4 The growth of yeast
C.T. de Wit and J. Goudriaan

4.1 Description of the system

Growth is only exponential as long as the relative growth rate remains constant.
This is usually so with yeast when it is grown under acrobic conditions with a
sufficient supply of sugar and some other growth essentials. The sugar is then conti-
nuously consumed to provide the 'C skeletons’ and the energy for the growth of new
yeast cells and for maintenance of the yeast. The end-products, CO, and H50, of the
sugar broken down in the respiratory process do not pollute the environment of the
yeast. However, if yeast grows under anaerobic conditions, one end-product of the
respiratory processes is alcohol which may accumulate in the environment. This
slows down and ultimately stops the development of yeast buds even when there is
still enough sugar available for growth.

Growth curves for yeast that result under such conditions are given in Figure 4.1.
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Figure 4.1. The growth of Saccharomyces cerevisiae and Schizosaccharomyces ‘Kephir' in mo'nocul-
ture and in mixture. The observational data were obtained by Gause (1934) and the curves are simula-
ted, as explained in the text, Note the difference in scales for the two graphs.

It should be noted that yeast once formed does not die because only the bud fti)nnaﬁon
is affected by the alcohol. Two of the four growth curves are from an experllrflent of
- Gause (1934) with monocultures of the yeast species Saccharomyces cerevisiae and
Schizosaccharomyces 'Kephir'. It is obvious that the initial relative growth rate and
the maximum volume of yeast that is ultimately formed is highest for the first
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spchzl::e cultivated both yeast species not only in monoculture, but also in mixture.
The results of this experiment are also presented in Figure 4.1.by th‘.e other t;v&fo
curves. A comparison of the growth of both species in mixture w1th' thex‘r growth in
monoculture shows that both affected each other in the first situation. It was
proposed by Gause that this was due to the formation of the sz_ame waste 1:rr0du$i
alcohol, that affected the bud formation of both species. In this chapter we shalf
analyse whether this explanation is acceptable by constructing a model tha.t sunulalﬂx::
the growth of two species independently and in mixture under the assumption that
production of the same harmful waste product is the only cause of interaction.

42  Relational diagram

The relational diagram for the yeast system is presented in Figure 4.2. There are
three state variables; the amount of the first and second yeast species and the amount
of alcohol. The lines of information flow show directly that the growth of yeast is
supposed to depend on the amount of yeast, a relative growth rate and an aux.lllal')’
variable: a reduction factor, This reduction factor, in its turn, is given as a function of

the amount of alcohot that js present. The relations are, of course, the same for both

yeast species although numerical values of parameters and functions may be different.
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The amount of alcohol increases by the rate of alcohol production of both species.
The alcohol production of each species is supposed to depend on the growth rate o
the species and on an alcohol production factor, '

Exercise 4.1

In Section 2.5 it is said that rates do not depend on each other in state determined
systems. Why is the line of information flow between the rate of growth and the rate of
alcohol production not in contradiction with this principle?

Relational diagrams should contain as few details as possible, otherwise they are
very difficult to grasp and so defeat their purpose. In studying them, much emphasis
should be given to aspects that are not incorporated. For instance, in the present
scheme there are no loops that relate the alcohol production directly to the amount of
yeast, indicating that the cost of maintenance of yeast cells is not accounted for. The
amount of sugar is also not considered, because it is assumed to be always available
in sufficient amounts.

Exercise 4.2
Incomorate the aspect of limited food supply in the relational diagram.

Exercise 4.3

Compare the relational diagram of the continuous yeast culture fed by a sugar
solution (Figure 2.9) with the one for the growth and interference of two interfering
yeast species (Figure 4.2), and note two principal differences between the models.

4.3 Simulation

The growth of the first yeast species (Saccharomyces) is now simulated by stating
that the amount of yeast equals

¥1 = INTGRL (IY1l , RY1) 4.1)

in which INCON IY1 = 0.45 is the initial amount of yeast in the arbitrary units,
used by Gause, and the rate of yeast growth is given by

RYl = RGR1 * Y1 * ( 1. - RED1 ) ‘ 4.2)

The relative growth rate is defined with PARAMETER RGRI = .....

It was observed by Gause that in both species the formation of buds was complete-
ly stopped at some maximum alcohol concentration which is given as a percentage
by PARAMETER MALC = 1.5. The dependence of the reduction factor on the
alcohol concentration may now.be obtained with an arbitrary function generator:
REDI = AFGEN(REDIT QALC[MALC).?_Ihe most elementary assumption 1s th:-at
bud formation decreases linea:fg}"'i“ﬁiﬂf“ﬁcreasing alcohol concentration, which is
introduced with FUNCTION REDIT = (0.,0.),(1.,1.).

