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Abstract 

The purpose of this study is to investigate the effect of time-aggregation in discrete and 
continuous-time hazard models. A Monte Carlo study is conducted in which data are 
generated according to underlying continuous and discrete-time processes, which data are 
aggregated into daily, weekly and monthly intervals. Under each of these conditions 400 
datasets are generated, that vary in the parameters of the baseline hazard. These datasets are 
analyzed with flexible continuous-time and discrete-time proportional hazard models. The 
estimates of the structural parameter and of the baseline hazard, as well as the baseline hazard 
predicted by those estimates, seem robust to the form of the distribution of the data generation 
process when the time-aggregation window is small. Both estimates of continuous-time 
models and of discrete-time models suffer from time-aggregation, but the estimates of the 
discrete-time model are more sensitive to aggregation. 
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1 Introduction 

Hazard models have become widespread in their use for the analysis of duration-time data in 
many scientific disciplines, including biology and medicine (e.g., Cox, 1972; Kalbfleisch and 
Prentice, 1980), sociology (e.g., Petersen, 1995, Vermunt 1996), marketing research (e.g., 
Vilcassim and Jain, 1991; Wedel et al., 1995), and economics (e.g., Kiefer, 1988; Lancaster, 
1990). These models overcome the problems of accounting for censored observations of 
duration and time-varying explanatory variables, that arise in applying standard regression 
type models to duration data. The basic concept in hazard models is the probability of the 
occurrence of an event during a certain time interval, say t to t + , given that it has not 
occurred before t, specified as: 

(1)  

with X(t) the structural variables, a set of covariates at time t. (The extension of the 
formulation to multiple states is straightforward but will not be provided to keep notation 
simple.) Parametric methods for duration data typically involve assumptions about the 
distribution of durations, which enables estimation by maximum likelihood. Two distinct 
classes of hazard models arise according to whether a discrete or a continuous distribution of 
the durations is assumed. 

The discrete-time hazard is equal to the conditional probability of an event in equation (1), 
specified directly for given values of : 

(2)  

where y equals the number of events that has occurred during the interval [t, t + ]. The 
discrete-time formulation was initiated by Prentice and Gloecker (1978), and has been 
extended by Laird and Olivier (1981), Efron (1988), Meyer (1990), Kiefer (1990) and 
Lindsey (1995). It has the advantage that it leads to simple model formulations, which enable 
one to accommodate censoring, covariates that vary within spells, and multiple events in a 
straightforward manner. Both the logistic binomial and log-Poisson regression models have 
been used to model discrete durations. The latter have the advantages of allowing for more 
than one event occurring in the unit discrete time interval (eg., Lindsey 1995). 

In the continuous-time approach, the hazard is specified by letting approach zero in (1), to 
yield the hazard-rate: 

(3)  

The density function of durations is: 



(4)  

The continuous-time approach appears to be among the most commonly used approaches in 
the economic literature (e.g., Lancaster, 1979, 1990; Kiefer, 1988; Gritz, 1993). An important 
special case, is presented by the proportional hazard models (Cox, 1972), for which: 

(5)  

where denotes the baseline hazard. Because the estimates of the structural parameters 
are sensitive to the specification of the baseline hazard (Trussell and Richards, 1985), Flinn 
and Heckman (1983) proposed a flexible Box-Cox formulation of the baseline hazard. It 
includes many of the frequently used distribution functions as special cases, and is formulated 
as: 

(6)  

Kiefer (1990) and Lindsey (1995) used similar formulations to represent the baseline hazard 
in discrete-time proportional hazard models, in which it can be considered a smoothing 
approximation to a step-functional baseline. Other flexible approaches to formulate discrete 
hazard models are so-called semi-parametric approaches, in which each discrete time interval 
is represented by a parameter in the baseline hazard (e.g., Laird and Oliver, 1981; Kiefer, 
1990), and the related Cox partial likelihood approach for continuous time models (Cox, 
1975). Whereas these flexible approaches are available to represent the hazard-rate in both 
continuous and discrete-time hazard models, the choice between these two remains an 
important issue. 

