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INTRODUCTION
In groundwater quality models one often uses the convection-disper-
sion equation that describes the transport of solutes through a porous

medium as a result of water movement and dispersion, For a 1-dimensional

system this equation is written as follows
= - — + —_— 1
vV 5% )] ) (1)

where ¢ = concentration at point x at time t

I

It

v

D

actual water velocity inside the pores

1

dispersion coefficient

Eq. (1) is often extended with a decomposition and an adsorption
term. In the present approach, however another concept for solving
water quality problems will be followed., The transport of solutes will
be separated from the reactions of the solutes. This report deals with
the transport part which is formulated by means of eq. (1) and is cal-
led the mixing-cell concept,. -

The water quality part dealing with adsorption, complex formatiom,
precipitation etc. will be treated separately. The advantage of separa-
ting solute transport and chemical reactions is that one can describe
the reactions in detail with one system of mass balances. The time

dependent transport terms are then excluded.



1. ANALYTICAL SOLUTION OF THE CONVECTION-DISPERSION EQUATION

Eq. (1) is a one—-dimensional parabolic partial differential equa-
tion wi;pﬂc as a fungtion of.x and t. A well known method for solving
this equationfiﬂ“thé;ﬁéfﬁ§d of characteristics. This method implies

the following ‘transformation'of x and t into u and w:

u=x - vt (2a)

w ==t (2b)

u and w are called the characteristiecs of eq. ().
The substitution transforms the coordinates x and t into a moving
coordinate system that moves with the same velocity as the water. Sub-

stituting eq. (2a) and (2b} into eq. (1) yields:

2
dc _ . d ¢
w02 3
u
This is the well known diffusion or heat-flow equation. In the

literature several solutions are given,

For example, the solution with the following boundary conditions:

clo, W) = e (feed) (4a)
c(u, o) = c; (initial) (4b)
gives
1 x-vt
c =c, + <(c_~c.) erfc( ) (4c)
i 2°V°F 71 2/Dt

For studying the early stages of the process the complete solution
is found with aid of Laplace transformations. According to CRANCK

(1964) the solution is:

t x-vt VX x+vt
e =c. +=(c —c.){erfc( ) + exp (=) erfc( )} (4d)
L 2/Dt D 2/Dt

The difference between eq (4d) and (4c) is called the reflection
term. This term describes the process in the region x < vt, that is
the leftside of the moving coordinate system. This reflection term will

diminish with increasing time and increasing front penetration.
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2. MIXING-CELL CONCEPT

2.1, Description
Neglecting the second order term of eq. (1) gives eq. (5):

%% - -y %% (5)

The backward explicit finite difference approach of eq. (5) is
called the mixing-cell concept., The mixing-cell concept will give te

same solution as the analytical solution of eq., (1).

Rewriting equation (5) in terms of Ax and At using the mixing-cell

concept gives:

e(x,t+ht) - c(x,t) -y c(x,t) - c(x-Ax,t)

At Ax (6a)
Rearranging yields:
c(x,t4At) = c(x,t) - vgi{c(x,t) ~ c(x-bx, )} (6b)
or
e(i,i*) = O - 85 o, i) + Y& e(im1,) (6c)

Equation (6c) is illustrated in Fig. I,
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Fig. 1. The i-j grid and the position of the coefficients of eguation

6b and 6¢



2.2, Stability

The factor Vgi is called the mixing ratio. Eq. (6¢c) describes the
mixing of water in compartment i with water coming from compartment i-1.
The quantity of inflowing water is controlled by the factor vAt and

the quantity of remaining water with x ~ vAt., Dividing by the volume

of layer i yields the mixing ratio vﬁi .

Take:

. . T t
-~ the solution of eq. (6a) at time t is c
£ .
- and E; as the correct solution of eq. (5)

~ the difference between the real solution and the calculated one as

t
£
x
t t ~
E =c¢c —-¢ (7)
X x x

t . . . .
The elements of Ex can be described with a fourrier analysis as a

function of x (see KAN, 1982):

i ein (8)

Substitution of eq. (7) into (6a) gives:

rrE+AE ~t t+At t ~E svE t t

c -c £ - £ c -c € - € .

x X , _X X ooy X x~Ax e X x~Ax (9a)
At At Ax Ax

Substituting eq. (8) into eq. (9a) and rearranging yields:

Y -y - vy .
t+At t_ t ,,_ —ifdx
AT ol v (1-e ) (9b)
Rearranging gives eq. (10):
Yerae -1 - vAt(]_ —iBAx) (10
Ye Ax- " ® )

Stability will occur when:



-
t;‘_s < (11a)
t
or
vAt iBAx
-1 <1 ~-= <
1<t =2 Y <1 (11b)
0 < vit 5§ < 2 (11c)
= TAx 0=
It will be sufficient when E%%:i |1 to obtain stability, because
— 1< e BB ) and thus 0 < § < 2.

