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Abstract 

Spiertz, J.H.J. (1978) Grain production and assimilate utilization of wheat 
in relation to cultivar characteristics, climatic factors and nitrogen 
supply. Doctoral thesis, Wageningen, (x) + 35 p., 5 figs, 1 table, 149 refs, 
Eng. and Dutch summaries, Neth. J. agric. Sei. 19(1971): 211-222; Neth. J. 
agric. Sei. 21(1973): 282-296; Neth. J. agric. Sei. 22(1974): 207-220; Neth. 
J. agric. Sei. 25(1977): 182-197; Neth. J. agric. Sei. 26(1978): 210-231, 
233-249. 
Also: Agric. Res. Rep. 881 (without the articles). 

The effects on grain production of cultivar characteristics, nitrogen 
supply and some climatic factors were studied in field trials and under 
controlled environmental conditions. A rise in temperature considerably 
increased the rate of grain growth but shortened its duration, whilst the 
positive effect of light intensity on the grain yield was greater at high 
temperatures. 

Additional nitrogen raised post-floral photosynthesis. The nitrogen 
assimilation by the grains was increased by warmth, resulting in a higher 
nitrogen concentration of the grains and in earlier senescence of the leaves. 
Differences between a semi-dwarf cultivar and a standard were mainly expressed 
in the dry matter distribution before and after anthesis and so in a higher 
harves t-index. 

Free descriptors: Tviticum aestivum L., wheat, leaf area duration, crop 
photosynthesis, grain growth, water-soluble carbohydrates, nitrogen uptake, 
grain protein, grain yield, harvest-index, temperature, light intensity, 
semi-dwarf cultivar. 

This thesis will also be published as Agricultural Research /Reports 881. 

© Centre for Agricultural Publishing and Documentation, Wageningen, 1978. 

No part of this book may be reproduced or published in any form, by print, photoprint, 
microfilm or any other means without written permission from the publishers. 



Stellingen 

1. Hoge temperaturen versnellen de groei van de tarwekorrel, maar bekorten de levensduur 

van de tarwehalm; het effect op de korrelopbrengst is afhankelijk van de hoeveelheid 

ingestraalde zonne-energie. 

Dit proefschrift. 

2. De groeisnelheid van de korrels in de eerste weken na de bloei wordt veelal niet 

beperkt door de beschikbaarheid van assimilaten, maar bepaald door de temperatuur. 

Dit proefschrift. 

3. Bij tarwe wordt de afrijping van de korrel hormonaal gestuurd, terwijl de afsterving 

van vegetatieve organen meestal een gevolg is van een negatieve eitwit- en/of koolhydraten-

balans . 

R.W. King, 1976. Planta (Berlin) 132: 43-51. 
T.R. Sinclair & C T . de Wit, 1975. Science 189: 565-567. 
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4. Bij de huidige tarwerassen is een hoog korrelaantal per m (> 20 000) noodzakelijk om 

maximale korrelopbrengsten te verkrijgen, daar de toename van het individuele korrel

gewicht genetisch begrensd is. 

P.M. Bremner & H.W. Rawson, 1978. Aust. J. PI. Physiol. 5: 61-72. 
A. Darwinkel, 1978. Neth. J. agric. Sei. 26 (in press). 

5. De conclusie dat door stikstofgebrek in tarweplanten de ademhalingsverliezen zowel 

relatief als absoluut toenemen, is strijdig met de huidige inzichten in de fysiologie van 

de assimilatenhuishouding van granen. 

K. Orlovius & W. Höfner, 1976. Z. PflErnähr. Bodenk. 5: 631-640. 
I. Pearman, Susan M. Thomas & Gillian N. Thome, 1977. Ann. Bot. 41: 93-108. 
F.W.T. Penning de Vries, 1974. Neth. J. agric. Sei. 22: 40-44. 

6. Bij tarwe en gerst zijn de stikstofopname per halm en de harvest-index voor stikstof 

betere selectiecriteria voor eiwitopbrengst per ha dan het eiwitgehalte van de korrels. 

7. Rassenmengsels bieden meer mogelijkheden tot het vergroten van de ziekteresistentie 

in een graangewas dan een 'multiline' (meng£ras). 

8. Het eenzijdige teeltsysteem in de Veenkoloniën heeft een te grote ecologische in

stabiliteit om opbrengstdervingen door ziekten uitsluitend met een intensiever gebruik 

van gewasbeschermingsmiddelen te voorkomen. 



9. In de nota Landelijke Gebieden wordt er ten onrechte aan voorbijgegaan dat een 'aan

gepaste' ontwikkeling van landbouwbedrijven een grotere bijdrage levert aan de instand

houding van karakteristieke cultuurlandschappen dan een conserverende natuurbescherming. 

Nota Landelijke Gebieden, 1977. Ministerie van Volkshuisvesting en Ruimtelijke 
Ordening. 

10. Bij het vergroten van de mobiliteit van onderzoekers wordt in de nota van de Raad 

van Advies voor het Wetenschapsbeleid te veel waarde gehecht aan verandering van werk

kring en in de praktijk te weinig gebruik gemaakt van 'mobiele' inter- en extra-in

stitutionele onderzoekteams. 

Nota: De mobiliteit van wetenschappelijke onderzoekers, september 1976. Advies 
van de Raad van Advies voor het Wetenschapsbeleid (RAWB) aan de Minister van 
Wetenschapsbeleid. 

11. Het itereren van beleidsadviezen over een lange keten van adviserende organen 

ontkracht de inhoud van adviezen, schaadt de besluitvaardigheid en verhult de verant

woordelijkheid van bestuurderen. 

12. Alternatieve levens- en maatschappijbeschouwingen zijn een onvoldoende basis voor het 

ontwikkelen van 'alternatieve' landbouwmethoden die werkelijk een alternatief bieden 

voor de 'gangbare' landbouw. 

Proefschrift van J.H.J. Spiertz • ,. . 
Grain production and assimilate utilization of wheat in relation to cultivar 
characteristics, climatic factors and nitrogen supply. 
Wageningen, 10 november 1978 



Woord vooraf 

Het onderzoek dat de basis vormde voor dit proefschrift, was onderdeel van een breder 

onderzoekprogramma op het gebied van produktiepatronen bij granen dat uitgevoerd werd bij 

de Vakgroep Landbouwplantenteelt en Graslandcultuur. Verscheidene medewerkers van deze 

vakgroep en studenten hebben direct of indirect in belangrijke mate aan mijn onderzoek bij

gedragen. Voor de medewerking en belangstelling wil ik hen gaarne danken. Speciaal richt 

ik me tot Johan Ellen, met wie ik vanaf de start van het onderzoek heb samengewerkt; door 

jouw inzet en kundigheid heb je veel bijgedragen aan het onderzoek. 

Prof. 't Hart en ir. Kupers, u ben ik zeer erkentelijk voor het vertrouwen en de 

ruimte die u mij geboden heeft bij het functioneren binnen en buiten de vakgroep. Het 

proefschrift is tot stand gekomen mede dank zij uw aanhoudende stimulans. 

Waarde Kupers, dat u bereid bent als promotor op te treden, geeft blijk van uw grote 

belangstelling voor dit onderzoek; ónze discussies beperkten zich echter zelden uitslui

tend tot de teelt en fysiologie van granen. 

Prof. Vervelde, u ben ik zeer erkentelijk voor uw bereidheid als co-promotor op te 

treden. Nadat ik met u heb mogen samenwerken in verscheidene organisatorische verbanden, 

heb ik nu ook van uw kundigheid in het redigeren van wetenschappelijke teksten kunnen 

profiteren. 

Ir. Wansink, secretaris van de Nationale Raad voor Landbouwkundig Onderzoek, gaf mij 

de ruimte om in een periode van 'non-actief' bij de vakgroep toch actief betrokken te 

blijven bij de voortgang van het onderzoek. De tijdelijke personele ondersteuning door 

ir. Jan Vos heeft zelfs geleid tot een nieuw project waarin meer aandacht wordt gegeven 

aan de kwantitatieve betekenis van de ademhalingsprocessen voor de korrelgroei bij tarwe. 

Dr. Gaastra, directeur CABO, gaf voorrang aan de afronding van het proefschrift in 

mijn nieuwe functie. 

Bij de uitvoering van de fytotronproeven heb ik kunnen profiteren van de efficiënte 

organisatie door Klaas Schölte en van de verzorging van de planten door zijn medewerkers. 

De bedrijfsleiding van de sector Akkerbouw van de A.P. Minderhoudhoeve, de heren Lettinga 

en Heringa, en hun medewerkers hebben de veldproeven in de polder steeds zorgvuldig en 

met veel belangstelling uitgevoerd. De veldproeven op de proefboerderij te Wageningen 

werden vanwege de kleinschaligheid soms met veel extra handwerk energiek uitgevoerd door 

de heer Mol en medewerkers. 

Bij de fotosynthesemetingen werd de bereidwillige medewerking van dr. Bauke Deinum 

- de 'architect' van het fotomobiel - en de technische dienst, de heren Möhring en Blokzijl, 

verkregen. De dames Evelyn Zantman en Corry de Wit verrichtten onder variërende omstandig

heden en op verschillende laboratoria nauwkeurige chemische analyses. -

Martha van RÏnssum verrichtte op een zeer drukke post steeds voortreffelijk typewerk; 



voor de laatste bewerkingen kon gebruik gemaakt worden van de faciliteiten op de Afd. 

Tekstverwerking, dank zij de vlotte medewerking van mevrouw Vrieling en mevrouw Laoh. De 

tekeningen werden verzorgd door de heer Beekhof van het BGD. 

De redacteuren van de Netherlands Journal of Agricultural Science, dr. van den Bergh 

en ir. Dirven, en de bureau-redacteur, de heer Van der Heij, maakten een tijdige plaatsing 

van de artikelen mogelijk. De heren Aalpol en Van den Heuvel van het Pudoc verzorgden de 

redactie van het proefschrift, terwijl mevrouw Brouns de correctie van de Engelse tekst 

van de 'omlijstende' hoofdstukken voor haar rekening nam. 
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1 Introduction 

1.1 GENERAL 

Wheat is among the most important crops for world food and feed supply (Table 1). 

Much wheat is grown under seasonal conditions comparable with those in which it evolved. 

In Mediterranean climates, vegetative development and ear initiation occur on cool, short 

winter days. Ear differentiation takes place under conditions of increasing daylength and 

temperature, while grain filling occurs under conditions of high solar radiation and 

warmth. In maritime climates at moderately high latitudes, as in Western Europe, ear 

differentiation takes place under long and still increasing daylengths, but often with 

relatively low temperatures and poor light conditions. During grain filling, mostly after 

midsummer, average day temperatures are moderate. However, due to annual and seasonal 

variations the temperature range is quite large. Under more continental climates, the 

winter wheat crop is exposed to extreme low temperatures during the winter period and to 

Table 1. Acreage, yield and production of arable crops. Source: FAO-Yearbook, J975. 

Crop 

Wheat 

Rice 

Maize 

Barley 

Millet 

Pulses 

Soybeans 

Sorghum 

Oats 

Potatoes 

Rye 

Sugar cane 

Cassava 

Sugarbeet 

World 
Europe 
World 
Europe 
World 
Europe 
World 
Europe 
World 
Europe 
World 
Europe 
World 
Europe 
World 
Europe 
World 
Europe 
World 
Europe 
World 
Europe 
World 
Europe 
World 
Europe 
World 
Europe 

Acreage 
(x 1000 ha) 

228169 
25864 

140880 
380 

114534 
12079 
91504 
19038 
71354 

24 
69560 
4326 

46463 
323 

44599 
134 

31644 
6446 

21783 
6400 

15021 
5389 

12681 
5 

11551 

-'. 
8892 
3716 

Yield 
(kg/ha) 

1557 
3025 
2441 
4987 
2816 
3842 
1695 
3056 
657 

1340 
661 
641 

1971 
1369 
1203 
3563 
1549 
2617 

13374 
18247 

1601 
2406 

50268 
64585 
9108 

-
28097 
35301 

Production 
(x 1000 ton) 

355172 
78245 

343871 
1893 

322536 
46406 

155083 
58187 
46871 

32 
45995 

2774 
68356 

442 
53632 

477 
49007 
16870 

291321 
116784 
24044 
12966 

637427 
342 

105209 

-
249851 
131175 



heat and drought during grain filling in midsummer. Thus the wheat plant has been adapted 

by selection to a wide range of climatic conditions, especially to variations in 

temperature and daylength. 

As Evans & Wardlaw (1976] stated there have been fashions in the emphasis on which 

physiological process limits cereal yield and also on the stage1 of the crop life cycle 

regarded as most critical. Early studies by agronomists to gain insight into the factors 

and processes that determine grain yields were based on yield component analysis (Engledow 

& Wadham, 1923). Later growth analyses in terms of dry weight increase per unit leaf area 

became an important research tool. Growth analysis of cereals were initiated and promoted 

by Watson and co-workers at Rothamsted Experimental Station, England. They introduced the 

concept of leaf area index (LAI), which is defined as the ratio of foliage area to ground 

area. This is considered as an important growth parameter for determining yield in relation 

to environmental factors (Watson, 1952). The main results of this approach were summarized 

by Thorne (1965). 

In subsequent years much more emphasis has been given to the final stage of the cereal 

life cycle; various research workers (Birecka & Dakic-Wlodkowska, 1964; Stoy, 1965; 

Thorne, 1966) have demonstrated that grain growth largely depends on post-floral assimil

ation. Then grain yield was assumed to be limited primarily by photosynthesis and the 

supply of assimilates. Thus, particular attention was given to crop photosynthesis through

out the grain-filling period as a major determinant of grain yield (Puckridge, 1971; 

Baldy, 1972; Lupton, 1969; Apel et al., 1973; Austin et al., 1977; de Vos, 1977). More 

recently, however, much evidence has been found to show that the capacity of the grain to 

store assimilates may limit yield just as much as the capacity of the crop to provide the 

grains with assimilates does (Bremner, 1972; Rawson et al., 1976; Fischer et al., 1977). 

Other crop physiologists have given more attention to processes such as assimilate 

transport (Jenner & Rathjen, 1975; Wardlaw, 1968) and hormonal regulation of grain growth 

(Radley, 1976; Goldbach & Michael, 1976; King, 1976). 

An early, more comprehensive whole-plant physiological approach of grain production 

in wheat was chosen by Miller (1939) and by Stoy (1965). This whole-plant approach was 

also followed in my study of the effects of climatic factors and nitrogen supply on grain 

production in contrasting wheat cultivars. 

1.2 PURPOSE OF STUDY 

The sequence of experiments can be classified in three groups. The aim of the first 

group of experiments was to study: 

- the relation between green area duration and grain yield, considering the various green 

organs of the wheat plant and differences between cultivars; 

- the influence of a prolonged green area duration on grain growth and yield, by means of 

late nitrogen applications and disease-control with fungicides. 

These experiments were carried out in the field. 

After some preliminary shading experiments in the field a second group of experiments, 

carried out in a controlled environment, were directed to study the effects of light 



intensity and temperature on rate and duration of grain growth and consequently on assimi

lation and utilization of carbohydrates and nitrogen compounds. A sink-source approach was 

included in the analysis of plant behaviour. 

A third group of experiments was carried out in the field under the favourable soil 

conditions of the Flevopolder. The aim of these experiments was to analyse: 

- the significance of annual variations in climatic factors for the pattern of grain 

production; 

- the effect of various nitrogen treatments on crop development, grain growth and on 

production and utilization of assimilates and nutrients; 

- the effect of cultivar differences on dry matter distribution (carbohydrate and nitrogen 

economy) in relation to the pattern of grain production and grain yield. 

The field experiments were carried out at the experimental farms of the Agricultural 

University in the Flevopolder and in Wageningen. The experiments under controlled environ

mental conditions were done in the phytotron of the Department of Field Crops and Grass- ' " 

land Husbandry of the Agricultural University at Wageningen. 

1.3 LITERATURE 

The developments in the various fields of crop physiology concerning grain production 

of cereals are covered by the following reviews: Baldy (1972, 1973), Thome (1974), 

Evans et al. (1975), Austin & Jones (1976), Evans & Wardlaw (1976) and Biscoe & Gallagher 

(1977). 

Since there are extensive reviews on more general aspects, the following review just 

gives a background for the experimental work presented in Chapter 3. The most recent 

literature has been partly included in this chapter and partly in the General discussion 

(Chapter 4). 

1.3.1 Growth of vegetative organs 

The vegetative phase of the wheat plant extends from shoot emergence to ear initiation, 

but growth of some vegetative organs (e.g. roots, top leaves and stem) continues until 

anthesis and afterwards. In the early vegetative phase leaf and root growth predominate. 

Root growth may exceed shoot growth at low temperatures (Welbank, 1971), but as temperature 

rises the growth of shoots increases more than that of roots (Brouwer, 1966). Shoot growth 

thus appears to have a higher optimum temperature than root growth; this difference may 

result from increased competition for assimilates between root and shoot at higher tempe

ratures (Friend, 1966). Low light intensities reduce root growth and tillering (Baldy, 

1973). Similarly, limited nitrogen supply may reduce shoot growth, but increase root 

extension and the ratio root:shoot (Brouwer, 1966). Lower root numbers caused by nitrogen 

deficiency are compensated by greater lateral lengths in the seminal but not the nodal 

root systems (Tennant, 1976). 

Usually growth of the root system continues until heading, after which root growth . 

may cease and roots may even degenerate during the grain-filling period (Welbank, 19711.. 

With an adequate water and nutrient supply, however, root growth and nutrient uptake , ' 



continue well into the grain-filling period (Campbell et al., 1977). 

The rate of leaf formation as well as the size of the mature lamina depend on tempe

rature, light intensity, daylength and nutritional status under which the plant is grown 

(Watson, 1971; Friend & Helson, 1976). Maximum leaf area per shoot is attained when the 

flag leaf has fully emerged (Watson et al., 1963; Puckridge, 1971). Leaf arrangement is an 

important aspect of canopy structure. Leaves formed prior to ear initiation originate 

close to the crown, but elongation of stem internodes separates the leaves in the vertical 

plane, leading to a more effective light distribution within the canopy. 

Throughout the early life of the wheat plant, the leaf blades are the main photo-

synthetic organs and crop growth rate depends both on the rate of expansion of leaf area 

and the rate of photosynthesis per unit leaf area. The increase of the leaf area index 

(LAI) is closely paralleled by the increase in canopy photosynthesis (Puckridge, 1971). 

Towards the end of the life cycle, photosynthesis by the stems, leaf sheaths and ears 

tends to become increasingly important as the leaves senesce (Austin et al., 1976). 

The stem grows concurrently with the leaves, roots and ear; rapid ear growth coincides 

with that of the top internodes (Wardlaw, 1974). Consequently, growth of the stem under 

limiting substrate conditions may compete with that of the ear (Rawson & Hofstra, 1969; 

Patrick, 1972). 

1.3.2 Growth and development of the ear 

The double-ridge stage is usually considered as a key stage in the development of the 

wheat plant, by marking the end of vegetative development and the beginning of ear develop

ment. Kirby (1974) suggested that ear development can be described quantitatively in terms 

of (a) the rate of spikelet initiation, (b) the duration of spikelet initiation and 

(c) the total number of primordia. Both leaf and spikelet initiation proceed at more or 

less constant rates, but spikelets initiate considerably faster than leaves. The rate of 

ear development is affected by light intensity, daylength and temperature (Friend et al., 

1963; Puckridge, 1968; Rawson, 1970; Lucas, 1972). The number of fertile spikelets formed 

increases with higher light intensities (Friend, 196S); at high planting densities and in 

densely tillered stands, therefore, the number of fertile spikelets may be reduced by 

mutual shading. Nitrogen may affect spikelet number, but only when applied before the 

stage of ear initiation; late nitrogen dressings may increase the number of florets per 

spikelet (Langer & Lieuw, 1973). After the terminal spikelet has been formed, environmental 

conditions no longer influence spikelet number, but they may affect the number of florets 

differentiated within each spikelet (Kirby, 1974). 

Differentiation of the spikelet primordia starts in the spikelets in the lower-mid 

part of the ear. A maximum of nine florets per spikelet may be formed, though some of the 

last-formed primordia do not produce fertile florets (Kirby, 1974). High temperatures at 

anthesis may cause sterility and it appears that pollen development is particularly sensi

tive to water stress and high temperatures (Fischer, 1973). Seed set is promoted by high 

light intensity during fertilization (Wardlaw, 1970) and is very susceptible to water 

stress (Asana & Saini, 1962). However, many other factors such as the position on the ear, 

may also affect the number of grains set (Rawson & Evans, 1970; Bremner, 1972). 



After cell wall formation, the endosperm increases rapidly in cell number and size 

(Wardlaw, 1970). Sofield et al. (1977) found a rapid increase in the amount of water in 

the grains during the period of active cell division and expansion of the endosperm, after 

which there was little net change in the amount of water until completion of dry weight 

accumulation. Starch storage begins one to two weeks after anthesis, depending on tempe

rature. In the grain-filling period, in which most of the dry matter of the grain is accu

mulated, grain volume continues to increase but at a reduced rate. From the beginning of 

starch synthesis onwards there is a period of almost linear increase in dry weight, followed 

by an asymptotic increase to final grain weight. In this last phase, the amount of water 

of the grains decreases and grain growth stops at about 401 water in the grain (Jennings 

& Morton, 1963; Sofield et al., 1977). We do not know yet whether the decrease in grain 

water content at maturity causes or is a consequence of the cessation of grain growth. 

Radley (1976) suggested that the initiation of water loss from the grain at maturation 

might result from an increase in the permeability of the pericarp. However, Sofield et al. 

(1977) concluded that grain growth was terminated by blockage of the transport system by, 

lipids. Other authors suggested that the accumulation of abscisic acid in the grain affects 

its maturation (Goldbach & Michael, 1976; King, 1976; Radley, 1976). 

Temperature has a pronounced effect on the rate and duration of grain-filling 

(Campbell & Read, 1968). In the experiments of Asana & Williams (1965) the main effect was 

due to day temperature, but Peters et al. (1971) found that a rise in night temperature 

shortened the period of grain filling drastically. Phytotron experiments have shown, 

however, that it is daily temperature that has a predominant effect on duration of grain 

filling (Sofield et al., 1974; Spiertz, 1974; Warrington et al., 1977). 

Grains in different positions within an ear grow at different rates and have different 

mature grain weights. Grains in second florets begin later but may grow faster and attain _, 

a larger weight than those in basal florets (Rawson & Evans, 1970; Bremner, 1972); grain 

weight decreases from the second floret to the apical floret. Grains in the upper spikelets 

grow more slowly than those in the central spikelets; when the supply of assimilate from 

the leaves is reduced by defoliation or shading, grain growth is most severely reduced in 

the upper spikelets (Bremner, 1972). 

Final grain size depends to some extent on the number of grains per ear. Bingham (1967) 

found that the weight of grains in specific position increases as grain number per ear 

decreases. This observation suggests that grain growth may have been limited also by the 

supply of assimilates. However, grain yield per ear fell considerably as the grain number 

was reduced, indicating a restricted compensation capacity of the remaining grains. 

1.3.3 Source — sink relations and the distribution of assimilates in the wheat plant 

The terms 'source' and 'sink' are often used rather loosely and with various meanings. 

Warren Wilson (1972) suggested that sources and sinks should be defined in terms of losses 

and gains of a particular substance in a particular plant part. Other authors prefer a 

definition in metabolic terms, such as: 

- sources produce assimilates by assimilation of carbon and nitrogen compounds or by mobi

lization o* stored materials, while 



- sinks utilize assimilates in growth of structural and storage material and in respiration. 

Thus the regions of production and consumption of assimilates in the plant are referred to 

as 'source' and 'sink', respectively (Wareing & Patrick, 1975). 

Usually in cereals the grains are considered as sink and the photosynthetic active 

parts of the plant as source. This concept is an oversimplification because there are 

alternative sinks in the wheat plant (stem, roots, tillers). However their priority and 

capacity for utilization of assimilates is lower than for the ear. Rawson et al. (1976) 

found that the response of leaf photosynthesis to the level of assimilate requirement by 

the ear was influenced by the treatment of the vegetative tillers. Thus, the net photo

synthesis rate of the flag leaf was decreased by a reduction in grain number or increased 

by inhibition of photosynthesis in the ear, only when the vegetative tillers were kept 

defoliated; when these tillers were allowed to grow normally, there was no influence of 

ear treatment on leaf photosynthesis. This observation might explain the contrast between 

the findings of King et al. (1967) and others, who observed a strong dependence of the rate 

of photosynthesis in the flag leaf of wheat on the level of requirement for assimilate by 

the developing grains, and the studies by Apel et al. (1973) and Austin & Edrich (1975) in 

which photosynthesis was independent of the level of assimilate requirement. 

A close correlation between final grain yield and various parameters of leaf area 

after anthesis (Welbank et al., 1966; Simpson, 1968), together with the fact that most of 

the dry matter in cereal grains is photosynthesized after anthesis (Thome, 1965) have 

frequently led to the conclusion that grain yield is limited by the supply of photosynthate 

during grain filling. This conclusion may not be made if initial ear size or potential 

grain size is correlated with leaf area at anthesis and with leaf longevity. Treatments 

involving partial defoliation (Boonstra, 1929) or partial grain removal and inhibition of 

grain set (Bingham, 1967) usually lead to disproportionately small effects on final yield 

owing to photosynthetic or yield component compensation, respectively. 

Reviewing the literature, Gifford (1974) concluded that source and sink limitations 

usually co-exist and are only partial limitations. However, Stoy (1977) emphasized that 

the photosynthetic performance of the sources as well as subsequent partitioning of the 

assimilates obviously are controlled mainly by the metabolic activity of the sinks. Stoy's ' 

conclusion might refer especially to the first weeks of grain growth when a pool of readily 

mobilisable reserves, mainly in the stem, may compensate for short-term deficiencies in 

photosynthetic capacity. During the second half of the grain-filling period, the inter-

v action between environment and genotype might determine the rates of leaf senescence and 

grain maturation and so the relative limitation by source or sink capacity. Constraints on 

water and nutrient supply affect photosynthetic capacity of the Ueaves more than the 

storage capacity of the grains, which is reflected by a fast depletion and relocation of 

carbohydrate reserves from the stem,(Asana & Saini, 1962; Gallagher et al., 1976), and of 

nitrogen compounds, mainly from the leaves (Campbell & Read, 1968). 