In many cases, the choice of a discrete or a continuous distribution of durations is an 
empirical issue, but sometimes (economic) theory may provide guidance. Discrete time 
intervals occur naturally in some situations due to the discrete nature of human behavior (for 
example occurrence of unemployment, presidential elections and purchase behavior). If the 
underlying process evolves in discrete time, the discrete time hazard models seem preferable. 
However, even if the underlying process is truly continuous, the measurements of that process 
may not be, because data are collected in discrete time intervals. Often, it is only known 
whether an event occurred within a certain discrete time window, such as an hour, a day, a 
week, or a month. In estimating continuous-time models for such data, events are usually 
assigned to the ends of the windows. This approach may give rise to biased estimates, a 
problem referred to as time-aggregation bias (or interval censoring). The time aggregation 
problem has not yet received much attention in the economics literature, although its 
importance has been recognized (Kiefer, 1988; Heitjan 1989). Time-aggregation has two 
major effects. First, it reduces the number of observed spells and thereby reduces sample size, 
and second it introduces measurement errors that are negatively correlated with the durations 
(see Bergström and Edin, 1992). 



A few studies have investigated the problem of time-aggregation for continuous-time models. 
Petersen (1991) derived the size of the bias for a constant hazard-rate model, that does not 
include covariates or censoring. He concluded that (1) given the discrete time-unit of 
measurement, the higher the hazard-rate (shorter durations) the higher the bias due to 
aggregation; and that (2) for a constant hazard-rate, the wider the time window (the more time 
units it involves) the higher the bias in the estimated hazard-rate. These results were extended 
by Petersen and Koput (1992) to a model with a constant hazard-rate and one covariate, and to 
a constant hazard model accounting for right censoring. They also showed, using synthetic 
data, that the bias in the estimates of a covariate in a continuous time hazard model is reduced 
when the events are not assigned to the ends of the window, but to the mid-point of the 
window. A limitation of these studies is that in order to yield analytically tractable results, the 
models investigated were rather simple (i.e. a constant hazard-rate). It is not known to what 
extent these results carry over to more complicated models. 

Two studies have addressed the effects of time aggregation empirically. Narendranathan and 
Stewart (1990) compare the estimates from a continuous-time Weibull model with a semi-
parametric grouped hazard model, and discuss the problems of daily versus weekly data of 
unemployment. Bergström and Edin (1992) compare semi-parametric models (Cox partial 
likelihood, Cox, 1975) to simple (Weibull) and more complicated (generalized gamma) 
parametric models, for daily, weekly, monthly and quarterly unemployment data. The 
conclusions are that the estimates of the structural parameters are relatively robust to the 
distributional assumptions. However, different distributional assumptions produced different 
estimates of the time dependence of the baseline hazard. Time-aggregation was found to 
seriously affect the estimates of the parametric models, especially at higher levels of 
aggregation. The study is however based on the analysis of one single (and nonrepresentative) 
sample, in which the true underlying process remains unknown. 

Time-aggregation is not the only cause of measurement errors in duration data. Other 
problems, that typically are due to recall bias in retrospective surveys, are under-reporting 
(Mathiowetz and Duncan, 1988), and heaping (Torelli and Trivellato, 1993). These issues, as 
well as unobserved heterogeneity (e.g., Kiefer, 1988) and semi-parametric models formulated 
in continuous or discrete time (Kiefer, 1988) are not considered in this study. The purpose is 
to further investigate the robustness of parametric discrete and continuous-time hazard models 
under various assumptions of the true underlying process and under different levels of time-
aggregation. This will be done in a Monte Carlo experiment in which the true parameters of 
the data generating process are known. 

 
2 The design of the study 

2.1 Data generation 
In the Monte Carlo study, the robustness of continuous and discrete time hazard models in 
various conditions of time aggregation is investigated. Synthetic data are simulated for 100 
subjects within a period of 420 days. For both true discrete and continuous-time processes 400 
replications are generated. A proportional hazard specification is used with one (time-
invariant) regressor, with the structural parameter across all replications. The regressor X is 
drawn from U(ln 0.5, ln 1.5), so that it does not de- or increase the baseline hazard with more 
than half its size. The regressors are subject specific and are fixed for all 400 replications. The 
baseline hazard is formulated using the first three terms of the Box-Cox specification in 
equation (6) above: 



(7)  

where and . The formulation (7) nests a number 
of distributions of duration, such as the exponential (  = 0, = 0), the Weibull (  = 0), and 
the Gompertz (  = 0). 

