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0. INTRODUCTION 

Het inrichten van experimenten op een zodanige wijze dat een wiskundige 
bewerking van de resultaten mogelijk wordt, het ontwerpen van speciale 
meetapparatuur daarvoor, het streven naar generalizeren van de ver­
kregen uitkomsten en het met elkander in verband brengen van gebieden 
die uiterlijk verschillend zijn, doch die blijken in hun mathematische 
ondergrond overeenkomst te vertonen, dit zijn eigenaardigheden van de 
natuurkunde, waaraan zij haar praktische waarde ontleent ook voor die 
gebieden van de techniek en natuurwetenschap, die ver staan van de 
eigenlijke in de natuurkunde behandelde onderwerpen.' 

W. R. VAN WIJK: De natuurkunde in de wetenschap en in de techniek. 
Rede L.H.S., Wageningen (1948). 

It appears that field experiments are of limited value for improving our knowledge 
concerning the conditions which govern the distribution and abundance of plant 
species in a permanent pasture. 

The result of experiments in the field can hardly be treated quantitatively because 
many undeterminate factors are of importance. The effect of weather on the results 
is great. Moreover, there is hardly a good measure for the 'competitive power' of the 
species. Such a good measure can only be found with the aid of suitable experiments, 
but suitable experiments can only be designed if it is more or less known how the 
'competitive power' of plants with respect to each other is measured. 

In order to arrive at some useful characteristic for the 'competitive power', DE WIT 
and ENNIK (1958) studied experiments on competition between species which effect 
each other in a less complicated way than perennial grassland species. An analogy 
between competition phenomena and the theories underlying multicomponent distil­
lation and other exchange processes was noted and on basis of this analogy a theory 
was developed which makes it possible to describe many competition phenomena 
quantitatively. 

This theory has been worked out in detail and is represented in this paper up to the 
level where it is proved that the approach is suitable to interpret competition experi­
ments with perennial (grassland) species. 

The theory is of course in many ways connected with other theories which are often 
more or less independently developed in animal ecology, plant ecology and population 
genetics. The treatment runs also parallel with theories developed in the field of 

1 Designing experiments in such a way that a mathematical treatment of the results is possible, 
constructing measuring apparatus for this purpose, aiming at generalization of observational results 
and at relating fields of knowledge which are outwardly different but which appear to agree as far as 
their mathematical treatment goes, these are peculiarities of physics from which it derives its practical 
value, also for those fields of technics and natural science, which are foreign to the subjects proper of 
physics. 



enzyme kinetics (DIXON and WEBB, 1958), ion exchange (BOYD, SCHUBERT and 
ADAMSON, 1947) and competitive uptake of ions (EPSTEIN and LEGGET, 1954). It was 
therefore possible to make good use of and to incorporate excisting theories in the 
present approach. 

The paper is divided in ten main sections. A summary is given at the beginning of 
each main section. 

The author is indebted to Dr. P. J. ZWERMAN (Cornell University, New York) for 
his critical remarks on a draft of this paper and to Ir. J. P. VAN DEN BERGH, Dr. W. H. 
VAN DOBBEN and Ir. G. C. ENNIK (I.B.S., Wageningen) for their cooperation. 



l .THE SIMPLEST MODEL OF COMPETITION 

1.0. SUMMARY 

The simplest model of competition which can be imagined enables one to introduce 
some basic relations, terms and graphical representations in a convenient way. The 
practical value is limited, however, because the model is based on the assumption that 
the growth of an organism is not affected by its neighbours. Such peaceful coexistence 
excludes competition in the ordinary sense of the word. 

In spite of this limitation, the model is used in population genetics, although it has 
met with more and more opposition during recent years. The reason for its being 
used in this branch of science is that it serves very well to illustrate the effect of natural 
selection which can take place without competition. 

1.1. T H E MODLL 

1.1.1. The basic assumptions 

Let us consider a homogeneous field plot of unit surface (i.e. ha) which is split up 
in squares by means of a marker, as illustrated in figure 1. Let us suppose, moreover, 
that a stock of seeds of species S, and of species S2 is available and that on each 
square one seed, either of S, or of S2 is planted and that at harvest the numbers of 
seeds of S! and S2 are determined separately. 

FIG. I. A field divided in squares with a size of wem2, 
each planted with one seed. 

The yields of species S, and S2 are called 0 , and 0 2 respectively, and expressed 
in numbers of seeds per unit surface; the sum of both ( 0 , -j~ 0 2 ) equals the total 
number of seeds harvested. A mono culture is obtained on fields which are planted 
with the seeds of one species. The symbols AX, and M2 are used for the yield per unit 



surface of the monocultures of S, and S2, respectively. The numbers of seeds planted 
of S, and S2 are represented by Z, and Z2 , respectively. The total number of seeds 
(Z, -1 Z2) is equal to the total number of squares or the unit surface divided by m, 
the surface of one square. It is only dependent on the value of m, which is supposed 
to be constant. 

It is assumed, moreover, that the growth of a plant in one of the squares of the 
field is not affected by the growth of plants in any other square, or in other words, 
that there is neither intraspecific nor interspecific competition. 

1.1.2. The yield of fields with mixed culture 

If Ax is the area of the field available for species S, and A2 the area available for 
species S2, the following relations hold: 

AX:A2 = mZl:mZ2 — ZX:Z2 j j 

Ax + A2 = [Z, + Z2]m = unit surface = 1 or 

Ax=zx[zx + z2r
l
 L2 

A2 = Z2[Zx-\-Z2Y
l 

The yields, being proportional with the area available for each species, are now: 

Ox=Zx[Zx-\-Z2Y
xMx=zxMx 

02 = Z2\Zx\Z2Y
xM2=z2M2 1-3 

O, + 02 = zxMx + z2M2 = [Mx — M2]zx 4 M2 

The relative seed frequencies r, =-• Zx[Zt -j Z2] ' and z2 =-- Z2[ZX 4 Z 2 ] " ' range 
from 0 to 1 such that the sum of both is one. 

This rather complicated formulation of a simple matter is chosen in order to 
facilitate the treatment of more complex models in other sections. 

Both frequencies are represented along the horizontal axis of figure 2a and the 
yields in numbers of seeds per surface unit alonz the vertical axis. The relations be­
tween the yield O, and the frequency zx is represented by the straight line 1, between 
0 2 and z2 = (1 — zx) by the straight line 2 and between [Ox \- 02] and zx by the 
straight line 3. These lines represent the formulae 1.3. for arbitrary values of Mx 

and M2. 

1.1.3. The relative reproductive rate 

_ The reproductive rate is defined as the ratio of the number of seeds harvested and 
the number of seeds sown, and for plant species S, and S2 given by: 

_..'.-_... fl, = OxZ;1 = [Z, +Z2]'
lMx and . ] 4 

02 = O2Z2-' = \Zx-rZ2y
xM2 



FIG. 2. a. A relation between the relative seed frequency and the yield of two species Sx and S2, 
'coexisting peacefully'. 
b. The frequency diagram, giving the relation between the relative frequency of species Si in the seed 
(zi) and in the yield (oi), as calculated from the lines of figure 2a. 

As Z t + Z 2 is constant for a given value of m, the reproductive rates are constant, 
that is independent of the seed frequencies. 

The relative reproductive rate of plant species S, growing with species S2 on the 
same field is defined as: 

«12 = a\aV = MiMÏ1 1.5 

Of course this relative reproductive rate is also independent of the composition of 
the seed mixture. Instead of the term relative reproductive rate, the terms 'relative 
fitness', 'survival value' and 'adaptive value' are used for a in population genetics 
(LI, 1955). 

1.1.4. The frequency diagram and the ratio diagram 

Apparently 

in which 

Ot02
 l = al2ZxZ2

 l or 0^2 l = a12z,z2
 l 

oi = 0i[0! + 02r
l and o2 = 02[Oï + 02]~

l 

1.6 

or the ratio of the number of kernels in the harvest is equal to the relative reproductive 
rate times the ratio of the number of kernels in the original seed. 

A part of the harvested seed may be sown again next year under the same conditions. 
The composition of the yield in this next year is of course equal to a^2z,r~ '. Repeating 
the experiment during n years under the same conditions a yield of the composition 

[Oy02
l]n = a 'îzZ.Z, or [0,02 l]n = <xn

12^^1 1.7 
is obtained. 

The number of generations necessary to obtain a certain change of the frequency 
of the seeds is easily estimated by means of a frequency diagram in which along the 



horizontal axis the frequency r, and along the vertical axis the frequency o, is given. 
This diagram, calculated from the data in figure 2a is given in figure 2b. The number 

of generations necessary to obtain from a mixture containing 10 percent of species S, 
(Z| = 0.1) a mixture which contains at least 90 percent of species S, (r, = 0.9) is 
obtained by counting the steps in the broken line in figure 2b. Ten percent of species 
S, in the seed mixture yields 18 percent of species S, in the harvest mixture. Sowing 
again next year, a yield with 30 percent of species S, in the harvest mixture is obtained 
and so on. In this case seven generations are necessary to obtain a mixture which 
contains at (east 90 percent of species S, from a mixture which contained only 
10 percent. 

An experiment in one year with mixtures ranging with relative seed frequencies 
from 0-1 gives full information on the change of composition of the mixture in n 
years, should it be possible to carry out an experiment during n years under exactly 
the same conditions. 

o,+o 

Z,/ZfZj 
02 03 0.4 06 j 1.0 

0B 

/ , / / , 
FIG. 3. a. The frequency diagram with curves for a ranging from 0.25 to 4. 
D. I he ratio diagram with lines for a ranging from 0.33 to 3. 

The shape of the curves in the frequency diagram for values of a ranging from 
0.25 to 4 is given in figure 3a. For a equal to one the curve is represented by the diagonal 
line, for a larger than one the curves are found above this line and for a smaller than 
one below this line. The curves are of course symmetrical with respect to the diagonal 
joining the points (0.1) and (1.0). It is evident that al2 =-- *;,' or that the relative 
reproductive rate of species S, in a mixture of S, and S, is the inverse of the relative 
reproductive rate of species S2 in a mixture of S, and S2. 
'• Equation 1.6 for the relative reproductive rate may be written as follows 

I gO.OJ^Ig« , , f-lgZ.Zi"' 1-8 

so that the relation between the yield ratio and seed ratio can be presented on loga-

a n d T ? a P - r y a S l r a i 8 h t ' i n e Wi th a s l°Pe o f 4 5 dcgr<*s. These lines for a = 3, 2, 1, \ 
and $ are given in the ratio diagram of figure 3b 



The number of generations necessary to obtain a certain change of the ratio can 
be determined again by counting the steps in the broken line in the figure. 

1.2. FISHER'S THEOREM OF NATURAL SELECTION 

The average reproductive rate of the mixture is equal to 

5 = tO, + 0 2 ] [ Z , - i • Z 1 V l ^ { [ M l - M 1 ] z t •\-M2}[Z1 + Z2]~
l -

= /»!{[*/, —A/2]z, + M2) 

The average reproductive rate of the mixture increases with increasing z, if A/, is 
larger than M2. On the other hand, if Mt is larger than M2, the relative reproductive 
rate of species S, is larger than one (formula 1.5) so that zt increases in course of 
time. Consequently the average reproductive rate of the mixture of the following 
generation is always larger than of the preceding generation until the species with 
the highest reproductive rate is left over. 

FISHER (1930) formulated this conclusion quantitatively in a theorem which is known as the 
Fundamental Theorem of Natural Selection. 

Suppose there are n species Ŝ  (/— i \i... ;r) in a mixture which do not interbreed. The relative 
frequency and the reproductive rate of species Sj are zt and at respectively. 

The mean and variance of the reproductive rate of the mixture are: 

a = Zzjdj ; a\ — Zz^o,- — ä]2 = S i / ? ; — S2 

The relative frequency o} of the species S) in the harvest is ZJOJ and, because as is supposed to be 
independent of z}, with a reproductive rate of at. 

Hence the new average reproductive rate becomes 

ä' = [£ojaj][Zoj]-t = [2zri\ä-1 

and the gain in average reproductive rate due to cultivation during one year is 

Aa = a — a = [ £ r / 7 2 ] ä " ' — a = ü\a~' > 0 1.9 

Or in words: the rate of increase of the reproductive rate of a mixture in any year is equal to the 
variance of the reproductive rate in that year. Which is a quantitative formulation of Fisher's 
Fundamental Theorem of Natural Selection. This theorem can only be proved under the assumption 
that the reproductive rate of a species is a constant. 

1.3. THE PRACTICAL VALUE OF THE MODEL 

Experiments with crop mixtures, sown at normal densities, which proved that the 
model discussed in this section is of any practical value have not been found. Plants 
do not restrict themselves in general to the arbitrary surface allotted to them and effect 



the growth of plants in neighbouring squares. This simple model appears to hold 
only under conditions where the surface of the squares in figure 1 are large compared 
with the size of the plants (i.e. where there is no competition for space) or where 'the 
competitive forces' of the two plant species balance each other (see section 3). 

As far as population genetics is concerned, this model is nevertheless of some value 
because it proves that natural selection is possible under conditions where there is 
no competition. It may account under these conditions at least for the quantitative 
effect of natural selection on the relative gene frequencies within a population. 



2. AN ANALOGY 
WITH BINARY MIXTURES OF LIQUIDS 

2.0. SUMMARY 

The relations between the composition of the vapour and liquid phase in case of 
solutions of liquids in liquids are discussed, because the treatment of these relations 
are used as a model for the treatment of the relations between the composition of 
crop mixtures in a first and second generation. 

2.1. R A O U L T ' S LAW 

Two liquids like benzene and toluene may be mixed in all proportions. Raoult's 
law states now that at constant temperature the partial vapour pressure of benzene 
and of toluene above a vessel with a mixture of both liquids is proportional with the 
molar fractions of both substances in the liquid (see for instance PERRY, 1951 ; MEE, 

1958). 

mm Hg 

1200 

800 

400 

0 

a 

ioo°c 

/^"""- benzine 

toluene 

FIG. 4. a. The relation between the vapour pressure in mm Hg of benzene and toluene and the molar 
composition (jrb) of the liquid phase at 100° C. 
b. The relation between the molar composition of a mixture of benzene and toluene in the vapour 
Cu») and liquid (xb) phase at 100° C. 

This relation is graphically represented in figure 4a. The mole fraction of benzene 
(xb) in the liquid is placed along the horizontal axis. The mole fraction of toluene 
(xt) is of course equal to one minus the mole fraction of benzene. The partial vapour 
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pressure of benzene (Yb) and toluene (Yt) are given now by the lines. The molar 
fractions in the liquid are of course analogous with the relative number of seeds in 
the sown mixture, and the partial vapour pressures with the yields in figure 2. 

Apparently the relation 
Yb:Y,=--xbPb:x,P, 2-1 

holds in which Pb andP, are the partial vapour pressures above pure liquids of benzene 
and toluene; which are at a temperature of 100° C equal 1344 and 559 mm Hg, 
respectively. The relative volatility is defined as 

which is in this case equal to 1344/559 = 2.4. The relative volatility is analogous 
with the relative reproductive rate in the biological model. 

A graphical representation is given in figure 4b. The mole fraction of one component 
in the liquid (xb) is given along the horizontal axis and in the vapour>>b = Yb[Yb + Yt]~ 
along the vertical axis. This diagram is analogous with our frequency diagram of 
figure 2b. The number of plates of a distillation column (which is a measure for its 
'length') necessary to obtain a certain change of composition is counted in the same 
way as in our model the generations are counted. Due to the nature of the process 
of distillation, the 'reference line' is not the 45 degree line as in the biological model 
(figure 2b), but another set of lines. 

RAOULT'S law appears to hold only for what are called ideal mixtures, that are 
mixtures of homologous series, isomers, and so on. This is again in analogy with the 
biological model which holds if there is no competition. 

2.2. ACTIVITY COEFFICIENTS 

There are many mixtures for which Raoult's law does not hold. They are treated 
with the introduction of activity coefficients (see for instance PERRY, 1951), which may 
supposed to be experimental multiplication factors (y, and y2) chosen in such a way 
that the relation 

1\:1Y= y i - W . 72*2^2 2-3 

holds for mixtures of a liquid Li and L2, instead of the simple relation (2.1). The rela­
tive volatility is then equal to 

It appears that within a certain range, which may be large or small the activity 
coefficients or their quotients are practically constant and that for a mixture of « 
components it is convenient to work with the following relation: 

' T i : K 2 : - - - : y i - - - - : >V^y^^ 2-5 
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The relative volatilities with respect to an arbitrary reference component are 

«11 = [Vi'i] lriP,Vl; «„ = [yfi] [y,/',]"1 - 1 ; «., = [y„P„] fop,]"1 2.6 

The relative volatility of the reference component is than of course equal to one and 
the relation 

2.7 a t , = akl<Xj,1 
lkj 

holds. This approach proves to be very convenient in multicomponent distillation. 
Similar coefficients will be introduced in the next section and it will be proved in 

this paper that the use of these enables a quantitative treatment of competition 
problems. 

2.3. DIAGRAMS OF VAPOUR COMPOSITION VERSUS LIQUID COMPOSITION 

The 'frequency diagrams' holding for a mixture following Raoult's law or for a 
mixture with at least a constant relative volatility are as given in the diagram of 
figure 4b or of figure 3a. The shape of the curves is much more complex if the com­
ponents of a mixture affects each other in such a way that the relative volatility is 
not constant. In such cases curves like those in the diagram of figure 5 may be 
obtained. 

HCl 

FIG. 5. a. The relation between the molar composition of a mixture of ethanol and water in the 
vapour (vb) and liquid (*b) phase at an arbitrary pressure, 
b. The same for a mixture of HCl and water. 

