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0. INTRODUCTION

Het inrichten van experimenten op cen zodanige wijze dat een wiskundige
bewerking van de resultaten mogelijk wordt, het ontwerpen van speciale
meetapparatuur daarvoor, het streven naar generalizeren van de ver-
kregen uitkomsten en het met elkander in verband brengen van gebieden
dic uiterlijk verschillend zijn. doch dic blijken in hun mathematische
ondergrond overeenkomst l¢ vertonen, dit zijn eigenaardigheden van de
natuurkunde, waaraan zij haar praktische waarde ontleent ook voor die
gebieden van de techniek en natuurwetenschap, die ver staan van de
eigenlijke in de natuurkunde behandelde onderwerpen.!

W. R. vaN WuK: De natuurkunde in de wetenschap en in de techniek.
Rede L.H.S., Wageningen (1948).

It appears that field experiments are of limited value for tmproving our knowledge
concerning the conditions which govern the distribution and abundance of plant
species in a permanent pasture.

The result of experiments in the ficld can hardly be treated quantitatively because
many undeterminate factors are of importance. The effect of weather on the resuits
is great. Moreover, there is hardly a good measure for the ‘competitive power” of the
species. Such a good measure can only be found with the aid of suitable experiments,
but suitable experiments can only be designed if it is more or less known how the
‘competitive power’ of plants with respect to each other is measured.

In order to arrive at some useful characteristic for the ‘competitive power’, bE WIT
and EnnNik (1958) studied experiments on competition between species which effect
cach other in a less complicated way than perennial grassland species. An analogy
between competition phenomena and the theories underlying multicomponent distil-
lation and other exchange processes was noted and on basis of this analogy a theory
was developed which makes it possible to describe many competition phenomena
quantitatively.

This theory has been worked out in detail and is represented in this paper up to the
level where it is proved that the approach is suitable 1o interpret competition experi-
ments with perennial (grassland) species.

The theory is of course in many ways connected wﬂh other theories which are often
more or less independently developed in animal ecology. plant ecology and population
genetics. The treatment runs also parallel with theories developed in the field of

! Designing experiments in such a way that a mathematical treaiment of the results is possible,
constructing measuring apparatus for this purpose, aiming at generalization of observational results
and at relating fields of knowledge which are outwardly different but which appear to agree as {ar as
their mathematical treatment goes, these are peculiarities of physics from which it derives its practical
vz]:luq, also for those fields of technics and natural scicnce, which are foreign to the subjects proper of
physics.
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enzyme kinetics (DixoN and Wess, 1958), ion exchange (Boyp, SCHUBERT and
ADAMSON, 1947) and competitive uptake of ions (EpsTeEIN and LEGGET, 1954). It was
therefore possible to make good use of and to incorporate excisting theories in the
present approach.

The paper is divided in ten main sections. A summary is given at the beginning of
each main section.’

The author is indebted (o Dr. P. J. ZwErMAN (Cornell Unijversity, New York) for
his critical remarks on a draft of this paper and to Ir. J. P. vAN DEN BerGH, Dr. W, H.
vaN DosBseN and Ir. G. C, ENnik (1.B.S., Wageningen) for their cooperation.



I. THE SIMPLEST MODEL OF COMPETITION

1.0. SUMMARY

The simplest model of competition which can be imagined enables one to introduce
some basic relations, terms and graphical representations in a convenient way. The
practical value is limited, however, because the model is based on the assumption that
the growth of an organism is not affected by its neighbours. Such peaceful coexistence
excludes competition in the ordinary sense of the word.

In spite of this limitation, the model is used in population genetics, although it has
met with more and more opposition during recent years. The reason for- its béing
used in this branch of science is that it serves very well to ittustrate the effect of natural
selection which can take place without competition.

1.1. THE MODEL
1.1.1. The basic assumptions

Let us consider a homogeneous field plot of unit surface (i.e. ha) which is split up
in squares by means of a marker, as illustrated in figure 1. Let us suppose, moreover,
that a stock of seeds of species S, and of species S, is available and that on each
square one seed, either of §; or of §; is planted and thar at harvest the numbers of
seeds of §,; and §, are determined separately.

m Fia. 1. A field divided in squares with a size of »cm?,
em? each planied with one sced."

The yields of species S, and S, are called O, and O, respectively, and expressed
in numbers of seeds per unit surface; the sum of both (O, + O,) equals the total
number of seeds harvested. A mono culture is obtained on fields which are planted
with the seeds of one species. The symbols M, and A, are used for the yield per unit
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surface of the monocultures of S, and S,. respectively. The numbers of seeds planted
of 8, and S, are represented by Z, and Z,, respectively. The total number of seeds
(Z, -} Z,) is equal to the total number of squares or the unit surface divided by m,
the surface of one square. It is only dependent on the value of m, which is supposed
to be constant,

It is assumed, moreover, that the growth of a plant in one of the squares of the
field is not affected by the growth of plants.in any other square. or in other words,
that there is neither intraspecific nor interspecific competition.

1.1.2. The yield of fields with mixed culture

- 1f A, is the area of the field available for species S, and A, the area available for
species S, the following relations hold:

A1:A2 = le:mZZ == Z‘:Zz

1.1
A, + Ay = [Z, + Z;}m = unit surface = 1 or
A =Z\[Z + 2] 1.2
Ay =Z,[Z, + Z,}7!
The yields, being proportional with the area available for each species, are now-:
O, =2ZZ, - 2,]7'M, = 2 M,
0; = Z,0Z, + Z,17'My = 2, M, 1.3

Oy 4 0y = 2 )M, + z,M, = [M, — MyJz, + M,

The relative seed frequencies z, = Z,[Z, i Z,] ! and z, = Z,[Z, -i Z,]"! range
from 0 to 1 such that the sum of both is one.

This rather complicated formulation of a simple matter is chosen in order to
facilitate the treatment of more complex models in other sections.

-Bott? frequencies are represented along the horizontal axis of figure 2a and the
yields in numbers of sceds per surface unit alonz the vertical axis. The relations be-
tween the yield O, and the frequency z, is rcprcsz:ntcd by the straight line 1. between
0; and z; = (1 —z,) by the straight line 2 and bztween {0, + 0,] and z, by the

s;trzigh]}t fine 3. These lines represent the formulae 1.3, for arbitrary values of M,
n 2

1.1.3. The relative repra.dz'mn' ve rate

lh:hc f'fé)mducli‘ve rate is defined as the ratio of the number of sceds harvested and
T number of seeds sown, and for plant specics S, and S, given by:

4 =0iZ{' = (Z, + Z,]"'M, and 14
@=027" =2, + 7,)7'M, | '



a,,=2

0 0
o 2 ) 0 73— 1
1 -+ 2 0
FiG. 2. a. A relation between the relative seed frequency and the yield of two species §, and S,,

‘coexisting peacefully’.
b. The frequency diagram, giving the relation between the relative frequency of species S, in the seed
(zy) and in the yield (g,), as calculated from the lines of figure 2a.

As Z, -+ Z, is constant for a given value of m, the reproductive rates are constant,
that is independent of the seed frequencies.
The relative reproductive rate of plant species S; growing with species S; on the
same field is defined as: ,
%, =aa; ' = M M;! L5

Of course this relative reproductive rate is also independent of the composition of
the seed mixture. Instead of the term relative reproductive rate, the terms ‘relative
fitness®, ‘survival value’ and ‘adaptive value’ are used for « in populatlon genetics
(L1, 1955). :

1.1.4. The frequency diagram and the ratio diagram

Apparentl » - _ _
PP Y 0,07" = ,,2,Z; "or 0103 V= 0y27123 ! 1.6
in which - ' -
0, = 0,[0, + 0,]"" and 0, = 0,[0, + 0,] b
or the ratio of the number of kernels in the harvest is equal to the relative reproductive
rate times the ratio of the number of kernels in the original seed.

A part of the harvested seed may be sown again next year under the same condltlons
The composition of the yield in this next year is of course equal to of ,z,z; . Repeating
the experiment during # years under the same conditions a yield of the composition

{0, OE‘],. = a},Z,Z; of [0,0; '], = afpz,z; ! 1.7
is obtained.
~ The number of generations necessary to obtain a certain change of the frequency
of the seeds is easily estimated by means of a frequency diagram in which along the
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horizontal axis the frequency =, and along the vertical axis the frequency o, is given.

This diagram, calculated from the data in figure 2a is given in figure 2b. The number
of generations necessary to obtain from a mixture containing 10 percent of species 8,
(z, = 0.1) a mixture which contains at least 90 percent of species S, (z, = 0.9} is
obtained by counting the steps in the broken line in figure 2b. Ten percent of species
S, in the seed mixture yields 18 percent of species S, in the harvest mixture. Sowing
again next year, a yield with 30 percent of species S, in the harvest mixture is obtained
and so on. In this case seven generations are necessary to obtain a mixture which
contains at least 90 percent of species S, from a mixture which contained only
10 percent.

An experiment in onc year with mixtures ranging with rclative seed frequencies
from O-1 gives full information on the change of composition of the mixture in #

years, should it be possible to carry out an experiment during n years under exactly
the same conditions.

1
80

0, §0
0, 40

20

10
o8
Q6

04
03

VX3

1 I

Lo B2 |10
[:]¢}

0 _ 05 1 (3]
22+ Z
et 2 z,/z,

Fia. 3. a. The frequency diagram with curves for ranging from 0.25 to 4.

lines for « ranging from 0.33 to 3.

The sh.apt? of the curves in the frequency diagram for values of a ranging from
- 0.25to4is given in figure 3a. For a equal to one the curve is represented by the diagonal

line, for « larger than one the cucves are found above this line and for « smaller than
- ‘one below this line. The curves are of course symmetrical with respect to the diagonal

Jjoining th.e points (0.1) and (1.0}, It is eviden! that ay, = ;' or that the relative
i reproducu_ve rate of species 8, in a mixture of S, and S, is the inverse of the relative
reproductive rate of species S

el . S; ‘in a mixture of S, and S,.

Equation 1.6 for the relative reproductive rate may be written as follows
| | 120,07 = lgx,, + lgZ, 25" '8
$0 that the relation between the |
_ rithmic paper by a straight line w
and { are given in the ratio diag

yield ratio and seed ratio can be presented on loga-

ith a slope of 45 degrees. These lines forx = 3,2, 1. 4
ram of figure 3b. : : :
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The number of generations necessary to obtain a certain change of the ratio can
be determined again by counting the steps in the broken line in the figure. -

1.2, FISHER'S THEOREM OF NATURAL SELECTION

The average reproductive rate of the mixture is equal to

a= [0+ 01 [Z, | Z,]7 = {{M, — M,lzy - My} (Z, + Z;]7" =
= m{[M; — M)z, + M3}

The average reproductive rate of the mixture increases with increasing z, if M, is
larger than Af,. On the other hand, if M, is larger than M,, the relative reproductive
rate of species S, is larger than one (formula 1.5) so that =, increases in course of
time. Consequently the average reproductive rate of the mixture of the following
generation is always larger than of the preceding generation until the species with
the highest reproductive rate is left over,

FisuER (1930) formulated this conclusion quantitatively in a theorem which is known as the
Fundamental Theorem of Natural Selection.

Suppose there are m species S; (f~ 132...;r) in a mixture which do not interbreed. The relative
frequency and the reproductive rate of species S, are z; and a; respectively.

The mean and variance of the reproductive rate of the mixture are:

.
- s R Ty, ___.2__\-_'
a = szaj, T, == Lu.’,[a‘r a] = u;jﬂj"“‘—ﬂ
The relative frequency oy of the species Sy in the harvest is z,a; and, because a; is supposed to be

independent of z;, with a reproductive rate of a;.
Hence the new average reproductive rate becomes

@ = [Yo,a;] [Z0;]"" = [Zzjalla™"
and the gain in average reproductive rate due to cultivation during one year is
di=a —a=[2:alla ' —a=0ja"' >0 1.9
Or in words: the rate of increase of the reproductive rate of a mixture in any year is equal to the
variance of the reproductive rate in that year. Which is a quantitative formulation of Fisher's

Fundamental Theorem of Natural Selection. This theorem can only be proved under the assumplion
that the reproductive rate of a species is a constant.

1.3. THE PRACTICAL VALUE OF THE MODEL

Experiments with crop mixtures, sown at normal densities, which proved that the
model discussed in this section is of any practical value have not been found. Plants
do not restrict themselves in general 10 the arbitrary surface allotted to them and effect
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the growth of plants in neighbouring squares. This simple model appears to hold
only under conditions where the surface of the squares in figure 1 are large compared
with the size of the plants (i.e. where there is no competition for space} or where ‘the
competitive forces’ of the two plant species balance each other (see section 3).

As far as population genetics is concerned, this model is nevertheless of some valuc
because it proves that natural selection is possible under conditions where there is
no competition. 1t may account under these conditions at least for the quantitative
effect of natural selection on the relative gene frequencies within a population.



2, AN ANALOGY ,
WITH BINARY MIXTURES OF LIQUIDS .

2.0. SUMMARY

The relations between the composition of the vapour and liquid phase in case of
solutions of liquids in liquids are discussed, because the treatment of these relations
are used as a model for the treatment of the relations between the composition of
crop mixtures in a first and second generation.

2.1. RAOULT 'S LAW

Two liquids like benzene and toluene may be mixed in all proportions. Raoult’s
law states now that at constant temperature the partial vapour pressure of benzene
and of toluene above a vessel with a mixture of both liquids is proportional with the
molar fractions of both subqtances in the lnquld (sce for instance PERRY, 1951 ; MEE,
1958). :

- mmHg : B Q
1200 -
100°¢ - b
1
=
800 | T~ benzene ry -
. Q=24 E
'
'
e
05 {
we b S ‘ i
toluene __'
:
1
0 ‘ 2
0 05 xy 1 a - 08 C A 1

FiG. 4. a, The relation between the vapour pressure in mm Hg of benzene and toluene and the molar

composition (xp,} of the liquid phase at 100° C.
b. The relation between the molar composition of a mixture of benzene and toluene in the vapour

() and liquid (xb) phase at 100° C.

This reIatmn is graphlcally reprcsented in figure 4a. The mole fraction of benzene
{xy) in the liquid is placed along the horizontal axis. The mole fraction of toluene
{x,} is of course equal to one minus the mole fraction of benzene. The partial vapour
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pressure of benzene (Y}) and toluene (Y,) are given now by the lines. The molar

fractions in the liquid are of course analogous with the relative number of seeds in

the sown mixture, and the partial vapour pressures with the yields in figure 2.
Apparently the relation ‘

Y, ¥, = xy Ppix, P, 2.1

holds in which P, and P, are the partial vapour pressures above pureliquids of benzene
and toluene; which are at a temperature of 100° C equal 1344 and 559 mm Hg,
respectively. The relative volatility is defined as

By = [beb_l] {er:_l]-l = ‘vbpr-1 22

which is in this case equal to 1344/559 = 2.4, The relative volatility is analogous
with the ‘relative reproductive rate in the biological model. ‘

- A graphical répresentation is given in figure 4b. The mole fi raction of one component
in the liquid (x;) is given along the horizontal axis and in the vapour y, =7, [Y,-+Y]!
along the vertical axis. This diagram is analogous with our frequency diagram of
figure 2b. The number of plates of a distillation column (which is a measure for its
‘length’) necessary to obtain a certain change of composition is counted in the same
way as in our model the generations are counted. Due to the nature of the process
of distillation, the “reference line” is not the 45 degree line as in the biological model
(figure 2b), but another set of lines.

RaouLT’s law appears to hold only for what are called ideal mixtures, that are
mixtures of homologous series, isomers, and so on. This is again in analogy with the
biological model which holds if there is no competition. -

" 2.2. ACTIVITY COEFFICIENTS

Tkllere are many mixtures for which Raoult's law does not hold. They are treated
with the introduction of activity coefficients (see for instance PERRY, 1951), which may

siipposed to be experimental multiplication factors (y, and ;) chosen in such a way
that the relation o

}'1 M Y2-= '}’lxlpl :},ZxZPZ ’ ‘ 2.3

holds for mixtures of a liquid L, and L,, instead of the simple relation (2.1). The rela-
tive volatility is then equal to '

e =TT T = Py [ Pa) CL M
It appears that within a_certain range, which may be iarge of small 't'he activity
-coefficients or their quotients are practically constant and that for a mixture of n
components 1t 1s convenient to work. with the following relation:

YL Y Sy X P K Pyt .A:yi.\'hgll’,.:»..l. R U =
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The relative volatilities with respect to an arbitrary reference component are
ay; = [P Y P = [Pl P = 1;%1.“—' AN A 2.6

The relative volati‘lity of the reference component is than of course equal to one and

the relation . o
CC” = dki qﬂ' 2.7

holds. This approach proves to be very convenient in muiticomponent distillation.

