Wageningen UR Livestock Research

Partner in livestock innovations

Report 590

Description of the calculations to transform measures into criterion for the Welfare Quality® assessment protocol for laying hens

May 2012

Colophon

Publisher

Wageningen UR Livestock Research P.O. Box 65, 8200 AB Lelystad Telephone +31 320 - 238238 Fax +31 320 - 238050 E-mail info.livestockresearch@wur.nl Internet http://www.livestockresearch.wur.nl

Editing

Communication Services

Copyright

© Wageningen UR Livestock Research, part of Stichting Dienst Landbouwkundig Onderzoek (DLO Foundation), 2012 Reproduction of contents, either whole or in part, permitted with due reference to the source.

Liability

Wageningen UR Livestock Research does not accept any liability for damages, if any, arising from the use of the results of this study or the application of the recommendations.

Wageningen UR Livestock Research and Central Veterinary Institute of Wageningen UR, both part of Stichting Dienst Landbouwkundig Onderzoek (DLO Foundation), together with the Department of Animal Sciences of Wageningen University comprises the Animal Sciences Group of Wageningen UR (University & Research centre).

Single numbers can be obtained from the website.

ISO 9001 certification by DNV emphasizes our quality level. All our research projects are subject to the General Conditions of the Animal Sciences Group, which have been filed with the District Court Zwolle.

Abstract

Results of a study on the Welfare Quality® assessment protocol for laying hens. It reports the calculations for transformation of welfare measures into scores per criteria of the Welfare Quality® assessment protocol.

Keywords

laying hens, Welfare Quality, welfare assessment

Reference

ISSN 1570 - 8616

Author(s)

T.G.C.M. van Niekerk J.T.N.M. Thissen C.G. van Reenen

Title

Description of the calculations to transform measures into criterion for the Welfare Quality® assessment protocol for laying hens

Report 590

Report 590

Description of the calculations to transform measures into criterion for the Welfare Quality® assessment protocol for laying hens

Beschrijving van de berekeningen om metingen om te zetten naar criteria socres voor het Welfare Quality® protocol voor leghennen

T.G.C.M. van Niekerk J.T.N.M. Thissen C.G. van Reenen

May 2012

Ministerie van Economische Zaken, Landbouw en Innovatie

This study was financed by the Ministry of Economic Affairs, Agriculture and Innovation.

Preface

Between 2004 and 2009 a method was developed within the Welfare Quality[®] project to assess animal welfare on cattle, pig and poultry farms. The resulting Welfare Quality[®] assessment protocols, published in 2009, provide a detailed account of the necessary measurements, and how these can be combined to provide a single overall statement of the state of welfare on the farm assessed. The method has attracted a lot of interest from European and national policy makers, NGO's and the farming community, but has to date not been adopted in any commercial scheme nor used by individual farmers to improve animal welfare on their farm. The main drawback seems to be the amount of time required to carry out the measurements. In 2010 the Dutch ministry of Economic Affairs, Agriculture and Innovation commissioned Wageningen UR Livestock Research to do a series of studies aiming to simplify and shorten the original protocols. In collaboration with former Welfare Quality[®] partners and the Dutch laying hen sector, farm visits were organised and data collected between April and August 2011. The findings, along with an attempt to find simpler alternatives for the time consuming measurements are presented in report 589. For laying hens the model to combine individual measurements to scores per welfare criteria had not been developed, so prior to calculating the outcomes in report 589, a model has been developed using the same systematics as used to develop the model for the other animal species. This report represents the model for laying hens and the work done to develop it.

The results will be presented to the international Welfare Quality[®] Network, which is working on further improvement of the protocols. They will also be recommended to the Dutch Ministry, who can introduce them for improvement of farm animal welfare in collaboration with the Dutch laying hen sector.

Without these three stakeholder groups, the Dutch Ministry, representatives from the laying hen industry and the Welfare Quality® Network this work would not have been possible. On behalf of the project team I would like to thank Bart Crijns, Amanda Manten, and Léon Arnts (Ministry of Economic Affairs, Agriculture and Innovation) and Henk Hulsbergen (PPE) for their contributions to this work.

Paul Vriesekoop June 2012

Summary

The European Welfare Quality® project developed standardized ways of assessing animal welfare for different categories of farm animals, e.g. broiler chickens and laying hens, sows, growing pigs, veal calves and dairy cattle.

Welfare Quality® assessment protocols are based on the approach that welfare is a multidimensional concept, that comprises both physical as well as mental health. Within the Welfare Quality® project the same framework has been used to measure welfare of animals. Different measures of welfare, e.g. for laying hens the number of keel bone deformations, are integrated into a score for twelve independent welfare criteria. These criteria are integrated into four principle scores, and these are subsequently integrated into one overall score for a flock.

The measures for the welfare assessment protocol for laying hens has been described in the Welfare Quality® assessment protocol for poultry (Welfare Quality®, 2009). The protocol describes measures indicative of laying hen welfare on-farm.

To evaluate the welfare of a flock, measures need to be transformed into criteria and principles. The transformation into principles and the classification of flocks is standard for all animal species. The transformation of measures into criteria is species-specific and is based on a multi criteria analysis with the help of experts specialized in the type of animal involved.

This report contains the description of the models and methodology to calculate the criterion-scores for the laying hens. The general construction is common as used for all other animal species:

- Short indication of the measures used to construct the criterion (for detailed description of the measures see the NEN-report: Welfare Quality®, 2009)
- Type of mathematical construction used
- *Parameters to be defined* (list of the parameters needed to assess the criterion according to the construction previously proposed)
- Adjustments of the mathematical construction (including the questions asked to experts, their answers and the exact adjustments made)
- *Calculation* (definition of the variables, from raw data or obtained by calculation, and algorithm summarising the construction)

To transform the measures of the Welfare Quality[©] protocol for laying hens into scores per principle 5 experts have been asked to fill in tables for the multi criteria analysis. The 5 experts consulted are: Claire Weeks (UK), Marion Staack (D), Ute Knierim (D), Ingrid de Jong (NL) and Thea van Niekerk (NL).

Samenvatting

Het Europese Welfare Quality® project heeft gestandaardiseerde methoden ontwikkeld om het welzijn te bepalen van verschillende categorieën van landbouwhuisdieren, b.v. vleeskuikens en leghennen, zeugen, vleesvarkens, kalveren en melkvee.

Welfare Quality® protocollen zijn gebaseerd op de benadering dat welzijn een multidimensionaal concept is, dat bestaat uit zowel fysieke als mentale gezondheid. Binnen het Welfare Quality® project is hetzelfde raamwerk gebruikt om het welzijn van dieren te meten. Verschillende metingen van welzijn, b.v. voor leghennen het percentage borstbeenvervormingen, worden geïntegreerd tot een score voor twaalf onafhankelijke welzijnscriteria. Deze criteria worden vervolgens geïntegreerd tot scores voor vier principes en deze worden vervolgens geïntegreerd tot een overall welzijnsscore per koppel.

De metingen voor het leghennenprotocol zijn beschreven in de uitgave "The Welfare Quality® assessment protocol for poultry" (Welfare Quality®, 2009). Het protocol beschrijft de metingen die indicatief zijn voor het welzijn van leghennen op het legbedrijf.

Om het welzijn van een koppel leghennen te meten, moeten de metingen getransformeerd worden in criteria en principes. De transformatie van criteria nar principes en de eind-classificatie van koppels is gelijk aan die voor alle diersoorten. De transformatie van metingen naar criteria is soort-specifiek en gebaseerd op een multi-criteria analyse met behulp van experts, gespecialiseerd in de betrokken diersoort.

Dit rapport bevat de beschrijving van de modellen en de methodologie om de criteria-scores te berekenen voor leghennen. De algemene constructie is gelijk aan die voor alle andere diersoorten:

- Korte indicatie van de metingen die gebruikt zijn bij de constructie van het criterium (een gedetailleerde beschrijving van de metingen staat in het NEN-rapport: Welfare Quality®, 2009).
- Gebruikt type mathematische constructie (lijst van parameters nodig om het criterium te bepalen volgens de eerder aangegeven constructie)
- Aanpassingen aan de mathematische constructie (inclusief de aan de experts gestelde vragen en hun antwoorden)
- Berekeningen (definitie van de variabelen, van ruwe data of verkregen door berekeningen, en de algoritmes die de constructie samenvatten)

Om de metingen van het Welfare Quality[©] protocol voor leghennen te transformeren in scores per principe, zijn vijf experts gevraagd de tabellen voor de multi-criteria analyse in te vullen. Deze vijf experts zijn: Claire Weeks (UK), Marion Staack (D), Ute Knierim (D), Ingrid de Jong (NL) en Thea van Niekerk (NL).

Index

Preface

Summary

Samenvatting

1	Intro	oduction	1
	1.1	Welfare Quality® assessment protocols	1
		Aim of the project	
2	Calc	ulation of criterion scores for laying hens	2
	2.1	Criterion 1: Absence of prolongued hunger	2
	2.2	Criterion 2: Absence of prolongued thirst	4
	2.3	Criterion 3: Comfort around resting	6
	2.4	Criterion 4: Thermal comfort	.10
		Criterion 5: Ease of Movement	
	2.6	Criterion 6: Absence of injuries	.16
	2.7	Criterion 7: Absence of disease	.26
	2.8	Criterion 8: Absence of pain due to management procedures	.30
	2.9	Criterion 9: Expression of social behaviours	.31
		Oriterion 10: Expression of other behaviours	
	2.11	I Criterion 11: Good human-animal relationship	.44
	2.12	2 Criterion 12: Positive emotional state	.46

1 Introduction

1.1 Welfare Quality® assessment protocols

The European Welfare Quality® project developed standardized ways of assessing animal welfare for different categories of farm animals, e.g. broiler chickens and laying hens, sows, growing pigs, veal calves and dairy cattle. For laying hens, the measurements have been described in the Welfare Quality® assessment protocol for poultry (Welfare Quality®, 2009). One of the key characteristics of the Welfare Quality® assessment protocols is that it focuses more on animal based measures (such as injuries or behaviour) than on design or management criteria (such as flock size) (Blokhuis et al., 2010).

Welfare Quality® assessment protocols are based on the approach that welfare is a multidimensional concept, that comprises both physical as well as mental health. Within the Welfare Quality® project the same framework has been used to measure welfare of animals. Different measures of welfare, e.g. for laying hens the number of keel bone deformations, are integrated into a score for twelve independent welfare criteria. These criteria are integrated into four principle scores, and these are subsequently integrated into one overall score for a flock. In table 1 the twelve welfare criteria and the four principles are listed.

Table 1The principles and criteria that are the basis for the Welfare Quality® assessment protocols
(Blokhuis et al., 2010).

Welfare Quality® Principles	Welfare Quality® Criteria
Good feeding	1 Absence of prolonged hunger
	2 Absence of prolonged thirst
Good housing	3 Comfort around resting
	4 Thermal comfort
	5 Ease of movement
Good health	6 Absence of injuries
	7 Absence of disease
	8 Absence of pain induced by management procedures
Appropriate behaviour	9 Expression of social behaviours
	10 Expression of other behaviours
	11 Good human-animal relationship
	12 Positive emotional state

The measures for the welfare assessment protocol for laying hens has been described in the Welfare Quality® assessment protocol for poultry (Welfare Quality®, 2009). The protocol describes measures indicative of laying hen welfare on-farm. Although the individual measures are described, the calculations for the integration into the overall flock score is missing. In this report we present this integration of measures into criteria score and the underlying calculations. The further integration from criteria scores is independent of animal species and is described in other reports (Welfare Quality®, 2009).