The distribution of dry matter between the various parts of the wheat plant has been 

considered to be constant within a specific development phase (van der Sande Bakhuyzen, 

1937). The initial interdependence between roots and leaves is disturbed from ear initiation 



onwards. Successively stem, ear and developing grains become major sinks for carbohydrates 

and nitrogen compounds. Recently Sinclair & de Wit (1975) made a comparative analysis of 

photosynthate and nitrogen requirements in the production of grains by various crops. They 

concluded that the requirement for nitrogen by the grain, especially with high protein 

grains, was so great that mostly nitrogen must be translocated from the vegetative plant 

tissue to the kernels to sustain grain growth. A rapid loss of nitrogen from the vegetative 

organs of the plant could cause a decline in physiological activity and thereby limit the 

length of the grain-filling period. Periodic analysis of the changes in nitrogen content 

of the various parts of the wheat culm showed a loss of nitrogen from the leaves and stem 

concomitant with an increase in grain nitrogen (van der Sande Bakhuyzen, 1937; Williams, 

1955). 

The increase in the amount of grain nitrogen, however, frequently exceeds the loss 

by the leaves and stem during grain development. The balance of grain nitrogen must there

fore come from nitrogen reserves in the roots or from current root uptake. Depletion of 

the leaf nitrogen pools leads to a progressive leaf senescence from the base to the top of 

the wheat culm. Thus a balanced nitrogen economy of the wheat culm is a prerequisite for 

the photosynthetic active functioning of the leaves during the grain-filling period. 
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2 Experimental studies 

SUMMARIES OF THE ARTICLES 

Relation between green area duration and grain yield in some varieties of spring wheat 

J.H.J. Spiertz, B.A. ten Hag and L.J.P. Kupers, Netherlands Journal of Agricultural 

Science 19(1971): 211-222. 

In two experiments with spring wheat the relation was studied between green area 

duration (D) and grain yield during the period after heading. For this, the green areas 

of leaf, intemode and ear were determined as accurately as possible in samples. 

The relation between grain yield and green area duration of the separate green 

organs and of combinations of these was quantified by regression and correlation 

calculations. These calculations have shown that of the separate parts of the culm the 

D values of flag leaf and peduncle were closely correlated with the grain yield. 

By using the combined D value of flag leaf and peduncle as a yield determining 

factor, 81 and 6 H of the variance in the grain yield could be statistically predicted 

in 1967 and 1968, respectively. By including all the separate D values in a multiple 

correlation calculation the coefficients of determination of the variance in the grain 

yield could be increased to 83'. in 1967 and to 74Î in 1968. In 1968, next to the D values 

of flag leaf and peduncle, the D value of the ear was closely correlated to the grain 

yield. 

The photosynthetic efficiency of the green area was compared by the grain-leaf ratio. 

Effects of successive applications of maneh and benomyl on growth and yield of five wheat 

varieties of different heights ' 

J.H.J. Spiertz, Netherlands Journal of Agricultural Science 21(1973): 282-296. 

The effect of some fungicide treatments on the production pattern of five wheat 

varieties with different culm lengths was investigated in a field experiment. The fungicide 

treatments consisted of: a sequence of 2 pre-floral sprayings with 2 kg maneb per ha and 

2 post-floral sprayings with 1 kg benlate per ha. The varieties were Juliana (117 cm culm 

length), Manella (82 cm), Lely (80 cm), Mex.-cross (69 cm) and Gaines (79 cm). There was 

hardly any mildew in the crop but Septoria tritiai and Septoria -nodorum were very much in 

evidence in all the varieties. Of the group of ripening diseases, black moulds and 

Fusarium were found to a lesser degree. -

The combined application of maneb and benomyl greatly delayed the spread of Septoria 

in the crop, as a result of which the flag leaf in particular remained green for a longer 

period and the grain filling period was lengthened. The growth rate of the grains during 
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the phase from the milk-ripe stage to the dough-ripe stage was raised from 204 kg ha- 1 

day to 230 kg ha day . The effect of the application was greater in the varieties 

most susceptible to Septoria (Lely and Gaines) than in the other varieties. The increases 

in grain yield of the varieties Juliana, Manella, Lely, Mex.-cross and Gaines were 141, 

23%, 321, 16% and 42%, respectively. By statistical analysis 85% of the variance in the 

grain yield within the varieties could be attributed to the green area of the flag leaf. 

Thus, the main effect of Septoria seems to be a reduction of the photosynthetic area, 

causing a decreased supply of assimilates to reach the grain, and in this way lowering 

the 1000-grain weight. 

The degree of disease infection was not significantly correlated with culm length or 

the amount of leaf area, so the tolerance and resistance characteristics of the varieties 

were not immediately due to differences in crop structure. Specific variety differences 

were still present, even after reduction of the disease infection with the fungicides. 

Grain growth and distribution of dry matter in the wheat plant as influenced by temperature, 

light energy and ear size 

J.H.J. Spiertz, Netherlands Journal of Agricultural Science 22(1974): 207-220. 

An experiment was carried out under controlled growing conditions to study the plant 

response during the post-floral stage to temperature, light intensity and ear size. Within 

the range of 15 to 25 °C a raise in temperature increased the growth rate of the grains 

but the duration of the post-floral development of the plant was very much shortened. The 

final result was that higher temperatures caused lower grain yields. An increase of light 
2 -1 

intensity from 92 to 147 cal cm day has shown a more positive effect on grain weight 
-2 -1 

than an increase from 147 to 175 cal cm day . The artificial reduction of ear size by 

removing spikelets from the ear increased the thousand-grain weight but not enough to 

compensate for the reduction in number of kernels per ear. 

The effects of the main factors - temperature, light intensity and ear size - and of 

the combined treatments on the supply and storage of carbohydrate are discussed within the 

framework of a sink-source model. 

The influence of temperature and light intensity on grain growth in relation to the 

carbohydrate and nitrogen economy of the wheat plant 

J.H.J. Spiertz, Netherlands Journal of Agricultural Science 25(1977): 182-197. 

The response of grain growth to temperature and light intensity was studied under 

controlled conditions within the ranges from 10 to 25 °C and from 64 to 188 W m" , respec

tively. Warmth hastened the senescence of the wheat plant and enhanced the initial growth -

rate of the grains. Additional light promoted the rate of grain growth more at high than 

at low temperatures; under the latter conditions there was a considerable accumulation of 

carbohydrates in the stem (up to 40%) from anthesis onwards. The rate of grain growth 

ranged from 0.70 to 1.64 mg day"1 kernel-1. The duration of grain growth was prolonged by 

decreasing the temperature from 25 to 10 °C; the increase in growth duration from about 

30 to 80 days corresponded with a relatively stable temperature sum. Temperature and light 
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also affected the redistribution of assimilates and the chemical composition of the grain. 

The rate of protein synthesis was promoted more by warmth than the rate of starch synthe

sis. This resulted in an increased nitrogen content of the grain. The final content of 

total non-structural carbohydrates (starch and sugars) was slightly decreased by warmth. 

Additional light raised the carbohydrate content of all parts of the plant and so 

decreased the nitrogen content of these parts. However, light intensity had less effect 

on nitrogen distribution and yield than temperature had. 

Effects of nitrogen on crop development and grain growth of winter wheat in relation to 

assimilation and utilization of assimilates and nutrients 

J.H.J. Spiertz and J. Ellen, Netherlands Journal of Agricultural Science 26(1978): 210-231. 

Grain growth and yield components of winter wheat (cv Lely) were studied in a field 

experiment in 1976 with four regimes of nitrogen dressing (50, 100, 100 + 50 and 100 + 100 

kg N ha" ) . Growing conditions were characterized by a high level of solar radiation, 

warmth, ample nutrient supply and no damage by diseases. 
2 

Nitrogen raised grain number per m from 16,700 to 20,600 and grain yield from 640 

to 821 g dry weight m . Grain growth duration was short, due to warmth, but the rate of 
-2 -1 grain filling was very high: from 24.0 to 29.2 g m day during the effective grain 

filling period. A high grain yield was associated with a high nitrogen percentage of the 
-2 grains, which resulted in a grain protein yield ranging from 63.8 to 107.1 g m with an 

increased nitrogen dressing from 50 to 200 kg ha . 

The carbohydrate demand of the grains was provided by current photosynthesis and re

location of stem reserves. The latter was reflected in a decline of the stem weight after 

the mid-kernel filling stage. Nitrogen and phosphorus demand of the grains were supplied 

by withdrawal from the vegetative organs (leaves, stem, chaff) and to a large extent by 

post-floral uptake and assimilation. 

Under the prevailing growing conditions the grains turned out to be very strong 

sinks for carbohydrate, nitrogen and phosphorus as shown by the harvest-indices. Additio

nal nitrogen dressings increased the harvest-indices of dry matter, nitrogen and phospho

rus from 0.40 to 0.48, from 0.75 to 0.81 and from 0.91 to 0.93, respectively. 

It was suggested that a more restricted vegetative crop development at high nitrogen 

levels and a longer duration of root activity, photosynthesis and grain growth after 

anthesis would considerably favour grain yield. 

Cultivar and nitrogen effects on grain yield, crop photosynthesis and distribution of 
assimilates in winter wheat 

J.H.J. Spiertz and H. van de Haar, Netherlands Journal of Agricultural Science 26(1978): 
233-249. 

A comparison between the crop performance of a semi-dwarf (Maris Hobbit) and a 

standard height cultivar (Lely) at various levels of nitrogen supply was made. Grain 

yields of Hobbit were considerable higher, due to a higher number of grains and a heavier 
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grain weight. Owing to the higher grain yield and a lower stem weight the harvest-index 

of Hobbit was higher compared to Lely: 0.47 and 0.40, respectively. The content of water-

soluble carbohydrates in the stems of both cultivars appeared to be very high until 3 weeks 

after anthesis, despite the occurrence of low light intensities. It was suggested that due 

to the weather of 1977 low temperatures restricted early grain growth and respiration more 

than photosynthesis was affected by light intensity. Lely used more assimilates for struc

tural stem material than Maris Hobbit did. 

Quantity and time of nitrogen application affected grain number strongly, but grain 

weight to a less extent. So within each cultivar grain number per m was the main deter

minant of grain yield. Late nitrogen dressings promoted photosynthetic production, grain 

weight and protein content of the grains. The low protein percentages of the grains were 

attributed to the low temperatures during the grain filling period. The distribution of 

nitrogen within the wheat plant was only slightly influenced by nitrogen dressings and 

cultivar differences. 

Nitrogen harvest-index ranged from 0.74 to 0.79. Grain nitrogen was derived from the vege

tative organs (63-941) and from uptake after anthesis (6-37'o). The importance of carbo

hydrate and nitrogen economy for grain yield are discussed. 
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3 General discussion 

3.1 SIZE AND ACTIVITY OF THE GREEN ORGANS IN RELATION TO GRAIN PRODUCTION 

Following the work of Watson et al. (1963), Thome et al. (1969) and Welbank et al. 
(1966), we studied the relation between green area duration and grain yield in spring 
wheat, as affected by sowing date and genotypic differences. The relation between grain 
yield and green area duration of the various green organs were quantified by regression 
and correlation calculations (Spiertz et al., 1971). The results showed that green area 
duration, calculated for the period from heading to ripening, was more closely correlated 
to gram yieid than the green area durations flowering to ripening. It was suggested 
that photosynthesis during the pre-anthesis period would affect final grain yield by 
influencing the number of grains set and the amount of reserves temporarily stored in the 
stem. 

Since the green areas of the various parts of the culm were closely inter-related, 

it was not possible to calculate the exact contribution of each organ to grain growth. 

Judglng from the degree of correlation between green area duration and grain yield, we 

considered the following organs to be important in grain filling: especially peduncle and 

flag leaf followed by the ear, last.leaf and last intense but one. The coefficient of 

determination of the variance 1» grain yield fr2) amounted to 0.83 and 0.74 in two succes

sive years. By late sowing vegetative growth was reduced more than ear formation, so that 

^number of grains per unit green area was higher. Consequently the grain-leaf-ratio was 

L s bee r r ; m SPlte ° £ a hi8her P h ° t 0 S y n t h e t i c e f f i -ncy *- late-sown crops yielded 
less, because of a considerably lower green area duration 

by Fisf r ? K r n o L T e l a t i 0 n S **"" ^ ^ » * « ™ « area durati- were reported 
0 ^ aton o •' SlmPSOn 0 9 6 8 ) m d ^ & W a l t ° n (1971>- In ^ experiments the 

correlation of grain yield with green area duration was not as good. Especially under 
growing conditions favourable for leaf growth ,ri, v,- t. especially under 
rentlv wain V ^ A ,• Y ? ' hlgh rateS o£ drogen supply - appa-

7ZoS 197 s u r T T X f a C t ° r S °t h e r * » «» — t of green area ^orne f 
du at f a er L r 6 1 ^ * " " ^ * be Wel1 C ° ~ e l a t e d «* * » » area 
L 1 227 ̂ Tyields exceeded about 50° g-m'2 ™i leaf ™ - d -
^til^ id i l J" gher th3n *"* S6Ven- * * " » • SU<* «-iterl. depend on 

"!n a ly 2 ^ ^ ^ " ^ d i f f — > °<~™ce of diseases, etc, 
a t i o n T 2 2 2 l T 7 ^ y leld Wlth « " " — dU- t i0n i s **• ^ vari- ' 

gram»r\ i r c a u s e d b y * * w e i g h t ° f * • i n d i v i d u a i * » * - d n o t * ' 
ZZ Ti * z 7 " ^ ^ by m eXPeriment With five «Itlvax» of winter 

t l T ^ ^ A t T ^ b6tWeen ̂  yi6ld «* leaf a - - e positive within 

yieldt I c ^ i v T T ' them' ** C O r r e l a t i ° n ̂  n^a t i v e b — a low grain 
cultivar Juliana was associated with a high leaf area duration after aJLsis. 
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The reverse occurred with the cultivar Gaines. The variance in grain yield within the cul-

tivars could be attributed for 85°s to the variance in green area of the flag leaf at the 

end of the kernel-filling period. This percentage increased when various degrees of leaf 

infection were produced in a cultivar susceptible to Septoria sp. by a different frequency 

of fungicide application. The very susceptible cultivar Lely showed a correlation of 0.99 

between grain yield and percentage green area of the flag leaf on 20 July, whilst the more 

resistant cultivar had a correlation coefficient of 0.33. The main effect of diseases like 

Septoria seems to be a reduction of the photosynthetic area, causing a decreased supply of 

assimilates to the grain and as a consequence a lower grain weight. 

More recently Ledent (1977a) studied the relation between grain yield and a number of 

plant characters in wheat canopies in the field and in controlled environments. Simple 

correlations, stepwise regression analysis and factor analysis indicated that the plant 

characters most closely related to grain yield were grain number, stem dry weight and 

weight of sheaths of flag leaf and second leaf. Areas of leaves and internodes were less 

strongly related to grain yield in the cultivars studied. McNeal & Berg (1977) found with 

near-isogenic populations that flag leaf area, by itself, was not a good index for plant 

performance. Differences in other characters (heading and plant height), however, might 

have been more important in these near-isogenic populations. 

Removal of parts of leaf laminae or cutting vascular bundles in the upper leaves or 

sheaths of wheat culms had little effect on mean weight per kernel. Removal of entire 

laminae, complete leaf removal, and cutting vascular bundles at the base of the ear signi

ficantly decreased mean kernel weight (Ledent, 1977b). In most cases, the decreases varied 

by 10 to 201. These findings confirm the results of Walpole & Morgan (1974); they could -

not detect any significant effect on grain weight in the 14 days after defoliation. Later 

the more severe defoliations reduced grain weight, and reductions in final grain yield 

ranged from 16.6 to 45.5*.. Generally, effects of a reduction in photosynthetic capacity 

on grain yield will depend on the extent to which the 'source' limits grain growth. 

Canopy photosynthesis appears to increase asymptotically with increase in LAI, 

reaching a maximum level at LAI values above 4 (Evans et al., 1975). The relation between 

net photosynthesis and LAI was unaffected by either cultivar or by sowing density 

(Puckridge & Ratkowsky, 1971). In our experiments (Spiertz & van de Haar, 1978) additio

nal nitrogen applied at the boot stage promoted net photosynthesis more than it promoted 

LAI, especially in the later stages of grain growth. This finding shows the importance of 

maintaining the photosynthetic activity of the green organs during ageing rather than 

increasing the area of the green organs as such. Toward the end of grain filling, stem and 

ear photosynthesis can become the major source of current photosynthesis, but even in the 

earlier stages of grain growth, stem photosynthesis can be a substantial component (Evans 

& Rawson, 1970). This contribution from the stem might explain the high dry matter yields 

found under growing conditions which did not favour leaf growth (Spiertz l Ellen, 1978), 

but promoted the formation of a high number of culms. 

. , „ . M v affected by the carbon dioxide concentration Grain growth can be also considerably attectea oy u « 
,n ->n „i I ~ M wave a 32$ larger total crop weight at (Gifford, 1977). Ciyenrichment (0.20 ml.l ) gave a m - ^ s 
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maturity and a 431 increase in grain yield, whilst a reduction (- 0.15 ml.l" ) gave a 431 

reduction in total crop weight and 44°s reduction in grain yield. Mast of the grain yield 

response was brought about by an increased fertility of the side-tillers; obviously incident 

radiation was not limiting. Osman (1971) showed that net photosynthesis was more closely 

related to light interception and crop growth rate than to leaf area index. Photosynthesis-

-light curves turned out to be different for the various leaf layers. Lower, and thus 

shaded, leaves had a lower level of maximum photosynthesis than top leaves, due to a higher 

mesophyl and carboxylation resistance. 

Hence the characters of the vegetative organs are only partly correlated with grain 

yield. The degree of correlation depends on growing conditions and on the demand for assi

milates by the grains. 

3.2 RESPONSE OF GRAIN NUMBER AND GRAIN GROWTH TO CLIMATIC FACTORS AND NITROGEN SUPPLY 

Grain yield is a function of the number of grains per unit ground area and the mean 

weight per grain at harvest. The nvmbev of grains per unit ground area is composed of grain 

number per ear and number of ears per unit ground area. Biscoe & Gallagher (1977) concluded 

that the weather influences the physiological and developmental processes which determine 

the number of grains more than the processes determining their size. This conclusion is 

confirmed by comparing the variante in grain yield and grain number between years in our 

field experiments (Fig. 1). The relationship between grain yield (J) and grain number (#) 

for the cultivar Lely under disease-free conditions in the growing seasons from 1972-1977 

could be expressed by the following formula: 

Y. = 52.8 + 0.0357 N (R = 0.85) 

The main environmental factors in these experiments were weather and nitrogen supply. If 

other factors like disease, drought and nitrogen stress interfere during the post-floral 

period, then the rate and duration of grain growth would be far more important (Spiertz, 

1973). 

Apparently, poor light conditions during the pre-floral period can severely reduce 

yields in wheat (Willey & Holliday, 1971; Fischer, 1975). Evans (1978) found that ear 

number (ranging from 402 to 1070 per m2) was closely related to irradiance during the 

early reproductive stage (from 35 to 15 days before anthesis). Grain number per ear was 

influenced mostly by irradiance during the late reproductive'stage (from 15 days before to 

5 days after anthesis). However, Fischer et al. (1977) concluded that grain yield in normal 

crops was limited by both sink and post-anthesis source. They established a wide range in 

grain numbers (4000 to 34000 per m2) by thinning, shading, application of carbon dioxide 

and crowding. Grain yield increased, reaching a maximum at a grain number well above those 

of crops grown with optimal agronomic management but without manipulation. Kernel weight 

fell linearly with increase in grain number over the whole range of grain numbers studied, 

but the rate of fall varied with the season. In our experiments additional nitrogen applied 

at the boot stage increased mostly the number of grains as well as grain weight (Ellen & 

Spiertz, 1975; Spiertz & Ellen, 1978). Thus there are management treatments which break 
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Fig. 1. Simple linear regression of grain dry matter yield (g.m"2) on grain number per m2 

for six successive years with the cultivar Lely. 

the compensation mechanism. The same phenomenon was seen in the experiment to study dxffe-

renceTetween cultivars (Spiertz & van de Haar, 1978). Darwinkel (1978) varxed plan t d « -

sity from 5 to 800 plants per m2 and found also a linear relatxon between graxn yxeld and 

' • ,. * u • i«nnn arains Der m2. Above this level an xncrease xn grain number grain number up to about 18000 grains per m ™ ~ „ o 4 „ ' 

was completelŷ compensated by a decrease in kernel weight. The extent to which h graxns 

are filled depends on the location within the ear and on the supply < ^ ™ l a * ^ 

Bremner i R a w L (1978) suggested that the different * " ^ ^ < ^ « * ^ i « T 
. ,-, „ „ t „ r . „rain weieht, but that the relative ease with 

a spikelet have a minor influence on mature grain weigm, ° iarap1v „n 
, • v.„o » mainr influence. The latter depended largely on 

which assimilate reaches the graxn has a major xntluence. 

the distance of the grains from the spike rachis. 

r • „*«i factors on the rate and duration of grain growth were studied 
The effects of environmental factors on the 2 ^ ̂  ^ 

in growth chambers within the ranges from 10 to 25 C and trom 
• A rt. arnwth rate of the grains considerably, but the duration ot the 

temperature increased the growth rate o± gr ^ 
post-floral period was very much shortened (Spiertz, 1974, j 

Tas reduced from 80 to 30 days by a rise in temperature from 1 to C W « -pera 
ture effects were found in phytotron e x p e r t s with other cultxvars P - ^ 
rs f î  * ,i 1974 1977a- Ford & Thome, 1975; Warrington et al., 1977, Chowdhury 
(Sofxeld et al., 1974, 1977a, rara temperature seems to 

•Wardlaw, 1978). Thus response in grain growth of the wheat pian v* 

be very predictable. 
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Growth rate of the grains was closely associated with mean daily temperatures after 

anthesis, as long as assimilate supply to the grains corresponded to the demand (Spiertz, 

1977). Demands of the grains for assimilates increased with a rise in temperature. There

fore the effect of light intensity on rate of grain growth was greater at higher tempera

tures. In the phytotron experiments, the highest level of photosynthetic radiation N 

(16 hours: 188 W.m ) turned out to be insufficient for an adequate supply of photosynthate 

at high temperatures. This shortage of assimilates was also reflected in a fast depletion 

of stem reserves. So final grain yield depends on the balance between supply of assimilates 

and storage capacity of the ear. 

The question remains to what extent temperature affects rate and duration of grain 

growth in the field crop. Under growing conditions in the Netherlands great differences 

are observed in temperature and light intensity from year to year (Fig. 2 ) . In winter 

wheat experiments with the cultivar Lely, the rates of grain growth between years from 

1972-1977 were compared. Per year plots with an optimum nitrogen dressing were selected; 

other growing factors were rather favourable in these field experiments in the Flevopolder. 

The rate of grain growth (dry matter) per unit ground area ranged between years from about 

200 up to 350 kg.ha .d" (Fig. 3). After correction for differences in solar radiation 

between years, by expressing the rate of grain growth per unit of light intensity (pg.J- ) , 

also under these field conditions temperature was positively related to grain growth during 

the so-called linear phase of grain filling (Fig. 4A). The duration of grain growth turned 

out to be inversely related to temperature (Fig. 4B). These responses of field crops to 

temperature 
(°C) 

x—-x 1972 
+ _ + 1973 
o—o 1974 
A — A 1975 
A — A 1976 

1 9 7 7 / 1 . 

25 

23 

21 h 

19 

17 

15 

13 

15/6 20/6 25/6 30/6 5/7 10/7 15/7 20/7 25/7 30/7 

Fig. 2. Mean daily temperatures during the kernel-filling period in s i x ^ c L s i v e years. 
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temperature agree very well with those found by Marcellos & Single (1972), Meredith & 

Jenkins (1976) and Pinthus & Sar-Shalom (1978). Under bright conditions assimilate supply 

is favoured more than the demands of the growing grains. Therefore individual grain weights 

in field crops are not affected by temperature as much as those in the phytotron experi

ments . 

Evans (1978) found that grain yield of wheat grown in a constant daylength and tempe

rature regime was more limited by irradiance between ear initiation and anthesis, when 

storage capacity is determined, than by irradiance during grain growth. Sofield et al. 

(1977a) found that with cultivars in which grain number was less affected by light inten

sity, growth rate per grain was highly responsive to irradiance, especially in the more 

distal florets. They concluded that growth rate per grain depended mainly on floret posit

ion within the ear, on differences in grain size between cultivars and on temperature. A 

higher rate of grain growth in cultivars with larger grains at maturity was also found in 

our field experiment with the cultivars Lely and Maris Hobbit (Spiertz & van de Haar,1978). 

300 kg. ha"1 d"1 

•A 1976 
,o additional-N 

o 1974 

*1972 

'200kg.ha_\d"1 

15/6 25/6 5/7 15/7 25/7 US U/8 dates 
Fig. 3. Patterns and rates of grain growth for different climatic conditions in successive 
years with the cultivar Lely at optimal nitrogen dressings. 