Similar coefficients will be introduced in the next section and it will be proved in
this paper that the use of thesc enables a quantitative treatment of competition
problems.

v

2.3. DiAGRAMS OF VAPOUR COMPOSITION YERSUS LIQUID COMPOSITION

The ‘frequency diagrams’ holding for a mixture following Raoult’s law or for a
mixture with at Ieast a constant relative volatility are as given in the diagram of
figure 4b or of figure 3a. The shape of the curves is much more complex if the com-
ponents of a mixture affects each other in such a way that the relative volatility is
not constant. In such cases curves like those 'in the diagram of figure 5 may be
obtained.

1 - R
74
!
e / ab. Puet
- f
05 - s .
\ ’
i
a ! b
/ -
;
1 0
l)0 05 Xy - 1 1] a5 me 3

FIG. 5. a. The relation between the molar composition of a mixture of cthapul and water in the
vapour (»,) and liquid (xy,) phase at an arbitrary pressure.
b. The same for a mixture of HC} and water.

Diagram 5a represents the relation between the vapour composition and the liquid
composition of a mixture of ethanol. and water at an arbitrary pressure. The curve
crosses the 45 degrees line. At this point, the azeotropic point, no enrichment of the
vapour is obtained. The composition of a mixture during distillation changes in the’
- direction of the arrows. Whatever the starting compaosition, a mixture is obtained
which contains about 90 percent ethanol and 10 percent water. The equilibrium at
the azeotropic point is in this case a stable one. L
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" Diagram 5b represents the relation between the composition of the vapour and the
composition of the liquid of a mixture of HCl and water at an arbitrary pressure.
There is again an azeotropic point. The composition of the mixture changes during
distillation in the dlrecnon of the arrows. The equnhbnum is here unstable: depending
on the starting’ composmon “the fraction HCI in the mixture increases or decreases
during distillation.

It will be shown that 51mllar ‘azeotropic pomts may occur in mixtures of plant
species, el




3. CROWDING FOR THE
SAME SPACE WITHIN BARLEY-OATS MIXTURES

3.0. SUMMARY

A crowding coefficient analogous with the activity coefficients of liquids in a mixture -
is introduced in this section and a model describing the competition within mixtures
of barley and oats is developed. This model is of use in any case where two organisms
crowd for the same space, but do not affect each othier in any other way. Practical
canclusions with respect to mixed cultivation of barley and oats and with respect to
population dynamics will be arrived at.

3.1. THE EXPERIMENTS

The Agricultural Extension Service of the Dutch Government executed during the
years 1951-1954 about 33 field experiments on sandy soils concerning mixed cultiva-
tion of barley { Hordeum vulgare) and oats ( Avena sativa) under the direction of van
Doseen. Results were published by vaN DoseeN (1951, 1952, 1953). The original
data used in this paper were extracted from files of the Institute for Biological and
Chemical Research on Field Crops and Herbage at Wageningen.

The experiments were of the following design. Mixtures of barley and oats were
sown at normal rate, but such that the number of seeds per hectare was the same for
any mixture. The number of barley seeds in the mixture expressed as a fraction of
the total number were 0, 4, 1, § and 1, the number of oats sceds as a.fraction of
the total were 1, 2, 4, § and 0 in the same order.

At harvest, the sced weights of barley and oats were determined separately
Thousand kernel weights of the harvested barley and ocats were also determined, so
that it is possible to calculate the number of harvested kemnels of each species on
each plot, The data in this section concern the yield in number of kernels per surface
unit and, except were otherwise stated, not the kernel weight per surface unit. The
unit ‘a million of kernels per hectare’ is abbreviated as ‘10° kernels ha-!".

The results of experiment MB 22-1952 are represented in figure 6a. Along the
horizontal axis the frequency of the barley and oats kernels in the seed mixture,
represented by the symbols z, and z, respeciively, are given. The sum of both is
always one. The yields of barley and oats expressed in numbers of kernels per hectare
are represented by crosses and dots. The yicld of barley and oats which is to be
expected under the assumption that the simple model of section 1 is valid is represented
by the straight lines 1 and 2, respectively.

It appears that the yields of barley are smaller and of oats higher than the expected
yields. Inspection of the results of the 33 experiments revealed that in all cases
one of the species yielded more and the other yielded less than expected according
the simple model of section 1. This suggests that one species crowded the other out
of the space allotted according to the composition of the sown mixture.
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Wi

3.2. A MODEL OF CROWDING FOR THE SAME SPACE

The homogeneous field plot represented in figure 1 is again considered and the same
symbols as in section L.1.-are used to represent the numbers of seeds, the yields o_f
-mixed culture and mono culture and so on, The total number of seeds per unit surfacé,

is again given by

Zl +Zy=m"!

Instead of the basic assumptions of equation 1.1, i.e. -

Ail"AZ = Zitzz
A+ 4, =1

‘3.1a

1.1
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it is supposed that for the space with species 8, and S,, 4, and A, respectively, the
following relation hold: Ay Ay — byZy:byZ,

A, + 4, = a constant = |

3.2

The multiplication factors by and b, are analogous with the activity coefficients of
binary mixtures and called crowding coefficients. The right hand side of equation 3.2
can be multiplied by an arbitrary chosen constant which means that only the quotient
k2 == byb; ' is determinate. The number k; is called the relative crowding coefficient
of species §; with respect to species S,. _

The equations are a mathematical expression of the statement that the two plant
species affect each other only by crowding for the same space, and of course only of
practical value under conditions where the relative crowding coefficient appears inde-
pendent of the relative seed frequency.

Although the crowding coefficient is formally equal to the activity coefficient, there
is a large difference. Activity coefficients as used indistillation characterize a dynamical
equilibrium, whereas the crowding coefficient characterize not the process of crowdlng
itself, but only the result of this crowdmg This difference appears to be of great
importance at a later stage (section 8.4.), where the results of experiments at diffe-
rent spacings (values of m} are considered.

The condition that 4, 4- A, is one or constant implies that the two plant species
Whlch compete for the same space exclude each other. This space is not defined at
present in terms with a physiological meaning, because this is not necessary for a
quantitative description of the phenomena, One may read for the term space ‘growing
factors’, or ‘requisites’ like water, minerals, light and so on which are homogeneously
distributed over and in the field where the plants grow. Such a description is, however,
not necessary, always inaccurate and therefore unadwsable

It follows from equation 3.2 that

Ay =bZ[bZ + b,Z,] = k.zZ;[kuZl + 2,11
Ay = bzzszlzt + bzzz]— = Zz[kazzz + Zz]—

so that, M, and M, being again the yields of the mono cultures, the yields of the two
species S, and S, are to be represented by the following equations.

Oy = b,Z,[b: 2y + 8,217 ' M, and 0, = 6,216, Z{ + b,Z,]"'M, 3.4a

33

The relative seed frequencies of the species are defined by
2, =Z0Z, + 2,] and z, = Z,[Z, + 2,1} 3.5a
so that the equations may be written also in the following form _
Oy = kiy7i 1k 22y + 2,17 My = kyazy (kg — Uz, + 1M, 3.4b
O, = zylky27y + 2217 "My = k2 {[ksy — l]zz + 1} M, |

with k,, = k3%
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A similar set of equations hold if in each square of m cm? either ¢; ! seeds of
species 5, or ¢ ! seeds of species 5, are placed so that :

('lZl ‘{' f'zZz = m_l 3.1b

These factors ¢ are most conveniently treated by defining the relative seed frequencies
by :

2.'1 = Clzl [(._'lzl + ('222]_1 and 22 = CJ,ZZ[(‘IZI. + CZZZ]_I 3.5b

or climinated by expressing seed and harvest rates in seed and harvest units which
are ¢; ! or ¢; 1 times the original values.
- The reproductive rates of species S, and S, are

ag = 0y Z1 ' = mkyylkiozy + 2217 My 36
a; = Ozzz_l =m [kyz +2,17'M,

The reproductive rates of both species increase with increasing z, (and decreasing z;)
if the relative crowding coefficient k,, is smaller than one. The reproductive rates

decrease with increasing z, if k,, is larger than one. The reproductive rates are not
constant. )

~ The relative reproductive rate of species S, in a mixture of both species is equal to
oy = 10477 "110,Z3 17" = kyoM M3 3.7a
or o o

we = (002,110,251 = eqef Yy, MM 376
if the factors ¢ are not eliminated. :

The denominator of the reproductive rates, contaihing the variables z cancels, so

that it appears that the relative reproductive rate is indépendent of z; and z, or the
- compaosition of the seed mixture.

33 T'HE"T.RlEATMENT OF THE RESULTS OF FIELD EXPERIMENTS

.. The equations (3.4b) and (3.7a) are rev.;ritlu;.n in'thc fo-l._lowing form .
Ob = kuoZulkoozs + 2,]7' My, and 0, = z,[kyoz, + 207 ' M, 3.4b
e = [0, (0,2, 1) = koMM 3.7a

in wh_ich the_indiceS' b and o refer to barley and oats, respectively. The equations
contain one independent variable 2(z, = 1 —z,) and three constants M,, M, and

ko W:thl'l depend on the growing conditions and are not the same for different
experimental fields, = ' :

t .A_ rough estimate of tl}e value of the relative crowding coefficient k., may be ob-
ained as follows. The yields of barley and oats at z, values of 0.33, 0.50 and 0.67
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furnish three independent estimates of the relative reproductive rates. By substituting
the experimental values for M, and M, in equation 3.7a three dependent and in-
efficient estimates of k,, are obtained, which may be averaged.

The following trial and error method is adopted to obtain more reasonable estimates
for all the three constants M, M, and k,,. The constant k,, is estimated as described
above. This estimated value is substituted in the equations

Ab - kbozh[kbovzb “{‘ zf:n]_l and Ao = za[kbozb + zo]_I

and the values of A, and A, for z, equal to 0.33, 0.50 and 0.67 are calculated. Sub-
sequently the yield data of barley and oats are represented in a graph with along the
horizontal axis A4, (0 - 1) and A, (1 - 0) and along the vertical axis the yields. The
yield data for oats and barley, both, are to be found around a straight line, if the equa-
tions are applicable and the estimated value of &k, is correct. If this is not the case
slightly other values are tried until this is the case. It must be kept in mind that the
barley and oat yields of the fields with a mixed crop are subject to partly the same
errors.

The finat result for experiment MB 22-1952 is given in figure 6b. It appears that
M, == 72 » 10% kernels ha-!, M, =82 x 10° kernels ha-! and k,, = 2.0; Sub-
sequently, smoothed curves are drawn in the original graphs by means of the equations

Oy = 2.02,[2.0z, + 2,]7" 72 x 10° kernels per ha

0, = z,]2.0z, + z,]"" 82 x 10° kernels per ha

These curves together with the observations are represented in figure 6c.

The estimated valueoftherelativereproductiveratea,,appearstobe2.0 x 72 x §2-1=
1.75. The frequency diagram, catcnlated by means of this value is given in figure 6d.

The results of the 32 other experiments are reproduced in the graphs 1-32 of figure 7.
The curves satisfy the equations 3.4h. The relative crowding coefficient, the relative
reproductive rate and the pH and the registration number of the experiments, which
were all carried out on sandy soils are given in the caption of the figure. Apart from
some large deviations, the observations are close to the calculated curves.

3.4. THE MONTGOMERY EFFECT '
The total yield in number of kernels is of course edual to
Oy + 0, = [Mikpot + Moz, koot + 2171~ 38
The average reproductive rate ()f' the mixture is equal to this total yicld divided by

m =7, +2, or R
i = m[Myy 2y + Moz, knoty + 2] 71 .39
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The increase or decrease of this reproductive rate with varying z, can be found by
differentiating @ with respect to z,. The result appears to be

da(dz,) ™" = mkyo[My — M,] (kpo — Dz -+ 1177 3.10

The average reproductive rate increases (decreases) with increasing z, if the sign of
this differential quotient is positive (negative). This sign depends only on the sign of
the difference [M, — M,].

As for the experiment of figure 6, M, appears to be larger than M. The average
reproductive rate of the mixture decreases therefore with increasing z,. On the other
hand, «,, is larger than one so that z, increases if the mixture is resown repeatedly
under the same conditions. The average reproductive rate of the mixture decreases
therefore under the conditions of this experiment. The Fundamental Theorem of Na-
tural Selection as formulated by FISHER (section 1.2.) does therefore not and not even
qualitatively, hold in this case.

F1c. 7. The result of 32 competition cxperiment of barley and oats. Data from van Dossen (1951,
1952, 1953 and files).

Number | Number pH ‘ My Ma
graph. exp. Year | e ko %o |1pkernels/ha | 10%kernels/ha
* |W 1326 1951 6.40 2.6 1.49 76 133
2* | PO 45| 1951 | 5.50 22 1.32 82 137
3 | 0.0 1396 | 1951 6.05 19 1.13 84 141
4 WB 1908 | 1951 5.60 14 0.82 86 146
5 WB 1909 | 1951 545 1.0 0.45 63 141
6 WB 1910 | 1951 575 1.4 0.82 76 130
7 OB 324t |. 1951 5.50 1.2 0.80 78 (17
8 OB 3242 1951 5.70 0.83 0.51 87 142
.9 Cl 1127 1951 5.90 1.4 0.86 96 157
10 LU 75| 1951 5.70 1.2 0.96 6l 76
11 | OB 3283 1952 4.80 1.2 0.91 101 133
12 | OB 3284 1952 4.30 1.2 . 0.65 64 19
13* [MB 23 1952 4,70 2.0 - 1.61 83 103

c 14 MB 24| 1952 4.08 0.83 0.49 89 151
J15% | 0.0 1420 | 1952 545 1.4 1.41 102 101
16 0.0 1421 1952 4.95 1.0 0.61 90 148
17 wD 1712 1952 3.90 0.83 0.41 58 118
18. wD 173 1952 4.40 1.2 0.87 96 132
19 U 72! 1932 4.80 1.4 1.29 46 50
20 U 793 1952 4.50 0.62 0.31 52 ' 106
21* U 794 1952 5.75 1.0 0.77 95 123
22‘ U 825 | 1953 4.90 3.0 171 69 121
2% | U 826| 1953 | 5.40 3.0 4 | 78 77
24 - 1 OB 33321 1953 5.05 ] 1.0 0.80 87 t09
.222 OF 959 1953 450 | 072 | 050 75 107
% 0.0 1469 | 1953 3.90 083 | 047 . 85 152
n 0.0 1470 | 1953 4.25 10 1 074 96 129 ‘
£ 0.0 1540 | - 1954 4,80 .2 1 073 98 161 |
2 WD 251 |. 1954 5.50 1.4 1.04 84 113 :
X ;0.0 1541 1 1954 | 500 - 1.4 ' 116 | 98 118
N 583 32-6,3 1954 460 | 10 | o786 109 43 ]
| 32 jos | 1954 4.60 16 | 155 | 104 107 |

_1 See hote on page 23,
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It is obvious that the average reproductive rate of the mixture decreases always
in course of time if the growing conditions are such that

M, < M, and k,, > M M;!
or
M, < M, and a,,, > 1 311

It appears that M, < M, for all 33 experiments. In spite of this &, is greater than
one in 11 out of 33 experiments. These experiments are marked with a cross (*) in
the caption of figure 7.

GuUSTAFSSON (1951} collected examples of experiments in which the species or
varicty yielding best alone did not survive, when repeatedly sown in competition
with an other species or variety. These experiments cannot be treated quantitatively
because the growing conditions and consequently the constants governing the out-
come of competition vary from year to year. GUSTAFSSON termed this effect ‘the
‘Montgomery effect’, after MonTGOMERY (1912), who noticed this effect at first in
his experiments.

v 3.5. FURTHER ASPECTS OF MIXED CULTIVATION OF BARLEY AND OATS

3.5.1. The quality of the seed

The yields of the experiments discussed in section 3.3. are expressed in number
of kernels per hectare, because the number of germs determines the reproductive
rate in the first place. The change in composition of the mixture in the course of time
may differ from the change calculated on basis of the results of a mixed cultivation
experiment in one year, if the quality of the seeds which are harvested depends on
the composition of the seed mixture.

The germinative power of the harvested seeds was not. determined. 1t appears,

however, that the thousand kernel weight of these seeds depends to some extent on
the composition of the seed mixture. The relation between the thousand kernel weight
of barley and of oats and the value of z, as determined by averaging the results of the
33 experiments ts given in figure 8. The thousand kernel weight of oats appears to
increase with increasing values of z,,. Thcrefore it may be, that oats stand competition
somewhat better than calculated.
* VAN DoBBEN (1953) explained the effect of the composition of the sown mixture
on the thousand kernel weight as follows. QOats growing in a mixture are some time
before ripening surrounded by barley plants which are already ripe. These ripe barley
plants do not intercept- much light and do not use much minerals and water. Oats,
which were originally surrounded by a large fraction of barley plants are therefore
able to produce during their last weeks of growth more dry matter than oats which
are surrounded by oat plants. This can only result in a higher thousand kernel weight
because the number of seeds is already fixed at that time.

The effect was very markedly in an experiment on competition between flax {Liman

-~ usitatissimum ) and false flax ( Camelina sativa) which will be discussed in section 9.1.
It appeared that the thousand kernel weight of Linum seeds of plants grown in a
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mono culture was equal to 6.25 g and of plants grown at a relative seed frequency
of 0.27 equal to 8 g and that the thousand kernel weight of Camelina was not affected
by the relative seed frequency (figure 9).