1.2 Aim of the project

The aim of the project was to twofold: 1. to develop the integration of individual measures into a score per criterion and thus to be able to make an overall flock score; 2. to determine if there are possibilities to simplify the laying hen assessment protocol in order to reduce the time necessary to perform the measures. This will improve the practical applicability of the assessment protocol.

In this report the calculations for the integration of individual measures into a score per criterion are presented. In report 589 (Van Niekerk et al., 2012) the results of measurements on 122 flocks are presented as well as the results of the simplification of the protocol.

2 Calculation of criterion scores for laying hens

To evaluate the welfare of a flock, measures need to be transformed into criteria and principles. The transformation into principles and the classification of flocks is standard for all animal species. The transformation of measures into criteria is species-specific and is based on a multi criteria analysis with the help of experts specialized in the type of animal involved.

This report contains the description of the models and methodology to calculate the criterion-scores for the laying hens. The general construction is common as used for all other animal species:

- Short indication of the measures used to construct the criterion (for detailed description of the measures see the NEN-report: Welfare Quality®, 2009)
- Type of mathematical construction used
- *Parameters to be defined* (list of the parameters needed to assess the criterion according to the construction previously proposed)
- Adjustments of the mathematical construction (including the questions asked to experts, their answers and the exact adjustments made)
- *Calculation* (definition of the variables, from raw data or obtained by calculation, and algorithm summarising the construction)

To transform the measures of the Welfare Quality[©] protocol for laying hens into scores per principle 5 experts have been asked to fill in tables for the multi criteria analysis. The 5 experts consulted are: Claire Weeks (UK), Marion Staack (D), Ute Knierim (D), Ingrid de Jong (NL) and Thea van Niekerk (NL).

2.1 Criterion 1: Absence of prolongued hunger

Measure	Nature	Level of observation
Feeder space	Cardinal	Flock

For this criterion one measure is used: feeder space per bird (cm/hen). First experts have been asked to rate feeder space per bird on a scale of 0 - 100, where 100 is best. In table 2 the results are presented. From the expert consultation a spline function is calculated.

Feeder space		Score per expert					
(cm/hen)	Exp. 1	Exp. 2	Ехр. 3	Exp. 4	Exp. 5	Mean	Index
18	100	80	90	81	80	86.20	85.71
17	100	80	85	71	71	81.40	78.57
16	90	80	80	59	62	74.20	71.43
15	80	70	75	55	55	67.00	64.29
14	75	60	70	49	48	60.40	57.14
13	60	50	60	44	41	51.00	50.00
12	45	40	50	39	34	41.60	42.86
11	25	30	40	34	27	31.20	35.71
10	15	20	30	30	20	23.00	28.57
9	10	15	20	28	19	18.40	21.43
8	0	10	15	25	18	13.60	14.29

 Table 2
 Results obtained from the experts asked

Feeder space per hen is calculated as:

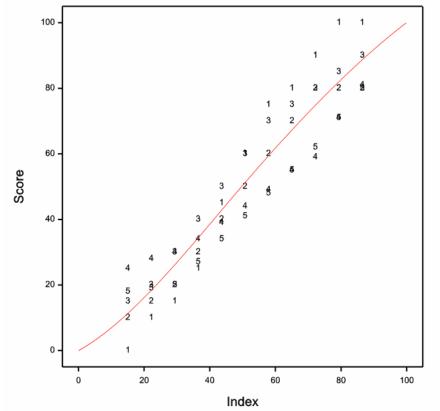
cm feeder space per bird = p =

total cm feeder space

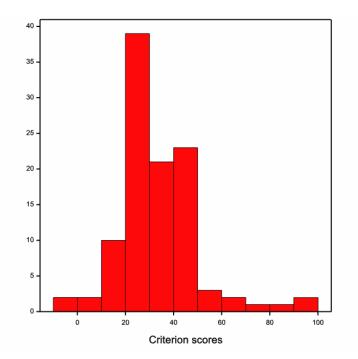
total number of birds present

p is used to calculate index I: 100 * (p - 6) / (20 - 6)

with 6 being the lowest feeder space per bird resulting in a score 0


Then the index is transformed into a score with I-spline functions (figure 1) as follows:

When I≤50: I = (a1 + b1*I + c1*I² + d1*I³) When I≥50: I = (a2 +b2*I +c2*I² + d2*I³)


The following coefficients are used for the criterion Absence of prolonged hunger:

CŎEF	COEF
a1	0.0000000000
b1	0.5566630927
c1	0.0148527208
d1	-0.0001170891
a2	-11.6815798795
b2	1.2625858900
c2	0.0005664485
d2	-0.0000201643

In figure 2 the distribution of criterion scores for criterion 1, Absence of prolongued hunger, is presented as calculated from the dataset of 122 flocks.

Figure 1 Calculation of scores for criterion 1 (absence of prolongued hunger); spline with one interior knot at 50; (x axis, 100 * (Feeder space per bird - 6) / (20 - 6))

Figure 2 Criterion 1 - Absence of prolonged hunger: Distribution of criterion scores as calculated from the dataset of 122 flocks

2.2 Criterion 2: Absence of prolongued thirst

Measure	Nature	Level of observation
Hens per nipple drinker	Cardinal	Flock

For this criterion one measure is used: number of hens per nipple drinker. First experts have been asked to rate number of hens per nipple on a scale of 0 - 100, where 100 is best. In table 3 the results are presented. From the expert consultation a spline function is calculated.

hens /			Sc	ore per exp	ert	rt		
nipple	Exp. 1	Exp. 2	Exp. 3	Exp. 4	Exp. 5	Mean	Index	
14	0	10	10	20	7	9.40	12.50	
12	10	15	15	25	15	16.00	25.00	
10	20	20	20	30	23	22.60	37.50	
9	25	30	30	35	31	30.20	43.75	
8	35	40	40	40	39	38.80	50.00	
7	45	50	50	45	47	47.40	56.25	
6	55	60	65	55	55	58.00	62.50	
5	75	70	75	60	63	68.60	68.75	
4	85	80	80	65	71	76.20	75.00	
3	100	80	90	70	80	84.00	81.25	
2	100	80	95	85	90	90.00	87.50	

 Table 3
 Results obtained from the experts asked

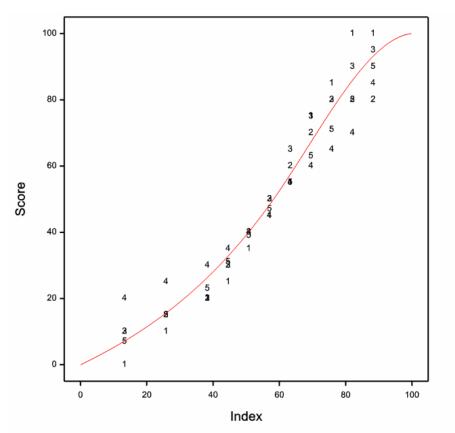
Hens per nipple is calculated as:

total number of birds present

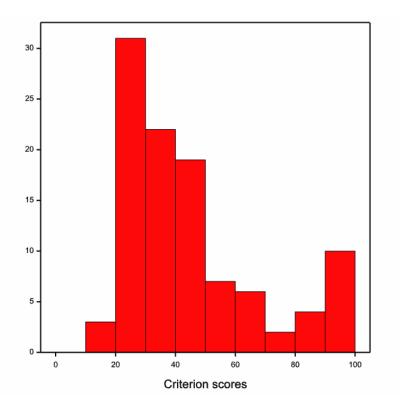
number of hens per nipple drinker = p =

total number nipple drinkers

p is used to calculate index I: 100 * (1- (p - 0) / (16 - 0)) with 16 being the highest number of hens resulting in a score 0


Then the index is transformed into a score with I-spline functions (figure 3) as follows:

When I≤60: I = (a1 + b1*I + c1*I² + d1*I³) When I≥60: I = (a2 +b2*I +c2*I² + d2*I³)


The following coefficients are used for the criterion Absence of prolonged thirst:

COEF	COEF
a1	0.000000000
b1	0.4843455745
c1	0.0032201509
d1	0.0000548403
a2	121.3433693264
b2	-5.5791743420
c2	0.1041776816
d2	-0.0005051922

In figure 4 the distribution of criterion scores for criterion 2, Absence of prolonged thirst, is presented as calculated from the dataset of 122 flocks.

Figure 3 Calculation of scores for criterion 2 (absence of prolonged thirst); spline with one interior knot at 60; (x axis, 100 * (1- (birds/nipple - 0) / (16 - 0)))

Figure 4

2.3 Criterion 3: Comfort around resting

Measure	Nature	Level of observation	
Perch positioning	Ordinal	Flock	
Perch length	Cardinal	Individual	
Evidence of red mites	Ordinal	Flock	
Dust	Ordinal	Flock	

First stage

Perch position and available perch length per bird were combined and experts were asked to rank the various combinations by giving them a score (table 4). In case no perches were present the score was set on 0.

For evidence of red mites and dust, the experts had to assign a score to the different possible scores (Tables 5 and 6).

Positioning perches (% perches in	Perch length	th Score per expert								
resting zone)		Expert 1	Expert 2	Expert 3	Expert 4	Expert 5	Mean			
>50%	>25 cm/hen	100	100	90	70	100	92			
>50%	21-25 cm/hen	90	80	85	80	100	87			
>50%	16-20 cm/hen	40	50	50	60	80	56			
>50%	10-15 cm/hen	15	17	20	45	55	30			
>50%	<10 cm/hen	0	10	15	30	19	15			
<50%	>25 cm/hen	80	80	85	45	90	76			
<50%	21-25 cm/hen	70	60	80	50	90	70			
<50%	16-20 cm/hen	20	40	40	35	70	41			
<50%	10-15 cm/hen	5	13	15	25	40	20			
<50%	<10 cm/hen	0	5	10	20	15	10			

Table 4Results obtained from the experts asked to rank and score the various combinations of
perch position and perch length.

 Table 5
 Results obtained from the experts asked to score the 3 possible scores for evidence of red mites

Evidence of red mites			Score p	er expert		
	Expert 1	Expert 2	Expert 3	Expert 4	Expert 5	Mean
0	100	100	100	100	100	100
1	20	50	30	15	40	40
2	0	15	5	0	15	15

Table 5Results obtained from the experts asked to score the 3 possible scores for dust

Dust			Score pe	er expert		
	Expert 1	Expert 2	Expert 3	Expert 4	Expert 5	Mean
0	100	100	90	60	90	90
1	40	50	40	30	40	40
2	0	15	10	0	15	15

Second stage

To aggregate the three sub-scores into the criterion-scores the experts were asked to assign relative importance to the three measures, while having the possibility to focus on worst scores. To understand their way of reasoning, we presented to them a dataset composed of 13 virtual farms characterised by their three sub-scores (Table 6).