19 



® 
201-

18 

16 

12 

10 

8 
L^-L. 

«=1972 
+ = 1973 
o= 1974, 
• =1975 
A=1976 
• = 1977 

15 16 17 18 19 20 21 22 
temperature °C 

Fig. 4A. Relationship between the 
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(ng.J ) and the mean daily tempera
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Fig. 4B. Relationship between the 
duration (days) from anthesis to 
ripeness and the mean daily tempera
ture ( C) during this period. It = 
sum of mean daily temperatures ( C d ) . 

thetic production can ft™™ • Q r e s s i n S at the boot stage. Prolonged photosyn-- -i**. „• z x j ^ r j r n : r? :.spimz',97s)- •-r-* 
adequate (> 20 000 per m2) The effe f g " g r a i n nmbeT i S 

leaves indicates that a fast senescent 1 & t e n i t r ° g e n d r e s s i n 8 s "> the functioning of the 
the nitrogen uptake of the plant «rf t ! ^ ^ ^ CaUS6d b y * n e g a t i v e b a l a n c e between 
that at high temperatures t h e " l Z s""• I W " " B r t S ° f «». ^ i n s . One might conclude 
hydrates, whichTan x ^ X H T S ^ ^ ^ ^ * * " - ° £ ^ 
the kemel-fi l i i n g period At Z , ^ S t ° P ***** g r 0 W t h t o w a r d s ^ end of . 
- r a t i o n of the eL ^ t ^ J * T ^ ~ ***** " * * * 
tissue (Spiertz, 1977; Sofield et a l . , 1977a) g ° r g a n S ** other-vegetative 

From studies by Jenner &Rathjen'(1975a 1*9771 <, 
tal pattern of grain growth is detP™ A •' "** concluded that the developmen

t s detennxned e ternal ly by metabolic processes rather than 
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externally by the supply of sucrose and amino acids from the rest of the plant. They found 

from C-studies that the rate of starch production in the cultured endosperm rose to a maximum 

at about the mid-point of grain development and then fell progressively to near zero. Other 

research workers studied the relationship between grain water content and the cessation of 

grain growth (Geslin & Jonard, 1948; Andersen et al., 1978). 

It was shown that this relationship was affected by the abscisic acid (ABA) concen

tration in the wheat grains. Radley (1976) and King (1976) found that the water loss of 

the grains is preceded by an increase in the ABA-concentration. Application of ABA to the 

ear had no effect on the rate of grain growth but resulted in an earlier cessation of 

grain growth and hastened the drying of the grain. Goldbach (1975) found that temperatures 

of 26 °C compared with 18 °C accelerated the increase in ABA-concentration up to the start 

of ripening. Late application of nitrogen decreased ABA-concentration. However, it is 

important to know whether the fall in the amount of water in the grain and rise of the 

ABA-concentration at maturity caused or was a consequence of the cessation of grain growth. 

Sofield et al. (1977b) found no evidence of an increased rate of water loss by the 

grain at the stage of maximum grain dry weight. They suggested that the rapid fall in 

water content at the cessation of grain growth was due to a blockage of the chalaxal zone 

of entry into the grain by deposition of lipids. This suggestion agrees with the finding 

of Jennings & Morton (1963) that lipid content increased as wheat grains reached maturity. 

Although the controlling factors of the cessation of grain growth are not completely 

understood, the strong dependence of the duration of grain growth on temperature often 

limits grain yield. It may be worthwhile to look for genetic variability in this character. 

3.3 ASSIMILATION AND UTILIZATION OF CARBOHYDRATES AND NITROGEN COMPOUNDS 

The two main organic storage products in the wheat plant are carbohydrates and nitro- ' 

gen compounds. Both have a dynamic pattern of assimilation, distribution, relocation and 

storage. The mass fractions of water-soluble carbohydrates (w.s.c), starch and nitrogen 

were determined in the various parts of the wheat culm of plants grown either in the phyto-

tron or in the field. Although carbohydrate and nitrogen metabolism are partly interrelated, 

they will be discussed sequentially. 

Accumulation of carbohydrates in the vegetative organs of the wheat plant is governed 

by the balance between photosynthetic production and the utilization of assimilates for 

growth and respiration. When there is a surplus of carbohydrates, these are mainly stored 

in the stem (Spiertz, 1974). Low temperatures and high light intensities increased the 

carbohydrate content of all parts of the plant. Under these artificial climatic conditions 

the mass fraction w.s.c. in the stem was raised to a level higher than 0.4 (4M) until 4 

weeks after anthesis (Spiertz, 1977). The w.s.c.rmass fraction of leaves and roots showed 

an increase as rate of grain growth declined. With high temperatures w.s.c.-mass fractions 

decreased shortly after anthesis. 

Also under field conditions high w.s.c.-contents were found in the stem up to a fort

night after anthesis under the bright conditions of 1976 as well as with the cool overcast 

weather of 1977 (Spiertz & Ellen, 1978; Spiertz & van de Haar, 1978). These results indi

cate that temperature governs indirectly, by the rate of initial grain growth, also the 
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utilization of the stem reserves. In 1976, a high level of radiation increased w.s.c -

-content of the stem before anthesis, but decreased it after anthesis mainly because of 

rapid grain growth due to the high temperature. In 1977, low temperatures after anthesis 

retarded grain growth and obviously kept respiration at a lower level, so that the mass 

fraction of w.s.c. in the stem remained relatively high. Gifford C1977) concluded that the 

wheat crop adjusts yield components and possibly duration of grain filling to give near 

S T S °f "IT WeiSht ̂  dlfferent P h 0 t 0^t h e t i C e — • * » a d a p t L I L l c h a -
m * for regulating grain set and grain growth are still incompletely understood. 

For m*ny years there has been controversy about to what extent the carbohydrate 
produced by photosynthesis before anthesis contributes to the grain yield of œ r e a 

LTdSpir: LT c o r e d that ™ d° - — » — ^ 3 1 , 
Îte p e sent at n ^ ^ " " * " e ™ " l conditions. Reserves of assiM-

1 g wt a L T 1 " 8 a V a i l a b l e f ° r l a t 6 r * » * « » « » - the grains could buffer 

^ziTi^Tjrr1^^1 stresses ̂ gra in fiiiing- Est-ateS °f *he ™^~ 
- ) - in labelling only specific o^ I s V ^ ™ ^ ^ T " ^ 
assimilate contrihntirvn ,,,<- *• , l a l - ' l y 'BJ. The pre-anthesis 

carried out field e n w ^ t o - ^ - U977). These authors 

« fi.« in ™ r «"« "* " Slt" Ia>«"^ « «. — cop canopy «ith »œ, 

to the ^ i n d l y » t t e r B . J " , , » s ™ H « . s , » In ly fro» s t , „ reserve,, 

«nd corrections for l 0 s s L 1 * °° ChmS" ™ ^ " * « * « the s t „ after „ thes i s 
that the dry „ t , . t « t a i o 7*""''™ " " t ™ 1 - " i » « the roots, » , f o ^ 
correspond to , " Z 2 Ï £ " " " T " " r "° 8 e < i '"" * " » ' » - • - • ' . * * 
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weight losses was due to a sham H T largest part of stem 

remaining proportion of dry w e L 1 ^ *"*** ° f W a t e r - s o l u ^ carbohydrates. The 
compounds (amino acids o r T J c 7-H ^ * ^ b>" r e l^at ion of various other 
processes. ' ^ a C l d S ' ^ ^ ^ to a small extent by lignification 
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weight of stens and ieaves. The p h e J n a T o f T ^ f a
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weeks after anthesis was also observed in o, assimilates during the f irst 
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™ * by c-studies of Makunga et a l . 0978); they suggest 



that the lower stem weight of semi-dwarf cultivars is a more important cause of differences 

in harvest index than the greater movement of post-anthesis photosynthate to the grain. 

Cultivars with more grains per ear had larger ear weights at anthesis and incorporated 
14 more C into the ear before anthesis during floret differentiation. Ruckenbauer (1975) 

found that more C reached the ear of Maris Hobbit than that of Maris Huntsman, but 

Hobbit had also more grains per ear. 

Considering the function of leaves in assimilate distribution and utilization of the 

plant, nitrogen compounds play a complex role. Referring to the model proposed by Thornley 

(1977) nitrogen compounds can be divided into three categories: (1) storage material 

(2) biologically active material, (3) inert material. Nitrogen compounds accumulated and 

stored in the green organs of the wheat plant, especially the leaves (blade and sheath) 

are usually the main nitrogen source for the growing grains (Nair et al., 1978). At the 

same time some nitrogen compounds are biologically active and determine the activity and 

duration of physiological processes, viz. photosynthesis and nitrate assimilation. 

In our experiments in the phytotron as well as in field experiments we found that 

high temperatures raised the rate of nitrogen uptake by the grains more than the carbo- , 

hydrate accumulation (Spiertz, 1977; Spiertz & Ellen, 1978). So warmth during the grain-

-filling period promoted the nitrogen mass fraction of the grain. Already in 1914 Le Clerc 

& Yoder demonstrated with their curious tri-local soil-exchange experiment that climate 

has a much greater influence on the protein content of wheat grain than soil fertility. 

Under controlled environmental conditions Campbell & Read (1968) found that increasing 

either day temperature (from 21 to 27 °C) or night temperature (from 13 to 21 °C) raised 

the protein content of the grain. There were only small interactions with light intensity 

and soil moisture stress. It was stated that reduced light intensity lowers the grain 

nitrogen content to about the same extent as grain weight, with the result that the mass 

fraction of nitrogen is little affected (Bremner, 1972). However, in our phytotron expe

riment (Spiertz, 1977) and in the experiments of Kolderup (1975) and Sofield et al. (1977b). 

there was,also a clear inverse relation between light intensity and the mass fraction of 

nitrogen in the grain. Striking was the weak response of nitrogen yield and distribution 

of nitrogen to environmental conditions. Obviously, nitrogen economy is more under genetic 

control than carbohydrate economy; the latter seems to reflect the photosynthetic condi

tions. 

In the phytotron experiment with regular nitrogen supply to the plants, about 651 of 

the grain nitrogen was derived from the vegetative aerial parts, whilst 35*. was uptake 

from the roots or the soil after anthesis. These proportions correspond with data of 

Deherain & Dupont (1902). In our field experiments with late N applications, we found 

about 50?o (100 kg.ha-1) of the nitrogen uptake after anthesis in the less leafy crop of 

1976 (Spiertz & Ellen, 1978) and about 201 (25 kg.ha-1) in the crops with an early vigorous 

development in 1977. Austin et al. (1977) and Pearman et al. (1977) reported for British 

growing conditions that post-anthesis nitrogen uptake accounted for only V% and 15 to 281, 

respectively. The post-anthesis nitrogen uptake is strongly affected by root activity, 

moisture level and nitrogen supply, as shown by extensive studies of Campbell et al. 

(1977a, b) and Campbell & Paul (1978). 
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A late nitrogen dressing at the boot stage to a crop with an intermediate plant den
sity turned out to favour grain number as well as supply of assimilates to the grains 
(Spiertz & Ellen, 1978; Spiertz & van de Haar, 1978). TT* latter was due to a retarded 
depletion of the nitrogen content in the green organs of the wheat plant and a prolonged 
photosynthetic capacity. Supply with nitrogen compounds was more favoured than carbohydrate 
supply to the grains. Therefore nitrogen harvest index (percentage grain nitrogen) was 
raised from 0.75 to 0.81 and from 0.74 to 0.79 in the years 1976 and 1977, respectively. 
This efficiency of nitrogen distribution was also found by Dalling et al. (1976), whilst 
Austin et al. (1977) reported a nitrogen harvest index of 0.68 as an average value for 
various genotypes. Canvin (1976) stated that nitrogen harvest index is not a constant 
feature of a cultivar and that there is as much variation within a cultivar as there is 
between cultivars. 

3.4 AGRONOMIC POSSIBILITIES AND LIMITATIONS FOR INCREASING GRAIN YIELD 

Discussions of whether assimilate supply (= source) or storage capacity (= sink) 

limits yield refer mostly to the grain-filling stage, since most grain growth is supported 

y concurrent photosynthesis rather than by stored reserves of carbohydrate (see Section 

3 3). However, the sink or storage capacity for assimilates at the grain filling stage is 
1 1™' 6 , ?6K n6d by the CXtent ° f P h 0 t o s ^he S is, nitrogen assimilation and 

S n T ^ T 7 b e f ° r e antheSlS' eSPeClally f r ° m ear initiation « « * («e Sec-

be"e n r o ^ T f f """ " ^ ***** ̂  d e v e l ° » depends on the balance 

* o t t i v I 0Fmnt ° f *•" C r ° P dUring the Vari0US Sta*es <* the life cycle. 

S fp « r Var: are adaPt6d t0 the gr0Win§ C ° n d i t i 0 n S in SUCh a « / that their produc-
IL ol r 3 rge POtential fOT nHXimiZing the Utilizati0n °f * ™ " « ~ -d the storage of photosynthates in the grain. 

The comparison of grain numbers and grain yields of the cultivar Lelv (Fig 1) in 

z?s:z™ that' ̂ growing coMitio- * ̂  ^ ^ ^ ~ 
I T ; a^rt

P e r ̂  *""* arCa 1S ^V^Z' ™S «lati^P suggests 
tnat for achieving top yields a grain number per m2 of about ?n nnn • • \ l • v i 
f19781 fmm^ „ m,-„- -, -, aDout zo 000 is required. Darwinkel 
liy/aj tound a minimum value of 18 000 erain* n»r J- v. *. ̂ - ,. 
under the nonr H „ M . A- • P ' but thls f i S u r e » s established 
unaer the poor light conditions of 1977./ Under hioh i ™ „ n *• • 
with micro-crops Evans (1978Ï £«„*, i radiation ™ controlled environments 
yield up to 28 600 g^ins pÜr m2 r e l a t i ° n S h i P ^ ^ ^ " * » » * « " * 

of a s S n a : r b u t e a r i e a r ̂  *" ̂  ^ ^ * * » * * « * * « * » -liability 
3.3 ^ * e x s °; iStribUti0" W i t ^ the shoot. It was shown (see Section 

«^^Tl^TJ^T^ s ir*"strength of the developing e a r « w h i c h 

been present already tZy ^ in l j c ^ ^ **** " ^ ^ ^ «** -
distribution in the cultivarl L u ^ a n ^ ^ * l ^ T " " t ^ " T 
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Another approach to increase the number of grains per ear was outlined by Donald (1968) 

in his concept of a wheat ideotype: single culm, strong stem, dwarf stature and large spike. 

The first uniculm type of wheat was crossed in Israel. Atsmon & Jacobs (1977) reported an 

average grain number per ear of 106 within a range from 80 to 180. These huge numbers of 

grains were due to a higher number of grains per spikelet and more spikelets per ear. The 

high grain number per ear was associated with an average grain dry matter weight of 62.5 mg 

per kernel and a grain dry matter yield per plant of 4.4 g. However, vegetative parts"were 

robust and vigorous, including broad, thick, dark green leaves and thick, stiff straw. The 

larger and proliferous ear had a considerably higher chaff weight. This uniculm fulfils 

only part of Donald's concept of the ideotype, because it is not a weak competitor and 

ultimately sensitive to mutual light competition. Agronomically it is questionable whether 

a low plant density with large ears is more favourable than a dense crop with smaller ears 

if grain number per unit ground area is equal. Further the lack of tillering capacity may 

be a disadvantage of winter wheat under poor or variable establishment conditions. 

Assuming that grain number per unit ground area can be increased, then the increased 

demand for assimilates must be considered. High temperatures enhance the conversion of 

precursors (sucrose and amino acids) into storage products (starch and protein) in the 

grain, but also the rate of respiration (Spiertz, 1977; Apel & Tschäpe, 1973). Under these 

growing conditions the utilization of assimilates can be greater than current photosynthe

sis and nitrogen assimilation (Spiertz & Ellen, 1978). The demands for carbohydrates are 

buffered by the stem reserves, but high requirements for nitrogen would accelerate senes

cence and shorten the grain-filling period (Fig. 5). 

As photosynthesis depends on solar radiation and ambient CC^-concentration, there is 

no evidence for a considerable increase of net crop photosynthesis. Sibma (1977) inferred 

from a comparison between potential gross production and crop growth rate derived from 

light interception that photosynthetic production of wheat can be increased by prolonging 

the growth period. If water is available additional nitrogen dressings at the boot stage 

and adequate disease control favour net photosynthesis at the end of the growing period 

(Spiertz, 1973; Ellen & Spiertz, 1975; Spiertz & van de Haar, 1978). However, it has 

already been observed that in the field the ears sometimes mature before the vegetative 

organs senesce. 

High grain yield, associated if possible with a high content of grain protein, 

requires either large nitrogen reserves in the vegetative organs or a continued uptake of 

nitrogen after anthesis. Assuming as a goal 10 tons of grain dry matter per ha with a 

nitrogen mass fraction of 0.025 (2.5%), then a nitrogen supply of 250 kg.ha" is required. 

Normally in a good winter wheat crop, nitrogen yield at anthesis amounts to about 150 kg. 

ha"1 of which about 100 kg.ha"1 is available for relocation to the grains (Coîc, 1960; 

Spiertz & Ellen, 1978). So a large quantity of nitrogen must be absorbed and assimilated 

after anthesis; this absorption also needs a prolonged activity of the roots. 

Up to now mostly potential grain yields of wheat have been calculated from the photo-

synthetic potentials (de Wit, 1965; Evans, 1970). The consequences of these potential 

yields for the nitrogen economy of the wheat plant are mostly overlooked. The majority of 

the studies on nitrogen in the wheat plant concern the nitrogen content of the grain and 
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Summary 

The main purpose of growing a wheat crop has always been to produce grain. Final grain 

yield is a function of number of ears per m , number of grains per ear and mean individual 

grain weight. 

Since research workers found that grain growth is based largely on post-floral assi

milation, much emphasis has been given to the significance of the size and the longevity 

of the photosynthetic active organs for the grain yield. Following the concepts about leaf 

area index (LAI) and leaf area duration (LAD) of Watson and co-workers, we studied the 

relation between grain yield and green area duration of the various green organs under 

growing conditions in the Netherlands. By multiple regression analysis, up to 831 (ff ) of 

the variance in grain yield could be attributed to the variance in green area duration of 

flag leaf, peduncle (incl. leaf sheath), ear, penultimate leaf and last internode. From 

these calculations it could be derived that the area durations of flag leaf and peduncle 

were most strongly associated with grain yield. However, within a wheat plant there is a 

high degree of co-variation between, the green area durations of individual organs, so that 

it was not possible to estimate the exact contribution of these organs to grain growth. 

Even with a high correlation between green area duration and grain yield, it is not possible 

to determine whether grain growth is directly affected by environmental conditions or in

directly through the supply of assimilates by the vegetative (green) parts of the plant. 

Therefore the effects of light intensity and temperature on the duration and rate of 

grain growth and on the assimilation and utilization of photosynthates were studied in 

phytotron experiments. High temperatures considerably increased the rate of grain growth, 

but likewise shortened the duration of grain growth. Thus the daily requirements of the 

grains for assimilates increased with a rise in temperature. As grain growth is sustained 

largely by current photosynthesis, light intensity affected grain yield more at high than 

at low temperatures. The restricted grain growth at low temperatures led to a surplus of 

assimilates, which accumulated in the vegetative organs; especially carbohydrates were 

stored temporarily in the stem. 

A high temperature during grain filling promoted the accumulation of nitrogen in the 

grains relatively more than it promoted the storage of starch. Light intensity had only a 

minor effect on nitrogen accumulation and protein synthesis in the grain. The change in 

nitrogen content of the grains was caused by the effect of light intensity on carbohydrate 

supply. 

Although warmth raised the rate of nitrogen uptake by the grain considerably, the 

nitrogen yield of the grains was hardly affected. This result indicates that without post-

floral nitrogen uptake, the duration of the grain-filling period is determined by the 

amount of nitrogen reserves in the wheat culm at anthesis and by the rate of nitrogen 
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relocation from the vegetative organs to the grains. 

The responses of spring wheat to temperature and light intensity in the phytotron 

were compared with the behaviour of winter wheat in field experiments during five growxng 

seasons, which covered a large range of climatic conditions during the graxn-fxllxng 

'period. It was found that also under field conditions temperature was the main detemxnant 

of the rate of grain growth and its duration. However, temperature effects on graxn yxeld 

under field conditions were masked, due to co-variation between light intensity and tempe

rature. From the pattern of carbohydrate accumulation in the stem and assimxlate utxlxza-

tion by the grains, it was concluded that grain growth during the first three weeks ofthe 

grain-filling period was more governed by temperature than by the avaxlabxlxty of assxmx-

lates. During the latter part of this period additional assimilates, made avaxlable by a 

prolonged photosynthetic activity, favoured grain growth. MotW1aT1(ls the 

I suggested that .der the growing conditions for winter wheat xn the Netherlands the 

storage capacity of the grains is limiting during the first weeks after « ^ » » J ^ " 

limitation , whilst later on the supply of assimilates to the graxns mxgh: be 1 » n 

(source-limitation), due to constraints of water, nitrogen and dxseases By U t n ogen 

applications and disease control with fungicides, the longevity of the photo ynhe 

active organs could be prolonged and grain yield enhanced. A late nxtrogen applxcatxon, 

however, increased the number of grains per ear. 

Crop p _ e .der various - T ^ ^ ^ l ^ r 

about partly by a favoured ear growth during the . e f . r a l £ ° £ * j £ £ ^ M 

grain growth during the first half of the graxn-fxllxng perxod a 

had a reduced stem weight; leaf and chaff weight were affected ^ ^ ^ ^ ^ 

small extent, .ere were only s - U — s ^ ^ ^ t0 _ e s 

the cultivars. However, nitrogen content of the g ^ ^ ^ ^ ^ a 

in starch accumulation. The nitrogen content of the gr ^ (up t0 0.14), whilst a 
cultivar: a warm growing season increased the P ^ e 1 ^ 0-08). ̂  nitrogen 

cool growing season resulted in a low protexn mass tactxon I 
harvest-index did not vary widely between seasons and cultxvars, when 

dressings were applied. This index ranged from 0.74 to . •• ^ ̂  ^ ^ ^ ^ 

. A much greater variation occurred b e t w e e n - « ^ ^ rf ^ £inal grain-nitro-
after anthesis; this amount ranged on average be ^ post.£loral nitrogen uptake 
gen yield. Especially when vegetative growth was re ^ ̂  ̂  ^ ^ ^ ^ ^ ̂  ^ ^ 

was needed to fulfill the ̂ ^ ' ^ J ^ ^ t e s nitrogen reserves in the root 
of nitrogen in the aerial parts of the wheat cuxm 
system or a prolonged activity of the root system. 

• • A limitations for increasing grain yield are discussed. 
The agronomic possibilxtxes ^ ^ ^ h& ̂  * such . way that the wheat 

Further progress in increasing ^ J 1 0
 environmental conditions. It is hypothesized 

crop is adapted as much as possxble to the envix 



that further increase in grain yield might be expected from a higher grain number per unit 

ground area, from a longer root activity after anthesis and from a prolonged capability of 

the grains to accumulate assimilates and convert these into storage products. 
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Samenvatting 
Korrelproduktie en assimilatenhuishouding bij tarwe in relatie tot raseigenschappen, 

weersfactoren en stikstofvoorziening 

Het hoofddoel bij de teelt van tawe is steeds de produktie van korrels geweest. De 

korrelopbrengst is een functie van het aantal aren per m2, het aantal korrels per aar en 

het gemiddelde gewicht per korrel. Sinds door onderzoekers werd vastgesteld dat de korrel-

groei grotendeels afhankelijk is van de postflorale fotosynthese, is er veel aandacht ge

geven aan de betekenis van de grootte en de levensduur van de fotosynthetisch actieve or

ganen voor de korrelopbrengst. 

In aansluiting op de opvattingen van Watson en medewerkers over de bebladerings-

-index (leaf area index, LAI) en de bebladeringsduur (leaf area duration, LAD) werd de 

samenhang tussen de korrelopbrengst en het in de tijd geïntegreerde groene oppervlak van 

de afzonderlijke organen bestudeerd onder Nederlandse groei-omstandigheden. Door middel 

van meervoudige regressie-analyse kon tot 83* (i?2) van de variatie in korrelopbrengst toe

gerekend worden aan de variaties in de geïntegreerde groene oppervlakken van het vlagblad 

de aarsteel, het voorlaatste blad en internodium. Uit deze analyse kon worden afgeleid dat 

het vlagblad en de aarsteel het sterkst gerelateerd waren aan de korrelopbrengst. Vanwege 

de hoge mate van co-variantie tussen groene oppervlakken van de individuele organen was 

het niet mogelijk de exacte bijdrage van de afzonderlijke organen te berekenen. Zelfs een 

hoge correlatie tussen groen oppervlak en korrelopbrengst geeft geen antwoord op de vraag 

of de groei van de korrels direct wordt beïnvloed door uitwendige omstandigheden dan wel 

indirect door de toevoer van de assimilaten uit de groene organen. 

Hiertoe werden de invloeden van licht en temperatuur op de duur en snelheid van 

korrelgroei en op de stofwisselingsprocessen in de tarweplant bestudeerd door midd 1 van 

fytotronproeven. Het bleek dat hoge temperaturen de groeisnelheid van de korrels sterk 

verhoogden, maar tevens de groeiduur bekortten. Daardoor werd de dagelijkse behoefte v » 

de korrels aan assimilaten vergroot met het stijgen van de temperatuur. Omdat ™*>™ 

rdlatenbehoefte van de korrels grotendeels wordt voorzien door de ^ ^ ^ ^ 

korrelvulling, is de hoeveelheid licht belangrijker voor de korrelopbrengst bx3 h g dan 

bij lage temperaturen, De trage korrelgroei bij ̂ ^ ^ ^ Z 

overschot aan assimilaten, die opgeslagen werden in de vegetatieve o g 

er opslag van water-oplosbare-koolhydraten in de stengel plaats- e H1«tof in 

Hoge temperaturen gedurende de korrelvulling bevorderden de opslag van iks o *> 

de korrels m l dan de L n a m e van zetmeel. De lichtintensiteit had slecht een g ^ 

•„ Ao Vnrrpl maar beïnvloedde desonoaniu. 
effect op de stikstof opname en eiwitsynthese in de korrel, " ^ ; 

het eiwitgehalte van de korrel door een verandering „ de = d = = ^ 
korrel. Ofschoon hoge temperaturen de stikstofopname in de korrel aan J . 
werd de totale hoev elheid stikstof in de korrels nauwelijks * ^ ™ £ l d kor-
dat bij afwezigheid van stikstofopname door de t a b l a n t na e bloei d * u r « n & t o 
relvulling mede wordt bepaald door de stikstofvoorraad in de halm bil de bloei 
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de snelheid van herverdeling van stikstof vanuit de vegetatieve organen naar de, korrel. 