This difference is explained by the observation that the growth period of Linum
plants was nearly twice the growth period of Camelina plants, so that the Linum
plants were still growing at the time the Cameling plants were ripe.

1000 kernel weight
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Fig. 8.: The t}}ousand ken_'lel weight of barley  Fic. 9. The thousand kernel weight of flax {Linum
and oats at different relative seed frequencies.  wsitarissimum) and false flax (Camelina sativa) at

‘]{%ata; from van DoBeen (1951, 1952, 1953 and  different relative seed frequencies.
es). '

"As far as the weight of the seeds in the experiments of vAN DOBBEN is concerned,
the k!arley and oat plants do not crowd for exactly the same space. Formally, this
means that the sum of A, and 4, is not constant or one (equation 3.2) but increases
;orgxewhat with increasing z,. It appears here already that to define the term ‘space’
a time factor is to be introduced.

From a small experiment of MONTGOMERY (1912) who sowed small seeds and large
_segds of small grains alone and in competition (his table 13) a value of about 1.2 is
lest1mated for the relative crowding coefficient of the large seeds, with respect to the
small seeds, whereas the yields of the mono cultures differed about 8%, The effect
of the small difference in thousand kernel weight in the present experiments o1t the

i rel_at_iv‘e'c':rowding coefficient and yields is undoubtedly much smaller and probably
“negligible. - - .

3.5.?.'The-inﬂuence of growing conditions on the relative crowding coefficient a;md the
vield of pure stands ‘
“Many other experiments in which barley and oats were grown in monoculture

and at a seed ratio 1:1 (z, = z, = 0.5) were . Inm
' ) o =W rried f VAN
Dossen (1952, 1953 and 1955). carrieed out under the direction 0
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VAN DoreeN introduced the verdringingsfactor (‘crowding coefficient”)
[0,07] (MM 1] |

to characterize the effect of competition at z, = z, = 0.5 (prcsent notatlon) It
follows from equation 3.7a that this ratio is an estimate of the relative crowding
coefficient (k) introduced in this paper, if the small systematic dlﬂ‘erence due to
expressing yields in kilograms per hectare, as done by van Doggen, and m number
of seeds per hectare is neglected. _

This estimate is, however, not the most efficient estimate because afl degrees of
freedom are used to estimate k,,, M, and M, and not the minimum amount of three.
The yields of the pure stands and the value of the relative crowding coefficients are
therefore estimated again in the way as described in section 3.3. Only three degrees
of freedom are used in this way, so that one degree of freedom (or nearly one
because of the correlation between the random error of the yields of barley and oats
on the plot with the mixed crop) is left to obtain some impression of the error.”
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Fia. 10. The average results of the experimental series 163A, !952 on competition between barley
and oats. Data from vaN DosseN (1953).

a. pH-KCl Jarger than 4.6.

b. pH-KCI smaller than 4.6.

The average results of the experiments of series 163A, 1952 (van DoBBEN, 1953)
are given in figure 10. Figure 10a represents the average results of the experiments
with a pH-KCIt larger than 4.6 and figure 10b, of those with a pH-KCI smaller than
4.6. Both figures illustrate that in spite of the small number of relative frequencies
reasonable estimates of ky,, M, and M, can be obtained.

" ¥an DoggeN found that the relative crowding coefficient of barley with respect

1'The pH-KCl is the pH of a mixture of soil and a KC] solution and for sandy soils about one unit
lower than the pH of a mixture of soil and water.
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to oats (ky,) decreases with decreasing pH of the soil. This effect of the pH is
illustrated in figure 10 and may be found in the data given in the caption of figure 7,
although it is obscured there by influences of other growing conditions, In order to
obtain more information on the influence of the pH, vaN DoOBBEN {1955a) carried
out an experiment which will be discussed here in some detail.

An experiment, OGe 72, was started in 1931 by the Agricultural Extension Service
to study the effect of different nitrogen fertilizers and lime on what is now called the
pH of the soil.

The experiment was so successful that the pH-KCI of the soil on the plots varies
at present from 3.1 to 5.2. In 1954 van DosgeN divided each plot into three sub-plots,
which were sown with either barley (var. Herta), oats (var. Libertas) or a mixture of
both in the ratio 1:1 (z, = z, = 0.5). The valuc of M, and M,, both in number of
kernels per hectare and the value of ky, were estimated from the yields on each plot
and are given here in the graphs of figure 11, plotted against the pH of the soil.

The yield of the barley appears to decrease rapidly with decreasing pH below a
pH-value of about 4 (figure 11a). The yield on the plots which did not receive nitrogen
was much lower than on the other plots. As for oats, it appeared (figure 11b) that the
yield did not depend to a large extent on the pH and that the yields on the plots
which did not receive nitrogen during preceding years was not much lower than on
the other plots.

The relation between the pH of the soil and the value of the relative crowding
coefficient is given in figure 11c. Throughout the whole pH range, the relative crowding
coefficient increases with increasing pH. Above a pH of about 4, the yield of barley
nor the yicld of oats in mono culture depends to & large extent on the pH. Nevertheless,
the relative crowding coefficient increases in the range above a pH of about 4 with
inereasing pH.

As for the no nitrogen plot with a pH of 4.5 it appears that the value of ky, 18
equal to one so that the competitive forces of barley and oats matched each other.
However, the final yield of barley was about 30% lower than the barley yield on
nitrogen plots, whereas this was not the case for oats. Now it is known (vaN DOBBEN,
pers. com.; REerTH, 1954) that the yield of barley is much more affected by a low
nitrogen level during the second half of the growing period than oats. Probably, the
nitrogen level on the no nitrogen plots was during the first half of the growing period
so high that the barley was able to claim its place, but during the second half so low,
that the barley could not realise a sufficient high yield. This suggests that crowding
for Space takes place during the period of vegetative growth, which is all but unlikely.

Theyield of barley grown with oats depends to a much larger extent on the pH than
the yield of barley grown in mono culture, because only the yield of barley in the
mixture is also adversely affected by the value of the relative crowding coefficient.
VAN DoBBEN (1955b) proposed to select barley varieties on their sensitivity for low
pH on fields where they are grown in competition with oats in order to increase the
_ _cﬂ‘ec% _Of the pH. It has not been proved, however, that barley varieties with a high
relative crowding coefficient at low pH values or with a relative high yield when grown
In competition give also a relative high yield when grown in a pure stand.
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3.5.3. Agricultural advantages
To evaluate the agricultural value of mixed cultivation of barley and oats, we may
suppose for a moment that the thousand kernel weight is not affected by the frequency

of the species in the seed.
It follows from formuia 3.10 that the total yield (O, + O,) increases with increasing

value of z, if M, — M, is larger than zero and decreases with increasing z, if My, — M,
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is smaller than zero. The highest yield is therefore obtained, and this holds also for
the cash yield, if either the whole field is sown with oats or with barley. -

If the farmer wants—for fodder purposes—a mixture of oats and barley, the
question arises whether it is more advantageous to grow the barley and the oats
separately or in mixed culture.

The answer can be arrived at without mathematics. The yield of barley or oats -
is proportional with the relative space occupied by these crops. Whether this space is
.obtained by sowing on separate parts of the fields or by competition in a mixed
culture is immaterial. '

1t can be shown that in both cases the barley yield is equal to

Ob = MbM Ob[Mbo + M Obl_
and the oats yield is equal to ’ 3.12

Oa = MbMooo[Mhan + .Moab]_ !

in which o, is the fraction of barley kernels in the harvest and o, the fraction of oat
kernels in the harvest.

There are, however, some advantages of mixed cultivation which may make this
practice worthwhile,
~ To the first place it appeared that the thousand kernel weight of oats in mixed
cultivation is somewhat higher (figure 8) than in pure stand. Because of this the weight
of the oat kernels grown in a mixed culture may be about 36/33 == 1.1 times or about
109 higher than the wezght of the oat kernels obtained in a pure stand. .

In the second place, it is sometimes difficult to cultivate barley alone, because of
lodging and shortness of straw. Lodging is sometimes less if the barley is mixed with
a certain portion of oats, which facilitates harvesting considerably and prevent loss
of seeds. This is one of the chiel reasons why mixed cultivation of barley and oats
is practiced in the Netherlands. ~ ~

In the third place it may be that the pH of the soil of the field differs considerably

_ from place to place and that on parts with a high pH it is advantageous to cultivate '
“batley and on parts with a low pH advantageous to cultivate oats. Under such
conditions, it is most s:mple to sow a mixture of both species so that on spots with 2
low pH the oats establish themselves and on spots with a higher pH the barley. This

_ seems to be one of the main reasons. for mixed cultivation of barley and oats in Den-
‘mark {DE WAAL, 1951) '



4. CROWDING FOR THE SAME SPACE WITHIN
MIXTURES OF HEALTHY AND DISEASED PLANTS

4.0. SUMMARY

It is well known that the yield depression due to the occurrence of a certain percentage
diseased plants in a field crop is often lower than the yield depression which would be
expected from the depression on fields with 100 percent diseased plants.

It will be shown that this ‘compensation power’ of the healthy plants can be de-
scribed quantitatively by means of a relative crowding coefficient of healthy plants
with respect to diseased plants. This holds also in the limiting case were the diseased
plants do not grow at all.

4.1. SECONDARY LEAF ROLL DISEASE OF POTATOES

REESTMAN (1946) determined the yield of healthy potato plants and the yield of
potato plants affected by secondary leaf roll in parts of a field where different fractions
of leaf roll diseased plants occurred. It was found by REESTMAN that the yield of a
healthy plant surrounded by 50 percent leaf roll plants was higher than the yield
of a healthy plant surrounded by healthy plants, and the yield of leaf rolt plants
surrounded by 50 percent healthy plants lower than the. yield of leaf roll planis
surrounded by leaf roll plants. The results of the experiments were schematicatly
summarized by REESTMAN in a figure of the same type as our figure 6a.
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F1G. 12. The relation between the yield of healthy potatoes and potatoes affected with secondary leaf
roll as influenced by the relative frequency of healthy plants in 1941 and 1942. Data from REESTMAN

{1946).

The results of the experiments with the variety ‘Bintje’ in 1941 and 1942, recalculated
on a hectare basis under the assumption that the number of plants per hectare was
40,000 (REESTMAN, pers. com: ) are given in figure 12a and b. The relative frequency of
healthy plants {z,) is given along the horizontal axis and the yield of potatoes in
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tons per hectare of healthy plants and plants affected with secondary leaf roll along
the vertical axis. _ §
The experimental results may be treated according the competition formulae

Op = kpizplknizy + Zl]"th and 0, = z,[ky iz, + 21]_1M|

to obtain an estimate for the relative crowding coefficient of healthy plants in a
mixture of healthy plants and leaf roll plants (k, ), the yield of a field with 1007
healthy plants (M,,) and the yield of a field with 1009 leaf roll plants (M;). The agree-
ment between the experimental points and the calculated lines shows that the healthy
“and diseased plants affect each other only by crowding for the same space.

The relative crowding coefficient was in both years 2 and the relative reproductive
rate of healthy plants within a mixture of healthy plants and leaf roll plants was
(33/21) 2 = 3.1in 1941 and (42/37) 2 == 2.3 in 1942. As far as the effect of competition
goes it should be concluded that the percentage of leaf roll diseased plants decreases
rapidly in course of time, which is of course not true because leaf roll is an infectious
disease. The relative crowding coefficient (k) is larger than one because the adverse
"affect of growth of secondary leaf roll occurs already at an early stage.

' ’4.2; THE EFFECT OF LEAF RUST ON THE YIELD OF WHEAT

KLAGES (1936) cultivated a Triticum durum and Triticum vulgare variety as mono
cultures and in 9 different proportions. The result of the experiment is given in figure
'}3a, with along the vertical axis the yield in bushels per acre and along the horizontal
axis the fraction of T. durum (z,) in the mixtures. The relative crowding coefficient
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of the durum variety with respect to the vulgare variety appears to be 1.2, so that as
far as crowding for space is concerned, the two varieties matched each other. The yield
of the vulgare variety in mono culture is only 3.6 bushels per acre, compared with a
yield of 13.5 bushels per acre of the durum variety. This low yield of the vulgare
variety is, according KLAGES, due to a severe rust attack during the second part of
the growing season, the durum variety being practically resistent against this rust.

The relative crowding coefficient of about one indicates that during the first part
of the growing season the plants of the two species grew equally well, so that at the
end of the vegetative period the part of the space occupied by either of the species
was proportional with the frequency of each species in the seed mixture. Subsequently,
the rust attack affected the growth of the vulgare variety to a large extent, resulting
in a low yield. At this stage, the plants of the durum variety were, however, full grown
and not able to take over the space occupied by the vulgare variety at an earlier stage.
As a consequence, the yield decrease due to the presence of diseased plants was not
compensated by a better growth of the healthy plants. This result indicates again
that small grains crowd only for space during their vegetative stage of development,

The frequency diagram given in figure 13b, illustrates that the relative repro-
ductive rate of the durum variety is very high. It -is mentioned here that KLAGES
represented his results in such a frequency diagram but did not furnish any theoretical
background.

4.3, THE MOST EXTREME FORM OF COMPETITION

Mixtures of two varieties of a plant species, one being susceptible for a certain
disease, may be subjected to attacks of different severity. The relative crowding
coefficient of the resistent variety will increase with increasing severity of the attack
when this disease occurs at a sufficient early stage.

This course of events is already illustrated in section 3.5.2. where the effect of pH
and different pre-treatments with mitrogen fertilizers on the competition within
barley-oats mixtures was studied. The pH in this case may be understood as ‘a soil
borne disease which affects mainly the growth of barley’. The results on four sub-plots
are given as a further illustration in figure 14. As far as crowding for space goes,
the two species match each other under the growing conditions of figure 14a, the
relative crowding coefficient of oats with respect to barley (k,, and not k,,) being
practically one, This coefficient is already appreciably higher under the conditions
of figure 14b. As for figure 14c, the yield of barley is low when grown alone, and
negligible when sown with 50 percent oats in the seed mixture; the relative crowding
coeflicient being increased to threc. The most extreme case is reached under the
conditions of figure 14d, where barley did not produce a yield cither in mixed culture
nor in mono culture. The relative crowdmg coefﬁcmnt is in this case mcreascd to a
value of about twenty. :

This relative crowding coefficient is then formally the relative crowding coefficient
of oats with respect to barley, but practically the relative crowding coefficient of
oats with respect to dead barley or ‘empty space not allotted to oats’. In other words:
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Fic. 14. Competilion between oats and barley on four sub-plots of the experiment of figure 11. Data
from van Doeen (1955a and files).

a. Calcium nitrate; pH-KCl = 4.0.

b. Nitrolime; pH-KCl = 3.7.

¢. Ammonium sulphate; pH-KCl— 3.2,
d. Ammonium sulphate pH-KC1 = 3.1,

the competition experiment between barley and oats is degenerated into a spacing
experiment for oats.

Hence there must be a ‘degenerated form® of the competition formulae developed
insection 3., whichis suitable to describe quantitatively the result of spacing experiments.



5. THE INTERPRETATION OF EXPERIMENTS
ON SPACING

5.0. SuM MARY

The conclusion of the preceding section, that spacing experiments are a special form
of competition experiments is worked out in detail. A formula for the relation between
the yield and the seed rate is worked out on basis of some experimental results with
small grains.

This formula is applied on the results of some experiments with peas, beets and
potatoes to illustrate some important applications and agricuitural aspects.

5.1. CROWDING FOR SPACE WITHIN MONQ CULTURES

5.1.1. A spacing experiment with oats

MONTGOMERY (1212) carried out a spacing experirﬁent with Kherson oats in 1912,
The experimental results were;

125 | 25 ( 5.0 l x 100 kernels per hectare

seed rate
yield

47 60 70 x 108 kernels per hectare

Seed rates and yields are here given in number of kernels per hectare (supposing
- that 1 dm?® oats weights 0.5 kg and that the 1000 kernel weight of oats is 35 g) instead
of in bushels and pecks per acre as done by MoNTGOMERY. This facilitates comparison
with the results of preceding sections.

It may be arbitrary supposed that the unit square of figure 1 (m) equals 20 cm? so
that for a seed rate of 5 x 10¢ kernels per hectare each square is planted with one
oat kernel; the relative frequency of the squares with oat seeds (z,) is then equal to
one, At a seed rate of 2.5 x 10% kernels per hectare, the relative frequency of the
squares with oat seeds is 0.5 and the relative frequency of the ‘dead barley seeds’ or
more correctly of the squares without seeds (z,, in which the index , stands for empty
square) is also 0.5. Likewise, the relative frequency of the squares with oat seeds is
0.25 and of the squares without seeds 0.75 at a seed rate of 1.25 x 109 kernels per

hectare, .
According equation 3, 4b, the yield of oats may be represented by the formula

0, = knezo{(koe_ 1)20 + l}_ Mu ' 3.1

in which M, is the yield of a field on which all squares of 20 cm? are planted with
one oat kernel and k,, is the relative crowding coefficient of squares of 20 cm? with
an oat seed with respact to squares of 20 cm? without a seed. The similar equation
for the other plant species is of course meaningless, because the squares not planted
with oats are not planted at all.
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As in section 3.3. it is 1o be investigated whether there is a value of k,, such that
there is a straight line relation between the yield of oats and the space

(1) = knezo[knezn + ze]_l

It is seen in figure 15a that this is the case for k,, = 6. The relation between the yield
of oats and the relatlve frequency z, or the seed rate in an aux:hary scale is given m
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3. A graphical treatment of a spacing experiment with oats. Data from MonTGoMERY (1912).
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figure 15b. The crosses represent the observational points and the curve satisfies
equation 5.1 with M, = 71 x 10° kernels per hectare and &,, = 6.