In order to investigate the robustness of the hazard models under a wide range of different 
forms of the hazard, the parameters of the baseline hazard are varied across replications: is 
drawn from U(-12, -4), from U(-0.5, 0.5), and from U(0, 0.1), where is adjusted 
upward or downward in steps of 0.5 to ensure a reasonable number of events. To prevent 
defective hazards, is restricted to the positive domain. For the continuous-time model the 
durations are generated by drawing random numbers u~U(0,1) and applying the inverse 
cumulative distribution function (since the cdf. is not a closed form expression, a 
binary search algorithm was applied to solve the inverse transformation). For the discrete-time 
model events are generated by drawing from a Poisson distribution with expectation , 
specified according to (5) and (7), where t is set equal to the midpoint of the intervals. We 
assume that the true underlying hazard occurs in time periods of one day. The last spell not 
containing an event is treated as right-censored. In order to simulate time-aggregation, the 
continuous time data are aggregated into spells consisting of 420 days, 60 weeks and 14 
months, where each month is considered to consist of 30 days. Similarly, the discrete time 
data are aggregated into weeks and months. 

The datasets thus generated are each analyzed with both a continuous-time and a discrete-time 
proportional hazard model, with the hazard specified as in equations (5) and (7). We use the 
same form of the baseline hazard for continuous and discrete-time models since the purpose 
of the study is to compare parametric formulations of the hazard in discrete and continuous 
time. In both the discrete and continuous-time model the correction suggested by Petersen 
(1991), of assigning the events to the mid-point of the discrete time windows, is applied. The 
models are estimated by the method of maximum likelihood, the likelihood being maximized 
by the quasi-Newton method of Broyden, Fletcher, Goldfarb and Shanno, as implemented in 
the GAUSS (Aptech, 1995) system. Since both the discrete and continuous-time hazard 
models have log-linear specifications, the likelihood is a concave function in the parameters 
(Lancaster, 1990) and convergence to a global maximum is guaranteed. 

2.2 Dependent measures 
The following dependent measures are used to assess the robustness of the models (we use k 
= 1, ..., 400 to indicate replications): 

1. The mean parameter estimates across all replications; 

2. The squared error of the estimates of the baseline parameters in replication k : 

 

3. The squared error of the estimate of the structural parameter: 



 

4. The 2.5th, 50th and 97.5th percentiles of the empirical distribution of the relative error in 
the baseline hazard, calculated across the replications, for a grid of points j = 1, ..., J in the 
[0,120] duration domain: 

 

5. The sample log-likelihood:  

6. A likelihood-ratio (LR) test for the difference in the actual and estimated parameters for 

each of the replications:  

7. Whether or not the null-hypothesis that the estimates equal the true values is rejected (p < 
0.05) on the basis of the LR-test,  

In order to investigate the performance of the hazard models under the above conditions, we 
analyze the squared-errors of the four parameters, the LR statistic and whether or not the null-
hypothesis is rejected, with regression analyses. The mean parameter estimates and log-
likelihoods are reported for descriptive purposes and the error in the baseline is depicted 
graphically. Each analysis is based upon 4800 observations. For the squared errors and the LR 
test statistic a gamma-regression with a log-link is used, for the rejection of the null-
hypothesis a binomial logit regression. The explanatory variables are A. the data generating 
process (continuous/discrete), B. the hazard model specification (continuous/discrete), C. the 
level of aggregation (daily/weekly/monthly), and D. the mean length of the durations in the 
data, and the first and second order interactions between these variables. The mean duration is 
included as a factor in our analyses, because previous work by Petersen and Koput (1992) has 
revealed it to affect time aggregation problems. For each of the dependent variables deviance 
ratio-tests are reported. Deviance ratio's are the ratio's of the scaled deviance-contributions of 
the respective terms and the residual deviance of the full model including all terms. The 
deviance is minus twice the log-likelihood ratio between the fitted model and a full model that 
explains all the variation in the data (McCullagh and Nelder, 1989). In order to reduce 
capitalization on chance, effects are considered significant at p < 0.01. 

 
3 Results 

Table 1 provides the deviance ratio test results of the regressions of the five dependent 
measures. It shows, that the model specification, the level of aggregation and the interaction 
between these two variables significantly affect all six measures. The second order interaction 
of data, model and aggregation level effects all measures, except SE( ) and SE( ). Note that 
the effect of level of aggregation is by far the largest among all measures and that the effect of 
the data generating process is relatively small compared to the other main effects. The 
remaining effects show a mixed pattern. Because of the interactive effects the means of the 



dependent measures are reported for all combinations of model specification, data distribution 
and level of aggregation in Tables 3 and 4 below. 

