-WP 397.

Jongeneel, R., B. Elbersen, W. de Vries, J.R. Klein-Lankhorst, J. Schramek, B. Rudloff, T. Heckelei, M. Kempen, D. Annen, M. van der Velde, A. Leip, M. Redman, M. Mikk, J.J. Oñate and L. Slangen, 2007a. *CROSS-COMPLIANCE ASSESSMENT TOOL Policy-oriented research: General approach to the assessment of the impacts of CC in the EU and list of indicators EU Strep CCAT Deliverables 2.1 and 2.2.* 

Jongeneel, R., B. Elbersen, J.R. Klein-Lankhorst, W. de Vries, J. Kros, G. Velthof, M. Kempen, D. Annen, J.J. Oñate, M. van der Velde and A. Leip, 2007b. *CROSS-COMPLIANCE ASSESSMENT TOOL Policy-oriented research: Operationalisation of the first selection of indicators into impacts of Cross Compliance for the implementation in the first prototype of the analytical tool. EU Strep CCAT Deliverable 2.3.* 

Jørgensen, U. and K. Schelde, 2001. *Energy crop water and nutrient use efficiency.* Tjele (Denmark). Report for the International Energy Agency.

JRC, 2005. Soil Atlas. Ispra (Italy), Joint Research Center.

Lakshminarayan, P.G., W. Gassman, A. Bouzaher and R.C. Izaurralde, 1996. *A metamodeling approach to evaluate agricultural policy impact on soil degradation in Western Canada.* Can. J. Agr. Econ. 44 (3), 277-294.

Li, C., S. Frolking and A. Frolking, 1992. *A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity.* J. Geophys. Res. 97 (D9), 9759-9776.

Li, C., 2000. *Modeling trace gas emissions from agricultural ecosystems.* Nutr. Cycl. Agroecosyst. 58 (1-3), 259-276.

Li, C., A. Mosier, R. Wassmann, Z. Cai, X. Zheng, Y. Huang, H. Tsuruta, J. Boonjawat and R. Lantin, 2004. *Modeling greenhouse gas emissions from rice-based production systems: Sensitivity and upscaling.* Global Biogeochem.I Cycles 18, GB1043.

Li, C., S. Frolking and K. Butterbach-Bahl, 2005. *Carbon Sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing.* Clim. Chang. 72 (3), 321-328.

Li, C., W. Salas, B. DeAngelo and S. Rose, 2006. *Assessing Alternatives for Mitigating Net Greenhouse Gas Emissions and Increasing Yields from Rice Production in China Over the Next Twenty Years.* J. Environ. Qual. 35 (4), 1554-1565.

Mulligan, D., F. Bouraoui, B. Grizzetti and A. Aloe, 2006. *An Atlas of pan-European data for investigating the fate of agrochemicals in terrestrial ecosystems.* DG JRC, Institute for Environment and Sustainability. EUR report 22334 EN.

Neufeldt, H., M. Schäfer, E. Angenendt, C. Li, M. Kaltschmitt and J. Zeddies, 2006. *Disaggregated greenhouse gas emission inventories from agriculture via a coupled economic-ecosystem model*. Agric. Ecosyst. Environ. 112 (2-3), 233-240.

Pathak, H., C. Li and R. Wassmann, 2005. *Greenhouse gas emissions from Indian rice fields: calibration and upscaling using the DNDC model.* Biogeosciences 2 (2), 113-123.

Petit, S., L. Maskell, S. Smart and S. Wright, 2004. *MIRABEL II-Models for predicting the impact of terrestrial eutrophication, farming intensification and land abandonment on Biodiversity in European landscapes.* Lancaster, CEH.

Sleutel, S., S. De Neve, D. Beheydt, C. Li and G. Hofman, 2006. *Regional simulation of long-term organic carbon stock changes in cropland soils using the DNDC model: 1. Large-scale model validation against a spatially explicit data set.* Soil Use and Man. 22 (4), 342-351.

Tonitto, C., M.B. David, C. Li and L.E. Drinkwater, 2007. *Application of the DNDC model to tile-drained Illinois agroecosystems: model comparison of conventional and diversified rotations.* Nutr. Cycl. Agroecosyst. 78 (1), 65-81.

Van der Velde, M., F. Bouraoui and W. de Vries, 2009. *Derivation of EPIC meta-models to evaluate the impact of cross compliance measures on leaching and runoff of nitrogen and soil erosion at European scale.* CCAT Deliverable (report) 4.2.3.2.

Velthof, G.L., D. Oudendag and O. Oenema, 2007. *Development and application of the integrated nitrogen model MITERRA-EUROPE. Task 1 Service contract 'Integrated measures in agriculture to reduce ammonia emissions'.* Wageningen, The Netherlands, Alterra. Alterra report 1663.1.

Vleeshouwers, L.M. and A. Verhagen, 2002. *Carbon emission and sequestration by agricultural land use: a model study for Europe.* Glob. Change Biol. 8 (6), 519-530.

Wang, X., R.D. Harmel, J.R. Williams and W.L. Harman, 2006. *Evaluation of EPIC for assessing crop yield, runoff, sediment and nutrient losses from watersheds with poultry litter fertilization.* Trans. ASABE 49 (1), 47-59.

Williams, J.R., 1995. *The EPIC model.* In: Singh, V.P. (Ed). Computer models of watershed hydrology. Highlands Ranch, CO, USA, Water Resources Publ., pp. 909-1000.

Xu-Ri, M. Wang and Y. Wang, 2003. *Using a modified DNDC model to estimate N<sub>2</sub>O fluxes from semi-arid grassland in China.* Soil Biol. Biochem. 35 (4), 615-620.

## Appendix 1 Expected environmental impacts of Statutory Management Requirements (SMRs) in the groundwater protection directive, sewage sludge directive and nitrate directive

| Directive                                                    | SMR                                                                                                                                                                                | Environmer              | ntal impacts             |                |             |         |                          |                          |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|----------------|-------------|---------|--------------------------|--------------------------|
|                                                              | Short name SMR                                                                                                                                                                     |                         |                          |                |             |         |                          |                          |
|                                                              |                                                                                                                                                                                    | Ground water<br>quality | Surface water<br>quality | Water quantity | Air quality | Climate | Physical soil<br>quality | Chemical soil<br>quality |
| Groundwater protection: Council<br>Directive 80/68/EEC of 17 | Groundwater - Authorisation - discharge of listed<br>substances                                                                                                                    | Х                       | 0                        |                |             |         |                          | Х                        |
| December 1979 on the                                         | Groundwater - Authorisation - sheep dip, pesticides                                                                                                                                | Х                       | 0                        |                |             |         |                          | Х                        |
| protection of groundwater                                    | Groundwater - Codes of practice                                                                                                                                                    | Х                       | 0                        |                |             |         |                          | Х                        |
| against pollution caused by                                  | Groundwater - Codes of practice - mineral oil                                                                                                                                      | Х                       | 0                        |                |             |         |                          | Х                        |
| certain dangerous substances                                 | Groundwater - codes of practice overflow pipes                                                                                                                                     | Х                       | 0                        |                |             |         |                          | Х                        |
| (OJ L 20, 26.1.1980, p. 43).                                 | Groundwater - codes of practice seepage drain<br>Groundwater - Discharge of listed substances<br>Groundwater - Discharge of waste water<br>Groundwater - Installations maintenance | Х                       | 0                        |                |             |         |                          | Х                        |
|                                                              | Groundwater - Mechanical cleaning of irrigation and<br>drainage networks                                                                                                           | Х                       | Х                        |                |             |         |                          | Х                        |
|                                                              | Groundwater - Plant protection                                                                                                                                                     | Х                       | 0                        |                |             |         |                          | Х                        |
|                                                              | Groundwater - Prohibited direct discharge                                                                                                                                          | Х                       | 0                        |                |             |         |                          | Х                        |
|                                                              | Groundwater - Prohibited direct discharge - on ground<br>and top of subsoil                                                                                                        | Х                       |                          |                |             |         |                          | Х                        |

51

| Directive                        | SMR                                                                                    | Environmer              | ital impacts             |                |             |         |                          |                          |
|----------------------------------|----------------------------------------------------------------------------------------|-------------------------|--------------------------|----------------|-------------|---------|--------------------------|--------------------------|
|                                  | Short name SMR                                                                         |                         |                          |                |             |         |                          |                          |
|                                  |                                                                                        | Ground water<br>quality | Surface water<br>quality | Water quantity | Air quality | Climate | Physical soil<br>quality | Chemical soil<br>quality |
|                                  | Groundwater - Prohibited direct discharge - ovine baths<br>and pesticides waste wash   | Х                       | 0                        |                |             |         |                          | Х                        |
|                                  | Groundwater - Prohibited direct discharge<br>phytosanitaries waste                     | Х                       | 0                        |                |             |         |                          | Х                        |
|                                  | Groundwater - Spraying instruments washing                                             | Х                       | 0                        |                |             |         |                          | Х                        |
| Nitrates Directive: Council      | Nitrates - application time                                                            | Х                       | Х                        |                | 0           | 0       |                          |                          |
| Directive 91/676/EEC of 12       | Nitrates - fertilization distance to waters                                            | Х                       | Х                        |                | 0           | 0       |                          |                          |
| December 1991 concerning the     | Nitrates - organic manure application rates                                            | Х                       | Х                        |                | Х           | Х       | 0                        |                          |
| protection of waters against     | Nitrates - Application requirements                                                    | Х                       | Х                        |                | Х           | 0       |                          |                          |
| ollution caused by nitrates from | Nitrates - Application restrictions                                                    | Х                       | Х                        |                | 0           | 0       |                          |                          |
| gricultural sources (OJ L 375,   | Nitrates - Application restrictions - after harvesting                                 | Х                       | Х                        |                | 0           | 0       |                          |                          |
| 31.12.1991, p. 1)                | Nitrates - Application time                                                            | Х                       | Х                        |                | 0           | 0       |                          |                          |
|                                  | Nitrates - Application time - farms in specific action<br>programme                    | Х                       | Х                        |                | 0           | 0       |                          |                          |
|                                  | Nitrates - Application time - liquid manure                                            | Х                       | Х                        |                | 0           | 0       |                          |                          |
|                                  | Nitrates - Application time - vulnerable zone                                          | Х                       | Х                        |                | 0           | 0       |                          |                          |
|                                  | Nitrates - Application to frozen, snow-covered, water-<br>saturated soil -             | Х                       | Х                        |                | 0           | 0       |                          |                          |
|                                  | Nitrates - Application to steep slopes -                                               | Х                       | Х                        |                | 0           | 0       |                          |                          |
|                                  | Nitrates - Application to steep slopes - liquid manure                                 | Х                       | Х                        |                | Х           | Х       |                          |                          |
|                                  | Nitrates - Application to steep slopes, frozen, snow-<br>covered, water-saturated soil | Х                       | Х                        |                | Х           | Х       |                          |                          |
|                                  | Nitrates - cleaning water -                                                            | Х                       | 0                        |                | 0           | 0       |                          |                          |
|                                  | Nitrates - direct application of slurry -<br>Nitrates - Farm records -                 | Х                       | 0                        |                | Х           | Х       |                          |                          |
|                                  | Nitrates - Farming - distance to waters                                                | Х                       | Х                        |                | 0           | 0       |                          |                          |
|                                  | Nitrates - Fertilization (mineral) in NSA                                              | Х                       | Х                        |                | 0           | 0       |                          |                          |
|                                  | Nitrates - Fertilization by inclination                                                | Х                       | Х                        |                | 0           | 0       |                          |                          |
|                                  | Nitrates - Fertilization distance to waters -                                          | Х                       | х                        |                | 0           | 0       |                          |                          |