It may be supposed with as much justification that the surface of the unit square is
10 cm? instead of 20 cm?-in which case the relative frequencies of the squares with
one oat seed are 0.5, 0.25 and 0.125 instead of 1, 0.5 and 0.25. The graphs which are
obtained under this supposition are given in figure 15¢ and d. Now it appears that
M, == 77 x 10® kernels per hectare and k,, = 1. However, M, is now the vield of
a field on which each square of 10 cm? is planted with an oat seed, and &, is the
relative crowding coefficient of squares of 10 cm? with an oat seed with respect to
squares of 10 cm? without seeds. The values of the constants in equation 5.1 appear
therefore to depend in a most inconvenient way on the arbitrary choice of the surface
(m) of the squares with and without seeds.

5.1.2. A spacing formula

Let M, be the yield per unit surface on a field with a seed on each # cm? and M,
the yield per unit surface on a field with a seed on each s cm? (s > m), then z, = ms-!,
sa that, by substituting these values in equation 5.1, the following relation is obtained :

M, =kouns  Hlkoe—11ms "' 137 M, = {koe—m -+ m)} {[koo—1 ]m+.s}"1M

Division of the two equations which are obtained by substituting two arbitrary values
for s shows that the value of the product (k,, — 1)m is independent of the arbitrary
choice of m so that with

ke — 11t = B . s

the following relation is found:
M= [B+ ml[f+51'M, 5.3
It is now cqnvenient to suppose that the surface 'of the reference square m is 0 so that
= BIp % s]” 'Q 5.4

in which .Q is the extrapolated yield at an mﬁmle seed dcnsnty The extrapolated
reproductive rate of one seed, sown on a very large field is equal to

(M), = (BIB + s17'025),.., = B2 55

The value of Q is expressed in kernels per cm? or kernels per heclare but units fike
kg per hectare, bushels per acre and so on may often do as well. The value of § and
the surface per seed is most conveniently expressed in cm? per kernel, but units like
ha per kilogram seed or acre per bushel seed, and so on may do also.

According cquatlon 5.4 the following relation holds

Bys—poMt C s

Hence if the inverse of the yield is plotted against the space per seed (or the inverse
of the seed rate) a straight line is obtained. :
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This is shown in figure 16, where for MONTGOMERY’s experiment, the space per
seed along the horizontal axis is plotted against the inverse of the yield along the
vertical axis, both expressed in cm? per kernel. The observational points are found
on a straight line. The value of £ is now equal to the distance between the origin and
the intersection of the line with the horizontal axis and the value of £ equal to the
inverse of the distance between the origin and the intersection with the vertical axis.
It appears that £2 = 85 x 106 kernels per hectare-and that f = 100 cm? per kernel.
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F1G: 16. A graphical treatment of a spacing experiment with oats; the inverse of the yield being plotted

ggainst the inverse of the seed rate, that is the space per kernel. The data are the same as those of
gure 15.

The reproductive rate of one single kernel should have been 100 cm? kernel™!
85 x 10° kernels hectare-* = 85. For a unit square (m) equal to 20cm? a yield of 100 x
120-1 x 85 x 10° = 71 x 10° kernels per hectare is calculated, the relative crowding
coefficient being according to eq. 5.2a cqual to 100 x 20°! + | = 6. These values
for a unit square () equal to 10 em? are 77 X 108 kernels per hectare and 11 re-
spectively. These values were also found in figure 15.

Because of its simplicity the graphical treatment in figure 16 of the experimental
data is preferred, in spite of the distortion of random errors. Where random deviations
are relatively considerable (this being always the case at low seed rates) the result
is to be chccked by p]ottmg data and curve as in ﬁgure 15.

5. l 3 The apphcabzhty of the spacing farmula w

The relation between yield and space per seed is thrapo]ated to infinite [arge and
small densities. However, it is well known that at dense seced rates, the yield may dc-
crease considerably with increasing seed rates. This is illustrated in figure 17, where
‘the inverse of the yield in bushels per acre is plotted against the inverse of the seed

ratfl:gl(r;?pecks per-acre for-an experiment of MONTGOMERY (19]2) with Kherson oats
in : .
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Such a yield depression may be due to the existence of some threshold density or
space per plant beyond which the plants leave each other such a small space that a
normal development is impossible. This is obviously so, where, due to a limited supply
of water, narrow spaced plants die during growth but wide spaced plants mature
(DE WIT, 1958). '

Yield depressions at dense seed rates are, however, in many cases due to density
dependent effects of inclement conditions. For instance dense covers are much more
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F1G. 17. A spacing experiment with oats, . ! y [
showing a yield depression at narrow 0 o " . " s
spacings. Data from MoONTGOMERY (1912). ’
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subject to lodging and subsequent rotting associated with inclement weather con-
ditions than normal covers. This is admirably illustrated by the absence of any de-
pression in the case of some experiments in 1959,
~ Qats, barley and peas were sown at rates ranging from 1/10 up to 8 times the normal
rate, but due to the very fine weather during the whole summer no yield depression
~ occurred, except in ong case at the highest seed rate (8 times normal) of oats, as can
be seen in figure 18. The relation between yicld and seed rate is given here in the normal
way, because otherwise the yiclds at high seed rates can hardly be plotted. The yields
are expressed in kg per ha, because the weight of the seeds is more affected by inclement
growing conditions during the second half of the growing period than either the
number of kernels or the total dry matter weight. Further details on the treatment of
these experiments are given in section 8.4,

It is of course also possible that at very low densities yields are affected by density
dependent effects of winds, pests and diseases which are not accounted for in the
present approach. _ _ '

There are many spacing experiments with small grains where the distance between
the rows is varied, the number of seeds within the rows being the same. It is then
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necessary to consider the seed rows, instead of the seed as the ‘unit’ and to express
the inverse of the seed rate in centimeters per row instead of square centimeters per
seed.- Four such experiments of vaN DoBBEN (1957} with small grains are treated
in figure 19. VAN DoBBEN sowed the small grains at a row distance of 25 (or 20) cm
and skipped on some plots each third row and on others each second row. The row
distances were therefore 25 (20) cm, 25 (20)-50 (40) cm or 37.5 (30) cm on the average,
and 50 (40) cm. At one field the row distance was actually 30 cm; the yield difference
with the distance 2040 cm was negligibie. The values of 8 varied here from about
120 cm to even 250 cm per row. This means that the rows are to be sown about
200 cm apatt to obtain a yield which is the half of the cetling yicld (£2).

Hence, to find any effect of spacing on yield, it is necessary to include wide row or
seed distances. There are many experiments were the seed rate, row distance or plant
number varies only a few ten procent. The results of such experiments are next to
useless, because the random errors are large compared with the effect of spacing which
can be expected.

5.2. SOME SPACING EXPERIMENTS WITH BEETS

The results of several spacing experiments with beets were discussed in another paper

(DE WIT, 1959), so that only the most important aspects will be reviewed here.
PrerFFER and SIMMERMACHER (1917) reported the fresh weight of sugar beets at

widely different plant numbers per surface unit as determined by WoLLNY. The result
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experiment with sugar beets. e 0 L 1
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is given in figure 20 with along the vertical axis the inverse of the fresh weight in m?
kg-! and along the horizontal axis the space per plant in cm? per plant. The yield
data for spaces of more than 1600 cm? per plant are smoothed by a straight line.
At the intersections with the axis it is read that the yield £ is 140 tons per hectare
and the value of § equal to 3000 cm?. From a space of about 1600 cm? per plant (that
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is 6.25 x 10# plants per hectare) onwards the yield decreases with increasing plant
density. ' ‘ : . o
PrEIFFER and SIMMERMACHER (1917) cultivated 1, 3 and 5 beets in containers with
a diameter of about 30 cm which were buried in the soil at a distance of 75 cm from
each other. The space available for the roots was therefore 700, 235 and 140 cm? per
plant and for the leaves 5625, 1875 and 1125 em? per plant. The observational points
in figure 21, where the relation between the inverse of the yield and the space per
: eontainer
kg dry m.
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Fic. 21. The result of a spacing experiment

- .

; T with sugar beets.
2800 5i 5600 §1: space per plant for the leaves,
: : — §ri space per plant for the roots.
5 %0 5 700 . Data from PreirFeR and SIMMERMACHER
em?¥/plant (1917,

plant is given are found on a straight line, so that no sign of yield depression due to
dense planting can be found. Taking in account the large weight of the beets and the
extremely low available space for the roots, it seems that the occurrence of this de-
pression depends on the amount of space available for the leaves and not on the
amount of space available for the roots.

The results of a large number of experiments with fodder beets on sandy soils in
the south of the Netherlands, published by vAN DiLLEWDN and SMEENK (1944) are
summarized in figure 22, with along the vertical axis the inverse of the dry matter
vields of the beets in m? kg-" and along the horizontal axis the space per plant in cm2.
The 21 experiments of 1939 are grouped in experiments with a fe'fatively lbw, an
average and a relatively high yield. The yields for all three levels at the ﬁ‘)e treatments
. are repljescnted by full dots. The results of the 10 experiments in 1940 are grouped
. in experiments with a relatively high and low yield and represented by open dots. The

average results of the seven experiments in 1941 are represented by crosses. Through-
~ out the whole traject of spacing and in all three 'years, the results can be smoothed
by straight lines. : ' : L -

The stope of the yield-liries appears to be positively correlated with the inverse of
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the yields or negatively correlated with the yield itself. This slope of the line is equal
to (852)-! or the inverse of the weight of one plant growing alone (equation 5.5).
This correlation between yield level and slope implies that the relative effect of plant
density on yields is high when yields at normal plant densities are low.
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F1G. 22, The average results of spacing
experiments with fodder beets on sandy {/‘I ' [
soils in the Netherlands. Data from vaN 1000 1500 s 2000
DiLtewnnN and SMEENK (1944). : em?/plant

This relation between the effect of plant rate and yield level is also found for other
plant species, as may be seen in figure 19 and 24. A p_ractical. consequence is that,
where yield depressions due to dense planting do not occur, it 1s .acl'vantagcous. to
plant or sow at high rates under conditions where yields are low. This is a conclusion
which was of course already arrived at by vAN DILLEWUN and SMEENK (1544).
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An interpretation of spacing experiments with sugar beets carried out in the
Netherlands appeared to be difficult because yield depressions due to dense planting
occurred already at plant rates smaller than 1000 plants per are. A discussion of the
results, which are of small importance here, was given in another paper (pE Wi, 1959).

5.2.1. The value of B throughout the growing season

It was already remarked in section 3.2. that the relative crowding cocfficients
characterize not the process of crowding for space itself, but only the result of this
crowding.

This is very well illustrated by the change of the value of § during growth, this
constant being nothing else than some transformed relative crowding coeflicient.
At the beginning of growth f is very small, since the seedlings must grow very close
together before the growth is affected. At the end of the growing season f is, however,
of the order of a few thousand cm? per plant. Likewise the value of £2 increases
during growth,

The result of spacing experiments which were periodically harvested are to be
analysed to obtain some information on the course of the values for § and £2 throughout
the season, ‘

Yan GINNEKEN (1934) carried out such an experiment, of which the results are
given in figure 23a. The scattering of the observations is relatively large because the
plots were small. The observations are smoothed in the following way, A free hand
curve is drawn through the observations in figure 23a for each plant density. Sub-
sequently the smoothed yields at the dates 15 July, 1 August, 15 August, 15 September
and 15 October are read and plotted in the graph of figure 23b, with along the horizon-
tal axis the space per plant in cm? and along the vertical axis the inverse of the yield.
These points are smoothed by straight lines and the curves of figure 23a are sub-
sequently corrected. The resulting average curves are given in the figures.

The relations between the date and the values of 8 and £ as read in figure 23b are
represented in figure 23c, with the date along the horizontal axis and f and £2 along
thz? vertical axis. The scales are chosen such that the observational points at 15 October
coincide. It appears that the value of f remains constant from the second half of
August onwards, although the weight of the beets (and the value of ) still increases.
Apparently, the beets are at the middic of August at the end of their development
and from that time onwards not capable to occupy more space.

The leaf weight in grams per plant (averaged over the four densities) is represented
by open dots in the same figure, such that the maximum feaf weight coincides with
the maximum of § and £. The points show that the lcaf weight remains also constant
from the middle of August onwards. This indicates that here f# depends on the leafl
development.

As for small grains the competition for space 1akes mainly place during the vege-
tative period which ends at the beginning of heading. Any adverse effect of diseases,
etc. after this stage cannot be compensated for by a better growth of not affected
plants: An analogous stage in the development of the beets appears to be the point
at which the maximum leaf mass is reached. It must be concluded also that any
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FI1G. 23. The result of a spacing experiment with sugar beets harvested at intervals from the beginning
of July onwards. Data from van GINNEKEN (1934).

adverse effect of diseases, pests, etc. before this time can be compensated to some
extent by better growth of not affected plants, but that this is not the case after
the leaf mass does not increase any more. It should be taken into account that, although
the total leal mass remains the same, old leaves die and young leaves are growing.
Itis of course also possible—and in general the rule at the end of the growing season—
that the total leaf mass decreases. This is, however, of secondary importance, as far
as the present conclusions concern.
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5.3. A SPACING EXPERIMENT WITH PEAS

ViTTuMm et.al. (1958) published the result of spacing experiments with peas, carried
out.in the years 1952, 1953 and 1954. The treatments were:

1. Normal 7 inch row, with a normal seed rate of 3.61 bu per acre.

11. As above, but each second row skipped (14 inch row distance).

111. As above, but each third row skipped ({7 -+ 14)/2 = 10.5 inch row distance, on
the average).

1V. Normal 7 inch row, but with about two third of normal seed rate.

Assuming that | hectoliter of the peas weighted 80 kitograms and that the thousand
kernel weight of peas was 275 grams, the following surfaces per kernel, and distances
between and in the rows are obtained:

i i | Distance in cm
| Treatment Ibs/acre kgiha cmifkernel - . .
‘ | ‘between ro_ws| in Tows -
I 361 | 22 1 109, 178 1 6.09
i - 1.81 126 } 218 : 356 ‘ 6.09
11 2.41 168 N 164 26.6 ‘ 6.09 I
v 2.54 177 i 156 : 17.8 | 8.75 1
-4 hn
LT} 1 wm I
8 ¥ vt 1
(=
-1
M!‘
4 =
2 b
o . | -] .
iy 100 . 200 Fi6. 24. The result of three spacing experiments with
; . cm¥ kernel : peas. Data from VITTum e al. (1958). '

“The'treatments 1, 11and 111 differ only as far as the distance between the rows and the
treatments I and IV only as far the distance within the rows is concerned.
The results are represented in figure 24. Along the horizontal axis the surface per
kernelin cm?is plotted and along the vertical axis the inverse of the yield in 104 ha/kg.
The observational points for the treatments I, IT and HI for the three years 1952, 1953

a
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and 1954 arc smoothed by the solid straight lines. It appears again that the slope of
the line is negatively correlated with the yield level.

The yield of treatment IV with a space of 156 cm? per kernel and a distance within
the rows of 8.75 cm is in all three years equal to the yield which should have been
obtained with a space of about 135 cm? per kernel but a distance within the row of
6.09 cm. The deviation from the straight line is the largest for 1954, because in that
year the effect of density on yield was relatively the highest,

The solid lines hold therefore only when the row distance is varied, but the distance
within the row is kept on 6.09 cm. The broken line, drawn only for the year 1954,
holds on the other hand when the row distance is kept on 17.8 cm but the distance
within the row is varied.

The cotangent of the angle of the broken line and the horizontal axis is equal to
5.3 gram per kernel, This is the yield of one kernel at a distance between the rows of
17.8 cm, the row being wide apart from any other row. Likewise, it ts calculated
that the yield of one kernel planted at a distance of 6.09 cm within a row, whlch is
wide apart from other rows, is only 3.1 gram per kernel.

This large difference shows that in spacing experiments it is necessary to plant the
seeds either according to a fixed pattern or in rows with the same distance between the
kernels, and that an indiscriminate mixture of methods may be very inconvenient.

5.4. SEED RATE AND YIELD OF POTATOQES

As for potatoes, the results of several spacing experiments with the variety ‘Alpha’
carried out from 1256 1o 1958, were given by REESTMAN and DE WiT (1959), so that
it is not necessary to discuss details in this paper. The relation between plant number
and yield depends of the size of the seed piece; the yield from small pieces being much
lower than the yield from large pieces especially at low plant densities.