De reacties van (zomer-]tarwe op variaties in temperatuur en lichtintensiteit in het 

fytotron werden vergeleken met het gedrag van (winter-) tarwe onder veldomstandigheden ge

durende zes jaren; deze jaren vertegenwoordigden een brede variatie in weersfactoren ge

durende de korrelvulling. Er werd vastgesteld dat ook onder veldomstandigheden de tempe

ratuur van bepalende invloed is op de snelheid en duur van de korrelvulling. De invloed 

van de temperatuur op de korrelopbrengst wordt echter gemaskeerd door de co-variantie 

tussen temperatuur en lichtintensiteit in het veld. 

Uit het verloop van de koolhydratenaccumulatie in de stengel en de benutting van 

assimilaten door de korrel werd afgeleid dat de korrelgroei gedurende de eerste drie weken 

na de bloei meer gereguleerd wordt door de temperatuur dan door de beschikbaarheid van 

assimilaten. Gedurende de tweede helft van de korrelvullingsperiode reageerden de korrels 

positief in groeisnelheid op de extra assimilaten die beschikbaar komen bij een verlenging 

van de fotosynthese-activiteit. Dit wijst op een sub-optimale toevoer van assimilaten in 

deze fase. Er werd geconcludeerd dat onder Nederlandse groei-omstandigheden bij winter-

tarwe de opslagcapaciteit van de korrels beperkend is gedurende de eerste weken na de 

bloei ('sink'-beperking), terwijl nadien de toevoer van assimilaten naar de korrel beper

kend is ('source'-beperking). Tekorten aan water, stikstof etc. of het optreden van ziek

ten spelen hierbij een rol. Door late stikstofgiften en bestrijding van ziekten met fungi-

ciden kon de levensduur van de fotosynthetisch actieve organen verlengd worden en daarmee 

de korrelopbrengst verhoogd. Een late, gedeelde stikstofgift vergrootte echter ook het 

aantal korrels per aar. 

De produktiviteit van een gewas onder variërende uitwendige omstandigheden hangt sterk 

af van de raseigenschappen. De relatieve betekenis van enkele verschillende raseigenschap-

pen werden vastgesteld door een vergelijking van een half-dwerg (semi -dwarf) en een stan

daardras. Het bleek dat de hogere harvest-index (aandeel van de korrel in de bovengrondse 

massa) van de half-dwerg ten dele werd veroorzaakt door een gunstigere aarvorming vóór de 

bloei en ten dele door een hogere groeisnelheid van de korrels gedurende de eerste weken 

na de bloei. De half-dwerg had een duidelijk lager stengelgewicht; daarentegen waren blad

en kaf gewicht iets hoger dan bij het standaardras. 

Tussen de rassen waren er slechts kleine verschillen in stikstofopbrengst en -verde

ling, maar grote verschillen in de eiwitgehalten van de korrels. Het eiwitgehalte van de 

korrels bleek per ras sterk te reageren op weersinvloeden; een warm groeiseizoen verhoogde 

het eiwitgehalte sterk, terwijl in een koel seizoen dit gehalte laag bleef. De harvest-

-index voor stikstof varieerde nauwelijks tussen de seizoenen en tussen de rassen bij hoge, 

gedeelde stikstofgiften (van 0,74 tot 0,81). Tussen de groeiseizoenen bleek een grote va

riatie te bestaan ten aanzien van de hoeveelheid opgenomen stikstof na de bloei; deze hoe

veelheid varieerde van 20 tot 501 van de stikstof opbrengst in de korrel. In het bijzonder 

als de groei van de vegetatieve organen beperkt werd, was postflorale stikstofopname nodig 

om bij een hoog opbrengstniveau aan de behoefte van de korrels te voldoen. Een dergelijke 

late opname van stikstof wijst op het vrijkomen van stikstofreserves uit hetwortelsysteem 

en/of op een langere activiteit van het wortelstelsel. 
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De landbouwkundige mogelijkheden en beperkingen voor een verdere verhoging van de 

korrelopbrengst zijn besproken. Er wordt geconcludeerd, dat een verdere verbetering van 

de korrelopbrengst op een evenwichtige wijze moet worden nagestreefd, opdat de gewassen 

aangepast blijven aan de beperkingen van hun groeimilieu. Tevens wordt opgemerkt dat een 

verdere toename van de korrelopbrengst kan worden verwacht van een groter aantal korrels 

per eenheid van grondoppervlak, van een langere activiteit van het wortelstelsel na de 

bloei en van een verlengde duur van opname en omzetting van assimilaten door de korrel. 
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Summary 

In two experiments with spring wheat the relation was studied between green area 
duration (D) and grain yield during the period after heading. For this, the green areas 
or leaf, internode and ear were determined as accurately as possible in samples. 

The relation between grain yield and green area duration of the separate green 
organs and of combinations of these was quantified by regression and correlation 
calculations. These calculations have shown that of the separate parts of the culm the 
D values of flag leaf and peduncle were closely correlated with the grain yield. 

By using the combined D value of flag leaf and peduncle as a yield determining 
factor, 81 and 61 % oî the variance in the grain yield could be statistically predicted 
>n 1967 and 1968, respectively. By including all the separate D values in a multiple 
correlation calculation the coefficients of determination of the variance in the grain yield 
could be increased to 83 % in 1967 and to 74 % in 1968. In 1968, next to the D values 
of flag leaf and peduncle, the D value of the ear was closely correlated to the grain 
yield. 
The photosynthetic efficiency of the green areas was compared by the grain-leaf ratio. 

Introduction 

The contribution of the various green organs in the wheat plant in ear filling for many 
years has been a subject of study for several workers. In these studies different methods 
were applied, among others, shading or klipping some parts of the culm (Boonstra, 
1929; Asana and Mani, 1955; Birecka, 1968; Puckridge, 1968) and measuring the rate 
of photosynthesis and distribution of the assimilates with 14C02 (Birecka et al., 1963; 
Stoy, 1963; Carr and Wardlaw, 1965; Lupton, 1968; Rawson and Hofstra, 1969). These 
studies, especially the more recent ones, show that the carbohydrates in the grain are 
mainly provided by the flag leaf and the peduncle (including leaf sheath) and to a less 
extent by the ear, and the last leaf and internode, but one. The data on the size of 
the contribution by each of these organs in ear filling vary widely which may be partly 
due to differences in experimental conditions or techniques. 

In various experiments it was found that the carbohydrates for ear filling are mainly 
formed during the period from heading onwards (Archbold, 1942; Thorne, 1965) and 

1 Present address: Research and Advisory Institute for Field Crops, Wageningen, the Netherlands. 
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that from the carbohydrates formed before flowering 5 to 10 % are available to the 
grain by re-distribution (Stoy, 1965; Wardlaw and Porter, 1967; Lupton, 1968). There
fore, the greater part of the assimilates available for ear filling is dependent on the 
size and the duration of the green organs in the period after flowering. 

Many of these experiments were done with single plants in pots or in the field, in 
which the growing conditions, dependent on the treatments always deviate to a more 
or less extent from crop conditions. In field experiments with 'undisturbed' crops the dif
ferences in grain yield between old and new varieties have been related by Watson et al. 
(1963) with the size and duration of the green parts of the culm. An usual measure of 
the latter is the green area duration (D), the green area per unit area of land integrated 
over the period of grain growth. The photosynthetic efficiency of the green organs for 
grain filling was estimated by deviding the grain yield by the green area duration, 
called the grain leaf ratio (G). 

Welbank et al. (1966) found by calculating G values, first, a good correlation be
tween the grain yield and the green area duration, and secondly, that the standard 
deviation of G was smaller if the green area duration only included the green area of 
the flag leaf and the peduncle (DFIag) during the period after flowering. 

With reference to this work from Great Britain, two experiments were conducted 
with spring wheat to study which D value was closed correlated to the grain yield, and 
in particular during which period D had to be calculated and which parts of the culm 
the D value would be composed of. By means of correlation and regression calculations 
the relationships between the D values of the important green parts and the grain yields 
have been analysed. Should the parameter, green area duration, show a close correla
tion with the differences in grain yield, this might lead the breeder to make more 
purposeful use of genetic differences in the concerning morphological characteristics 
in the wheat plant and it might give the cereal grower a better idea of the effect of 
certain cultivation measures, as e.g. a late nitrogen application, on the production 
pattern of the crop. 

Material and methods 

The field experiments were conducted in 1967 and 1968 with spring wheat on a fine-
textured (about 35 % clay) soil on subrecent Rhine sediments. To vary the crop 
structure the following treatments were applied: 

1967: 
- 2 varieties: 'Opal' and 'Orca' 
- 3 sowing dates: 17 March, 12 April and 5 May 
- 3 'seed rates: 160 kg, 180 kg and 200 kg per ha 
Nitrogen fertilizing was the same for all the treatments, viz 30 kg N/ha at sowing, 
20 kg N/ha in the F6 stage and 20 kg N/ha in the F 1 01 stage (according to the Feekes 
scale); 

1968: 
- 3 varieties: 'Opal', 'Gaby' and 'Orca' 
- 2 sowing dates: 4 March and 16 April 
- 2 CCC levels: without CCC and 2 1 CCC per ha, applied in the F6 stage 
- 2 N levels: 75 kg N/ha and 75 kg + 25 kg N/ha at the beginning of flowering. 

2 1 2 Neth. J. agric. Sei. 19 (1971) 



GREEN AREA DURATION AND GRAIN YIELD IN SPRING WHEAT VARIETIES 

experiments were set out in tour replicates. 
1968 was 72 and 96, respectively. Stained in such an experimental 

It has to be pointed out that the different ^ ^ ^ h T i i t e n r i t y , temperature, 
design do not grow under equal conditions with respect: to iig y ^ ^ 
precipitation, etc., although the growing periods overlap^for the g P a r e 

two years the climatical conditions differed to such an extent 
discussed separately. t h w e r e five intermediate 

To determine the dry matter weights and the green area, tn-
harvests from heading onwards, viz: 
Hi: when 50 o/0 of the culms were heading (Fio.a) 
H2: at flowering (F10 5 2) 
H3: two weeks after flowering 
H4: four weeks after flowering s i x w e e k s a f t e r flowering 
H-: at a grain moisture content of about 35 A U™ ; 

mediate harvest a sample of 0.25 m was ^rves r m i n e d I n c o u n t ing, the last 
dry-matter weight and the number of eu m»we Q f t h e s e c u l m s t h e 

culm of each ten was used to make a sub-sample 
following green parts were measured: w i d t h ( m m ) . 
a. of each leaf lamina separately, its length (cm) and y ^ 
b. length (cm) and diameter (mm) of the internodes, mcluding 
c. the dimensions of the stem and the ear e a r s for d r y .m a t t e r 

After this, the ten culms were separated in leaves, 
determination of the separate parts. m l l U i n l v i n 2 the product of length and width 

The leaf area in 1967 was obtained by « « ^ a t e a c h intermediate har-
with a correction factor (Table 1). Tim factor « ^ ^ r i p £ n i n g . T h i s w a s 

vest, because the shape of the green leaf area is not ^ 
done by means of photographic P m t e 7 ^ g j o n b e t w een the length and the area 

The date of 1967 showed a good correlation ^ ^ ^ r e s p e c t i v e l y 

of the flag leaf and leaf 2, a correlation coeffii i n d e x for ^ k a f 

(n = 288) Based on this, in 1968 leaf length was usea ^ a n d ^ k n g t h 

the leaf coefficient in this case is the quo tien. o y F w a s c a l c u l a t e d a s t h e area 
The green area of the ^ 0 ^ ^ Z m t e r l L . The green area of the ear was 

of a cylinder with the formula: height X " r c u " \ s i d e s ; i n i 968 the perpendicular 
calculated in 1967 as length X width of the sep r e d photo-electrically. 
projections of the sides on the horizontal plane wer 

Table 1. Average leaf coefficients of flag, eaf lea ^ 
calculated as the quotient of the photographical 
product of length and width (1967 trial;. 

Flag leaf L e a f 
Leaf 

0.93 
Harvest 1 0.80 °-f 0.94 
Harvest 2 0.86 » - ^ LOI 
Harvest 3 0.92 0.96 

* Leaves and i n t e r n o d e s ^ e T e ^ i b ^ e l l r ^ ^ to bottom. 
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Results 

In both years there was a significant varietal as well as sowing date effect on the gram 
yields and on the size of almost all the green areas. In addition there was a great deal 
of interaction between the varieties and the sowing dates. The chlormequat (CCC) 
treatment in 1968 had significant effects on the grain yield and the green areas of 
some organs; this did not apply to the factor seed rate (1967) and the late top dressing 
of nitrogen in 1968. 

Green area 
The green areas of the organs are not constant during the post-floral period: the green 
leaf area decreases more rapidly as the leaves on the culm are older, whereas the green 
area of the top internodes and ear continues to increase until 14 days after flowering, 
when they decrease rapidly (Table 2). 

The size of the green area of the various assimilating parts of the plants has also 
been calculated as green area index = I (Fig. 1), by multiplying the green areas per 
culm with the number of culms per m2. The differences in green area indices (I) be
tween the treatments were smaller than the differences in green area per culm, because 
a greater number of culms was accompanied by a smaller area per culm. 

The size and the duration of the green parts can be expressed in one parameter, 
green area duration (D). This is calculated as the integral of the green area index 
against time. In the calculations the green area index was assumed to be linear and the 
green area duration can be found with the following formula: 

e I(n-l) + I(n) number of day 
D = S X (dimension: weeks) 

n=2 2 7 

The D values in 1967 were calculated from heading to ripening as well as from 
flowering to ripening; in 1968 the D values were also calculated for each interval be
tween two harvests. 

Of the DF value mentioned in Table 3 of flag leaf + peduncle + ear about 20 % 
were realized before flowering and about 80 % after; the latter percentage was divided 
as follows: 35 % in the first 14 days after flowering, 30 % in the next 14-day period 
and 15 % in the remaining period. 

In all the D values there was a distinct varietal and sowing date effect, either as a 
major effect or as an interaction effect. The D values of the late-sown treatments were 

Table 2. Average green area (cm*) of the different parts of the culm 
at five intermediate harvests (1967 trial). 

Flag leaf 
Leaf 2 
Leaf 3 
Leaf 4 
Leaf total 
Peduncle 
Internode 
Ear 

Hi 

29.1 
27.8 
19.9 
7.7 

85.4 
13.7 
24.8 
20.1 

H2 

29.5 
26.5 
17.9 
6.1 

80.3 
28.4 
24.8 
25.7 

H3 

26.7 
23.5 
10.3 
— 

61.7 
30.8 
25.1 
33.7 

Hi 

15.7 
3.5 
0.3 
— 

19.5 
23.0 
20.8 
27.8 

H5 

— 
— 
— 
— 
1.5 
1.8 

? 
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A.I 
1.6 

1.2 

0.8 

0.4 h 

A . I . of t h e l e a v e s 

17 March 
12 April 

5 May 

« — « ; leaf 1 
O . ~ o = leaf 2 
+ - . - + : leaf 3 
a — o = l e a f 4 

6 

D — - O . 

A I of t h e top i n te rhodes and of the e a r 

0 2 4 . 6 

weeks after f lowering 

5 May 

A I 
1 6 

1.2 

0.8 

0.4 

17 March 

& 

a-~*-o-

' -TJ >\ 

O L 

A — A = internode 1 
• a = internode 2 
+ — + = ear 

_ i _ 
0 2 4 . 6 

weeks after f lowering 

"1 0 2 - d e x ( A x ) of the separate cu.m parts from heading onwards with 
Fig. 1. Trend in the green area index (A.l.) oi me 
three different sowing dates. 

Thk decrease was mainly due to a lower 
distinctly lower than those of the early^sowmThis ^ . ^ o f ^ ^ 
number of culms, as the result of l e s ' ' f ™ * ^ treatments chlormequat (CCC) 
treatments also affecting the D values. Of he rem* g ^ ^ ^ t e d 

gave a significant (a < 0.001) à ^ ^ ^ g ^ was caused by the decline in 
plots 19.2 and 16.5 weeks, respectively. T ^ d.«e ^ d a t a s h o w t h t d u e t 0 

green area by chlormequat, especially of th P ^ ^ . n d u r a ü o n a n d s i z e of 
varietal characters and cultivation methods, the 

the green area. 

Gndn yicld h affected by the sowing date; especially t h e » 
The grain yields were very much affeced Dy ^ ^ s h o w n n T a b i e 4 the 
treatments had a much lower yield, e.g. in ^ ^ J m eqUal sowing dates; this was 
sowing date effect was not identical in the tw 

due to the differing climatical conditions. c o m p 0nents: number of ears/m 
The grain yield is composed of the »"°™ « 1 9 6 7 t h e 1000-grain weight was 

numbe/ofgrins/ear and the 1000-grain waght to ^ 
the main determinant o ^ ^ J ^ s I number of grains per ear did not show a 
m2 was important (r = 0.59), wnere* ^ 
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Table 3. Green area duration (weeks) in the period from heading to ripening. 

1967 trial 
Variety (V) 'Opal' 'Orca' 

Sowing date (S) -+ 17/3 12/4 5/5 17/3 l 2 / 4 

Flag leaf (F) 
Leaf 2 
Leaf 3 
Leaf total 
Peduncle (P) 
Internode 2 
Ear (E) 

6.4 
5.0 
2.2 

14.0 
8.2 
6.4 
6.3 

7.7 
4.9 
1.4 

14.0 
7.6 
6.2 
6.2 

4.2 
3.8 
2.1 

10.4 
4.8 
4.6 
5.9 

DF = F + P + E 20.9 

7.6 
5.0 
3.1 

16.7 
9.6 
7.8 
9.2 

7.4 
5.6 
3.2 

17.0 
7.2 
6.8 
9.0 

5/5 

4.1 
3.6 
3.1 

12.4 
4.4 
5.4 
7.9 

mean 

6.2 
4.7 
2.5 

14.1 
7.0 
6.2 
7.4 

0.6 
0.5 
0.4 
1.4 
0.8 
0.6 
0.6 

V' 

ns 
*** 
*** 
ns 
*** 

21.5 14.9 26.4 23.6 16.4 20.6 1.7 *** 

Si 

# * * 
*** 
** 
*** 
*** 
*** 
*** 

VS> 

** 
*** 
ns 
*** 

1968 Mai 
Variety (V) 'Opal' 'Gaby' 'Orca' 

Sowing date (S) -* 4/3 16/4 4/3 

D F = F + P + E 23.5 16.5 20.2 
16/4 

12.9 

4/3 

21.9 

16/4 

12.2 

mean a 

17.9 1.6 

V ' S* VS> 

ns: non-significant (a > 0.05); *: 0.05 > a > 0.01; **: 0.01 > a > 0.001; ***: a < 0.001. 

Table 4. Dry matter yields (kg. ha-i) and the relevant yield components. 

1967 trial 
Variety (V) 'Opal' 'Orca' 

Sowing date (S)-> 17/3 12/4 5/5 17/3 12/4 5/5 

Yield ( kg .ha- i ) : 
Grain 
Straw 
Total 

Components : 
Ears/m* 
Grains/ear 
1000-grain 
weight (g) 

4510 4527 3335 
5661 5747 4354 

10171 10274 7689 

5106 4703 2943 
6764 6495 5324 

11870 11198 8267 

mean Q" 

4188 243 
5724 360 

404 
37.8 

412 328 
42.3 43.2 

502 
33.6 

474 420 
33.2 34.2 

9912 

423 
37.4 

20 
3.4 

Vi 

*** 

Si vs» 

*** 

1968 trial 
Variety (V) • 

38-3 35.9 33.3 38.7 38.3 33.4 36.3 1.0 *** *** *** 

'Opal' 'Gaby' 'Orca' 

Sowing date (S) - 4/3 16/4 4/3 

Yield (kg. ha-i) : 
16/4 4/3 16/4 

Grain 
Straw 
Total 

Components : 
Ears/m2 

Grains/ear 
1000-grain 
weight (g) 

4440 3005 
4960 3470 
9400 6475 

550 482 
30.1 

4155 2917 
4390 3430 
8545 6347 

550 514 
28.1 

33.8 30.6 32.0 29.3 

4025 2375 
4360 3790 
8385 6165 

558 521 
23.5 

35.0 29.2 

mean 

3486 420 
4068 _ 
7552 _ 

529 — 
27.2 — 

31.7 — 

V' 

*** 

1 n s : non-significant ( a •> 0 051 • * • n M -Z T"7~ " . . 
to > 0.05), . 0.05 > a > 0.01; **: 0.01 > a > o.ooi ; ***• a 

216 

Neth. J. agric. Sei. 

S< VS ' 

** ns 

*** * # 

< 0.001. 

19 (1971) 



GREEN AREA DURATION AND GRAIN YIELD IN SPRING WHEAT VARIETIES 

sowing date 
+ + : 17 March 
o o : 12 Apri 
D a : 5 May 

grain weight 
2 

H 500 

-A 400 

•H.300 

-\ 200 

100 

Fig. 2. Trend in green area 
with three sowing dates (1967) 

index (A.I.) of the flag leaf + 

eeks after flowering 

peduncle in relation to grain production 

significant correlation to the grain £ d * £ ~ ^ J -n n u mber of grains per ear between 
In 1968 there were also appreciable d ^ ^ 1000-grain weight were distinctly 

the varieties. The numb er * « J V ^ s o w i n g date. 
affected by an interaction of variety * n u m b e r of g r a i n s 

u r » thflt the product of the number of ears pe . s y s t ematic over-
Attention is called to the fact that the pro a c W a l y i e l d . T h , s « aue , 
per ear and the 1000-grain ^ V ' ^ h e number of grains per ear and an underestim 
estimation of the 1000-grain weight or t l o s s e S i respectively d i e l d s w i u n o t be 
actual yield due to sampling errors ana " between actual and c a l c " l a x =" . » . 

In the further calculations this leve dif e ence ^ ^ ^ ^ y e r y d o s e l y c o r r e la ted. 
essential, because calculated and actual yields 217 
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Table 5. Estimated proportion (R2) of the variance in grain yield that can be attributed to its linear 
regression on the green area duration of the different green organs. 

1967 trial 1 9 6 8 t r i a l 

" " period from 
period from period from heading on-
heading on- flowering on. wards (n = 96) 
wards (n = 72) wards (n = 72) 

F l a S l e a f m o 
Leaf 2 °-£J 0-67 0.41 
Leaf 3 °-5 3 ° -4 5 0.38 
Leaf total ° ° 0.05 
Peduncle °-4 7 °-36 — 
Internode 2 ° ' 7 9 ° - 7 3 0.57 
Ear °-5 6 0.13 0.27 
Flag leaf + peduncle ° / " ° - 1 6 0.52 
Flag leaf + leaf 2 °-81 ° -7 9 0.61 
Peduncle + internode 2 °™ ° 6 3 0.44 
Flag leaf + peduncle + ear 

0.75 0.60 

Flag leaf + l e af 2 + peduncle + i n t e r n o d e 2 + e a r J « ° - g 0.63 

— : correlation not calculated. 

Relation between grain yield and green area duration 

iSlTSTZl^Z^^ 7la!ion between ****** a « d *™ - a 
correlation coSS^S»? ï T C a l c u l a t l 0 n s w e r e aPP^d. The squares of the is .tatisS^SSLTîrS. part of ~he total variance in the g™ in y i e ld w 
calculated b S w S w l f a v S l T T t ™ ^ D Va lUeS W " T h e s e coefficients were 
the period from headinBan

yH f ^ ^-™1™ ° f t h e S e P a r a t e 8 r e e n o r § a ^ during 
D values during the f Ô l e r l L T T " * * ^ " ^ T a b I e 5 s h o w s t h a t t h* 
D values during^the l a t o ^erfod Th n T T * " " 1 t 0 t h e g r a i n ? i e l d t h a n t h e 

very closely correlated J h l ^ ° f t h e flag l e a f a n d t h e Ped™cle were 
D values ma^yt cZtinaLn7 ' w Ï b 0 t h ^ B y a d d i n g t h e S e P a r a t e 

coefficient in the two y Ï Ï S g ^ + P e d u n d e g a v e a h i 8 h e r correlation 

^^^^^^z^j^i1:^and s - g r a i
T h

y i d d w h i c h 

due to differences in Ä d S S ï ^ r ^ ™ ^ ^ 

W ^ ^ ™ f̂  f' r*6 g f r - ^ were higher in 
somewhat stZpXekdtSlt^T^Tu^ r e g r e s s i o n l i n e o f ' ° r c a ' *>ad a 

the varieties'tothesowing da e n ' o ? , ? ^ ^ ^ d u e t 0 t h e d i f f e r i nS r e s P o n s e o f 

lower than the D valu! as the sowing d l ^ ^ WaS m ° r e t h a n Proportionally 
value showed a ^ £ £ Z £ g £ £ ? £ ^ " ^ ^ «"*» * i d d a n d t h e D 

^ ^ : ^ ^ ^ L i 7 l e r e g r e S s i 0 n a n d r e l a t i o n calculations are n , 
V ^ o t f ^ y . ^ i ^ ^ ^ ^ ^ ^ ^ . m the 1967 trial the greater 

Y = 17.3 D flag lea! + I^ZuZt^Tl" 1 - nTf " ^ 
In the separate variété- * 1 4 1-y R ~ °-83 n = 72 In the separate varieties: 

218 

Neth. J. agric. Sei. 19 (1971) 
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1. D flag leaf 
2. D leaf 2 
3. D leaf 3 
4. D peduncle 
5. D internode 2 
6. D ear 

1 

100 

2 

86 
100 

3 

0 
27 

100 

4 

84 
70 
2 

100 

5 

79 
75 
32 
85 

100 

6 

43 
50 
79 
38 
64 

100 

, 1 Q i - i x>2 — o 74 n = 36 
0Pal: Y = 13.3 D flag leaf + 20.5 D peduncle + 194.3 ^ = ^ R __ ^ 
Orca: Y >= 23.9 D flag leaf + 24.8 D P e û u n . k s . 
Y = grain yield in g .m- D = green " « * ^ £ ™ I r e essential in ear filling. The 

These equations indicate that flag leaf and P ^ _ because the 
partial regression coefficients, however ^ not o i n t e r r e l a t e d , but also correlated 
D values of flag leaf peduncle are not on ly •**& i . 
with the D values of other plant organs ^ ™ £ £ V p r e c e d i i i g therefore, a photo-

The D values of flag.leaf and P f ^ J X e T r ^ n green areas, 
synthetic system including more than only their own g 

Grain-leaf ratio t t 0 ear filling, indicated in t h e B ^ 1 * 
The efficiency of the plant organs J j * ^ » , q u o t i ent of grain yield and green 
literature as grain-leaf ratio (G), is calculate 
area duration (D). v a l u e s o f flag leaf + peduncle and_in w™ 

In 1967 the G value referred to>the D values o ^ e
 t h e S 6 ̂ gta 

1967 trial 
Variety (V) -> 'Opal' 

Sowing date (S) -* 17/3 12/4 5/5 

G (flag leaf + 
peduncle) 

1 7 / 3 12/4 5/5 mean a 

„ „ „ 35 1 32.9 3.2 ns 
30.2 32.8 -"-1 

Neth. ƒ. agric. Sei. 19 (1971) 



J. H. J. SPIERTZ, B. A. TEN HAG AND L. J. P. KÜPERS 

Table 8. The relation between the number of grains and the green area of flag leaf and peduncle. 