| Directive | SMR                                                                                   | Environmer              | ntal impacts             |                |             |         |                          |                          |
|-----------|---------------------------------------------------------------------------------------|-------------------------|--------------------------|----------------|-------------|---------|--------------------------|--------------------------|
|           | Short name SMR                                                                        |                         |                          |                |             |         |                          |                          |
|           |                                                                                       | Ground water<br>quality | Surface water<br>quality | Water quantity | Air quality | Climate | Physical soil<br>quality | Chemical soil<br>quality |
|           | Nitrates - Fertilization distance to waters - liquid manure                           | Х                       | Х                        |                | Х           | Х       |                          |                          |
|           | Nitrates - Fertilization distance to waters - mineral fertilizers                     | Х                       | Х                        |                | 0           | 0       |                          |                          |
|           | Nitrates - Fertilization in NSA<br>Nitrates - Field record<br>Nitrates - Field record | Х                       | Х                        |                | 0           | 0       |                          |                          |
|           | Nitrates - land-use/cultivation requirements                                          | Х                       | 0                        |                | 0           | 0       |                          |                          |
|           | Nitrates - Maintenance of machinery -                                                 | 0                       | 0                        |                | 0           | 0       |                          |                          |
|           | Nitrates - Manure application time -                                                  | Х                       | Х                        |                | Х           | Х       |                          |                          |
|           | Nitrates - Manure application time - limits in autumn                                 | Х                       | Х                        |                | Х           | Х       |                          |                          |
|           | Nitrates - Manure stacks, shelters, outdoor yards -                                   | Х                       | Х                        |                | Х           | Х       |                          |                          |
|           | Nitrates - Manure storage facilities<br>Nitrates - Manure trading                     | Х                       | Х                        |                | Х           | Х       |                          |                          |
|           | Nitrates - maximum number of animals                                                  | Х                       | Х                        |                | Х           | Х       | 0                        |                          |
|           | Nitrates - Mineral P and N                                                            | Х                       | Х                        |                | 0           | 0       |                          | Х                        |
|           | Nitrates - N amount 170                                                               | Х                       | Х                        |                | 0           | 0       |                          |                          |
|           | Nitrates - N limits per hectare                                                       | Х                       | Х                        |                | Х           | Х       |                          |                          |
|           | Nitrates - N limits per hectare - crop and soil specific                              | Х                       | Х                        |                | 0           | 0       |                          |                          |
|           | Nitrates - N limits per hectare - crop rotation                                       | Х                       | Х                        |                | 0           | 0       |                          |                          |
|           | Nitrates - N limits per hectare - crop specific                                       | Х                       | Х                        |                | 0           | 0       |                          |                          |
|           | Nitrates - N limits per hectare - manure                                              | Х                       | Х                        |                | 0           | 0       |                          |                          |
|           | Nitrates - N limits per hectare - manure without grazing                              | Х                       | Х                        |                | Х           | Х       | 0                        |                          |
|           | Nitrates - N limits per hectare - organic fertilisers                                 | Х                       | Х                        |                | Х           | Х       |                          |                          |
|           | Nitrates - N limits per hectare - vulnerable zone                                     | Х                       | Х                        |                | 0           | 0       |                          |                          |
|           | Nitrates - New vulnerable zone - action plan                                          |                         |                          |                |             |         |                          |                          |
|           | Nitrates - outdoor areas -                                                            | Х                       | Х                        |                | Х           | Х       |                          |                          |
|           | Nitrates - outflows to water courses -<br>Nitrates - Planning and farm records -      | Х                       | Х                        |                | 0           | 0       |                          |                          |

| Directive | SMR                                                    | Environme               | ntal impacts             |                |             |         |                          |                          |
|-----------|--------------------------------------------------------|-------------------------|--------------------------|----------------|-------------|---------|--------------------------|--------------------------|
|           | Short name SMR                                         |                         |                          |                |             |         |                          |                          |
|           |                                                        | Ground water<br>quality | Surface water<br>quality | Water quantity | Air quality | Climate | Physical soil<br>quality | Chemical soil<br>quality |
|           | Nitrates - Planning and farm records - high N          |                         |                          |                |             |         |                          |                          |
|           | production                                             |                         |                          |                |             |         |                          |                          |
|           | Nitrates - Planning and farm records - manure          |                         |                          |                |             |         |                          |                          |
|           | Nitrates - Planning and farm records - N fertilisers   |                         |                          |                |             |         |                          |                          |
|           | Nitrates - Planning and farm records - pig breeding    |                         |                          |                |             |         |                          |                          |
|           | Nitrates - pluvial waters -                            | Х                       | Х                        |                |             |         |                          |                          |
|           | Nitrates - Preservation of flooded meadows -           | Х                       | Х                        |                |             |         |                          |                          |
|           | Nitrates - Preservation of humid zones                 | Х                       | Х                        |                |             |         |                          |                          |
|           | Nitrates - Reversal of the meadows                     | Х                       | Х                        |                |             |         |                          |                          |
|           | Nitrates - Spreading authorisation - slurry            |                         |                          |                |             |         |                          |                          |
|           | Nitrates - Spreading notification                      |                         |                          |                |             |         |                          |                          |
|           | Nitrates - Storage issues                              | Х                       | Х                        |                | Х           | Х       |                          |                          |
|           | Nitrates - Storage issues - avoiding leakage           | Х                       | Х                        |                | Х           | Х       |                          |                          |
|           | Nitrates - Storage issues - capacity                   | Х                       | Х                        |                | Х           | Х       |                          |                          |
|           | Nitrates - Storage issues - compost                    | Х                       | Х                        |                | Х           | Х       |                          |                          |
|           | Nitrates - Storage issues - effluent storing           | Х                       | Х                        |                | Х           | Х       |                          |                          |
|           | Nitrates - Storage issues - ensilage facilities, dung  | Х                       | Х                        |                | Х           | Х       |                          |                          |
|           | yards                                                  |                         |                          |                |             |         |                          |                          |
|           | Nitrates - Storage issues - liquid manure              | Х                       | Х                        |                | Х           | Х       |                          |                          |
|           | Nitrates - Storage issues - livestock holdings         | Х                       | Х                        |                | Х           | Х       |                          |                          |
|           | Nitrates - Storage issues - notification               |                         |                          |                |             |         |                          |                          |
|           | Nitrates - Storage issues - on field                   | Х                       | Х                        |                | Х           | Х       |                          |                          |
|           | Nitrates - Storage issues - silage                     | Х                       | Х                        |                |             |         |                          |                          |
|           | Nitrates - Storage issues - solid manure               | Х                       | Х                        |                | Х           | Х       |                          |                          |
|           | Nitrates - Vulnerable zone - action plan               |                         |                          |                |             |         |                          |                          |
|           | Nitrates - Vulnerable zone - fertilization distance to | Х                       | Х                        |                | 0           | 0       |                          |                          |
|           | waters                                                 |                         |                          |                |             |         |                          |                          |
|           | Nitrates - Vulnerable zone - fertilization distance to | Х                       | Х                        |                | Х           | Х       |                          |                          |
|           | waters - liquid livestock waste                        |                         |                          |                |             |         |                          |                          |

| Directive                                                          | SMR                                                                                                                              | Environmer              | ntal impacts             |                |             |         |                          |                          |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|----------------|-------------|---------|--------------------------|--------------------------|
|                                                                    | Short name SMR                                                                                                                   |                         |                          |                |             |         |                          |                          |
|                                                                    |                                                                                                                                  | Ground water<br>quality | Surface water<br>quality | Water quantity | Air quality | Climate | Physical soil<br>quality | Chemical soil<br>quality |
|                                                                    | Nitrates - Vulnerable zone - min vegetation cover                                                                                | Х                       | Х                        |                | 0           | 0       |                          |                          |
|                                                                    | Nitrates - Vulnerable zone - N limits                                                                                            | Х                       | Х                        |                | 0           | 0       |                          |                          |
|                                                                    | Nitrates - Vulnerable zone - surplus N                                                                                           | Х                       | Х                        |                | 0           | 0       |                          |                          |
|                                                                    | Nitrates - Vulnerable zone - management requirements<br>Nitrates - Vulnerable zone - new action plan                             | Х                       | Х                        |                | 0           | 0       |                          |                          |
|                                                                    | Nitrates - Vulnerable zone - steep slopes                                                                                        | Х                       | Х                        |                | 0           | 0       |                          |                          |
|                                                                    | Nitrates - Water protection strips with perennial<br>vegetation -                                                                | Х                       | Х                        |                | 0           | 0       |                          |                          |
|                                                                    | Nitrates - water protection zones                                                                                                | Х                       | Х                        |                | 0           | 0       |                          |                          |
|                                                                    | Nitrates - Winter coverage                                                                                                       | Х                       | 0                        |                |             |         |                          |                          |
|                                                                    | Nitrates - Winter coverage - termination 10. Oct                                                                                 | Х                       | 0                        |                |             |         |                          |                          |
|                                                                    | Nitrates - Winter coverage - termination 20. Oct                                                                                 | Х                       | 0                        |                |             |         |                          |                          |
|                                                                    | Nitrates - Winter coverage - > 5 ha arable land                                                                                  | Х                       | 0                        |                |             |         |                          |                          |
|                                                                    | Nitrates - Winter coverage - sowing 15. Oct.                                                                                     | Х                       | 0                        |                |             |         |                          |                          |
|                                                                    | Nitrates - Winter coverage - sowing 5. Oct.<br>Nitrates - Zones of complementary action<br>Nitrates - Zones of reinforced action | Х                       | 0                        |                |             |         |                          |                          |
| ewage Sludge Directive: Council<br>hirective 86/278/EEC of 12 June | Sewage - application authorisation<br>Sewage - application notification                                                          |                         |                          |                |             |         |                          |                          |
| .986 on the protection of the                                      | Sewage - application restrictions                                                                                                | Х                       | 0                        |                |             |         |                          | Х                        |
| nvironment, and in particular of                                   | Sewage - application restrictions - arable land                                                                                  | Х                       | Х                        |                | 0           | 0       |                          | Х                        |
| he soil, when sewage sludge is                                     | Sewage - application restrictions - before sowing                                                                                | Х                       | Х                        |                | 0           | 0       |                          | Х                        |
| sed in agriculture (OJ L 181,                                      | Sewage - application restrictions - forest                                                                                       | Х                       | Х                        |                | 0           | 0       |                          | Х                        |
| .7.1986, p. 6)                                                     | Sewage - application restrictions - frozen, snow-<br>covered, water saturated soil                                               | Х                       | Х                        |                | 0           | 0       |                          | Х                        |
|                                                                    | Sewage - application restrictions - grasslands                                                                                   | Х                       | Х                        |                | 0           | 0       |                          | Х                        |
|                                                                    | Sewage - application restrictions - moorland                                                                                     | Х                       | Х                        |                | 0           | 0       |                          | Х                        |
|                                                                    | Sewage - application restrictions - organic persistent<br>pollutants                                                             | Х                       | Х                        |                | 0           | 0       |                          | Х                        |

| Directive | SMR                                                                                                    | Environme               | ntal impacts             |                |             |         |                          |                          |
|-----------|--------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|----------------|-------------|---------|--------------------------|--------------------------|
|           | Short name SMR                                                                                         |                         |                          |                |             |         |                          |                          |
|           |                                                                                                        | Ground water<br>quality | Surface water<br>quality | Water quantity | Air quality | Climate | Physical soil<br>quality | Chemical soil<br>quality |
|           | Sewage - application restrictions - soil classification                                                | Х                       | Х                        |                | 0           | 0       |                          | Х                        |
|           | Sewage - application restrictions - soil erosion                                                       | Х                       | Х                        |                |             |         |                          | Х                        |
|           | Sewage - application restrictions - time                                                               | Х                       | Х                        |                | 0           | 0       |                          | Х                        |
|           | Sewage - application restrictions - vegetable                                                          | 0                       | 0                        |                |             |         |                          | 0                        |
|           | Sewage - application restrictions - vegetable and fruits<br>Sewage - application restrictions - Veneto | 0                       | 0                        |                |             |         |                          | 0                        |
|           | Sewage - application restrictions - water pollution                                                    | Х                       | Х                        |                |             |         |                          | 0                        |
|           | Sewage - application restrictions - water protection<br>zones                                          | Х                       | Х                        |                |             |         |                          | 0                        |
|           | Sewage - application technique<br>Sewage - documentation                                               | Х                       | Х                        |                | 0           | 0       |                          | Х                        |
|           | Sewage - grazing and forage crops restrictions                                                         | 0                       | 0                        |                | 0           | 0       |                          | 0                        |
|           | Sewage - harvest restrictions                                                                          | 0                       | 0                        |                | 0           | 0       |                          | 0                        |
|           | Sewage - harvest restrictions - grazing, forage                                                        | 0                       | 0                        |                | 0           | 0       |                          | 0                        |
|           | Sewage - heavy metal limits                                                                            | Х                       | Х                        |                |             |         |                          | Х                        |
|           | Sewage - heavy metal limits - content of the field                                                     | Х                       | Х                        |                |             |         |                          | Х                        |
|           | Sewage - Heavy metals<br>Sewage - manager's certification                                              | Х                       | Х                        |                |             |         |                          | Х                        |
|           | Sewage - max application rate                                                                          | Х                       | Х                        |                | 0           | 0       |                          | Х                        |
|           | Sewage - max. application rate_10t                                                                     | Х                       | Х                        |                | 0           | 0       |                          | Х                        |
|           | Sewage - max. application rate_2,5t                                                                    | Х                       | Х                        |                | 0           | 0       |                          | Х                        |
|           | Sewage - max. application rate_2LU                                                                     | Х                       | Х                        |                | 0           | 0       |                          | Х                        |
|           | Sewage - max. application rate_50cbm                                                                   | Х                       | Х                        |                | 0           | 0       |                          | Х                        |
|           | Sewage - max. application rate P-soil-content                                                          | Х                       | Х                        |                | 0           | 0       |                          | Х                        |
|           | Sewage - N limits per hectare                                                                          | Х                       | Х                        |                | 0           | 0       |                          | Х                        |
|           | Sewage - record keeping                                                                                |                         |                          |                |             |         |                          |                          |
|           | Sewage - sludge treatment<br>Sewage - soil analysis                                                    | Х                       | Х                        |                |             |         |                          | Х                        |
|           | Sewage - soil analysis - phosphorus                                                                    |                         |                          |                |             |         |                          |                          |

| Directive | SMR                               | Environme               | ntal impacts             |                |             |         |                          |                          |
|-----------|-----------------------------------|-------------------------|--------------------------|----------------|-------------|---------|--------------------------|--------------------------|
|           | Short name SMR                    |                         |                          |                |             |         |                          |                          |
|           |                                   | Ground water<br>quality | Surface water<br>quality | Water quantity | Air quality | Climate | Physical soil<br>quality | Chemical soil<br>quality |
|           | Sewage - soil pH limits           | Х                       | Х                        |                | 0           | 0       |                          | Х                        |
|           | Sewage - storage                  | Х                       | Х                        |                | 0           | 0       |                          |                          |
|           | Sewage - use of codes of practice | Х                       | Х                        |                | 0           | 0       |                          | Х                        |