The relation between the inverse of the vield and the inverse of the seed rate, both
in are kg-!, is plotted in figure 25a for the average of seven experiments and for the
set sizes 25-28 mm (solid dots), 3545 mm (open dots) and 45-60 mm (crosses).
The width of the rows was at all plant densities 60 cm, the planting rate being varied
only by varying the distance within the rows.

The value of £ is 450 are kg-! and appears to be more or less independent of the
size of set; which indicates that the yield is independent of the size of the seed pieces
at high plant densities. The value of g is, however, 0.37, 0.22 and 0.12 arc kg-! for
the set sizes 25-28, 35-45 and 45-60 mm, respectively. Large potatoes, ‘planted alone,
produce therefore much less per unit weight than small potatoes, so that it must be
conctuded that the weight of the seed is not a good measure for the seed rate.

It was found (REESTMAN and DE WiT, 1959) that there is a close relation between
the yield and the number of stems per unit surface and that the number of stems per
seed, when planted alone, is proportional with the surface of skin of the seed picces.
For this reason the seed rate was expressed in surface of skin per unit surface of soil.
As a consequence and to account for the size distribution of the tubers produced,
the harvest was also expressed in surface of skin per unit surface of soil. .
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The result is given in figure 25b, which concerns the relation- between the inverse
of the seed rate and the inverse of the yield both expressed in are of field per m?
surface of skin. The observations for each size of set are now neatly on straight lines,
the deviations being much less than in figure 25a. The value of £2 is again independent
of the size of set, and-the values of § are 0.93, 0.80 and 0.63 are m-2, for the size of
set of 25-28, 35-45 and 45-60 mm, respectlvely

ilie 2528 mm’
"o 35-45mm
;i % 45«60 mm-
are/kg . are/m? skin : )
e e : b
eoost- . _ : 0o |
‘1 .. EE B : . i . . . .
Msl o - ) / _Hs"\ . . /
aooaf. - oz . " . 003 [~ »
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FIG 25. The average result of spacing cxperlmems w:lh potames ( 1 are = 10 ® hectare).
a, Based ori-weight of the tubers. -

b.. Based on surface of skin of the tubers.

Data from REESTMAN and DE WIT ( 1959},

Especlally the valuc of 8 for the largest sets is smaller than for the smaller sets.
The potato stems are distributed in groups of five to ten in case of large sets, whereas
with small seed pieces the stems are distributed in groups of one to two. Apparent]y,
the large reserve per unit surface of skin for lTarge seeds, cannot be used to overcome
completely the disadvantage of irregular distribution of the stems.

The yield of large seed pieces may be improved by better distribution of the stems
obtamed by cutting. When the pieces are cut to the welght of seeds of small sets, the
yield is lower than for small sets planted at the same number. On the other hand, if
large sets are cut such that the surface of skin of the pieces is equal to the surface of

~ skin of small sets, the yield is the same as the yield from small sets planted at the
same number (REESTMAN and DE Wit (1959)).



6. THE GROWTH OF POPULATIONS

6.0. SUMMARY

The time-yield relation which is obtained by resowing again and again the harvest,
starting from one plant, is studied. It will be shown that this relation is the same as
the PEARL-VERHULST equation of logistic population growth. Some classical ex-
periments on the growth of yeast and Drosophila populations will be interpreted as
spacing experiments,

The applicability of the logistic equation in animal population dynamics is com-
pared with the applicability in agriculture.

6.1. A TIME SERIES

Let it be supposed that in the spacing formula
M,=ﬁ[ﬁ+s]“g 5.4

the value of £2 is 100 kernels per unit surface and the value of # is 0.02 unit surface
per kernel.

Provided that growing conditions are the same during a number of years and that
stochastic effects are absent, the number of kernels [M,, ] which is obtained in the
[t + 1]th year by resowing the harvest [M,] of the ¢ th year may be calculated by
means of the formula

M, =B+ M2 : 6.1

which is the same as formula (5.4) but for M_and s being substituted M,,, and M1

The result is represented in figure 26 with along the vertical axis the number of
kernels per unit surface and along the horizontal axis the number of years, supposing
the first year being started with one kernel,

The number of kernels appear to approach a maximum, which is equal to [ — §-1].
Any disturbancies around the maximum due to adverse effects of dense seed rates
are not taken into account. It is a matter of course that in actual experiments such
disturbancies play a dominant part and that yields do not approach to this maximum
but may show a more or less cyclic variation around this maximum. The shape of
the curve is very similar to the well known sigmoid curves of population growth, a
similarity which is studied in detail in the next sections.

6.2. TWO CLASSICAL EXPERIMENTS ON
POPULATION GROWTH INTERPRETED AS SPACING EXPERIMENTS

PEARL (1930) was able to carry out experiments on population growth of Drosophila
in pint bottles nearly through to completion by adding food skilfully and in small
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Fia. 27. The result of an experiment on the growth of a Drosophifa population, plotted as a growth
curve (figure a) and treated as a spacing experiment (figure b), Data from PearL (1930).
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amounts. The result of one of his experiments (PEARL’s table 10) is represented in
figure 27a. The number of flies per bottle, as determined by counting, is given along
the vertical axis, and the number of days since the introduction of a small population
along the horizontal axis. The observations were done with three days intervals
except on two occasions around Christmas and New Year. For reasons which are
obvious later on, it is necessary to work with equal intervals between sample dates,
so that a number of 499 flies on the 25th day, is here replaced by a number of 465 flics
on the 24th day and a number of 618 flies on the 29th day by 650 on the 30th day.

Disregarding for biological (PEARL, 1930) and statistical reasons (section 6.4.) the
data for the first sampling dates, it may be supposed that PEARL executed a spacing
experiment, in which the harvest (being here all the living material) at the ninth day
was resown directly afterwards, the bottle again harvested at the twelfth day, the
harvest resown again, and so on the 15th, 18th to the 39th day. _

If a Drosophila population reacts in the same way on spacing as plants do, so a
straight line would be obtained if the inverse of the yield on the 9th day, is plotted

. against the inverse of the yield on the 12th day, the inverse of the yield on the 12th day
against the inverse on the 15th day, and so on, taking care of course to compare only
samples with the same time interval in between.

This is done in figure 27b from the 12th day onwards. The observations are actually
close to the straight line which is drawn through the points. The Drosephila experiment
may be interpreted therefore as a simple spacing experiment, or in other words: the

.intraspecific competition within the Drosophila population of the pint bottle may be
interpreted as an interspecific competition between the Drosophila population and
‘empty space, (see section 4.3.). Citing NicHOLSON (1954), ‘growth is here governed
by space or by a transient requisite which gives a constant favourable quality to space,
like food added in small amounts’. '

The values of 2 and § as read at the intersections with the vertical and horizontal
axis are 2500 flies per bottle and 0.00067 bottles per fly. The number of flies can never
be larger than the number which is indicated by the intersection of the line with the
45 degrees line dotted in figure 27, because at this point the number of flies harvested
is the same as the number of flies sown. This maximum number of flies is read to
be 1000 flies per bottle and in the following represented by the symbol K. Of course,
the straight line relation may be disturbed before this density in actual experiments,
because of overcrowding or deterioration of the environment. This is actually the
reason why PEARL finished his experiments before the maximum value was reached.

The tangent of the yield line with the horizontal axis is equal to (82)~' so that

K =o' B+ K or K=2—p" 6.2

For the present example this maximum appeared to be indeed 2500 — (0.00067)-' =
1000 flies per bottle.

The smoothed relation between the number of flies and the number of days may
be found as follows. On the t-th day the number of flies may supposed to be 167, so
that the inverse is equal to 0.0060. It is then read in graph b that the inverse of the
number of flies on the (¢ + 3)th day is 0.0041 or the number itself 244 flies per bottle.
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Likewise it is read that on the (¢ — 3)th day the inverse of the yield is 0.0091 and the
yield itself 110 flies per bottle. The yield on the (¢ 4 6)th and (t — 6)th day and so
on may be read now in the same way. The relation between the number of flies per
bottle and the time may now be drawn on transparent paper with the same scale as
figure 27a. To adjust the time scale or to eliminate the arbitrary time ¢, the transparent
graph is shifted horizontally over the graph with the observations (figure 27a) until
a good fit is obtained. The curve obtained in this way is drawn in figure 27a, where it
is seen that the resulting curve fits the observations quite well.
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Fic, 28. The result of an experiment on the growth of a yeast population, plotted as a growth curve
(figure a) and treated as a spacing experiment (figure b). From data cited by PEARL (1930).

_ PEARL reports in his table 4 also the results of an experiment with yeast.

These results are represented here in figure 28a. In figure 28b the inverse of the yield
at the second hour is plotted against the inverse of the yield at the third hour, the inverse
at the tpird hour against the inverse at the fourth hour and so on. The observations
-are again on a-straight line. At the intersection with the dotted 45 degrees line it is
read that the maximum yeast population (K) was 660 yeast units per vesse! and from
th.: slope of the line it is read that (82)-! is equal to 0.635, so that with equation 6.2
it is calculated that § is equal to 0.00087 vessels per yeast unit and £ equal to 1800
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yeast units per vessel. These values may be read also at the intersections with the
horizontal and vertical axis, but with less accuracy. The relation between population
growth and time is reconstructed in the same. way as is done for the Drosophila
population and given in the graph of figure 28a. The growth of yeast is inhibited by
its alcohol production, so that at its maximum density the yeast is in a state of rest,
which explains why here any random or cyclic scattering around the maximum is
absent.

6.3, THE LOGISTIC CURVE -

Sigmoid curves of the above type are in general described on basis of the logistic
differential equation (LOTKA 1925; VOLTERRA, 1928; PEARL, 1930; and many others):

dM(df)™" = rM,[K — MK ' 6.3

in which ¢ is the coefficient of increase which a population would have if ample space,
that is ‘food’ (see section 3.2.) is available, X the maximum or equ1l|br1um densn:y
under the conditions of growth and M, the yield on time ¢.

A solution of this equation is the followmg

M:+A:[M:+J¢—K]_l = M:[M:—K]—leu" R 6.4

in which M., ,; and M, are yiclds at two moments, of which the time interval is
represented by the symbol dt. This equation may, with M‘+ 4: explicite, be rewritten
as follows .
- M= CMIM{K‘F[GM' ]]M}‘

6.5
- [I’At l]K .l{[eh.lt 1]K—1 +M 1} lKerdl[erAr .']]—1'* : ’
so that b substltutm :
y g ﬁ —_ [erdt l]K~ .
.. 66
Q Kerzlr[erdt 1]-‘ -
the following relation is obtalned ' &
M:+d:_ﬁ[ﬁ+M 1] IQ : ‘ . 6.7

This re]atlon is ldentfcal with our equatlons 5.4 and 6. 1.

Consequently, logistic growth of animal populations can only occur 1f the growth
is only and promptly governed by the space {(or some {ransient requlsne associated
with space) the animals secure by means of ‘scrambling’ (compare NICHOLSON l954)

The value of (£2 — 8-1) is indeed equal to X, whereas

- , ﬁ.Q—e ' R T
B2 was’ also equal to cotg y (ﬁgure 16) so that the slope of the hnes in hgure 27 and

28 and the values of the constants § and £2 appear to depend-on the length of the time
interval chosen, a conclusion which in its qualitative form is obvious.
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6.4. THE APPLICABILITY OF THE LOGISTIC MODEL

There are many experiments on growth of animal populations which cannot be de-
scribed by means of the logistic model (compare for instance ANDREWARTHA and
BIRCH, 1954; NicHOLSON, 1954). It is therefore not surprising that animal ecologists,
convinced as they are from the complexity of their subject, are sceptical as to the appli-
cability of the logistic theory or sometimes even to the usefulness of any theories.
On the other hand, it was found in this paper that the spacing formula, being a special
solution of the logistic differential equation is, as far as the effect of density on the
. growth of plants is concerned, of wide applicability, in spite of the fact that the growth
of plants is in itself not less complicated than the growth of animals. The reason of
this difference in usefulness of the logistic theory is duc to the different experimental
approach. .

In spacing experiments, seeds are sown in one season at different densities and this
seed rate is only related with the yield of similar seeds at maturity. So, the experiment
is completed with one generation and the data concern only those parts of the plant,
which stay over during some dormant or winter scason. In experiments on population
growth, however, a medium provided with a constant ratc of a transient requisite
is inoculated with a small amount of the species concerned which are left to develop,
census counts being taken at intervals.

It is evident, that during such growth experiments, the condition of the medium
must be kept the same, although the presence of the population results in irreversible
changes of the medium. To keep the medium the same, it is necessary to change this
medium frequently. In general, techniqucs are developed where the changing of the
medium and the addition of the transient requisite (in general food) is combined. If
one succeeds sofar with the experiment it may be (as found by Frank (1957) with
experiments with Daphnia) that the properties of the population depend on the period
it is living in the medium. As for spacing experiments, there is no such change of the
‘medium and no adaptation of the species with- respect to the growing conditions,
because the experiment is completed in one season with one generation.

In a medium of an experiment on growth of for instance insects populations there

_are eggs, larvae, puppae, and adults which proportions may or may not change
during growth. Under such conditions, it is often difficult to obtain census counts,
because it is often impossible to know whether biomass, number of adults, number of
individuals and so on are to be weighted, measured, counted and so on. A plant
passes also many stages of development from germination until ripening. However,
‘to study the effect of spacing on the multiplication of the plant species, it is only
necessary to consider the seed rate and the harvest rate. It is admitted that sometimes,
as is the case with small grains, the rates are to be expressed in numkber of sceds per
-surface unit of the field, or, sometimes, as is the case with potatoes, in surface of skin
per surface unitof thefield, and that with other plants other ways of measure may be the
most useful, _However, it is only necessary to consider the parts of the plants which
stay over during the winter or dormant season. It is not necessary to study the growth
phenomena itself, in order to devclop the general laws considered in this treatment.
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Spacing experiments can be carried out with animals, One may take animals in
the form as they stay over their ‘dormant’ or ‘winter’ season, ‘sow’ these animals at
different rates in a suitable medium and determine the ‘yield’ of offspring after one or
may be a few generations. It depends of course on the species, whether this ‘yield’
of offspring is to be expressed in number of individuals, weight of the individuals,
fertility of the individuals or such a measure. The data collected in this way may be
treated as the data of a spacing experiment with field crops. If, which is of course not
necessarily so, the relation between inverse of the ‘seed rate” and the inverse of the
*yield rate’ is a straight line it is possible to calculate the values of § and of £ and from
these the parameters of the normal logistic equation, which are the saturation rate
(K) and the initiai rate of increase (r). '

Since under the conditions of such experiments, ‘space’ (or a transient requisite
associated with space) will be in general the main governing factor, it is to be expected
—as is the case with plants—that in many cascs logistic relations result,

This logistic relation must be interpreied in its own rights, taking in account the
conditions of the experiment. It must be realised that such an experiment gives no
information at all on ‘conditioning’ either of the medium nor of the animal species.

Of course there arc still experimental difficulties. In the first place there may be
unavoidable pests, diseases and so on, of which the effects may be density dependent.
As far as field experiments with plants are concerned, the occurrence of those is all
but unlikely. In the second place there may be, especially in case of animals, a treshold
density beyond which the growth ts abnormal, because too small an amount of a
necessary requisite is available for each individual. The resulting cffects must be
treated along the same lines as oscillatory scattering around the saturation rate in
experiments on growth, and need no further consideration here.

At last it must be mentioned that the growth of small experimental populatlons
may to a large extent be affected by random factors. These effects have been studied
recently by BARTLETT (1957), LesLie (1958) and Lesvie and GOwER (1958) which arc
mentioned here because their statistical views run to some extent parallel with the
preseat approach.

These investigators also derived from the logistic differential equation, equation
6.7 and they supposed that the growth during the time interval 4 is not only deter-
mined by this equation but also by some stochastic or random term. Some models
for this stochastic term have been developed, and in step by step calculations the
census counts (“vields'), as affected by this stochastic term, were substituted. By such
‘Monte Carlo’ processes, a random logistic may be obtained, of which the behaviour
can be studied and compared with actual experimental growth curves. LEsLIE (1958)
came to the conclusion that the mean values of a random logistic can be fitted by
any ordinary. logistic curve, and that the estimates of the parameters for these ex-
perimental logistics gradually approach the true values of the process as numbers
increase in magnitude. For a large population we might conclude according to LESLIE
that to a fairly close approximation the deterministic model is for all practical purposes .
the same as the mean stochastic model. These concluswns hold, of course also for
spacing experiments as consxdcrcd here.
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6.5. ANOTHER APPROACH

A teéiﬁ of the Institute of Polytechnics of the Osaka University in Japan, working on
intraspecific competition among higher plants described the resuits of their spacing
experiments with the so-called density-cffect law which is represented by one of the
following two équations:

L wp =Cor pp* ' = C . 6.9

in which w, y and » denote the average plant weight, total plant yield per area and
the density of plants (i.e. number of Plants per area), respectively’. Both @ and C are
constants depending on duration of growth after seeding, the former being called the
competition-dcnsity (C-D) index. With the progress of time, the value of the C-D
index should increase from 0 at ¢ — Otoabout 1 at = co. For =1 the second equa-
tion degenerates into the equation o

y=«C

which lead to the conclusion that ultimately the yield of a field is independent of the
-density of planting. This may be of course for a field of grassland, giving sufficient
time to develop but it seems to be an over-simplication for crops which grow only
one season.