Variety (V) -»- 'Opal' 'Orca' 

Sowing date (S) -* 1 7 / 3 1 2 / 4 5 /5 1 7 /3 12/4 5 / 5 

Number of grains 
per 10 cm= green 
area o *, - , 

82 7"5 10"9 7.8 8.1 11.0 

the difference in G value be tween 1Q67 anri i o / ; c • 
wet and dark growing season respecSely ' " *""" ^ & ^ ^ a n d a 

JTcfi^:: tLl:te of 'Gaby/was significan^ *#« *™ - <0par 
Yield, becau^Sr^^^tSr 8 ' ̂  ™ ** ̂  * & hi8her ^ i n 
increase in the G vflue W 3 S P r oPOTt l°nalIy more decreased than the 

i n Ï ^ T O J ^ T S l h t ? r o U ^ t t ear-fming Peri0d; in 1968 the G Value 

g.m-.week-i r e s p e c S Z 7 r^ffl ^ f l ° W e r i n S w a s 26-4> 43.0 and 18.1 
what l a r g i \ h a 7 n a 7 e y ; e c n n ? u f î r S l 1 A ^ p e r i o d t h e assimilating area was some-
period Wnd 2 hissas T20'and V^ fW 7 ^ ™ mUCh r e t a r d e d ' f o r t h e 

flowering more carbohldrat« r i, ^ ^ T 1 , respectively. Immediately after 
growing grains IntX^dLT^ 7* ^ T * ^ t h a n C O u l d b e utilized by the 
by aginggof the a L ^ , a ü n g organs ? ^ ^ ° ^ W 3 S p r o b a b * C a U S e d 

Discussion 

Ä Ä b T Ä ^ Ä - y i f d i S . d e t e r m i - d by the quantity of carbo-
ear filling after flo^e^Ä??"^ " f * g r e e n ° r g a n s f o r t h e b e n e f i t of the 
the green area d u r a Z S tciaTor an! ^ ^ f ^ C a p a d t y ° f « rbohydra te . 
the peduncle and the e a D ? r e c « T , " ^ V1Z t h e flag l e a f ( l a m i n a a n d s h e a t h ) , 

Part of the assimilates educed in Ä f Ä ? ? ' T " ^ t h a t ^ « " ^ 
to the ear. Within this framiJnrt * P 0 8 ™ » ! penod in these organs is translocated 

relation of the g r e e n W S ^ ^ T " ™ * ^ C ° n d u c t e d t o s t u d y the c o r ' 
The results show (see Table 5Wh f " ^ ° f ^ C U l m a n d t h e S r a i n y i e l d" 

from heading to rLnTng [s more H , ̂ ^ * " * d U r a t i ° n C a l c u l a t e d o f the period 
area duration in t L period from fin Y C ° r r e l a t e d t 0 t h e 8 r a i n y i e l d than the green 
al. (1966) f o u n ï t h a t C f e e n T r e , H ^ *i " P " * * ° n t h e o t h e r h a n d > Welbank et 
ly correlated to h f g r a i S H o l r ^ f l 0We r i ng t 0 ripeninS w a s ««™ close-
starts after flowering hat E w n T T ' •" n 0 t i m p o s s i b l e ' though ear filling only 
ing affects the rttÄ^JÄ^S £ ^ ^ ^ ^ ^ ™d ^ 

"SÄtX^being teraporarily reserved in the pedu-ie' f ° ™ ^ 
^ Ä ^ * * * ^ w e r i n g on the potential 

the sink strength of the ear for a S a t e s ' . R u c k e n b a u e r , 1970) which determine 
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• 1QA7 tV.p areen area duration of the flag 
The calculations further showed tha m 1967 the gr en ^ ^ w 6 g a n 

leaf + peduncle gave the better correlation t o M * g ™ Y t h e D v a l 

essential improvement in the correlation was o b t a i n e ^ 7 i n t e r n o d e 2 were less closely 
of the ear in the calculations. TheD ***»<*** ^ n g no correlation at all. 
correlated to the grain yield, the D value of leaf 3 sno g^ ^ ^ ^ i n t e r r e l a t e d 

Since the D values of the various S^V** £ contribution of the separate 
as well (Table 6), it was not possible to «dculateUa ^ ^ ^ be tWeen gram 
organs in ear filling by agression calculations^ The a g ^ . n f l l l i n g ; 

yield and green area duration did indicat: which organs ^ a n d ^ flag 

these were! especially the peduncle ^clf^dfZtone. These also are the organs 
leaf, followed by the ear, the last leaf « ^ ^ ^ „ ^ as production centres o 
which to a more or less extent were f ° ^ * * J f o n e d i n the introduction. The 
carbohydrates for ear filling in the ^ ^ . ^ Z t i n g was also found to vary 
estimated contribution of the separate organs n ^ a l

g
c o n d i t i o n s and techniques 

with the »C method depending on the variety expert s h o w n m 

applied. The older clipping and fading experments d t 0 a c ons lderable 
wheat culm the lost function of an e h m m a e d o ^ ^ ^ g r e a t e r a s t h e e f f e c t of 
extent by the other green organs. Compensatio 
the treatment lasts longer. . o f t h e crops structure in ear tilling 

For a better understanding of the « m P f f ^ u ° l d b e measured in addition to the 
the rate of photosynthesis and translocation should 
green area of the organs (Lupton, 1969 . p a r t s i s obtained by 

An idea of the average photosynthetic ef to^ ^ ^ 1%J w a s s t r l k i n g i y 

the grain-leaf ratio (G). The G value of the late 
high. One of the reasons for this ° » £ b e . o r g a n s a c c o m p a n i ed by a higher 
a. a higher photosynthetic rate of the relatively y 
light intensity in the crop due to the lower %>£*> n u m b e r of grams per « n 
b a greater requirement for assimilates due to m S . ^ ^ ^ ^ f t h e 

The effect of the number of grains p e r ^ ™ ™ n ^ rf ^ f l a g l eaf and peduncle 
relation between the number of grains and toe g; 
during the first two weeks of the P « * ^ ^ , « , (Table 7) shows that the sink 

The parallellism in these figures with the 
strength might influence the G> vaUie Q b e t w e e n en area^dur^o»a 

In general it may be assumed that ™e
 p resent cannot yet P r ° v " \ h e 

grained will be ̂ V ^ ^ % ^ m ^ ^^Z'ZnuJL 
S S S K S = £ - m i n e d by the sink strength - -

0 f Ä i c i e n c y of the green o rgans in^ t ion to the J ^ i , e crop and 

?£ ̂ JSSÏ^"^of water and s 
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Summary 

ne effect of some fungicide treatments on the production pattern of five wheat va
rieties with different culm lengths was investigated in a field experiment. The fungicide 
reatments consisted of: a sequence of 2 pre-floral sprayings with 2 kg maneb per ha 

ar>d 2 post-floral sprayings with 1 kg benlate per ha. The varieties were Juliana (117 
on culm length), Manella (82 cm), Lely, (80 cm), Mex.-cross (69 cm) and Gaines (79 
cm). There was hardly any mildew in the crop but Septoria tritici and Septoria nodorum 
were very much in evidence in all the varieties. Of the group of ripening diseases, black 
moulds and Fusarium were found to a lesser degree. 

The combined application of maneb and benomyl greatly delayed the spread of Sep
toria in the crop, as a result of which the flag leaf in particular remained green for a 
longer period and the grain filling period was lengthened. The growth rate of the grains 
during the phase from the milk-ripe stage to the dough-ripe stage was raised from 204 
«g ha-1 day-i to 230 kg ha-1 day-1. The effect of the application was greater in the 
varieties most susceptible to Septoria (Lely and Gaines) than in the other varieties. The 
increases in grain yield of the varieties Juliana, Manella, Lely, Mex.-cross and Gaines 
were 14 %, 23 %, 32 %, 16 % and 42 %, respectively. By statistical analysis 85 % of 
the variance in the grain yield within the varieties could be attributed to the green area 
o f the flag leaf. Thus, the main effect of Septoria seems to be a reduction of the photo-
synthetic area, causing a decreased supply of assimilates to reach the grain, and in this 
way lowering the 1000-grain weight. 

The degree of disease infection was not significantly correlated with culm length or 
the amount of leaf area, so the tolerance and resistance characteristics of the varieties 
were not immediately due to differences in crop structure. Specific variety differences 
Were still present, even after reduction of the disease infection with the fungicides. 

Introduction 

Cereal growers have always relied on breeding for resistance and on such methods 
as crop rotation, seed dressing, etc. for minimizing damage due to diseases. Owing to 
the increased disease intensity, which apparently is a consequence of narrower crop 
rotation and more intensive cultivation by using higher seed rates and more nitrogen 
fertilizer, the resistance of present-day wheat varieties to fungal diseases has in many 
cases proved inadequate (Dilz, 1970). Inadequate resistance is particularly evident in 
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periods in which climatic conditions encourage the spread of moulds. Under such con-
f h e n r e ^ S f ' T f ^fddea w o u l d s e e m worthwhile, particularly since, with 
™Z f S 8 , y i 6 l d S ' a S m a " e f f e c t w i » ^crease the yield enough to com
pensate for the cost of a fungicide dressing (de Jong 1970) 
W ô v T t V ^ f C C t S ° f C l im ,a« ° n t h e i n d d e n C e ° f d i s e a s e ' i s h a s b e e n f o"nd (Feekes, 
Hn2ioLd71r E g r ? dfe,renCe b e t W e e n t h e V a r i e t i e s w i t h r e g a r d to their resist 
S e l l ZmÏTT- ,SUCh dlSeafS aS ErySiphe graminis' PuccMa «riiformis and 
scevtZ^vtaZ' 1S ZaSSUmed t h a t CU lm l e n g t h i s a n i m P ° r t a n t * * » » for su-
S A S e î T " ^ v ! e T v a r i e t i e s w i t h s h o r t c u l m s a r e m o r e « « % a n d seriously infected than those with longer culms (Brönnimann, 1969a) In the case of 

fo^vTst^rieaf S thSUPP0Sed \ b e dUe t 0 t h e Sh0rter a c t i o n path from the 
SÄS^Ä?6^ °/ t 0 ï e m i c r o c l i m a t e in - ops with short culms being 
™ZùrZ™hJnJ7?- erefT t h e qUeSti0n ar ises whe t h e r va r i e t ies with greatly 
Î E E Ï Ï T o t X £ Z i ï S i ï £ % £ their variety dependent s u s c W 
b . « j d * c o m p a r i n g ^ ^ ^ * * « 

efftt of S T ' ^ "" 'fakCn W U h fiVe V a r i e t i e s o f wi«ter wh at o study the 
S S Ü L S ^ ^ w

O T
t ^ ^ , ï t i 0 , 1 P a t t e m ° f V a r i e t i e s w i t h C e r e n t "crop 

X?an tnes i ' ï h e e Z t T i Tf *** ' W ° f U n g i d d e S a t d i f f e r e n t times before anS 
o n T h e S n f i l ï n r ! t i Ï T * * ' * P a f t i c u l a r o n t h e s i z e °f the leaf area and 
on tne gram tilling process are studied in the light of the findings. 

Methods 

Dutch varieties: 

Juliana - Wilhelmina X Essex gladkaf; crossed in 1903, 1921 accepted in Dutch variety 

Manella - Alba X Heine's 7; crossed in 1950, 1964 variety list-

Ylä^r30 x Flevina: crossed in ™°> ™ S s 
^ S s ^ ™ ^ d W a * ^ l i a b l e by Dr W. Feekes 

Zx Aïx^ïSS^ 14) * B r r X ° r 0 X ™*y X F1-nce X ^ ronyiom X Federation; crossed in Washington, USA, CI No 13448. 

"ot%TsZ^X^ rVr- 12° kg PCr ha- M z e d in - t umn with 
so ^ ^ S ^ ^ ^ ^ T ^ ^ ^ * this young marine clay, 

N per ha, as Ca (N08)2 on 20 March follnw^ u g T"̂  W e r e g i v e n ' v i z 3 0 k g 

4 May 1972. ' f o l l o w e d by a second dose of 30 kg N per ha on 

on 19 ApriritXe stme ÏLTfm* " f i ^ °f M C P P a nd 4 litres MCPA per ha 
Fungicides w e r ^ ^ ^ ^ — d °* ^ c r o , 

A'ert. J. agric. Sei. 21 (1973) 
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Date Stage on Preparation . 
Feekes scale f a g e n t concen- quantity 
(Large, 1954) name ot age ^ . ^ o f p r o duct 

15 May F7 to 8 \ m a n e b manganous ethylene- 8 0 % Sol. 2 kg/ha 
29MayF 9 t o lo ) *" -bis[dithiocarbamate] 

20 June F.o.^o, 1 " T ^ l T e S f a Ä 50 % sol. 1 kg/ha 
11 July idem + benlate carbamoyl benzidiazoiyi 

3 weeks J carbamate 

Number of plots: 5 (varieties) X 2 (Maneb + J £ £ J > ^ « S S n f t h e " d^' matter 
The following intermediate harvests (H) were carried o 

weights, the number of tillers and the green areas. 

Hs_9: 30 May, 13 June, 27 June, 10 July, 25 Jury, u. 

S: ; « Ä ' A -A - -«- •— b 
The degree of disease infection in the field c r o p ™ ^ ^ J ^ 7 J u n e ; 

vesting dates Hi.«; systematic esti mat « P f « ^ / d u e t o d i s e a s e could no longer be 
25 June and 10 July. On 20 July the leaf nee*» «cue e r c entage of green 
clearly distinguished from normal dying off, therefore, 
area of the flag leaf was ascertained on that care. ^ a s c e r t a i n e d i n au plots 

On 14 July the light interception at 3 heights mth> c 
with the aid of an integrating photometer 1 metre long. 

Results 

Degree of infection 
id d wet except for the second halt 

In 1972 the growing season was mainly d u l l , < ^ ™ ; u C o m i n g as it did after a 
of July, when there was a dry, sunny ^ ^ f ^ d i s e a s e intensity in the crop. Symp-
mild winter, these weather conditions caused gre 
toms of the following diseases were de terming; • _ 
at the base of culm : Cercosporella herpotnchoides _ ^ ^ ^ 
on leaf and ear : Septoria tntici _ g l u m e b i o t ch 

: Septoria nodorum _ f u s a r i u m 

on the ear : Fusarium sp. 
thnsens was carried out on 50 culms 

Cercosporella. On 15 June a test for s oü -bo rnep^J t o F e h n n a n n ( 1 972) with 
per plot. The degree of infection was calculated 

the(%™gntly infected + 2 X ^^^fj ^ Z t m l ^ ^ ' Lely, Mex.-cross and 
The indices (scale: 0 - 2 ) thus c / l cu |a*e

QVrLectively. It is evident from these figures 
Gaines were 1.11, 1.23, 1.29, 1.16 and 0 95, resp ^ p a t h o g e n S j thus causing an 
that all varieties were moderately infected wi 
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increased risk of lodging. Lodging in all varieties with the exception of Juliana was 
presumably prevented by a relatively low nitrogen dressing and an early application 
of chlormequat. 

Septoria. The severest leaf infection was by Septoria (S. tritici and S. nodorum). By 
mid-May it was found that in all the varieties Septoria had covered the entire 5th leaf 
from the top and approximately 40 % of the 4th leaf. The first symptoms after anthesis 
were seen in the flag leaves in the untreated plots, whereas they did not appear in the 
plots treated with maneb and benomyl until a fortnight later. Early maneb sprayings 
followed by benomyl sprayings before and after anthesis dit not eradicate Septoria but 
did largely inhibit its spread (Table 1). This is most evident from the green area of the 
flag leaf on 20 July, viz during grain growth. 

Table 1. Infection in leaves and ears on 10 July and green area of flag leaves 
and two topmost internodes on 20 July. 

Juliana 

Manella 

Lely 

Mex.-cross 

Gaines 

Average 

+ 
— 
+ 
— 
+ 
— 
+ 
— 
+ 
— 
+ 
~—~ 

% of area covered with Septoria 
symptoms on : 

flag 
leaf 

0.0 
1.0 
0.7 
5.0 
1.3 
9.2 
0.0 
1.8 
1.2 

55.0 

0.6 
14.4 

2nd 
leaf 

12.5 
40.8 
7.5 

60.9 
22.5 
95.0 

1.5 
10.8 
68.2 

100.0 

22.4 
61.3 

10/7 

3rd 
leaf 

69.0 
95.0 
72.5 
99.2 
91.5 

100.0 
24.2 
74.2 

100.0 
100.0 

71.4 
93.7 

ear1 

2.1 
4.9 

11.8 
23.6 
9.0 

15.8 
22.9 
34.1 
17.9 
25.2 

12.7 
20.7 

% of area 

flag 
leaf 

90.0 
77.5 
93.3 
32.5 
90.8 
12.5 
84.2 
40.0 
64.2 
5.0 

84.5 
33.3 

green on 20/7 

1st and 2nd 
internodes 

39.2 
44.2 
17.5 
27.5 
35.0 
31.7 
20.0 
13.3 
15.8 
12.5 

21.3 
21.5 

» In the ear Septoria and Fusarium symptoms. 
+ = 2 x maneb + 2 x benlate; - = untreated. 

s ^ c r r r r r : ; r « ****•The 

fungicides from 20.7 to 12 7 %! g Ê * " * " i n f e c t i o n w a s d e c r e a s e d b v 

ïtï^^^S^J^«; WaS
th

fOUnd t 0 b e « in the varie-

Gaines, Lely, Manella, M^ZTznTwiZ '' ^ ^ h°m ^ t 0 l 0 W WES: 

intlZZt^l^^T "'T1 a n d * * * variety were the least 

culm mus[ have affected resistance " C h a r a C t e r i s t i c s b e s i d<* the length of the 
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The following diseases were also observed to a ^ degree of infection: 
at the base of the culm : Gäummanomyces gramims t a K ^ 
on the leaf ; Erysiphe gramims _ brown rust 

: Puccinia recondita 
in the ear (and on 
some other parts 
of the culm) 

Cladosporium sp. 
Alternaria sp. 

_ black moulds 

Effect of fungicides on production pattern 

From anthesis onwards, the areas of the « ^ ^ J ^ S S t d K K S 
(a < 0.05) positive effects of maneb ^ ^ ^ Ä ^ e Ä * n d fla& l e a f ° n 1 0 

on 13 June, in leaf (4) and leaf (3) on 27 ^ ^ ^ ^ ^ 4 observed on 13 and 
July, and in the flag leaf on 25 July. The differences^leal are h a d 

27 L e were the results of the two ^ ^ ^ S ^ ^ ü a A the indirect ef-
no effect on the number of grains p e \ ™ V*™*^ o f t h e two topmost leaves from 
feet of maneb on grain filling by the longer P ™ t e ^ Y L t i o n of benomyl sprayed on 
Septoria could not be distinguished from the rung ^ a g a i n s t f u n g a l 

20 June and 11 July. The « l » ^ ^ |
1 S r i B l d imply that it was due to 

diseases for a limited time (approximately a fortnight), wo 

a. L A I - f l a g leaf* second leaf 

Juliana Manella Lely 
Mex-cross 

Gaines 

27/61Cy 7 25 /7 27/610/7 25/7 

b. Seed yield (g m* ) 

27/610/7 25/7 
27/610/7 25/7 27/6 10/7 25/7 

„ O*2«maneb+2»benomyl 
» « i untreated 

data 

600 

500 

400 

300 

200 

100 

O V * " L. 

* - l I 1 1 1 « ^ 
27/610/725/7 9/821/8 27/610/725/79/8 21/8 

. data 
27 /61C725 /79 /8 2V8 2 7 / 6 « V 7 ^ 5 ^ 27/610/725/79/821/8 

second leaf (a) and in the seed yieia w 
Fig. 1. Trend in the leaf area index of * » « « £ * ^ 
from flowering onwards with five vaneUes of wheat 
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benomyl that the topmost leaves in the treated plots remained healthier during the grain 
filling period. 

The curves in Fig. 1 show that (he differences in leaf area index of the two topmost 
leaves correspond in magnitude to the differences between the grain yields of the 
treated and untreated plots. As the differences in grain weight did not occur until after 
W July, the size of the green area of the flag leaf in particular would appear to have 
been the determining factor, the more so since there were hardly any significant differ
ences between the treated and untreated varieties in the green area of the leaf-sheath 
and the peduncle. The varieties with the greatest differences in area indices, viz Gaines, 
Lely and Manella, also show the greatest differences in grain yield. 

The differences in grain yield came about in three phases: 
1. Owing to be noticeable accelerated growth in the treated plots during the steep part 
of the growth curve in the period between 10 and 25 July (Table 3), the growth rate in
creased on average over the five varieties from 204 to 230 kg per ha per day. 
2. During ripening, from 25 July to 9 August, the grain growth in the untreated plots 
came practically to a standstill, whereas in all the treated plots there was a further in
crease in grain weights. 
3- A decrease of kernel weight in the untreated plots from 9 to 22 August, after the 
morphological maturity stage, owing perhaps to greater respiration losses in the un
treated than in the treated plots. The differences between the colour of untreated crops 
and those treated with fungicides showed that there were great differences in infection 
with black moulds. 

Statistical calculations (Table 2) showed that there were significant differences in the 
increase of grain yield of the five varieties owing to the application of maneb and ben
omyl. The absolute differences in seed yield for Juliana, Manella, Lely, Mex.-cross and 
Gaines were +470, +980, +1410, +800 and +1550 kg of dry matter per ha, respec
tively. The straw yields were only noticeable higher in the Juliana, Lely and Mex.-
cross varieties, viz +380, +270 and +490 kg of dry matter per ha, respectively. The 
relatively disproportionate increase in grain weight compared with straw weight was 
clearly expressed by the higher harvest indices for the Gaines and Lely varieties, which 
are very susceptible to Septoria; the increases due to maneb and benlate were from 0.36 
to 0.42 and from 0.40 to 0.44, respectively. Striking was that despite great differences 
m grain weight and straw weight there were only slight differences (< 5 %) between 
the varieties with regard to their total dry matter yield above ground in both treated 
and untreated plots. These differences, in fact, are mainly the result of differences 
between the varieties with respect to distribution of the assimilates over grain and 
straw; this is particularly true of the Juliana variety. 

On the yield components, i.e. number of culms per m2, 1000-grain weight and num
ber of grains per ear, the 1000-grain weight was the most determinative for the differ
ences in grain yield per ha. There was a slight negative fungicide effect on the number 

Table 3. Growth rates of grain (kg ha-1 day-1) in the period from 10 to 25 July. 

Juliana Manella Lely Mex.-cross Gaines 

Maneb + benomyl 217 233 254 229 217 
Untreated 198 215 215 214 176 
Difference +19 +18 +39 +15 +41 
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of culms per m*, resulting possibly from a phytotoxic action of maneb; there was no 
fungicide effect on the number of grains per ear. A very interesting point is that in the 
case of Lely and Mex.-cross a large number of grains per ear is accompanied by a high 
1000-grain weight, whereas in that of Juliana and Gaines the opposite is observed; 
Manella occupies an intermediate position with a low number of grains and a high 
1000-grain weight. 

Correlation and regression analysis 

To analyse the differences observed in grain yield, linear correlations between the grain 
yield in g per m2 and a number of crop parameters such as yield components, green 
area, degree of infection and light profile have been worked out. 
Owing to the great differences between the varieties, the simple correlation have been 
calculated in three ways (see Table 4): 
a) from the variance in y and x per variety; 
b) from the variance in y and x within the five varieties; 
c) from the variance in y and x between the five varieties. 
The variance in y and x per variety and within the five varieties is mainly attributable 
to the effects of fungicides, whereas the variance between the five varieties is caused by 
varietal differences. 

After elimination of the varietal differences, the grain yield showed a highly positive 
correlation with the 1000-grain weight (r = 0.92); there was a high negative correlation 
with the degree of Septoria infection (r = -0.88) in the topmost leaves, and with the 
Septoria and Fusarium infection in the ear (r = -0.50). 

The effects of the Septoria infection were particularly evident from a reduction in 
the green area of the leaves, which resulted in a negative correlation (r = -0.86) 
between the degree of Septoria infection in the period between 26 June and 10 July 
and the flag leaf green area percentage on 20 July. The relation between leaf infection 
and ear diseases was fairly weak (r = 0.36); this was due to an occurrence of Fusarium 
in the ear not directly associated with Septoria. 

Correlations between grain yield and green leaf area were positive within the varieties 
and negative between them (see variables 5 to 9 in Table 4). The negative correlation 
is due to the combination of much leaf and a low grain yield in Juliana and of little leaf 
and a relatively high grain yield in Gaines, the other varieties occupying an intermediate 
position. Except in the case of Juliana, the correlation between grain yield and the leaf 
area of the topmost leaves was most significantly positive within the varieties and with
in each variety individually. The extreme differences between the Juliana and Gaines 
varieties also explain the negative correlation between grain yield and the green area 
of the internodes (see variable 10 in Table 4). A positive correlation within the varie
ties was expected for this interrelationship, but it did not come about, since in a few 
varieties the leaf sheaths remained green for a longer period in the plots in which the 
leaves died first because of the damage of Septoria. 