## Appendix 2 Selected measures in the Nitrate Directive, Sewage Sludge Directive and Groundwater Directive (SMRs) and the models in the CCAT tool that will evaluate the measures

| <u>The nitrat</u><br>Number | <u>e directive</u><br>SMR                                                                                                                                                                                                                                   | Which effect<br>indicator to<br>include and how          | State<br>Name     | Miterra-<br>Europe | EPIC | DNDC | MITERRA<br>measure | Remark                               |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------|--------------------|------|------|--------------------|--------------------------------------|
| 116                         | No application of mineral<br>fertilizer, slurry, muck and<br>sludge on areas without<br>GREEN COVER between 15<br>October and 15 February.                                                                                                                  | N fertilizer input<br>= 0 for landuse<br>X               | Austria           | Х                  |      | X    | 3                  |                                      |
| 117                         | No application of mineral<br>fertilizer, slurry, muck and<br>sludge on areas with GREEN<br>COVER between 15 November<br>and 15 February.                                                                                                                    | N fertilizer input<br>= 0 for landuse<br>X               | Austria           |                    |      | Х    | 3                  |                                      |
| 118                         | Regulations for manure<br>storage on fields:<br>Minimum distance to surface<br>water is 25 m.                                                                                                                                                               | Reduce N<br>leaching from<br>manure storage              | Austria           |                    |      |      | 7                  |                                      |
| 119                         | Restriction of organic manure<br>application:<br>170 kg N/ha and year                                                                                                                                                                                       | Set N in by<br>animal manure<br>to a maximum             | Austria           | Х                  |      | Х    | 2                  |                                      |
| 483                         | Methods for spreading of<br>manure on non-cultivated<br>areas<br>- Liquid and solid manure that<br>is spread on non-cultivated<br>areas must be ploughed down<br>as fast as possible and within<br>6 hours.                                                 | Reduce NH <sub>3</sub><br>emission during<br>application | Denmark           |                    |      | Х    | 6                  |                                      |
| 962                         | Requirement for the ploughing<br>in of farmyard manure: If you<br>spread farmyard manure or<br>other organic fertilizers in the<br>counties of Halland, Skåne or<br>Blekinge, you must plough it<br>within four hours. This applies<br>throughout the year. | Reduce NH <sub>3</sub><br>emission during<br>application | Sweden            |                    |      | Х    | 6                  |                                      |
| 1038                        | Farmers must spread N<br>fertiliser and organic manures<br>evenly and accurately.                                                                                                                                                                           | Higher N<br>efficiency                                   | United<br>Kingdom | Х                  |      | Х    | 6                  |                                      |
| 963                         | Requirement for the ploughing<br>in of farmyard manure: If you<br>spread farmyard manure or                                                                                                                                                                 | Reduce NH <sub>3</sub><br>emission during<br>application | Sweden            | Х                  |      | Х    | 6                  | Only a sligh<br>effect<br>because of |

| Number | te directive<br>SMR                                                                                                                                                                                                                                                                         | Which effect indicator to                                                   | State<br>Name     | MITERRA-<br>EUROPE | EPIC | DNDC | MITERRA<br>measure | Remark             |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------|--------------------|------|------|--------------------|--------------------|
|        |                                                                                                                                                                                                                                                                                             | include and how                                                             |                   |                    |      |      |                    |                    |
|        | other organic fertilizers during<br>the period from 1 December<br>to 28 February, it must be                                                                                                                                                                                                |                                                                             |                   |                    |      |      |                    | low<br>temperature |
| 628    | ploughed in on the same day.<br>Fertilization after harvesting is<br>only permitted to field grass,<br>underseeds, autumn sowings<br>including intercropping and for                                                                                                                        | Higher N<br>efficiency of<br>fertilizer                                     | Germany           | Х                  |      | Х    | 6                  |                    |
| 120    | straw fertilization.<br>No application of organic<br>manure, compost and sewage<br>compost between 30<br>November and 15 February<br>(for certain crops: 1<br>February).                                                                                                                    | Higher N<br>efficiency of<br>organic manure                                 | Austria           | Х                  |      | Х    | 3                  |                    |
| 472    | Periods for manure spreading<br>- In the period from harvest to<br>1 February, no liquid manure<br>must be spread. The<br>exception is spreading from<br>harvest to 1 October on areas<br>with fodder grass that stands<br>throughout the winter, and for<br>areas where winter rape.       | Higher N<br>efficiency of<br>organic manure                                 | Denmark           | Х                  |      | Х    | 3                  |                    |
| 610    | General prohibition of applying<br>liquid manure, poultry<br>excrements or nitrogenous-<br>liquid secondary raw material<br>fertilizer between 15<br>November and 15 January.<br>The competent authority may<br>permit exemptions with regard<br>to the special characteristics<br>of the f | Higher N<br>efficiency of<br>organic manure                                 | Germany           | X                  |      | X    | 3                  |                    |
| 756    | Spreading is prohibited during<br>the fall-winter season, from 1<br>November through the end of<br>February as a general rule.<br>With reference to specific<br>local pedoclimatic conditions<br>regional authorities may define<br>different prohibition starting<br>dates.                | Higher N<br>efficiency of<br>organic manure                                 | Italy             | X                  |      | Х    | 3                  |                    |
| 964    | From 1 November to 15<br>February you may not spread<br>commercial fertilizer.<br>From 1 January to 15<br>February you may not spread<br>farmyard manure or other<br>organic fertilizer.                                                                                                    | Higher N<br>efficiency of<br>organic manure<br>and inorganic<br>fertilizers | Sweden            | X                  |      | Х    | 3                  |                    |
| 1047   | Farmers must not apply N<br>during the following periods:<br>For sandy or shallow soil types<br>- organic manures with high<br>available N (slury, poultry                                                                                                                                  | Higher N<br>efficiency of<br>organic manure                                 | United<br>Kingdom | Х                  |      | Х    | 3                  |                    |

| Number | e directive<br>SMR                                            | Which effect<br>indicator to      | State<br>Name | Miterra-<br>Europe | EPIC | DNDC   | MITERRA<br>measure | Remark |
|--------|---------------------------------------------------------------|-----------------------------------|---------------|--------------------|------|--------|--------------------|--------|
|        |                                                               | include and how                   |               |                    |      |        |                    |        |
|        | manure or liquid digested                                     |                                   |               |                    |      |        |                    |        |
|        | sewage sludge):<br>- no spreading between 1 Sept              |                                   |               |                    |      |        |                    |        |
|        | - 1 Nov for autumn sown                                       |                                   |               |                    |      |        |                    |        |
|        | arable crop.                                                  |                                   |               |                    |      |        |                    |        |
| 814    | It is not allowed to apply liquid                             | Higher N                          | Slovenia      | Х                  |      | Х      | 3                  |        |
|        | manure on agricultural land                                   | efficiency of                     |               |                    |      |        |                    |        |
|        | without a green plant cover in                                | organic manure                    |               |                    |      |        |                    |        |
|        | the period between 15                                         |                                   |               |                    |      |        |                    |        |
|        | November and 15 February.                                     |                                   |               |                    |      |        |                    |        |
| 1048   | Farmers must not apply                                        | Higher N                          | United        | Х                  |      | Х      | 3                  |        |
|        | nitrogen fertilizers during the                               | efficiency of                     | Kingdom       |                    |      |        |                    |        |
|        | following periods:                                            | inorganic                         |               |                    |      |        |                    |        |
|        | Nitrogen fertiliser:                                          | fertilizer                        |               |                    |      |        |                    |        |
|        | - no spreading between 1 Sept                                 |                                   |               |                    |      |        |                    |        |
|        | - 1 Feb for arable crops                                      |                                   |               |                    |      |        |                    |        |
|        | - no spreading between 15<br>Sept - 1 Feb for grassland       |                                   |               |                    |      |        |                    |        |
|        | Organic manures:                                              |                                   |               |                    |      |        |                    |        |
|        | - no spreading between 1 Aug                                  |                                   |               |                    |      |        |                    |        |
| 1030   | Closed periods when NO                                        | Higher N                          | United        | Х                  |      |        | 3                  |        |
|        | application should be made:                                   | efficiency of                     | Kingdom       |                    |      |        |                    |        |
|        | Inorganic nitrogen fertilisers -                              | inorganic                         |               |                    |      |        |                    |        |
|        | all soils (depends on NVZ): 15                                | fertilizer/ lower                 |               |                    |      |        |                    |        |
|        | Sept - 20 Feb on grassland, 1                                 | rates limited to                  |               |                    |      |        |                    |        |
|        | Sept - 20 Feb on other land                                   | NVZ                               |               |                    |      |        |                    |        |
|        | (exceptions are possible after                                |                                   |               |                    |      |        |                    |        |
|        | justification, 3 day notice                                   |                                   |               |                    |      |        |                    |        |
| 200    | should be made).                                              | Lligher N                         | Casia         | v                  |      |        | C                  |        |
| 899    | In holdings located in areas<br>vulnerable to water pollution | Higher N<br>efficiency of         | Spain         | Х                  |      |        | 3                  |        |
|        | by nitrates, the periods during                               | inorganic                         |               |                    |      |        |                    |        |
|        | which the application of                                      | fertilizer/ lower                 |               |                    |      |        |                    |        |
|        | certain types of fertilizers is                               | rates limited to                  |               |                    |      |        |                    |        |
|        | forbidden as fixed by the                                     | NVZ                               |               |                    |      |        |                    |        |
|        | Administration, must be                                       |                                   |               |                    |      |        |                    |        |
|        | respected.                                                    |                                   |               |                    |      |        |                    |        |
| 121    | No application of nitrogenous                                 | Higher N                          | Austria       | Х                  |      | Х      | 3                  |        |
|        | fertilizer when soil is frozen or                             | efficiency of                     |               |                    |      |        |                    |        |
|        | covered with snow.                                            | inorganic                         |               |                    |      |        |                    |        |
|        |                                                               | fertilizer                        | -             | N/                 |      | V      | 2                  |        |
| 575    | Fertilizers must not be applied                               | Higher N                          | France        | Х                  |      | Х      | 3                  |        |
|        | to frozen, water-saturated, flooded and snow-covered          | efficiency of                     |               |                    |      |        |                    |        |
|        | soils.                                                        | inorganic<br>fertilizer           |               |                    |      |        |                    |        |
| 965    | You may not spread fertilizer                                 | Higher N                          | Sweden        | х                  |      | Х      | 3                  |        |
| ,      | on waterlogged or flooded                                     | efficiency of                     | GWCUCH        | ~                  |      | ~      | 5                  |        |
|        | land, or on snow-covered or                                   | inorganic                         |               |                    |      |        |                    |        |
|        | deep-frozen land.                                             | fertilizer                        |               |                    |      |        |                    |        |
| 122    | Appropriate fertilization on                                  | Higher N                          | Austria       | Х                  |      | no     | 4                  |        |
|        | sloping sites (measures for                                   | efficiency of                     |               |                    |      | slopes |                    |        |
|        | sugar-beets and maize): Slot                                  | inorganic                         |               |                    |      |        |                    |        |
|        |                                                               | fortilizer and                    |               |                    |      |        |                    |        |
|        | sowing.                                                       | fertilizer and<br>less fertilizer |               |                    |      |        |                    |        |

|        | e directive                                                                                                                                                                                                                                                                             |                                                                                                     | <b>0</b> 1 - 1    |                    |      | D            |                    |        |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------|--------------------|------|--------------|--------------------|--------|
| Number | SMR                                                                                                                                                                                                                                                                                     | Which effect<br>indicator to<br>include and how                                                     | State<br>Name     | Miterra-<br>Europe | EPIC | DNDC         | MITERRA<br>measure | Remark |
| 574    | Fertilization is not allowed to steeply sloping ground of 7%.                                                                                                                                                                                                                           | Higher N<br>efficiency of<br>inorganic<br>fertilizer and<br>less fertilizer<br>use                  | France            | X                  |      | no<br>slopes | 4                  |        |
| 746    | Regional authorities, due to<br>particular local conditions<br>detect, identify and establish<br>the various slope/incline limits<br>beyond which it is prohibited<br>to use manure, nitrogenous<br>fertilizers and similar<br>materials. They regulate and<br>enforce the agronomic pr | Higher N<br>efficiency of<br>inorganic<br>fertilizer/manure<br>and less<br>fertilizer/manure<br>use | Italy             | X                  |      | no<br>slopes | 4                  |        |
| 1031   | Inorganic nitrogen fertilisers<br>and organic manure must not<br>be applied: To steeply sloping<br>fields                                                                                                                                                                               | Higher N<br>efficiency of<br>inorganic<br>fertilizer/manure<br>and less<br>fertilizer/manure<br>use | United<br>Kingdom | Х                  |      | no<br>slopes | 4                  |        |
| 747    | It is prohibited to spread<br>animal slurry on lands with an<br>inclination greater than 15%;                                                                                                                                                                                           | No manure<br>application                                                                            | Italy             | Х                  |      | no<br>slopes | 4                  |        |
| 815    | Application of liquid manure is<br>forbidden on steeply sloping<br>areas. There is a high risk that<br>the liquid manure is drained<br>off due to its inappropriate<br>application.                                                                                                     | No manure<br>application                                                                            | Slovenia          | Х                  |      | no<br>slopes | 4                  |        |
| 749    | It is prohibited to spread<br>animal slurry and manure on<br>flooded, frozen or snow-<br>covered lands, and near<br>watercourses.                                                                                                                                                       | Higher N<br>efficiency of<br>organic manure<br>and less manure<br>use                               | Italy             | Х                  |      | Х            | 3 and 7            |        |
| 816    | Application of liquid manure is<br>not allowed on agricultural<br>land, where:<br>- the soil is saturated with<br>water or flooded;<br>- the soil is frozen or snow<br>cover is above 10 cm;<br>- the area has the status of a<br>water protection zone.                                | Higher N<br>efficiency of<br>organic manure<br>and less manure<br>use                               | Slovenia          | Х                  |      | Х            | 3 and 7            |        |
| 1032   | Inorganic nitrogen fertilisers<br>and organic manure must not<br>be applied:<br>when the soil is waterlogged,<br>flooded, frozen hard (for last<br>12 hours or longer in the<br>preceding 24 hours) or snow<br>covered.                                                                 | Higher N<br>efficiency of<br>inorganic<br>fertilizer/manure<br>and less<br>fertilizer/manure<br>use | United<br>Kingdom | X                  |      | Х            | 3                  |        |
| 614    | Nitrogenous fertilizers may<br>only be applied, if the soil is                                                                                                                                                                                                                          | Higher N<br>efficiency of                                                                           | Germany           | Х                  |      | Х            | 3                  |        |