A
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ise 4.4 . .
Eer)rc;iess RED? directly in ALC and MALC without using the function generator.

The alcohol concentration itself is the integral of the alcohol production rate which
is zero at the initialization of growth:

ALC = INTGRL (IALC , ALCP1) ' (4.3)
INCON TAIC = 0.

and the alcohol production rate is proportional to the growth rate of yeast:

ALCP1 = ALPF1l * Ryl - (44)

Two values need to be determined now: the relative growth rate apd the alcohol
production factor. During the carly stages of growth, RED]1 is prarftrcally Zer%ﬂ:(l)
that the growth rate is equal to RGR1 o Y1, This allows a first estimate of R _
from the data in Figure 4.1 for the monoculture. ALPF1 follows from the observati-

on that growth was terminated when the aleohol concentration equalled 1.5 percent
and the amount of yeast about 13 units,

Exercise 4.5 . .

a. Whatis a first estimate of RGR1 in the correct units, and how would you estimate
the time step of integration?

b.  What is the value of ALPF1 in the correct units? :

c. Is this value only physiologically determined or does it also depend on the
volume of water in the vessels with yeast?

d. What is the value of IALC when not on|

at initiatization, but also the correspond
e. Estimate the same

aleohol congentratj
also 1.5 percent.

Which species has the larger alcohol production factor?

Y the initial amount of yeast is introduced
ing amount of alcohol?

values for Schizosaccharomyces, when it is known that th.e
on at which the formation of buds is completely inhibited is

on the conditign that both g cies interfere onl with each other
through the production of alcohg]. b ’

Li§ﬁng 4.1 shows the resulting simulation Program with MALC identical for both
Species and the proper daty, In the main Program IY1 and 1Y2 are both set to 0.45
units, so ‘_hat the growth in the Mmixture is simulated. The two monocultures are
Stmulated in rerupg_
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FINTIM is set at 150 hours, but the two lines

FINISH ALC = LALC
LALC = 0.99 * MAIC

are inserted to avoid unnecessary 'number-grinding', when the alcohol concentration is
close to its maximum. This FINISH condition indicates that the simulation is termi-
nated as soon as the alcohol concentration reaches 99 percent of its maximum value,

The relative growth rates and the alcohol production factors are chosen so that the
results of the two experimental monocultures are matched as well as possible. A
comparison of the mixtures (Figure 4.1) shows that the actual growth of Schizosac-
charomyces is slightly more than the simulated growth.

Listing 4.1. A simulation program for the growth of two yeast species that interfere through the
production of the same waste product (alcohol).

TITLE Mixed culture of yeast

INITIAL

INCON Iyl  =(.45, Iy2 =0.45, TALC =0.0
PARAMETER RCGRL =0.21, RGR2 =0.08

PARAMETER MALC =1.5 , ALPF1=0.12, ALPF2=0.26
FUNCTION REDIT ={0.0,0.0) , (1.0,1.0}
FUNCTICN RED2T ={(0.0,0.0) , (1.0,1.0)
TIMER FINTIM=150., DELT=0.5, CUTDEL=2.0
QUTPUT Y1,¥2,ALC

PAGE GRCUP =2

METHOD RECT

LAIC = 0.99*MALC

DYNAMIC

Y1 =INTGRL(IYl , RYl }
Y2 =INTGRL (IY2 , RY2 }
ALC =INTGRL (IALC, ALCPL + ALCP2)
Ryl =RGR1*Y1*(1.0-RED1)

RY2 =RGR2*Y2* (1.0-RED2)

APl =ALDPF1*RY1

ATCP2 =ALPF2*RY2

REDL =AFGEN {RED1T, ALC/MALC)

RED2 =AFGEN (RED2T, ALC/MALCZ)
FINISH ALC=LALC

FID

STOPR

ENDICB

Barring statistical insignificance, we must conclude that both species do not 1nte.r-
fere with each other's growth through the production of alcohol only, as assumed in
the model. It may be that Schizosaccharomyces produces some other waste product
that is harmful for the other or that Saccharomyces produces a waste product that
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iliti istingui other
stimulates the other. These possibilities cannot be distinguished from each

without additional information. And as long as this is not available it is a futile exer-
cise to simulate such suppositions.

. . o
These simulation programs are conveniently amended_. For ms.tance, the yea
cultures may be washed continuously with water that contains sufficient sugar.