Measuring the light interception at various heights in the crop, which was done only 
once on 14 July, gave a good picture of the differences between the varieties, but was 
too inaccurate to give a reliable explanation of differences due to Septoria infection 
(variables 13 and 14). A better idea of the effect of leaf diseases on the light distribution 
in the crop could be obtained by the erectness scores of the plants (variable 15); it 
should be noted that only Juliana lodged completely; the other varieties only drooped 
slightly during ripening. Within the varieties as well as between them the correlations 
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Table 5. Simple and multiple regression equations calculated from variance within the five varieties 
(n = 55). 

Variable1 Mean b ob Student Constant 100 R* e.V.-y 
- t 

y = kernel yield 453.8 1 3 - 2 

Simple regressions with R2 being > 0.50 
Xi = 1000-kernel 

weight 
X5 = LAI leaf 1 + 2 

on 10/7 
X7 = LAD leaf 1 + 2 

from 10/7 to end 
X9 = % green area 

flag on 20/7 
xn = % Septoria on 

leaves 1 + 2 
on 10/7 

31.7 

2.0 

2.7 

59.0 

33.2 

17.9 

103.0 

50.7 

1.9 

- 1.5 

± 1.6 

±13.0 

± 9.2 

± 0.1 

± 0.1 

11.0 

7.9 

5.5 

17.4 

14.9 

-115.9 

246.4 

136.9 

343.1 

503.6 

69.1 

53.9 

53.1 

84.8 

76.6 

7.4 

9.1 

9.2 

5.2 

6.3 

Multiple regression, with 9 x-variables in the sequence: x«, X7, xio, xu, xi2, x«, xu, X3 and xa. The 
only x-variables included in the equation are those whose t 0.05 value of the regression coefficient 
was greater than 1.96. 
y = axs + bxio + exu + dx3 + C 
x» = % green flag 

leaf on 20/7 
xio = AI internodes 

1 + 2 on 10/7 
xu = % Septoria on 

leaves 1 + 2 
on 10/7 

X3 = number of culms 
per ma 

59.0 

0.4 

33.2 

566.2 

1.2 

-317.2 

- 1.2 

0.2 

± 0.2 

±85.0 

± 0.2 

± 0.1 

7.3 

3.7 

5.5 

2.6 420.2 

(84.8) 

(86.7) 

(90.8) 

91.9 3.9 

1 The coding of the x-variables tallies with the coding of Table 4. 

between grain yield and a high erectness score were significantly positive, the corre
lation being 36.8 and 95.3, respectively. 

The correlations between 1000-grain weight and the variables in Table 4 were of the 
same order of magnitude as for grain yield. 

Quantification of the correlations between grain yield and crop parameters by means 
of simple and multiple regression calculations is of relatively little value because the 
explanatory variables are not all independent and the causality of the correlations is 
only partly known. For these reasons only the most reliable and informative regression 
equations are given in Table 5. 

The simple linear regression equations bring out once again the close correlation 
between grain yield and the parameters for the green area of the flag leaf. To illustrate 
this, Fig. 2 sets out the correlation between grain yield and green area, both expressed 
in relative values so as to eliminate differences in the levels of varieties. 

The multiple regression analysis with the yield components as variables left 30 % of 
the variance in grain yield unaccounted for; the number of grains per ear and the 
number of ears per m2 did not help to clarify the position. A regression analysis with 
9 variables, including yield components, morphological characteristics and crop traits, 
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relative seed yield 
125 

y«O.196x+80,< 
i-«0,94 

A * * j{% 

A B y 
Juliana A A 100 :3655 
ManellaO »100:471.0 
Lely o • 100:503.1 

Mex-cross s * 100 :4872 
Gaines V r 100:443.5 

g.nr2 

X 
83.8 
62.9 
51.7 
62.1 
34.6 

'h 
A»2«maneb+2»benomyl 
8 " untreated 

100 ' " 120 140 160 180 200 
relative green area (lagleaf at 20 July 

leaf at M I I b e t w e e n the relative seed yield at harvest and the relative green area of the flag 
•a» July. For each variety the means of the x and y variables are fixed at 100. 

of th ™ a f o r m u l a w i t h 4 variables which together accounted for approximately 92 % 
stit t r ï ° n g i n a l v a r i a n c e i n g r a i n y ' e l d s (T a b I e 5)- Th& &eea a r e a o f t h e flaS l e a f con-

uteri the major proportion (85 %). This parameter also largely represents the re-
fe ?ldS g r e e n . a r e a o f t h e second leaf and the ear. The Septoria infection mainly af-

, .? t n e grain weigth and grain yield by reducing the photosynthetic leaf area, in 
l t l 0 n i l h a d an effect of its own of approximately 4 %. 

Nitrogen metabolism 

tr e . n i t r o ^ e n c ontent of the seed on 25 July (dough-ripe) was clearly lower in the plots 
eated with fungicides (1.68 % as against 1.84 %) but in the total culm the differences 

r j^e slighter (0.91 % as against 0.97 %). The differences must be the result of a more 
tak ^ ^ g r o w t ^ m ^ Pl° t s treated with fungicides, as the quantities of nitrogen 

en up in the culm did not differ. The content therefore declines as a result of a 
«Mutent effect. 

n the period between 25 July and the final harvest on 22 August the nitrogen con-
n t of the seed was found to have increased in both untreated and treated plots; the 

ontent was 1.86 % and 1.95 % nitrogen, respectively. The quantity of nitrogen in the 
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1.8 

a. nitrogen content in the seed 
'h 

2.4 r-

4 
2.0 \- méi 

f f 2*maneb+2«benomyt 

^ untreated 

1 ! J 
Juliana Manella 

r 'I. 
I 1 
I 
I 

Lely 
25/7 22/8 
Mex.-cross 

4 I 
i l l . 

J 

25/7 22/8 data 
Gaines varieties 

b. nitrogen uptake in the seed 
kg.ha"1 

100 r D 2«maneb+2xbenomyl 

untreated 

25/7 22/8 25/7 22/8 
Juliana Manella 

Fig. 3. The nitrogen content 
two harvest data, 25 July and 

25/7 22/8 
Lely 

(a) and the 
22 August, 

25/7 22/8 
Mex.-cross 

-uaJJa_ 
25/7 22/8 data 

Gaines varieties 
Äf.nf^L^ ? t h e S e e d b v f i v e w h e « varieties at for the untreated and the fungicides plots. 

+9.5% and +30.!% foT S i Z Ä " , f T ^ °f +7-6%' + 19-7%> +32-0%, 
respectively, compared Ä t £ £ Ä The^nf " " " ^ ^ ^ ^ ^ 
of nitrogen taken up in the seed Z r i i ,, t r ° g e n c o n t e n t a n d t h e q u a n t i t y 

3B). A high N contenta th M L V a Z t i ^ Z n oTc™* ^ ^ ^ 3 A " * 
v.hereas the highest yield of nitrogen was fn.fnrf ^ o r r e s P o n d with a high uptake 
relatively low nitrogen content T t 1 Z • Ü? m t h e s e e d o f L e l ^ w h ^ h had a 

gen content. It was imposable to establish whether the increase in 
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t h e e n t i t y of nitrogen in the seed in the ^ ^ t ï E £ r c l 
of ^translocation from leaf . ^ ; ^ t f L harvest, 
because no analysis were carried out on the straw 

Discussion 
• A , w to a high degree on climatic conditions. 

The incidence of fungal diseases * dependent to a n S * experiment, Septonano-
According to Brönnimann (1968) the P " ™ ? ^ ̂ ^ i precipitation. Van der Wal 
darum and 5. tritici occur regularly in regions w r t h b g M ^ P

B l o n g wet-leaf period 
(pers. commun. 1972) states that a f f ^ ^ T e a t h e r factors in the 1972 growing 
in particular promote the spread of Septona. 
season provided these conditions. . h r d t 0 disease occurrence 

The L a n c e s observed between the five varieüe w l t ^ s f b e q a u s e t h e shortest and 
are not the direct consequence of ^ ^ f ^ J ^ S ^ ' w ä i the lowest leaf area 
the tallest variety were the least diseased « ^ Aevwi ^ ^ morphology 
index were most heavily infected. It cannot be denied ^ ^ ^ o £ m £ e c t l o n 

of a crop can affect the microclimate and consequently 
within a variety. r , .,„_„. a s possible, one systematic prepa 

To control as wide a spectrum of fungal disease as p ^ ^ ^ ^ ( 1 9 7 2 ) o b 

ration (benomyl) and one non-systematic (maneb) were u ^ fungicide . In 
tained better results with a combination of ^ " ™ \ f r o m 4% to 21.7% m 1970 
their experiments the extra yields « " ^ ^ X ^ ™ * *"* '"*"* " 
and from 3.7% to 56.3% in 1971. The « J ^ * i s applied. . 
bination used and the moment at which the d r " s m g

 i n 7 o d u c i n g organs until late m 
Although Septona does not usually occur m the & ^ P quotes from the 

the growing season, it can do considerably ^ f J J u p t o 95% for S. nüci and 
relevant literature yield losses of 28% a n d « * * * £ ^ J d o n e by Ä . « " " « T g 
S. nodorum, respectively, after natural i n f ^ ' h t L plots treated with b e l a u d 
increase to 45% by artificial inoculation A l Ü ^ 1 ^ t h e r e were extra yields ot 
maneb in our own experiment ^ ^ ^ X ^ Manella, Lely, ^ r o ^ d 
13.8%, 23.4%, 32.3%, 15.6% and 421% for Whan ^ ^ b e noted that even 
Gaines, respectively, compared with ^ A T l ^ r S ^ short of the potential level 
after treatment with fungicides the yield tnis y ^ ^ 
the Netherlands. . a .„ „ r a i n yield was attributable i t 

By statistical analysis 69% of the variance m g « * J ^ ^ b y fungicide treatment, 
grain weight; the number of grains per ear wa scar j ^ & fS (1972). 
Similar results were obtained by Brönnimann (197^ rf separate organs witn 

Brönnimann (1969) noted yield ^ . ^ U were caused by-the e a v ä j ^ J 
nodoram, 40.6%, 45.7%, 14.8% and i - ^ ^ a t besides damage to he a j m 
leaf, leaf 2 and leaf 3, respectively. H e £ * £ £ £ * t he « ^ ^ £ £ 5 and 
tissue there is also disturbance of the 1™™?* t h e green area of the « ^ 
own findings concerning the * * ^ * £ £ £ of keeping the flag l e a ^ h e * l e a f , 
the kernel yield (R* = 0.85) stress the im portanc ^ o n l y 0.36. The mg 
co-variance between infections with leaf andearƒ* ^ ^ c o i r f * ^ ^ ^ 
function of supplying assimilates to the growing;& m u l t i p l e cor elation an 
by «C tests (lawson & Hofstra, 1969 and otiiers). ̂  ^ o f fl 0n the 
gression calculation showed that all but 4% « ^ ^ a ss imiïative area, 
riance in grain yield was attributable to a ^ ^ ^ . ^ (jm) 
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Fusarium and black moulds as well as Septoria occurred in the ear during ripening. 
The latter group in particular appeared to be considerably inhibited by benomyl. The 
very slight weight losses in the treated compared with the untreated plots in the period 
from 9 to 22 August were possibly due to benomyl. 

It is known that benomyl is also active against Cercosporella herpotrichoides (Fehr-
mann, 1972). There are one or two indications that even late applications of benomyl 
(before and after anthesis) reduced somewhat the fairly high degree of infection by 
soil-borne pathogens, since the culms in the treated plots, wit the exception of Juliana, 
drooped less than in the untreated ones. At the same time the uptake of nitrogen by 
the seed in the period from 25 July to 22 August averaged 14% in the plots treated 
with fungicide, whereas there was no further uptake in the untreated plots. This in
dicates greater root activity in the treated plots, since in the Lely variety in particular 
the 25 kg increase of nitrogen in the seed is to great to have become available merely 
from the 49 kg store in the straw at 25 July. 

It may be concluded that the control of fungal diseases in wheat varieties with maneb 
and benomyl in crops with differing crop structure and disease susceptibility in each 
case resulted in an increase in the grain yield or straw yield. The higher grain yield in 
this experiment was brought about mainly by the flag leaf and other assimilative organs 
remaining green for a longer period, so that in the last fortnight of grain filling there 
were marked differences between the treated and the untreated plots. Quantitatively, the 
effect of treatment was greatest in the varieties most sensitive to Septoria, viz Lely and 
Gaines. Characteristic differences between the varieties even remained after the in
hibition of several fungal diseases, particularly with regard to their dry matter distri
bution (harvest index) and the uptake of nitrogen in the above-ground parts. 
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Summary 

n experiment was carried out under controlled growing conditions to study the plam 
esponse during the postfloral stage to temperature, light intensity and ear size, 
within the range of 15 to 25 °C a raise in temperature increased the growth rate of 
e grains but the duration of the post-floral development of the plant was very much 
ortened. The final result was that higher temperatures caused lower grain yields, 
n increase of light intensity from 92 to 147 cal enr* day1 has shown a more positive 
iect on grain weight than an increase from 147 to 175 cal cm-* day -K The artificial 

reductinn nf ^ : _ . . .. . . . . . . . . . . . red • weigni man an increase trom 147 to 175 cal enr2 day -1. me aruueuu 
w .

uftl0n o f ear size by removing spikelets from the ear increased the thousand-grain 
eight but not enough to compensate for the reduction in number of kernels per ear. 

ne effects of the main factors - temperature, light intensity and ear size - and of 
e combined treatments on the supply and storage of carbohydrate are discussed 
"hin the framework of a sink-source model. 
. uMiuiicuu un ine supply a 
'Win the framework of a sink-source model 

fotroduefion 

b
 a m y i e l d in a wheat plant is partly determined in the pre-floral period, for instance 
y the size of the photosynthetic area and the potential number of kernels per ear, 

mainly in the post-floral period by the rate and the duration of grain growth. Before 
J initiation, tillering and leaf production are affected by temperature and light 

on",Slty (Friend, 1965); during the booting stage temperature has a strong influence 
the developmental rate (Friend, 1966), while light intensity determines the number 

i ears per plant and the development of the spikelets (Puckridge, 1968; Willey, 1965). 
l h e supply of assimilates to the growing organs depends on the activity and the 

TMh ° f Phot°synthesis in the green organs of the plant, mainly the leaves. A 
atner complete description of the contribution by each leaf to the total pool of assimi

l e s available for growth and the translocation at different stages is presented by 
awson & Hofstra (1969). They concluded that the lower leaves mainly contribute 

neir assimilates to the roots and the side tillers, while the top leaves provide the 
ssirrulate requirements of stem and ear. Much research has been done on the source 

«action of the flag leaf, the peduncle and the ear (Stoy, 1965; Carr & Wardlaw, 1965; 
V"Pton, 1972; Evans & Rawson, 1970, and many others) in relation to the sink 
Z ^ n d o f « e grains. Often there was evidence that leaf area and the rate of photo-
ynthesis did not limit the supply of assimilates in the early stages of grain growth. 

207 



J. H. J. SP IERTZ 

Climatic 
faotov 

temp. + light 

Physio logica I 
process 

- senescence 

light + (temp.) - photosynthesis 

temperature - respiration 

temperature 

temperature 

Production 
system 

- ^ photosynthetic area 

X 
-~r net assimilation rate 

Physical 
dimension 

cm 

g cm day 

SOURCE 

i-** • ^ vascular 
diffusion area 
carrier >-> X — 

metabolism] translo-
J cation 

rate 

T 
g day -1 

TRANSPORT 

JJL 
hormonal 
regulation 

SINK 

sucrose uptake l 

starch formation! 

-1 

temperature 

Fig. 1 Model for grain growth. 

- cell division 

- cell elongation 

- ^ sink strength 

X 
;> sink size 

g day 

-1 . -1 g g day 

For that reason more attention has been paid to other possible limiting factors in 
grain growth, in particular: 
- the transport through the vascular system (Evans et al., 1970; Hanif & Langer, 
1972); 
- all the processes involved in converting sucrose to starch in the endosperm cells 
(Jenner & Rathjen, 1972); 
- the pattern of the grain growth within the ear (Rawson & Evans, 1970; Walpole & 

. Morgan, 1970; Bremner, 1972). 
There is evidence, too, that a hormonal mechanism regulates the attraction and the 
competition for assimilates within the ear (Michael et al., 1970). 

The rate of grain growth in wheat is related to various physiological processes. The 
connections between these processes can be illustrated within a sink-source model 
(Fig. 1). As the model shows, assimilate supply (source) is determined by light energy and 
temperature, while transport and sink capacity are influenced by temperature in many 
ways. In the single plant situation, temperature has a key function in grain growth; 
in the crop situation, light may be more important due to mutual shading. At present 
knowledge about the influence of temperature is rather scarce. To study the effect of 
temperature on the relationship between sink and source during the post-floral period, 
an experiment was carried out in a controlled environment with four temperature 
treatments, combined with three levels of light intensity and three ear sizes. 

208 Neth.J.agricSci.22(1974) 
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Material and methods 

The experiments were done in the phytotron of * . . D e p — of Field Crops and 
Grassland Husbandry of the Agricultural U n i v f f ^ S e of 3 0-3 4 mm were used 

Seeds of the spring wheat variety Orca with a diameter of 3̂ 0 3.4 ^ 
for the experiments. In 240 pots filled with 5 kg sod ' « — * ° ^ r m i n a t i o n the 
50 % marine clay, 20 seeds were sown at random two weeks^at ^ t ^ 
number of seedlings was reduced to 15 per^pot V™- d M i l s t e m ; during 
borne diseases and mildew the seeds were d ressed « t h A a t e n a 
the growing period insecticides and fungicides were applied regularly^ p ^ uQ 
under natural daylength and a temperature regime of .15 C during tn y 

31 From flowering onwards the following treatments were applied: 

T, T 2
 T 3 T 4 

Group A ll 

1 s o C 1 5 c C 25 °C 25 °C (16 hours) 
I - 4 temperatures: day 1 3

 o ^ o p 1 5 oC 25 °C ( 8 hours) 
night 15 C £> ^ ^ 

II - 3 light intensities: L» * 1 7 5 cal cm-2 day-» 
9
 nmP pikelets at flowering the number of 

III - 3 ear sizes: by artificially removing ^me spikelets a ^ ^ k g p t a t 

kernels was reduced. In 120 pots each with 1^ ™ c u l m ^ five e a r s t h e top and 
normal length, from five ears the top ^ ^ J * ^ ^ t e d in three groups of 
the central spikelets were removed. This « m e a n f o r t h e light and 
five ears each with a d i f ^ ' 1 ^ ^ ^ çLt^y, & : 36.6 kernels per 
temperature treatments): So • 4/.u Kerneis F 

ear; S2 : 24.3 kernels per ear. 

Group B i t. additional cold treatment (2 °C) 
The same treatments as Ar and A«,̂  h o w e v e r ' m a o n e w e e k delay of flowering and in 
of soaked seeds at germination. This resulted 
an additional 1.3 spikelet per ear. 

The pots were fertilized weekly f « f ^ ^ ^ o ^ o f n Ä T f « ^ w h o l e 
. Ca(N03)2, KNO„ KH2PO, and MgSO, The ^ a +amou ^ _ _ ^ R + ; ^ C a 2 

growing period was (in meq per pot), ^ o i ic'r0.elements were applied once at 
25 Mg2+; 32.5 H2PO4-; and 22.5 S04 • 
the beginning of the growing period. 

Observations were made on the following dates: H s H e 

Ho Hi H2 HI _ 6 / 1 0 1 3 / 1 0 

T1 = 15/15 °C 20/8 9/9 - ™/g _ 6 / 1 0 13/10 
T2 = 15/25 °C 20/8 »/» 2 / 9 2 9 / 9 _ 
T8 = 25/15 °C 20 8 9/9 7 9 2 9 / 9 _ 
T4 = 25/25 °C 20/8 9/9 _ / m e a s u r e r nents were carried out on 
At the intermediate and at the final harvest me a r e a ^ c u , m s w e r e s e . 
the main culms. To determine dry matter weignis 
parated into: . , , , . 
a) flag leaf, other green leaves and dead leaves, 
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b) peduncle and remaining internodes; 
c) ear; in some cases divided into the top, the central and the basal part. 

The side culms were separated into ears and straw. Stubble and root weights were 
determined together for all culms per pot. 

After 18 hours drying at 70 °C the individual samples were weighed and the ears 
were treshed. The anthrone method (Yemm & Willis, 1954) was used to determine the 
content of water-soluble carbohydrate by an auto-analyser. 
The measurements of photosynthesis and respiration with the Gilson respirometer were 
carried out on small parts, about 200 mg fresh weight, of the flag leaf, the peduncle 
and the ear (one or two spikelets); under steady state conditions photosynthesis and 
respiration were measured during 4 intervals of 15 minutes. 

Results 

Analysis of variance 

In the first analysis of the effects of the four temperature treatments, the main effects 
of 15 and 25 °C during day-time and at night were calculated. The effect of tempera
ture during day-time was mostly twice as large as that of the night temperature, but 

Table 1. The effects of various 

Component 

( 

1. weight per ear 
(mg) 

2. seed weight 
per main ear 
(mg) 

3. kernel weight 
(mg) 

4. number of kernels 
(mg) 

5. weight of 
peduncle (mg) 

6. weight of the 
other internodes 
(mg) 

7. weight of the 
leaves (mg) 

8. total aerial 
weight of main 
culm (mg) 

Date 

20/8 
9/9 

22/9 
ripeness 
9/9 

22/9 
ripeness 

9/9 
22/9 
ripeness 
9/9 

22/9 

9/9 
22/9 
ripeness 

9/9 
22/9 
ripeness 

9/9 
22/9 
ripeness 

9/9 
22/9 
ripeness 

'••>.. a > U.U3; x: 0.05 > „ > o.Ol 

210 

Mean 

473 
1289 
1874 
2248 

897 
1456 
1603 

25.3 
43.6 
44.3 

36.0 
33.4 

556 
479 
462 

1134 
961 
906 

540 
502 
436 

3520 
3816 
3792 

C.V. 

6.1 
5.7 
4.4 

14.3 
7.0 
6.4 

5.9 
3.6 
6.4 

13.1 
5.3 

6.5 
4.8 
4.6 

8.3 
5.2 
3.5 

9.3 
8.4 
8.8 

3.8 
3.7 
3.7 

Ear 
size 
(S) 

*** 
*** 
*** 
*** 
*** 
*** 
*** 
*** 
*** 
**# 
*** 
** 
*** 
*** 
** 
*** 
*** 

n.s. 
n.s. 
n.s. 
*** 

*** 

; xx: 0.01 > a > 0.001; xxx 

Tempera
ture 
(T) 

*** 
*** 
*** 
*** 
*** 
*** 

*## 
*** 
*** 

n.s. 
* 
*** 
*** *** 
*** 
*** 
*** 

n.s. 
** 
*** *** 
*** 
*** 

a < 0.001. 

Light 
(L) 

*** 
*** 
*** 

*** 
*** 
*** 
*** 

n.s. 

n.s. 
* 
*** 
n.s. 
n.s. 
**# 
* 

n.s. 
n.s. 
n.s. 

n.s, 
*** 
*** 
*** 

S x L 

*** 
* 
n.s. 

n.s. 
* 
n.s. 

n.s. 

n.s. 

n.s. 
n.s. 

n.s. 
n.s. 
n.s. 
n.s. 
n.s. 

n.s. 
n.s. 
n.s. 

n.s. 
* 
n.s. 
n.s. 

^ • " " f *• 

S x T 

n.s. 
** ** 

n.s. 
* 
* 
n.s. 

n.s. 
n.s. 

n.s. 
n.s. 

n.s. 

n.s. 
n.s. 
n.s. 
n.s. 

n.s. 
n.s. 
n.s. 

n.s. 

n.s. * 
* 

/• 

LX 

n.S' 
n.s. 
* 
n.s. 
D.S. 

* 
* 
* 
n.s. 

n.s. 
n.s. 

n.s-
n.s. 
n.s. 

n.s. 
n.s-
n.s. 

n.s-
n.s. 

* 
n.s-
n.s. 

* 
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Table 2. The analysis of variance by means of a multiple regression with real variables, 

Variable Level 

y = seed yield 

main culm (mg/ear) 1,810 

xi = mean temp. (°C) 20 

xi = mean temp. (°C) 20 
x* = light intensity 138.2 

(cal cm-2 day-1) 
xi = mean temp. (°C) 20 
X2 = light intensity 138.2 

(cal cm-! day-1) 
xs = ear size 40 

(kernels/ear) 

-145.2 
3.5 

94.3 
2.1 

32.5 

Ob 

19.9 
2.5 

9.0 
1.0 

2.5 

Student 
- t 

-145.2 20.2 7.2 

7.3 
1.4 

10.5 
2.1 

13.0 

Degrees Constant 100 R' c.v. 
of 
freedom 

35 

34 

33 

32 

4,715 

4,238 

2,099 

100 

39.6 

39.0 

24.9 

37.4 24.6 

6.0 10.0 

also the day-length (16 hours) was twice the " ^ t period (8 hours). FoMhat reason 

the four temperature treatments - 15/15 C, 1 5 / ^ ^> Z J / 1 „ „ c 

be considered as mean daily temperatures of 15,18.3, 2 1 . / an • t i n 

The experiment was carried out as a split-plot d e s i g n w i t h * ° £ « ™ l
& ™*ce f o r t h e 

the main split and light in the sub-split. The results of the analysts *™™n
 ters 

components of the main culm (Group A) are presented in Table i A U P S_ 

which are related with grain growth, were strongly influenced by the ma 

ear size, light intensity and temperature. , f G B w e r e 

The first-order interactions were of minor importance. The results 
of the same magnitude. . „ • factors and first-order 

By means of a multiple regression analysis with all ma in Q£ ^ 
interactions as dummy variables, ^ coefficient ^ ^ ^ ^ , i g h t intensity 
main culm was decreased from 39.0 to M *>. i n e * { d i e l d r espec-
and ear size accounted for 74.0, 2.1 and 18.8 %

K ° V t t L T e r e s ù u s (Table 2). 
lively. The calculations with real variables gave about the *** 0(2 a n d a c h a n g e 

A change in temperature caused a decrease of 94.3 mg seem J ^ ^ p e r c a l o r i e 

in light intensity or ear size gave an increase oi z a • t u r e i s negative 
and per kernel, respectively. So the total response of seed y ied^o ^ P . ^ ^ ^ ^ 
mainly due to the earlier senescence of the plants, AH i 
number of kernels per ear resulted in a higher seed yield per cuim. 

