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INTRODUCTION 

. ALTERRA, 
-Nagemngen Universiteit & Research centre 

Omgevingswelenschappen 
Centrum Water & Klimaat 

Team lillegraai Waterbeheer 

In groundwater quality models one aften uses the convection-disper­

sion equation that describes the transport of solutes through a porous 

medium as a result of water movement and dispersion. For a 1-dimensional 

system this equation is written as follows 

ac 
at = 

dC 
- v dx 

where c concentration at point x at time t 

v = actual water velocity inside the pores 

D = dispersion coefficient 

(I) 

Eq. (I) is aften extended with a decomposition and an adsorption 

term. In the present approach, however another concept for solving 

water quality problems will be follm<ed. The transport of solutes will 

be separated from the reactions of the solutes. This report deals with 

the transport part which is formulated by means of eq. (I) and is cal­

led the mixing-cell concept. 

The water quality part dealing with adsorption, complex formation, 

precipitation etc. will he treated separately. The advantage of separa­

ting solute transport and chemical reactions is that one can describe 

the reactions in detail with one system of mass balances. The time 

dependent transport terms are then excluded. 
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I . ANALYTICAL SOLUTION OF THE CONVECTION-DISPERSION EQUATION 

Eq. (I) is a one-dimensional parabalie partial differential equa­
{ · i ,i I 

ti on with c as a, Ît{pi;.fï.pÎl, al' •·X .and t. A well known methad for solving 
.·1·• . . 

this equation 'is' 'the.'me'i:jliî<l, ,of characteristics. This methad implies 
·-·:·r ... '. ···'· ..... 

the following tran's'forntation··af x and t into u and w: 

u = x - vt (2a) 

w = t (2b) 

u and ware called the characteristics of eq. (1). 

The substitution transfarms the coordinates x and t into a rnaving 

coordinate system that moves with the same velocity as the water. Sub­

stituting eq. (2a) and (2b) into eq. (I) yields: 

This is the well known diffusion ar heat-flow equation. In the 

literature several solutions are given. 

(3) 

For example, the salution with the following boundary conditions: 

c(o, w) = cf 

c(u, o) = c. 
1 

gives 

(feed) 

(initial) 

c = c. + ~(cf-c.) erfc(x-vt) 
1 1 2 ..'i)t: 

(4a) 

(4b) 

(4c) 

For studying the early stages of the process the complete salution 

1s found with aid of Laplace transformations. According to CRANCK 

(1964) the salution is: 

c = c. 
1 

+ ~(c -c.){erfc(x-vt) + exp(v
0
x) 

f 1 2/Dt 
(4d) 

The difference between eq (4d) and (4c) is called the reflection 

term, This term describes the process in the region x < vt, that is 

the leftside of the rnaving coordinate system. This reflection tem will 

diminish with increasing time and increasing front penetration. 

2 
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2. MIXING-CELL CONCEPT 

2.1. Description 

Neglecting the secoud order term of eq. (I) gives eq. (5): 

(5) 

The backward explicit finite difference approach of eq. (5) is 

called the mixing-cell concept. The mixing-cell concept will give te 

samesalution as the analytical salution of eq. (1). 

Rewriting equation (5) in termsof öx and Öt using the mixing-cell 

concept gives: 

c(x,t+öt) - c(x,t) 
l;t 

c(x,t) - c(x-öx,t) 
= - V Öx (6a) 

Rearranging yields: 

vöt { } c(x,t+Öt) = c(x,t) - öx c(x,t) - c(x-öx,t) (6b) 

or 

c(i,j+l) ( I _ vöt) c(i,J") + vöt (" 1 .) Öx öx c 1 - ,) (6c) 

Equation (6c) is illustrated in Fig. I. 