The mean duration appears to affect all dependent measures significantly, except for the 
squared error in the structural parameter. The interactive effect of duration and level of 
aggregation affects all six dependent measures significantly, and the second order interaction 
between mean duration, model and aggregation level affects all dependent measures, except 
for the probability of rejecting the null hypothesis. The other interaction effects of mean 
duration show a mixed pattern. The estimates of the regression coefficients of mean duration 
and aggregation level according to model type are presented in Table 5. 

Table 1: Deviance ratio's of mean duration (Dur), aggregation level (Agg), data 
generating process (Data) and the model (mod), from the regressions of six 

dependent measures 

Term Df r SE( ) LR-  SE( ) SE( ) SE( ) 

Data 1 69.63* 34.81* 5.50 0.01 0.54 28.81*

Mod 1 101.20* 264.57* 502.72* 490.85* 5699.35* 129.49*

Aggr 2 294.84* 747.12* 1716.62* 708.89* 11324.93* 3001.87*

Data.Mod 1 5.51 0.06 15.78* 5.35 156.37* 442.34*

Data.Agg 2 10.56* 3.11 3.39 1.35 38.87* 32.23*

Mod.Agg 2 47.15* 74.47* 132.63* 70.33* 562.22* 33.04*

Data.Mod.Agg 2 29.38* 13.93* 2.85 4.35 62.67* 9.47*

Dur 1 216.39* 56.69* 124.44* 6.08 558.08* 82.37*

Dur.Data 1 1.56 3.53 2.60 0.96 10.53* 40.41*

Dur.Mod 1 12.51* 2.00 1.14 2.82 50.33* 0.47

Dur.Agg 2 83.31* 55.71* 13.91* 23.63* 270.36* 37.01*

Dur.Agg.Dat 2 2.35 5.24* 6.11* 1.05 10.89* 0.27

Dur.Mod.Dat 1 5.42 5.43 3.20 0.65 4.55 0.34

Dur.Agg.Mod 2 32.04* 14.81* 14.42* 5.09* 29.69* 0.10

* = p < 0.01, residual df: 4783 

Table 2 provides the mean parameter estimates for the analyses of the synthetic data (the 
averages of the true parameter values across replications are also depicted), Table 3 shows the 
root-mean squared errors (RMSE's) of the parameter estimates, obtained by averaging the 
SE's across replications and taking the square-root. Table 4 shows the log-likelihoods and 
related statistics. Figs. 1 to 4 show the percentiles of the relative error in the baseline hazard. 
In the following pages (3.1 and 3.2) you'll find these as inline images.  

Table 2: Average parameter estimates for discrete and continuous data, and 
aggregation into daily, weekly and monthly periods. 



Data: 
Model: 

Continuous 
Continuous 

Discrete
Discrete 

Continuous 
Discrete 

Discrete 
Continuous Parameter 

Actual -7.076 -6.790 -7.076 -6.790

None -7.236 - - -

Days -7.259 -6.705 -7.233 -6.789 

Weeks -7.424 -7.367 -8.062 -6.921

Months -8.594 -8.480 -8.631 -7.329

Actual 0.018 -0.023 0.018 -0.023

None 0.064 - - -

Days 0.075 -0.054 0.095 -0.025 

Weeks 0.151 0.300 0.529 0.087

Months 0.731 1.093 1.183 0.610

Actual 0.052 0.047 0.052 0.047

None 0.052 - - -

Days 0.051 0.048 0.050 0.047 

Weeks 0.049 0.035 0.034 0.044

Months 0.028 0.000 -0.003 0.020

Actual 1.000 1.000 1.000 1.000

None 1.014 - - -

Days 1.013 0.992 0.998 0.991 

Weeks 1.001 0.899 0.889 0.975

Months 0.866 0.621 0.594 0.800

 
Table 3: RMSE's of parameter estimates for discrete and continuous data, and 

aggregation into daily, weekly and monthly periods. 

Data: 
Model: 

Continuous 
Continuous 

Discrete
Discrete 

Continuous 
Discrete 

Discrete 
Continuous Measure 

None 0.922 - - -

Days 0.921 0.730 0.842 0.866

Weeks 1.017 1.641 2.175 0.973
RMSE( ) 

Months 2.920 2.633 2.628 1.221

None 0.294 - - -

Days 0.294 0.246 0.287 0.280
RMSE( ) 

Weeks 0.334 0.627 0.859 0.326



Months 1.187 1.476 1.525 0.748

None 0.005 - - -

Days 0.005 0.005 0.006 0.005

Weeks 0.007 0.017 0.025 0.006
RMSE( ) 

Months 0.037 0.060 0.068 0.033

None 0.129 - - -

Days 0.129 0.126 0.126 0.127

Weeks 0.129 0.169 0.180 0.132
RMSE( ) 

Months 0.212 0.441 0.470 0.269

 
Table 4: Average log-likelihoods and likelihood ratio-tests for discrete and 
continuous data, and aggregation into daily, weekly and monthly periods. 