Influence of temperature kernels increased with rising tem-
During the post-floral period the growth rate o ! the ™m

 o £ t h e p ! a n t also 
perature, but the senescence of the leaves a n d o n ë ^ W g h e r g r o w t h 

increased. The resultant of these opposite proces*es fe ^ d u r i n g a , 
rate during a relatively short penod at z3 «- auu growth 
period at815 T ; 18.3 • and 21.7 °C ™ ' ^ ^ I Z C Î Z and ripening of the 
rate and senescence (Fig. 2). The acceleration °f »ea I

 u H i m a t e g r a i n y i e ld than 
kernels by higher temperatures was more , m P ° r t a n

 f l o w e r ing and a dry matter 
the increase of the growth rate. The P ^ J f ^ X y s fo

g
r 15, 18.3, 21.7 and 

content in the ear of 65 % has lasted 52, 40, 31 and a y 
211 

Neth. J. agric Sei. 22 (1974) 



J. H. J. SPIERTZ 

g culm"' 
2.5 r grain weight of main culm 

0.5 

•/. dry matter content of ear 
90 r 

4 15' C / .x a 
a 18.3-C I / / 
x 21.7'C If / 

801- • 25« C II o 

70 

60 

50 r-

40 

30 

20 

'8 '9 
22, 29, 6, 13, 

'Q 'a ' m A 9 '9 '10 '10 date 
20,. 9/ 22, 29, 6, 13, 

'9 'a 'a ' i n Ar '9 '9 '10 '10 date 

Group I ? 6 i n f lUenCe ° f t e m p e r a t u r e ° n e r a i" growth and dry matter content of the ear (data of 

f e m p m S ' o n o 1 ^ " thC k e r n d filHng Per i0d W3S d ° U b l e d b y a deCreaSe in 

atThr eei nw^C%f t e
<

m p e r a t u r e o n l e a f a r e a duration is demonstrated by the leaf area 
Lt™ f r f l o w e n n 8 ; a decrease from 63, 47, 34 to 21 cm* per culm within 

t r e T s l T e ^ r 8 6 , ! . 5 : 2 5 ° C WhiCh f a C t ° r fim s t°Ps 8 r a i n **«* » "ot clear; 
™at

 nCC t h a t U m i g h t b e t h e suPP'y o f assimilates, because at the highest 
S E T S T g r 0 W t h S t ° P P e d 3 t a * * m a t t e r C 0 n t e n t i n A« ear of about 40 %, 
literature i , ™ * " ^ - f ™ * c o n t i n u e d UP t 0 6 5% dry matter. There are many 
moîureconrnrVr ^ a Phys io log i ca l »™it for grain growth at 35% 
mch i Ï and în Ï Ï i , *"?*?*> w i l 1 * somewhat lower for the ears, because the 
rachilla and the glumes contain less moisture than the kernels. 
h'JhTr d l S t n b u t ' o n o f t h e assimilates was also influenced by temperature (Fig. 3) With 
S weLTtPo? t h ? m t 0 r e a;SimilateS Were USCd f0 r S - n growth at the expense of 
oedunct LrL H T u a n d Pe rhaPs also of the roots. The weight of the 
onwards the n e^n f ™ ^ J * , * " t W 0 WCekS a f t e r f l o w e r i n 8 ™* ' " » that time 
ZoSdron„Ped;^^cle weight decreased slowly, whereas the weight of the other in-

T^k r,d P P ! , rp ,y a f t e r flowering- «specially at higher temperatures. 
w e S t TÏereafoerènth ^ " T ' 7**? -?f t h e S t e m W a s S r e a t e r t h a n the gain in kernel 
2 ml Zt 1 ' u ?PY ° f a s s i m i l a t e* t o t h e grains by remobilization out of the 
caÏÏed by the ^ c r ? 6 6 " ? *** * ? " ' °S S i n We iSh t" M u c h m ° r e of the weight loss was 
S T f e w mtsuremen? o f / e « ° n * higher temperatures. This can be illustrated 
token at 15 and 25 ™r?T K, ^ f » ^ 8 a"d respiration with a Gilson respirometer, 

The n , f . ( a b l C 3 ) f ° r t h e f 0 u r temperature treatments. 
The mcrease of temperature gave a Q10 value for the respiration of more than 2 as a 
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mg culm"' 1 5 ° C 
2400 

18.3°C 21.7°C 25°C 
»ear 
x stem 
• leaves 

'9 '9 
date 

Fig. 3. The influence of temperature on dry matter distribution after flowering (data of Group A). 

Tab,e3. The magnitude of photosynthesis in fag leaf and of respiration in flag >eaf, peduncle and 

ear at the milk to dough ripe stage (,<1 CVg fresh weight/minutej. 

Flag leaf 

photosynthesis dark respiration 

T.: 15/15 
Ti,: 15/25 
T3: 25/15 
T»: 25/25 

15 °C 

44.0 
49.5 
51.2 
58.9 

15 °C 25 °C 15 °C 25 °C 15 °C 25 °C 

7.6 
4.9 

19.2 
10.2 

3.1 
4.5 

14.7 
9.3 

5.6 
4.4 
5.8 
3.4 

12.4 
9.4 

11.0 
9.4 

(1 g fresh weight = 55 cm2 flag leaf.) 

mean. To compare the organs, attention should be ^ ^ ^ S Z l T : T : 15. 
these organs per plant; here the ratio for flag leaf ^ j j ^ ^ 
So per plant the respiration of the ear is much higher than ma 

Influence of light intensity . response to an increase of light 
Seed yield and growth rate of the grains gave a higher-re: p 1 ? 5 ^ cm .2 

intensity from 92 to 142 cal cm* day1 than to an increase trom 
day» (Fig. 4). . . • . . h t o f the peduncle as well as 

During the first two weeks after flowering the wag ^ h i g her light intensity, 
the weight of the other internodes was S 1 8 n l f i c a n t l y ' " " i r .e ta[ transport of assimilates 
This means that shortly after flowering there is M « » J w i U d e p e n d o n t h e supply 
in the plant. The amount of downward transport nov,' ^ o f a s s imiiates will be 
and on the storage of assimilates in the ear, tne 
stored mainly in the stem. . . e r o w th was partly reduced by 

The advantage of a higher light intensity for g raun^ ^ ^ ^ , e a f a r e a p e r 

the more rapid leaf senescence, With 92, 147 ana _ ^ 3 6 5 c m 2 c u l m - i ) r e s-
culm three weeks after flowering amounted to « . / , 
pectively. . , ^ 
Neth. J. agric Sei. 22 (1974) 
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g cu lm" ' 
2 0 r 

1.5 

1.0 

0.5 

main t i l lers 

Fig. 4. The influenced of light intensity on grain 
growth of main and side tillers (data of Group B). 

$ / / A . 100 'k l ight energy 
f*, * • 75 •/. .. 

20 /8 

• » 50 •/. » 

9/9 22/9 6/10 date 

g culm" 
5.0 p 

4.5 -

4.0 -

3.5 -

3.0 -

25 -

2.0 

1.5 

1.0 

0.5 

ol 

cont ro le 

I 
l 

2 5 % reduction of 
kernels 

20/_ 9,_ 22, H 

50 % reduction of 
kernels 

Z% % 2% « 

Üü ear 

| | peduncle 

n luiste m (-p> 
I leaves 

i reduction 
I ear weight 

H»harvest 

2<V \ ~ 22>- H 

Fig. 5. 
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™e mfluence of ear size on dry matter distribution after flowering (data of Group A). 
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Table 4. Grain weight of main culm and site culm with three different numbers of kernels per main ear 

(g ear-'). 

Dates 

Number of kernels 
on main culm 

3 weeks after flowering 
5 weeks after flowering 
7 weeks after flowering 

Main culm Side culm 

So Si S2 So Si St 
(control) (-25%) (-50%) (control) (-25%) (-50%) 

1.13 
1.72 
1.97 

0.92 
1.56 
1.68 

0.64 
1.09 
1.18 

0.82 
1.29 
1.37 

0.93 0.97 
1.35 1.46 
1.51 1.59 

Influence of the ear size . , .,,_ tnn „nfi central 
The storage capacity in the ear was reduced by removing some of he top and cen 
spikelets. This interference resulted in three storage capacit.es with 47.0, 36.6 
24.3 kernels per ear, respectively. . i n . r M „ m the dry 

Because o? the reduced storage capacity there was initially an increase.wthe ry 
weight of the peduncle and the other internodes; this increase was, however, 
sufficient to compensate for the decrease of the ear weight (Mg. 3)• h o f 

The differences in dry weight of the internodes d ^ ^ J S of 
the ear remained up to the mature stage. Striking was the fact^ha.the emo 
spikelets on the main culm resulted in a significant >^ r e a s e 0 ^ * e ' the main ear 
side culms (Table 4). This indicates that when the storage capacity o. 

mg/kerne l 
5 0 r seed we igh t 

45 

40! 

35 

30 

25 

20 

151 

. /w . 
\ . 

\ 

V*0 
.0^'%-o-Ä, 

V , 
' ^ v< 

\ 

o 

\ 

SOOR19/5 ' '"'*"'1 

2 0 ° r seed yield 

- " 1 i i 
3 5 7 9 11 13 15 17 19 21 23 

160 

120r 

_ i 1 1 • 

3 5 7 9 11 13 15 17 19 21 23 
spikelet number 

Pikelets on individual grain weight and grain 
Fig. 6. The influence of the number of kernels per spikelets on 
yield per spikelet (data of Group A: averaged for Ts ana it). 
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Table 5. The absolute growth rate (AGR) and the relative growth rate (RGR) of ear and kernels. 

* 

AGR (mg day') 
20/8- 9/9 
9/9 - 22/9 

22/9- 6/10 

RGR (mg g-' day-') 
20/8- 9/9 
9/9 - 22/9 

22/9- 6/10 

Ear 

S. 
(control) 

88.8 
51.5 
29.1 

98 
25 
13 

S. 
(-25 %) 

90.3 
43.5 
25.2 

124 
25 
12 

S8 

(-50 %) 

64.6 
30.6 
21.7 

148 
27 
14 

Kernel 

S. 
(control) 

1.88 
1.11 
0.43 

259 
38 
5 

S. 
(-25 %) 

2.12 
1.27 
0.52 

304 
38 
6 

Su 
(-50 %) 

2.34 
1.56 
0.42 

370 
41 
4 

is very limited there is a downward flow of assimilates, which probably indirectly 
(e.g. by means of a better root activity) favours the grain growth in the side culms. 

Ihe most important compensation for the reduction in number of kernels per ear 
was a considerable increase of the individual kernel weight. So the initial 50 % reduc
tion m kerne number resulted in a 25 % increase of the kernel weight. By removing 
the top spikelets, the kernel weights of the spikelets on the basal part of the ear were 
favoured by the additional supply of assimilates (Fig. 6). 

, n J°^ a n t l y S e , t h e e f f e C t ° f d i f f e r e n t e a r s izes on the physiological activity of the ear 
and the kernel as a storage organ the absolute and the relative growth rate have to 
be compared (Table 5). 

The absolute growth rate of the total ear was decreased by reducing the ear size, 
whereas the growth rate of the individual kernel was increased up to the ripening 
stage. Difference in ear size affected the relative growth rate only a fortnight after 
flowering ,n such a way that the growth rate of both the total ear and the individual 
kernel were increased corresponding to the reduction in ear size. During the remainder 
ot the kernel filling period there were hardly any differences in relative growth rate. 

SÄ.'ÄSSTthere is a factor other than c a r b o hy d r a t e « W * which is 

The content of water-soluble carbohydrates (wsc) 
Before anthesis water-soluble carbohydrates accumulate in the stem. The contribution 
ot these stem reserves to grain growth depends on the growing conditions. However, 
Zfh , P , ^ C S t e m 3CtS a s a p 0 0 1 o f mailable carbohydrates which increases 
wth a surplus of photosynthates and decreases with consumption of carbohydrates, 
either by respiration or by retranslocation. The extend to which this pool was affected 
by temperature and light intensity is presented in Table 6 
w a ! T L f l i ° W « n g , ? T a r d S t h C C ° n t e n t o f water-soluble carbohydrates of the stem 
Z l l fy b y t e m P e r a t u r e a s well as by light intensity. The lower wsc content 
at higher temperatures might be caused by a more rapid retranslocation to the kernels, 
L , F ^ ' T T , 0 " r a t e ° f t h e S t e m °r a S r e a t e r carbohydrate consumption by the 

wsc i L T y J°T temPeratures higher light intensities resulted in an increased 
i S Ä S l Ä Ä S T ™ C O n d i t i - * « » * neater surplus of carbo-
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Table 6. The content of water-soluble carbohydrates of the peduncle and the remaining internodes of 
the stem (Group B) at different temperatures (Ti etc.) and light intensities (Li etc). 

— T 

Peduncle 
9/9 

22/9 
29/9 
6/10 

Lower internodes 
9/9 

22/9 
29/9 
6/10 

Ti 

Li 

15.3 
15.0 

11.3 

28.2 
24.5 

11.7 

U 

18.8 
21.4 

12.6 

29.9 
28.1 

13.4 

La 

22.4 
24.4 

10.4 

35.1 
29.2 

18.0 

T* 

Li 

8.4 
3.1 

0.8 

24.9 
8.9 

1.1 

U 

20.2 
9.1 

0.8 

25.1 
12.2 

2.5 

La 

20.9 

11.0 

1.9 

30.2 

14.2 

1.5 

Ta 

Li 

6.7 
1.4 
1.4 

20.8 
2.4 
10 

U 

10.5 
1.7 
1.4 

21.7 
2.8 
1.5 

La 

15.6 
3.5 

9 

-

23.4 
30 
2.4 

— 

T* 

Li 

7.2 
1.0 
0 
— 

10.2 
2.3 
0.7 

L« 

8.5 
1.2 
0.9 

11.7 
2.8 
1.0 

. . 
La 

13.4 
1.3 
0.9 

15.1 
2.8 
1.1 

The reduction of the ear had a smaller effect on the wsc content: a reduction of 
the kernels per ear with 50% caused an increase m wsc content of 

Discussion 

It was stressed earlier that grain growth was determined byt^f^f^°bohydTztcs was 
and the sink capacity of the ear. In this experiment the,SUIJ\ t h e l i g h t intensity 
varied by light intensity and temperature. It was; found[that r * ^ ^ 
from 175 to 92 cal cm-« day (400-700 nm d.d not * * * * * S ^ s h a ( J i n g 

tionally. Also Willey (1965) found relatively s m a U re°U^rse t he magnitude of the 
experiments in the field during the grain filling period, u ^ c u l m s a n d o n t h e leaf 
mutual shading of the plants will depend on the num flowering phase has turned 
area per culm. Generally, light competition during tePJ-'° * * ( w m 1 9 6 5 ; 
out to be more critical for grain yield than competition at a later stag 
Puckridge, 1968; Fischer, 1972). „«imilates in various ways. First the 

Temperature has influenced the supply of assimilau» ^ ^ ^ ^ t h e 
senescence of the leaves was accelerated by raiseoi y i n c r e ase of respiration, 
respiration of leaves, stem and ear was increaseduesp ^ T W s i n d i c a t e s 
the growth rate of the kernels did not decrease, but was s ^ a s s i m i l a t e s a t 

that there was up to 3 weeks after flowering no «J»"™ d e c r e a s e d rapidly. It is 
higher temperatures; only the content of wsc in lR

 c a u s e s a m uch faster rate 
unknown whether a lower carbohydrate level m in v t u r e s the movement of 
of senescence; there is some evidence that with higner i v ^ ^ i m p o r t a n t factor 
nitrogen from the leaves into the grain is greater. • p0St.anthesis development 
affecting the leaf area duration. Studying the diiration F ^ . ^ ^ Qf ^ m e a I , 
under field conditions, Marcellos & Single (1971) toun rf riod reduced 
daily temperature from 17.5 to 22.5 °C during the^ post^ ^ mt t h e e f f e c t of 
the duration of this phase by about 30 %. In this _pny a d d i t i o n a l influence of the 
temperature was greater, which might be explainedI oy^ ^ ^ U n d e r f i e l d 

environmental temperature on the roots ot tn P 
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conditions soil temperature is affected less by the aerial temperature and by diurnal 
variations in temperature. 

The storage capacity of the ear depends on the potential size of the grains and on 
the number of grains (Bingham, 1967). The latter of these two components was 
artificially vaned in this experiment after flowering; normally in a field crop the 
Ä S T 0 f

1 0
g

7
r ^ n s ^P r e d 0 m i n a n t l y affected by the growing conditions before flowering 

ÏÏSÎ, T?' • P O t e n t i a l SiZC ° f t h e g r a i n s s e e m s t 0 b e Pa r«y genetically con-
w l r l w 107m T P e r a t U r e a n d I i 8 h t i n t e n s k y a f f e c t t h e n u m b e r °f endosperm cells 

E l o Jh t ' F
t
r o m ™ e n t

u
W O r k (Jänner & Rathjen, 1972) it may be concluded 

h f f l™ f T carbohydrate can accumulate in the ear is determined by 
o f % , ™ 1 * ™ m t o t h e g r a i n - Jenner (1970) showed that the concentration 
l T ' n t h e en

t
d°sperm was closely related to the rate at which starch was 

to thé a m n T e V f ' e l e V d ° f S U C r ° S e i n t h e end0SPerm was not linearly related 
transnor. o f Z r ^ T V " ^ P a r t S ° f t h e e a n K W a s concluded that the 
Of ,t n aLfe in tnT ' , ^ g r a m S * * SOmC ™* ^ «*«<*«» ° " ** ^ *ages 
oi its passage into the endosperm. 
and neaf s i 7

e
p

X Pfm e n^ t h e ^ ? p a d t y ° f t h e e a r w a s determined by temperature 
the e S c t of ' r l .f1"Y P h a S C ° f k e r n e l f i l l i n g temperature predominated over 
"ze on t h f / r i r J at[eTVhe g r ° W t h r a t e ° f t h e k e r n e l s (Rg- 7)- The effect of ear 
here w ! f / Z h * ^ *??* W a S g r e a t e r w i t h h W * r temperatures; at 25 <C 

of kernels ner 7 E, ^ T ^ ° f i n d i v i d u a l g r a i n s w i t h an increasing number 
l umTance s w , t h ' ^ C * T° fbm W3S " ^ a n y P e n c e s . Thus under 
b e T m i t S f J f HaS t g r o w t h . r a t e o f the kernels the supply of carbohydrates will 
w!th ra sed tonlf7 *$£**? * * * ° f a h i g h e r l i g h t i n t e n s i ty *"> was greater 
S a t u r é and 2 i T l u s P h e n o m e n o " was confirmed by the effects oi tem-
S n g period S TT/ M " ' C h a n g C S " t h ou^nd-grain weight during the kernel 
A low t e m l S ' r ^ r « t h % c o n t e n t o f w a ter soluble carbohydrates in the stem. 
Sandra n w d S . 1 1 „ ?°l ° ' " ^ s h ° r t a g e o f carbohydrates on the thousand gram weight came about at a later stage of kernel filling 

d u I L T n T o t o s v ï t r 0 i n
f
 t h C S t C m m a y b e C O n s i d e r e d a s a b a l a n c e between the pro-

mat on S c ) T a s m;,°a
 8 ™ S , t B r , ) a n d t h e c o n^mption (respiration, starch for

mation, etc.) of assimilates. The data of Table 6 show very clearly that at low 

15°C 
g/1000 kernels 

18.3-C 21.7',C 25°C 

• ear s ize:S2 

x ear size: Si 
A ear size:So 

*». % 2% v% -*!^%-*r%0 V ^ v % ^r^r^^ 
F * 7. The mfluence of temperature and ear size on thousand-grain weight (data of Group A) . 
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thousand-grain weight 

60rpg/kerne' 

1 '2 ' 3 , '* 
t e m p e r a t u r e 

Fig. 8. The change in thousand-grain weight after flowering, as affected by temperature and light 
intensity (data of Group A: alone So data). 

temperatures there were initially higher contents of wsc in the ste"• ^ * ^ " ^ 
rather slowly during kernel filling. At high temperatures the wsĉ  conte ^ ^ 
decreased even in the early stage of kernel filling._Tlns decrease o ^ r e t r a n s , o c a t i o n 

will be caused mainly by increased respiration (Tab e 3) ana X agreement 
to the grains. The increased loss of stem sugars at higher temperatures g 
with the results of Asana & Saini (1962). . , l a n c e between 

The conclusion might be that the final grain yield depends on the ^ £ b 

carbohydrate supply and ear capacity. The carbohydrate « ^ ^ ^ ^ J . 
temperature and light intensity, because both climatic f s ^ J " " M h l i g h t intensi-
tion rate and the leaf area duration. Low t e m p e r a t u r e s - ^ ^ ^ „ J ^ there 
ties resulted in a surplus of available carbohydrates. Under sucn ^ ^ ^ ^ ^ 
must be a favourable effect of a greater ear capacity on gram yi , ^ ^ ^ 
conclude, that with low temperatures during t n e . k e r . h t T h e storage capacity of 
intensity is not necessary to achieve a normal gram weig . s p i k e i e t s than from 
the ear is more limited be removing the kernels from the c e n u * ^ ^ ^ b e 

the top of the ear. The reduction in number of kernels p a t u r e affected ear 
compensated by an increase in thousand-grain weign. ^ ^ ^ ^ i n the ear. 
capacity by influencing the rate at which carbohydrate t ^ ^ translocation 
There is some evidence that various processes are myoi , ^ c onve rting sucrose 
rate of assimilates, the passage of sucrose into the grain, i ^ a n d fina, 
into starch. To what extent these processes are important ior g 
grain size would be worthwile for further resarch. 
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Summary 

The response of grain growth to temperature and light intensity was studied under 
controlled conditions within the ranges from 10 to 25 °C and from 64 to 188 W m-2, 
respectivel|. Warmth hastened the senescence of the wheat plant and enhanced the 
initial growth rate of the grains. Additional light promoted the rate of grain growth 
more at higji than at low temperatures; under the latter conditions there was a con
siderable accumulation of carbohydrates in the stem (up to 40 %) from anthesis 
onwards. The rate of grain growth ranged from 0.70 to 1.64 mg day-1 kernel-1. 
The duration of grain growth was prolonged by decreasing the temperature from 
25 to 10 °C; the increase in growth duration from about 30 to 80 days corresponded 
with a relatively stable temperature sum. Temperature and light also affected the 
redistribution of assimilates and the chemical composition of the grain. The rate 
of protein synthesis was promoted more by warmth than the rate of starch synthesis. 
This resulted in an increased nitrogen content of the grain. The final content of total 
non-structural carbohydrates (starch and sugars) was slightly decreased by warmth. 
Additional light raised the carbohydrate content of all parts of the plant and so 
decreased the nitrogen content of these parts. However, light intensity had less 
effect on nitrogen distribution and yield than temperature had. 

Introduction 

From site to site and from year to year great variations in light energy and tempe
rature occur during the grain-filling period of wheat. Lower radiation during this 
period affects grain growth by decreasing photosynthesis and the supply of assi-
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milates (Willey & Holliday, 1971; Fischer, 1975). The effect of temperature on 
grain growth is more complex than the effect of light intensity: there are effects on 
'source' processes (e.g. earlier senescence of the leaves) and on 'sink' processes (e.g. 
faster initial growth rate of the kernels). Usually a rise in temperature shortens the 
kernel-filling period and decreases the final grain yield (Thorne, 1973; Sofield et al., 
1974; Spiertz, 1974; Ford & Thorne, 1975; Meredith & Jenkins, 1976). The im
portance of the various components and aspects involved in the physiology of grain 
growth has been extensively reviewed by Evans & Wardlaw (1976). 

This paper presents the results of an experiment in which the main objectives 
were to investigate the influence of light energy and temperature on grain growth 
and on the distribution of assimilates, in relation to the carbohydrate and nitrogen 
economy of the wheat plant during the grain-filling period. 

Materials and methods 

The experiment was carried out in the phytotron of the Department of Field Crops 
and Grassland Husbandry of the Agricultural University, Wageningen. 

Plant material and growth conditions 
Seeds of the spring wheat variety Orca with a diameter of at least 2.6 mm were 
used for the experiment. To prevent seedborne diseases, the seeds were dressed with 
Quinolate V-4. Twenty seeds were sown at random per pot; about two weeks after 
emergence the number of seedlings was reduced to 15 per pot of 300 cm2. 

Each pot contained 5 kg of sandy soil. Chemical analysis of this soil gave the 
following data: pHKC] 5.7; K-value 6.0; P-value 25; organic matter content 4.1 •%. 
The pots were fertilized weekly or fortnightly with a mineral solution of NH4N03, 
Ca(N03)2, KN03, KH2P04 and MgS04. The total amount of minerals (in meq per 
pot) for the whole growing period was: 210 N (ratio NH4+N03- was 1:2.5), 60 P, 
12Q K, 30 Ca, 30 Mg, and 30 S. The micro-elements were applied twice. 

During the growing period, insecticides and fungicides were applied regularly to 
keep the plants healthy. 

Arrangement of experiments 
From sowing to ear emergence (12 March to 15 June) the plants were grown in a 
greenhouse with natural daylength and temperature controlled at 12 and 8 °C for 
day and night, respectively. 

Just before ear emergence the plants were transferred to growth rooms. The 
temperature was kept at 15 °C and the daylength at 16 hours. 