Diagram 5a represents the relation between the vapour composition and the liquid 
composition of a mixture of ethanol, and water at an arbitrary pressure. The curve 
crosses the 45 degrees line. At this point, the azeotropic point, no enrichment of the 
vapour is obtained. The composition of a mixture during distillation changes in the 
direction of the arrows. Whatever the starting composition, a mixture is obtained 
which contains about 90 percent ethanol and 10 percent water. The equilibrium at 
the azeotropic point is in this case a stable one. 
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Diagram 5b represents the relation between the composition of the vapour and the 
composition of the liquid of a mixture of HCl and water at an arbitrary pressure. 
There is again an azeotropic point. The composition of the mixture changes during 
distillation in the direction pf the arrows. The equilibrium is here unstable: depending 
on the starting composition; the fraction HCl in the mixture increases or decreases 
during distillation. 

It will be shown that similar 'azeotropic points' may occur in mixtures of plant 
species. 



3. CROWDING FOR THE 
SAME SPACE WITHIN BARLEY-OATS MIXTURES 

3.0. SUMMARY 

A crowding coefficient analogous with the activity coefficients of liquids in a mixture 
is introduced in this section and a model describing the competition within mixtures 
of barley and oats is developed. This model is of use in any case where two organisms 
crowd for the same space, but do not affect each other in any other way. Practical 
conclusions with respect to mixed cultivation of barley and oats and with respect to 
population dynamics will be arrived at. 

3.1. T H E EXPERIMENTS 

The Agricultural Extension Service of the Dutch Government executed during the 
years 1951-1954 about 33 field experiments on sandy soils concerning mixed cultiva­
tion of barley (Hordeum vulgare) and oats (Avena sativa) under the direction of VAN 
DOBBEN. Results were published by VAN DOBBEN (1951, 1952, 1953). The original 
data used in this paper were extracted from files of the Institute for Biological and 
Chemical Research on Field Crops and Herbage at Wageningen. 

The experiments were of the following design. Mixtures of barley and oats were 
sown at normal rate, but such that the number of seeds per hectare was the same for 
any mixture. The number of barley seeds in the mixture expressed as a fraction of 
the total number were 0, £, £, § and 1, the number of oats seeds as a. fraction of 
the total were 1, j , \, % and 0 in the same order. 

At harvest, the seed weights of barley and oats were determined separately. 
Thousand kernel weights of the harvested barley and oats were also determined, so 
that it is possible to calculate the number of harvested kernels of each species on 
each plot. The data in this section concern the yield in number of kernels per surface 
unit and, except were otherwise stated, not the kernel weight per surface unit. The 
unit 'a million of kernels per hectare' is abbreviated as '106 kernels ha - 1 ' . 

The results of experiment MB 22-1952 are represented in figure 6a. Along the 
horizontal axis the frequency of the barley and oats kernels in the seed mixture, 
represented by the symbols zb and z0 respectively, are given. The sum of both is 
always one. The yields of barley and oats expressed in numbers of kernels per hectare 
are represented by crosses and dots. The yield of barley and oats which is to be 
expected under the assumption that the simple model of section 1 is valid is represented 
by the straight lines 1 and 2, respectively. 

It appears that the yields of barley are smaller and of oats higher than the expected 
yields. Inspection of the results of the 33 experiments revealed that in all cases 
one of the species yielded more and the other yielded less than expected according 
the simple model of section 1. This suggests that one species crowded the other out 
of the space allotted according to the composition of the sown mixture. 
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«s kernels 
K kernels 

' O . , : 0.5 z b ' 

Fio. 6. The result of competition experiment MB 22-1952 between barley and oats, at different 
relative seed rates, the absolute seed rate or the space per seed (m) being kept constant. 
Data from VAN DOBBEN ( 1953). 

3.2. A MODEL OF CROWDING FOR THE SAME SPACE 

The homogeneous field plot represented in figure 1 is again considered and the same 
symbols as in section 1.1. are used to represent the numbers of seeds, the yields of 
mixed culture and mono culture and so on. The total number of seeds per unit surface, 
is again given by 

Zy + Z2 = m~x 3.1a 

Instead of the basic assumptions of equation 1.1, i.e. 

A i \Ai — Zj :Z2 1.1 
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it is supposed that for the space with species S! and S2, AY and A2 respectively, the 
following relation hold : . , ^ , „ 

Al:A2 = blZl:b2Z2 3 2 

Ax + A2 = a constant = 1 

The multiplication factors bx and b2 are analogous with the activity coefficients of 
binary mixtures and called crowding coefficients. The right hand side of equation 3.2 
can be multiplied by an arbitrary chosen constant which means that only the quotient 
kl2 = bib' ' is determinate. The number kl2 is called the relative crowding coefficient 
of species Sx with respect to species S2. 

The equations are a mathematical expression of the statement that the two plant 
species affect each other only by crowding for the same space, and of course only of 
practical value under conditions where the relative crowding coefficient appears inde­
pendent of the relative seed frequency. 

Although the crowding coefficient is formally equal to the activity coefficient, there 
is a large difference. Activity coefficients as used in distillation characterize a dynamical 
equilibrium, whereas the crowding coefficient characterize not the process of crowding 
itself, but only the result of this crowding. This difference appears to be of great 
importance at a later stage (section 8.4.), where the results of experiments at diffe­
rent spacings (values of m) are considered. 

The condition that Ax + A2 is one or constant implies that the two plant species 
which compete for the same space exclude each other. This space is not defined at 
present in terms with a physiological meaning, because this is not necessary for a 
quantitative description of the phenomena. One may read for the term space 'growing 
factors', or 'requisites' like water, minerals, light and so on which are homogeneously 
distributed over and in the field where the plants grow. Such a description is, however, 
not necessary, always inaccurate and therefore unadvisable. 

It follows from equation 3.2 that 

Ay = biZdbyZy + b2Z2Y
l = kuZdkuZi + Z2y

l 

A2 = b2Z2\bxZx + b2Z2y
l = Z2[kl2Zt + Z2]~

l 3 ' 3 

so that,Af! and A/2 being again the yields of the mono cultures, the yields of the two 
species Sj and S2 are to be represented by the following equations. 

0 , = byZx\byZx + b^Y^My and 02 = b2Z2\byZx + b2Z2]~
lM2 3.4a 

The relative seed frequencies of the species are defined by 

zt = Zy[Zx + Z2]~
l and z2 = Z2[Zy + Z 2 ] - 1 3.5a 

so that the equations may be written also in the following form 

0 , =k12zl[k12z1 +z2V
1Ml =kl2zi{[ki2 — l]zl + l } - 1 ^ 

02 = z2[*i2Zi + Z2YiM2 = k21z2{[k2l -]]z2 + l}~lM2 

with kl2 = k~^. 

3.4b 
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A similar set of equations hold if in each square of m cm2 either c~1 seeds of 
species St or c"1 seeds of species S2 are placed so that 

f,Z, + c2Z2 = /w~1 3.1b 

These factors c are most conveniently treated by defining the relative seed frequencies 
by 

z, = c{lAcxZx + c2Z2]~
l and z2 = c2Z2[clZl + c2Z2]

 l 3.5b 

or eliminated by expressing seed and harvest rates in seed and harvest units which 
are c^1 or c~l times the original values. 
• The reproductive rates of species St and S2 are 

at = OiZïl =mki2[kl2zl + z2]~
lM1 3 6 

a2 = 02Z2
l = m [kl2zi + z2]~

lM2 

The reproductive rates of both species increase with increasing zl (and decreasing z2) 
if the relative crowding coefficient k12 is smaller than one. The reproductive rates 
decrease with increasing zt if kl2 is larger than one. The reproductive rates are not 
constant. 

The relative reproductive rate of species S, in a mixture of both species is equal to 

or 
a12 = [O.Z:1] [ O J Z J T 1 = ^jA/.AfJ1 3.7a 

«tl = [OiZf l ' lOiZJ 1 ] - 1 = c ^ - ^ M ^ - 1 3.7b 

if the factors c are not eliminated. 
The denominator of the reproductive rates, containing the variables z cancels, so 

that it appears that the relative reproductive rate is independent of zt and z2 or the 
composition of the seed mixture. 

3.3. THE TREATMENT OF THE RESULTS OF FIELD EXPERIMENTS 

The equations (3.4b) and (3.7a) are rewritten in the following form 

Ob = kbozb[kbozb + z„r ' Mb and 00 = z0[kbozb + z0]~ ' M0 3.4b 
; «bo = [ObZb

l] [00Z;']-1 = kboMbM;1 3.7a 

in which the indices b and o refer to barley and oats, respectively. The equations 
contain one independent variable zb(z0 = 1 — zb) and three constants A/b, M0 and 
kb0 which depend on the growing conditions and are not the same for different 
experimental fields. 

A rough estimate of the value of the relative crowding coefficient kbo may be ob­
tained as follows. The yields of barley and oats at zb values of 0.33, 0.50 and 0.67 
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furnish three independent estimates of the relative reproductive rates. By substituting 
the experimental values for Mb and M0 in equation 3.7a three dependent and in­
efficient estimates of kbo are obtained, which may be averaged. 

The following trial and error method is adopted to obtain more reasonable estimates 
for all the three constants Mb, M0 and kbo. The constant A:bo is estimated as described 
above. This estimated value is substituted in the equations 

A = kbozb[kbozb + ^o]"1 and A0 = z0[fcbozb + z j - 1 

and the values of Ab and A0 for zb equal to 0.33, 0.50 and 0.67 are calculated. Sub­
sequently the yield data of barley and oats are represented in a graph with along the 
horizontal axis Ab (0 ->• 1) and A0 (1 -> 0) and along the vertical axis the yields. The 
yield data for oats and barley, both, are to be found around a straight line, if the equa­
tions are applicable and the estimated value of kb0 is correct. If this is not the case 
slightly other values are tried until this is the case. It must be kept in mind that the 
barley and oat yields of the fields with a mixed crop are subject to partly the same 
errors. 

The final result for experiment MB 22-1952 is given in figure 6b. It appears that 
Mb = 72 X 106 kernels ha"1, M0 = 82 X 106 kernels ha-1 and A:bo = 2.0. Sub­
sequently, smoothed curves are drawn in the original graphs by means of the equations 

Ob = 2.0zb[2.0zb + z j - 1 72 x 106 kernels per ha 

00 = zo[2.0zb + z j - 1 82 x 10b kernels per ha 

These curves together with the observations are represented in figure 6c. 
The estimated value of the relative reproductive rate abo appears to be 2.0 x 72 x 82 - 1 = 

1.75. The frequency diagram, calculated by means of this value is given in figure 6d. 
The results of the 32 other experiments are reproduced in the graphs 1-32 of figure 7. 

The curves satisfy the equations 3.4b. The relative crowding coefficient, the relative 
reproductive rate and the pH and the registration nurnber of the experiments, which 
were all carried out on sandy soils are given in the caption of the figure. Apart from 
some large deviations, the observations are close to the calculated curves. 

3.4. T H E MONTGOMERY EFFECT 

The total yield in number of kernels is of course equal to 

Ob + 00 = [Mbkbozb + M0z„] [kbozb + z0]' ' 3.8 

The average reproductive rate of the mixture is equal to this total yield divided by 

m~l = Zb + Z0 or 
ä = m[Mbkbozb + M0z0] [kbozb + z0]

 1 3.9 
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The increase or decrease of this reproductive rate with varying zb can be found by 
differentiating ä with respect to zb. The result appears to be 

d^dzt,)-1 = mkb0[Mb-M0] [ (*„„- l)zb + I T 2 3.10 

The average reproductive rate increases (decreases) with increasing zb if the sign of 
this differential quotient is positive (negative). This sign depends only on the sign of 
the difference [Mb — M„]. 

As for the experiment of figure 6, M0 appears to be larger than Mb. The average 
reproductive rate of the mixture decreases therefore with increasing zb. On the other 
hand, abo is larger than one so that zb increases if the mixture is resown repeatedly 
under the same conditions. The average reproductive rate of the mixture decreases 
therefore under the conditions of this experiment. The Fundamental Theorem of Na­
tural Selection as formulated by FISHER (section 1.2.) does therefore not and not even 
qualitatively, hold in this case. 

FIG. 7. The result of 32 competition experiment of barley and oats. Data from V A N 
1952, 1953 and files). 

Number 
graph. 

1* 
2* 
3* 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13* 
14 
15* 
16 
17 
18 
19* 
20 
21 
22* 
23* 
24 
25 
26 
27 
28 
29* 

Number 
exp. 

W 1326 
PO 415 
O.O 1396 
W B 1908 
W B 1909 
W B 1910 
OB 3241 
OB 3242 
CI 1127 
U 735 
OB 3283 
OB 3284 
MB 23 
M B 24 
O.O 1420 
O.O 1421 
W D 172 
W D 173 
U 792 
U 793 
U 794 
U 825 
U 826 
OB 3332 
OF 959 
O.O 1469 
O.O 1470 
O.O 1540 
W D 251 

•»u* O.O 1541 
31 i U 860 
-f-** i « — 
j ^ ' j OB J379 

Year 

1951 
1951 
1951 
1951 
1951 
1951 
1951 
1951 
1951 
1951 
1952 
1952 
1952 
1952 
1952 
1952 
1952 
1952 
1952 
1952 
1952 
1953 
1953 
1953 
1953 
1953 
1953 
1954 
1954 
1954 
1954 
1954 

p H 
(KCl)1 

6.40 
5.50 
6.05 
5.60 
5.45 
5.75 
5.50 
5.70 
5.90 
5.70 
4.80 
4.30 
4.70 
4.05 
5.45 
4.95 
3.90 

2.6 
2.2 
1.9 
1.4 
1.0 
1.4 
1.2 
0.83 

«bo 

1.49 
1.32 
1.13 
0.82 
0.45 
0.82 
0.80 
0.51 

1.4 0.86 
1.2 
1.2 
1.2 
2.0 

0.96 
0.91 
0.65 
1.61 

0.83 1 0.49 
1.4 
1.0 
0.83 

4.40 1.2 
4.80 1.4 
4.50 
5.75 
4.90 
5.40 

0.62 
1.0 
3.0 
3.0 

5.05 ! 1.0 

1.41 
0.61 
0.41 
0.87 
1.29 
0.31 
0.77 
1.71 
3.04 
0.80 

4.50 ! 0.72 0.50 
3.90 
4.25 
4.80 
5.50 

0.83 1 0.47 
1.0 j 0.74 
1.2 i 0.73 
1.4 1.04 

5.00 ! 1.4 1.16 
4.60 j 1.0 
4.60 i 1.6 

0.76 
1.55 

A/b 
10'kernels/ha 

76 
82 
84 
86 
63 
76 
78 
87 
96 
61 

101 
64 
83 
89 

102 
90 
58 
96 
46 
52 
95 
69 
78 
87 
75 
85 
96 
98 
84 
98 

109 
104 

DOBBEN (1951, 

M0 
10" kernels/ha 

133 
137 
141 
146 
141 
130 
117 
142 
157 
76 

133 
119 
103 
151 
101 
148 
118 
132 
50 

106 
123 
121 
77 

109 
107 
152 
129 
161 
113 
118 
143 
107 

1 See note on page 23. 
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It is obvious that the average reproductive rate of the mixture decreases always 
in course of time if the growing conditions are such that 

Mb< M0 and kbo> M0Mîl 

or 
Mb < M0 and abo > 1 3.11 

It appears that Mb < A/„ for all 33 experiments. In spite of this ab0 is greater than 
one in 11 out of 33 experiments. These experiments are marked with a cross (*) in 
the caption of figure 7. 

GUSTAFSSON (1951) collected examples of experiments in which the species or 
variety yielding best alone did not survive, when repeatedly sown in competition 
with an other species or variety. These experiments cannot be treated quantitatively 
because the growing conditions and consequently the constants governing the out­
come of competition vary from year to year. GUSTAFSSON termed this effect 'the 
Montgomery effect', after MONTGOMERY (1912), who noticed this effect at first in 
his experiments. 

\/ 3.5. F U R T H E R ASPECTS OF MIXED CULTIVATION OF BARLEY AND OATS 

3.5.1. The quality of the seed 

The yields of the experiments discussed in section 3.3. are expressed in number 
of kernels per hectare, because the number of germs determines the reproductive 
rate in the first place. The change in composition of the mixture in the course of time 
may differ from the change calculated on basis of the results of a mixed cultivation 
experiment in one year, if the quality of the seeds which are harvested depends on 
the composition of the seed mixture. 

The germinative power of the harvested seeds was not determined. It appears, 
however, that the thousand kernel weight of these seeds depends to some extent on 
the composition of the seed mixture. The relation between the thousand kernel weight 
of barley and of oats and the value of zb as determined by averaging the results of the 
33 experiments is given in figure 8. The thousand kernel weight of oats appears to 
increase with increasing values of zb. Therefore it may be, that oats stand competition 
somewhat better than calculated. 

VAN DOBBEN (1953) explained the effect of the composition of the sown mixture 
on the thousand kernel weight as follows. Oats growing in a mixture are some time 
before ripening surrounded by barley plants which are already ripe. These ripe barley 
plants do not intercept much light and do not use much minerals and water. Oats, 
which were originally surrounded by a large fraction of barley plants are therefore 
able to produce during their last weeks of growth more dry matter than oats which 
are surrounded by oat plants. This can only result in a higher thousand kernel weight 
because the number of seeds is already fixed at that time. 

The effect was very markedly in an experiment on competition between flax (Linum 
usitatissimum) and false flax (Camelina sativa) which will be discussed in section 9.1. 
It appeared that the thousand kernel weight of Linum seeds of plants grown in a 
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mono culture was equal to 6.25 g and of plants grown at a relative seed frequency 
of 0.27 equal to 8 g and that the thousand kernel weight of Camelina was not affected 
by the relative seed frequency (figure 9). 

This difference is explained by the observation that the growth period of Linum 
plants was nearly twice the growth period of Camelina plants, so that the Linum 
plants were still growing at the time the Camelina plants were ripe. 

1000 kernel weight 
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FIG. 8. The thousand kernel weight of barley 
and oats at different relative seed frequencies. 
Data from VAN DOBBEN (1951, 1952, 1953 and 
files). 