Exercise 4.6

a. Try to reason whether a similar effect could resu!t from the supposition that the
reduction functions for the species would not be given by

FUNCTION REDIT = (0.,0.), (1.,1.}

FUNCTION RED2T = (D.,0.),(1.,1.)

but by, for instance:
FUNCTION REDIT = (0.,0.), (0.5,0.75), (1.,1.) (Saccharomyces)
FUNCTION RED2T = (0.,0.), (0.5,0.25), {1.,1.)

(Schizosaccharomyces)
» You may find the answer by simulation.

we should not proceed this way, and what way of‘tackling ';he '
more appropriate. Also reconsider Section 1.2 in this respect.

If this is too difficult
b. Tryto reason why
problem would be

Exercise 4.7

How would you reformulate the rate of change in the integral of the alcohol concen-

tration, Equation 4.5, if the yeast cultures would be washed continuously with water
that contains sufficient sugar?

Exercise 4.8 ' ots

a. Which type of system is represented by the mixed cult of me Y?a
Saccharomyces and Schizosaccharomyces? fﬂuﬂm : :]("M s p )

b. Which type of model is represented by the FUNCTION REDA T'S40507, (1.,14?

6. Can the yeast growth model 'Mixed culture of yeast' be called an 'explanatory
dynamic modef'? Explain your answer., '

4.4  Logistic growth

The form of the differential equation for
from the stru

ctural equations of the sim
where the reduction

(1.-RED) may be replaceq by (1.-ALC/MALC). Since the alcohol concentration is

equal to the integral of the rate of change of yeast times the alcohol production factor,

according to the Equations 4.3 and 4.4, it is then possible to rewrite Equation 4.2 in
differential equation form as

the present problem will now be derived

Widt=RGRe Y« (1~ ypy, 5 4.6)
in which ¥ js the amoun

t of yeast, ¢ is the
amount of yeast, Thi

¢ time and ¥, stands for the maximum
S eqQuation may be inte

grated and then becomes
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Exercise 4.9

Express Yy, in MALC and ALPF. .

What are the values of Y, for both species of yeast?

Show by differentiation that Equation 4.7 is an integrated form of Equation 4.6,
Express the initial amount of yeast in the constant K and Yp,, of Equation 4.7.
Calculate the time course of the growth of Saccharomyces and compare the
result with the simulated course.

Why does the differential equation only hold for situations where the initial
amount of yeast is very small, whereas the simutation program is generally valid?

eapo

—r

The growth curve that is described by the differential equation and also presented by
the simulated growth curves for the monoculture of yeast in Figure 4.1 is called the
logistic growth curve. This S-shaped curve is symmetrical, but this symmetry hinges
on the assumption of proportionality between the reduction factor of growth and the
amount of growth that has been made. Especially Lotka {(1925) and Volterra (1931)
generalized the logistic differential equation for interfering species with the following
sct of ditferential equations:

dYj/dt=RjeY s (1-A1eY1—-B1¢12) {4.8)
dYy/dt=RpeYoe(1—-AgeY - B2e12)

In general this set of differential equations cannot be integrated into analytical expres-
sions for ¥; and ¥, as functions of time and therefore it is wiser 1o leave such
simplifying approaches alone and to formulate the problem directly in terms of a
simulation model to study the dynamic behaviour. t

Exercise 4.10 ,f .
a. Show to what extent the simulation mgdel for mixed growth of yeast is covered by

this set of differential equations.
b. Express the constants Ry, Az, A1, A2, B¢ and By in the constants RGR1,
RGR2, ALPF1, ALPF2 and MALC.
¢. Which constants of the differential equations are the same?
d. Do they remain the same in situations where a species produces a waste product

which is more harmful for the other species than it is for itself?

The equilibrium situation, however, i.e. the situation where the rates dY/dt in
Equation 4.8 are zero, can be calculated similarly to the case of the con_ti.nuyus y'east
culture fed by a sugar solution (Section 2.6). Figure 4.3 shows the _equlhbnum lines
with ¥| and ¥, along the axes. Left of the lines the reduction factors, e.g.
(1 = AgeY] — ByeY2), are positive. One can easily investigate whether an equflfbr!-
um is stable or unstable. Stability is defined as follows: when a system In cthbq-
um is disturbed and there is a reaction of that system that is directed toward's thfa equi-
librium value, the system is stable. If, however, the reaction of the system 15 directed
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Figure 4.3. Competition between two species according to the equations of LO&:V?:;ZT:H;EE:;?M
4.8). Full lines distinguish the areas of positive and nega-twe growth rates. In the (:;h rate of sporics
area the growth rate of species ¥ is positive, in the vertically hatched areg 'the. gro o
¥ is pusitive, Both growth rates equal zero where the lines cross. There, equilibrium exists.