=~ SHINOZAKI aﬁd KIRA-(1.956) developed' on this basis a logistic theory of the cD
eﬁ.’?ﬂ:ey iass;nn-cd in the first place that the growth of a plant in dry weight (w) is
represented by a simple logistic equation, viz, ' .

e e dwdn)™! = iw[w — ww-t 6.10a
\)\_inth;_th; 'soluti’_()p‘ﬂ_u;'. o '

W= W4kt 6.106

pla'nt is in_depénd_cnt of the density of planting (p), and in the third place that the
ultimate yield perarea (1), = Y)is constant, that is

e
condition. In the second place it is assumed that the coeflicient of growth of a single

S =y s independent of p 6.11
‘_At,_laiét'i't is of course assumed that the weight of each seed sown at.the time £ = 0
,i:s;iff.?qependcnt of p, that is : : ' | SR
- (‘f)'-‘:b =wp is ifl(i:epen'(iénl of;.:l
! The symbols of the original paper are Mmaintained, tc;;:fo_i:i_c;__-_

nfusion.
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From these rather arbitrary assumptions an equation describing the relation between
plant dcn51ty and weight is arrived at in the following way :
Let r = 0 in equation 6.10b then

| wo = W[+ k] = Yo~ '[1 + ]
so that '

k = Yiwep] ' — 1 | 6.12
By substituting equation 6.11 and 6.12 in equation 6.10b the following relation is
btained
oplamne -1 __ Y—II‘_C—,‘UIP + w;le—ﬂ ) 6.13
Putting in equation 6.13

A=Y [l —e™ ] 6.13.1
B=wyle 6.13.2

the relation '
=Ap - B 6.14

is found between the weight per plant (w) and the density (p), so that the yield per area
is given by the following cquation: :

y = pldp + BI™* 6.15

By putti |
y putting s=p' Q=4"'" B=AB 'and M, =y

th ing fi 1 . .
¢ spacing formula M, = BIB + s]-'Q . 54

arrived at in section 5.1.2. is obtained.

The ultimate yield ¥, reached at ¢t = co, assumed to be independent of density
of planting, is according the equation 6.13.1 (f = o0) equal to 4-' or nothing else
but our yield ceiling 2. The constant B is equal to (§2)-! or the i inverse of the weight
of a single plant, growing alone.

According to eq. 6.13.2 of SHINOZAKI and KIRA this weight of a single plantshould
increase exponentially with time, beyond all limits. This is evidently impossible, but
not at variance with their ¢q. 6.10b, because it is assumed (see eq. 6.12) that the con-
stant k increases beyond all limits with decreasing density. It is proved, however, that
in stead of eq. 6.11 the relation [p 4- §}W =¥, in which § is a constant, suffices to
arrive at eq. 6.15. ,

The authors test their spacing formula by plotting the inverse of the yield per plant
against density, as done in figure 29. The observations arrange indeed around a
straight line which furnishes a proof of the usefulness of their formula 6.14 and 6.13
and of course also of the spacing formula 5.4 arrived at in the present paper.

The authors suggest that in this way the correctness and necessity of their initial set
of assumptions is proved. However, the same spacing formula is arrived at in section
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5.1.2. and tied up with the logistic equation in section 6.3 without making any assunip-
tions regarding the seasonal growth of the plants. Whether this growth is logistic or
not is completely immaterial. -
Apparently, the applicability of an equation as this spacing formula does not prove
the correctness of a set of underlying assumptions. On the contrary, care should be

plant
9
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»”

oos | : L ] il days
F1G. 29. Theresult of a spacing
> o : : experiment with carrots, the in-
- / verse of the yield per plant (w-1)

’:.r-"/ i being plotted against the plant
o L i ' density (p). (Redrawn after
& 500 1000 m-2 Hgure 13 of Swnozaxi and

[ Kira (1956).)

taken to confront each step of a descriptive approach with practical experience, and to
avoid in first instance any explanation of the relatjons.

BLEASDALE and NELDER (1960) found that the relation w-¢ — 4,9 |- B, where 0 is
Some. positive quantity usuaily less than unity, frequently gives a strikingly better fit

from a_generalization of the logistic equation, described by RicHarDs. The authors
work along the same lines as SHINOZAKI and Kira. Details are not given, but it is
likely that here also the approach of section 6.3, may do better,

.The data in this paper do not cover a sufficiently wide dcnsiiy range to judge the

adva_ntagtj. of this modiﬁca_tion, nor is it possible to do this for an extension of this
modification to competition problems, - '



7. CROWDING FOR THE SAME SPACE
WITHIN MIXTURES OF MORE THAN TWO SPECIES

7.0. SUMMARY

The equations describing the effect of crowding for space within mixtures of two
species may be extended to mixtures of more than two species. The experimental
data which are given do not prove the applicability of the model, but illusirate only
its qualitative aspects. :

7.1. THE BASIC EQUATIONS

In analogy with the equations for multicomponent mixtures (section 2.2,) and the
equations 3.2 (section 3.2.) for crowding for space within a mixture of two species,
the following equations may be written if n species affect each other only by crowding
for the same space.

A4, I Ay = 0,Z:byZ,0 . BZ:. .. b,Z, 7.1a
Z A, = a constant = 1 7.1b

k=1
T Z, =m . 7.1c

in which A, is the relative space occupied by species S, Z, the seed rate and 5, the
crowding coefficient of species §;; there being (n — !) independent crowding coef-
ficients. The constant s is the surface of the unit square in figure 1.

It follows from 7.1 that

-1
A =b,Z, [ ) bkzk] . 7.2

so that, the yield being proportional with the relative space and M, being the yield
of species §; when planted alone at a seed rate m~', the yield of specaes S; in mixed
culture is

n n -1
L 1

in which z; is the relative seed frequency i.c.
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The relative reproductive rate of species $; with respect to species § ; is equal to
Oy = [0.Z7 '] [OJZ;I]—I = [bM,] [bij]_t 74

and thus again independent of the composition of the mixture.

Consequently, the values of the (n — 1) independent relative crowding coeflicients
(bxb;~") may be obtained by cultivating the species in (n — 1) combinations of two
under the same conditions. :

[t is convenient to express the relative reproductive rates with respect to an arbitrary
reference species S,. The relative reproductive rate of this reference species is then
equal to one, whereas the following equation for the relative reproductive rate of
two arbitrary species S, and §; hold: :

-1 ’
d’”. == dkiajl 7.5

It will be shown in section 8.2. that these equations are strictly applicable, only, if
the growth curves of single growing plants of the species are similar.

For a further analyses it suffices to consider three species Sy, S, and S, which are
supposed to be grown in combinations of two at different relative seed frequencies,
but otherwise under the same conditions. '

7.2. A NUMERICAL EXAMPLE

Let it be supposed that a mixture of three species, S, S, and S, which affect cach
otheronly by crowding for the same space, is resown yearafter yearat the same seed rate
under exactly the same conditions and that the seed frequencies in the first year arc
2z, =08,z, =01 and z; = 0.1 and that the relative reproductive rates are given by
03.2 = 18 and a;,, =21, - o ' coo
.'l;lhe ratio of the seed frequencies of S, and S, at the nth year may now be calculated
wit : o ;
Az 23], = 1.8

and of the seed frequencies of S, and Si with
T {z527 "}, = 0.125 % 2.1~

equations which are obtained by substituting numerical values in equation 1.7.°

. The resulting relative frequencies of S, with respect to S, and to S;, are plotted
in the diagram of figure 30a along two sides of the tri-angle for a succession of ten
years. The relative reproductive rate is not affected by the presence of a third species.
Hence, the seed frequencies of the mixture of three species in for instance the third
year may be represented by a point on the intersection of the line between the calcu-
lated value along the S,-8; side for this year and the opposite corner and the line
between the calculated value on the S,-8, side for this year and the opposite cornet.
The relative frequency of S; with respect to S; may be found by drawing the third
line. The calculated points for a period of ten years are given. In subsequent years
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the relative frequency of S, and S, decreases still more until only the species S; is left.

The relative frequency of the species in the mixture of all three species is also re-
presented in figure 30b, with the number of years along the horizontal axis. The
winning species gains from the beginning and the loosing species looses from the
beginning. The ‘intermediate species’, however, gains as long as the frequency of the
loosing species is not negligible. but looses from the sixth year onwards, when the
relative {requency of the loosing species is small.

relative
frequency b
10

Z#T,427, =1

. . ~ ’
el N Moo, PP SORPR- SP,
-7 0B 06 0.4 02 S;

|
year

Fic. 30. A numerical example of the change in relative frequency during course of time at constant
seed density, if three species affect each other only by crowdmg for 1he same space. oy, and acg, being
1 8 and 2.1, respectlvcly

"HARLAN and MARTINI (1938) cultivated durlng a period of thirteen year a mixture
of 10 barley varieties at different places in the United States. From each harvest
500 seeds were laid out, to obtain p!antb which could be determined as to variety.
These i mvcstlgators found indeed that a ‘winning’ species gains each year, a ‘loosing’
species looses each year and an ‘intermediate’ species gains first and looses subsequent-
ly. They showed that such a behaviour is to be expected if the reproductive rates are
independent of the relative seed frequencies, but could not demonstrate the correctness
of the underlying hypothesis because the growing conditions varied too much from
year to year, This model used by HARLAN and MARTINI is the same as our simplest
model discussed in section 1. It is shown in this paper that such a model does not
conform with experimental results.

However, it is not necessary to assume that the reproductive rates are constant
loillustrate this behaviour of a mixture. The assumption that the refative reproductive
rates arc independent of the seed frequencies is sufficient; an assumption which may
do, because it is already shown that this is the case for barley—oats mixtures.

The actual relative frequencies of three out of ten spe<:1es during 13 years as found
in Aberdeen (tab]e 2 of HarLAN and MARTINI) are given in figure 31, These three
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specics are chosen as an example, this sampling being allowed because the relative
frequencies are probably not affected by the presence of other species. From an
inspection of the actual data, it is estimated that the relative reproductive rate of the
variety White Smyrna with respect to the variety Hannchen is about 1.06 and of
White Smyrna with respect to Deficiens about 1.64, Starting from relative seed frequen-
cies of 0.33 in the first year, the frequencies in subsequent years are calculated. These
calculated values are given by the three lines, B

fraction

of totol

wr 1 & White Smyrno
2 o Honnchen
¥ x Deficiens

075 -

050

ba2s

FiG. 31. The relative frequency of three

N S a barley varieties obtained by resowing
% z' .: .1, —=r E_x I . 3 during 13 years. Data for Aberdeen
8 1 12 “from Harr.an and MaRTING (1938).

yeor

The scattering of the points is considerable because of two. reasons. In the first
place, the relative reproductive rates vary from year to year because the growing
conditions are not the same and in the second place, there must be considerable
random sampling errors because only 500 seeds were analysed to determine the relative
frequencies of 10 varieties. In spite of these fluctuations it is seen that indeed the
‘intermediate” variety gains first and looses subsequently.

These data are only of illustrative value, The assumption that the three varieties
affect cach other only by crowding for the same space can neither be proved nor
disproved by means of this type of experiment, ‘ .



8. CROWDING FOR THE SAME SPACE WITHIN
MIXTURES OF TWO OR MORE
SPECIES AT DIFFERENT SPACINGS

8.0. SuMMARY

The basic equations, describing the interrelations between yield, seed rate, relative
crowding coefficient and relative reproductive rate at different spacings are arrived
at by supposing that one of the species in a mixture does not grow at all.

These basic equations are found to hold only if the plants grow simultaneously
and the growth curves of the plants of the species are of the same form. It is shown
that they are a particular solution of the LOTKA-VOLTERRA equations.

The equations are applied on the results of field experiments with mixtures of
barley and oats and oats and peas, and on the well-known results of the experiment
of GAusE (1934) on population growth of protozoa under constant conditions,

8.1. THE BASIC EQUATIONS

The yield of the jth species is according to section 7.1 equal to
n -1
0 .

if (n -- 1) species are crowding for the same space, the space allotted to one seed
being independent of the seed frequencies or i'; Z, being equal to m~! (figure 1),

¢ -
Let it be supposed now that the first species S, does not grow at all, Since th.ere
are only » independent crowding coefficients, it may be assumed that the crowdfng
coefficient of this first not growing species is equal to one, so that the relative crowding

coefficient of the remaining n species are equal to the crowding coefficients, i.e. that
J

k-o = b} ' 8.1
Equation 7.3 may be written now as follows:
F -1 .
0; = b2, [2 b Zy + zo] M; 8.2
1
- According the equations 5.2 and 8.1 the following relation holds:
b; = 18; + mim™! - 83

The.Yield M  of species S; when planted at a spacing of m cm? per kernel is according

to equation 5.4 - _ -
M, = B,[B; + ml' %, .., 84
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Now the following relation is arrived at by substituting equation 8.3 and 8.4 in
equation 8.2

s n " 1
1 Q

As 3 Z, is equal to m-1, this equation may be rewritten as follows
¢ " -1
1

By and Z, being expressed in such units that their product is without dimension.
The relative reproductive rate of species S, with respect to S; is according to equa-
tion 8.5

% = [0Z0 110,27 '] = (B2 (8,2, - 86

in which the product 8,2, is the reproductive rate or yield of one seed of species §;
sown alone (eq. 5.5).

The relative crowding coefficient of species S, with respect to species S ; 15 equal
to (see equation 8.1)

Koy =bb,™! = [B, + m] [B, + m]™* 8.7

Equation 8.5 relates the yield of one arbitrary species in a mixture of » species with
the absolute seed rates of the # species by means of the constants B and £ for each
species, constants which can be calculated from the results of spacing experiments.

Equation 8.6 shows that the relative reproductive rate of one species with respect
to another is fully independent of the absolute seed rates of any of the species and
therefore also independent of the density of sowing, To estimate the relative reproduc-
tive rates within.a mixture of n species it is only necessary to determine the yield of
one seed of each species when planted far apart from other seeds.

The relative crowding coefficient of one species with respect to another depends
on the value of m. This relative crowding coefficient approaches at very wide spacings
(m - o0) to unity; the plants do not affect each other under such conditions. The
maximum value of the relative crowding coefficient is reached at very dense seed rates
{m +0) and equal to the ratio of the values of B for both species. '

8.2, THE-AP.PLICABILIT'Y OF THE FORMULAE

It was already mentioned in section 3.2. that the crowding coefficients do not charac-
terize the activity of crowding itself byt only the result of this crowding as reflected
in the final yields. This was experimentally demonstrated in section 5.2.1. by means
of the result of a spacing experiment with sugar beets, harvested at intervals. It was
found there, that the value of § increases more or less proportionally with the weight
of the leaves during growth. o . :
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The formulae of the preceding section contain only constants calculated from the
Jinal harvests of the spacing experiments. If it is found for instance that the product
852 for two plant species is the same, it is to be concluded according to equation 8.6
that the relative reproductive rate is 1 and independent of the seed rate. It is, however,
perfectly possible that one of the crops is earlier in its development than the other.
This is of course of small importance if both crops are sown together at a very wide
spacing because under such conditions sufficient space is available for both. At a
dense seed rate or at a small spacing, the available space may, however, already be
occupied by the earlier species at the time the later species is in its grand period of
growth, This advantage must result in a relative reproductive rate of the earlier species
with respect to the later species which is greater than one, in spite of the fact that the
product f£2 as calculated from the final yields is the same for both species.

This effect of spacing on the value of the relative reproductive rate is of course
absentif the ratio [,£2,] [,£2;] " (as calculated from dry weights obtained by periodic
harvests of spacing experiments) does not depend on the time of harvest.

Hence the basic equation 8.5 can only be applied if the species affect each other
only by crowding for the same space and the growth curves of single growing plants
of the species are similar, that is the same apart from a multiplication factor of the
yield axis. The relative reproductive rate is independent of the relative seed frequencies
and of the absolute seed rates (or the value of m), only under these conditions.

On the other hand, the equations 3.4 can be applied provided that the experiments
are carried out in such a way that the seed rate of the mixture is kept constant (i.e.
such.that equation 3.1a or b holds) and the two species affect each other only by
crowding for the same space. That is because even with dissimilar growth curves,
the ratio [8,£2,] [;£2,]-! may be practically constant during the period the space is
actually claimed. This period falls Jate in the growing period if m is large and early in
the growing period if m is small. The relative reproductive rate is under such conditions
found to be independent of the relative seed frequency, but depends on the seed rate of
the mixture, . :

1t is now evident that two species can only crowd for the same space if they grow
simultaneously. The same space may be used first by the earlier species and subsequent-
ly again by the later species, if the species do not grow simultancously, so that such
species do not exclude each other completely. The relations which can be applied
under such conditions are discussed in section 9.