	D					Score pe	er expert		
Flock	Perching	Red mites	Dust	Ехр. 1	Ехр. 2	Exp. 3	Exp. 4	Ехр. 5	Mean
Flock 1	25	50	75	25	40	40	40	25	34
Flock 2	25	75	50	35	50	45	60	70	52
Flock 3	40	50	60	40	50	55	45	60	50
Flock 4	40	60	50	55	55	60	50	70	58
Flock 5	50	25	75	30	40	30	45	25	34
Flock 6	50	40	60	40	50	55	55	45	49
Flock 7	50	50	50	55	50	50	50	55	52
Flock 8	50	60	40	60	55	60	55	65	59
Flock 9	50	75	25	65	50	35	55	60	53
Flock 10	60	40	50	50	50	50	40	40	46
Flock 11	60	50	40	60	55	50	50	50	53
Flock 12	75	25	50	65	55	35	35	30	44
Flock 13	75	50	25	75	60	40	50	45	54

Table 6Results obtained from the experts asked to score13 imaginary farms for the criterion
Comfort around resting

The three partial scores, 1=Perching, 2=Red mites, 3=Dust, are combined to a score for criterion 3 using a Choquet integral with the following parameters:

Parameter	<u>Estimate</u>	Parameter	<u>Estimate</u>
μ1	0.3925	μ 12	0.7320
μ2	0.5503	μ 13	0.3928
μ3	0	μ 23	0.5504

In figure 5 the distribution of criterion scores for criterion 3, Comfort around resting, is presented as calculated from the dataset of 122 flocks.

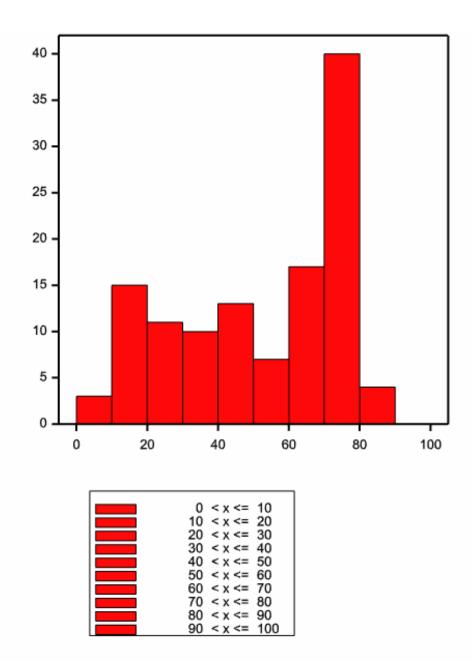


Figure 5 Criterion 3 - Comfort around resting: Distribution of criterion scores as calculated from the dataset of 122 flocks

Measure	Nature	Level of observation	
Panting	Cardinal	Flock	
Huddling	Cardinal	Flock	

2.4 Criterion 4: Thermal comfort

The two measures (panting and huddling) are complementary: birds pant when they are too warm and huddle when they are too cold. However, there may be large variation in a henhouse, causing a part of the flock to be cold and another part of the flock to be hot. So both measures can theoretically be assessed on the same day in the same flock.

First stage

The measures are assessed at flock level as a percentage of the birds. The experts have been asked to evaluate 7 imaginary flocks with varying levels of percentages birds panting and huddling. The results are presented in tables 7 and 8.

Flock	% Panting			Score p	er expert		
FIOCK	% Panung	Exp. 1	Exp. 2	Exp. 3	Exp. 4	Exp. 5	Mean
Flock 1	0	100	100	100	40	100	70
Flock 2	5	80	40	30	60	50	63
Flock 3	10	65	20	20	45	25	35
Flock 4	20	45	18	15	50	19	35
Flock 5	30	15	15	10	45	15	30
Flock 6	40	10	10	10	55	10	33
Flock 7	50	0	5	5	50	5	28

 Table 7
 Results from experts' evaluation of the percentage of birds panting

 Table 8
 Results from experts' evaluation of the percentage of birds huddling

Flock	% Panting			Score p	er expert		
TIUCK	70 Fanting	Ехр. 1	Ехр. 2	Ехр. 3	Ехр. 4	Ехр. 5	Mean
Flock 1	0	100	100	100	80	100	96
Flock 2	5	80	40	35	65	25	49
Flock 3	10	65	20	25	55	19	37
Flock 4	20	50	18	20	50	5	29
Flock 5	30	40	15	15	45	0	23
Flock 6	40	20	10	10	40	0	16
Flock 7	50	15	5	5	30	0	11

Second stage

To aggregate the two measures into the criterion-scores, the minimum of both measures is used.

In figure 6 the distribution of criterion scores for criterion 4, Thermal comfort, is presented as calculated from the dataset of 122 flocks.

Report 590

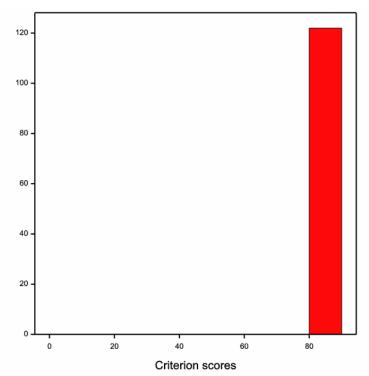


Figure 6 Criterion 4 - Thermal comfort: Distribution of criterion scores as calculated from the dataset of 122 flocks

2.5 Criterion 5: Ease of Movement

Measure	Nature	Level of observation
Stocking density (cm2/bird)	Cardinal	Flock
Percentage perforated floor	Cardinal	Flock

Although stocking density is expressed on individual level, it is assessed at flock level by dividing the total amount of available space by the number of hens present.

For identifying the percentage of perforated floor the total amount of perforated floor

First stage

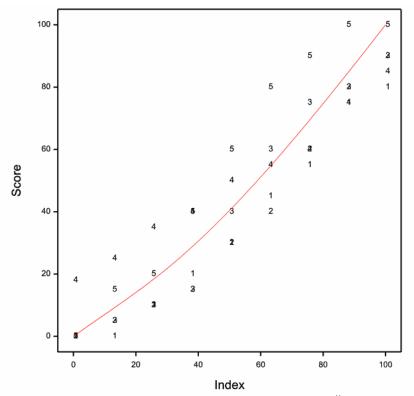
The experts have been asked to evaluate 9 imaginary flocks with varying stocking densities. The results are presented in table 10.

cm2/hen			Score pe	er expert		
cmz/nen	Exp. 1	Ехр. 2	Exp. 3	Exp. 4	Ехр. 5	Mean
400	0	0	0	18	0	3.60
600	0	5	5	25	15	10.00
800	10	10	10	35	20	17.00
1000	20	15	15	40	40	26.00
1200	30	30	40	50	60	42.00
1400	45	40	60	55	80	56.00
1600	55	60	75	60	90	68.00
1800	75	80	80	75	100	82.00
2000	80	90	90	85	100	89.00

 Table 10
 Results from experts' evaluation of stocking density (cm²/hen)

Stocking density is calculated as:

 $cm^2 per hen = p = {total available space (cm^2) total number of birds present}$


p is used to calculate index I: 100 * (1 - (2000 - p) / (2000 - 400)) with 400 being the lowest space per hens resulting in a score 0

Then the index is transformed into a score with I-spline functions (figure 7) as follows:

When I \leq 30: I = (a1 + b1*I + c1*I² + d1*I³) When I \geq 30: I = (a2 +b2*I + c2*I² + d2*I³)

The following coefficients are used for the stocking density (cm²/hen):

COEF	COEF1
a1	0.0000000000
b1	0.7164389632
c1	-0.0025580518
d1	0.0000955685
a2	3.2771454904
b2	0.3887244142
c2	0.0083657665
d2	-0.0000258073

Figure 7 Calculation of scores for stocking density (cm²/hen); spline with one interior knot at 30; (x axis, 100 * (1 - (2000 - cm²/hen) / (2000 - 400)))

The experts have been asked to evaluate 11 imaginary flocks with varying percentages of perforated floor. The results are presented in table 11.

% Perforated		Score per expert					
floor	Exp. 1	Exp. 2	Exp. 3	Exp. 4	Ехр. 5	Mean	
0	100	10	100	55	100	73	
10	80	10	90	60	100	68	
20	75	10	85	60	100	66	
30	55	50	80	70	90	69	
40	40	50	70	50	70	56	
50	20	55	60	45	50	46	
60	15	35	40	40	30	32	
70	10	20	15	35	15	19	
80	0	10	10	30	5	11	
90	0	0	5	25	0	6	
100	0	0	0	20	0	4	

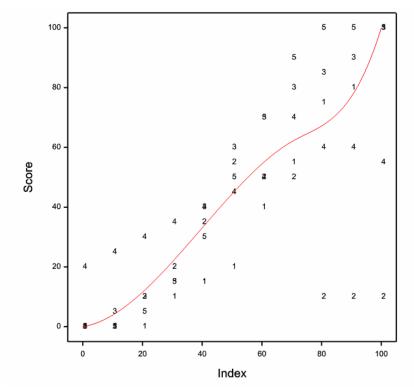
 Table 11
 Results from experts' evaluation of % perforated floor

Percentage perforated floor is calculated as:

% perforated floor = p =

total available area perforated floor (cm²)

total available space (cm²)


p is used to calculate index I: 100 - p

Then the index is transformed into a score with I-spline functions (figure 8) as follows: When I \leq 70: I = (a1 + b1*I + c1*I² + d1*I³)

When $l \ge 70$: $l = (a2 + b2^*l + c2^*l^2 + d2^*l^3)$

The following coefficients are used for the percentage perforated floor:

COEF	COEF2
a1	0.0000000000
b1	0.1568389736
c1	0.0251972531
d1	-0.0002114463
a2	-556.2933684725
b2	23.9979833768
c2	-0.3153905246
d2	0.0014104003

Figure 8 Calculation of scores for percentage perforated floor; spline with one interior knot at 70; (x axis, 100 - % perforated floor)

Second stage

To aggregate the three sub-scores into the criterion-scores the experts were asked to assign relative importance to the three measures, while having the possibility to focus on worst scores. To understand their way of reasoning, we presented to them a dataset composed of 5 virtual farms characterised by their three sub-scores (Table 12).

	Score for	Score for			Score per e	expert		
Flock	stocking density	perforated floor	Ехр. 1	Exp. 2	Ехр. 3	Exp. 4	Ехр. 5	Mean
Flock 1	25	75	35	30	30	25	30	34
Flock 2	40	60	45	45	45	40	45	52
Flock 3	50	50	50	50	50	50	50	50
Flock 4	60	40	55	50	50	55	50	58
Flock 5	75	25	65	55	35	70	45	34

Table 12	Results obtained from the experts asked to score 13 imaginary farms for the criterion
	Ease of movement

The two partial scores, 1=stocking density, 2=perforated floor, are combined to a score for criterion 5 using a Choquet integral with the following parameters:

Parameter	estimate
μ1	0.5828
μ2	0.1138

In figure 13 the distribution of criterion scores for criterion 5, Ease of movement, is presented as calculated from the dataset of 122 flocks.

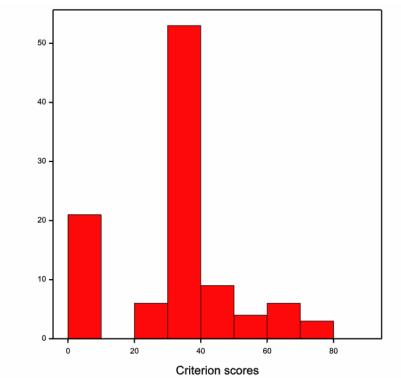


Figure 13 Criterion 5 - Ease of movement: Distribution of criterion scores as calculated from the dataset of 122 flocks

2.6 Criterion 6: Absence of injuries

Measure	Nature	Level of observation
Keel bone damage	Ordinal	Flock
Skin lesions	Ordinal	Flock
Food pad lesions	Ordinal	Flock
Toe damage	Ordinal	Flock

Keel bone damage is scored on a 2-point scale on 100 birds per flock. Skin lesions and food pad lesions are scored on the same 100 birds on a 3-point scale. Although these are cardinal measures, they are expressed as ordinal measure by expressing then as percentage of the flock with score 0, score 1 or score 2.