| The nitrat | te directive                                                                                                                                                                                                                                                                                     |                                                                                                     |                   |                    |      |      |                    |        |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------|--------------------|------|------|--------------------|--------|
| Number     | SMR                                                                                                                                                                                                                                                                                              | Which effect<br>indicator to<br>include and how                                                     | State<br>Name     | Miterra-<br>Europe | EPIC | DNDC | MITERRA<br>measure | Remark |
|            | absorptive. That means that<br>fertilizers are not to be applied<br>on soil that is saturated with<br>water and deeply frozen or<br>strongly covered soils with<br>snow.                                                                                                                         | inorganic<br>fertilizer and<br>less fertilizer<br>use                                               |                   |                    |      |      |                    |        |
| 883        | In livestock holdings located in<br>areas vulnerable to water<br>pollution by nitrates, cleaning<br>water shall circulate through<br>moisture proof routes and<br>shall be collected in effluent<br>storing facilities.                                                                          | Lower leaching<br>form manure<br>storage                                                            | Spain             | Х                  |      |      | 5                  |        |
| 576        | Fertilization closer than 35 m<br>to waters is not allowed in the<br>case of fertilizers of<br>categories I and II. In the case<br>of fertilizers of category III,<br>fertilization closer than 2 m to<br>waters is not allowed.                                                                 | Higher N<br>efficiency of<br>inorganic<br>fertilizer and<br>less fertilizer<br>use                  | France            | Х                  |      |      | 7                  |        |
| 618        | In the case of the application<br>of nitrogenous fertilizers a<br>sufficient distance must be<br>kept to waters in order to<br>avoid direct entry of fertilizers<br>in surface waters.                                                                                                           | Higher N<br>efficiency of<br>inorganic<br>fertilizer and<br>less fertilizer<br>use                  | Germany           | X                  |      |      | 7                  |        |
| 750        | It is prohibited to spread<br>livestock manure, nitrogenous<br>fertilizers and similar materials<br>within 5 metres of distance<br>from the bank of water<br>courses; within 10 metres<br>from the riverside of water<br>courses that have been<br>identified by the regional<br>administration. | Higher N<br>efficiency of<br>inorganic<br>fertilizer/manure<br>and less<br>fertilizer/manure<br>use | Italy             | X                  |      |      | 7                  |        |
| 881        | Fertilizers' application in the<br>vicinity of water courses or of<br>water supplying points in<br>vulnerable areas to water<br>pollution by nitrates shall<br>respect minimum distances<br>depending on fertilizer kind                                                                         | Higher N<br>efficiency of<br>inorganic<br>fertilizer and<br>less fertilizer<br>use                  | Spain             | Х                  |      |      | 7                  |        |
| 1034       | Farmers must not apply N<br>fertiliser in a way that<br>contaminates watercourses,<br>or apply organic manures<br>within 10 metres of<br>watercourses.                                                                                                                                           | Higher N<br>efficiency of<br>inorganic<br>fertilizer/manure<br>and less<br>fertilizer/manure<br>use | United<br>Kingdom | X                  |      |      | 7                  |        |
| 619        | The application of liquid<br>manure at a distance of 10<br>meters or less to the edge of<br>bodies of water is<br>inadmissible.                                                                                                                                                                  | Higher N<br>efficiency of<br>liquid manure<br>and less liquid<br>manure use                         | Germany           | Х                  |      |      | 7                  |        |

|        | e directive                                                                                                                                                                                                                                                                                |                                                                                    | <u>.</u>          |                    | 5510 | DNDO |                    | <u> </u> |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------|--------------------|------|------|--------------------|----------|
| Number | SMR                                                                                                                                                                                                                                                                                        | Which effect<br>indicator to<br>include and how                                    | State<br>Name     | Miterra-<br>Europe | EPIC | DNDC | MITERRA<br>measure | Remark   |
| 620    | The application of mineral<br>fertilizer at a distance of 5<br>meters or less, measured<br>from the edge, is inadmissible.                                                                                                                                                                 | Higher N<br>efficiency of<br>inorganic<br>fertilizer and<br>less fertilizer<br>use | Germany           | X                  |      |      | 7                  |          |
| 1035   | Chemical fertiliser shall not be<br>applied to any land in a<br>location or manner that makes<br>it likely that the chemical<br>fertiliser will directly enter any<br>inland or coastal waters.                                                                                            | Higher N<br>efficiency of<br>liquid manure<br>and less liquid<br>manure use        | United<br>Kingdom | X                  |      |      | 7                  |          |
| 621    | In Thuringia, in case of<br>fertilization a minimum<br>distance of 10 meters to<br>bodies of water (bodies of<br>water of the 1st order) or/and<br>5 meters (bodies of water of<br>the 2nd order, constantly<br>having water) is to be kept.                                               | Higher N<br>efficiency of<br>inorganic<br>fertilizer and<br>less fertilizer<br>use | Germany           | X                  |      |      | 7                  |          |
| 581    | In the Centre region, the<br>winter cover of all soils is<br>obligatory in case of<br>remainder post-harvest.(?)                                                                                                                                                                           | Include catch<br>crop                                                              | France            | Х                  |      |      | 8                  |          |
| 1039   | On land on farm which was<br>used in any year to produce a<br>leafy vegetable crop<br>not comm                                                                                                                                                                                             | Include catch<br>crop                                                              | United<br>Kingdom | Х                  |      |      | 8                  |          |
| 128    | No application of nitrogenous<br>fertilizer on soggy or flooded<br>soils.                                                                                                                                                                                                                  | Higher N<br>efficiency of<br>inorganic<br>fertilizer and<br>less fertilizer<br>use | Austria           | Х                  |      |      | 3                  |          |
| 745    | It is prohibited to spread<br>animal slurry and manure<br>during the period ranging from<br>15 December to 28 February.                                                                                                                                                                    | Higher N<br>efficiency of<br>animal manure<br>and less animal<br>manure use        | Italy             | Х                  |      |      | 3                  |          |
| 966    | In the period from 1 August to<br>30 November you may only<br>spread farmyard manure and<br>other organic fertilizers on<br>growing crops or on land<br>which you are going to sow<br>during the period. However,<br>there is an exception to the<br>ban on spreading on<br>uncovered land | Higher N<br>efficiency of<br>animal manure<br>and less animal<br>manure use        | Sweden            | X                  |      |      | 3                  |          |
| 584    | The amount of livestock<br>manure applied to the land<br>each year, including by the<br>animals themselves, shall not<br>exceed 170 kg N per hectare                                                                                                                                       | Maximum<br>amount of<br>animal manure<br>use                                       | France            | Х                  |      |      | 2                  |          |
| 752    | In the vulnerable areas,                                                                                                                                                                                                                                                                   | Maximum                                                                            | Italy             | Х                  |      |      | 2                  |          |

|        | e directive                                                                                                                                                                                                                                                                                     |                                                                                    |                   |                    |      |      |                    |        |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------|--------------------|------|------|--------------------|--------|
| Number | SMR                                                                                                                                                                                                                                                                                             | Which effect<br>indicator to<br>include and how                                    | State<br>Name     | Miterra-<br>Europe | EPIC | DNDC | MITERRA<br>measure | Remark |
|        | maximum limits of N<br>hectare/year must be<br>observed for all kinds of<br>fertilizers or manure<br>containing N.<br>Action programme promoted<br>by the region provides for<br>different and more strict limits<br>than the standard of 170                                                   | amount of<br>animal manure<br>and fertilizer<br>use                                |                   |                    |      |      |                    |        |
| 1043   | kg/ha/year.<br>Farmers must adhere to the<br>following nitrogen limits:<br>(i) whole farm within NVZ<br>(including grazing deposition)<br>- arable crop requirement<br>210kg/ha total N (note 1)<br>- grassland crop requirement<br>250kg/ha total N<br>(ii) field limit (excluding<br>grazing) | Maximum<br>amount of<br>animal manure<br>and fertilizer<br>use                     | United<br>Kingdom | Х                  |      |      | 2                  |        |
| 969    | You must not spread more<br>nitrogen than the crop may be<br>expected to need. When you<br>calculate the dose of fertilizer,<br>you must take into account<br>the nitrogen that the crop<br>obtains from other sources,<br>such as from the preceding<br>crop.                                  | N balanced<br>fertilization                                                        | Sweden            | Х                  |      |      | 1                  |        |
| 129    | Appropriate fertilization (same<br>regulations as 'basic premium'<br>of ÖPUL - Austrian Agri-<br>Environmental Programme):<br>Water act permission is<br>necessary when total amount<br>of N-fertilizer exceeds 210 kg<br>N/ha on areas with GREEN<br>COVER or nitrogen consuming<br>crops.     | Higher N<br>efficiency of<br>inorganic<br>fertilizer and<br>less fertilizer<br>use | Austria           | Х                  |      |      | 6                  |        |
| 895    | Farmers shall respect<br>statutory terms and maximum<br>allowed quantities of<br>nitrogenous fertilizers applied<br>to crops.                                                                                                                                                                   | Maximum<br>amount of<br>fertilizer use                                             | Spain             | Х                  |      |      | 2                  |        |
| 1050   | Farmers must not apply more<br>N fertiliser than a crop<br>requires, taking account of<br>crop uptake, soil N supply,<br>excess winter rainfall, and<br>plant or crop available N from<br>organic manures.                                                                                      | N balanced<br>fertilization                                                        | United<br>Kingdom | Х                  |      |      | 1                  |        |
| 486    | Limits for manures preading<br>(harmony rules)<br>- The amount of manure used<br>on a farm must not exceed                                                                                                                                                                                      | Maximum<br>amount of<br>animal manure<br>use                                       | Denmark           | X                  |      |      | 2                  |        |

| Number | e directive                                                                                                                                                                                                                                                                             | Which offect                                                   | Stata             | MITEDDA            |      |      | MITEDDA            | Romark |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------|--------------------|------|------|--------------------|--------|
| numder | SMR                                                                                                                                                                                                                                                                                     | Which effect<br>indicator to<br>include and how                | State<br>Name     | MITERRA-<br>EUROPE | EPIC | DNDC | MITERRA<br>measure | Remark |
|        | 1.4 livestock units per ha per<br>planning period (1 August to<br>31 July).                                                                                                                                                                                                             |                                                                |                   |                    |      |      |                    |        |
| 526    | Maximum limits for the<br>application of fertilizers<br>containing N: 170 kg N/ha per<br>year from livestock manure on<br>arable land and up to 210 kg<br>N/ha per year on grassland or<br>on areas with a crop rotation<br>with high N-demand.                                         | Maximum<br>amount of<br>fertilizer use                         | Germany           | Х                  |      |      | 2                  |        |
| 753    | Maximum limits for the<br>application is 170 kg /ha/year<br>of N coming from slurry and<br>livestock manure. This limit<br>includes contribution given by<br>animals during grazing and by<br>the agronomic utilization of<br>process water.                                            | Maximum<br>amount of<br>animal manure<br>and fertilizer<br>use | Italy             | X                  |      |      | 2                  |        |
| 320    | Yearly application of N-<br>fertilizers of livestock origin<br>must not exceed 170 kg/ha.                                                                                                                                                                                               | Maximum<br>amount of<br>animal manure<br>and fertilizer<br>use | Slovenia          | Х                  |      |      | 2                  |        |
| 396    | The maximum amounts of<br>organic fertilizers applied to<br>the soil per year shall not<br>exceed the equivalent to 210<br>kg of nitrogen per hectare.                                                                                                                                  | Maximum<br>amount of<br>animal manure<br>and fertilizer<br>use | Spain             | Х                  |      |      | 2                  |        |
| .044   | Farmers must limit the organic<br>manure loading averaged over<br>the whole farmed area each<br>year (beginning on 19<br>December) to:<br>- 250kg total N per ha for<br>grassland in any NVZ;<br>- 170kg total N per ha for non-<br>grass crops in a NVZ that was<br>designated in 1996 | Maximum<br>amount of<br>animal manure<br>use                   | United<br>Kingdom | Х                  |      |      | 2                  |        |
| 1045   | Applications of organic<br>manure to individual fields<br>must not exceed 250 kg per<br>ha of total N in any 12-month<br>period. This limit does NOT<br>include manures deposited by<br>grazing animals.                                                                                | Maximum<br>amount of<br>animal manure<br>use                   | United<br>Kingdom | Х                  |      |      | 2                  |        |
| 397    | Maximum allowed quantities of<br>mineral nitrogenous fertilizers<br>are fixed.                                                                                                                                                                                                          | Maximum<br>amount of<br>fertilizer use                         | Spain             | Х                  |      |      | 2                  |        |
| 511    | After harvesting of the main<br>fruit only 40 kg NH4-N/ha<br>(ammonium nitrogen) or 80 kg<br>total N/ha (total nitrogen) are<br>to be applied on arable land                                                                                                                            | Maximum<br>amount of<br>fertilizer use                         | Germany           | Х                  |      |      | 2                  |        |