Data: 
Model: 

Continuous 
Continuous 

Discrete
Discrete 

Continuous 
Discrete 

Discrete 
Continuous Statistic: 

None -2605 - - -

Days -2607 -2597 -2620 -2550

Weeks -2615 -1549 -1563 -2512 

Months -2678 -888 -909 -2431

None 3.86 - - -

Days 3.94 3.50 4.25 3.62

Weeks 6.91 15.91 28.05 15.12
LR (df=4) 

Months 111.54 922.25 1004.77 179.84

None 5 - - -

Days 5 2 9 4

Weeks 12 54 72 59
r : % reject 

Months 85 100 100 100

 
Table 5: Coefficients of the regression of six dependent measures on mean duration 

and its interaction with the level of aggregation, for discrete and continuous time 
models 

Term r SE( ) LR-  SE( ) SE( ) SE( ) 

Continuous-time model 

Days 3.645 4.808* 10.094* 5.424* 1.521* 2.085*

Weeks 3.536 4.942 10.363 5.212 4.555* 2.806*



Months 0.181* 0.046* 3.794* 2.462* 8.183* 9.619*

Dur.Days 0.046* 0.032 0.006 0.019* 0.004 0.019

Dur.Weeks 0.329* 0.256* 0.019 0.117* 0.194* 0.250*

Dur.Months 0.009* 0.010* 0.053* -0.003* 0.053* 0.057*

Discrete-time model 

Days 2.721* 3.839* 9.162* 5.376* 1.689* 2.044*

Weeks 4.593 4.146 7.318* 3.459* 4.515* 2.531*

Months 2.609 0.770* 4.272* 0.936* 8.202* 10.200*

Dur.Days 0.029* 0.015* 0.021* 0.018* 0.007* 0.027*

Dur.Weeks 0.520* 0.306* 0.086 0.010 0.182* 0.242

Dur.Months 0.072* 0.026 0.024 0.012* 0.024* 0.000

* = p < 0.01, relative to the estimate for days, the estimates for daily data are tested 
for differences from zero 

3.1 Results when the underlying process is correctly specified 

Table 2 and 3 show that the bias and RMSE in the parameter estimates of the baseline hazard 
of both the continuous-time models and the discrete-time models are low when the models are 
correctly specified. In the continuous-time models the estimate of g1 is upward biased on 
average, but its bias in the discrete-time models appears to be (slightly) negative. As expected, 
the regression parameter is very close to the true value on average for both model 
specifications. The LR test (Table 4) supports these findings. Across all 400 replications the 
null-hypothesis that the estimates are equal to the true values are close to the nominal 
percentage of 5%. 

Table 3 also shows that the RMSE of the parameter estimates of the continuous-time models 
hardly increases when the continuous data are aggregated into days. Figure 1 shows the 
relative bias in the baseline hazard: the median is close to zero across the range of durations 
depicted. For durations up to, say, ten days, the interval which contains 95% of the estimated 
hazards is relatively wide. This is caused by the growing importance of the term ln(t) and 
of its estimation uncertainty when t approaches zero. Moreover, due to the parametric form of 
the baseline, there may be relatively more hazards near zero in this range, which explodes the 
relative errors. 

The LR statistic and the rejection percentage also show that the estimates are not much further 
from their true values than those obtained from the ungrouped data. The log-likelihood is 
quite close to that of the ungrouped data. 



 

 

 
Fig 1. Relative bias in the hazard continuous data, continuous-time hazard model. 

For weekly data, the bias in the estimates of the baseline parameters of the continuous-time 
models increases, the RMSE's increase by 10, 14 and 40%, respectively. Fig. 1 however 
shows that the relative bias in the baseline hazard itself hardly increases: the median of the 



estimation error in the hazard is close to zero across the entire duration range, with exception 
of the very short durations for which it is somewhat smaller than zero. This effect is caused by 
the measurement errors, introduced by the aggregation, being negatively correlated with 
duration (very short durations being excluded from the data), which leads to an 
underestimation of the hazard for short durations. The RMSE of the regression parameter for 
weekly data (Table 3) does not increase relative to the original data. However, the average 
value of the LR test-statistic increases and the null-hypothesis that the estimates are equal to 
the true values is rejected rises to 12% of the cases. Note that due to the aggregation the log-
likelihood ratio of the model with the "true" parameters is no longer distributed as Chi-square, 
so that the assumptions for the LR test to be valid no longer hold. Table 4 shows that the log-
likelihood is lower than that for daily data, which we attribute to the measurement error 
induced by time aggregation. 