2.3. Precision and numeric dispersion

The finite difference approach with equation (6a) yields infact
terms of a Taylor polynomial. The complete Taylor polynomial for the

left and right hand side are given in eq. (12a) and {(12b):

(QE - e(x) - c(x-Ax) + bx 32c _ (Ax)2 33c + (122)
dx Ax 3T 7 T 3T 3T o @
t Ix 9x
2 2 .3
(gg) _c(e+ht) - c(t) _ At 97c _ (At)” 37c _ (12b)
dt At 21 2 KL 3
X ot ot

Substitution of eq. (12a) and (12b) in (6a) gives with neglection

of powers of A:

c(x,t+At) - e(x,t) _ At 32c g_‘vc(x,t) - c{x-Ax,t)  vhx 32c

(13a)
] 1
At 2. 3t2 Ax 21 sz
or
2 2
IC o v 9c At 3c_vbx dc (13b)
i g T 1
t ox 2! 3t2 2. ax2
2 2
using E—%vz 9c (see Appendix 1)
2 2
ot ox
gives
dc dc vzbt vhx\ 9
= — y 9€ c
ot 3x ( 2 2 ) ol (13¢)



The precision of this finite difference approach is equal to an
error of the second order! This error is called numeric dispersion.

Comparing eq. (l3c) with eq. (1) yields:

Dg_} _VZAt Cwhx (14)

2 2

Summarizing; the error that is made by using the mixing-cell concept
for eq, (5) is of the second order. This error, i.e. the numerical
dispersion, depends on the values chosen for Ax, At and v. So numerical
solution of eq. (5) yields a solution for eq. (1), if the values for
Ax, At and v are chosen in such a way that the 'numerical dispersion'

equals the actual dispersion.

2.4, The mixing-cell concept as a numeric series

Take equation (6c) and write the mixing ratio !%i-as o

c(i,j+1) = (1-a) e(i,j) + ac(i-1,]) (15)

Assume the following boundary conditions:

c the feed concentration

c(0,]) £

il

c(i,0) s the initial concentration
For a system of N layers the following response can be calculated:
c(i,j) =0 for j<i and 0<i<n (l6a)
and
. I gy ik i 51 k, . j-k-I
c(i,j*+y = ) { . Ja(l-a) e .+ ¥ (1-00) " (o) c. (16b)
& 1-1 f v o\ k 1
k=0 k=3-1

for j>i and O0<i<n



3. EXAMPLES

Comparing the mixing-cell concept with the analytical solution for

The breakthrough curve i.e, the concentration at x =

in the Fig. 2 and 3.

a chosen example gives the following result. Take the concentration of
the feed solution as unity and the initial concentration zero,
= 5 cm/day
2 =100 ecm (column length)
Ax = 10 cm
At = 1 day
_ vAt _
o === 0.5
L
N = vl 10
—~vA | vbx _ -25 50 2
DT =gty Tt T IZ5 eaday

£, is plotted

1_ 0 0 r o 0"0 00 00 0-0—0
0.80+
c B
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© - o mixing cell
020 /° analytical solution
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0 s ) 1 l o Ln-—qlo 1 1 1 ‘ 1 1 ) 1 | A 1 i y |
0 10.0 20.00 30.00 40.00
time (days)

Fig. 2. The results of the mixing—cell model versus the analytical

solution of eq.

(4d)
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Fig. 3. The results of the mixing—cell model versus the simple

analytical solution of eq. (&4c)



4. CONCLUSIONS AND RECOMMENDATIONS

The mixing-cell concept is an explicit backward finite difference

. c dc

approch of the transport equation %E + v P
method is of the second order which means that infact the convection-

= 0. The precision of the

dispersion equation is solved.

It is illustrated that the results of the mixing-cell model coincide
with the analytical solution (eq. 4c), provided that the reflection

at the boundary does not effect the breakthrough curve:

~ the first term of the analytical solution (eq. 4d) is identical with
the concentration front calculated with the mixing-cell model (if
- Dact);

- the second term of the analytical solution (eq. 4d) describes the
concentration in the early stages of the process (see for instance
BOLT, 1982). This fenomena is not described with the mixing—cell
concept;

- for larger times the mixing-cell concept fits quite well with the

analytical solution.

The advantage of separating tramsport of solutes from the chemical
reactions of the solutes will be illustrated in following reports. Two
examples will be referred too. GROENENDIJK (1984) described the combina-
tion of the mixing-cell model with the ion exchange of Na, Ca and Mg.

VAN OMMEN (1984) showed the application of the mixing~cell concept

to a two dimensional groundwater problem.
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Recapitulating the transport equation (5):

dc __ . %¢
ot vV ox

According to the definition of differential analysis:

3%c 2 dc,
it "

(=%

Substituting eq. (1) into (2) yields:

Rewriting eq. (3) and substituting eq. (1) gives:

52 3 3¢

Ll v 2By = -y ji{_ EEQ = v2 EEE
) Vx93t %' ¥V ¥x )

9x

(=]
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