| Number | e directive<br>SMR                                                                                                                                                                                                                                                                      | Which effect                                                                | State             | MITERRA- | EPIC | MITERRA | Remark  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------|----------|------|---------|---------|--|
|        |                                                                                                                                                                                                                                                                                         | indicator to include and how                                                | Name              | EUROPE   |      | DNDC    | measure |  |
|        | with liquid manure, poultry<br>excrements or nitrogenous-<br>liquid secondary raw material<br>fertilizer.                                                                                                                                                                               |                                                                             |                   |          |      |         |         |  |
| 1066   | Limit applications of organic<br>manure to 250 kg/ha of total<br>nitrogen NOT including<br>manure deposited by animals.                                                                                                                                                                 | Maximum<br>amount of<br>animal manure<br>use                                | United<br>Kingdom | Х        |      |         | 2       |  |
| 700    | In areas established as nitrate<br>vulnerable zones: The quantity<br>of manure that is added each<br>year in the soil, either by the<br>farmers or directly by animals,<br>should not contain nitrogen<br>above 170 kg/hectare                                                          | Maximum<br>amount of<br>animal manure<br>use                                | Greece            | Х        |      |         | 2       |  |
| 398    | In agricultural holdings located<br>in areas vulnerable to water<br>pollution by nitrates, the<br>maximum allowed quantity of<br>dung per ha fixed by the<br>administration must be<br>respected.                                                                                       | Maximum<br>amount of<br>animal manure<br>use                                | Spain             | Х        |      |         | 2       |  |
| 1046   | Organic manure use within the<br>NVZ must not exceed the<br>farm-based limits (including<br>grazing deposition): 250 kg<br>organic N/ha averaged over<br>all of the grassland in an NVZ,<br>170 kg organic N/ha,<br>averaged over all the non-<br>grassland in an NVZ.                  | Maximum<br>amount of<br>animal manure<br>use                                | United<br>Kingdom | Х        |      |         | 2       |  |
| 384    | Livestock holdings located in<br>areas vulnerable to water<br>pollution by nitrates shall keep<br>those outdoor areas used by<br>waiting livestock waterproof<br>and with a slope sufficient to<br>ensure the evacuation of<br>effluents.                                               | Lower leaching<br>form manure<br>storage                                    | Spain             | X        |      |         | 5       |  |
| 473    | Restrictions on where and how<br>to spread manure<br>- Animal manure, silage juice<br>and waste water must not be<br>spread in such a way or on<br>such areas, that there is a risk<br>of runoff to lakes, water<br>courses and drains (in the<br>course of thaws or heavy<br>showers). | Higher N<br>efficiency of<br>animal manure<br>and less animal<br>manure use | Denmark           | Х        |      |         | 7       |  |
| 885    | Outflows, especially those of<br>livestock origin, to any body of<br>water, i.e. standing or flowing<br>bodies of water or dry river<br>beds, shall be avoided.                                                                                                                         | Higher N<br>efficiency of<br>animal manure<br>and less animal<br>manure use | Spain             | Х        |      |         | 7       |  |
| 494    | Balance between nitrogen                                                                                                                                                                                                                                                                | N balance                                                                   | Denmark           | Х        |      |         | 1       |  |

| The nitrate directive |                                                                                                                                                                                                                                                                                              |                                                                                    |               |                    |      |      |                    |        |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------|--------------------|------|------|--------------------|--------|
| Number                | SMR                                                                                                                                                                                                                                                                                          | Which effect<br>indicator to<br>include and how                                    | State<br>Name | Miterra-<br>Europe | EPIC | DNDC | MITERRA<br>measure | Remark |
|                       | supply and demand<br>- In the planning period, the<br>use of nitrogen for manure<br>purposes must not exceed the<br>farm's nitrogen quota.                                                                                                                                                   | fertilization                                                                      |               |                    |      |      |                    |        |
| 578                   | no N spreading in flooded<br>grassland                                                                                                                                                                                                                                                       | Higher N<br>efficiency of<br>animal manure<br>and less animal<br>manure use        | France        | Х                  |      |      | 3                  |        |
| 707                   | In areas established as nitrate<br>vulnerable zones, farmers<br>should apply the quantities of<br>nitrogenous fertilizers and<br>observe the directions with<br>regard to frequency, time and<br>quantity of applied nitrogen<br>per dose, as determined per<br>crop and soil class          | Maximum<br>amount of<br>fertilizer use                                             | Greece        | Х                  |      |      | 6                  |        |
| 882                   | In agricultural holdings located<br>in areas vulnerable to water<br>pollution by nitrates, fertilizers<br>shall not be applied to a band<br>of soil near water courses<br>according to the width<br>prescribed by the<br>administration.                                                     | Higher N<br>efficiency of<br>inorganic<br>fertilizer and<br>less fertilizer<br>use | Spain         | Х                  |      |      | 7                  |        |
| 703                   | In areas established as nitrate<br>vulnerable zones: Dispose of<br>liquid livestock waste in area<br>of at least 20 metres distance<br>from surface waters and 50<br>metres from sources, wells or<br>water drillings that are used<br>for human consumption.                                | Higher N<br>efficiency of<br>animal manure<br>and less animal<br>manure use        | Greece        | X                  |      |      | 7                  |        |
| 582                   | All farms in NVZ should keep a<br>minimum of vegetation during<br>rainy periods:- Intermediary<br>cultures traps for the nitrates<br>(CIPAN);- Management of the<br>residues ;- Management of the<br>regrowths.                                                                              | Include catch<br>crop                                                              | France        | Х                  |      |      | 8                  |        |
| 755                   | For the vulnerable areas, a<br>limit of 170 kg/hectare<br>applies. The limit is<br>guaranteed by the observance<br>of the maximum value of the<br>animal live weight that can be<br>raised per hectare. These<br>limits correspond to:<br>1) 8 quintals/ha for birds and<br>rabbits<br>2) 12 | Maximum<br>amount of<br>animal manure<br>and fertilizer<br>use                     | Italy         | X                  |      |      | 2                  |        |
| 704                   | 2) 12<br>In areas established as nitrate<br>vulnerable zones: Avoid the                                                                                                                                                                                                                      | Higher N<br>efficiency of                                                          | Greece        | Х                  |      |      | 4                  |        |

| The nitrate directive |                                                                                                                                                                                                                                                                        |                                                                                    |               |                    |      |      |                    |        |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------|--------------------|------|------|--------------------|--------|
| Number                | SMR                                                                                                                                                                                                                                                                    | Which effect<br>indicator to<br>include and how                                    | State<br>Name | Miterra-<br>Europe | EPIC | DNDC | MITERRA<br>measure | Remark |
|                       | disposal of liquid waste as well<br>as the application of organic<br>manure in areas with a slope<br>bigger than 8%                                                                                                                                                    | animal manure<br>and less animal<br>manure use                                     |               |                    |      |      |                    |        |
| 577                   | Along the waterways, there<br>should be permanent<br>vegetation like field margin,<br>hedge etc. introduced or<br>maintained                                                                                                                                           | Higher N<br>efficiency of<br>inorganic<br>fertilizer and<br>less fertilizer<br>use | France        | Х                  |      |      | 7                  |        |
| 484                   | Plant cover<br>- The farm must either sow<br>spring crops or create areas<br>with catch crops in autumn in<br>order to ensure effective<br>nitrogen uptake during<br>autumn.<br>- The area used for catch<br>crops must make up at least<br>6% of the catch crop area. | Include catch<br>crop                                                              | Denmark       | Х                  |      |      | 8                  |        |
| 972                   | 50% of arable land must be<br>covered by vegetation during<br>autumn or winter (green<br>fields). The demand only<br>applies to farmers with more<br>than five hectares of arable<br>land.                                                                             | Include catch<br>crop                                                              | Sweden        | Х                  |      |      | 8                  |        |
| 973                   | If multiannual crops, ley and<br>catch crops are intended to<br>be sown before 1 August or<br>stubble from harvested crops<br>to be recognized as green<br>fields, tilling or the termination<br>of growth by chemical means<br>are not allowed before 10<br>October.  | Include catch<br>crop                                                              | Sweden        | Х                  |      |      | 8                  |        |
| 974                   | If multiannual crops, ley and<br>catch crops sown before 1<br>August or stubble from<br>harvested crops are intended<br>to be recognized as green<br>fields, tilling or termination of<br>growth by chemical means are<br>not allowed before 20<br>October.            | Include catch<br>crop                                                              | Sweden        | X                  |      |      | 8                  |        |
| 975                   | 60% of arable land must be<br>covered by vegetation during<br>autumn or winter (green<br>fields). The demand only<br>applies to farmers with more<br>than five hectares of arable<br>land.                                                                             | Include catch<br>crop                                                              | Sweden        | Х                  |      |      | 8                  |        |
| 976                   | Autumn crops and catch crops<br>must sown no later than 15<br>October.                                                                                                                                                                                                 | Include catch<br>crop                                                              | Sweden        | Х                  |      |      | 8                  |        |

| The nitrate directive |                                                                                                                                                                                                                                                |                                                                                                     |                   |                    |      |      |                    |        |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------|--------------------|------|------|--------------------|--------|
| Number                | SMR                                                                                                                                                                                                                                            | Which effect<br>indicator to<br>include and how                                                     | State<br>Name     | MITERRA-<br>EUROPE | EPIC | DNDC | MITERRA<br>measure | Remark |
| 977                   | Autumn crops and catch crops<br>must sown no later than 5<br>October.                                                                                                                                                                          | Include catch<br>crop                                                                               | Sweden            | Х                  |      |      | 8                  |        |
| 617                   | Nitrogenous fertilizers should<br>only be applied if the soil is<br>absorptive. That means that<br>fertilizers are not to be applied<br>on soil that is saturated with<br>water or deeply frozen or on<br>soils strongly covered with<br>snow. | Higher N<br>efficiency of<br>inorganic<br>fertilizer and<br>less fertilizer<br>use                  | Germany           | X                  |      |      | 3                  |        |
| 1033                  | Farmers must not apply any<br>materials containing N when<br>the ground is waterlogged,<br>flooded, frozen hard or snow<br>covered.                                                                                                            | Higher N<br>efficiency of<br>inorganic<br>fertilizer/manure<br>and less<br>fertilizer/manure<br>use | United<br>Kingdom | X                  |      |      | 3                  |        |

| Sewage S | Sludge Directive                                                                                                                                                                                                                                                                   |                                              |                           |             |          |          |                            |                                                                                                                                                                                                                                                                          |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------|-------------|----------|----------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number   | SMR                                                                                                                                                                                                                                                                                | How to include                               | Stat<br>e<br>Nam<br>e     | mite<br>RRA | EP<br>IC | DN<br>DC | MITE<br>RRA<br>mea<br>sure | Remark                                                                                                                                                                                                                                                                   |
| 653      | Application of sewage sludge on<br>agriculturally or gardening used soils<br>is prohibited if examinations of soil in<br>line with § 3 paragraph 2 or 3<br>indicate that the contents of the heavy<br>metals specified in § 4 paragraph 8<br>exceed at least one of the values.    | No sewage<br>sludge in<br>particular areas   | Ger<br>man<br>y           |             |          |          |                            |                                                                                                                                                                                                                                                                          |
| 762      | Sewage sludge utilization is allowed<br>only if the sewage sludge, when it is<br>used, does not exceed the limit<br>values of concentration of heavy<br>metals and other parameters<br>established by the law.                                                                     | Maximum<br>contents of X in<br>sewage sludge | Italy                     | Х           |          |          |                            | Use the minimum<br>value of estimated<br>present metal<br>concentrations and<br>maximum<br>concentrations in<br>sewage sludge in<br>sewage sludge                                                                                                                        |
| 979      | The sludge used must not contain<br>more metals than the values listed<br>below. Maximum metal content in<br>sludge, mg/kg dry matter: Lead 100,<br>Cadmium 2, Copper 600, Chromium<br>100, Mercury 2.5, Nickel 50, Zinc<br>800.                                                   | Maximum<br>contents of X in<br>sewage sludge | Swe<br>den                | Х           |          |          |                            | Use the minimum<br>value of estimated<br>present metal<br>concentrations and<br>mentioned<br>maximum<br>concentrations in<br>sewage sludge                                                                                                                               |
| 1089     | The application of sewage sludge<br>must not increase the metal<br>concentrations in the soil above the<br>limits as set in the sludge table in the<br>Regulations.                                                                                                                | Maximum<br>contents of X in<br>sewage sludge | Unite<br>d<br>King<br>dom | Х           |          |          |                            | In principle this is a<br>simplification since<br>this requires a<br>dynamic model<br>including<br>information on<br>present levels and<br>adsorption<br>characteristics of<br>the soil                                                                                  |
| 980      | Sewage sludge may only be spread<br>on arable land if the metal contents of<br>the soil are lower than the values<br>listed below.<br>Maximum metal content in the soil,<br>mg/kg dry matter: Lead 40,<br>Cadmium 0.4, Copper 40, Chromium<br>60, Mercury 0.3, Nickel 30, Zinc 10. | Maximum<br>contents of X in<br>sewage sludge | Swe<br>den                | Χ           |          |          |                            | In principle this is a<br>simplification since<br>it actually should<br>be: No sewage<br>sludge in particular<br>areas, i.e. where<br>soil concentrations<br>exceed limit<br>values, but this<br>information is not<br>available on a<br>general European<br>wide level. |
| 981      | When you spread sewage sludge on<br>arable land you must not introduce<br>more metal per hectare per year than<br>listed below. There are also limits on<br>how much phosphorus and nitrogen<br>you may spread over a seven-year<br>period.                                        | Maximum<br>contents of X in<br>sewage sludge | Swe<br>den                | х           |          |          |                            | In principle this is a<br>simplification since<br>it actually should<br>be a limit to the<br>application rate<br>(product of amount<br>of seage and<br>maximum                                                                                                           |