0.5 
0.5 

FIG. 9. The thousand kernel weight of flax (Linum 
tiiitatissimum) and false flax (Camelina saliva) at 
different relative seed frequencies. 

As far as the weight of the seeds in the experiments of VAN DOBBEN is concerned, 
the barley and oat plants do not crowd for exactly the same space. Formally, this 
means that the sum of Ab and A0 is not constant or one (equation 3.2) but increases 
somewhat with increasing z0. It appears here already that to define the term 'space 
a time factor is to be introduced. 

From a small experiment of MONTGOMERY (1912) who sowed small seeds and large 
seeds of small grains alone and in competition (his table 13) a value of about 1.2 is 
estimated for the relative crowding coefficient of the large seeds, with respect to the 
small seeds, whereas the yields of the mono cultures differed about 8%. The effect 
of the small difference in thousand kernel weight in the present experiments on the 
relative crowding coefficient and yields is undoubtedly much smaller and probably 
negligible. 

3.5.2. The influence of growing conditions on the relative crowding coefficient and the 
yield of pure stands 

Many other experiments in which barley and oats were grown in monoculture 
and at a seed ratio 1:1 (zb = z0 = 0.5) were carried out under the direction of VAN 
DOBBEN (1952, 1953 and 1955). 
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VAN DOBBEN introduced the verdringingsfactor ('crowding coefficient') 

[obo;1] [M.M;1]-1 

to characterize the effect of competition at zb = z0 = 0.5 (present notation). It 
follows from equation 3.7a that this ratio is an estimate of the relative' crowding 
coefficient (kbo) introduced in this paper, if the small systematic difference due to 
expressing yields in kilograms per hectare, as done by VAN DOBBEN, and in number 
of seeds per hectare is neglected. 

This estimate is, however, not the most efficient estimate because all degrees of 
freedom are used to estimate kba, Mb and M0 and not the minimum amount of three. 
The yields of the pure stands and the value of the relative crowding coefficients are 
therefore estimated again in the way as described in section 3.3. Only three degrees 
of freedom are used in this way, so that one degree of freedom (or nearly one 
because of the correlation between the random error of the yields of barley and oats 
on the plot with the mixed crop) is left to obtain some impression of the error. 

FIG. 10. The average results of the experimental series 163A, 1952 on competition between barley 
and oats. Data from VAN DOBBEN (1953). 
a. pH-KCl larger than 4.6. 
b. pH-KCl smaller than 4.6. 

The average results of the experiments of series 163A, 1952 (VAN DOBBEN, 1953) 
are given in figure 10. Figure 10a represents the average results of the experiments 
with a pH-KCl1 larger than 4.6 and figure 10b, of those with a pH-KCl smaller than 
4.6. Both figures illustrate that in spite of the small number of relative frequencies 
reasonable estimates of kba, Mb and M0 can be obtained. 

VAN DOBBEN found that the relative crowding coefficient of barley with respect 

1 The pH-KCl is the pH of a mixture of soil and a KCl solution and for sandy soils about one unit 
lower than the pH of a mixture of soil and water. 
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to oats (A:bo) decreases with decreasing pH of the soil. This effect of the pH is 
illustrated in figure 10 and may be found in the data given in the caption of figure 7, 
although it is obscured there by influences of other growing conditions. In order to 
obtain more information on the influence of the pH, VAN DOBBEN (1955a) carried 
out an experiment which will be discussed here in some detail. 

An experiment, OGe 72, was started in 1931 by the Agricultural Extension Service 
to study the effect of different nitrogen fertilizers and lime on what is now called the 
pH of the soil. 

The experiment was so successful that the pH-KCl of the soil on the plots varies 
at present from 3.1 to 5.2. In 1954 VAN DOBBEN divided each plot into three sub-plots, 
which were sown with either barley (var. Herta), oats (var. Libertas) or a mixture of 
both in the ratio 1:1 (zb = z0 = 0.5). The value of Mb and M0, both in number of 
kernels per hectare and the value of kb0 were estimated from the yields on each plot 
and are given here in the graphs of figure 11, plotted against the pH of the soil. 

The yield of the barley appears to decrease rapidly with decreasing pH below a 
pH-value of about 4 (figure 1 la). The yield on the plots which did not receive nitrogen 
was much lower than on the other plots. As for oats, it appeared (figure 1 lb) that the 
yield did not depend to a large extent on the pH and that the yields on the plots 
which did not receive nitrogen during preceding years was not much lower than on 
the other plots. 

The relation between the pH of the soil and the value of the relative crowding 
coefficient is given in figure 1 lc. Throughout the whole pH range, the relative crowding 
coefficient increases with increasing pH. Above a pH of about 4, the yield of barley 
nor the yield of oats in mono culture depends to a large extent on the pH. Nevertheless, 
the relative crowding coefficient increases in the range above a pH of about 4 with 
increasing pH. 

As for the no nitrogen plot with a pH of 4.5 it appears that the value of £b0 is 
equal to one so that the competitive forces of barley and oats matched each other. 
However, the final yield of barley was about 30% lower than the barley yield on 
nitrogen plots, whereas this was not the case for oats. Now it is known (VAN DOBBEN, 

pers. com.; REITH, 1954) that the yield of barley is much more affected by a low 
nitrogen level during the second half of the growing period than oats. Probably, the 
nitrogen level on the no nitrogen plots was during the first half of the growing period 
so high that the barley was able to claim its place, but during the second half so low, 
that the barley could not realise a sufficient high yield. This suggests that crowding 
for space takes place during the period of vegetative growth, which is all but unlikely. 

The yield of barley grown with oats depends to a much larger extent on the pHthan 
the yield of barley grown in mono culture, because only the yield of barley in the 
mixture is also adversely affected by the value of the relative crowding coefficient. 
VAN DOBBEN (1955b) proposed to select barley varieties on their sensitivity for low 
pH on fields where they are grown in competition with oats in order to increase the 
effect of the pH. It has not been proved, however, that barley varieties with a high 
relative crowding coefficient at low pH values or with a relative high yield when grown 
in competition give also a relative high yield when grown in a pure stand. 
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respect to oats, on one hand and the pH-KCl on 
the other. Data from VAN DOBBEN (1955a and files). 

3.5.3. Agricultural advantages 
To evaluate the agricultural value of mixed cultivation of barley and oats, we may 

suppose for a moment that the thousand kernel weight is not affected by the frequency 
of the species in the seed. 

It follows from formula 3.10 that the total yield (Ob + 00) increases with increasing 
value of zb if Mb — M0 is larger than zero and decreases with increasing zb if A/b — M0 
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is smaller than zero. The highest yield is therefore obtained, and this holds also for 
the cash yield, if either the whole field is sown with oats or with barley. 

If the farmer wants—for fodder purposes—a mixture of oats and barley, the 
question arises whether it is more advantageous to grow the barley and the oats 
separately or in mixed culture. 

The answer can be arrived at without mathematics. The yield of barley or oats 
is proportional with the relative space occupied by these crops. Whether this space is 
obtained by sowing on separate parts of the fields or by competition in a mixed 
culture is immaterial. 

It can be shown that in both cases the barley yield is equal to 

Ob = MbM0ob[Mbo0 + M0obY
l 

and the oats yield is equal to 3.12 

00 = MbM0o0[Mbo0 + M0ob]~
l 

in which ob is the fraction of barley kernels in the harvest and oa the fraction of oat 
kernels in the harvest. 

There are, however, some advantages of mixed cultivation which may make this 
practice worthwhile. 

To the first place it appeared that the thousand kernel weight of oats in mixed 
cultivation is somewhat higher (figure 8) than in pure stand. Because of this the weight 
of the oat kernels grown in a mixed culture may be about 36/33 = 1.1 times or about 
10% higher than the weight of the oat kernels obtained in a pure stand. 

In the second place, it is sometimes difficult to cultivate barley alone, because of 
lodging and shortness of straw. Lodging is sometimes less if the barley is mixed with 
a certain portion of oats, which facilitates harvesting considerably and prevent loss 
of seeds. This is one of the chief reasons why mixed cultivation of barley and oats 
is practiced in the Netherlands. 

In the third place it may be that the pH of the soil of the field differs considerably 
from place to place and that on parts with a high pH it is advantageous to cultivate 
barley and on parts with a low pH advantageous to cultivate oats. Under such 
Conditions, it is most simple to sow a mixture of both species so that on spots with a 
low pH the oats establish themselves and on spots with a higher pH the barley. This 
seems to be one of the main reasons for mixed cultivation of barley and oats in Den­
mark (DE WAAL, 1951). 



4. CROWDING FOR THE SAME SPACE WITHIN 
MIXTURES OF HEALTHY AND DISEASED PLANTS 

4.0. SUMMARY 

It is well known that the yield depression due to the occurrence of a certain percentage 
diseased plants in a field crop is often lower than the yield depression which would be 
expected from the depression on fields with 100 percent diseased plants. 

It will be shown that this 'compensation power' of the healthy plants can be de­
scribed quantitatively by means of a relative crowding coefficient of healthy plants 
with respect to diseased plants. This holds also in the limiting case were the diseased 
plants do not grow at all. 

4.1. SECONDARY LEAF ROLL DISEASE OF POTATOES 

REESTMAN (1946) determined the yield of healthy potato plants and the yield of 
potato plants affected by secondary leaf roll in parts of a field where different fractions 
of leaf roll diseased plants occurred. It was found by REESTMAN that the yield of a 
healthy plant surrounded by 50 percent leaf roll plants was higher than the yield 
of a healthy plant surrounded by healthy plants, and the yield of leaf roll plants 
surrounded by 50 percent healthy plants lower than the. yield of leaf roll plants 
surrounded by leaf roll plants. The results of the experiments were schematically 
summarized by REESTMAN in a figure of the same type as our figure 6a. 

FIG. 12. The relation between the yield of healthy potatoes and potatoes affected with secondary leaf 
roll as influenced by the relative frequency of healthy plants in 1941 and 1942. Data from REESTMAN 
(1946). 

The results of the experiments with the variety 'Bintje' in 1941 and 1942, recalculated 
on a hectare basis under the assumption that the number of plants per hectare was 
40,000 (REESTMAN, pers. com.) are given in figure 12a and b. The relative frequency of 
healthy plants (rh) is given along the horizontal axis and the yield of potatoes in 
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tons per hectare of healthy plants and plants affected with secondary leaf roll along 
the vertical axis. 

The experimental results may be treated according the competition formulae 

Ob = kMzh[khizh + z,]~lMh and O, = z,rArh,zh + z,]_,A/, 

to obtain an estimate for the relative crowding coefficient of healthy plants in a 
mixture of healthy plants and leaf roll plants (khl), the yield of a field with 100% 
healthy plants (Mh) and the yield of a field with 100% leaf roll plants (M,). The agree­
ment between the experimental points and the calculated lines shows that the healthy 
and diseased plants affect each other only by crowding for the same space. 

The relative crowding coefficient was in both years 2 and the relative reproductive 
rate of healthy plants within a mixture of healthy plants and leaf roll plants was 
(33/21) 2 = 3.1 in 1941 and (42/37) 2 = 2.3 in 1942. As far as the effect of competition 
goes it should be concluded that the percentage of leaf roll diseased plants decreases 
rapidly in course of time, which is of course not true because leaf roll is an infectious 
disease. The relative crowding coefficient (khl) is larger than one because the adverse 
affect of growth of secondary leaf roll occurs already at an early stage. 

4.2. THE EFFECT OF LEAF RUST ON THE YIELD OF WHEAT 

KLAGES (1936) cultivated a Tritkum durum and Triticum vulgare variety as mono 
cultures and in 9 different proportions. The result of the experiment is given in figure 
13a, with along the vertical axis the yield in bushels per acre and along the horizontal 
axis the fraction of T. durum (zd) in the mixtures. The relative crowding coefficient 

z d u us z d 

FIG. 13. The relation between the yield of Triticum durum and Triticum vulgare as influenced by the 
relative seed frequency of the durum species. Triticum vulgare was seriously affected by leaf rust. 
Data from KLAGES (1936). 
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of the durum variety with respect to the vulgare variety appears to be 1.2, so that as 
far as crowding for space is concerned, the two varieties matched each other. The yield 
of the vulgare variety in mono culture is only 3.6 bushels per acre, compared with a 
yield of 13.5 bushels per acre of the durum variety. This low yield of the vulgare 
variety is, according KLAGES, due to a severe rust attack during the second part of 
the growing season, the durum variety being practically resistent against this rust. 

The relative crowding coefficient of about one indicates that during the first part 
of the growing season the plants of the two species grew equally well, so that at the 
end of the vegetative period the part of the space occupied by either of the species 
was proportional with the frequency of each species in the seed mixture. Subsequently, 
the rust attack affected the growth of the vulgare variety to a large extent, resulting 
in a low yield. At this stage, the plants of the durum variety were, however, full grown 
and not able to take over the space occupied by the vulgare variety at an earlier stage. 
As a consequence, the yield decrease due to the presence of diseased plants was not 
compensated by a better growth of the healthy plants. This result indicates again 
that small grains crowd only for space during their vegetative stage of development. 

The frequency diagram given in figure 13b, illustrates that the relative repro­
ductive rate of the durum variety is very high. It is mentioned here that KLAGES 

represented his results in such a frequency diagram but did not furnish any theoretical 
background. 

4.3. T H E MOST EXTREME FORM OF COMPETITION 

Mixtures of two varieties of a plant species, one being susceptible for a certain 
disease, may be subjected to attacks of different severity. The relative crowding 
coefficient of the resistent variety will increase with increasing severity of the attack 
when this disease occurs at a sufficient early stage. 

This course of events is already illustrated in section 3.5.2. where the effect of pH 
and different pre-treatments with nitrogen fertilizers on the competition within 
barley-oats mixtures was studied. The pH in this case may be understood as 'a soil 
borne disease which affects mainly the growth of barley'. The results on four sub-plots 
are given as a further illustration in figure 14. As far as crowding for space goes, 
the two species match each other under the growing conditions of figure 14a, the 
relative crowding coefficient of oats with respect to barley (kob and not kb0) being 
practically one. This coefficient is already appreciably higher under the conditions 
of figure 14b. As for figure 14c, the yield of barley is low when grown alone, and 
negligible when sown with 50 percent oats in the seed mixture; the relative crowding 
coefficient being increased to three. The most extreme case is reached under the 
conditions of figure 14d, where barley did not produce a yield cither in mixed culture 
nor in mono culture. The relative crowding coefficient is in this case increased to a 
value of about twenty. 

This relative crowding coefficient is then formally the relative crowding coefficient 
of oats with respect to barley, but practically the relative crowding coefficient of 
oats with respect to dead barley or 'empty space not allotted to oats'. In other words: 
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,06 kernels a 
ha 

*„h=0.9 

x barley • oats 

106 Kernels c 
ha 

FIG. 14. Competition between oats and barley on four sub-plots of the experiment of figure 11. Data 
from VAN DOBBEN (1955a and files). 
a. Calcium nitrate; pH-KCI = 4.0. 
b. Nitrolime; pH-KCl = 3.7. 
c. Ammonium sulphate; pH-KCl — 3.2. 
d. Ammonium sulphate pH-KCi - 3.1. 

the competition experiment between barley and oats is degenerated into a spacing 
experiment for oats. 

Hence there must be a 'degenerated form' of the competition formulae developed 
in section 3., which is suitable to describe quantitatively the result of spacing experiments. 



5. THE INTERPRETATION OF EXPERIMENTS 
ON SPACING 

5.0. SUMMARY 

The conclusion of the preceding section, that spacing experiments are a special form 
of competition experiments is worked out in detail. A formula for the relation between 
the yield and the seed rate is worked out on basis of some experimental results with 
small grains. 

This formula is applied on the results of some experiments with peas, beets and 
potatoes to illustrate some important applications and agricultural aspects. 

5.1. C R O W D I N G FOR SPACE WITHIN MONO CULTURES 

5.1.1. A spacing experiment with oats 

MONTGOMERY (1912) carried out a spacing experiment with Kherson oats in 1912. 
The experimental results were: 

seed rate 
yield 

1.25 
47 

2.5 
60 

5.0 
70 

x 10* kernels per hectare 
x 10" kernels per hectare 

Seed rates and yields are here given in number of kernels per hectare (supposing 
that 1 dm3 oats weights 0.5 kg and that the 1000 kernel weight of oats is 35 g) instead 
of in bushels and pecks per acre as done by MONTGOMERY. This facilitates comparison 
with the results of preceding sections. 

It may be arbitrary supposed that the unit square of figure 1 (m) equals 20 cm2 so 
that for a seed rate of 5 X 106 kernels per hectare each square is planted with one 
oat kernel; the relative frequency of the squares with oat seeds (z„) is then equal to 
one. At a seed rate of 2.5 X 106 kernels per hectare, the relative frequency of the 
squares with oat seeds is 0.5 and the relative frequency of the 'dead barley seeds' or 
more correctly of the squares without seeds (ze, in which the index e stands for empty 
square) is also 0.5. Likewise, the relative frequency of the squares with oat seeds is 
0.25 and of the squares without seeds 0.75 at a seed rate of 1.25 X 106 kernels per 
hectare. 