Toe damage is scored on the 100 individually examined birds and is expressed as percentage hens with toe damage.

First stage

The experts have been asked to evaluate 18 imaginary flocks with varying levels of percentages birds with keel bone damage. The results are presented in table 13.

% hens with			Sc	ore per exp	ert		
keel bone damage	Exp. 1	Ехр. 2	Ехр. 3	Exp. 4	Ехр. 5	Mean	Index
0	100	100	100	100	100	100	100
2	100	80	90	22	90	76.4	98
5	100	70	80	20	75	69.0	95
10	80	50	70	18	50	53.6	90
15	75	40	55	16	19	41.0	85
20	65	25	50	14	15	33.8	80
25	55	18	40	12	10	27.0	75
30	50	15	35	11	5	23.2	70
40	40	10	20	10	3	16.6	60
50	20	9	15	9	0	10.6	50
60	15	8	10	8	0	8.2	40
70	15	7	5	7	0	6.8	30
75	10	6	0	6	0	4.4	25
80	10	5	0	5	0	4.0	20
90	0	0	0	4	0	0.8	10
95	0	0	0	3	0	0.6	5
98	0	0	0	2	0	0.4	2
100	0	0	0	0	0	0	0

 Table 13:
 Results from experts' evaluation of Keel bone damage (% hens with keel bone damage)

Keel bone damage is calculated as:

% hens with keel bone damage = p =

number of birds with keel bone score 2

total number of birds examined

p is used to calculate index I: 100 - p

Then the index is transformed into a score with I-spline functions (figure 14) as follows:

When I≤80: I = $(a1 + b1^*I + c1^*I^2 + d1^*I^3)$ When I≥80: I = $(a2 + b2^*I + c2^*I^2 + d2^*I^3)$

The following coefficients are used for keel bone damage:

COEF	COEF1
a1	0.000000000
b1	0.1898672160
c1	-0.0023733402
d1	0.0000651008
a2	-2537.3344655810
b2	95.3399111060
c2	-1.1917489052
d2	0.0050208324

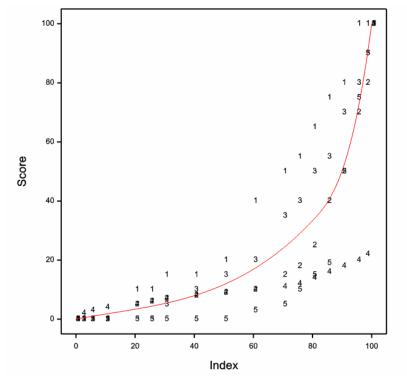


Figure 14 Calculation of scores for keel bone damage; spline with one interior knot at 80; (x axis, 100 - % keel bone damage)

In figure 15 the distribution of percentage keel bone damage is presented as calculated from the dataset of 122 flocks.

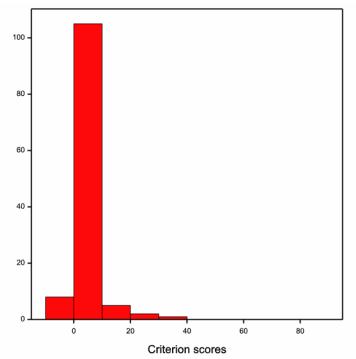


Figure 15 Percentage of keel bone damage: Distribution of scores as calculated from the dataset of 122 flocks

The experts have been asked to evaluate 18 imaginary flocks with varying levels of percentages birds with skin lesions. The results are presented in table 14

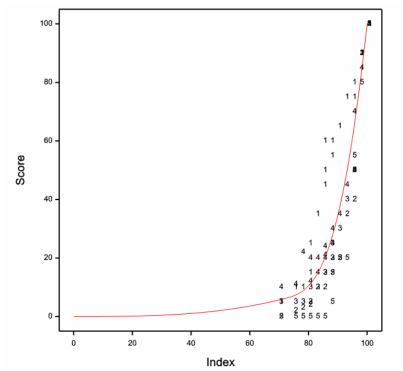
¥	0	-	7	Score per expert						
Flock	Score	Score	Score	Exp. 1	Exp. 2	Ехр. 3	Exp. 4	Exp. 5	Mean	Index
Flock 1	100	0	0	100	100	100	100	100	100.0	100.0
Flock 2	95	5	0	90	90	90	85	80	87.0	97.5
Flock 3	95	0	5	75	50	50	50	50	59.0	95.0
Flock 4	90	10	0	80	40	50	70	55	55.0	95.0
Flock 5	90	5	5	75	35	40	45	20	43.0	92.5
Flock 6	80	20	0	65	20	30	35	20	34.0	90.0
Flock 7	80	15	5	60	15	20	30	15	28.0	87.5
Flock 8	80	10	10	60	10	15	20	0	26.0	87.5
Flock 9	75	25	0	55	20	25	25	5	21.0	85.0
Flock 10	75	20	5	50	15	15	21	0	20.2	85.0
Flock 11	75	15	10	35	10	10	15	0	19.8	85.0
Flock 12	70	30	0	45	15	15	24	0	15.0	82.5
Flock 13	70	25	5	35	10	10	20	0	14.0	82.5
Flock 14	70	20	10	25	5	5	12	0	9.8	80.0
Flock 15	60	40	0	15	4	10	20	0	9.4	80.0
Flock 16	60	35	5	10	3	5	22	0	8.0	77.5
Flock 17	60	30	10	10	2	5	11	0	5.6	75.0
Flock 18	50	40	10	5	0	5	10	0	4.0	70.0

 Table 14
 Results from experts' evaluation of Skin lesions (per score classes *)

* Score 0= hens without skin lesions; score 1=hens with minor lesions; score 2=hens with more/larger lesions

Skin lesions are calculated as:

% hens with score $1 = p1 = \frac{\text{number of hens with score 1}}{\text{total number of birds examined}}$ % hens with score $2 = p2 = \frac{\text{number of hens with score 2}}{\text{total number of birds examined}}$


p1 and p2 are used to calculate index I: 100 - ((1*p1 + 2*p2)/2)

Then the index is transformed into a score with I-spline functions (figure 16) as follows:

When $|\le 72$: $I = (a1 + b1^*I + c1^*I^2 + d1^*I^3)$ When $72 \le 1 \le 95$: $I = (a2 + b2^*I + c2^*I^2 + d2^*I^3)$ When $|\ge 95$: $I = (a3 + b3^*I + c3^*I^2 + d3^*I^3)$

The following coefficients are used for skin lesions:

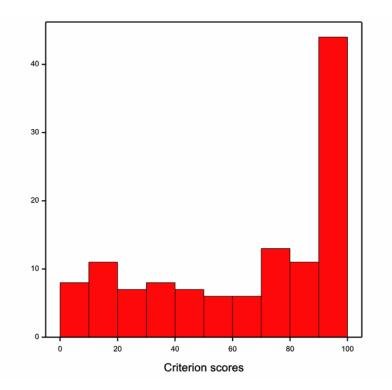

COEF	COEF2
a1	0.000000000
b1	0.000004965
c1	-0.0000049820
d1	0.0000166068
a2	-1439.4936246929
b2	59.9789015160
c2	-0.8330452738
d2	0.0038732748
a3	6918.6018461844
b3	-203.9609565524
c3	1.9452690330
d3	-0.0058751965

Figure 16 Calculation of scores for skin lesions; spline with two interior knots at 72 and 95; (x axis, 100 - ((1*score1 + 2*score2)/2))

Report 590

In figure 17 the distribution of skin lesion score is presented as calculated from the dataset of 122 flocks.

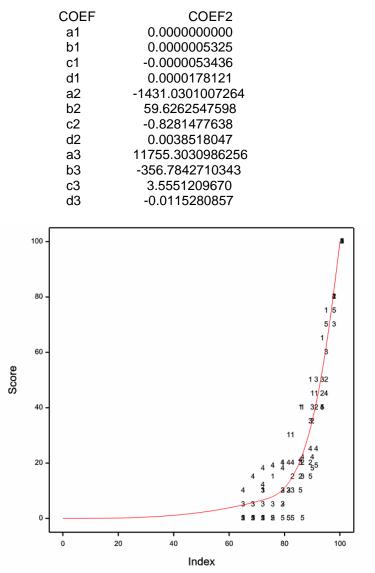
The experts have been asked to evaluate 18 imaginary flocks with varying levels of percentages birds with foot pad lesions. The results are presented in table 15.

			•						
Flock	Score 0	Score 1	Score 2			Score pe	er expert		
Ĕ	Sc	Sc	Sc	Exp. 1	Ехр. 2	Ехр. 3	Exp. 4	Ехр. 5	Mean
Flock 1	100	0	0	100	100	100	100	100	100.0
Flock 2	90	10	0	80	80	70	80	75	75.0
Flock 3	80	20	0	75	50	60	45	70	70.0
Flock 4	80	15	5	45	40	50	25	19	19.0
Flock 5	75	25	0	65	45	50	40	40	40.0
Flock 6	75	20	5	45	35	40	22	18	18.0
Flock 7	60	40	0	50	20	35	25	15	15.0
Flock 8	60	35	5	40	15	20	21	10	10.0
Flock 9	50	50	0	40	20	15	22	0	0.0
Flock 10	50	45	5	30	15	10	20	0	0.0
Flock 11	50	40	10	20	10	5	18	0	0.0
Flock 12	45	50	5	30	10	10	20	0	14.0
Flock 13	25	75	0	20	5	10	20	0	11.0
Flock 14	25	70	5	15	0	5	19	0	7.8
Flock 15	25	65	10	10	0	5	12	0	5.4
Flock 16	0	100	0	0	0	10	18	0	5.6
Flock 17	0	95	5	0	0	5	15	0	4.0
Flock 18	0	90	10	0	0	5	10	0	3.0

Table 15	Results from exp	erts' evaluation	of Foot r	oad lesions *
	r toounto n onn oxp			

* Score 0= hens without skin lesions; score 1=hens with minor lesions; score 2=hens with more/larger lesions

Food pad lesions are calculated as:


% hens with score $1 = p1 = \frac{\text{number of hens with score 1}}{\text{total number of birds examined}}$ % hens with score $2 = p2 = \frac{\text{number of hens with score 2}}{\text{total number of birds examined}}$

p1 and p2 are used to calculate index I: 100 - ((2*p1 + 7*p2)/7)

Then the index is transformed into a score with I-spline functions (figure 18) as follows:

When $I \le 72$: $I = (a1 + b1^*I + c1^*I^2 + d1^*I^3)$ When $72 \le I \le 95$: $I = (a2 + b2^*I + c2^*I^2 + d2^*I^3)$ When $I \ge 95$: $I = (a3 + b3^*I + c3^*I^2 + d3^*I^3)$

The following coefficients are used for food pad lesions:

Figure 18 Calculation of scores for food pad lesions; spline with one interior knot at 80; (x axis, 100 - ((2*score1 + 7*score2)/7))

In figure 19 the distribution of percentage food pad lesions is presented as calculated from the dataset of 122 flocks.

Report 590

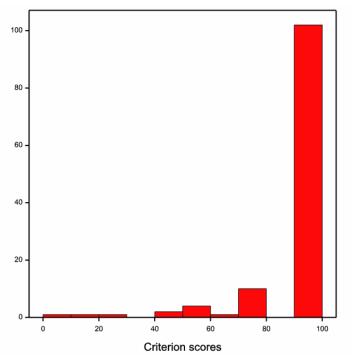


Figure 19 Food pad lesions; Distribution of scores as calculated from the dataset of 122 flocks

The experts have been asked to evaluate 16 imaginary flocks with varying levels of percentages birds with toe damage. The results are presented in table 16.