| Sewage S | Sludge Directive                                                                                                                                                                                                                                                                     |                                              |                           |             |          |          |                            |                                         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------|-------------|----------|----------|----------------------------|-----------------------------------------|
| Number   | SMR                                                                                                                                                                                                                                                                                  | How to include                               | Stat<br>e<br>Nam<br>e     | mite<br>RRA | EP<br>IC | DN<br>DC | MITE<br>RRA<br>mea<br>sure | Remark                                  |
| 1112     | The producers of the sludge are<br>responsible for keeping to the legal<br>requirements on concentrations of<br>metal contaminants in the sludge<br>itself and the soil to which it is<br>applied.                                                                                   | Maximum<br>contents of X in<br>sewage sludge | Unite<br>d<br>King<br>dom | Х           |          |          |                            | concentration)                          |
| 711      | Comply with the provisions of articles<br>3 and 4 of the Joint Ministerial<br>Decision (JMD) 80568/4225/91 (B<br>641). (Directive 86/278/EEC).                                                                                                                                       | Maximum<br>contents of X in<br>sewage sludge | Gree<br>ce                | Х           |          |          |                            |                                         |
| 771      | The utilization of sewage sludge in<br>agriculture is allowed only if it is<br>treated beforehand; if it is fit to be<br>used as fertilizer or to have a<br>corrective effect on the land; if its<br>content of toxic or noxious<br>substances is not dangerous for land,<br>crop an | Maximum<br>contents of X in<br>sewage sludge | Italy                     | Х           |          |          |                            | Again a<br>simplification of<br>reality |

| Groundwa | ater Directive                                                                                                                                                                                                                                                                         |                                                                                                               |                           |             |              |          |                            |        |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------|-------------|--------------|----------|----------------------------|--------|
| Number   | SMR                                                                                                                                                                                                                                                                                    | How to include                                                                                                | Stat<br>e<br>Nam<br>e     | miter<br>Ra | E<br>PI<br>C | DN<br>DC | MITE<br>RRA<br>meas<br>ure | Remark |
| 720      | Land spreading of organic matter<br>containing List II substances should<br>be done in accordance with good<br>farming practice. All silage and slurry<br>pits should be structurally sound.<br>Clean water run-off should be<br>channelled away from dirty water<br>collection point. | Set all<br>contaminants that<br>exceeds<br>threshold values<br>at that threshold.<br>MITERRA: only list<br>II | Irela<br>nd               | X           |              |          |                            |        |
| 723      | It is not allowed to spread slurry<br>close to wells or in excess amounts<br>for soil absorption. Land spreading of<br>organic matter materials containing<br>List II substances is done according<br>to good farming practice.                                                        | Set all<br>contaminants that<br>exceeds<br>threshold values<br>at that threshold.<br>MITERRA: only list<br>II | Irela<br>nd               | Х           |              |          |                            |        |
| 1020     | Farmers must not make any<br>discharges of List I substances to<br>groundwater or cause pollution of<br>groundwater by List II substances<br>(see Appendix 2d for lists).                                                                                                              | Set all<br>contaminants that<br>exceeds<br>threshold values<br>at that threshold.<br>MITERRA: only list<br>II | Unit<br>ed<br>King<br>dom | Х           |              |          |                            |        |

## Appendix 3 Expected environmental impacts of measures related to Good Agricultural and Environmental Conditions (GAECs) for soil erosion, soil organic matter and minimum level of maintenance

|              |          |                                                                                 | Enviro                  | nment                    |                |             |         |               |               |
|--------------|----------|---------------------------------------------------------------------------------|-------------------------|--------------------------|----------------|-------------|---------|---------------|---------------|
|              |          | Short name                                                                      | Ground water<br>muality | Surface water<br>miality | Water quantity | Air quality | Climate | Physical soil | Chemical soil |
| Soil erosion | Minimum  | Field greening                                                                  | 0                       | 0                        |                |             |         | Х             | 0             |
|              | coverage | Maintenance - grazing and outdoor<br>feeding sites                              |                         |                          |                |             |         | Х             |               |
|              |          | Maintenance - minimum                                                           | 0                       | 0                        |                |             |         | Х             | 0             |
|              |          | maintenance<br>Maintenance - minimum                                            | 0                       | 0                        |                |             |         | Х             | 0             |
|              |          | maintenance - non cultivated land<br>Maintenance - set-aside - catch            | 0                       | 0                        |                |             |         | х             | 0             |
|              |          | crops                                                                           |                         |                          |                |             |         |               |               |
|              |          | Maintenance - set-aside -<br>establishment of plant cover                       | 0                       | 0                        |                |             |         | Х             | 0             |
|              |          | Maintenance - set-aside - must of<br>plant cover                                | 0                       | 0                        |                |             |         | Х             | 0             |
|              |          | Maintenance - set-aside - oil plants<br>rules                                   | 0                       | 0                        |                |             |         | Х             | 0             |
|              |          | Maintenance - set-aside - re-<br>establishment of plant cover                   | 0                       | 0                        |                |             |         | Х             | 0             |
|              |          | Maintenance - set-aside - species<br>Maintenance - set-aside - tillage          | 0                       | 0                        |                |             |         | X<br>X        | 0             |
|              |          | Sept 1<br>Maintenance - set-aside - tillage Oct<br>10                           |                         |                          |                |             |         | Х             |               |
|              |          | Prohibition of ploughing up<br>permanent grassland - change by<br>10%           | Х                       | 0                        |                | 0           | 0       | Х             |               |
|              |          | Soil erosion - minimum coverage                                                 | 0                       | 0                        |                |             |         | Х             | 0             |
|              |          | Soil erosion - minimum coverage -<br>arable land                                | 0                       | 0                        |                |             |         | Х             | 0             |
|              |          | Soil erosion - minimum coverage -<br>fallow and set-aside land                  | 0                       | 0                        |                |             |         | Х             | 0             |
|              |          | Soil erosion - minimum coverage -<br>fallow and set-aside land herbicide<br>use | 0                       | 0                        |                |             |         | Х             | 0             |
|              |          | Soil erosion - minimum coverage -<br>non-cropped land - ANDA                    | 0                       | 0                        |                |             |         | Х             | 0             |
|              |          | Soil erosion - minimum coverage -<br>olives - NAVA                              | 0                       | 0                        |                |             |         | Х             | 0             |
|              |          | Soil erosion - minimum coverage -                                               | 0                       | 0                        |                |             |         | Х             | 0             |

|              |                     |                                                                  | Environment                                                         |             |         |                                          |  |  |  |
|--------------|---------------------|------------------------------------------------------------------|---------------------------------------------------------------------|-------------|---------|------------------------------------------|--|--|--|
|              |                     | Short name                                                       | Ground water<br>แลเน่น<br>Surface water<br>แลเน่น<br>Water quantity | Air quality | Climate | Physical soil<br>malitu<br>Chemical soil |  |  |  |
|              |                     |                                                                  | Gro<br>Sur<br>Wa                                                    | Air         | Clir    | Phy<br>Che                               |  |  |  |
|              |                     | permanent crops                                                  | 0 0                                                                 |             |         | V O                                      |  |  |  |
|              |                     | Soil erosion - minimum coverage -                                | 0 0                                                                 |             |         | X 0                                      |  |  |  |
|              |                     | post-harvest management - W<br>Soil erosion - minimum coverage - | 0 0                                                                 |             |         | X 0                                      |  |  |  |
|              |                     | temporary cover crop                                             | 0 0                                                                 |             |         | λ Ο                                      |  |  |  |
|              | Minimum land        | Maintenance - appropriate livestock                              | 0                                                                   |             |         | Х                                        |  |  |  |
|              | management          | density - upland overgrazing                                     |                                                                     |             |         |                                          |  |  |  |
|              | reflecting site-    | Maintenance - supplementary                                      | 0                                                                   |             |         | Х                                        |  |  |  |
|              | specific conditions | feeding sites - rotation                                         |                                                                     |             |         |                                          |  |  |  |
|              |                     | Prohibition of ploughing up                                      | 0                                                                   | 0           | 0       | Х                                        |  |  |  |
|              |                     | permanent grassland - slopes and                                 |                                                                     |             |         |                                          |  |  |  |
|              |                     | protection zones                                                 |                                                                     |             |         |                                          |  |  |  |
|              |                     | Soil erosion - collection of rainwater                           | 0                                                                   |             |         | Х                                        |  |  |  |
|              |                     | Soil erosion - cultivation distance to                           | Х                                                                   |             |         | Х                                        |  |  |  |
|              |                     | waters                                                           | _                                                                   |             |         |                                          |  |  |  |
|              |                     | Soil erosion - drainage                                          | 0                                                                   |             |         | Х                                        |  |  |  |
|              |                     | Soil erosion - grass margins                                     | 0                                                                   |             |         | Х                                        |  |  |  |
|              |                     | Soil erosion - grazing and poaching                              | 0                                                                   |             |         | Х                                        |  |  |  |
|              |                     | Soil erosion - livestock access to                               | 0                                                                   |             |         | Х                                        |  |  |  |
|              |                     | watercourses                                                     |                                                                     |             |         | Х                                        |  |  |  |
|              |                     | Soil erosion - minimum coverage -<br>wind erosion                |                                                                     |             |         | ۸                                        |  |  |  |
|              |                     | Soil erosion - modification of plots                             |                                                                     |             |         | Х                                        |  |  |  |
|              |                     | Soil erosion - no row crops on                                   | 0                                                                   |             |         | X                                        |  |  |  |
|              |                     | slopes                                                           | 0                                                                   |             |         | A                                        |  |  |  |
|              |                     | Soil erosion - steep slopes                                      | 0                                                                   |             |         | Х                                        |  |  |  |
|              |                     | Soil erosion - supplementary                                     | 0                                                                   |             |         | X                                        |  |  |  |
|              |                     | feeding sites                                                    |                                                                     |             |         |                                          |  |  |  |
|              |                     | Soil erosion - tillage on slope -                                | 0                                                                   |             |         | Х                                        |  |  |  |
|              |                     | arable land - NAVA                                               |                                                                     |             |         |                                          |  |  |  |
|              |                     | Soil erosion - tillage on slope -                                | 0                                                                   |             |         | Х                                        |  |  |  |
|              |                     | permanent crops - ANDA                                           |                                                                     |             |         |                                          |  |  |  |
|              |                     | Soil erosion - uncultivated margins                              | 0                                                                   |             |         | Х                                        |  |  |  |
|              | Retain terraces     | Maintenance - landscape features                                 | 0                                                                   |             |         | Х                                        |  |  |  |
|              |                     | Maintenance - landscape features -                               | 0                                                                   |             |         | Х                                        |  |  |  |
|              |                     | terraces                                                         |                                                                     |             |         |                                          |  |  |  |
|              |                     | Soil erosion - maintenance of                                    | 0                                                                   |             |         | Х                                        |  |  |  |
|              |                     | landscape and other features                                     |                                                                     |             |         |                                          |  |  |  |
|              | Other standards?    |                                                                  | 0                                                                   |             |         |                                          |  |  |  |
| Soil organic | Standards for       | Soil organic matter - break crops                                | 0                                                                   |             |         | X X                                      |  |  |  |
| natter       | crop rotations      |                                                                  | 0                                                                   |             |         | V V                                      |  |  |  |
|              | where applicable    | Soil organic matter - crop rotation                              | 0                                                                   |             |         | X X                                      |  |  |  |
|              |                     | Soil organic matter - crop rotation -<br>humus balance           | 0                                                                   |             |         | 0                                        |  |  |  |
|              |                     | Soil organic matter - crop rotation -                            |                                                                     |             |         | Х                                        |  |  |  |
|              |                     | three crops                                                      |                                                                     |             |         | ۸                                        |  |  |  |
|              | Arable stubble      | Field greening                                                   | 0 0                                                                 |             |         | X 0                                      |  |  |  |
|              | management          | Soil organic matter - arable stubble                             | 0 0                                                                 |             |         | X                                        |  |  |  |
|              | management          | management                                                       |                                                                     |             |         | <i>N</i>                                 |  |  |  |
|              |                     | Soil organic matter - manure                                     | 0                                                                   | 0           | 0       | Х                                        |  |  |  |
|              |                     | management                                                       |                                                                     | -           | -       |                                          |  |  |  |
|              |                     | Soil organic matter - stubble                                    |                                                                     | 0           | 0       | 0                                        |  |  |  |
|              |                     | burning management                                               |                                                                     |             |         |                                          |  |  |  |
|              |                     | Soil organic matter - stubble                                    |                                                                     | 0           | 0       | 0                                        |  |  |  |