For monthly data the error in the parameters of the baseline hazard of the continuous-time 
model is large: the RMSE's are 3.2, 4.04 and 7.4 times those of the ungrouped data. 
Corresponding to the results for daily and weekly data, and are negatively biased on 
average, and positively. Due to the underrepresentation of short spells in the data, the 
median error in the baseline hazard is negative at durations in the lower range (Fig. 1), and 
more so than for weekly data. For higher durations, the 95% coverage interval increases 
substantially relative to weekly data. This is caused by the fact that the number of 
observations for the monthly data decreases, resulting in larger estimation errors. The effect is 
enlarged since the different functional forms that were simulated for the hazard may invoke 
different directions of the bias. This effect becomes stronger as the aggregation level 
increases. The estimate of the structural parameter is severely biased. Table 2 shows that this 
parameter is underestimated by about 13% on average, and that its RMSE increases by 64% 
(Table 3). The likelihood-ratio test rejects the null-hypothesis that the estimates are equal to 
the true values in the majority (85% of the cases). This is due to the measurement errors 
introduced by the time-aggregation and the likelihood test statistic at the "true" parameter 
values not being distributed as Chi-square. The log-likelihood (Table 4) has decreased further 
relative to the weekly data. 



 

 

 
Fig 2. Relative bias in the hazard discrete data, discrete-time hazard model. 

The estimates of the discrete-time model seem to be affected much more by the aggregation 
of durations into weeks, as compared to those of the continuous-time model. The RMSE's of 
the estimates of the baseline hazard increase by 125%, 155% and 240% respectively. 



However, Fig. 2 shows that the effect on the error in the baseline hazard itself is modest. Due 
to the discrete nature of the estimated hazard, the curves of the percentiles show a spiked 
pattern. For shorter durations the bias within the weekly intervals decreases, whereas for 
longer durations it increases. In contrast to the continuous data, here one observes the 
tendency to overestimate the true hazard at the lower end of the duration range. Since the 
discrete model accounts for multiple events within one time-period, shorter spells are not 
discarded, and the negative bias does not occur for the shorter durations. The estimate of the 
structural parameter is affected by grouping the observations into weeks: Table 2 shows that 
on average the true value is underestimated by about 10%, Table 3 shows that the RMSE 
increases by 34% relative to the ungrouped data. The average value of the LR test increases 
substantially relative to that for the daily data, and the null-hypothesis that the estimated 
parameters are equal to the true parameters is rejected in more than half of the runs. As 
compared to the continuous-time models, the log-likelihood has increased relative to the daily 
data (Table 4), which is attributable to a large decrease in the number of spells due to 
aggregation which in this case apparently dominates te effect of measurement error induced 
by time aggregation (in the discrete-time models data records do not pertain to spells, but one 
data record is created per subject for each observation period). 

For the discrete data grouped into monthly periods, the situation becomes progressively 
worse. Tables 2 and 3 show that the baseline hazard parameters are quite far off, and the 
RMSE's increase by 3.6, 6.0 and 12.0 times relative to the ungrouped situation. Similar to the 
continuous-time model on average and are negatively biased, and positively. Fig. 2 
shows that the bias in the baseline hazard is also large. As with the weekly data, the median 
error is positive at low and negative at high durations, but the effect is much stronger. 
Underestimation of the hazard of long durations is caused by the effects of censoring in 
combination with the rounding errors of time-aggregation, which are compounded in such 
situations. Additionally, the 95% coverage interval is quite wide, which is caused by a 
substantial reduction in the number of observations due to aggregation into months. Table 2 
shows that the regression parameter is underestimated by 38% on average, the RMSE of this 
parameter increases 3.5 times relative to the ungrouped data. The LR statistic is very large 
indeed, and in all of the cases the null hypothesis is rejected. Due to a substantial reduction in 
the number of spells, the log-likelihood has increased dramatically relative to the weekly data 
(Table 4). 

http://www.sls.wau.nl/mi/mgs/publications/Wageningen_Economic_Papers/0396/wep03_3.htm#Table2
http://www.sls.wau.nl/mi/mgs/publications/Wageningen_Economic_Papers/0396/wep03_3.htm#Table3


 

 

 
Fig 3. Relative bias in the hazard continuous data, discrete-time hazard model. 