. : 0-
away from the equilibrium after the disturbance, the system is unstable. For a th

in- t
rough treatment of stability, the reader is referred to May (1973) and Edelstein-Keshe
(1988).

Exercise 4.11

a. Wili there exist a stable or an unstable equilibrium according to Figure 4.37

b. Make a new figure where the equilibrium is opposite to the one in a).
€. What is the ecological basis of these differences?

4.5 Summary and steps in model development

Experimental results from the literature (Gause, 1934) were analysed in terms of
the qualitative (relational dia

grams) and quantitative (differential equations, etc., and
model building) methods introduced in Chapters 1 to 3,

It was illustrated that sometimes a rate is (stochiometrically) related to another rate.
However, it should be born

in mind that mutual dependance of rates should not
occur in models: it would po

be described by means of mathematical equationS'-‘
The example clearly illustrates how models can and should be developed ideally,
namely by separate calibrat

on of model pararneters on experimental results (here: the
data of the monocultures of the species Saccharomyces cerevisiae and Schizosaccha-
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Figure 4.4. Model development for individual species, calibration of model parameters, coupling of t‘he
separate models through the hypothesis that is to be tested, and validation of the resulting .mixed species
model with fully independent experimental data for the mixed culture of the yeast species Saccharo-
myces cerevisiae and Schizosaccharomyces 'Kephir'.

Finally, from the differential equations of the example of 'mixed culture o.f yeast'
the logistic growth equation was derived, that in its turn was generalized for interfe-
ring species according to Lotka and Volterra. '

Three main phases in the development of models can be distinguished: mo.del
conceptualisation, programming and evaluation. Each phase may be elaborated in a
number of steps.

For the conceptualisation phase, the following steps are noteworthy:

definition of the problem;

definition of the purpose or objectives of the study;

- definition and/or assessment of the boundaries of the system; ' ]

- choice of the level of detail to be considered, or choice of problem complexity {this
strongly interacts with the objectives),

- development of qualitative relationships between system clements through e.g.
relational diagrams. Here, the choice of the state variables and possible feedback
loops become clear; " )

- development of model equations (differential equations, auxiliary equations, and
forcing functions);

- explicit statement of model assumptions that un

derlie the individual model equa-
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tions and the model as a whole. . .
Having arrived at this point one should be able to judge if it is still necessary to
develop the full mathematical model: sometimes the conceptual model developed so
far is sufficient to satisfy the objectives of the study.

For the mode] programming phase, the following steps are noteworthy:
- choice of the system of units for the different processes in the model (e.g. mol or
g, m or ¢m, s or hour, etc.);

- grouping of the different processes in submodels (e.g. subroutines, see Section
1.3);

- writing the submodels and the main model;

- assessment of the time coefficients of the model equations;

assessment of data that are necessary to parameterize the model (the number of
parameters is strongly dependent on the level of detail considered and thus also
depends on the objectives); ]

assessing model integrity: does the model correctly represent the mathematical

equations? This can be checked to a large extent by a dimensional analysis and by
including material balances (conservation of mass).

In the model evaluation phase, the following steps are noteworthy: ]

experimenting with the model: choice of parameter values (literature, new exper-
ments), calibration, sensitivity analysis both with respect to model structure
(model reaction on different model equations that could describe the same process)
and model parameters (model reaction on changes in parameter inputs within the
range of their uncertainty), judgement of model output, validation with independent
experimental data on the level of the system as an entity;

assessment of the model assumptions (these are interconnected with the assumpti-
ons made in the derivation of the equations);

drawing conclusions from model behaviour with respect to the real system; ,
documentation of the model, both with respect to technical aspects (list of abbrevi-
ations of symbols, correspondence of computer mnemonics with mathematical
f:quations, description of the different routines) and to scientific aspects. The ]attffl‘
is usually not the probler, but the first is hardly ever done and thus needs attentt-
on;

sometimes: simplification of the

: n model, based on the increased physiological
chemical, physical and mathematic

al insight,
Though such enumerations can

[ : never be exhaustive, it reflects what we feel as the
major steps in model devel

opment and it provides insieht i kills a model-
ler should develop. Amon provices some insight in the s

h ¢ g other things it is clear that the modeller should endeavor 2
sound interaction between theoretical and experimental work,
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