According equation 3.4b, the yield of oats may be represented by the formula 

0o = k0ezo{(ko*— lK+lF'A/, , 5.1 

in which M0 is the yield of a field on which all squares of 20 cm2 are planted with 
one oat kernel and koe is the relative crowding coefficient of squares of 20 cm2 with 
an oat seed with respect to squares of 20 cm2 without a seed. The similar equation 
for the other plant species is of course meaningless, because the squares not planted 
with oats are not planted at all. 
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As in section 3.3. it is to be investigated whether there is a value of koe such that 
there is a straight line relation between the yield of oats and the space 

A 0 = K o eZ0 [K o eZ0 + ZeJ 

It is seen in figure 15a that this is the case for koc = 6. The relation between the yield 
of oats and the relative frequency z0 or the seed rate in an auxiliary scale is given in 

2.5 
106 kernels/ha 

10* kernels 

60 

.40 
m = 10cm2 

0.5 
L_ 

z« 1 

5 « 10 
10B kernels/ha 

FIG. 15. A graphical treatment of a spacing experiment with oats. Data from MONTGOMERY (1912). 
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figure 15b. The crosses represent the observational points and the curve satisfies 
equation 5.1 with M0 = 71 x 106 kernels per hectare and koe — 6. • 

It may be supposed with as much justification that the surface of the unit square is 
10 cm2 instead of 20 cm2 in which case the relative frequencies of the squares with 
one oat seed are 0.5, 0.25 and 0.125 instead of 1, 0.5 and 0.25. The graphs which are 
obtained under this supposition are given in figure 15c and d. Now it appears that 
M0 = 77 X 106 kernels per hectare and koe = 11. However, M0 is now the yield of 
a field on which each square of 10 cm2 is planted with an oat seed, and koc is the 
relative crowding coefficient of squares of 10 cm2 with an oat seed with respect to 
squares of 10 cm2 without seeds. The values of the constants in equation 5.1 appear 
therefore to depend in a most inconvenient way on the arbitrary choice of the surface 
(m) of the squares with and without seeds. 

5.1.2. A spacing formula 

Let Mm be the yield per unit surface on a field with a seed on each m cm2 and Ms 

the yield per unit surface on a field with a seed on each s cm2 (s > m), then z„ = ms~l, 
so that, by substituting these values in equation 5.1, the following relation is obtained: 

Ms = k0tmS-
1{[k0-\]ms-l+ir1Mm={[ko-l]m + m}{[kBe-l]m + sr1Mm 

Division of the two equations which are obtained by substituting two arbitrary values 
for s shows that the value of the product (koe — \)m is independent of the arbitrary 
choice of m so that with 

•[*„, — 1 ]m = ß , 5.2a 

the following relation is found: 

M.= \ß + m][ß + s]-tMm 5.3 

It is now convenient to suppose that the surface of the reference square m is 0 so that 

M, = ß[ß + s]-lQ 5.4 

in which Q is the extrapolated yield at an infinite seed density. The extrapolated 
reproductive rate of one seed, sown on a very large field is equal to 

(Ms)M^ = {ß[ß + s\-iQs)^,.=ßQ 5.5 

The value of Q is expressed in kernels per cm2 or kernels per hectare, but units like 
kg per hectare, bushels per acre and so on may often do as well. The value of ß and 
the surface per seed is most conveniently expressed in cm2 per kernel, but units like 
ha per kilogram seed or acre per bushel seed, and so on may do also. 

According equation 5.4 the following relation holds 

. ß -\s = ßQM;1 5.6 

Hence if the inverse of the yield is plotted against the space per seed (or the inverse 
of the seed rate) a straight line is obtained. 
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This is shown in figure 16, where for MONTGOMERY'S experiment, the space per 
seed along the horizontal axis is plotted against the inverse of the yield along the 
vertical axis, both expressed in cm2 per kernel. The observational points are found 
on a straight line. The value of ß is now equal to the distance between the origin and 
the intersection of the line with the horizontal axis and the value of Q equal to the 
inverse of the distance between the origin and the intersection with the vertical axis. 
It appears that Q = 85 x 106 kernels per hectare and that ß = 100 cm2 per kernel. 

kernel 

kernel 

! n = 8 5 i l n 6 k e p e ! s 
, ho 
I 
I ^ 
I ^ - " 
l < Y 

B = I00cm2 /kernel 
40 
cm /kernel 

80 

FIG. 16. A graphical treatment of a spacing experiment with oats ; the inverse of the yield being plotted 
against the inverse of the seed rate, that is the space per kernel. The data are the same as those of 
figure 15. 

The reproductive rate of one single kernel should have been 100 cm2 kernel" ' x 
85 x 106 kernels hectare-' = 85. For a unit square (w) equal to 20cm2 a yield of 100 x 
120' x 85 x 106 = 71 x 106 kernels per hectare is calculated, the relative crowding 
coefficient being according to eq. 5.2a equal to 100 x 20"1 + 1 = 6 . These values 
for a unit square (m) equal to 10 cm2 are 77 x 106 kernels per hectare and 11, re­
spectively. These values were also found in figure 15. 

Because of its simplicity the graphical treatment in figure 16 of the experimental 
data is preferred, in spite of the distortion of random errors. Where random deviations 
are relatively considerable (this being always the case at low seed rates), the result 
is to be checked by plotting data and curve as in figure 15. 

5.1.3. The applicability ofthespacing formula ' . * • 

The relation between yield and space per seed is extrapolated to infinite large and 
small densities. However, it is well known that at dense seed rates, the yield may de­
crease considerably with increasing seed rates. This is illustrated in figure 17, where 
the inverse of the yield in bushels per acre is plotted against the inverse of the seed 
rate in pecks per acre for an experiment of MONTGOMERY (1912) with Kherson oats 
in 1907. 
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Such a yield depression may be due to the existence of some threshold density or 
space per plant beyond which the plants leave- each other such a small space that a 
normal development is impossible. This is obviously so, where, due to a limited supply 
of water, narrow spaced plants die during growth but wide spaced plants mature 
(DE WIT, 1958). 

Yield depressions at dense seed rates are, however, in many cases due to density 
dependent effects of inclement conditions. For instance dense covers are much more 

10 acre 
bu. 

30 

20 

FIG. 17. A spacing experiment with oats, 
showing a yield depression at narrow 
spacings. Data from MONTGOMERY (1912). 

10" acre/peck 

subject to lodging and subsequent rotting associated with inclement weather con­
ditions than normal covers. This is admirably illustrated by the absence of any de­
pression in the case of some experiments in 1959. 

Oats, barley and peas were sown at rates ranging from 1/10 up to 8 times the normal 
rate, but due to the very fine weather during the whole summer no yield depression 
occurred, except in one case at the highest seed rate (8 times normal) of oats, as can 
be seen in figure 18. The relation between yield and seed rate is given here in the normal 
way, because otherwise the yields at high seed rates can hardly be plotted. The yields 
are expressed in kg per ha, because the weight of the seeds is more affected by inclement 
growing conditions during the second half of the growing period than either the 
number of kernels or the total dry matter weight. Further details on the treatment of 
these experiments are given in section 8.4. 

It is of course also possible that at very low densities yields are affected by density 
dependent effects of winds, pests and diseases which are not accounted for in the 
present approach. 

There are many spacing experiments with small grains where the distance between 
the rows is varied, the number of seeds within the rows being the same. It is then 
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FIG. 18. The result of four spacing experiments with seed rates ranging from 1/10 to 8 times the 
normal seed rate obtained during the dry summer of 1959. (See also section 8.4.) 
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FIG. 19. The result of four spacing ex­
periments with small grains, only the 
distance between the rows being varied. 
Data from VAN DOBBEN (1957). 
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necessary to consider the seed rows, instead of the seed as the 'unit' and to express 
the inverse of the seed rate in centimeters per row instead of square centimeters per 
seed. Four such experiments of VAN DOBBEN (1957) with small grains are treated 
in figure 19. VAN DOBBEN sowed the small grains at a row distance of 25 (or 20) cm 
and skipped on some plots each third row and on others each second row. The row 
distances were therefore 25 (20) cm, 25 (20)-50 (40) cm or 37.5 (30) cm on the average, 
and 50 (40) cm. At one field the row distance was actually 30 cm; the yield difference 
with the distance 20-40 cm was negligible. The values of ß varied here from about 
120 cm to even 250 cm per row. This means that the rows are to be sown about 
200 cm apart to obtain a yield which is the half of the ceiling yield (Q). 

Hence, to find any effect of spacing on yield, it is necessary to include wide row or 
seed distances. There are many experiments were the seed rate, row distance or plant 
number varies only a few ten procent. The results of such experiments are next to 
useless, because the random errors are large compared with the effect of spacing which 
can be expected. 

5.2. SOME SPACING EXPERIMENTS WITH BEETS 

The results of several spacing experiments with beets were discussed in another paper 
(DE WIT, 1959), so that only the most important aspects will be reviewed here. 

PFEIFFER and SIMMERMACHER (1917) reported the fresh weight of sugar beets at 
widely different plant numbers per surface unit as determined by WOLLNY. The result 

FIG. 20. The result of a spacing 
experiment with sugar beets. 
Data from PFEIFFER and 
SIMMERMACHER (1917). !/plont 

is given in figure 20 with along the vertical axis the inverse of the fresh weight in m2 

kg-1 and along the horizontal axis the space per plant in cm2 per plant. The yield 
data for spaces of more than 1600 cm2 per plant are smoothed by a straight line. 
At the intersections with the axis it is read that the yield Q is 140 tons per hectare 
and the value of ß equal to 3000 cm2. From a space of about 1600 cm2 per plant (that 
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is 6.25 x 104 plants per hectare) onwards the yield decreases with increasing plant 
density. 

PFEIFFER and SIMMERMACHER (1917) cultivated 1, 3 and 5 beets in containers with 
a diameter of about 30 cm which were buried in the soil at a distance of 75 cm from 
each other. The space available for the roots was therefore 700, 235 and 140 cm2 per 
plant and for the leaves 5625, 1875 and 1125 cm2 per plant. The observational points 
in figure 21, where the relation between the inverse of the yield and the space per 

' container 
kg dry m. 

0.4 
. 1 

0.3 

0.2 

FIG. 21. The result of a spacing experiment 
—I 1 with sugar beets. 

2800 si 5 6 0 0 s\: space per plant for the leaves. 
sr : space per plant for the roots. I 1 1 

o 350 s r 700 Data from PFEIFFER and SIMMERMACHER 
cmVplant (1917). 

plant is given are found on a straight line, so that no sign of yield depression due to 
dense planting can be found. Taking in account the large weight of the beets and the 
extremely low available space for the roots, it seems that the occurrence of this de­
pression depends on the amount of space available for the leaves and not on the 
amount of space available for the roots. 

The results of a large number of experiments with fodder beets on sandy soils in 
the south of the Netherlands, published by VAN DILLEWIJN and SMEENK (1944) are 
summarized in figure 22, with along the vertical axis the inverse of the dry matter 
yields of the beets in m2 kg-1 and along the horizontal axis the space per plant in cm2. 
The 21 experiments of 1939 are grouped in experiments with a relatively low, an 
average and a relatively high yield. The yields for all three levels at the five treatments 
are represented by full dots. The results of the 10 experiments in 1940 are grouped 
in experiments with a relatively high and low yield and represented by open dots The 
average results of the seven experiments in 1941 are represented by crosses. Through­
out the whole traject of spacing and in all three years, the results can be smoothed 
by straight lines. 

The slope of the yield-lines appears to be positively correlated with the inverse of 
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the yields or negatively correlated with the yield itself. This slope of the line is equal 
to (jSß)-1 or the inverse of the weight of one plant growing alone (equation 5.5). 
This correlation between yield level and slope implies that the relative effect of plant 
density on yields is high when yields at normal plant densities are low. 

kg dry m. 

1.6 

1.2 

0.8 

0.6 h 

FIG. 22. The average results of spacing 
experiments with fodder beets on sandy 
soils in the Netherlands. Data from VAN 
DILLEWIJN and SMEENK (1944). 

U 
1000 1500 2000 

i2 /p lont 

This relation between the effect of plant rate and yield level is also found for other 
plant species, as may be seen in figure 19 and 24. A practical consequence is that, 
where yield depressions due to dense planting do not occur, it is advantageous to 
plant or sow at high rates under conditions where yields are low. This is a conclusion 
which was of course already arrived at by VAN DILLEWIJN and SMEENK (1944). 
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An interpretation of spacing experiments with sugar beets carried out in the 
Netherlands appeared to be difficult because yield depressions due to dense planting 
occurred already at plant rates smaller than 1000 plants per are. A discussion of the 
results, which are of small importance here, was given in another paper (DE WIT, 1959). 

5.2.1. The value of ß throughout the growing season 

It was already remarked in section 3.2. that the relative crowding coefficients 
characterize not the process of crowding for space itself, but only the result of this 
crowding. 

This is very well illustrated by the change of the value of ß during growth, this 
constant being nothing else than some transformed relative crowding coefficient. 
At the beginning of growth ß is very small, since the seedlings must grow very close 
together before the growth is affected. At the end of the growing season ß is, however, 
of the order of a few thousand cm2 per plant. Likewise the value of Q increases 
during growth. 

The result of spacing experiments which were periodically harvested are to be 
analysed to obtain some information on the course of the values for/? and Q throughout 
the season. 

VAN GINNEKEN (1934) carried out such an experiment, of which the results are 
given in figure 23a. The scattering of the observations is relatively large because the 
plots were small. The observations are smoothed in the following way. A free hand 
curve is drawn through the observations in figure 23a for each plant density. Sub­
sequently the smoothed yields at the dates 15 July, 1 August, 15 August, 15 September 
and 15 October are read and plotted in the graph of figure 23b, with along the horizon­
tal axis the space per plant in cm2 and along the vertical axis the inverse of the yield. 
These points are smoothed by straight lines and the curves of figure 23a are sub­
sequently corrected. The resulting average curves are given in the figures. 

The relations between the date and the values of ß and Q as read in figure 23b are 
represented in figure 23c, with the date along the horizontal axis and ß and Q along 
the vertical axis. The scales are chosen such that the observational points at 15 October 
coincide. It appears that the value of ß remains constant from the second half of 
August onwards, although the weight of the beets (and the value of Q) still increases. 
Apparently, the beets are at the middle of August at the end of their development 
and from that time onwards not capable to occupy more space. 

The leaf weight in grams per plant (averaged over the four densities) is represented 
by open dots in the same figure, such that the maximum leaf weight coincides with 
the maximum of ß and Q. The points show that the leaf weight remains also constant 
from the middle of August onwards. This indicates that here ß depends on the leaf 
development. 

As for small grains the competition for space takes mainly place during the vege­
tative period which ends at the beginning of heading. Any adverse effect of diseases, 
etc. after this stage cannot be compensated for by a better growth of not affected 
plants. An analogous stage in the development of the beets appears to be the point 
at which the maximum leaf mass is reached. It must be concluded also that any 
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FIG. 23. The result of a spacing experiment with sugar beets harvested at intervals from the beginning 
of July onwards. Data from VAN GINNEKEN (1934). 

adverse effect of diseases, pests, etc. before this time can be compensated to some 
extent by better growth of not affected plants, but that this is not the case after 
the leaf mass does not increase any more. It should be taken into account that, although 
the total leaf mass remains the same, old leaves die and young leaves are growing. 
It is of course also possible—and in general the rule at the end of the growing season-
that the total leaf mass decreases. This is, however, of secondary importance, as far 
as the present conclusions concern. 
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5.3. A SPACING EXPERIMENT WITH PEAS 

VITTUM et.al. (1958) published the result of spacing experiments with peas, carried 
out in the years 1952, 1953 and 1954. The treatments were: 

I. Normal 7 inch row, with a normal seed rate of 3.61 bu per acre. 
II. As above, but each second row skipped (14 inch row distance). 
III. As above, but each third row skipped ((7 + 14)/2 = 10.5 inch row distance, on 

the average). 
IV. Normal 7 inch row, but with about two third of normal seed rate. 
Assuming that 1 hectoliter of the peas weighted 80 kilograms and that the thousand 

kernel weight of peas was 275 grams, the following surfaces per kernel, and distances 
between and in the rows are obtained : 

Treatment ; lbs/acre 

I 
II 
III 
IV 

1.81 
2.41 
2.54 

kg/ha 

3.61 ! 252 
126 
168 
177 

cm2/kernel 

109 
218 
164 
156 

Distance in cm 

between rows in rows 

17.8 
35.6 
26.6 
17.8 

6.09 
6.09 
6.09 
8.75 

„-« ha 0 W 
8 r 

--~t 

100 200 
cm/kernel 

FIG. 24. The result of three spacing experiments with 
peas. Data from VITTUM et al. (1958). 

The treatments I,'II and III differ only as far as the distance between the rows and the 
treatments I and IV only as far the distance within the rows is concerned. 

The results are represented in figure 24. Along the horizontal axis the surface per 
kernel in cm2 is plotted and along the vertical axis the inverse of the yield in 10~" ha/kg. 
The observational points for the treatments I, II and III for the three years 1952,1953 
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and 1954 are smoothed by the solid straight lines. It appears again that the slope of 
the line is negatively correlated with the yield level. 

The yield of treatment IV with a space of 156 cm2 per kernel and a distance within 
the rows of 8.75 cm is in all three years equal to the yield which should have been 
obtained with a space of about 135 cm2 per kernel but a distance within the row of 
6.09 cm. The deviation from the straight line is the largest for 1954, because in that 
year the effect of density on yield was relatively the highest. 

The solid lines hold therefore only when the row distance is varied, but the distance 
within the row is kept on 6.09 cm. The broken line, drawn only for the year 1954, 
holds on the other hand when the row distance is kept on 17.8 cm but the distance 
within the row is varied. 

The cotangent of the angle of the broken line and the horizontal axis is equal to 
5.3 gram per kernel. This is the yield of one kernel at a distance between the rows of 
17.8 cm, the row being wide apart from any other row. Likewise, it is calculated 
that the yield of one kernel planted at a distance of 6.09 cm within a row, which is 
wide apart from other rows, is only 3.1 gram per kernel. 

This large difference shows that in spacing experiments it is necessary to plant the 
seeds either according to a fixed pattern or in rows with the same distance between the 
kernels, and that an indiscriminate mixture of methods may be very inconvenient. 

5.4. SEED RATE AND YIELD OF POTATOES 

As for potatoes, the results of several spacing experiments with the variety 'Alpha' 
carried out from 1956 to 1958, were given by REESTMAN and DE WIT (1959), so that 
it is not necessary to discuss details in this paper. The relation between plant number 
and yield depends of the size of the seed piece; the yield from small pieces being much 
lower than the yield from large pieces especially at low plant densities. 