(1) 

.: j+ 1 ,[L 

l 
J 

j - 1 

" l--. v 
" / i" 

1-1 1+1 

--place X 
Fig. I. The i-j grid 

6b and 6c 

and the position of the coefficients of equation 

3 
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2.2. Stability 

vl!.t The factor l!.x is called the mixing ratio. Eq. (6c) describes the 

mixing of water in compartment i with water coming from compartment i-1. 

The quantity of inflowing water is controlled by the factor vl!.t and 

the quantity of remaining water with x - vl!.t. Dividing by the volume 
vl!.t 

of layer i yields the mixing ratio l!.x • 

Take: 

- the solution of eq. (6a) at time t 

- and 
N·t 
c as the correct solution of 

x 

t 
is c 

x 
eq. (5) 

- the difference between the real solution and the calculated one as 
E:t 
x 

t t E: = c 
x x 

"'t 
- c 

x 
(7) 

The elements of E:t can be described 
x 

with a fourrier analysis as a 

function of x (see KAN, 1982): 

E: t iBx = y e 
x t 

Substitution of eq. {7) into (6a) gives: 

Nt+f!.t Nt t+l!.t t .vt >Vt t t c - c E: - E: c -c E: - E: 
x x x x x x-l!.x x x-l!.x 

l!.t 
+ 

l!.t 
- V 

l!.x 
-v 

I!. x 

Substituting eq. (8) into eq. (9a) and rearranging yields: 

- v:yt 
= -.-'-!!.x 

Rearranging gives eq. (10): 

yt+l!.t 

yt 

Stability will occur when: 

4 

(8) 

(9a) 

(9b) 

( 10) 
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or 

- 1 

0 < vllt o < 2 
~ llx 

(11 a) 

( 11 b) 

( 11 c) 

It will be sufficient 

< e-iBllx ~ 1 and thus 

vllt 
when llx ~ 1 to obtain stability, because 

- 1 0 ~ ö ~ 2. 

2.3. Precision and numeric dispersion 

The finite difference approach with equation (6a) yields infact 

terms of a Taylor polynomial. The complete Taylor polynomial for the 

left and right hand side are given in eq. (l2a) and (12b): 

(de) c(x) - c(x-llx) 2 2 3 
: + llx ~ _ (llx) ~ + 

dx t llx 2! a} 3! dX3 
( 12a) 

c(t+llt) - c(t) 2 (llt) 2 d3c (de) llt () c 
= - 2T <lt2 - 3! <lt3 -dt llt x 

(12b) 

Substitution of eq. (12a) and (12b) in (6a) gives with neglection 

of powers of ll: 

c(x,t+llt) - c(x,t) 
llt 

or 

2 2 . <lc 2<lc 
US1Dg --~V --

dt2 <lx2 

gives 

2 2 
llt () c ~ -=c_,(:.:x..!.'-=t-'-)_-..".c=(x:.:-_.:ll:.:x:.:L, t=-'-) vllx () c 

- -2-: _<l_t_2 - ~ v llx - 2! <lx 2 (13a) 

(13b) 

(see Appendix 1) 

( 13c) 

5 
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The precision of this finite difference approach is equal to an 

error of the second order! This error is called numeric dispersion. 

D~ 

Camparing eq. (13c) with eq. (I) yields: 

2 
V llt 
-· -2- (14) 

Summarizing; the error that is made by using the mixing-cell concept 

for eq, (5) is of the second order. This error, i.e. the numerical 

dispersion, depends on the values chosen for llx, llt and v. So numerical 

salution of eq. (5) yields a salution for eq. (1), if the values for 

llx, llt and varechosen in such a way that the 1numerical dispersion' 

equals the actual dispersion. 