|                |                                     |                                                                                     | Enviro       | nment         |                |             |         |               |               |
|----------------|-------------------------------------|-------------------------------------------------------------------------------------|--------------|---------------|----------------|-------------|---------|---------------|---------------|
|                |                                     | Short name                                                                          | Ground water | Surface water | Water quantity | Air quality | Climate | Physical soil | Chemical soil |
|                |                                     | burning prohibition                                                                 | (            | , .           |                |             |         |               |               |
|                | Other standards?                    |                                                                                     |              |               |                |             |         |               |               |
| Minimum Level  | Others refering to                  | Field greening                                                                      | 0            | 0             |                |             |         | Х             | 0             |
| of Maintenance | Minimum level of                    | Maintenance - minimum                                                               |              | 0             |                |             |         | Х             |               |
|                | maintenance                         | maintenance - abandoned land                                                        |              |               |                |             |         |               |               |
|                |                                     | Maintenance - permanent grassland                                                   | 0            | 0             |                |             |         | Х             | 0             |
|                | Avoiding the                        | Field greening                                                                      | 0            | 0             |                |             |         | Х             | 0             |
|                | encroachment of                     | Maintenance - permanent grassland                                                   | 0            | 0             |                |             |         | Х             | 0             |
|                | unwanted<br>vegetation on           | Maintenance - minimum livestock<br>density                                          | 0            | 0             |                |             |         | Х             | 0             |
|                | agricultural land                   | Maintenance - appropriate livestock<br>density - undergrazing                       | 0            | 0             |                |             |         | Х             | 0             |
|                | Protection of                       | Field greening                                                                      | 0            | 0             |                |             |         | Х             | 0             |
|                | groundwater                         | Prohibition of ploughing up<br>permanent grassland - slopes and<br>protection zones | 0            | 0             |                | 0           | 0       | Х             | 0             |
|                |                                     | Maintenance - set-aside -<br>fertilization restrictions                             | Х            | Х             |                |             |         | 0             | 0             |
|                |                                     | Maintenance - set-aside -<br>management                                             | 0            | 0             |                |             |         | 0             | 0             |
|                |                                     | Maintenance - set-aside - oil plants<br>rules                                       | 0            | 0             |                |             |         | Х             | 0             |
|                | Protection of                       | Field greening                                                                      | 0            | 0             |                |             |         | Х             | 0             |
|                | permanent<br>pasture                | Prohibition of ploughing up<br>permanent grassland - slopes and<br>protection zones | 0            | 0             |                | 0           | 0       | Х             | 0             |
|                |                                     | Maintenance - permanent grassland                                                   | 0            | 0             |                |             |         | Х             | 0             |
|                |                                     | Maintenance - appropriate livestock<br>density                                      | 0            | 0             |                |             |         | Х             | 0             |
|                |                                     | Maintenance - minimum<br>maintenance - mowing, grazing                              | 0            | 0             |                |             |         | 0             | 0             |
|                | Protection of<br>suface             | Maintenance - set-aside - catch<br>crops                                            | 0            | 0             |                |             |         | Х             | 0             |
|                |                                     | Prohibition of ploughing up<br>permanent grassland - slopes and<br>protection zones | 0            | 0             |                | 0           | 0       | Х             | 0             |
|                |                                     | Maintenance - set-aside - must of<br>plant cover                                    | 0            | 0             |                |             |         | Х             | 0             |
|                | Retention of                        | Field greening                                                                      | 0            | 0             |                |             |         | Х             | 0             |
|                | landscape<br>features               | Maintenance - permanent grassland                                                   | 0            | 0             |                |             |         | Х             | 0             |
|                | Minimum livestock<br>stocking rates | Maintenance - minimum livestock<br>density                                          | 0            | 0             |                |             |         | Х             | 0             |
|                | or/and<br>appropriate               | Maintenance - appropriate livestock density - overgrazing - SC                      | 0            | 0             |                |             |         | Х             | 0             |
|                | regimes<br>Other standards?         | Maintenance - permanent grassland                                                   | 0            | 0             |                |             |         | Х             | 0             |

## Appendix 4 Selected measures in GAECs and the way in which effect indicators will be calculated with one or more models in the CCAT tool

|     | State       | GAEC Issue                      | GAEC Sub Issue                                                                    | Short name<br>GAEC                                          | GAEC                                                                                                                                                                                                                                         | Which<br>model <sup>1</sup> | How to include                                                                                                                                                                                                                                  | Remarks                                                                                                                                                                                                                                                                                                                         |
|-----|-------------|---------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Austria     | Minimum level of<br>maintenance | Avoiding the<br>encroachment of<br>unwanted<br>vegetation on<br>agricultural land | Field greening                                              | GAEC- GREEN COVER:<br>On arable land which is out of cultivation GREEN COVER<br>is obligatory, and these areas have to be maintained<br>during growing season (usually between April and<br>September).                                      | 1, 2, 3                     | the measure<br>Introduce a<br>cover crop in<br>winter to<br>maintain crop<br>area, this needs<br>to be<br>implemented in<br>the EPIC model,<br>but should be<br>possible<br>theoretically.<br>We could in<br>principle do the<br>same with DNDC | We will be able to<br>model something that is<br>in the 'spirit' of this<br>measure. I am thinking<br>of cover crops during<br>winter for example. So,<br>although not<br>specifically, we can<br>address issues that are<br>similar to this measure.<br>I think that we should be<br>flexible with the<br>interpretation here. |
| 3   | Austria     | Minimum level of maintenance    | Others referring to<br>Minimum level of<br>maintenance                            | Field greening                                              | GAEC- GREEN COVER:<br>On arable land which is out of cultivation GREEN COVER<br>is obligatory, and these areas have to be maintained<br>during growing season (usually between April and<br>September).                                      | 1,2                         | see 1                                                                                                                                                                                                                                           | Maintenance of crop<br>cover, cover crop                                                                                                                                                                                                                                                                                        |
| 175 | Netherlands | Minimum level of<br>maintenance | Others referring to<br>Minimum level of<br>maintenance                            | Maintenance -<br>minimum<br>maintenance -<br>abandoned land | It is generally prohibited to have bare fallow. It means<br>farmers have to seed a crop on all plots taken out of<br>production (can be green crop, non-food/non-feed crop<br>or forage legumes, in case of organic farming on all<br>land). | 1, 2                        | see 1                                                                                                                                                                                                                                           | Maintenance of crop<br>cover, cover crop                                                                                                                                                                                                                                                                                        |

|     | State   | GAEC Issue                      | GAEC Sub Issue                        | Short name<br>GAEC                          | GAEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Which<br>model <sup>1</sup> | How to include the measure | Remarks                                  |
|-----|---------|---------------------------------|---------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|------------------------------------------|
| 4   | Austria | Minimum level of<br>maintenance | Protection of<br>groundwater          | Field greening                              | GAEC- GREEN COVER:<br>On arable land which is out of cultivation GREEN COVER<br>is obligatory, and these areas have to be maintained<br>during growing season (usually between April and<br>September).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1, 2                        | see 1                      | Maintenance of crop<br>cover, cover crop |
| 8   | Austria | Minimum level of<br>maintenance | Protection of<br>permanent<br>pasture | Field greening                              | GAEC- GREEN COVER:<br>On arable land which is out of cultivation GREEN COVER<br>is obligatory, and these areas have to be maintained<br>during growing season (usually between April and<br>September).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1, 2                        | see 1                      | Maintenance of crop<br>cover, cover crop |
| 302 | Sweden  | Minimum level of<br>maintenance | Protection of<br>surface              | Maintenance -<br>set-aside - catch<br>crops | For multiannual set aside you are required to sow a catch<br>crop. If the set aside is to be annual, you may in certain<br>cases leave the land unworked after harvest the year<br>before the set aside year. If you sow the catch crop into<br>the main crop which precedes the set aide it is possible<br>to choose annual or multiannual set aside.<br>The following plants are approved as catch crops:<br>grasses (but not cereals), clover, alfalfa, vetch, goat's<br>rue, birdsfoot trefoil, California bluebell and white<br>mustard. You can sow the plants as single crops or<br>mixed. The proportion of legumes in the seed for sowing<br>may not exceed 30% of the seed mixture by weight. You<br>can also allow an existing ley to become the catch crop<br>on set aside land. If you have used a ley for harvesting or<br>grazing in the preceding growing season and are now<br>allowing it to be the catch crop under set aside, the limit<br>of 30% of legumes in the seed for sowing does not<br>apply. | 1,2,3                       |                            | Catch crop, set-aside<br>specific though |
| 11  | Austria | Minimum level of maintenance    | Retention of<br>landscape<br>features | Field greening                              | GAEC- GREEN COVER:<br>On arable land which is out of cultivation GREEN COVER<br>is obligatory, and these areas have to be maintained<br>during growing season (usually between April and<br>September).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1, 2                        | see 1                      | Maintenance of crop<br>cover, cover crop |

|     | State       | GAEC Issue   | GAEC Sub Issue      | Short name<br>GAEC                                                  | GAEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Which<br>model <sup>1</sup> | How to include<br>the measure | Remarks                                  |
|-----|-------------|--------------|---------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|------------------------------------------|
| 15  | Austria     | Soil erosion | Minimum<br>coverage | Field greening                                                      | GAEC- GREEN COVER:<br>On arable land which is out of cultivation GREEN COVER<br>is obligatory, and these areas have to be maintained<br>during growing season (usually between April and<br>September).                                                                                                                                                                                                                                                                                                   | 1, 2                        | see 1                         | Maintenance of crop<br>cover, cover crop |
| 113 | Greece      | Soil erosion | Minimum<br>coverage | Field greening                                                      | Ensure that in parcels in areas with an inclination greater<br>than 10%, there is plant cover during periods of rainfall,<br>until the preparation of the soil for the next seeding,<br>depending on the crop.                                                                                                                                                                                                                                                                                            | 1,2                         | see l                         | Maintenance of crop<br>cover, cover crop |
| 125 | Hungary     | Soil erosion | Minimum<br>coverage | Soil erosion -<br>minimum<br>coverage                               | ensure a minimum soil cover before spring sown crops in areas exposed to erosion.                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2                         | see 1                         | Maintenance of crop cover, cover crop    |
| 139 | Ireland     | Soil erosion | Minimum<br>coverage | Maintenance -<br>minimum<br>maintenance                             | Ensure that soil is covered by vegetation (crop cover,<br>crop residue, stupple cover) or else ploughed. Finely tiled<br>bare (unsown) seedbeds are not permitted over the<br>winter.                                                                                                                                                                                                                                                                                                                     | 1,2                         | see 1                         | Maintenance of crop<br>cover, cover crop |
| 178 | Netherlands | Soil erosion | Minimum<br>coverage | Maintenance -<br>minimum<br>maintenance                             | You are obliged to seed a crop on all plots taken out of production.                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2                         | see 1                         | Maintenance of crop cover, cover crop    |
| 179 | Netherlands | Soil erosion | Minimum<br>coverage | Soil erosion -<br>minimum<br>coverage                               | On land threatened by erosion:<br>Crops should be sown directly after the harvest or, cover<br>crop should be mulched, or the soil should be covered by<br>straw and the measures breaking water run-off should be<br>installed (didges, canals, hedges or soil protective<br>crops).                                                                                                                                                                                                                     | 1, 2                        | see 1                         | Maintenance of crop<br>cover, cover crop |
| 235 | Spain       | Soil erosion | Minimum<br>coverage | Maintenance -<br>minimum<br>maintenance -<br>non cultivated<br>land | Exactable conditions to avoid erosion. Minimum coverage<br>of soil. Non-cropped land.<br>Those lands not cultivated, not intended for pastures, nor<br>used to activate rights for set-aside, shall meet the same<br>maintenance conditions required for fallow land<br>(optionally: traditional cropping practises, minimal tillage<br>practices or practices to maintain an adequate<br>vegetation cover, either spontaneous or through the<br>sowing of enhancing species), even though, in this case, | 1, 2                        | see 1                         | Maintenance of crop<br>cover, cover crop |