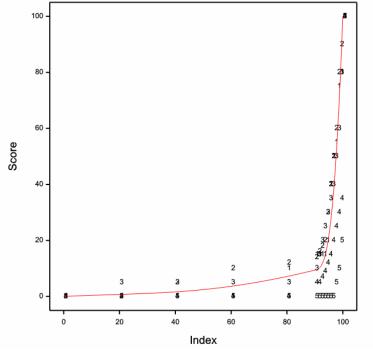
% hens with			Sc	ore per exp	ert		
toe damage	Exp. 1	Ехр. 2	Ехр. 3	Exp. 4	Exp. 5	Mean	Index
0	100	100	100	100	100	100.00	100.00
1	80	90	80	35	20	99.00	61.00
2	75	80	60	30	10	98.00	51.00
3	55	60	50	25	5	97.00	39.00
4	50	50	40	20	0	96.00	32.00
5	40	40	35	15	0	95.00	26.00
6	20	30	30	12	0	94.00	18.40
7	15	20	25	9	0	93.00	13.80
8	15	18	20	7	0	92.00	12.00
9	15	16	15	5	0	91.00	10.20
10	15	14	10	5	0	90.00	8.80
20	10	12	5	0	0	80.00	5.40
40	0	10	5	0	0	60.00	3.00
60	0	5	5	0	0	40.00	2.00
80	0	0	5	0	0	20.00	1.00
100	0	0	0	0	0	0.00	0.00

Table 16 Results from experts' evaluation of Toe damage (% hens with toe damage)

Toe damage is calculated as:

percentage toe damage = p =

number of hens with toe damage number of hens examined


p is used to calculate index I: 100 - p

Then the index is transformed into a score with I-spline functions (figure 20) as follows:

When $I \le 50$: $I = (a1 + b1^*I + c1^*I^2 + d1^*I^3)$ When $50 \le I \le 90$: $I = (a2 + b2^*I + c2^*I^2 + d2^*I^3)$ When $I \ge 90$: $I = (a3 + b3^*I + c3^*I^2 + d3^*I^3)$

The following coefficients are used for toe damage:

CŎEF	COEF4
a1	0.000000000
b1	0.0473985825
c1	-0.0009479717
d1	0.0000195478
a2	2.7904245378
b2	-0.1200268897
c2	0.0024005378
d2	-0.0000027756
a3	-64136.4092672520
b3	2137.8533028245
c3	-23.7528587522
d3	0.0879796665

Figure 20 Calculation of scores for percentage toe damage; spline with two interior knots at 50 and 90; (x axis, 100 - % toe damage)

In figure 21 the distribution of percentage toe damage is presented as calculated from the dataset of 122 flocks.

Report 590

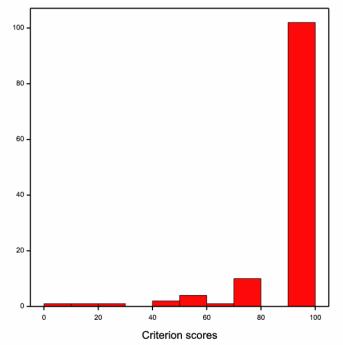


Figure 21 Percentage of toe damage: Distribution of scores as calculated from the dataset of 122 flocks

Second stage

The four partial scores, 1=Keel bone damage, 2=Skin lesions, 3=Food pad lesions, 4=Toe damage are combined to a score for criterion 6 using a Choquet integral with the following parameters:

Parameter	<u>Estimate</u>	Parameter	<u>Estimate</u>	Parameter	<u>Estimate</u>
μ1	0.2752	μ12	0.3333	µ 123	0.6304
μ2	0.1885	μ 13	0.2752	µ 124	0.3570
μ3	0.1385	µ 14	0.2752	µ 134	0.3870
μ4	0.1185	μ 23	0.1885	µ 234	0.5004
		μ 24	0.1885		
		μ 34	0.1385		

In figure 22 the distribution of criterion scores for criterion 6, Absence of injuries, is presented as calculated from the dataset of 122 flocks.

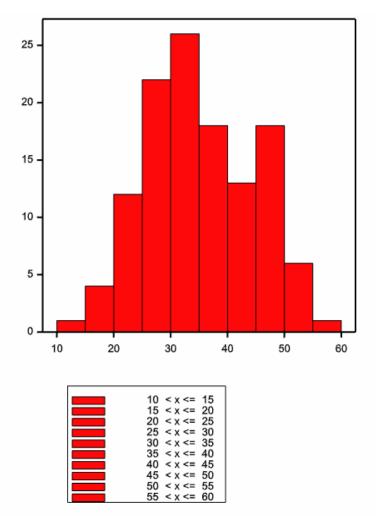


Figure 22 Criterion 6 - Absence of injuries: Distribution of criterion scores as calculated from the dataset of 122 flocks

2.7 Criterion 7: Absence of disease

Measure	Nature	Level of observation
Mortality	Cardinal	Flock
Culls	Cardinal	Flock
Enlarged crops	Ordinal	Flock
Eye pathology	Ordinal	Flock
Respiratory infections	Ordinal	Flock
Enteritis	Ordinal	Flock
Comb abnormality	Ordinal	Flock
Parasites and flies	Ordinal	Flock

First stage

To set an alarm threshold for percentage mortality the experts have been consulted (table 17). Warning signal is set on 50% of the alarm signal.

The health problems enlarged crops, eye pathology, respiratory infections, enteritis and comb abnormalities are scored on a 3-point scale. For all these health issues a score 1 has been regarded as warning signal and a score 2 as an alarm (see table 18).

For evidence for parasites and flies scoring has been done on a 2-point scale (present or not present). Table 19 provided the conversion to warning signals and alarms.

% hens with			Score p	er expert	rt		
keel bone damage	Ехр. 1	Ехр. 2	Ехр. 3	Ехр. 4	Ехр. 5	Mean	
0	10	10	4	10	10	8.8	

 Table 17
 Results from experts' evaluation on alarm threshold for Mortality (%)

Table 18Conversion of scores to warning and alarm thresholds for Enlarged crops, eye
pathology, respiratory infections, enteritis and comb abnormalities.

Number of birds affected	Scoring on 3-point scale	Conversion to thresholds
less than 3 birds	0	0
3 to 25 birds	1	warning
25 or more birds	2	alarm

Table 19 Conversion of scores to warning and alarm thresholds for parasites and flies

		Flea faeces			
		0 (= not present)	1 (= present)		
Parasites	0 (= not present)	0	warning		
Parasites	1 (= present)	alarm	alarm		

Second stage

The experts have been asked to evaluate 20 imaginary flocks with varying numbers of warnings and alarms on various disease issues. The results are presented in table 20.

×	ormal	s th 1	th 1			Sco	re per ex	pert		
Flock	Areas Normal	Areas with or more warnings	Areas with or more alarms	Exp. 1	Exp. 2	Exp. 3	Exp. 4	Exp. 5	Mean	Index
Flock 1	7	0	0	100	100	100	100	100	100.00	100.00
Flock 2	5	2	0	75	50	40	80	20	53.00	80.95
Flock 3	5	0	2	45	40	15	50	15	39.80	71.43
Flock 4	4	3	0	55	25	30	70	19	33.00	71.43
Flock 5	4	0	3	30	20	10	45	10	31.00	61.90
Flock 6	3	4	0	50	15	20	55	15	23.40	52.38
Flock 7	3	0	4	25	10	10	35	0	23.00	57.14
Flock 8	3	2	2	40	12	10	45	10	19.00	52.38
Flock 9	2	5	0	20	10	15	45	5	16.00	42.86
Flock 10	2	0	5	15	8	10	30	0	13.80	42.86
Flock 11	1	6	0	15	7	10	35	2	12.60	28.57
Flock 12	1	0	6	10	5	5	25	0	11.80	33.33
Flock 13	0	7	0	15	4	10	30	0	10.20	28.57
Flock 14	0	6	1	10	3	10	28	0	9.40	23.81
Flock 15	0	5	2	10	2	10	25	0	9.00	14.29
Flock 16	0	4	3	5	1	5	24	0	7.00	19.05
Flock 17	0	3	4	5	0	5	23	0	6.60	14.29
Flock 18	0	2	5	0	0	5	22	0	5.40	9.52
Flock 19	0	1	6	0	0	5	21	0	5.20	4.76
Flock 20	0	0	7	0	0	0	20	0	4.00	0.00

 Table 20
 Results from experts' evaluation of Absence of disease

Absence of disease is expressed as number of warnings and alarms.

absence of disease = p

p is used to calculate index I: 100 * (1 - (2 * #Warnings + 3 * #Alarms)/ (3 * Total possible alarms))

Then the index is transformed into a score with I-spline functions (figure 23) as follows:

When I \leq 25: I = (a1 + b1*I + c1*I² + d1*I³) When I \geq 25: I = (a2 +b2*I +c2*I² + d2*I³)

The following coefficients are used for the Absence of diseases:

COEF
0.0000000000
0.7479647348
-0.0199985563
0.0002620602
1.3655962489
0.5840931849
-0.0134436943
0.0001746620

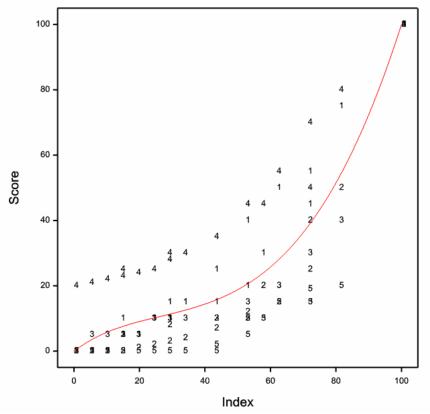


Figure 23 Calculation of criteria scores for absence of disease; spline with one interior knot at 25; (x 100 * (1 - (2 * #Warnings + 3 * #Alarms)/ (3 * Total possible alarms)) axis,

In figure 24 the distribution of absence of disease is presented as calculated from the dataset of 122 flocks.

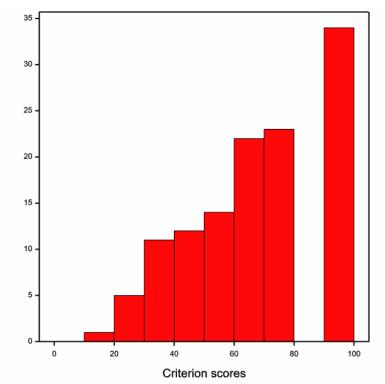


Figure 24 Criterion 7 - Absence of disease: Distribution of criterion scores as calculated from the dataset of 122 flocks

2.8 Criterion 8: Absence of pain due to management procedures

Measure	Nature	Level of observation
Beak treatment	Cardinal	Flock

The experts have been asked to evaluate 18 imaginary flocks with varying levels of percentages birds with keel bone damage. The results are presented in table 21.