 

 



3.2 Results when the underlying process is misspecified 

Tables 2, 3 and 4, and Figures 3 and 4 show the results when the model is incorrectly 
specified, i.e. when a discrete-time model is used, but the underlying process is continuous, 
and visa versa. When discrete-time models are used, but the underlying process is continuous, 
the average estimates in Table 2, the error in the hazard (Fig 3) and the RMSE's in Table 3, 
indicate that for daily data the discrete-time models perform comparable to the continuous-
time models. The LR tests in Table 4 show that the hypothesis that the estimated parameters 
equal their true values is rejected in 9% of the replications. Note again that the LR test 
statistic is not distributed as chi-square at the "true" parameter values. The Tables and Figure 
show, that when the continuous data are aggregated into weeks or months, the performance of 
discrete-time models deteriorates rapidly. The 95% coverage intervals of the error in the 
baseline hazard are comparable to those when the underlying process is discrete, but the 
median bias seems to increase slightly due to the assumption of continuous data. The RMSE's 
for the parameters increase strongly, and the hypothesis that the parameters equal their true 
values is rejected in 72% and 100% of the cases, respectively for weekly and monthly data. 
The log-likelihood increases substantially due to the reduction in the number of spells. 

 

 



 
Fig 4. Relative bias in the hazard discrete data, continuous-time hazard model. 

When the true underlying process is discrete and the data are not aggregated (i.e. daily data), 
the performance of continuous-time models is comparable to that of the discrete-time models 
(see Tables 2 and 3, and Fig. 4). The hypothesis that the estimates equal their true values is 
rejected in 4% of the replications. For weekly or monthly data, the performance of the 
continuous-time model deteriorates, as indicated by the RMSE's, and the LR-test statistics. 
Note that in these situations the RMSE's of the estimates of the continuous-time models are 
lower than those of the corresponding discrete-time models (Table 3), while Table 2 shows 
that the estimates of the parameters are on average closer to their true values. Compared to the 
continuous data, the median error in the baseline as well as the 95% coverage interval 
increases dramatically when data are aggregated to months. Note that the log-likelihood for 
the continuous-time models does not decrease as strongly as that for the discrete-time models 
if the data are aggregated. As outlined before, this is the result of the dramatic decrease in 
observations when applying the discrete model. 

 
3.3 Mean duration effects 

In order to investigate the influence of the mean duration on the performance of the hazard 
models, Table 5 presents the coefficients of the regression of the dependent measures on mean 
duration for continuous-time and discrete-time models. The coefficients shown are adjusted 
for the effects of the other factors and their interactions. First, the results show - what was 
already apparent from Table 3 - that the squared errors of the parameter estimates increase 
when the level of aggregation increases from days to months, for both discrete and 
continuous-time models. Except for the squared error in and for discrete-time models, the 
difference between weekly and daily data is not significant. Correspondingly, the LR-chi 
square value as well as the probability of rejection increase for higher levels of aggregation. 

For daily data and for both model specifications, longer average durations tend to lead to 
larger squared errors of the parameter estimates (however, longer durations tend to improve 
the estimates of , which is significant in discrete-time models. This effect may be caused by 
increases in the range of durations, which improves the conditions for identification of ). 
For discrete-time models longer durations tend to be associated with lower LR statistics and 
lower probabilities of rejecting the true model. Longer durations lead to less spells being 



observed, with negative consequences for the precision in the estimates and the power of the 
LR-tests. For weekly data, the same pattern is observed, be it that the relations of mean 
duration and the dependent measures are stronger than for daily data. Again, this may be 
caused by the reduction in the number of observed spells. For monthly data, the relationship 
of mean duration and the squared error of the parameter estimates is mixed, but it is negative 
for the regression parameter in both model specifications. The results imply that longer 
durations in the data positively influence the estimates of the structural coefficients 
Apparently the effects of measurement error here dominate the sample-size effect: for data 
with longer durations on average, the measurement errors due to rounding are less important 
as compared to short durations. This is consistent with the findings of Petersen (1992), who 
demonstrated that for simple models this situation should occur. Correspondingly, the LR 
statistics and probability of rejection of the null-hypothesis are lower for longer durations. 