2.4. The mixing-cell concept as a numeric series 

vllt Take equation (6c) and write the mixing ratio --- as a: 
llx 

c(i,j+l) = (l-a) c(i,j) + ac(i-1 ,j) 

Assume the following boundary conditions: 

c(O,j) 

c(i,O) c. 
1 

the feed concentration 

the initial concentration 

(IS) 

For a system of N layers the following response can be calculated: 

c(i,j) = 0 for j < i and (16a) 

and 

j-i-l(k+i-1) i k j-l ('-1) k '-k-1 
c(i,j+l) = l: i-I a (1-a) cf + ~ . \ (1-a) (a)J ei 

k=O k=J-1 
(16b) 

for J > i and 

6 
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3. EXAMPLES 

Gomparing the mixing-cell concept with the analytical solution for 

a chosen example gives the following result. Take the concentration of 

the feed solution as unity and the initial concentration zero. 

v = 5 cm/day 

~ 100 cm (column length) 

/l.x= JOcm 

/l.t = day 

a = v/l.t = 0. 5 
/I. x 
~ 

N = l'lx = JO 

2 
-v /l.t + v/l.x = -25 + 50 = 

2 2 2 2 
D 2,. 

+12.5 C\11 rlay 

The breakthrough curve i.e. the concentration at x 

in the Fig. 2 and 3. 

~. is plotted 

c 
0 

·-g 0.60 
L ..... 
a; 
g 0.40 
0 
u 

0.20 ;o 
10 

/0 
'o 

0 

0 

0 

0 

0 

0 

0 
0 

o mixing cel! 
--analytica I salution 

0 o~~~~~10~.o~o~~~~2=o.~oo~~~~3~o.=oo~~~~47o.oo 
time (days) 

Fig. 2. The results of the mixing-cell model versus the analytical 

solution of eq. (4d) 
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1.00 

c 0. 80 
0 

0 
.!::: 0.60 
c 
Ql 
u 
6 0.40 
u 

0.20 
0 

/ 
/0 

0 

I 
0 

I 
l 

0 

I 

0 

I 
0 

I 

o' 
/ 

0/ 

/ 

o• 
o· 

0
• 0 .o-O- O· o-o- o-o- o- o 

.o·O· 

o m1xing cell 
-- analytical salution 

0 
0 o'--''---'---'-.........l.c<>:1 o_..,. b-"'o"'---.J..........J.........'--2....,.0,_. o...,...o L........JL.........JL.........J_3 o ...... -o o_,___.___.__..Lt.__,o oo 

time (days) 

Fig. 3. The results of the mixing-cell model versus the simple 

analytical solution of eq. (4c) 

8 
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4. CONCLUSIONS AND RECOMMENDATIONS 

The mixing-cell concept is an explicit backward finite difference 

h h . ac ac 0 . . f h approc of t e transport equat10U at + V ax = . The preC1S10U 0 t e 

metbod is of the secoud order which means that infact the convection­

dispersion equation is solved. 

It is illustrated that the results of the mixing-cell model coincide 

with the analytical solution (eq. 4c), provided that the reflection 

at the boundary does not effect the breakthrough curve: 

- the first term of the analytical solution (eq, 4d) is identical with 

the concentratien front calculated with the mixing-cell model (if 

0num = 0act); 
- the secoud term of the analytical solution (eq. 4d) describes the 

concentratien in the early stages of the process (see for instanee 

BOLT, 1982). This fenomena is not described with the mixing-cell 

concept; 

- for larger times the mixing-cell concept fits quite well with the 

analytical solution. 

The advantage of separating transport of solutes from the chemical 

reactions of the solutes will be illustrated in following reports. Two 

examples will be referred too. GROENENDIJK (1984) described the combina­

tion of the mixing-cell model with the ion exchange of Na, Ca and Mg. 

VAN OMMEN (1984) showed the application of the mixing-cell concept 

to a two dimensional groundwater problem. 

9 
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Recapitulating the transport equation (5): 

ac 
-V­a x 

According to the definition of differential analysis: 

Substituting eq. (I) into (2) yields: 

2 a c a ac 
- = -(- V."....-) 
at2 at ox 

= -

Rewriting eq. (3) and substituting eq. (I) gives: 

a ac -V-(- V-) ax ax 

APPENDIX I 

(I) 

(3) 

(4) 

I I 
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