Beak treatment *	Beaks with			Sco	re per ex	pert	
	score 2	Exp. 1	Ехр. 2	Ехр. 3	Exp. 4	Ехр. 5	Mean
Score =0	0%	100	100	100	100	100	100.00
Score= 1 **	0%	77	70	70	5	87	61.80
Score =1 or 2	1-10%	55	40	40	1	75	42.20
Score =1 or 2	11-20%	35	15	20	0	55	25.00
Score =1 or 2	21-30%	20	10	15	0	35	16.00
Score =1 or 2	31-40%	15	5	15	0	15	10.00
Score =1 or 2	41-50%	10	0	10	0	0	4.00
Score =1 or 2	51-60%	10	0	10	0	0	4.00
Score =1 or 2	61-70%	5	0	5	0	0	2.00
Score =1 or 2	71-80%	5	0	5	0	0	2.00
Score =1 or 2	81-90%	0	0	5	0	0	1.00
Score =1 or 2	91-100%	0	0	0	0	0	0.00

Table 21 Results from experts' evaluation of beak treatment

* Score 0 = not trimmed; score 1 = moderate treatment, no abnormalities; score 2= severe treatment and/or abnormalities

** After the MCE was carried out, it appeared that one option was missing, being score 1 without any birds with score 2. As this option was needed to carry out the calculations, estimates have been calculated as average between the adjacent scores (except for expert 4, where a low score in line with the other scores is chosen).

No further transformation is carried out. Depending on the category a beak score falls in it is converted into the mean score for that category.

Beak scores equal scores for criterion 8 - Absence of pain induced by management procedures.

In figure 25 the distribution of scores for criterion 8 is presented as calculated from the dataset of 122 flocks.

Report 590

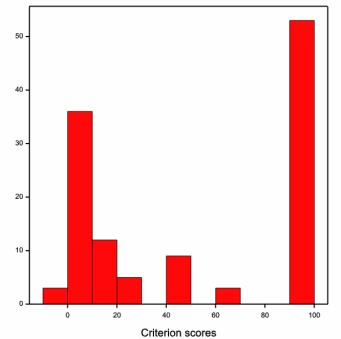


Figure 25 Criterion 8 - Absence of pain induced by management procedures: Distribution of criterion scores as calculated from the dataset of 122 flocks

2.9 Criterion 9: Expression of social behaviours

Measure	Nature	Level of observation
Aggression	Cardinal	Flock
Plumage score	Ordinal	Flock
Comb pecks	Ordinal	Flock

First stage

Aggression has been scored on a 2-point scale: present or not present. To convert this to a scale from 0 to 100, the experts have been asked to give a score to presence of aggression (table 26). The mean score is assigned to presence of aggression. If no aggression was present a score of 100 has been given.

Table 22 Results from experts' evaluation on presence of aggression

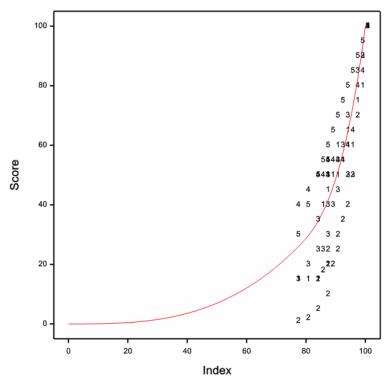
Presence of	Score per expert							
aggression	Exp. 1	Ехр. 2	Exp. 3	Exp. 4	Exp. 5	Mean		
0	20	20	10	40	30	24		

The experts have been asked to evaluate 18 imaginary flocks with varying levels of percentages birds with plumage damage. The results are presented in table 23.

Flock	with	with	with			Sco	ore per ex	pert		
Flo	% hens Score 0	% hens Score 1	% hens with Score 2	Exp. 1	Ехр. 2	Ехр. 3	Exp. 4	Ехр. 5	Mean	Index
Flock 1	100	0	0	100	100	100	100	100	100.00	100.00
Flock 2	95	5	0	80	90	90	85	95	88.00	98.33
Flock 3	95	0	5	60	50	50	65	85	80.00	96.67
Flock 4	90	10	0	75	70	85	80	90	65.00	93.33
Flock 5	90	5	5	60	40	50	60	80	62.00	95.00
Flock 6	80	20	0	65	50	70	60	80	58.00	93.33
Flock 7	80	15	5	60	30	45	55	70	56.00	91.67
Flock 8	80	10	10	50	25	30	50	60	52.00	90.00
Flock 9	75	25	0	55	35	60	55	75	51.00	90.00
Flock 10	75	20	5	50	20	40	55	65	46.00	88.33
Flock 11	75	15	10	40	18	25	50	55	43.00	86.67
Flock 12	70	30	0	50	25	55	55	70	43.00	86.67
Flock 13	70	25	5	45	20	40	55	55	38.00	86.67
Flock 14	70	20	10	15	15	25	50	50	37.60	85.00
Flock 15	60	40	0	20	10	50	50	60	31.00	83.33
Flock 16	60	35	5	15	5	35	50	50	31.00	83.33
Flock 17	60	30	10	15	2	20	45	40	24.40	80.00
Flock 18	50	40	10	15	1	15	40	30	20.20	76.67

 Table 23
 Results from experts' evaluation of Plumage damage *

* score 0 = hens without plumage damage; score 1 = hens with minor plumage damage; score 2 =hens with severe plumage damage and naked areas


The percentage plumage damage is calculated as: index I: 100 - (1*%score1 + 3*%score2)/3

Then the index is transformed into a score with I-spline functions (figure 26) as follows:

When $I \le 77$: $I = (a1 + b1^*I + c1^*I^2 + d1^*I^3)$ When $77 \le I \le 95$: $I = (a2 + b2^*I + c2^*I^2 + d2^*I^3)$ When $I \ge 95$: $I = (a3 + b3^*I + c3^*I^2 + d3^*I^3)$

The following coefficients are used for plumage damage:

COEF	COEF2
a1	0.000000000
b1	0.0000016787
c1	-0.0000168414
d1	0.0000561385
a2	-1642.7309864806
b2	64.0025076390
c2	-0.8312182175
d2	0.0036544129
a3	-3354.1612190858
b3	118.0476737478
c3	-1.4001147118
d3	0.0056505410

Figure 26: Calculation of scores for plumage condition; spline with two interior knots at 77 and 95; (x axis, 100 - (1*%score1 + 3*%score2)/3)

In figure 27 the distribution of percentage plumage damage is presented as calculated from the dataset of 122 flocks.

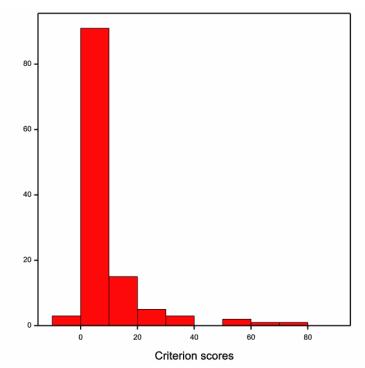


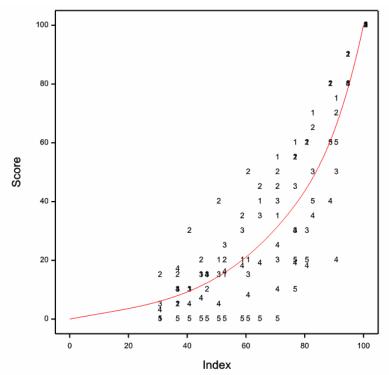
Figure 27 Plumage damage: Distribution of scores as calculated from the dataset of 122 flocks

The experts have been asked to evaluate 21 imaginary flocks with varying levels of percentages birds with comb pecks. The results are presented in table 24.

×	with	with	with	Score per expert						
Flock	% hens with Score 0	% hens Score 1	% hens with Score 2	Exp. 1	Exp. 2	Exp. 3	Exp. 4	Exp. 5	Mean	Index
Flock 1	100	0	0	100	100	100	100	100	100.00	100.00
Flock 2	90	10	0	90	90	80	80	80	84.00	94.00
Flock 3	90	0	10	75	70	50	20	60	64.00	88.00
Flock 4	80	20	0	80	80	60	40	60	55.00	90.00
Flock 5	80	0	20	60	60	30	18	20	52.00	82.00
Flock 6	70	30	0	70	65	50	35	40	42.00	76.00
Flock 7	70	15	15	55	55	30	19	10	37.60	80.00
Flock 8	70	0	30	35	45	20	10	0	34.00	70.00
Flock 9	60	40	0	60	55	45	30	20	33.80	76.00
Flock 10	60	0	40	20	50	15	8	0	27.80	64.00
Flock 11	50	50	0	55	50	40	25	0	22.00	70.00
Flock 12	50	0	50	20	40	15	5	0	20.60	58.00
Flock 13	40	60	0	40	45	35	19	0	18.60	60.00
Flock 14	40	0	60	10	30	10	5	0	16.00	50.00
Flock 15	30	70	0	20	35	30	18	0	15.20	52.00
Flock 16	30	35	35	15	20	15	7	0	11.40	44.00
Flock 17	30	0	70	0	15	5	3	0	11.00	46.00
Flock 18	20	80	0	15	20	25	16	0	11.00	40.00
Flock 19	20	40	40	10	15	10	17	0	10.40	36.00
Flock 20	10	90	0	15	10	15	15	0	6.00	36.00
Flock 21	0	90	10	5	5	10	10	0	4.60	30.00

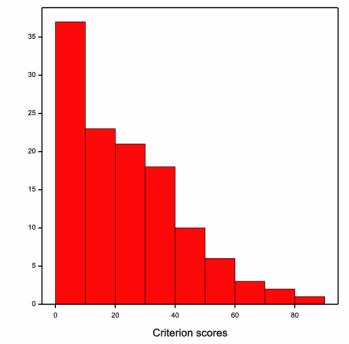
Table 24	Results from e	xperts' evaluation	of Comb pecks
----------	----------------	--------------------	---------------

score 0 = no comb pecks; score 1 = hens with less than 3 comb pecks; score 2 =hens with 3 or more comb pecks


The percentage comb pecks is calculated as: index I: 100 - (3*%score1 + 5*%score2)/5

Then the index is transformed into a score with I-spline functions (figure 28) as follows:

When I \leq 75: I = (a1 + b1*I + c1*I² + d1*I³) When I \geq 75: I = (a2 +b2*I +c2*I² + d2*I³)


The following coefficients are used for comb pecks:

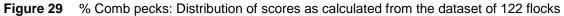

CŎEF	COEF2
a1	0.000000000
b1	0.1971201438
c1	-0.0026247697
d1	0.0000866983
a2	-534.0030577086
b2	21.5584170490
c2	-0.2874681222
d2	0.0013528426

Figure 28 Calculation of scores for % comb pecks; spline with one interior knot at 75; (x axis, 100 - (3*%score1 + 5*%score2)/5)

In figure 29 the distribution of percentage comb pecks is presented as calculated from the dataset of 122 flocks.

Second stage

To aggregate the three sub-scores into the criterion-scores the experts were asked to assign relative importance to the three measures, while having the possibility to focus on worst scores. To

understand their way of reasoning, we presented to them a dataset composed of 5 virtual farms characterised by their three sub-scores (Table 25).

	Lypie	331011 01 300		<i></i>					
			<i>(</i> 0			Score pe	er expert		
Flock	Score for aggression	Score for feather damage	Score for comb pecks	Exp. 1	Exp. 2 *	Exp. 3	Exp. 4	Ехр. 5	Mean
Flock 1	25	50	75	40		45	45	60	47.50
Flock 2	25	75	50	65		50	55	60	57.50
Flock 3	40	50	60	50		50	50	55	51.25
Flock 4	40	60	50	55		50	55	55	53.75
Flock 5	50	25	75	30		30	28	45	33.25
Flock 6	50	40	60	45		45	40	50	45.00
Flock 7	50	50	50	50		50	50	50	50.00
Flock 8	50	60	40	55		50	50	50	51.25
Flock 9	50	75	25	60		50	50	45	51.25
Flock 10	60	40	50	40		45	40	45	42.50
Flock 11	60	50	40	50		50	50	45	48.75
Flock 12	75	25	50	35		30	30	35	32.50
Flock 13	75	50	25	50		40	35	35	40.00

 Table 25
 Results obtained from the experts asked to score13 imaginary farms for the criterion

 Expression of social behaviour
 Expression of social behaviour

* expert 2 did not feel comfortable with the measures falling under this criterion and therefore did not fill in the table.