|     | State          | GAEC Issue      | GAEC Sub Issue      | Short name<br>GAEC | GAEC                                                                                                                                                                     | Which model <sup>1</sup> | How to include the measure | Remarks             |
|-----|----------------|-----------------|---------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------|---------------------|
|     |                |                 |                     |                    | weed killers shall not be applied. On the contrary, those<br>necessary maintenance works could be made for the<br>elimination of weeds and invading vegetation, bush and |                          |                            |                     |
|     |                |                 |                     |                    | tree.                                                                                                                                                                    |                          |                            |                     |
|     |                |                 |                     |                    | Alternatively to the previously indicated practices and                                                                                                                  |                          |                            |                     |
|     |                |                 |                     |                    | with purposes of fertilization, a total maximum amount of                                                                                                                |                          |                            |                     |
|     |                |                 |                     |                    | 20 tons per hectare (t/ha) of dung or 40cu m/ha of                                                                                                                       |                          |                            |                     |
|     |                |                 |                     |                    | slurry in a period of three years could be incorporated,                                                                                                                 |                          |                            |                     |
|     |                |                 |                     |                    | provided that the soil has a vegetable cover or its                                                                                                                      |                          |                            |                     |
|     |                |                 |                     |                    | immediate introduction is foreseen, complying in any                                                                                                                     |                          |                            |                     |
|     |                |                 |                     |                    | case with what is set out in Royal Decree 261/1996 of                                                                                                                    |                          |                            |                     |
|     |                |                 |                     |                    | 16 February on the protection of waters against pollution by nitrates from agricultural sources. The control of                                                          |                          |                            |                     |
|     |                |                 |                     |                    | weeds shall be made in accordance with the criteria                                                                                                                      |                          |                            |                     |
|     |                |                 |                     |                    | previously set out.                                                                                                                                                      |                          |                            |                     |
| 95  | United Kingdom | Soil erosion    | Minimum             | Soil erosion -     | All cultivated land must have either crop cover, stubble                                                                                                                 | 1,2                      | see 1                      | Maintenance of crop |
|     | -              |                 | coverage            | minimum            | cover, grass cover or be ploughed or disced over the                                                                                                                     |                          |                            | cover, cover crop   |
|     |                |                 |                     | coverage           | following winter. Finely tilled bare seedbeds are not                                                                                                                    |                          |                            |                     |
|     |                |                 |                     |                    | permitted over the winter.                                                                                                                                               |                          |                            |                     |
| 396 | United Kingdom | Soil erosion    | Minimum             | Soil erosion -     | All cropped land over the following winter must where soil                                                                                                               | 1,2                      | see 1                      | Maintenance of crop |
|     |                |                 | coverage            | minimum            | conditions allow:                                                                                                                                                        |                          |                            | cover, cover crop   |
|     |                |                 |                     | coverage -         | - crop cover, grass cover, stubble cover, ploughed                                                                                                                       |                          |                            |                     |
|     |                |                 |                     | arable land        | surface or roughly cultivated surface. Fine seedbeds                                                                                                                     |                          |                            |                     |
| 6   | Austria        | Soil erosion    | Minimum land        | Field greening     | must be created very close to sowing.<br>GAEC- GREEN COVER:                                                                                                              | 1,2                      | see 1                      | Maintenance of crop |
| .0  | Austria        | 3011 61 0 51011 | management          |                    | On arable land which is out of cultivation GREEN COVER                                                                                                                   | 1, 2                     | 366 1                      | cover, cover crop   |
|     |                |                 | reflecting site-    |                    | is obligatory, and these areas have to be maintained                                                                                                                     |                          |                            |                     |
|     |                |                 | specific conditions |                    | during growing season (usually between April and                                                                                                                         |                          |                            |                     |
|     |                |                 |                     |                    | September).                                                                                                                                                              |                          |                            |                     |
| 6   | Belgium        | Soil erosion    | Minimum land        |                    | At least one anti-erosion measure must be taken on sites                                                                                                                 | 1,2                      | see 1                      | Maintenance of crop |
|     |                |                 | management          |                    | which are highly vulnerable to erosion:                                                                                                                                  |                          |                            | cover, cover crop,  |
|     |                |                 | reflecting site-    |                    | 1° maintain the land under permanent cover:                                                                                                                              |                          |                            | winter crop         |
|     |                |                 | specific conditions |                    | 2° cultivation of winter cereals: the land should be left                                                                                                                |                          |                            |                     |
|     |                |                 |                     |                    | without cover for no more than three months and should                                                                                                                   |                          |                            |                     |

|    | State          | GAEC Issue   | GAEC Sub Issue      | Short name<br>GAEC | GAEC                                                                 | Which<br>model <sup>1</sup> | How to include the measure | Remarks             |
|----|----------------|--------------|---------------------|--------------------|----------------------------------------------------------------------|-----------------------------|----------------------------|---------------------|
|    |                |              |                     |                    | be sown as far as possible following the contours of the             |                             |                            |                     |
|    |                |              |                     |                    | land if the plot of land is longer than 100 metres in that           |                             |                            |                     |
|    |                |              |                     |                    | direction;                                                           |                             |                            |                     |
|    |                |              |                     |                    | 3° cultivation of summer cereals or flax: provide cover              |                             |                            |                     |
|    |                |              |                     |                    | crops to be worked in no more than two weeks before                  |                             |                            |                     |
|    |                |              |                     |                    | the sowing date and sow the plot as far as possible                  |                             |                            |                     |
|    |                |              |                     |                    | following the contours of the land if it is longer than 100          |                             |                            |                     |
|    |                |              |                     |                    | metres in that direction;                                            |                             |                            |                     |
|    |                |              |                     |                    | 4° cultivation of crops which are susceptible to erosion:            |                             |                            |                     |
|    |                |              |                     |                    | land should be left without cover for no more than two               |                             |                            |                     |
|    |                |              |                     |                    | months before the sowing of the main crop and one of                 |                             |                            |                     |
|    |                |              |                     |                    | the following measures should be taken:                              |                             |                            |                     |
|    |                |              |                     |                    | a) do not work the soil;                                             |                             |                            |                     |
|    |                |              |                     |                    | b) work the soil only in such a way as not to turn it before         |                             |                            |                     |
|    |                |              |                     |                    | sowing the cover or catch crop and immediately sow the               |                             |                            |                     |
|    |                |              |                     |                    | main crop;                                                           |                             |                            |                     |
|    |                |              |                     |                    | c) provide a buffer zone of 10 m <sup>3</sup> or a dyke half a metre |                             |                            |                     |
|    |                |              |                     |                    | high with a length of at least a quarter of the                      |                             |                            |                     |
|    |                |              |                     |                    | circumference of the plot, at the bottom of the plot;                |                             |                            |                     |
|    |                |              |                     |                    | d) do not work the soil or work it only superficially in such        |                             |                            |                     |
|    |                |              |                     |                    | a way as not to turn it before sowing the cover or catch             |                             |                            |                     |
|    |                |              |                     |                    | crop and additionally work the soil very superficially (no           |                             |                            |                     |
|    |                |              |                     |                    | more than 5 cm deep leaving a rough seed bed behind)                 |                             |                            |                     |
|    |                |              |                     |                    | before sowing the main crop.                                         |                             |                            |                     |
| 80 | Netherlands    | Soil erosion | Minimum land        | Soil erosion -     | In areas with soil erosion: directly after the harvest and           | 1,2                         | see 1                      | Maintenance of crop |
|    |                |              | management          | minimum            | before 1 October for cereals and 1 December for other                |                             |                            | cover, cover crop   |
|    |                |              | reflecting site-    | coverage -         | crops the soil is cultivated. The cover crop must be                 |                             |                            |                     |
|    |                |              | specific conditions | arable land        | sown.                                                                |                             |                            |                     |
| 05 | United Kingdom | Soil erosion | Minimum land        | Soil erosion -     | In areas prone to wind erosion the steps reducing risk of            | 1,2                         | see 1                      | Maintenance of crop |
|    |                |              | management          | minimum            | soil loss in spring by maintaining crop cover, using                 |                             |                            | cover, cover crop   |
|    |                |              | reflecting site-    | coverage - wind    | coarse seedbeds, shelter belts or nurse crops or other               |                             |                            |                     |
|    |                |              | specific conditions | erosion            | measures.                                                            |                             |                            |                     |
|    |                |              |                     |                    | Where capping is a problem coarse seedbed should be                  |                             |                            |                     |
|    |                |              |                     |                    | formed or cap should be broken.                                      |                             |                            |                     |

|     | State    | GAEC Issue             | GAEC Sub Issue                                | Short name<br>GAEC                           | GAEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Which<br>model <sup>1</sup> | How to include the measure                                                                                                                                              | Remarks                                  |
|-----|----------|------------------------|-----------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 199 | Slovenia | Soil erosion           | Others referring to Soil Erosion              | Soil erosion -<br>tillage method             | Agricultural land shall be cultivated in a manner<br>minimizing soil erosion, applying agrotechnical measures<br>to reduce erosion effects.                                                                                                                                                                                                                                                                                                                                                            | 2                           |                                                                                                                                                                         | To vague though                          |
| 270 | Spain    | Soil erosion           | Others referring to<br>Soil Erosion           | Soil erosion -<br>coverage and<br>management | Exactable conditions to avoid erosion. Minimum coverage<br>of soil. Areas with a high risk of erosion.<br>In areas with a high risk of erosion, the restrictions,<br>guidelines for rotation of crops, including the organic<br>amendments, as well as the types of vegetal cover that<br>are established by the competent administration to avoid<br>the decline and the loss of soil and natural habitat, must<br>be respected.                                                                      | 2                           | Possibly, one<br>specific crop<br>rotation could be<br>evaluated across<br>the whole of<br>Europe to<br>evaluate the<br>effect on, for<br>example,<br>nutrient leaching | Crop cover and rotation                  |
| 19  | Austria  | Soil erosion           | Retain terraces                               | Field greening                               | GAEC- GREEN COVER:<br>On arable land which is out of cultivation GREEN COVER<br>is obligatory, and these areas have to be maintained<br>during growing season (usually between April and<br>September).                                                                                                                                                                                                                                                                                                | 1,2                         | see 1                                                                                                                                                                   | Maintenance of crop<br>cover, cover crop |
| 21  | Austria  | Soil organic<br>matter | Arable stubble<br>management                  | Field greening                               | GAEC- GREEN COVER:<br>On arable land which is out of cultivation GREEN COVER<br>is obligatory, and these areas have to be maintained<br>during growing season (usually between April and<br>September).                                                                                                                                                                                                                                                                                                | 1,2                         | see 1                                                                                                                                                                   | Maintenance of crop<br>cover, cover crop |
| 200 | Slovenia | Soil organic<br>matter | Others referring to<br>Soil organic<br>matter | Soil organic<br>matter - crop<br>rotation    | 3-year crop rotation is obligatory on at least 50 % of<br>arable land of individual farms. Grass, clover and their<br>mixtures on arable land are part of crop rotation and can<br>remain on the same part of land for more than three<br>years. Fallow land, additional and supplementary crops<br>are treated as part of crop rotation. Maize on all arable<br>land of individual farms is allowed in monoculture for not<br>more than three years. Burning of harvesting residues is<br>prohibited. | 2,3                         | see 270                                                                                                                                                                 | Crop rotation                            |

|     | State          | GAEC Issue             | GAEC Sub Issue                                      | Short name<br>GAEC                        | GAEC                                                                                                                                                                                                                                                                                                             | Which<br>model <sup>1</sup> | How to include the measure | Remarks       |
|-----|----------------|------------------------|-----------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|---------------|
| 132 | Hungary        | Soil organic<br>matter | Standards for<br>crop rotations<br>where applicable | Soil organic<br>matter - crop<br>rotation | using crop rotation with regard to the agro-ecological features of the region                                                                                                                                                                                                                                    | 2,3                         | see 270                    | Crop rotation |
| 142 | Ireland        | Soil organic<br>matter | Standards for<br>crop rotations<br>where applicable | Soil organic<br>matter - crop<br>rotation | Maintain an adequate level of soil organic matter by<br>means of appropriate cropping rotations or cropping<br>practices where necessary. In case of low level of<br>organic matter farmer will be required to change this<br>system by growing a suitable break crop or by<br>incorporating organic materials.  | 2,3                         | see 270                    | Crop rotation |
| 414 | United Kingdom | Soil organic<br>matter | Standards for<br>crop rotations<br>where applicable | Soil organic<br>matter - break<br>crops   | On arable land: use suitable break crops in an arable<br>rotation or<br>optimise the use of organic materials by basing rates of<br>application on soil and crop needs. Where break crops<br>are not used, a record should be kept for five years of<br>organic materials and quantities applied to arable land. | 2,3                         | see 270                    | Crop rotation |

 $^{1}$ 1= MITERRA Europe, 2 = EPIC, 3 = DNDC



Alterra is part of the international expertise organisation Wageningen UR (University & Research centre). Our mission is 'To explore the potential of nature to improve the quality of life'. Within Wageningen UR, nine research institutes – both specialised and applied – have joined forces with Wageningen University and Van Hall Larenstein University of Applied Sciences to help answer the most important questions in the domain of healthy food and living environment. With approximately 40 locations (in the Netherlands, Brazil and China), 6,500 members of staff and 10,000 students, Wageningen UR is one of the leading organisations in its domain worldwide. The integral approach to problems and the cooperation between the exact sciences and the technological and social disciplines are at the heart of the Wageningen Approach.

Alterra is the research institute for our green living environment. We offer a combination of practical and scientific research in a multitude of disciplines related to the green world around us and the sustainable use of our living environment, such as flora and fauna, soil, water, the environment, geo-information and remote sensing, landscape and spatial planning, man and society.

More information: www.alterra.wur.nl/uk