 
4 Conclusions 

The purpose of this paper was to investigate empirically the effects of the data generating 
process time-aggregation on hazard model estimates. A flexible specification of the baseline 
hazard, based on a Box-Cox formulation, nesting a variety of commonly used duration 
distributions was employed. The same flexible specification of the baseline hazard was used 
in the continuous and discrete-time models. By doing this the effects of the distributional 
assumptions per se could be investigated. 

A first conclusion of the study is that both the estimates of the regression parameter and 
baseline hazard, as well as the baseline hazard predicted by those estimates, seem robust to 
the actual data generation process when the time-aggregation window is small. When 
continuous or discrete daily data are used, both continuous-time and discrete-time models 
yield estimates that are close to the true parameter values. (The error in the estimates of the 
parameters of the baseline hazard is partly caused by the collinearity of terms in t and ln(t) in 
the baseline.) Our findings support Kiefer (1990) and Lindsey (1995): the estimates of a 
continuous-time hazard can be approximated accurately by a discrete-time model, by taking 
the size of the time window to be small. This enables the estimation of hazard models using 
Poisson regression models, with the advantages of simple formulations in which time-varying 
covariates, multiple events within spells and censoring are easy to deal with. 

Secondly, both continuous-time models and discrete-time models suffer from time-
aggregation. The effect of time aggregation is twofold: it reduces the number of observed 
spells -an effect that is much larger in discrete-time models- and it introduces measurement 
errors that are negatively correlated with observed durations. In both discrete and continuous-
time models the estimates of the baseline hazard become progressively biased when the level 
of aggregation increases. On average, the bias in the intercept and in the terms involving ln(t) 
was negative and that in t positive. The results support the findings of Bergström and Edin 
(1992), that in complex hazard models time aggregation produces dramatic changes in the 
baseline parameters. However, the results showed that the effects on the predicted baseline 
hazard itself were much less severe. Apparently, the reduction in the number of spells due to 
aggregation induces collinearity in the estimates. When data are aggregated into weeks or 
months discrete time-models overestimate the baseline hazard for short durations, while the 
hazard is underestimated for continuous-time models. Whereas the latter may be attributed to 
the exclusion of short spells, the discrete models, which do not suffer from this problem, seem 

http://www.sls.wau.nl/mi/mgs/publications/Wageningen_Economic_Papers/0396/wep03_rf.htm#refnr23


to overestimate the effect of these short durations because they incorrectly assume them to 
occur randomly in the intervals. 

Time-aggregation causes the estimate of the structural parameter to be biased towards zero. 
This confirms previous results of and Petersen and Koput (1992). Note that their results were 
derived from one synthetic dataset, while the results in this study are obtained from a large 
number of datasets with a large variety of different forms of the baseline hazard. For monthly 
data the aggregation effects are quite dramatic: the bias is around 13% for the continuous-time 
models, and around 38% for the discrete-time models, on average. Overall, the estimates of 
the discrete-time model are more sensitive to time-aggregation than those of the continuous-
time model. Bergström and Edin (1992) found a discrete model to be less sensitive to 
aggregation than a continuous-time model. However they used parametric formulations of the 
baseline for the continuous-time model, and a semi-parametric formulation for the discrete-
time model. Their result is potentially due to the more flexible formulation of the discrete-
time vis-à-vis the continuous-time model. They also did not use an adjustment for the time-
aggregation in the continuous-time model. In part, the relative robustness of the continuous-
time models to time-aggregation in our study may be caused by the use of the mid-point 
adjustment suggested by Petersen (1992). 

Our study revealed that if the mean duration of the data increases, the estimates for daily and 
weekly data (and both model specifications) become less precise. However, for monthly data 
the precision of most estimates, but especially those of the structural parameter, increases with 
mean duration. This may be explained from the counteracting effects of the reduction of 
sample size with aggregation, and the negative correlation of measurement errors and mean 
durations. When time aggregation windows are relatively small (days/weeks) the error in the 
parameter estimates increases with duration, because the effects of the reduction in the 
number of data points dominates the effect of the measurement error. When the time window 
is large (months) the effect of the measurement errors dominates, and longer average duration 
is associated with smaller biases in the parameters. Thus, our results supplement the analytical 
results from Petersen (1991) and Petersen and Koput (1992), who demonstrated analytically 
for simple models that the estimation bias should decrease with time-aggregation. 

Finally, LR tests seem inappropriate when data are aggregated. The log-likelihood, even at the 
"true" parameter values, is not distributed as Chi-square, invalidating the use of LR tests to 
investigate nested models. 
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