The three partial scores, 1=Aggression, 2=Plumage score, 3=Comb pecks, are combined to a score for criterion 9 using a Choquet integral with the following parameters:

Parameter	<u>Estimate</u>	Parameter	<u>Estimate</u>
μ1	0.09750	μ 12	0.5376
μ2	0.5257	µ 13	0.1985
μ3	0.1521	μ 23	0.7818

In figure 30 the distribution of criterion scores for criterion 9, Expression of social behaviour, is presented as calculated from the dataset of 122 flocks.

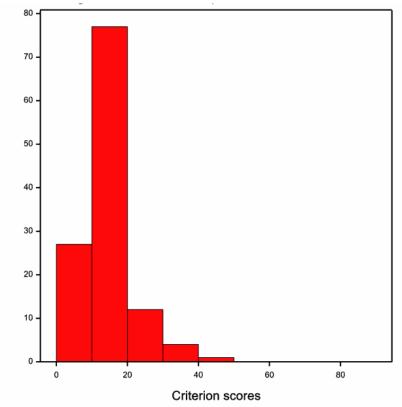


Figure 30 Criterion 9 - Expression of social behaviour: Distribution of criterion scores as calculated from the dataset of 122 flocks

2.10 Criterion 10: Expression of other behaviours

Measure	Nature	Level of observation
Nestbox use	Cardinal	Flock
Nest space per hen	Ordinal	Individual
Environmental enrichment	Cardinal	Individual

First stage

The experts have been asked to evaluate the 9 possible situations regarding nestbox use. The results are presented in table 26.

	TICSLO	JX USE.				-			
	~	~	~				er expert		
Nestboxes available	Distribution of nest boxes	Distribution of eggs within nest rows	Distribution of eggs between nest rows	Exp. 1	Ехр. 2	Exp. 3	Exp. 4	Exp. 5	Mean
Nests	Even	Even	Even	100	100	90	100	100	98.00
Nests	Even	Even	Not even	80	70	40	75	90	71.00
Nests	Even	Not even	Even	80	55	40	75	70	64.00
Nests	Even	Not even	Not even	70	50	35	50	50	51.00
Nests	Not even	Even	Even	70	90	90	100	60	82.00
Nests	Not even	Even	Not even	60	50	40	75	30	51.00
Nests	Not even	Not even	Even	60	30	40	75	10	43.00
Nests	Not even	Not even	Not even	50	20	35	50	5	32.00
No nests	n.a.	n.a.	n.a.	0	0	0	0	0	0.00

Table 26 Results obtained from the experts asked to score the 9 possible situations regarding nestbox use.

No further transformation is carried out. Depending on the category a score for nestbox use falls in, it is converted into the mean score for that category.

The experts have been asked to evaluate 11 imaginary flocks with varying nest space per hen. The results are presented in table 27.

Nest space	Score per expert								
(cm2/hen)	Exp. 1	Ехр. 2	Exp. 3	Exp. 4	Ехр. 5	Mean	Index		
160	80	80	80	80	100	84.00	100.00		
140	80	70	75	60	90	75.00	87.50		
120	70	60	70	55	70	65.00	75.00		
100	55	50	65	50	60	56.00	62.50		
95	45	40	55	45	50	47.00	59.38		
90	35	30	50	40	20	35.00	56.25		
85	25	20	30	25	15	23.00	53.12		
80	20	15	20	20	10	17.00	50.00		
60	15	10	15	18	5	12.60	37.50		
40	10	5	10	15	0	8.00	25.00		
0	0	0	0	0	0	0.00	0.00		

Results from experts' evaluation of Nest space (cm²/hen) Table 27

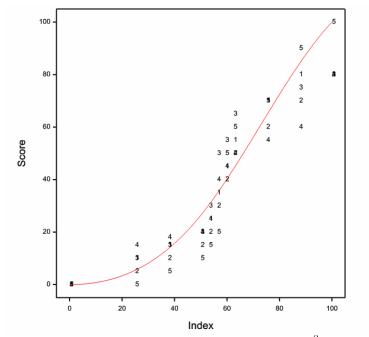
Nest space is calculated as:

 $cm^2 per hen = p =$

total available space (cm²)

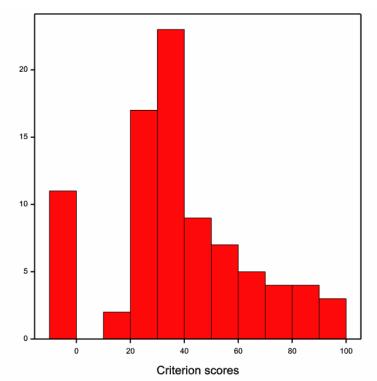
total number of birds present

p is used to calculate index I: 100 * p / 160


with 160 being the highest space per hens resulting in a score100

Then the index is transformed into a score with I-spline functions (figure 31) as follows:

When I \leq 50: I = (a1 + b1*I + c1*I² + d1*I³) When I \geq 50: I = (a2 +b2*I +c2*I² + d2*I³)


The following coefficients are used for the nest space (cm²/hen):

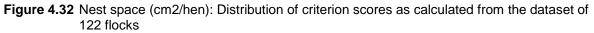

CÕEF	COEF
a1	0.0000000000
b1	0.000000000
c1	0.0068928967
d1	0.0000730466
a2	41.9755393835
b2	-2.5185323631
c2	0.0572635440
d2	-0.0002627577

Figure 31 Calculation of scores for nest space (cm²/hen); spline with one interior knot at 50; (x axis, 100 * nestspace /160)

In figure 32 the distribution of nest space is presented as calculated from the dataset of 122 flocks.

Use of environmental enrichments has been scored on 5 aspects:

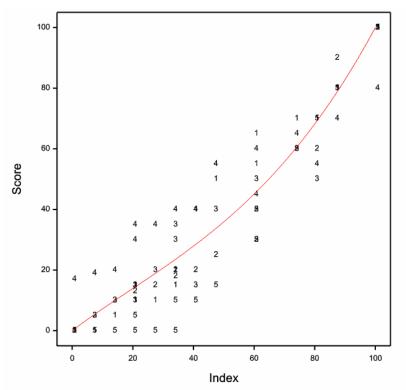
	Score 0	Score 1	Score 2
a. Use of litter	good	moderate	bad
b. Use of Enrichments	good	moderate	bad
c. Use of free range	good	moderate	bad
d. Cover on range	good = >5%	moderate = ≤ 5%	bad = n.a or 0%
e. Use of covered veranda	good = 50-100%	moderate = < 50%	bad = n.a.

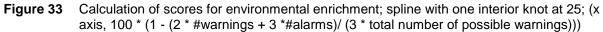
For each aspect score 1 equals a warning and score 2 equals an alarm. The experts have been asked to evaluate 16 imaginary flocks with varying number of warnings and alarms. The results are presented in table 28.

		_	_	Score per expert						
Flock	Normal areas	Areas with warning	Areas with alarm	Exp. 1	Ехр. 2	Exp. 3	Exp. 4	Exp. 5	Mean	Index
Flock 1	5	0	0	100	100	100	80	100	96.00	100.00
Flock 2	4	1	0	80	90	80	70	80	80.00	86.67
Flock 3	4	0	1	70	60	50	55	70	63.00	73.33
Flock 4	3	2	0	70	60	60	65	60	61.00	80.00
Flock 5	3	0	2	55	40	40	45	40	47.00	60.00
Flock 6	2	3	0	65	30	50	60	30	44.00	60.00
Flock 7	2	0	3	40	20	15	40	10	37.00	46.67
Flock 8	1	4	0	50	25	40	55	15	25.00	40.00
Flock 9	1	0	4	15	15	10	35	5	23.60	33.33
Flock 10	1	2	2	20	18	30	40	10	22.00	33.33
Flock 11	0	5	0	15	20	35	40	0	16.00	20.00
Flock 12	0	4	1	10	15	20	35	0	16.00	26.67
Flock 13	0	3	2	10	13	15	30	0	13.60	20.00
Flock 14	0	2	3	5	10	10	20	0	9.00	13.33
Flock 15	0	1	4	0	5	5	19	0	5.80	6.67
Flock 16	0	0	5	0	0	0	17	0	3.40	0.00

Table 28Results obtained from the experts asked to score the 16 imaginary flocks with varying
number of warnings and alarms regarding use of environmental enrichment.

The score for environmental enrichment is calculate with the following formula:


index I: 100 * (1 - (2 * #warnings + 3 *#alarms)/ (3 * total number of possible warnings))


Then the index is transformed into a score with I-spline functions (figure 33) as follows:

When $I \le 25$: $I = (a1 + b1^*I + c1^*I^2 + d1^*I^3)$ When $I \ge 25$: $I = (a2 + b2^*I + c2^*I^2 + d2^*I^3)$

The following coefficients are used for environmental enrichment:

COEF	COEF
a1	0.000000000
b1	0.7593934044
c1	-0.0048562286
d1	0.0000838304
a2	0.4150899805
b2	0.7095826068
c2	-0.0028637967
d2	0.0000572646

In figure 34 the distribution of environmental enrichment is presented as calculated from the dataset of 122 flocks.

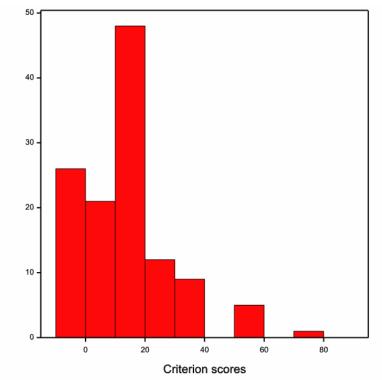


Figure 34 Environmental enrichment: Distribution of criterion scores as calculated from the dataset of 122 flocks

Second stage

To aggregate the three sub-scores into the criterion-scores the experts were asked to assign relative importance to the three measures, while having the possibility to focus on worst scores. To understand their way of reasoning, we presented to them a dataset composed of 5 virtual farms characterised by their three sub-scores (Table 29).

Table 29Results obtained from the experts asked to score12 imaginary farms for the criterion
Expression of social behaviour

			÷			Score pe	er expert		
Flock	Use of nestboxes	Nest space	Use of environment	Exp. 1	Exp. 2 *	Exp. 3	Exp. 4	Exp. 5	Mean
Flock 1	100	100	100	100	100	100	100	100	100.00
Flock 2	100	25	75	80	55	80	75	50	68.00
Flock 3	100	50	50	60	50	70	50	70	60.00
Flock 4	100	75	25	55	40	60	35	50	48.00
Flock 5	100	100	0	10	18	15	15	15	14.60
Flock 6	75	50	50	50	60	55	58	60	56.60
Flock 7	50	75	50	50	55	55	50	55	53.00
Flock 8	50	50	50	45	50	50	50	50	49.00
Flock 9	50	50	25	35	30	40	30	40	35.00
Flock 10	25	50	25	25	28	30	25	25	26.60
Flock 11	25	25	50	25	35	35	35	30	32.00
Flock 12	0	0	0	0	0	0	0	0	0.00

The three partial scores, 1=Nestbox use, 2=Nest space per hen, 3=Environmental enrichment, are combined to a score for criterion 10 using a Choquet integral with the following parameters:

Parameter	Estimate	Parameter	<u>Estimate</u>
μ1	0.2665	μ 12	0.2665
μ2	0.09200	μ 13	0.7268
μ3	0.01000	μ 23	0.5000

In figure 35 the distribution of criterion scores for criterion 10, Expression of other behaviour, is presented as calculated from the dataset of 122 flocks.