The relation between the inverse of the yield and the inverse of the seed rate, both 
in are k g ' , is plotted in figure 25a for the average of seven experiments and for the 
set sizes 25-28 mm (solid dots), 35-45 mm (open dots) and 45-60 mm (crosses). 
The width of the rows was at all plant densities 60 cm, the planting rate being varied 
only by varying the distance within the rows. 

The value of ß is 450 are kg"1 and appears to be more or less independent of the 
size of set; which indicates that the yield is independent of the size of the seed pieces 
at high plant densities. The value of ß is, however, 0.37, 0.22 and 0.12 arc k g 1 for 
the set sizes 25-28, 35-45 and 45-60 mm, respectively. Large potatoes, planted alone, 
produce therefore much less per unit weight than small potatoes, so that it must be 
concluded that the weight of the seed is not a good measure for the seed rate. 

It was found (REESTMAN and DE WIT, 1959) that there is a close relation between 
the yield and the number of stems per unit surface and that the number of stems per 
seed, when planted alone, is proportional with the surface of skin of the seed pieces. 
For this reason the seed rate was expressed in surface of skin per unit surface of soil. 
As a consequence and to account for the size distribution of the tubers produced, 
the harvest was also expressed in surface of skin per unit surface of soil.. 
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The result is given in figure 25b, which concerns the relation between the inverse 
of the seed rate and the inverse of the yield both expressed in are of field per m2 

surface of skin. The observations for each size of set are now neatly on straight lines, 
the deviations being much less than in figure 25a. The value of Q is again independent 
of the size of set, and the values of ß are 0.93, 0.80 and 0.63 are m~2, for the size of 
set of 25-28, 35-45 and 45-60 mm, respectively. 
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FIG! 25. The average result of spacing experiments with potatoes (1 are : 
a. Based on weight of the tubers. 
b. Based on surface of skin of the tubers. 
Data from REESTMAN and DE WIT (1959). 

10 2 hectare). 

Especially the value ofjS for the largest sets is smaller than for the smaller sets. 
The potato stems are distributed in groups of five to ten in case of large sets, whereas 
with small seed pieces the stems are distributed in groups of one to two. Apparently, 
the large reserve per unit surface of skin for large seeds, cannot be used to overcome 
completely the disadvantage of irregular distribution of the stems. 

The yield of large seed pieces may be improved by better distribution of the stems 
obtained by cutting. When the pieces are cut to the weight of seeds of small sets, the 
yield is lower than for small sets planted at the same number. On the other hand, if 
large sets are cut such that the surface of skin of the pieces is equal to the surface of 
skin of small sets, the yield is the same as the yield from small sets planted at the 
same number (REESTMAN and DE WIT (1959)). 



6. THE GROWTH OF POPULATIONS 

6.0. SUMMARY 

The time-yield relation which is obtained by resowing again and again the harvest, 
starting from one plant, is studied. It will be shown that this relation is the same as 
the PEARL-VERHULST equation of logistic population growth. Some classical ex­
periments on the growth of yeast and Drosophila populations will be interpreted as 
spacing experiments. 

The applicability of the logistic equation in animal population dynamics is com­
pared with the applicability in agriculture. 

6.1 . A TIME SERIES 

Let it be supposed that in the spacing formula 

Mt=ß\ß + sTxQ 5.4 

the value of Q is 100 kernels per unit surface and the value of ß is 0.02 unit surface 
per kernel. 

Provided that growing conditions are the same during a number of years and that 
stochastic effects are absent, the number of kernels [Mt+l] which is obtained in the 
[t + l]th year by resowing the harvest [Mt] of the / th year may be calculated by 
means of the formula 

M,+ l=ß[fi + M;1]-1Q 6.1 

which is the same as formula (5.4) but for Ms and s being substituted Mt+1 and M"1. 
The result is represented in figure 26 with along the vertical axis the number of 

kernels per unit surface and along the horizontal axis the number of years, supposing 
the first year being started with one kernel. 

The number of kernels appear to approach a maximum, which is equal to [ß — ß'1]-
Any disturbancies around the maximum due to adverse effects of dense seed rates 
are not taken into account. It is a matter of course that in actual experiments such 
disturbancies play a dominant part and that yields do not approach to this maximum 
but may show a more or less cyclic variation around this maximum. The shape of 
the curve is very similar to the well known sigmoid curves of population growth, a 
similarity which is studied in detail in the next sections. 

6.2. TWO CLASSICAL EXPERIMENTS ON 

POPULATION GROWTH INTERPRETED AS SPACING EXPERIMENTS 

PEARL (1930) was able to carry out experiments on population growth of Drosophila 
in pint bottles nearly through to completion by adding food skilfully and in small 
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FIG. 26. The relation between 
yield and time in years which 
is obtained by resowing the 
harvest of the previous year. 

The curve is calculated by 
substituting in the spacing for­
mula a value of 100 kernels 
per unit surface for Q and of 
0.02 unit surface per kernel 
for/?. 

bottles /fly 

FIG. 27. The result of an experiment on the growth of a Dro.wphila population, plotted as a growth 
curve (figure a) and treated as a spacing experiment (figure b). Data from PEARL (1930). 
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amounts. The result of one of his experiments (PEARL'S table 10) is represented in 
figure 27a. The number of flies per bottle, as determined by counting, is given along 
the vertical axis, and the number of days since the introduction of a small population 
along the horizontal axis. The observations were done with three days intervals 
except on two occasions around Christmas and New Year. For reasons which are 
obvious later on, it is necessary to work with equal intervals between sample dates, 
so that a number of 499 flies on the 25th day, is here replaced by a number of 465 flies 
on the 24th day and a number of 618 flies on the 29th day by 650 on the 30th day. 

Disregarding for biological (PEARL, 1930) and statistical reasons (section 6.4.) the 
data for the first sampling dates, it may be supposed that PEARL executed a spacing 
experiment, in which the harvest (being here all the living material) at the ninth day 
was resown directly afterwards, the bottle again harvested at the twelfth day, the 
harvest resown again, and so on the 15th, 18th to the 39th day. 

If a Drosophila population reacts in the same way on spacing as plants do, so a 
straight line would be obtained if the inverse of the yield on the 9th day, is plotted 
against the inverse of the yield on the 12th day, the inverse of the yield on the 12th day 
against the inverse on the 15th day, and so on, taking care of course to compare only 
samples with the same time interval in between. 

This is done in figure 27b from the 12th day onwards. The observations are actually 
close to the straight line which is drawn through the points. The Drosophila experiment 
may be interpreted therefore as a simple spacing experiment, or in other words: the 
intraspecific competition within the Drosophila population of the pint bottle may be 
interpreted as an interspecific competition between the Drosophila population and 
'empty space, (see section 4.3.). Citing NICHOLSON (1954), 'growth is here governed 
by space or by a transient requisite which gives a constant favourable quality to space, 
like food added in small amounts'. 

The values of Q and ß as read at the intersections with the vertical and horizontal 
axis are 2500 flies per bottle and 0.00067 bottles per fly. The number of flies can never 
be larger than the number which is indicated by the intersection of the line with the 
45 degrees line dotted in figure 27, because at this point the number of flies harvested 
is the same as the number of flies sown. This maximum number of flies is read to 
be 1000 flies per bottle and in the following represented by the symbol K. Of course, 
the straight line relation may be disturbed before this density in actual experiments, 
because of overcrowding or deterioration of the environment. This is actually the 
reason why PEARL finished his experiments before the maximum value was reached. 

The tangent of the yield line with the horizontal axis is equal to (jßß)-1 so that 

K~l = [ßQ]~l[ß + K~l] or K = Q — ß~l 6.2 

For the present example this maximum appeared to be indeed 2500 — (0.00067)-' = 
1000 flies per bottle. 

The smoothed relation between the number of flies and the number of days may 
be found as follows. On the t-th day the number of flies may supposed to be 167, so 
that the inverse is equal to 0.0060. It is then read in graph b that the inverse of the 
number of flies on the (/ + 3)th day is 0.0041 or the number itself 244 flies per bottle. 
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Likewise it is read that on the (t — 3)th day the inverse of the yield is 0.0091 and the 
yield itself 110 flies per bottle. The yield on the (t + 6)th and (t — 6)th day and so 
on may be read now in the same way. The relation between the number of flies per 
bottle and the time may now be drawn on transparent paper with the same scale as 
figure 27a. To adjust the time scale or to eliminate the arbitrary time /.the transparent 
graph is shifted horizontally over the graph with the observations (figure 27a) until 
a good .fit is obtained. The curve obtained in this way is drawn in figure 27a, where it 
is seen that the resulting curve fits the observations quite well. 

yeost unit 
vessel 

0.01 0.03 0.04 

^f vessel/yeast unit 

FIG. 28. The result of an experiment on the growth of a yeast population, plotted as a growth curve 
(figure a) and treated as a spacing experiment (figure b). From data cited by PEARL (1930). 

PEARL reports in his table 4 also the results of an experiment with yeast. 
These results are represented here in figure 28a. In figure 28b the inverse of the yield 

at the second hour is plotted against the inverse of the yield at the third hour, the inverse 
at the third hour against the inverse at the fourth hour and so on. The observations 
are again on a straight line. At the intersection with the dotted 45 degrees line it is 
read that the maximum yeast population (K) was 660 yeast units per vessel and from 
the slope of the line it is read that (jSß)-1 is equal to 0.635, so that with equation 6.2 
it is calculated that ß is equal to 0.00087 vessels per yeast unit and Q equal to 1800 
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yeast units per vessel. These values may be read also at the intersections with the 
horizontal and vertical axis, but with less accuracy. The relation between population 
growth and time is reconstructed in the same way as is done for the Drosophila 
population and given in the graph of figure 28a. The growth of yeast is inhibited by 
its alcohol production, so that at its maximum density the yeast is in a state of rest, 
which explains why here any random or cyclic scattering around the maximum is 
absent. 

6.3. T H E LOGISTIC CURVE 

Sigmoid curves of the above type are in general described on basis of the logistic 
differential equation (LOTKA, 1925;VOLTERRA, 1928; PEARL, 1930; and many others): 

dM^dty1 =rMt[K—M,]K~1 6.3 

in which r is the coefficient of increase which a population would have if ample space, 
that is 'food' (see section 3.2.) is available, K the maximum or equilibrium density 
under the conditions of growth and Mt the yield on time t. 

A solution of this equation is the following 

Mt + At[Mt + At-KYl =Mt[Mt-KYx€M 6.4 

in which Ml+At and Mt are yields at two moments, of which the time interval is 
represented by the symbol At. This equation may, with Mt+At explicite, be rewritten 
as follows: 

Mt + At^KtrMM,{K + WM-\]Mtr
i= 6.5 

= [erA, — l]K-1{Wit — l]K-1 + M-1riKerA'[erAt — l]-1 

so that by substituting: , ' 

/?=[e >«-l]K-1
 6 6 

Q = KeTA'[erA'— I ] " 1 

the following relation is obtained 

Mt + At = ß\ß + M;-y]-lQ 6.7 
This relation is identical with our equations 5.4 and 6.1. 

Consequently, logistic growth of animal populations can only occur if the growth 
is only and promptly governed by the space (or some transient requisite associated 
with space) the animals secure by means of'scrambling' (compare NICHOLSON, 1954). 

The value of (Q — ß~l) is indeed equal to K, whereas 
•ßa = eAt 6.8 

ßQ was also equal to cotg y (figure 16) so that the slope of the lines in figure 27 and 
28 and the values of the constants ß and Q appear to depend on the length of the time 
interval chosen, a conclusion which in its qualitative form is obvious. 
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6.4. THE APPLICABILITY OF THE LOGISTIC MODEL 

There are many experiments on growth of animal populations which cannot be de­
scribed by means of the logistic model (compare for instance ANDREWARTHA and 
BIRCH, 1954; NICHOLSON, 1954). It is therefore not surprising that animal ecologists, 
convinced as they are from the complexity of their subject, are sceptical as to the appli­
cability of the logistic theory or sometimes even to the usefulness of any theories. 
On the other hand, it was found in this paper that the spacing formula, being a special 
solution of the logistic differential equation is, as far as the effect of density on the 
growth of plants is concerned, of wide applicability, in spite of the fact that the growth 
of plants is in itself not less complicated than the growth of animals. The reason of 
this difference in usefulness of the logistic theory is due to the different experimental 
approach. 

In spacing experiments, seeds are sown in one season at different densities and this 
seed rate is only related with the yield of similar seeds at maturity. So, the experiment 
is completed with one generation and the data concern only those parts of the plant, 
which stay over during some dormant or winter season. In experiments on population 
growth, however, a medium provided with a constant rate of a transient requisite 
is inoculated with a small amount of the species concerned which are left to develop, 
census counts being taken at intervals. 

It is evident, that during such growth experiments, the condition of the medium 
must be kept the same, although the presence of the population results in irreversible 
changes of the medium. To keep the medium the same, it is necessary to change this 
medium frequently. In general, techniques are developed where the changing of the 
medium and the addition of the transient requisite (in general food) is combined. If 
one succeeds sofar with the experiment it may be (as found by FRANK (1957) with 
experiments with Daphnia) that the properties of the population depend on the period 
jt is living in the medium. As for spacing experiments, there is no such change of the 
medium and no adaptation of the species with respect to the growing conditions, 
because the experiment is completed in one season with one generation. 

In a medium of an experiment on growth of for instance insects populations there 
are eggs, larvae, puppae, and adults which proportions may or may not change 
during growth. Under such conditions, it is often difficult to obtain census counts, 
because it is often impossible to know whether biomass, number of adults, number of 
individuals and so on are to be weighted, measured, counted and so on. A plant 
passes also many stages of development from germination until ripening. However, 
to study the effect of spacing on the multiplication of the plant species, it is only 
necessary to consider the seed rate and the harvest rate. It is admitted that sometimes, 
as is the case with small grains, the rates are to be expressed in number of seeds per 
surface unit of the field, or, sometimes, as is the case with potatoes, in surface of skin 
per surface unit of the field, and that with other plants other ways of measure may be the 
most useful. However, it is only necessary to consider the parts of the plants which 
stay over during the winter or dormant season. It is not necessary to study the growth 
phenomena itself, in order to develop the general laws considered in this treatment. 
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Spacing experiments can be carried out with animals. One may take animals in 
the form as they stay over their 'dormant' or 'winter' season, 'sow' these animals at 
different rates in a suitable medium and determine the 'yield' of offspring after one or 
may be a few generations. It depends of course on the species, whether this 'yield' 
of offspring is to be expressed in number of individuals, weight of the individuals, 
fertility of the individuals or such a measure. The data collected in this way may be 
treated as the data of a spacing experiment with field crops. If, which is of course not 
necessarily so, the relation between inverse of the 'seed rate' and the inverse of the 
'yield rate' is a straight line it is possible to calculate the values of ß and of G and from 
these the parameters of the normal logistic equation, which are the saturation rate 
(K) and the initial rate of increase (r). 

Since under the conditions of such experiments, 'space' (or a transient requisite 
associated with space) will be in general the main governing factor, it is to be expected 
—as is the case with plants—that in many cases logistic relations result. 

This logistic relation must be interpreted in its own rights, taking in account the 
conditions of the experiment. It must be realised that such an experiment gives no 
information at all on 'conditioning' either of the medium nor of the animal species. 

Of course there are still experimental difficulties. In the first place there may be 
unavoidable pests, diseases and so on, of which the effects may be density dependent. 
As far as field experiments with plants are concerned, the occurrence of those is all 
but unlikely. In the second place there may be, especially in case of animals, a treshold 
density beyond which the growth is abnormal, because too small an amount of a 
necessary requisite is available for each individual. The resulting effects must be 
treated along the same lines as oscillatory scattering around the saturation rate in 
experiments on growth, and need no further consideration here. 

At last it must be mentioned that the growth of small experimental populations 
may to a large extent be affected by random factors. These effects have been studied 
recently by BARTLETT (1957), LESLIE (1958) and LESLIE and GOWER (1958) which arc 
mentioned here because their statistical views run to some extent parallel with the 
present approach. 