It is emphasized again that ‘space’ is not defined in terms with a physiological
meaning, so that any attempt to describe exactly the conditions under which the
equations hold must fail, : '

8.3. THE LOTKA-YOLTERRA EQUATIONS ON COMPETITION .

The growth of a population of one species in a number of years was calculated in
section 6.1. by substituting for the space per plant in the spacing formula the inve.rse
of the yield of the previous year. It was proved in section 6.3. that in this way a solution
of the differential equation for logistic growth is obtained.
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Analogous relations are obtained by substituting the yield at the time ¢ and #-+4¢
(in which 4t is a fixed time interval) for the seed rates (Z) and the yields (0). For two
species S1 and S;, this leads to the following equations:

040 5,00 1,00 + 00 + 1172y 8.8
" ‘oa'“” = B0 [B,07 + B0 + 1171 2,

Thus if the seed rates are known in one year, the yields and seed rates in subsequent
and preceding years ‘may be calculated with these formulac, if the constants Band 2
are known from spaemg experiments and provided that the growing conditions are
the same.

VOLTERRA (1928) supposed that the growth of two populatlons living in the same
environment. may be governed by the following differential equations:

doydty ' = {ry, —y, [0, + h,0,]} 0
: .d02(dt)—1 ={r;—y: [0, + 70,1} 0,

8.9

By or’nitFiﬁg the term #,0, in the first differential equation and after some rearrange-
ment it is seen by comparison with equation 6.3 that r, is the coefficient of increase

of species S, and ry [y,/1;]-* the maximum o: equilibrium density of the species under
the canditions of growth.

- It is shown in textbooks on the subject that a partial solution of these differential
equatlons is’ thc foilowmg

07!0-72 = glrar= rivade constant . 8.10

which after introducing the constant time interval 4¢ and eliminating the constant
may be wmten as follows: ;

{0<=+m) [Om]—x 3L '{0(:+m) (0] }—?z — glr2vs = riyAt - 8.11

On the other hand it follows from equation 8.8 and 6.6 that
{0“’“‘" 0P} { O+ 40 [()“’]“ }t __'e{rz — r)at - 8.1..2
The equatlons 8.11 and 8.12 are the same if is supposed that VOLTERRA $ co.nstant

¥, and 7y, are both equal to one.

The basic equations 8.5 and 8.6 are therefore solutlons of the following simplified
_ LOTKA-VOLTERRA dlﬁ“erenual equations

dO,_-(dt) Ir—% Kk '0,10; with- .
v | _ 8.13
ﬁj — [er_mt__ 1} K;l : 'Qj — erjd! [er_,dt___ 1]-—1
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The particular solutions 8.8, apart from the simplified form, are used-by LEesLIE
{1958) and LesLIE and GoOwEeRr (1958} to study the influence of stochastic variations
on population growth (compare section 6.4.).

8.4. CROWDING FOR THE SAME SPACE BY OATS AND BARLEY OR PEAS

8.4.1. The design of the experiments

In order to test the applicability of the basic equations in section 8.I. for field
crops, experiments were carried out with oats (var. Libertas), barley (var. Herta)
and peas (var. Pauli) on a field of the experimental farm ‘Droevendaal’ at Wageningen
in 1959,

The normal spacing was supposed to be 31 cm? per seed for barley and oats and
139 cm? per seed for peas. One seed of peas is supposed to be equivalent with 4.5
seeds of oats or barley.

The occurrence of this factor 4.5 at inconvenient places in the equations is avoided
by introducing the number of ‘pea units’, which is calculated by multiplying the
number of peas in the sown mixture and in the harvest with the factor 4.5. Con-
sequently for the seed rates of oats and pea units grown in competition holds equation
3.1a with m equal to 31 cm? per seed.

Experiment 1BS 245 was carried out with oats and peas. The treatments were (1)
mono culture of oats at a spacing of 310, 238, 169, 99, 31, 15.5, 7.7 and 3.8 cm? per
kernel, (2) mono culture of ‘pea units’ at the same spacings and (3) mixed culture
of oats and ‘pea units’ at relative frequencies of 0.111, 0.222, 0.333, 0.444, 0.555,
0.666, 0.777 and 0.888 on basm of a spacing of 31 cm? per kernel of oats or per pea
unit,

Since it was the purpose to study the effect of the nitrogen fixed in the nodules of
the peas on the growth of oats, no nitrogen was added. It appeared that this complica-
ting effect was completely absent, because of the nitrogen level of the field being high.
Complications which occur, if such an interaction is not absent, will be discussed in
section 9.

Experiment IBS 246 was carried out with oats and barley. The treatments were
(1) mono culture of oats at the same spacings as in experiment IBS 245, (2) mono
culture of barley at the same spacings, (3) mixed culture of barley and oats at relative
frequencies of 0.2, 0.4, 0.6 and 0.8 on basis of a spacing of 31 cm? per seed and
(4) mixed culture of barley and oats at the same relative frequencies but on basis of
a spacing of 310 cm? per seed.

Nitrogen was applied at a rate of 30 kg N per hectare.

Both experiments were laid out in a 5 x 5 lattice with two replicates, but a correc-
tion of the experimental data for differences of fertility level of the sub- plots was found
to be not worth the trouble and any how not trusted.

8.4.2. The treatment of the experimental results

The results of the competition experiment between barley and oats at a spacing
of 31 cm? per seed are given in figure 32a and those for a spacing of 310 cm? per seed
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in figure 32b. The curves are calculated according to the equations 3.4, the numerical
values of the constants being:

for m equal to 31

and 310  cm? kernel-!
M, 123 ‘85  10° kernels ha-!
M, 162 102 10° kernels ha-!
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F1G. 32. The results of competition and spacing experiment IBS 246 between barley and oats in 1959.
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The results of the spacing experiments with both crops are given in the graph of
figure 32¢ with along the horizontal axis the spacing in cm? kernel-! and along the -
vertical axis the inverse of the yield in cm* kernel %,

The marks at a spacing of 31 and 310 cm? kernel ! represent the M, and M, values
from the graphs of figure 32a and 32b. The statistical weight of these average data is
much higher than the weight of the data for the other spacing. They are therefore
represented by marks of a larger size. The average straight line through the points
is mainly based on these two observations. The scattering of the other observations
is considerable, but it will be seen that the estimated constants of the spacing formula

(5.4} as given bslow are accurate enough for the purpose.

oats . barley
f, = 440 - B, = 600 cm? kernel-3
2. =170 2, =130 10° kernels ha-!

The observations for spacing of 7.7 and 3.8 cm? kernel=! are already discussed in
section 5.1.3., and of no importance here.

The result of the competition experiment between oats ain ‘pea units’ at a spacing
of 31 cm? per kernel or ‘pea unit’ is represented in figure 33a, the curves being calcu-
lated according to the equations 3.4. The numerical values of the constants are:

m =31 ¢cm? per kernel, M, =102 x 10° pea units per hs, M,= 132 x 10°
kernels of oats per ha, k,, = 0.20 and a;, = 0.16. :

The results of the spacing experiments with both crops are given in the graph of
figure 33b with along the horizontal axis the spacing in cm? per kernel or cm? per pea
unit and along the vertical axis the inverse of the yield in the same units. ‘

The points at a spacing of 31 cm? per kernel represent the M, and M, values as
read from the graph of figure 33a. Thesc are again represented by marks of a larger
size than the other obscrvations, because the statistical weight is much higher than
of the other observations. .

The estimated constants of the spacing formula (5.4) are given in the following table:

oats pea units
B, = 580 g, =100  cm?kernel™!
2, =135 Q,=132 106 kernels ha-'

8.4.3. Discussion of the experiment with oats and peas

The relative crowding coefficient of the ‘pea units® with respect to the oats at a
spacing of 31 cm? per kernel as calculated from the spacing experiments by means
of equation 8.7 is equal to k,, = [100 + 31][580 + 31]-* = 0.21, whereas kg,
calculated from the competition experiment equals 0.20. The agreement l?etwgen
both values is excellent. Likewise, the relative reproductive rate of the pea units with
respect to oats as calculated from the spacing experiments by means of equation 8.6
is equal to a,, = [100 x 132] [580 X 135]-" = 0.17, and ey, as caloulated from the
competition experiment is equal to 0.16. The agreement is of course again excellent.
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F16. 33. The results of competition and spacing experiment IBS 245 between oats and peas in 1959.
On pea kernel is equivalent with 4.5 *pea units’, ‘ :

This agreement is also shown in the graph of figure 33c in which the relative re-
productive rate for each mixture is represented by the dots and the relative reproduc-
tive rate as calculated from the results of the spacing experiments by the full drawn line.
It must be concluded therefore that the result of competition experiments with oats
and peas at any seed density can be calculated from the results of spacing experiments
by means of the equations 8.5, under these conditions, '

This conclusion does of course not mean that the growth curves of an oat and pea
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plant are exactly similar, but only that the dissimilarity between the two curves is small
compared with the difference of the values of 52 for these two crops. '

8.4.4. Discussion of the experiment with oats and barley

The relative reproductive rates of barley with respect to oats at the four relative
seed frequencics and the two spacings of 31 and 310 cm? kernel-! are represented
in figure 32d. It is seen that these relative reproductive rates are independent of the
secd frequencies, so that it must be concluded (which was known of course) that the

two plant species affect each other only by crowding for the same space.

" However, the relative reproductive rate at a spacing of 31 cm? kernel-! is equal
to 1.75, whereas this value at a spacing of 310 cm? kernel-! is only 1.02. Only this
latter value is practically equal to the relative reproductive rate as calculated from
the spacing experiments, which is 1.04 and is represented in figure 32d by the straight
line. ' ‘

The increase of the relative reproductive rate with decreasing spacing of the seeds
proves according to section 8.2. that the growth curves of barley and oat plants are
not similar, but that barley is earlier in its development than oats. This conclusion
was confirmed by a competition and spacing experiment between rows of barley
and oats on the same field in 1960, which was harvested at seven intervals throughout
the growingperiod. It appeared that the products of 92 in g dry matter per meter
row of barley and oats were 80 and 30 on 15 May, 270 and 160 on 1 June, 510 and
430 on 15 June, and 680 and 640 on 1 July, respectively.

The difference appeared large enough to explain the effect of density on the relative
reproductive rate. Unfortunately, the scattering of the yield data of the last harvest
was so large that for a detailed analyses the experiment is to be repeated.

2.5. CROWDING FOR THE SAME SPACE BY PROTOZOA

GAUSE (1934) described growth experiments with the protozoa Paramecium caudatum
and Paramecium aurelia in his well-known book on the struggle for existence. .~

Accumulation of waste products and a gradual change of the liquid growth medium
of 10 em® was avoided by renewing the medium of growth every day. The supply
of food was kept constant and at a low level by adding every day ‘one half loqp’ ofa
standardized culture of Bacillus pyocyaneus. Every day the number of infusoria were
counted in 0.5cm? of the medium. Further details on this technique which were given
by GAUSE are of small importance here. '

The constants of the logistic growth curve (eq. 6.3), as calculated by GAUSE were for
P. qurelia r, = 1.124 day~', K, = 745 individuals per 0.3 cm® and for P. cauda.tum
r. = 0.794 day-t, K, = 64 individuals per 0.5 cm?®, where r represented th.c cqciﬁcncnt
of increase and X the maximum or equilibrium density which can be maintained.

The actual observations for growth in mono cultures and the curves calculated by
GAUSE are given in figure 34a, in which for convenience the data for bqth species are
recalculated at a basis of 100 units per culture for the equilibrium density.
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The scattering of the observations is considerable. The coefficients of increase as -
calculated by GAUsE for the *half loop’ concentration are, however, confirmed by
those for the ‘one loop’ concentration of bacteria. It is therefore in spite of this scatter-
ing evident that the coefficient of increase of P. aurelia is greater than of P. caudatum.
The values of § and £2 for the two species for periods of two days can be calculated
by substituting 0.794 day-! and 1.124 day-' in the equations 6.6 for the coefficient
of increase of the two species and a density of 100 units per culture for the maximum’
or equilibrium density. The results are for P. aurelia f, = 0.085 cultures per unit and
£, = 112 units per culture and for P. caudatum . = 0.039 cultures per unit and 2, =
126 units per culture. '
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FiG. 34. The results of an experiment on intraspecific and interspecific population growth of two
Paramecium species. Data from Gause (1934).

The yield of both species, cultivated in mixed culture at the time (t + 2) days may
be estimated by means of equation 8.5 by substituting for the seed rates the yields
at the time ¢ and for the constants § and £ the numerical values given above.

This gives the following relations:

- OU*D = 0,085 0P [0.085 0 +0.039 0 + 117 112 units per culture
for the yield of P. qurefia and |
0L+ = 0.039 0L[0.085 0" -+ 0.039 0P -+ 11°* 126 units per culture

for theyield of P. caudatum. . o

GAUSE started-a mixed cultivation with two individuals per 0.5 ¢cm? of each or
with O equal to 2 X 100/245 = 0.816 and O'* equal to 2 x 100/64 = 3.13 units
per culture. By substituting these values in the above equations, the vield after two
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days may be calculated and by substituting again these yields, the yields after again
2 days and so on. The data obtained in this way may be compared with the resulting
~ curves. However, large deviations may occur because especially during the first few
days the actual data are subject to relatively very large random errors. This difficulty,
due to random deviations can be avoided by substituting at some later date two values
which match the actual data for the yield.

~ The numbers as observed by GaUsE in mixed cultivation of the two species are
given in figure 34b. It is seen here that at the fifth day the yield of P. aurelia is about
52 and of P. caudatum about 40 units per culture. These values are substituted in the
equations 8.5, to obtain the yields at the days (5 + 2) and (5—2), and these yields
are again substituted to calcutate the yields at the days (5 + 4) and (5 — 4), and so on.
The resulting calculated growth curves for the two specics are given in the graph
of figure 34b. ' ' .

As far as the observations go, the agreement between the observed growth curves
and the growth curves calculated from the data of the mono cultures of the two species
is reasonable. '

Since at any time there are infusoria in different stages of development in the culture
vessel it is not, however, allowed to conclude from-this that the growth curves of the
individuals of both species are similar.

The sum of both curves represents the relative space which is actually occupied
by both species, since the yields of both species separately are recalculated at a basis
of 100 for the equilibrium or maximum density. The difference of this sum and 100
is therefore the unoccupied space or the space occupied by an imaginary not growing
species. This unoccupied space is represented by 2 third curve (u) in order to show the
similarity with the graph of figure 30b. ‘ :

The relative reproductive rate of P. aqurelia with respect to P. caudatum for periods
of At days is according to the equations 8.6 and 6.8 equal to

o, = (B8] [BR2]7" = ¢

or in this case 1.94 for periods of two days. Apparently the species with the largest
coefficient of increase is the winning species. '

This conclusion was also arrived at by BIRCH (1953) who cultivated three bectle
species (Rhizopertha dominica and the small and large strain of Calandra oryzae)
alone and in combinations of two under conditions of constant food supply. OI! the
other hand, FrRank (1957), who cultivated Daphnia magna and Daphnia pulicaria as
mono cultures and in combination, found that this was not the case and that the two
species may promote the growth of each other. :

The result of this experiment of FRANK (1957) is only mentioned to stress that there
are closely related species which may effect the growth of each ot!ler also by o?her
means than only crowding for the same space. Under such conditions the relations
as given here do not hold of course.

ry = To)dt



9. AN ANALYSIS OF MORE COMPLICATED WAYS
OF COMPETITION

9.0. SUMMARY

‘Plant species may affect the growth of each other in other ways than simply.crowding
for the same space. The relative reproductive rate depends in all these cases on the
relative seed frequency. A stable equilibrium may result if the species crowd for
space which is only partly the same for both or if one of the species promotes in some
way the growth &f the other. An unstable equilibrium occurs, however, only if one of
the species hampers the growth of the other not only by crowding for space, but also
by some active process like producing intoxicants.
- Some examples are given in the next section.

9.1. THEUSEOF THE RELATIVE REPRODUCTIVE_RATE AND THE RATIODIAGRAM

One of the simplest forms of competition occurs if two plant species affect each other
‘only by crowding for the same space (which implies that the species grow simul-
taneously) and the growth curves of single plants of both species are similar. The
relative reproductive rate is independent of the relative seed frequency and the
spacing under such conditions.

The observations in a ratio diagram are in this case on a straight line with a slope
of 45 degrees, of which the position is independent of the spacing. This situation is
schematically represented in figure 35a, where the seed ratio Z, Z74 is given along
the horizontal axis and the yield ratio 0,07 ! along the vertical axis, both with a
logarithmic scale. This ratio diagram was d:scussed in section 1.1,4. Species one
wins in this case because the ratio line is above the equilibriym line & = 1. The direc-
tion in which the composition of the mixture changes during cultivation is represented
by the arrow. Either one species or the other wins at any spacing.