Report 590

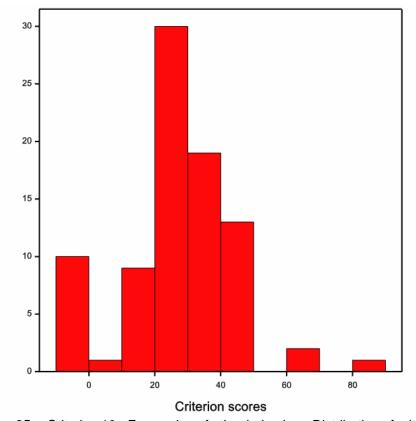


Figure 35 Criterion 10 - Expression of other behaviour: Distribution of criterion scores as calculated from the dataset of 122 flocks

2.11 Criterion 11: Good human-animal relationship

Measure	Nature	Level of observation
Avoidance distance test	Ordinal	Flock

The experts have been asked to evaluate 7 imaginary flocks with varying avoidance distances. The results are presented in table 30.

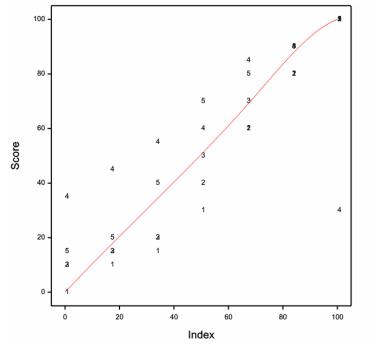
Avoidance			Sc	ore per exp	ert		
distance (cm)	Exp. 1	Exp. 2	Exp. 3	Exp. 4	Exp. 5	Mean	Index
0	100	100	100	30	100	86.00	100.00
25	80	80	90	90	90	86.00	83.33
50	60	60	70	85	80	71.00	66.67
75	30	40	50	60	70	50.00	50.00
100	15	20	20	55	40	30.00	33.33
125	10	15	15	45	20	21.00	16.67
150	0	10	10	35	15	14.00	0.00

 Table 30
 Results from experts' evaluation of avoidance distance

Avoidance distance is calculated as:

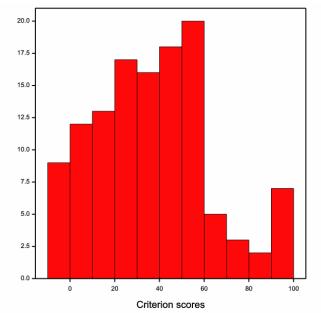
average distance (cm) = $p = \frac{sum of all measures}{total number of birds measured}$

p is used to calculate index I: 100 * (150 - p) / 150


with 150 being the longest distance resulting in a score 100

Then the index is transformed into a score with I-spline functions (figure 36) as follows:

When $I \le 70$: $I = (a1 + b1^*I + c1^*I^2 + d1^*I^3)$ When $I \ge 70$: $I = (a2 + b2^*I + c2^*I^2 + d2^*I^3)$


The following coefficients are used for the avoidance distance:

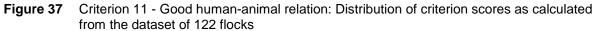

COEF	COEF
COLI	
a1	0.000000000
b1	1.0631400519
c1	-0.0025548862
d1	0.0000298844
a2	135.2892601467
b2	-4.7349710998
c2	0.0802752731
d2	-0.0003645449

Figure 36 Calculation of scores for avoidance distance; spline with one interior knot at 70; (x axis, 100 * (150 - avoidance distance) / 150)

In figure 37 the distribution of avoidance distance is presented as calculated from the dataset of 122 flocks. The score for avoidance distance equals the score for criterion 11 Good human-animal relation.

2.12 Criterion 12: Positive emotional state

Measure	Nature	Level of observation
Novel Object Test (NOT)	Ordinal	Flock
Qualitative Behaviour Assessment (QBA)	Ordinal	Flock

First stage

The experts have been asked to evaluate 11 imaginary flocks with varying outcomes of the Novel Object test. The results are presented in table 31.

Novel Object		Score per expert						
Test	Exp. 1	Exp. 2	Exp. 3	Exp. 4	Exp. 5	Mean	Index	
20	100	100	95	35	100	86.00	100.00	
18	100	90	90	40	100	84.00	90.00	
16	80	80	85	40	100	77.00	80.00	
14	75	70	80	45	90	72.00	70.00	
12	65	60	75	45	80	65.00	60.00	
10	60	50	65	50	70	59.00	50.00	
8	55	40	55	65	60	55.00	40.00	
6	40	30	45	60	50	45.00	30.00	
4	30	20	25	55	30	32.00	20.00	
2	20	10	15	25	10	16.00	10.00	
0	0	0	0	20	0	4.00	0.00	

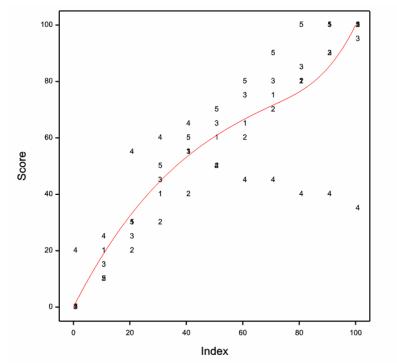
 Table 31
 Results from experts' evaluation of Novel Object Test

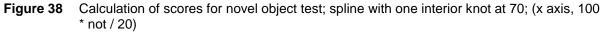
The outcome of the Novel Object Test (NOT) is calculated as:

NOT =
$$p = \frac{\text{total number of hens within 30 cm of Novel Object}}{1}$$

total number of counts

p is used to calculate index I: 100 * p / 20


with 20 being the maximum number of hens resulting in a score 100


Then the index is transformed into a score with I-spline functions (figure 38) as follows:

When I≤70: I = (a1 + b1*I + c1*I² + d1*I³) When I≥70: I = (a2 +b2*I + c2*I² + d2*I³)

The following coefficients are used for Novel Object count:

CÕEF	COEF
a1	0.000000000
b1	1.9659146505
c1	-0.0191480328
d1	0.0000801151
a2	-187.6819357043
b2	10.0094261971
c2	-0.1340553408
d2	0.0006272927

In figure 39 the distribution of the outcome of the novel object test is presented as calculated from the dataset of 122 flocks.

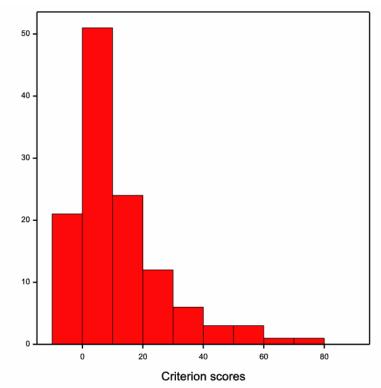


Figure 39 Novel Object Test: Distribution of criterion scores as calculated from the dataset of 122 flocks

The scores for QBA have been transformed to a score from 0-100 with the use of an algorithm developed within the Welfare Quality® which describes the relationship between Index values (Figure 40, horizontal axis) and welfare scores (Figure 40, vertical axis). The inputs for the calculation of Index values are (i) values for the various terms comprising the QBA, and (ii) weights attributed to each term (derived from a Principal Component Analysis).

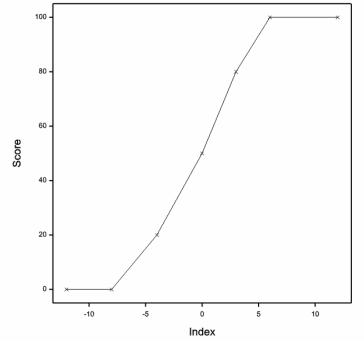


Figure 40 Transformation of scores for QBA into a scale of 0-100;

Second stage

To aggregate the three sub-scores into the criterion-scores the experts were asked to assign relative importance to the three measures, while having the possibility to focus on worst scores. To understand their way of reasoning, we presented to them a dataset composed of 5 virtual farms characterised by their three sub-scores (Table 29).

Table 29Results obtained from the experts asked to score12 imaginary farms for the criterion
Positive emotional state

Flock	NOT			Score per expert					
FIOCK	NOT	QBA	Exp. 1	Ехр. 2	Exp. 3	Exp. 4	Exp. 5	Mean	
Farm 1	25	75	60	55	60	30	30	47.00	
Farm 2	40	60	50	55	55	45	45	50.00	
Farm 3	50	50	50	50	50	50	50	50.00	
Farm 4	60	40	50	45	45	50	55	49.00	
Farm 5	75	25	35	35	40	40	70	44.00	

The two partial scores, 1=Novel Object Test, 2=Qualitative Behaviour Assessment, are combined to a score for criterion 12 using a Choquet integral with the following parameters:

Parameter	<u>Estimate</u>
μ1	0.3897
μ2	0.4483

In figure 41 the distribution of criterion scores for criterion 12, Positive emotional state, is presented as calculated from the dataset of 122 flocks.

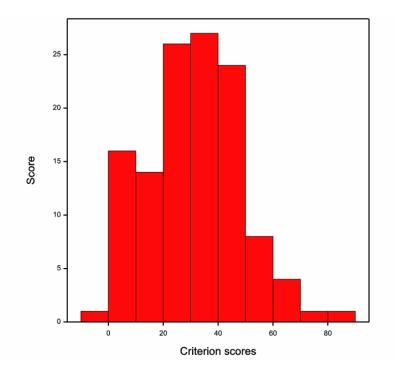
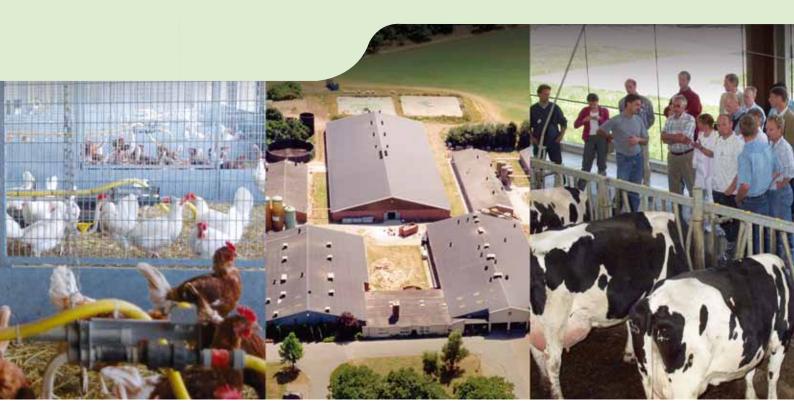



Figure 41 Criterion 12 - Positive emotional state: Distribution of criterion scores as calculated from the dataset of 122 flocks

Literature

- Welfare Quality[®], 2009. Welfare Quality[®] assessment protocol for poultry (broilers, laying hens).
 Welfare Quality[®] Consortium, Lelystad, Netherlands.
 Van Niekerk, T.G.C.M., H. Gunnink & C.G. van Reenen, 2012. Welfare Quality[®] assessment protocol
- Van Niekerk, T.G.C.M., H. Gunnink & C.G. van Reenen, 2012. Welfare Quality® assessment protocol for laying hens, results assessment of 122 flocks. Report 589 Wageningen UR, Livestock Research. 63 pages.

Wageningen UR Livestock Research Edelhertweg 15, 8219 PH Lelystad T 0320 238238 F 0320 238050 E info.livestockresearch@wur.nl | www.livestockresearch.wur.nl