These investigators also derived from the logistic differential equation, equation 
6.7 and they supposed that the growth during the time interval At is not only deter­
mined by this equation but also by some stochastic or random term. Some models 
for this stochastic term have been developed, and in step by step calculations the 
census counts ('yields'), as affected by this stochastic term, were substituted. By such 
'Monte Carlo' processes, a random logistic may be obtained, of which the behaviour 
can be studied and compared with actual experimental growth curves. LESLIE (1958) 
came to the conclusion that the mean values of a random logistic can be fitted by 
any ordinary logistic curve, and that the estimates of the parameters for these ex­
perimental logistics gradually approach the true values of the process as numbers 
increase in magnitude. For a large population we might conclude according to LESLIE 

that to a fairly close approximation the deterministic model is for all practical purposes 
the same as the mean stochastic model. These conclusions hold, of course also for 
spacing experiments as considered here. 
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6.5. ANOTHER APPROACH 

A team of the Institute of Polytechnics of the Osaka University in Japan, working on 
.ntraspecific competition among higher plants described the results of their spacing 
experiments with the so-called density-effect law which is represented by one of the 
following two equations: 

wp" = C or yp°-1 = C 6.9 

Ine^entitv' Vf ? ^ ^ 8 V C r a 8 B P ' a n t W e ^ h t ' t o t a l P I a n t *** ^ area and 
constn fden "H" ( l - e ' n u m b e r o f P ' a n t s Per area), respectively' Both a and Care 
c T n e d l n H ? g ^ n ^ r a t ! , 0 n ° f g f O W t h a f t e r S e e d i n ^ t h e f o r m ^ r being called the 
i n T e x Ï Ô l l " ( r " D ) n " ^ W k h t h e p r ° g r e s s o f t ime> t h * value of the C-D 
i o d 1 t t t e " ' T T ° * ' = °t0 a b 0 U t 1 at / = co. For «== 1 the second equa-non qegenerates into the equation 

^leot^™TWSim thu U l t i m a t e l y t h e y i d d o f a fie,d » independent of the ^tX&ïïs££rn°for a,field of grassiand- gLgsufficient 
one season. over-simphcation for crops which grow only 

C H S ™ 1 a n d K l R A ( 1 9 5 6 ) d e V e l °P e d o n f » basis a logistic theory of the C-D 

~ E ^ - * P-« »• <» weight W is 

d ^ d O - ^ x H - f ^ - i v j H / - 1
 6.10a 

with the solution 

H ' = W [ l + * e - i » r 1 6.10b 

s t n t S S ^ Both ^ a n d A are con-
condition. In the second n l L t e g r a t l 0 n C O n s t a n t k i s determined by the initial 
Plant is i n d e p ^ n d n t o ^ 1 ^ ™ « ^ t h e C o e f f i c - < of growth of a single 
ultimate yield p e r W r / v f - £ p l * n t l n 8 ( / , ) ' a n d i n t h e third place that the 

a v^;,-.«, — r J is constant, that is 

pW=Y is independent of p 6.11 

At last it is of course assumed thnt th» • u „ 
i ndependen t of P, that f T g h t ° f e a c h seed> »wn at the time / = 0 

(w),=o = u'o is independent of P 
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From these rather arbitrary assumptions an equation describing the relation between 
plant density and weight is arrived at in the following way: 

Let t — 0 in equation 6.10b then 

w 0 = W[\ +k]-1 = Yp-i[\ +k]-x 

so that , 
k=Y[woP]~1 — \ 6.12 

By substituting equation 6.11 and 6.12 in equation 6.10b the following relation is 

w' 

Putting in equation 6.13 

obtained « i j,„ i i, 
•-* = Y-l[i — e-l,]p + w o e - 1 ' 6.13 

the relation 

A = Y~1[l — e~lt] 6.13.1 

B=wöle~it 6.13.2 

w~l = Ap + B 6.14 

is found between the weight per plant (w) and the density (p), so that the yield per area 
is given by the following equation: 

By putting _ t 

y = p[AP + B]-1 6.15 

s==p'1 Q = A~l ß = AB~l and M,= y 

the spacing formula , 
Ms = ß[ß + s]~lQ 5.4 

arrived at in section 5.1.2. is obtained. 
The ultimate yield Y, reached at / = oo, assumed to be independent of density 

of planting, is according the equation 6.13.1 (t — oo) equal to A~l or nothing else 
but our yield ceiling Ü. The constant B is equal to (/?ß)_1 or the inverse of the weight 
of a single plant, growing alone. 

According to eq. 6.13.2 of SHINOZAKI and KIRA this weight of a single plant should 
increase exponentially with time, beyond all limits. This is evidently impossible, but 
not at variance with their eq. 6.10b, because it is assumed (see eq. 6.12) that the con­
stant k increases beyond all limits with decreasing density. It is proved, however, that 
in stead of eq. 6.11 the relation [p + ô] W = Y, in which ô is a constant, suffices to 
arrive at eq. 6.15. 

The authors test their spacing formula by plotting the inverse of the yield per plant 
against density, as done in figure 29. The observations arrange indeed around a 
straight line which furnishes a proof of the usefulness of their formula 6.14 and 6.15 
and of course also of the spacing formula 5.4 arrived at in the present paper. 

The authors suggest that in this way the correctness and necessity of their initial set 
of assumptions is proved. However, the same spacing formula is arrived at in section 
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5.1.2. and tied up with the logistic equation in section 6.3 without making any assump­
tions regarding the seasonal growth of the plants. Whether this growth is logistic or 
not is completely immaterial. 

Apparently, the applicability of an equation as this spacing formula does not prove 
the correctness of a set of underlying assumptions. On the contrary, care should be 

FIG. 29. The result of a spacing 
experiment with carrots, the in­
verse of the yield per plant (w-1) 
being plotted against the plant 
density (p). (Redrawn after 
figure 13 of SHINOZAKI and 
KIRA (1956).) 

likely .ha, herealso lhe approach „ ^ t ^ Ä T •» I«». •»* " -

modiftaeior, to competiüon problems. P * '° *° 'h ,S f o r a n e x t t " s i m o f ,h lS 



7. CROWDING FOR THE SAME SPACE 
WITHIN MIXTURES OF MORE THAN TWO SPECIES 

7.0. SUMMARY 

The equations describing the effect of crowding for space within mixtures of two 
species may be extended to mixtures of more than two species. The experimental 
data which are given do not prove the applicability of the model, but illustrate only 
its qualitative aspects. 

7.1. T H E BASIC EQUATIONS 

In analogy with the equations for multicomponent mixtures (section 2.2.) and the 
equations 3.2 (section 3.2.) for crowding for space within a mixture of two species, 
the following equations may be written if« species affect each other only by crowding 
for the same space. 

Ai:A1:... : Ak:... : A„ = blZl:b2Z2:.. .:bkZk b„Zn 

2 Ak •= a constant = 1 
k=l 

7.1a 

7.1b 

2 Z t = w _ 1 7.1c 
k=l 

in which Ak is the relative space occupied by species Sk, Zk the seed rate and bk the 
crowding coefficient of species %k; there being (n — 1) independent crowding coef­
ficients. The constant m is the surface of the unit square in figure 1. 

It follows from 7.1 that 
- l 

Aj = bjZj S b„Z, k^k 7.2 

so that, the yield being proportional with the relative space and M. being the yield 
of species Sy when planted alone at a seed rate in~\ the yield of species Sy in mixed 
culture is 

O j = bjZj S bkZk 

- l 

M j = bjZj Zbkzk Mj 7.3 

in which Zj is the relative seed frequency i.e. 

zj = Zj fZ<] 
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The relative reproductive rate of species Sk with respect to species S,- is equal to 

«kJ = [OkZk~
l ] [OjZJ 1rl = [bkAfk] [bjAfj]- ' 7.4 

and thus again independent of the composition of the mixture. 
Consequently, the values of the (AI— 1) independent relative crowding coefficients 

(Ay»,-1) may be obtained by cultivating the species in (AZ— 1) combinations of two 
under the same conditions. 

It is convenient to express the relative reproductive rates with respect to an arbitrary 
reference species S;. The relative reproductive rate of this reference species is then 
equal to one, whereas the following equation for the relative reproductive rate of 
two arbitrary species Sk and S; hold : 

akj = «ki<x]il 7.5 

It will be shown in section 8.2. that these equations are strictly applicable, only, if 
the growth curves of single growing plants of the species are similar. 

For a further analyses it suffices to consider three species S„ S2 and S3 which are 
supposed to be grown in combinations of two at different relative seed frequencies, 
but otherwise under the same conditions. 

7.2. A NUMERICAL EXAMPLE 

Let it be supposed that a mixture of three species, Sl5 S2 and S3 which affect each 
otheronlybycrowd.ngforthesamespaccisresownyearafteryearat the same seed rate 
und̂ er exactly the same conditions and that the seed frequencies in the first year are 
2, - U.8 z2 _ 0.1 and z3 = 0.1 and that the relative reproductive rates are given by 
a3.2 = 1.8 and a3<1 = 2.1. r 

^The ratio of the seed frequencies of S3 and S2 at the «th year may now be calculated 

• . b3^ 1 ]« = 1.8"-1 

and of the seed frequencies of S3 and St with 

I" '."• \, [z3zr IL = 0.125 X 2.1"-' 

T h f r e ^ a ? t °
b t a ; n e d by ^stituting numerical values in equation 1.7. 

The «suiting rdative frequencies of S, with respect to S2 and to S„ are plotted 

vears ThaeBrea.Tt °v figUre
H

30a.a,One t w o s i d - of the tri-ang.e for a sue ssion'of ten 
Hence the ! eH f r e p roduCt ,V

r
e fe is n o t affected by the presence of a third species. 

vlar mahr lJ Z Z T °'^ " ^ °f t h r e e sP e c i e s i n ^ '"stance the third 
l a ted^aL a on, h , Ï * - T ? 0 " t h e i n t e r s e c t i°n of the line between the ca.cu-

S e e ^ e S S a f u e o f t i V ï T e ^ ^ ï T " """ ** *" 

hne. The calculated points for a period of ten years are given. I„ subsequent years 
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the relative frequency of Sj and S2 decreases still more until only the species S3 is left. 
The relative frequency of the species in the mixture of all three species is also re­

presented in figure 30b, with the number of years along the horizontal axis. The 
winning species gains from the beginning and the loosing species looses from the 
beginning. The 'intermediate species', however, gains as long as the frequency of the 
loosing species is not negligible- but looses from the sixth year onwards, when the 
relative frequency of the loosing species is small. 

relative 
frequency 

0.75 

050 

0 25 

-

* i r -

_ J 

- r i~-

year 

FIG. 30. A numerical example of the change in relative frequency during course of time at constant 
seed density, if three species affect each other only by crowding for the same space, a32 and â31 being 
1.8 and 2.1, respectively. 

HARLAN and MARTINI (1938) cultivated during a period of thirteen year a mixture 
of 10 barley varieties at different places in the United States. From each harvest 
500 seeds were laid out, to obtain plants which could be determined as to variety. 
These investigators found indeed that a 'winning' species gains each year, a 'loosing' 
species looses each year and an 'intermediate' species gains first and looses subsequent­
ly. They showed that such a behaviour is to be expected if the reproductive rates are 
independent of the relative seed frequencies, but could not demonstrate the correctness 
of the underlying hypothesis because the growing conditions varied too much from 
year to year. This model used by HARLAN and MARTINI is the same as our simplest 
model discussed in section 1. It is shown in this paper that such a model does not 
conform with experimental results. 

However, it is not necessary to assume that the reproductive rates are constant 
to illustrate this behaviour of a mixture. The assumption that the relative reproductive 
rates are independent of the seed frequencies is sufficient; an assumption which may 
do, because it is already shown that this is the case for barley-oats mixtures. 

The actual relative frequencies of three out of ten species during 13 years as found 
in Aberdeen (table 2 of HARLAN and MARTINI) are given in figure 31. These three 
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species are chosen as an example, this sampling being allowed because the relative 
frequencies are probably not affected by the presence of other species. From an 
inspection of the actual data, it is estimated that the relative reproductive rate of the 
variety White Smyrna with respect to the variety Hannchen is about 1.06 and of 
White Smyrna with respect to Deficiens about 1.64. Starting from relative seed frequen­
cies of 0.33 in the first year, the frequencies in subsequent years are calculated. These 
calculated values are given by the three lines. 

fraction 
of total 
10 

075 

050 

025 h 

1 • White Smyrna 

2 o Hannchen 

3 x Deficiens 

year 

FIG. 31. The relative frequency of three 
barley varieties obtained by resowing 
during 13 years. Data for Aberdeen 
from HARLAN and MARTINI (1938). 

conditions are not the same and n t h ^ , ^ '° y e a i ' b c c a u s e t h e 8 r o w i n S 
random sampling^rror'bemuse onlvin *?"* ^ ^ m u S t b e «™'deiable 
frequencies of l O ^ S ^ T s S e ff Z Î T 7 ^ ^ '° ̂ ^ t h e r d a t i v e 

iTf^^tsiSÄr,i is seen that indeed the 

- A ^ s ^ ^ ï ï r ^ ï sThc assumption that the *™-** 
disproved by means of t l ^ 7 Ï £ Z c T **™ ™ ^ b e ^ d " ° r 



8. CROWDING FOR THE SAME SPACE WITHIN 
MIXTURES OF TWO OR MORE 

SPECIES AT D IFFERENT SPACINGS 

8.0. SUMMARY 

The basic equations, describing the interrelations between yield, seed rate, relative 
crowding coefficient and relative reproductive rate at different spacings are arrived 
at by supposing that one of the species in a mixture does not grow at all. 

These basic equations are found to hold only if the plants grow simultaneously 
and the growth curves of the plants of the species are of the same form. It is shown 
that they are a particular solution of the LOTKA-VOLTERRA equations. 

The equations are applied on the results of field experiments with mixtures of 
barley and oats and oats and peas, and on the well-known results of the experiment 
of GAUSE (1934) on population growth of protozoa under constant conditions. 

8.1. T H E BASIC EQUATIONS 

The yield of they'th species is according to section 7.1 equal to 

- l 

O j = bjZj ZbkZk 
o 

Mj 7.3 

if (n + 1) species are crowding for the same space, the space allotted to one seed 

being independent of the seed frequencies or £ Zk being equal to m~l (figure 1). 
o 

Let it be supposed now that the first species S0 does not grow at all. Since there 
are only « independent crowding coefficients, it may be assumed that the crowding 
coefficient of this first not growing species is equal to one, so that the relative crowding 
coefficient of the remaining n species are equal to the crowding coefficients, i.e. that 

kJ0 = bj 8.1 

Equation 7.3 may be written now as follows: 

O j = bjZj S bkZk + Z0 M, 8.2 

According the equations 5.2 and 8.1 the following relation holds: 

bj^lßj + mjm-1 8.3 

The yield M} of species S, when planted at a spacing of m cm2 per kernel is according 
to equation 5.4 . ^ 0 . 

Mj = ßj[ßj + m] lÜj 8.4 
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Now the following relation is arrived at by substituting equation 8.3 and 8.4 in 
equation 8.2 

Oj=ßjZj Sfifa + mHZ, k 
O 

ûj 

As f; Zk is equal to w_1, this equation may be rewritten as follows 

Oj=ßjZj ZßkZk + \ ß7 8.5 

ßk and Zk being expressed in such units that their product is without dimension. 
The relative reproductive rate of species Sk with respect to S, is according to equa­

tion 8.5 

«kj=[okzr'][ojZJ-
l] = [ßkak][ßJQjri 86 

in which the product ßjQj is the reproductive rate or yield of one seed of species S-
sown alone (eq. 5.5). J 

The relative crowding coefficient of species Sk with respect to species S, is equal 
to (see equation 8.1) J 

kkj = bkbj~l = [ßk -f m] [ß. + my i 8 7 

Equation 8.5 relates the yield of one arbitrary species in a mixture of« species with 
the absolute seed rates of the n species by means of the constants ß and Q for each 
species constants which can be calculated from the results of spacing experiments. 

Equation 8.6 shows that the relative reproductive rate of one species with respect 
to another ,s fully independent of the absolute seed rates of any of the species and 
herefore also independent of the density of sowing. To estimate the relative reproduc­

ing S ! " m i X t U r e
k ° f " fPeCieS U iS ° n l y n e c e s s a ry t o ^termine the yield of 

one seed of each species when planted far apart from other seeds 

on^ri'nf^TH1"8 Tf***" °f ^ SpedeS w i t h r e sP e c t *> «other depends 
Z l ^ l L t ^ ' I ! V e f ° W d i n g C ° e f f i c i e n t aPP ro^hes at very wide spacings 
Z^JllT t IT d° " 0 t 3ffeCt Cach ° t h e r u n d e r su<* conditions. The r m T o Z r t r

a t i ; e c r d , n g c o e m c i e n t i s r e a c h e d *^« •«***«*« 
(m -> 0) and equal to the ratio of the values of ß for both species. 

8.2. THE APPLICABILITY OF THE FORMULAE 

It was already mentioned in section 3.2. that the crowding coefficients do not charac­
terize the activ ty of crowdina itself hut nnlv ,h„ u ' c o e m c i e n t s d o n o t charac-
in thP final v.Vl/c Th« y r e s u l t o f t h l s crowding as reflected 
Of he Jesuit of a ' J i c U e X p e n m e n t a U y demonstrated in section 5.2 1. by means 

t nLS^^^^^ h a r v e s t e d Ï " » -
of the leaves during growth " ,C8S P roPor t l ona»y with the weight 
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The formulae of the preceding section contain only constants calculated from the 
final harvests of the spacing experiments. If it is found for instance that the product 
ßQ for two plant species is the same, it is to be concluded according to equation 8.6 
that the relative reproductive rate is 1 and independent of the seed rate. It is, however, 
perfectly possible that one of the crops is earlier in its development than the other. 
This is of course of small importance if both crops are sown together at a very wide 
spacing because under such conditions sufficient space is available for both. At a 
dense seed rate or at a small spacing, the available space may, however, already be 
occupied by the earlier species at the time the later species is in its grand period of 
growth. This advantage must result in a relative reproductive rate of the earlier species 
with respect to the later species which is greater than one, in spite of the fact that the 
product ßQ as calculated from the final yields is the same for both species. 

This effect of spacing on the value of the relative reproductive rate is of course 
absent if the ratio [ßkük] [ßjüj]-1 (as calculated from dry weights obtained by periodic 
harvests of spacing experiments) does not depend on the time of harvest. 

Hence the basic equation 8.5 can only be applied if the species affect each other 
only by crowding for the same space and the growth curves of single growing plants 
of the species are similar, that is the same apart from a multiplication factor of the 
yield axis. The relative reproductive rate is independent of the relative seed frequencies 
and of the absolute seed rates (or the value of m), only under these conditions. 

On the other hand, the equations 3.4 can be applied provided that the experiments 
are carried out in such a way that the seed rate of the mixture is kept constant (i.e. 
such that equation 3.1a or b holds) and the two species affect each other only by 
crowding for the same space. That is because even with dissimilar growth curves, 
the ratio [ßkßk] [ßjQj]-1 may be practically constant during the period the space is 
actually claimed. This period falls late in the growing period if m is large and early in 
the growing period if m is small. The relative reproductive rate is under such conditions 
found to be independent of the relative seed frequency, but depends on the seed rate of 
the mixture. 

It is now evident that two species can only crowd for the same space if they grow 
simultaneously. The same space may be used first by the earlier species and subsequent­
ly again by the later species, if the species do not grow simultaneously, so that such 
species do not exclude each other completely. The relations which can be applied 
under such conditions are discussed in section 9. 

It is emphasized again that 'space' is not defined in terms with a physiological 
meaning, so that any attempt to describe exactly the conditions under which the 
equations hold must fail. 