The relative reproductive rate is only at a given spacing practically indepehdent
of the relative seed frequency if two species affect each other by crowding for the
same space, but the growth curves for single plants are not similar. Under such
conditions, situations as represented in the ratio diagram of figure 35b may occur,

Here it is supposed that species one is earlier in its development but otherwise
inferior to species two. This earlier development is of no use at wide spacings, so that
species one looses. At narrow spacings, this earlier development is of very great im-
portance, so that species one wins. Which species is winning depends therefore on
the spacing.

The spacmg decreases rapldiy if the harvest is resown year after year, so that ulti-
mately species one is always winning, An equ1l|br1um between both species is only
possible if the spacing is kept at such a value that the relative reproductive rate is one.
Hence to decide which of two species wins, it is necessary to determine the relative
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reproductive rate at or near the maximum or equilibrium density, which is reached
if all available space is occupied. I

The competitive relations are still more complex if there is crowding for space,

not completely the same for both species. This may occur if some requisite obtained

from the soil (water, minerals) is limiting growth and species two explores the soil
z,/2, < zizy,
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FiG. 35. Schematical rep}esentation of ratio diagrams for two species,

a. which crowd for the same space and with similar _growth cutves,

b. Wthh.Cl'()wd for the same space and with not similar growth curves,

g'e."r which the presence of one promotes the growth of the other, of
ing completely the same for both species, ) .

;1- of which the presence of one hampers the growth of the other by other means than simple crowding

OT space. . _ . _

which ¢rowd for space not

to a greater depth than species one. It occurs also if species two grows longer or at
another period of the year than species one, SO that species two may occupy space
which was at some earlier period occupied by species one. Species two must grow
under such conditions better according as the relative frequency of this species 15
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lower. Hence the relative reproductive rate of species two with respect to species
one decreases with increasing relative frequency of species two, so that a situation
as represented in figure 35¢ may result. The ratio line intersects here the equilibrium
line o == 1. Species two wins in this case if its relative frequency is low, and looses
if its relative frequency is high, so that ultimately a stable equilibrium of both species
may result, which value is given by the ratio at the point of intersection of both lines.
It is shown in the next section that the curve is not straight but S-shaped with the
ends parallel to the diagonal if the total seed rate of the mixture is kept constant.

It is of much importance that a stable equilibrium may result also if one of the
species profits from the presence of the other. This may occur if one of the species
obtains nitrogen from the air (legumeneous species), one of the species liberates
minerals from the soil which can be used by the other, and so on.

The relative reproductive rate as calculated from the experiment with peas and oats,
discussed in section 8.4.3., is independent of the relative seed frequency. The absence
of any effect on oats due to nitrogen fixation by peas is shown in this way.

The reverse of this case, presented in figure 35d, occurs if one of the species hampers
the growth of the other not only by crowding for space, but also by some active
process as producing an intoxicant which hampers the growth of the other species.

The relative reproductive rate of species one with respect to species two must
increase with increasing relative frequency of species one under such conditions. The
ratio line may intersect again the equilibrium line « = 1. The equilibrium obtained
is, however, unstable under such conditions. Species one wins if the relative freguency
of this species is higher and species two wins if the relative frequency of this species
is higher than the relative frequency at the point of intersection.

It has been shown that some plants or seeds produce intoxicants with a selective
effect on other species (GRUMMER, 1955). There is, however, considerable doubt as
to the question whether the production is so large that some effect remains under
normal field conditions. '

GRUMMER (1955) carried out some experiments with Linum usitatissimum (flax) and
the weed Camelina foetida and came to the conclusion that Camelina produces some
unknown matter which hampers the growth of Linum. However, the interpretation
of the experiments is difficult because the data do not permit the caleulation of the
relative reproductive rates at the same spacing of the mixtures.

To investigate a possible toxic effect, an experiment was carried out in the green
house, in which Linum usitatissimum (flax) and Camelina sativa (false flax) were culti-
vated in pots at three different relative frequencies (exclusive of the mono cultures),
but at the same spacing. The result as calculated on basis of the kernel numbers .is

* represented in figure 36. The relative reproductive rate seems to depend to some extent
on the relative seed frequency. This is probably due to experimental errors, which are
.unavoidable in a first experiment with new plant species. There is, however, no
indication that the relative reproductive rate of Limum with respect te Camelina
increases with increasing relative frequency of the Linum. Hence any effect of in-
. toxicants, large enough to be shown in this way, was absent under the conditions of
this experiment. '
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Later on GRUMMER (1958) came to the conclusion that this adverse effect of false
flax on flax occurs only if the mixtures are subjected to rain. This effect of rain was
not confirmed by an experiment on-competition between C. sativa and flax under
conditions of artificial rain and ofsub-irrigation (DE WiT, 1960). However, it was
found by GRUMMER (pers.com., 1960) that C. sativa produces much less toxic sub-
stances than C. foetida.
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9.2 CROWDING FOR PARTLY
" THE SAME SPACE WITHIN MIXTURES OF TWO SPECIES

The yield of two species sown in'such a way that the seed rate of the mixture satisfics

the equation :

. 21 -I" Zz = m—l 3.1a

15 considered. : ‘
According to section 3.2., the yields satisfy the following equations if the two species

affect each other only by crowding for the same space: . A
| 0, =kpz (k=1 + 1 Me 0 agp
0, = k2, {[k21_1122+1 }-IMZ oL :
with z; = Z,[Z, + Z,]-* etc. The product of the constants ki and Kk is eq
to one in these equations. ' '
The yield of the species, in case both crowd

is of course given by the spacing formula developed in sectio
In the following form -

val

for space \;Jhich is completely different,
n 5., which may be written

0, = kyzy (ki — Uz +137' My , 5.1
: 0, = ka.z; {[k2e —1]z; + 1 UM, ‘
in which the constants - o o

ke = [B + mim™ ! and kyo = [B2 + mIm” ~ 52b


http://pers.com
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are the relative crowding coefficients of the species with respect to their own ‘empty
spaces’. o S 7

Both sets of equations are the same, apart from the product of the relative crowding
coefficients..

This product is equal to

k12'k2[ == 1 ’ 9.1
if the two species crowd for the same space and equal to
kle'kh = [ﬁl + m] {ﬁz + ‘ﬂ"l]r‘n—'2 . 92

if the species crowd .for space which is completely different for both.

The most plausible supposition which can be made is now that in case two species
crowd for space which is partly the same, the yields may be represented by the follow-
ing set of equations. ‘

. 0; = kyaeyzy {[kyzey— 11z, + 1771 M, 9.3
0, = kZ(Ie)ZZ {[kzue) —1)z; + 1}_1 M, '

The indices of the relative crowding coefficients mean that one species is supposed to
crowd for space with the other species and ‘empty space’. The product of these relative
crowding coeflicients is-somewhere between the minimum value of equation 9.1
and the maximum of equation 9.2.

The relative reproductive rate of species S, with respect to species S, is according
to equation 9.3 equal to '

Xz == {Olzl__’] [0222—1]_1 -
= thz00— 12y + 1} (kg — 11z, + 1} (Ki2ey M1 Tkyuy M2171 94

Apparently, the value of a,, increases with decreasing z,, Z,, zyz; Y or Z,Z7 1, the
limits beipg Ky2e) MM for Z,Z>1 approaching 0 and kit M M for AV
approaching oo, .

- The value of «,, in equation 9.4 and the valucs of B and §, in the equation 5.2b
are to be multiplied by ¢,c;, ¢ ' and ¢ if the sced rates satisfy the equation

OLy ez, =ml 3.1b

in stead of equation 3.1a (compare section 3.2.),

A numerical example is given in figure 37. The yield curves in figure a are calculated
by means of the equations 9.3, supposing M, = M, = 100 and ki2e)=kag1ey = 3.
The sum of both yields (0, + 0;) shows in this case a maximum of 150 at a relative .
frequency of 0.5, which illustrates that mixed cultivation of crops may be advantageous -
if the species crowd for space which is not completely the same. The ratio curve, which
is S-shaped is given in figure b, The maximum and the minimum relative reproductive
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rate appear to be 3 and 1/3, respectively. The curve intersects the diagonat at Z,Z;!
equal to one. It is obvious that the ratio curve is not symmetrical if M, # M, or
(and) ks, # k3(1¢, and that the whole curve may be found above or below the
diagonal if the growth of the two species differs widely. It can also be shown that the
maximum of (O, + @,), if any, does in general not coincide with the equilibrium
point, if any. This is the Montgomery effect (section 3.4.) in this complicated situation.

Formally, the equations 9.3 can only be applied if it is known that two species
affect each other only by crowding for space, which is not completely the same. Since
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FIG. 37. a. An example of the relation between the relative seed frequency and the yield of two species
S, and 8., crowding for space which is only partly the same.
b. The ratio diagram with an S-shaped ratio curve.

it is difficult to determine the physiological causes of nonconstancy of the relati_vc
reproductive rate, the same equations may be used also in first instance if the species
affect the growth of each other in some other way. )

The most convenient approach is to treat the data by means of the equations 9.3
and to calculate subsequently the product of the relative crowding coefficients. 'I:he
Species crowd for the same space if this product is one. They crowd for space which
is partly the same or one species profits from the presence of the other if the product
is larger than one. One species hampers the growth of the other by some other mains
than crowding for space, if the product is smaller than one. It remains to be scen,
:l_owever, whether in this case the data can be conveniently smoothed by the equa-
tons 9.3, ' '



10. COMPETITION BETWEEN PERENNIAL
GRASSLAND SPECIES

10.0. SUMMARY

It is shown that the competitive relations between perennial grassland species can be
analysed by counting the number of tillers of cach species per surface unit in two
subsequent winters or dormant periods.

~ Some results of experiments with Anthoxanthum odoratum and Phleum pratense
and with Lolium perenne and Trifolium repens are given as an example.

10.1. THE RELATIVE REPRODUCTIVE RATE OF
.PERENNIAL GRASSLAND SPECIES

It was shown in the preceding sections that the form of the curve in the ratio diagram
or the dependence of the relative reproductive rate on the relative frequency gives
vatuable information on the competitive relations between two species.

The relative reproductive rate of two seed producing annual species can be calcu-
lated from the composition of a sample of the seed mixture in two subsequent winters.
Likewise, the relative reproductive rate of two perennial species can be calculated
from observations during the rest period or winter. The yields during the growing
period do not give any information in principle, because the harvested parts are lost
as far as the plants are concerned. o

De Wit and ENNIk (1958) paid some attention to the problem of finding a good
measure-for the ‘abundance of grassland species’ in winter, The weight of the plant
is not such a measure because it depends to a large exient on the arbitrary treatment

_in autumn and the presence of dead or partly dead material. Another disadvantage
is that the weight can only be determined after destroying the pla’nts. | ;

Instead, it was suggested to use the number of tillers: of the grass species and the
length of stolons of clover per surface unit as a measure for the abundance of the
species. ' '

"~ “"ENNIK (1960) and VAN DEN BERGH and DE Wit {1960) carried out some preliminary
‘expe‘riments to study the usefulness of this approach. The main results of their
~experiments will be discussed here. ' o -

 10.2. CROWDING FOR SPACE BETWEEN
Anthoxanthum odoratum AND Phieum pratense

" VAN DEN BERGH and DE WIT (1960) planted these two species in different proportions
in containers and studied their growth in climate chambers. The number of tillers of
A. odoratum (Z,) and P. pratense (Z,) were counted after a summer treatment of
some months followed by a winter treatment (60 C, 3 x |04 ergs cm-2 sec-! from
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TL-tubes during 12 hours a day) of one month. Subsequently a summer: treatment
C(200C, 6 x 104 ergs cm?sec™! from HPL-lamps during 17 hours a day) of-.two
months followed by the winter treatment of one month. was given. The number of
tillers of A. odoratum (0,) and P. pratense (0.} were again determined. - oo

It appeared that the number of tillers of the two species at the end of the first
winter treatment satisfied the following equation Z, + 1.75 Z, = 350 “tillers” per
container so that the relative seed frequencies z, and z, can be calculated according
1o equation 3.5b. ' : -

The relation between the ratio’s 0,0 ! and ZZ; ! is given in figure 38b. It appears
that the observations are on a straight line with a slope of 45 degrees, so that the species
affect each other only by crowding for the same space and the data can be treated
by means of equation 3.4b. :

The result is given in figure 38a, where the relative frequency Z, is-given along the
horizontal axis and the number of tillers (O, and O,) along the vertical axis. The
curves in the figure satisfy the equations 3.4b with M, = 490, M, = 290 tillers per
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F1G. 38. The result of a competition experiment at constant spacing between the Bfassl;i’:g;fsaﬁ'g";
ﬁmﬂzum odorarum and Phleum pratense in a climate chamber. Data from VAN DEN DER
1T (1960). . _

of A. odoratum with

container and k,, = 1.25, so that the relative reproductive rate of A. o
c which is represented

respect to P, pratense (2,,,) is according equation 3.7b equal to 1.2,

by the full drawn line in figure 38b: : L The
The same species were also grown in some kind of containers in the open.

number of tillers after the first and the second winter were again counted. The numbers
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after the first winter satisfied the equation Z, - 1.53 Z, = 420 “tillers’ per container
so that again the relative frequencies z, and z, can be calculated.

The observations in the ratio diagram of figure 39b are now on some line with a
slope smaller than 45 degrees, so that the yield data are to be treated by means of the
equations9.3instead of 3.4b. The yield curves of figure 39a satisfy now theseequations
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Fic. 39. The result of a competition experiment at constant spacing between the grass species Antho-
xanthum odoratim and Phleumn pratense in the field. Data from van pen Berae and pE WiT (1960).

9.3 with M, = 1050, M_ = 400 tillers per container and kypey= 2.1 and k., = 3.4
so that the product of the two relative crowding coefficients is 7.1, which is indeed
appreciable larger than one. _

The two species, grown in the open, crowd therefore either for space which is
only partly the same or one species profits in some way from the presence of the other.
This latter possibility can safely be excluded because no sign of it was found in the
climate chambers. Moreover, the growth of the roots of the plants was in the open
in a similar way restricted by the containers as in the climate chambers. The only
reason why the space of the plants in the open is only partly the same is therefore
that the growth and development of the species during the summer differ considerably
from each other. Now it is indeed known that A. odoratum develops early in the
summer season and the particular strain of P. pratense relatively late. This difference
did not manifest itself in the climate chambers because here a ‘summer treatment’
without any seasonal trend in temperature, day length or light intensity was given.

The relative reproductive rate as calculated from the curves in figure 38a is represent-
ed by the full drawn curve in figure 38b. The equilibrium point appears to be at'a
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ratio of Z,Z* equal to 4 and the maximum and minimum reproductive rates are
3.6 and 0.50.

10.3. COMPETITION BETWEEN Loliun perenne AND Trifolium repens

Ennik (1960) planted Lolium perenne and Trifolium repens in different- propor.tions
in containers and applied winter treatments and a summer treatment in the cllma}te
chambers which were essentially the same as those for the mixture of the grass species
of the preceding section. The abundance of clover at the end of the winter treatments
was characterized by the length of the stolons, and of Lolium perenne by the number
of tillers per container.

The relative reproductive rates at different proportions are given in figure 40. The
" observations are again on some line with a slope smaller than 45 degrees, so that the
data were treated by means of equation 9.3. Details on this treatment may be found
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FiG. 40. The result of a competition experiment at constant spacing bel“;geé!(l, the grassland speci¢
Lolium perenne (O, Z1) and Trifolium repens (O, Z1). Data from Ennik (1960).

in the original paper. The resulting curve in the ratio diagram is, however, rCPfesem":::
also in figure 40. The maximum and the minimum relative reproductive rate ap.pe
to be 12.9 and 1.35, so that an equilibrium is not reached. )

Clover and grass affect each other apparently in some other way than cr‘l;:"a‘i’:;ﬁ
for the same space. EnnIK showed that in this partlcu!ar case the clover od'd ned
all its nitrogen from the air and the grass from the soil. Hence, the grass dl
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profit from’ the ‘presence of the clover, but the ‘nitrogen spaces’ were differcnt for
both species.

The competitive relations between 7. repens and L. perenne at different water
levels in the soil were also analysed by ENNIK (1960). The values of the relative
crowding coefficients of the grass with respect to the clover and empty space (k)
of thie clover with respect to the grass and empty space (k,.)), their product and the
maximum and minimum value of the relative reproductive rates of the clover w1th
rcsmt to the grass are gwen in the following table:

 wateclevel | : kme) o e
incm below ke | Kite) X
- soil surface | " Kigte) z1+1 zi—>1
. |
i‘ 12 | 2,08 ' 1.22 2.54 2.49 6.34
5 s - 213 1.05 2.24 2.08 4.59
41 ‘ 1.00 ' 1.40 1.40 1.58 2.21
76 1. - 0.80 1.70 1.36 1.056 145
99 J T 064 ; 1.81 1.16 1.09 1.26

Details on the treatment of the experimental results and conclusions may be found
in the original paper. Here it is only remarked that the two species crowded for
nearly the same space at low water levels, but that the ‘nitrogen spaces’ appeared to
be again practically different at high water levels.
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