8.3. THE LOTKA-VOLTERRA EQUATIONS ON COMPETITION 

The growth of a population of one species in a number of years was calculated in 
section 6.1. by substituting for the space per plant in the spacing formula the inverse 
of the yield of the previous year. It was proved in section 6.3. that in this way a solution 
of the differential equation for logistic growth is obtained. 
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Analogous relations are obtained by substituting the yield at the time t and t+At 
(in which At is a fixed time interval) for the seed rates (Z) and the yields (O). For two 
species St and S2, this leads to the following equations: 

0(l+J,) = /?,0[f) [/?,0[l) + ß202
,)+l]~1 Qt 8.8 

: o<r")=ß2o?[ß1o[,)+ß2o¥ + ]]-iQ2 

Thus if the seed rates are known in one year, the yields and seed rates in subsequent 
and preceding years may be calculated with these formulae, if the constants ß and Q 
are known from spacing experiments and provided that the growing conditions are 
the same. 

VOLTERRA (1928) supposed that the growth of two populations living in the same 
environment may be governed by the following differential equations: 

dOl(dt)-i = {r1-y1[hlOl+h202]}Ol g 9 

dO2(d0_1 = { r2 — y2 [hxOx + h202] } 02 

By omitting the term h202 in the first differential equation and after some rearrange­
ment it is seen by comparison with equation 6.3 that ^ is the coefficient of increase 
of species St and rJyjA,]-1 the maximum oi equilibrium density of the species under 
the conditions of growth. 

It is shown in textbooks on the subject that a partial solution of these differential 
equations is the following: 

0 | ' 0 7 ^ = e ( ^ ' - " ^ ' x constant 8.10 

which after introducing the constant time interval At and eliminating the constant 
may be written as follows: 

{ 0 2
, + J , ) [02

l)]-1 } " {O''*"') [ 0(0]- i } - n = e(r2V1 - , i y i ) 4 , 8 n 

On the other hand it follows from equation 8.8 and 6.6 that 

{0 2 ' + ^>t0 2 '> ] - 1 } {Or / " ) [0 , ' , ] - 1 }~ 1 = e ( r i - f ' ) d ' 8.12 

The equations 8.11 and 8.12 are the same if is supposed that VOLTERRA'S constant 
7i and y2 are both equal to one. 

The basic equations 8.5 and 8.6 are therefore solutions of the following simplified 
LOTKA-VOLTERRA differential equations: 

:';••'•- d ° / d 0 _ 1 = t o - S rA-»Oà]oy with 
1 8.13 
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The particular solutions 8.8, apart from the simplified form, are used by LESLIE 

(1958) and LESLIE and GOWER (1958) to study the influence of stochastic variations 
on population growth (compare section 6.4.). 

8.4. C R O W D I N G FOR THE SAME SPACE BY OATS AND BARLEY OR PEAS 

8.4.1. The design of the experiments 

In order to test the applicability of the basic equations in section 8.1. for field 
crops, experiments were carried out with oats (var. Libertas), barley (var. Herta) 
and peas (var. Pauli) on a field of the experimental farm 'Droevendaal' at Wageningen 
in 1959. 

The normal spacing was supposed to be 31 cm2 per seed for barley and oats and 
139 cm2 per seed for peas. One seed of peas is supposed to be equivalent with 4.5 
seeds of oats or barley. 

The occurrence of this factor 4.5 at inconvenient places in the equations is avoided 
by introducing the number of 'pea units', which is calculated by multiplying the 
number of peas in the sown mixture and in the harvest with the factor 4.5. Con­
sequently for the seed rates of oats and pea units grown in competition holds equation 
3.1a with m equal to 31 cm2.per seed. 

Experiment IBS 245 was carried out with oats and peas. The treatments were (1) 
mono culture of oats at a spacing of 310, 238, 169, 99, 31, 15.5, 7.7 and 3.8 cm2 per 
kernel, (2) mono culture of 'pea units' at the same spacings and (3) mixed culture 
of oats and 'pea units' at relative frequencies of 0.111, 0.222, 0.333, 0.444, 0.555, 
0.666, 0.777 and 0.888 on basis of a spacing of 31 cm2 per kernel of oats or per pea 
unit. 

Since it was the purpose to study the effect of the nitrogen fixed in the nodules of 
the peas on the growth of oats, no nitrogen was added. It appeared that this complica­
ting effect was completely absent, because of the nitrogen level of the field being high. 
Complications which occur, if such an interaction is not absent, will be discussed in 
section 9. 

Experiment IBS 246 was carried out with oats and barley. The treatments were 
(1) mono culture of oats at the same spacings as in experiment IBS 245, (2) mono 
culture of barley at the same spacings, (3) mixed culture of barley and oats at relative 
frequencies of 0.2, 0.4, 0.6 and 0.8 on basis of a spacing of 31 cm2 per seed and 
(4) mixed culture of barley and oats at the same relative frequencies but on basis of 
a spacing of 310 cm2 per seed. 

Nitrogen was applied at a rate of 30 kg N per hectare. 
Both experiments were laid out in a 5 X 5 lattice with two replicates, but a correc­

tion of the experimental data for differences of fertility level of the sub-plots was found 
to be not worth the trouble and any how not trusted. 

8.4.2. The treatment of the experimental results 

The results of the competition experiment between barley and oats at a spacing 
of 31 cm2 per seed are given in figure 32a and those for a spacing of 310 cm2 per seed 
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in figure 32b. The curves are calculated according to the equations 3.4, the numerical 
values of the constants being: 

and 310 cm2 kernel-1 

85 106 kernels ha-1 
for m equal to 31 

* b o 

«bo 

123 
162 

2.3 
1.75 

108 kernels 

102 106 kernels ha -1 

1.2 — 
1.02 — 

10s kernels 

m r *b 
i % 

o-oats 
x-barley 

»310 cm 

0 . 1 . 2 
o - «»2 

' /k 

A V 
m s31 m = 310cm2 /k. 

—^— calc. fr. spoc exp. 

cm' /kernel 

FIG. 32. The results of competition and spacing experiment IBS 246 between barley and oats in 1959. 
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The results of the spacing experiments with both crops are given in the graph of 
figure 32c with along the horizontal axis the spacing in cm2 kernel"1 and along the 
vertical axis the inverse of the yield in cm2 kernel"1. 

The marks at a spacing of 31 and 310 cm2 kernel"1 represent the Mb and M0 values 
from the graphs of figure 32a and 32b. The statistical weight of these average data is 
much higher than the weight of the data for the other spacing. They are therefore 
represented by marks of a larger size. The average straight line through the points 
is mainly based on these two observations. The scattering of the other observations 
is considerable, but it will be seen that the estimated constants of the spacing formula 
(5.4) as given below are accurate enough for the purpose. 

oats barley 

ß = 440 ßb =
 6 0° c m 2 kernel-1 

Qo = 170 ß b = 130 106 kernels ha"1 

The observations for spacing of 7.7 and 3.8 cm2 kernel"1 are already discussed in 
section 5.1.3., and of no importance here. , 5 

The result of the competition experiment between oats an 'pea units at a spacing 
of 31 cm2 per kernel or 'pea unit' is represented in figure 33a, the curves being calcu­
lated according to the equations 3.4. The numerical values of the constants are. 
m = 31 cm2 per kernel, Mp = 102 X 10s pea units per ha, M0 - \U X lu 
kernels of oats per ha, k = 0.20 and apo = 0.16. 

The results of the spacing experiments with both crops are given in the graph ot 
figure 33b with along the horizontal axis the spacing in cm2 per kernel or cm per pea 
unit and along the vertical axis the inverse of the yield in the same units. 

The points at a spacing of 31 cm2 per kernel represent the M and M0 values as 
read from the graph of figure 33a. These are again represented by marks^ot a larger 
size than the other observations, because the statistical weight is much higher than 
of the other observations. . , . .. . . . • 

The estimated constants of the spacing formula (5.4) are given in the following table. 

oats pea units 

/?o = 580 /JP=100 cm2 kernel-1 

QO = 1 3 5 ß p = 132 10« kernels ha-1 

8.4.3. Discussion of the experiment with oats and peas 
The relative crowding coefficient of the 'pea units' with respect to the oats at a 

spacing of 31 cm2 per kernel as calculated from the spacing experiments by means 
of equation 8.7 is equal to *po = [100 + 31] [580 + 31]-1 == 0.21, whereas,k 
calculated from the competition experiment equals 0.20. The agreement b ween 
both values is excellent. Likewise, the relative reproductive rate of the pea uni s witn 
respect to oats as calculated from the spacing experiments by means of equation «.b 
is equal to apo = [100 X 132] [580 X 135]-1 = 0.17, and a as calculated from the 
competition experiment is equal to 0.16. The agreement is of course again excellent. 
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FIG. 33. The results of competition and spacing experiment IBS 245 between oats and peas in 1959. 
On pea kernel is equivalent with 4.5 'pea units'. 

This agreement is also shown in the graph of figure 33c in which the relative re­
productive rate for each mixture is represented by the dots and the relative reproduc­
tive rate as calculated from the results of the spacing experiments by the full drawn line. 
It must be concluded therefore that the result of competition experiments with oats 
and peas at any seed density can be calculated from the results of spacing experiments 
by means of the equations 8.5, under these conditions. 

This conclusion does of course not mean that the growth curves of an oat and pea 
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plant are exactly similar, but only that the dissimilarity between the two curves is small 
compared with the difference of the values of ßQ for these two crops. 

8.4.4. Discussion of the experiment with oats and barley 
The relative reproductive rates of barley with respect to oats at the four relative 

seed frequencies and the two spacings of 31 and 310 cm2 kernel"1 are represen ed 
in figure 32d. It is seen that these relative reproductive rates are independent of he 
seed frequencies, so that it must be concluded (which was known of course) that the 
two plant species affect each other only by crowding for the same space. 

However, the relative reproductive rate at a spacing of 31 cm^ ^rnel- is equal 
to 1.75, whereas this value at a spacing of 310 cm2 kernel"1 is only 1.02 Only this 
latter value is practically equal to the relative reproductive rate *'calculated from 
the spacing experiments, which is 1.04 and is represented in figure 32d by the straight 

T h e increase of the relative reproductive rate with decreasing spacing of the seeds 
proves according to section 8.2. that the growth curves of barley and oat plan s are 
not similar, but that barley is earlier in its development than oats. This conclusion 
was confirmed by a competition and spacing experiment between rows of barley 
and oats on the same field in 1960, which was harvested at seven intervals througho" 
the growingperiod. It appeared that the products of ßQ in g dry matter per meter 
row of barley and oats were 80 and 30 on 15 May, 270 and 160 on 1 June, 510 and 
430 on 15 June, and 680 and 640 on 1 July, respectively. 

The difference appeared large enough to explain the effect of densityon*J«>*™ 
reproductive rate. Unfortunately, the scattering of the yield data of the last harvest 
was so large that for a detailed analyses the experiment is to be repeated. 

8.5. CROWDING FOR THE SAME SPACE BY PROTOZOA 

CAUSE (1934) described growth experiments with the protozoa Paramecium caudatum 
and Paramecium aurelia in his well-known book on the struggle f o i ^ ^ n « . _ 

Accumulation of waste products and a gradual change of he ^ ^ T ^ y 
of 10 cm3 was avoided by renewing the medium of growth eve^ d a ^ e ^ 
of food was kept constant and at a low level by adding every ^ ° ~ J J " ™ J ™ 
standardized culture of Bacillus pyocyaneus. Every day the numb of_ urfujona were 
counted in O.Scm* of the medium. Further details on this technique which were given 

by CAUSE are of small importance here. calculated by CAUSE were for 
The constants of the logistic growth curve (eq. 6.3), as c f cu l a™oy 

P. aurelia ra = 1.124 day S K, = 245 individuals per 0.5 cm' andfo rJP. caudatim 
rc = 0.794 day-1, K. = 64 individuals per 0.5 cm3, where ' / ^ ^ J ^ ^ T 
of increase and * the maximum or equilibrium density ^ . " ^ " ^ S e d by 

The actual observations for growth in mono cultures % d ^ r % £ ^ £ > 
CAUSE are given in figure 34a, in which for convenience the_ datai forboth species 
recalculated at a basis of 100 units per culture for the equilibrium density. 
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The scattering of the observations is considerable. The coefficients of increase as 
calculated by GAUSE for the 'half loop' concentration are, however, confirmed by 
those for the'one loop'concentration of bacteria. It is therefore in spite of this scatter­
ing evident that the coefficient of increase of P. aurelia is greater than of P. caudatum. 
The values of ß and Q for the two species for periods of two days can be calculated 
by substituting 0.794 day-1 and 1.124 day-1 in the equations 6.6 for the coefficient 
of increase of the two species and a density of 100 units per culture for the maximum 
or equilibrium density. The results are for P. aurelia ßa = 0.085 cultures per unit and 
ß a = 112 units per culture and for P. caudatum ßc = 0.039 cultures per unit and Qc = 
126 units per culture. 
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FIG. 34. The results of an experiment on intraspecific and interspecific population growth of two 
Paramecium species. Data from GAUSE (1934). 

The yield of both species, cultivated in mixed culture at the time {t + 2) days may 
be estimated by means of equation 8.5 by substituting for the seed rates the yields 
at the time t and for the constants ß and Q the numerical values given above. 

This gives the following relations: 

0[t+2) = 0.085 0<r) [0.085 0<«> + 0.039 0<'> -h l ] " 1 112 units per culture 

for the yield of P. aurelia and 

0<'+2> = 0.039 O<«>[0.085 0<'> + 0.039 0<'> + l ] " 1 126 units per culture 

for the "yield of P. caudatum. 
GAUSE started a mixed cultivation with two individuals per 0.5 cm3 of each or 

with 0[°> equal to 2 x 100/245 .= 0.816 and 0<°> equal to 2 X 100/64 = 3.13 units 
per culture. By substituting these values in the above equations, the yield after two 
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days may be calculated and by substituting again these yields, the yields after again 
2 days and so on. The data obtained in this way may be compared with the resulting 
curves. However, large deviations may occur because especially during the first few 
days the actual data are subject to relatively very large random errors. This difficulty, 
due to random deviations can be avoided by substituting at some later date two values 
which match the actual data for the yield. 

The numbers as observed by CAUSE in mixed cultivation of the two species are 
given in figure 34b. It is seen here that at the fifth day the yield of P. aurelia is about 
52 and of P. caudatum about 40 units per culture. These values are substituted in he 
equations 8.5, to obtain the yields at the days (5 + 2) and (5 - 2) and these yields 
are again substituted to calculate the yields at the days (5 + 4) and (5 - 4), and so on_ 
The resulting calculated growth curves for the two species are given in the graph 

°fAffaer3a4sbthe observations go, the agreement between the observed growth curves 
and the growth curves calculated from the data of the mono cultures of the two species 

is reasonable. . . . ..„„„i».,™» 
Since at any time there are infusoria in different stages of development in the culture 

vessel it is not, however, allowed to conclude from this that the growth curves of the 
individuals of both species are similar. , . , . t u ~~M,n;»»H 

The sum of both curves represents the relative space which is actually occupied 
by both species, since the yields of both species separately are ttatofotod« a t e 
of 100 for the equilibrium or maximum density. The difference of this sum and 00 
is therefore the unoccupied space or the space occupied by an imaginarynot grow ng 
species. This unoccupied space is represented by a third curve (u) in order to show the 
similarity with the graph of figure 30b. . . J , 

The relative reproductive rate of P. aurelia with respect to P. caudatum for periods 
of At days is according to the equations 8.6 and 6.8 equal to 

or in this case 1.94 for periods of two days. Apparently the species with the largest 
coefficient of increase is the winning species. . 

This conclusion was also arrived at by BIRCH (1953) who ^ f % ^ * ™ 
species {Rhizopertha dominka and the small and large strain of Calandra oryza^ 
alone and in combinations of two under conditions of constant ^fj^tiic^s 
other hand, FRANK (1957), who cultivated Daphnia magna and ^ ^ ™ w ^ 
mono cultures and in combination, found that this was not the case and that the two 
species may promote the growth of each other. . 

The result of .his experiment of FRANK (1957) is o n l j r « * ? ^ " ™ L X o Z 
are close* related species which n,ay eifec, the £ £ £ £ « £ ? £ . X , S 

means than only crowding for the same space. Under sucn conu 
as given here do not hold of course. 



9. AN ANALYSIS OF MORE COMPLICATED WAYS 
OF COMPETITION 

9.0. SUMMARY 

Plant species may affect the growth of each other in other ways than simply crowding 
for the same space. The relative reproductive rate depends in all these cases on the 
relative seed frequency. A stable equilibrium may result if the species crowd for 
space which is only partly the same for both or if one of the species promotes in some 
way the growth of the other. An unstable equilibrium occurs, however, only if one of 
the species hampers the growth of the other not only by crowding for space, but also 
by some active process like producing intoxicants. 

Some examples are given in the next section. 

9.1. T H E USE OF THE RELATIVE REPRODUCTIVE RATE AND THE RATIO DIAGRAM 

One of the simplest forms of competition occurs if two plant species affect each other 
only by crowding for the same space (which implies that the species grow simul­
taneously) and the growth curves of single plants of both species are similar. The 
relative reproductive rate is independent of the relative seed frequency and the 
spacing under such conditions. 

The observations in a ratio diagram are in this case on a straight line with a slope 
of 45 degrees, of which the position is independent of the spacing. This situation is 
schematically represented in figure 35a, where the seed ratio Z{Z~X is given along 
the horizontal axis and the yield ratio OxO~l along the vertical axis, both with a 
logarithmic scale. This ratio diagram was discussed in section 1.1.4. Species one 
wins in this case because the ratio line is above the equilibrium line a = 1. The direc­
tion in which the composition of the mixture changes during cultivation is represented 
by the arrow. Either one species or the other wins at any spacing. 

The relative reproductive rate is only at a given spacing practically independent 
of the relative seed frequency if two species affect each other by crowding for the 
same space, but the growth curves for single plants are not similar. Under such 
conditions, situations as represented in the ratio diagram of figure 35b may occur. 

Here it is supposed that species one is earlier in its development but otherwise 
inferior to species two. This earlier development is of no use at wide spacings, so that 
species one looses. At narrow spacings, this earlier development is of very great im­
portance, so that species one wins. Which species is winning depends therefore on 
the spacing. 

The spacing decreases rapidly if the harvest is resown year after year, so that ulti­
mately species one is always winning. An equilibrium between both species is only 
possible if the spacing is kept at such a value that the relative reproductive rate is one. 
Hence to decide which of two species wins, it is necessary to determine the relative 
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reproductive rate at or near the maximum or equilibrium density, which is reached 
if all available space is occupied. 

The competitive relations are still more complex if there is crowding for space, 
not completely the same for both species. This may occur if some requisite obtained 
from the soil (water, minerals) is limiting growth and species two explores the soil 

7, /Z , 
05 1 

V*2 
5 10. 

FIG. 35. Schematical representation of ratio diagrams for two species, 
a. which crowd for the same space and with similar growth curves ,^ 
b. which crowd for the same space and with not similar growtn c"rv«> , d f o r c e n o t 
c. of which the presence of one promotes the growth of the other, or wi. 
being completely the same for both species, t h a n s i m p i e crowding 
d. of which the presence of one hampers the growth of the otner oy om" 

It occurs also if species two grows longer or at 
that species two may occupy space to a greater depth than species one 

another period of the year than species ? ^ £ * £ ^ g £ à e i two must grow 
which was at some earlier period occupied by species one. apec 
under such conditions better according as the relative frequency of th» species 
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lower. Hence the relative reproductive rate of species two with respect to species 
one decreases with increasing relative frequency of species two, so that a situation 
as represented in figure 35c may result. The ratio line intersects here the equilibrium 
line a.= 1. Species two wins in this case if its relative frequency is low, and looses 
if its relative frequency is high, so that ultimately a stable equilibrium of both species 
may result, which value is given by the ratio at the point of intersection of both lines. 
It is shown in the next section that the curve is not straight but S-shaped with the 
ends parallel to the diagonal if the total seed rate of the mixture is kept constant. 

It is of much importance that a stable equilibrium may result also if one of the 
species profits from the presence of the other. This may occur if one of the species 
obtains nitrogen from the air (legumeneous species), one of the species liberates 
minerals from the soil which can be used by the other, and so on. 

The relative reproductive rate as calculated from the experiment with peas and oats, 
discussed in section 8.4.3., is independent of the relative seed frequency. The absence 
of any effect on oats due to nitrogen fixation by peas is shown in this way. 

The reverse of this case, presented in figure 35d, occurs if one of the species hampers 
the growth of the other not only by crowding for space, but also by some active 
process as producing an intoxicant which hampers the growth of the other species. 

The relative reproductive rate of species one with respect to species two must 
increase with increasing relative frequency of species one under such conditions. The 
ratio line may intersect again the equilibrium line a == 1. The equilibrium obtained 
is, however, unstable under such conditions. Species one wins if the relative frequency 
of this species is higher and species two wins if the relative frequency of this species 
is higher than the relative frequency at the point of intersection. 

It has been shown that some plants or seeds produce intoxicants with a selective 
effect on other species (GRÜMMER, 1955). There is, however, considerable doubt as 
to the question whether the production is so large that some effect remains under 
normal field conditions. 

GRÜMMER (1955) carried out some experiments with Linum usitatissimum (flax) and 
the weed Camelina foetida and came to the conclusion that Camelina produces some 
unknown matter which hampers the growth of Linum. However, the interpretation 
of the experiments is difficult because the data do not permit the calculation of the 
relative reproductive rates at the same spacing of the mixtures. 

To investigate a possible toxic effect, an experiment was carried out in the green 
house, in which Linum usitatissimum (flax) and Camelina sativa (false flax) were culti­
vated in pots at three different relative frequencies (exclusive of the mono cultures), 
but at the same spacing. The result as calculated on basis of the kernel numbers is 
represented in figure 36. The relative reproductive rate seems to depend to some extent 
on the relative seed frequency. This is probably due to experimental errors, which are 
unavoidable in a first experiment with new plant species. There is, however, no 
indication that the relative reproductive rate of Linum with respect to Camelina 
increases with increasing relative frequency of the Linum. Hence any effect of in­
toxicants, large enough to be shown in this way, was absent under the conditions of 
this experiment. 
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Later on GRÜMMER (1958) came to the conclusion that this adverse effect of false 
flax on flax occurs only if the mixtures are subjected to rain. This effect of rain was 
not confirmed by an experiment on competition between C. sativa and flax under 
conditions of artificial rain and of sub-irrigation (DE WIT, 1960). However, it was 
found by GRÜMMER (pers.com., 1960) that C. sativa produces much less toxic sub­
stances than C.foetida. 
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FIG. 36. The ratio diagram as calculated from a 
green house experiment on competition between 
flax (Oi, Zi) and false flax (Or, Z,). 
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9.2. CROWDING FOR PARTLY 

THE SAME SPACE WITHIN MIXTURES OF TWO SPECIES 

The yield of two species sown in such a way that the seed rate of the mixture satisfies 

the equation Zx+Z2 = rn* 3 - l a 

is considered. 
According to section 3.2., the yields satisfy the following equations if the two species 

affect each other only by crowding for the same space: 
Ol=k12zi{[kl2 — \]zl + iriM1 3 4 b 

02 = k2lz2{[k2i-l]z2 + n~1M2 

with z, = ZV\ZV + Z2]-\ etc. The product of the constants ki2 and k21 is equal 
to one in these equations. . . . , j ; f f o r A n t 

The yield of the species, in case both crowd for space which is completely d.»^ ent 
is of course given by the spacing formula developed in section 5., which may De wrmen 
in the following form 

Qx = *,«*, { [ f c u - i i z i + . i r 1 * ' ! 
02 = k2ez2{[k2t-\]z2+WM2 

in which the constants 

klc=\ß, +m]m-» a n d * 2 c = Wz + ^m~' 

5.1 

5.2b 

http://pers.com
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are 
spaces 

the relative crowding coefficients of the species with respect to their own 'empty 
aces'. 
Both sets of equations are the same, apart from the product of the relative crowding 

coefficients. 
This product is equal to 

kl2-k2l = l 9.1 

if the two species crowd for the same space and equal to 

frieze = [ßi + m] [ß2 + m]m~2 9.2 

if the species crowd for space which is completely different for both. 
The most plausible supposition which can be made is now that in case two species 

crowd for space which is partly the same, the yields may be represented by the follow­
ing set of equations. 

Oi = kH2e)Zl {[kU2e) — l ]Z l + l } - 1 M, 

°2 = k2(U)z2 {[k2(U) — \]z2 + I}" 1 M2 

The indices of the relative crowding coefficients mean that one species is supposed to 
crowd for space with the other species and 'empty space'. The product of these relative 
crowding coefficients is somewhere between the minimum value of equation 9.1 
and the maximum of equation 9.2. 

The relative reproductive rate of species S, with respect to species S, is according 
to equation 9.3 equal to 

a i2 = [0 1Zr , ] t0 2Z 2 - 1 ] - 1 = 

= tea.) — l]z2 + 1} {[*,(2„ — l]r, + I } " 1 [kH2e) M,] [k2(U) M2V
l 9.4 

Apparently, the value of aI2 increases with decreasing z„ Z„ z .z" ' or Z,Z;\ the 
limits being *1(2e) A/.A/-1 for ZlZ^ approaching 0 and k~\ , M > " ' for Z.Z"1 

approaching oo. 2 ( le) 2 

The value of «?2 in equation 9.4 and the values of /?, and ß2 in the equation 5.2b 
are to be mult.phed by cxc~\ c^ and c;^ if the seed rates satisfy the equation 

CiZ, + c 2 z 2 = m - i - 3.1b 

in stead of equation 3.1a (compare section 3.2.) 
A numerical example is given in figure 37. The yield curves in figure a are calculated 

by means of the equations 9.3, supposing Mt = M2 = 100 and ku2c) = k2(U) = 3. 
The sum of both yields(O, + 02) shows in this case a maximum ôfîsO at a relative 
frequency of 0.5, which illustrates that mixed cultivation of crops may be advantageous 
if the species crowd for space which is not completely the same. The ratio curve, which 
is S-shaped is g.ven in figure b. The maximum and the minimum relative reproductive 
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rate appear to be 3 and 1/3, respectively. The curve intersects the diagonal at ZXZ~X 

equal to one. It is obvious that the ratio curve is not symmetrical if M, ^ M2 or 
(and) £1(2e) # k2(lc) and that the whole curve may be found above or below the 
diagonal if the growth of the two species differs widely. It can also be shown that the 
maximum of (Ox + 02), if any, does in general not coincide with the equilibrium 
point, if any. This is the Montgomery effect (section 3.4.) in this complicated situation. 

Formally, the equations 9.3 can only be applied if it is known that two species 
affect each other only by crowding for space, which is not completely the same. Since 
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FIG. 37. a. An example of the relation between the relative seed frequency and the yield of two species 
Si and S2, crowding for space which is only partly the same, 
b. The ratio diagram with an S-shaped ratio curve. 

it is difficult to determine the physiological causes of nonconstancy of the relative 
reproductive rate, the same equations may be used also in first instance if the species 
affect the growth of each other in some other way. 

The most convenient approach is to treat the data by means of the equations 9.3 
and to calculate subsequently the product of the relative crowding coefficients. The 
species crowd for the same space if this product is one. They crowd for space which 
>s partly the same or one species profits from the presence of the other if the product 
is larger than one. One species hampers the growth of the other by some other mains 
than crowding for space, if the product is smaller than one. It remains to be seen, 
however, whether in this case the data can be conveniently smoothed by the equa­
tions 9.3. 



10. COMPETITION BETWEEN PERENNIAL 
GRASSLAND SPECIES 

10.0. SUMMARY 

It is shown that the competitive relations between perennial grassland species can be 
analysed by counting the number of tillers of each species per surface unit in two 
subsequent winters or dormant periods. 

Some results of experiments with Anthoxanthum odoratum and Phleum pratense 
and with Lolium perenne and Trifolium repens are given as an example. 

10.1. T H E RELATIVE REPRODUCTIVE RATE OF 

PERENNIAL GRASSLAND SPECIES 

It was shown in the preceding sections that the form of the curve in the ratio diagram 
or the dependence of the relative reproductive rate on the relative frequency gives 
valuable information on the competitive relations between two species. 

The relative reproductive rate of two seed producing annual species can be calcu­
lated from the composition of a sample of the seed mixture in two subsequent winters. 
Likewise, the relative reproductive rate of two perennial species can be calculated 
from observations during the rest period or winter. The yields during the growing 
period do not give any information in principle, because the harvested parts are lost 
as far as the plants are concerned. 

De WIT and ENNIK (1958) paid some attention to the problem of finding a good 
measure for the 'abundance of grassland species' in winter. The weight of the plant 
is not such a measure because it depends to a large extent on the arbitrary treatment 
m autumn and the presence of dead or partly dead material. Another disadvantage 
is that the weight can only be determined after destroying the plants 

Instead, it was suggested to use the number of tillers of the grass species and the 
length of stolons of clover per surface unit as a measure for the abundance of the 
species. 

ENNIK (1960) and VAN DEN BERGH and DE WIT (1960) carried out some preliminary 
experiments to study the usefulness of this approach. The main results of their 
experiments will be discussed here. 

10.2. C R O W D I N G FOR SPACE BETWEEN 

Anthoxanthum odoratum AND Phleum pratense 

VAN DEN BERGH and DE WIT (1960) planted these two species in different proportions 
in containers and studied their growth in climate chambers. The number of tillers of 
A. odoratum (Za) and P. pratense (Zp) were counted after a summer treatment of 
some months followed by a winter treatment (6<> C, 3 x 10« ergs cm-2 sec~' from 
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TL-tubes during 12 hours a day) of one month. Subsequently a summer-treatment 
(20° C, 6 X 10* ergs cm^sec"1 from HPL-lamps during 17 hours a day) of-,two 
months followed by the winter treatment of one month was given. The.number of 
tillers of A. odoratum (0.) and P. pratense (Op) were again determined, . _ _ •_• 

It appeared that the number of tillers of the two species at the end of the nrst 
winter treatment satisfied the following equation Za + 1.75 Zp - 350 'tillers per 
container so that the relative seed frequencies za and zp can be calculated accord.ng 
to equation 3.5b. 

The relation between the ratio's OaO; ' and Z,Z; » is given in figure 38b. It appears 
that the observations are on a straight line with a slope of 45 degrees, so that the species 
affect each other only by crowding for the same space and the data can be treated 
by means of equation 3.4b. . . • 

The result is given in figure 38a, where the relative frequency za is given along tne 
horizontal axis and the number of tillers (0 . and Op) along the vertical axis. I he 
curves in the figure satisfy the equations 3.4b with Ma = 490, Mp = 290 tillers per 

FIG. 38. The result of a competition experiment at ' « « ^ ^ ^ ^ ^ ^ ^ ^ B m m m i DE 
xanthum odoratum and Phleum pratense in a climate chamber. Data irom 
WIT (1960). 

container and *ap = 1.25, so that the relative reproductive rate of.f; « * ^ ^ 
respect to P. pratense (aap) is according equation 3.7b equal to 1.2, which ,s represented 
by the full drawn line in figure 38b. • _ . . .. Den yiie: 

The same species were also grown in some kind of container s in_in p
 mb 

number of tillers after the first and the second winter were again counted. The numo 
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after the first winter satisfied the equation Za + 1-53 Zp = 420 'tillers' per container 
so that again the relative frequencies za and zp can be calculated. 

The observations in the ratio diagram of figure 39b are now on some line with a 
slope smaller than 45 degrees, so that the yield data are to be treated by means of the 
equations 9.3 instead of 3.4b. The yield curves of figure 39a satisfy now these equations 

FIG. 39. The result o f a competit ion experiment at constant spacing between the grass species Antho-
xanthum odoratum and Phleum pratense in the field. Data from VAN OEN BERCH and DE W I T (1960). 

9.3 with Ma = 1050, Mp = 400 tillers per container and ka 2.1 and/cp(ae> = 3.4 
so that the product of the two relative crowding coefficients is 7.1, which 'is indeed 
appreciable larger than one. 

The two species, grown in the open, crowd therefore either for space which is 
only partly the same or one species profits in some way from the presence of the other. 
This latter possibility can safely be excluded because no sign of it was found in the 
climate chambers. Moreover, the growth of the roots of the plants was in the open 
in a similar way restricted by the containers as in the climate chambers. The only 
reason why the space of the plants in the open is only partly the same is therefore 
that the growth and development of the species during the summer differ considerably 
from each other. Now it is indeed known that A. odoratum develops early in the 
summer season and the particular strain of P. pratense relatively late. This difference 
did not manifest itself in the climate chambers because here a 'summer treatment' 
without any seasonal trend in temperature, day length or light intensity was given. 

The relative reproductive rate as calculated from the curves in figure 38a is represent­
ed by the full drawn curve in figure 38b. The equilibrium point appears to be at a 
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ratio of Z ^ equal to 4 and the maximum and minimum reproductive rates are 

3.6and0.50.P 

10.3. C O M P E T I T I O N BETWEEN.LO/IWWperenne AND Trifolium repens 

ENN.K (1960) planted Lolium perenne and Trifolium repens in different Proportions 
in containers and applied winter treatments and a summer treatment m the 'ImuMe 
chambers which were essentially the same as those for the mixture of the grass^ pecie 
of the preceding section. The abundance of clover at the end of the w-nter treatmen 
was characterized by the length of the stolons, and of Lolium perenne by the number 

of tillers per container. . fi„„„ ..n Thr 
The relative reproductive rates at different proportions are given ,n figure 40 _ I he 

observations are again on some line with a slope smaller than 45 degrees, so_ that the 
data were treated by means of equation 9.3. Details on th.s treatment may be found 

FIG. 40. The result of a competition experiment at c onsta nt * ^ " * * ^ $ * ******* ^ ^ 
Lolium perenne (O,, Z,) and Trifolium repens (O,, ZÙ- Data from ENNIK Iivou, 

in the original paper. The resulting curve in the ratio diagr a m i j h w w r . ^ ^ 
also in figure 40. The maximum and the minimum relative reproductive PP* 

to be 12.9 and 1.35, so that an equilibrium is not reached. _ crowding 
Clover and grass affect each other apparently in some otner * o b t a i n e d 

for the same space. ENN.K showed that in this p a r t ^ caseJhe ^ 
all its nitrogen from the air and the grass from the soil. Hence, g 
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profit from the presence of the clover, but the 'nitrogen spaces' were different for 
both species. 

The competitive relations between T. repens and L. perenne at different water 
levels iii the soil were also analysed by ENNIK (1960). The values of the relative 
crowding coefficients of the grass with respect to the clover and empty space (&ute))> 
of the clover with respect to the grass and empty space (fct(le)), their product and the 
maximum and minimum value of the relative reproductive rates of the clover with 
respect to the grass are given in the following table: 

waterlevel 
in cm below 
soil surface 

12 
26 
41 
70 
99 

Art < l e ) 

2.08 
2.13 
1.00 
0.80 
0.64 

*l(le 

_ 
1.22 1.05 
1.40 
1.70 
1.81 

A;t(ie) 
X 

^l(te) 

2.54 
2.24 
1.40 
1.36 
1.16 

an 

zt-> 1 

2.49 
2.05 
1.58 
1.06 
1.09 

an 
z i -

6.34 
4.59 
2.21 
1.45 
1.26 

Details on the treatment of the experimental results and conclusions may be found 
in the original paper. Here it is only remarked that the two species crowded for 
nearly the same space at low water levels, but that the 'nitrogen spaces' appeared to 
be again practically different at high water levels. 
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