From flowering (29 June) onwards, 12 temperature/light intensity combinations 
were imposed as follows: 
- 4 temperatures (°C): 10 ( y , 15 (t,), 20 (t3) and 25 (t4) 
- 3 light intensities (W m-2; 0.4-0.7 nm): 188 (LJ, 118 (L2) and 64 (L3). 
The daily quantities of light energy (MJ m-2) intercepted on different heights during 
a 16-hour light period 3 weeks after flowering were: 
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Lt L2 L3 

level just above the plants ( ± 2.00 m) 10.80 6.82 3.68 
level of the ears (± 1-80 m) 8-58 5.02 2.80 
level of the flag leaves (± 1.60 m) 4.81 2.68 1.39 
level of the second leaves (± 1.40 m) 1.93 0.96 0.42 
level of the plant base ( ± 1.00 m) 1-05 0.46 0.13 

The relative humidity was kept between 80 and 90 % with the highervalu«»for 
the 10 and 15 °C treatments and the lower values for the 20 and 25 C treatments. 

Sampline and observations . 
Plants were sampled at various times by harvesting 4 pots per treatment; most of 
the observations were made on the main culms. To determine dry matter weights 
and leaf area the culms were separated into 
a) flag leaf, penultimate leaf, other green leaves and dead leaves; 
b) peduncle, penultimate and remaining internodes; 

%?££££%*** **> - - «"• «"*"and <°°' " * » werc 

^ c ä S r o ^ r S d ' ' ^ 2.7 .c H.4% for «he various dry 
weight observations. 

Determining the photosynthesis and respiration rates a n a l v s e r 

Photosvnthetic and respiratory rates were determined with an infrared gas analyser 
^ Ä S Z S L i Co., Frankfurt am Main) by enclosing leaves and ears 
n ^ L S l t i o n chamber. The tube-shaped chamber was 40 cm long and 25 mm 
wide T^meturemeks were made under the light ^ » ^ « ^ 
The temperature of the air in the chamber was a d ^ ° J ^ ^ f ^ n i 
the photosynthetic rate and adjusted to the temperature of the different treatments 
for determining the respiratory rates concen-

of the chamber. 

Determining nitrogen and ̂ r content ^ OQ ^ & ^ ^ 

The samples of the f ^ f ^ ^ ^ h a 1-mm sieve and stored in air-tight 
weight. The à ^ ^ ^ ^ e ^ ^ ^ E ^ Kjeldahl method was used. 
plastic bags. To àm™™a^°Ztcs " S mg of dried material was boiled 

To determine water-soluble ̂ f ^ ' ™ o f \ m i x e d s o l u t i o n o f 2 3 8 g zinc 
in 50 ml water for 10 ̂ f t ^ S ^ Z d L water were added. One minute 
acetate + 30 g acetic acid dissolved iO00U m i o o o ^ ^ ^ 
later, 5 ml of a solution of 106 g K Fe(CN)63 H 5 ^ ^ 

were added. This ^ ™ ^ ^ £ L determination of the total soluble 
filtrate were diluted with water ana usea 
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carbohydrates with anthrone by means of an auto-analyser. 
To determine the starch content, 250 mg of dried material were used; after being 

boiled in water the samples were treated for 2 hours in an autoclave at 120 °C and 
149 cm water pressure. After cooling, 2.5 ml of acetate buffer and 10 mg amylo-
glucosidase per 100 mg (expected) starch were added. This solution was made up 
to 50 ml with water and placed in a waterbath at 60 °C for one hour. After cooling, 
the samples were treated similarly to the analysis of the water-soluble carbo
hydrates. 

Total soluble carbohydrate and starch content were expressed in glucose units. 

Results 

Influence of light intensity and temperature after anthesis on the area of green parts 
of the plants, photosynthetic activity and respiration 
The total green area of the main culm at anthesis was composed of 152 cm2 of leaf 
area, 80 cm2 of stem area and an undetermined area of the ear. Both flag leaf and 
penultimate leaf had an area of 54 cm2, whilst the dry weights amounted to 163 and 
145 mg per leaf, respectively. The green area of the two side culms per plant was 
not determined. It was found that warmth hastened the senescence of the leaves 
and the yellowing of the other green organs (Table 1). At 25 °C the senescence 
was almost completed after 4 weeks, whilst at 10 °C there remained some green 
leaf area even after 11 weeks. 

Light intensity also had a slight influence; the green coloration lasted longer at 
low light intensities. 

The rate of uptake of C02 (apparent photosynthesis) of the, flag leaf was about 
23.5 mg dm--2!!-1 at ear emergence; at anthesis this value had decreased to about 

mg C02 dm"2h"1 mg C02 dm"2»!*1 

flag leaf 
anthesis*3 weeks 

flag leaf 
anthesis* 3 weeks 

20 

18 

16 

14 

12 

10 

8 

6 

4 

2 

0 

-2 

Fig. 1. The rate of apparent photosynthesis of the flag leaf at 3 weeks after anthesis in relation 
to the post-floral temperature and light treatments. 

.—.= io°C 
x—x= 15°C 
o—o= 20"C 
A—A* 25°C 

.—. = 33 wm'2 

x — x = 4 7 " 
o—o= 25 •• 

83 Wm"2 10 15 20 25 °C 
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Table 1. Amount of green area of the flag leaves expressed as percentage of the leaf area at 
anthesis. 

Temperature (°C) Anthesis + 2 weeks Anthesis + 4 weeks Anthesis + 6 weeks 

10 
15 
20 
25 

100 
100 
100 
100 

85 
69 
31 
2 

42 
36 
0 
0 

21 5 mg During the first few weeks after anthesis the rate of photosynthesis re
mained constant per unit green area at all temperatures except 25 °C. At 3 weeks 
after anthesis the 15 °C treatment showed the highest rate of photosynthesis 
(Fig 1) The decrease in photosynthetic rate at higher temperatures may have been 
caused by faster ageing of the leaves, whilst the photosynthetic rate at 10 C may 
have been limited by the slow-down of metabolic processes and the very high carbo
hydrate content of the vegetative organs. 

The rate of dark respiration of the flag leaf at ear emergence and anthesis 
amounted to 6.0 % and 4.8 % of the rate of apparent photosynthesis respectively. 
Soon after anthesis the rate of respiration of the ear and the flag leaf increased m 
response to warmth. However, at 3 weeks after anthesis the rate of respiration of 
the ear decreased with a rise in temperature. The respiration rate of the ear was 
1.11, 1.49, 1.17 and 0.63 mg C02 per g dry weight per hour with 10, 15, 20 and 
25 °C respectively. 

In this experiment the production of assimilates depended mainly on: 
- light intensity: fixed at 3 levels; 
- rate of photosynthesis per unit green area; 
- amount and duration of the green area per culm. . . . t „ 
Although the few measurements of photosynthesis and respiration do no allow a 
complete carbohydrate balance to be made, we might conclude from the data of 
Table 1 and Fig 1, that temperature affected the duration of green area per cum 
more than net photosynthesis. Therefore the total production of - m i x t e s a ter 
anthesis is favoured by low temperatures, combined with high light intensities. 

Influence of light intensity and temperature after anthesis on grain growth and dry 

A f r a n l h t Ï wa"rmth reduced the duration of stem and grain growth (Fig. 2). The 
^em we gh tncreased more at lower temperatures so there was a surplus o as-
s mTlaTes for grain growth. After the mid kernel-filling stage the senescence of the 
leavesTadalready proceeded to a large extent, decreasing the production of ass.mi-

S T Ï Ï S ^ «f assimilates f r o m ^ Z t Z Z Z ^ l T ^ Z 
sated by a retranslocation of assimilates from the stem to the grains. The average 

decrease in stem weight was 30% oi i h ^ k ^ i Z Î L e ^ However warmth 
The weight of the leaves decreased only slightly after anthes s However warmth 

reduced thfwekht of the roots considerably during the kernel-filling period. 
^ ^ T S ^ c a i i t interaction effects of light and temperatures on grain 
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dry weight (g/culm) 
3 0 ^ 10°C 
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2.o| 
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15°C 
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-
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vvv?7%
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dates 

Fig. 2. Dry matter weights of the various parts of the main culm from heading onwards. 

E ? ' Th!,gr0r.th r a t e o f t h e k e r n e l s d"ring the apparently linear phase of grain-
5 ™ e d

t
 W 1* i n a ? n ë e fr°m 30 to 74 mg per ear per day. Differences in grain 

S ï ï ^ ^ ^ " * 1 " o f light intensity were Iess at lower than at hi^-
»ZT?F™ n7-th dT t 0 W a r m t h W a s s e t o f f by accelerated senescence of the 
£HZft I m a d e c r e a s e o f 8 r a i n yidds (Fig. 3). The post-floral period was 
heTerne, Hf" * ^ t 0 3 0 ^ H ° W C V e r ' t h e s u m o f d a i ly temperatures during 

teLerTt 8 P r O V e d t 0 b e r d a t i v d y C o n s t a n t A t ripeness it seemed that the 
c a X hv t T Wa,S S ° m e W h a t IOWer a t h i g h temperatures. This may have been caused by shortage of water or assimilates. 

„f?™11,™™111 F!T d e8 r e e-d ay was about the same during the initial phase 
curveTn tr. 8- ^™**P°**y* the growth curves deviated from the 10 «C 
k e S w Ïh t e q U e n C ! 2 5 ' ? a n d 1 5 °C- F r ° m t h e P ° i n t o f d ev i a tion until maximum 
h , T n r J 8 wfs attained, the growth rate was not determined by temperature, 
but predominantly by the supply of assimilates. 

a t u r e à n r f l ï t ' T e a " a n S e d
u
 f r o m ° -79 to 2.56 g because of the effects of temper-

in e r a , v S l ™ y ° n t h e r a t C a n d t h e d u r a t i o n o f § r a i n growth. Differences 

m grain yield per ear were not only attributable to the effects of light and temper-

Sent iJtVtZ£rn gr°Wth (mg day""1} during the linear P h a s e ° f * * » ™°*. at dif-
Temperature 
(°C) 

10 
15 
20 
25 

188Wm-2 

per ear per kernel 

118Wm-2 '• 

per ear per kernel 

64 W m - 2 

per ear per kernel 

43 
52 
64 
74 

0.86 
1.04 
1.31 
1.64 

41 
43 
47 
54 

0.82 
0.91 
1.04 
1.29 

30 
34 
38 
48 

0.70 
0.80 
0.93 
1.23 
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main t i l lers side t i l lers 

29/6 13/7 27/7 9/8 30/8 17/9 29/6 13/7 27/7 9/8 30/8 17^9 
dates 

200 400 600 800 1000 1200 1400 
200 400 600 800 10001200 1400 

"C-days 

Fig. 3. Grain growth at 4 temperatures, expressed as g dry matter per ear against time (A) 
and against the sum of daily temperatures after antnesis &). 

TO oeaooneu, > . o r e pr0nounced on gram yield per ear 

taontrne,SHarvS i n L increased, when growing a r t * » (a reiaU-
man on Kernet weigin. . intensity) were more favourable 
vely low temperature combined with a nign «gm JJ 
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Table 3. Grain yield and yield components of main culms. 

Light 
intensity 
(Wm-2) 

188 

118 

64 

Temp
erature 
(°Q 

10 

15 
20 
25 

10 

15 
20 
25 

10 

15 
20 
25 

Weight/ 
kernel 
(mg) 

48.9 
43.6 
37.5 
32.0 

49.7 
45.8 
31.9 
26.6 

38.0 
31.9 
26.1 
20.3 

Kernels/ 
ear 

52.3 
49.3 
49.0 
44.5 

49.3 
44.9 
44.0 
42.5 

46.8 
42.8 
41.3 
39.0 

Grain 
weight/ 
ear (g) 

2.56 
2.15 
1.83 
1.42 

2.44 
2.06 
1.40 
1.13 

1.78 
1.36 
1.08 
0.79 

Dry matter/ 
culm (g) 

5.23 
4.62 
4.34 
3.81 

5.15 
4.46 
3.94 
3.56 

4.04 
3.86 
3.37 
3.15 

Harvest 
index (%) 

48.9 
46.5 
42.2 
37.3 

47.6 
46.2 
35.6 
31.7 

44.6 
35.4 
32.0 
25.1 

r a ^ O i P e 0 ? 5 d t o O ^ ^ ^ a C t i v i t^ I n « * experiment the harvest index 

Zz::^a^:iand tempemture aiter anthesis °» - < — ^ «***-
ofaavSirfCS f V*? m a i n S U b S t r a t e f o r S t a r c h sy n t h e s i s i n t h e § r a i n- The amount 
betweêî^nWar ?,y a t e S ^ t h C W h e a t P l a n t a f t e r f l owe r i f lg d e P e n d * on the balance between photosynthettc production and utilization of assimilates. 

teZerlr,Ttl0n,fP,f^nt t h e c a r b o hydrate economy was more affected by 
chZef r i ' 3 1? ' ^'25 C) than by light i n t e n s i ty ( r a n8 e 64-188 W m- ) . The 
Ranges m starch and w.s.c. contents during the post-floral period are shown in 

inte^tv^Th0/ T ^ ^ ^ W3S S t r ° n g l y e n h a n c e d by w a r m t h a n d te* by light 
*™lJ^::l0t g mtenSity ° n StarCh SynthCSiS WaS greater at high tha" 
temoemS ï ™ ^ W ' S X - i n t h e k e r n e I s d i f f e r e d considerably because of 
d ^ X the firï t a m 0 U n l ° f rS-C ' W3S a b o U t e q u a l f o r a11 temperature treatments 
r e s ted from I In " " ? " f " ^ ^ A h i g h p e r c e n t a g e o f w-s-c- * the grain 
7^aslTjJZ^T g r a i n g r o w t h - Conversely, a high starch content in the 
rate onhe S f T™^ g r a i n g r ° W t h d u e t o w a r m t h - W h e r e t h* growth 

l y Ä s t r r d 5y a higher Hght intemity'the starch « was 

»nJ^S1 COn t en tS ° f t 0 t a I "on-structural carbohydrates were 21 3 20 4 16 2 

SfaO^TriÄ62'2' 58'5 md 53'5 « "* « — A 
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starch water-soluble sugars nitrogen 

% glucose 
70 h 

% glucose 
70 

% nitrogen 
4.2 r 

29, 13, 27, 9, 30, 17 :», io, £1, » 
% V 77 % 

j, HI 

'Q X9 

29, 13, 27 9, 30, 17 
% 'l 'l 'S 8 '9 

29, 13, 27 9, 
% 7 X7 « 

30, 17 

dates 

starch water-soluble sugars total non-structural 
carbohydrates 

gear" 

2.0 

1.5 

1.0 

0.5 

B 
2.0 

1.5 

1.0 

0.5 
$*r 

^°.' 
t * ^ — ' 

'4M% K\ w ^ v i "w^«*s 
Fie 4A The percentage of non-structural carbohydrates in the grain at three temperature treat-
m e n M t h e ^ T S S ^ t 1. omitted, because samples were mrssmg) and the percentage of 
nitrogen in the grain at four temperature treatments 
Fig. 4B. The accumulation of non-structural carbohydrates in the gram. 

The w s c content in the various vegetative organs of the wheat plant was also 
ine w.s.c. content in temperatures the w.s.c. content 

strongly affected by ^ P ^ < * * £ £ w ° e r i n g . There was also a marked in-
of the stem increased ™™^JXv üw g ^ ^ ^ 
Î E ^ Ä Ä ^ Ä - lower temperatures by increasing 

grains and on the amount of WAC.re i d e r a b l e a c cu r nu i a t ion of carbo-
leaves are shown in Fig. 5. As mere wa» 
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mg glucose/ear 
2400 

2000 

GRAIN 

1600 

1200 

8 0 0 h 

4 0 0 h 

t water-soluble 
carbohydrate 

?ï| starch Ë 

25 °C 

n. 

m 

13/7 27/7 9 /8 30 /8 17/9 13/7 27/7 9 /8 30/8 13/7 27/7 9 /8 13/7 27/7 9/8 

dates 

mg glucose/culm 

1000 

8 0 0 

6 0 0 

4 0 0 

200 h 

10 °c 

11L213 
13/7 

| Leaves 

U Stem 

111213 
27/7 

111213 
9/8 

LH213 
30/8 

§3 

LI 1213 
17/9 

25 °C 

L1L2L3 
13/7 LI 12 L3 

13/7 
L1I2L3 
27/7 

8rL5 'ofTÏeamarnntcuI
f
m

n0Hn"StrUCîî!ral ^ ^ ^ ^ * the stem and the leaves and in the 
gram of the mam culm during the post-floral period at four temperature and three light 

1112 U 
9/8 

gram 
treatments. 
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Peduncle Internode 2 Internode rest 

29/6 13/727/7 9/8 30/8 17/9 29A5 13/7 27/7 9/8 30/8 17/9 29/6 13/7 27/7 9/8 30/8 17/9 
date 

%W.S.C. Upper leaves 
201-

15 

10 

Lower leaves Roots and stubbles 

_i i i_ 
29/6 13/7 27/7 9/8 30/8 

. _ . -10°C 
o—o- 15"C 
*_x-20°C 
4—A-25°C 

•-^==3ss-
î # 9 2 9 /6 rä /72*7 9 « 30/8 17/9 29/6 13/7 27/7 9/8 3 0 / 8 ^ 7 / 9 

Fig. 6. The percentages of water-soluble carbohydrates in the vegetative organs of the main 

culm during the post-floral period. 

hydrates in the stem at lower temperatures, it may be j n f ^ d Ä a t t l » growth rate 
of the grains was affected more by temperature ^ ^ ^ ^ ^ " ^ 
The leaves were of minor importance as an ^ ^ ^ ™*°^Tot w s c 

High light intensities and low temperatures both mcreased the amount w.s.c. 
in the grains. 

J t„„,r,0yniiirp niter anthesis on nitrogen uptake and Influence of light intensity and temperature ajter arun 

distribution internodes (including leaf sheaths) and ears 
Samples of plant parts, viz leaf b ^ ^ ^ f r o m a n ü i e s i s onwards. There 
(grains and chaff), were taken at̂ reguhar nterva ^ ^ ^ ^ ^ 
was only a slight mfluence of light intensity^ o J post-floral 
and stem. The nitrogen percentage of h leaves ^ ^ ^ ^ ^ % ^ 
period: on average from 3 8 to uj/o ^.^ ^ ^ ^ ^ Qf 

the lower ^ - ^ ^ ^ ^ ^ of the nitrogen percentages of the 
the leaves declined. The average 1$Q t 0 3 5 % f r o m 0 6 5 t o 
peduncle, internode 2 and lower internodes was irom 
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stem leaves grains 
mg N/culm 
20 

mg N/culm 
20 

mg N/ear 
50 r 

29, 13, 27 9, 30, 17 29, 13, 29, 9, 30, 17 
% *7 h % % 79 é '7 'y ' s '8 . « 

29, 13, 27 9, 30, 17 
% '7 '7 '8 'S 'g 

dates 

£ ; J ' J h e a m ° u n t ° f ri1"*™ compounds in the leaves, stem and grain of the main culm 
during the post-floral period m relation to the four temperature treatments. 

0.25 % and from 0.50 to 0.25 %, respectively. The rate of decline was accelerated 
by warmth; a reduced light intensity gave a slightly higher nitrogen percentage of 
all internodes. 

Warmth enhanced the rate of uptake of nitrogen in the grain from 0.6 to 1.2 mg 

• PCrîaI P e r d a y W k h i n t h e r a n g e f r o m 1 0 t o 2 0 °C A f u r t h e r i n c r ease of temper
ature did not raise the nitrogen uptake. Enhanced uptake of nitrogen by the grains 
was associated with accelerated depletion of the nitrogen reserves in the stem and 
trie leaves (Fig. 7). The contribution of the nitrogen reserves in stem and leaves 

TaWe 4. Nitrogen content of the grain and nitrogen uptake and distribution within the main 

Light 
intensity 
(Wm-2) 

188 

118 

64 

Temp
erature 
(°C) 

10 

15 
20 
25 

10 

15 
20 
25 

10 

15 
20 
25 

mg N per 
culm one 
week after 
anthesis 

40.7 
37.2 
37.1 
33.8 

40.7 
39.6 
34.0 
34.1 

41.1 
41.3 
37.5 
29.5 

mg N per 
culm at 
harvest 

53.5 
50.8 
53.4 
51.8 

56.5 
53.1 
52.1 
49.3 

51.5 
51.0 
54.0 
48.1 

mgNin 
straw 

11.3 
12.5 
13.1 
13.7 

11.1 
12.3 
13.7 
14.7 

13.1 
14.4 
15.1 
16.9 

mgNin 
grain 

42.2 
38.3 
40.3 
38.1 

45.4 
40.8 
38.4 
34.6 

38.4 
36.6 
38.9 
31.2 

Nitrogen 
index 

0.79 
0.75 
0.75 
0.74 

0.80 
0.77 
0.74 
0.70 

0.75 
0.72 
0.72 
0.65 

% N i n 
grain 

1.65 
1.78 
2.20 
2.68 

1.86 
1.98 
2.74 
3.06 

2.16 
2.69 
3.60 
3.95 
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accounted for no more than about 60 % of the nitrogen yield of the grains, so there 
must have been an additional supply of nitrogen to the grains from nitrogen uptake 
by the plant after anthesis (Table 4). The nitrogen yields of the grains differed only 
slightly, as did the nitrogen quantities left in the straw. This was all the more striking 
because of the great effect of temperature on the dry matter yield of the grains. 

Discussion 

The results of this experiment confirm the more general finding that high post-
anthesis temperatures hasten senescence of the wheat plant, shorten the growth 
period and decrease total dry matter weight as well as grain yield (Thorne et al., 
1968; Sofield et al., 1974; Spiertz, 1974; Ford & Thorne, 1975). This shorter 
growth period was associated with a faster initial growth rate of the grains and an 
accelerated movement of carbohydrates and proteins from the vegetative organs 
to the developing grains. Ford et al. (1976) demonstrated that the effects of warmth 
on processes related to grain growth were caused by the temperature of the ears 
themselves, rather than of the whole plant. 

Although temperature is very important, light intensity also affects gram growth. 
Contrary to the conclusion reached by Ford & Thorne (1975) we found a consider
able interaction between temperature and light intensity on the growth rate of the 
grains. During the linear phase of grain filling the growth ™™™^™** 
by additional light at high than at low temperatures (from 0.70 to. 0.86 pa da per 
kernel at 10 «C and from 1.23 to 1.64 mg per day per kernel at 25 C with an m-

. ..... 7 .. t nm M tn 188 W m-2) At high temperatures the demands 
crease in light intensity from 64 to 18» w m ;. /*i w& r 
of the grains required more assimilates than the amount produced under the con
ditions of reduced light intensity. At low temperatures there are ^ « r b o ^ t e 
reserves in the stem. Nevertheless the rate of grain ^ m ? ^ ™ * ^ * ^ 
light. So one might conclude that assimilates from current P b ^ « " " » a r e m o r e 

readily available for grain growth than are assimi late s stored ern^ 
The temperature and light treatments from anthesis onwards also affected seed 
ine lemperaiuic mm yg tpmnpratures (growing conditions favouring 

setting. High light intensities and ]^ ^ î ^ e J S t h c number of kernels per 
a high level of carbohydrates m th ̂ ^ o T ^ setting was also found in a 
ear. The importance of supply of a»radate tor s g ^ 

ïïiïtziïïï^s^z^ —-at T r flow 
oer ana size were more u v f t e m p e r a ture on the rate of grain 
temperatures ^ ^ £ f % W ^ 1 not correspond to their conclusion 
growth found by Sofield et al (1974) a l m o s t & tQ }n 
that differences in rate «&£££%*£ ^ o t h e r stimulating effects of light 
number per ear and not to r a d i a n , n a s s i m i l a t e s ; e.g. W a r d l a w (1970) 
on gram growth besides an additional SUPP/ f e n d o s p e r m c en s . W e found 
found that reduced light energy ^ ^ ^ ^ ^ y L e reserves, at the 
a positive effect of light intensity, even with ampie t, y 

low temperature treatments. increased net photosynthesis, 
The faster initial P ^ ^ ^ ^ Z ^ involved in grain growth. The 

but was mainly an effect of temperature vu v 
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actual growth of the kernels will be determined by the supply of assimilates and 
the rate at which low molecular substrates are converted to high molecular storage 
substances. In our experiment, starch and protein synthesis in the grains were con
siderably promoted by warmth up to 20 °C; a further rise in temperature to 25 °C 
was less effective. Protein synthesis was enhanched more by warmth than was 
starch synthesis (see Fig. 4 and 7). This resulted in a higher nitrogen content in the 
seed. Kolderup (1975) also found that a rise in temperature increased grain nitrogen 
content considerably. Similar effects of temperature in the range from 10 to 23 °C 
have been found for protein and starch synthesis in pea seeds (Robertson et al., 
1962). 

Initially, more assimilates were produced than used for grain growth; therefore 
the reserves in the vegetative organs increased during the first weeks after anthesis. 
Later on the increased utilization of assimilates for grain growth and respiration 
caused the carbohydrate reserves in the stem to deplete rapidly, especially at high 
temperatures. 

On average, the losses of carbohydrates and nitrogen from the stem and leaves 
amounted to about 30 and 60 % of the ultimate quantities of carbon and nitrogen 
compounds in the grains respectively. However, the loss of carbohydrates cannot 
be completely attributable to retranslocation, it is partly caused by respiration. 
Rawson & Evans (1971) estimated the loss due to respiration to be one-third of the 
change in stem weight. However, the respiration rate will depend on temperature 
and available substrate. Spiertz (1974) found a Q10 value of about 2 for the respi
ration of different organs during the milk- to dough-ripe stage. This value was 
confirmed by more detailed studies of respiration by J. Vos (Dept. of Field Crops 
& Grassland Husbandry, Agricultural University, Wageningen; pers. comm., 1976) 
recently; he found a Q10 value of 2.0 one week after anthesis. Therefore the contri
bution of stem reserves to the starch accumulation in the grain must have been 

• considerably lower than 30 % of the ultimate grain yield. The percentage of water-
soluble carbohydrates in the stem at the final harvest provides some evidence that 
the redistribution of carbohydrates was greater at higher temperatures. 

Early studies on carbohydrate translocation (Miller, 1939) showed that sugars 
move into the grain until the moisture content falls to about 40 %. Sugars continue 
to be converted to starch while the desiccation of the kernel occurs. Not all sugars 
are converted to' starch in the grain. Escalada & Moss (1976) studied the changes 
in non-structural carbohydrate fractions of field-grown spring wheat. They found 
that the glucose, fructose and glucofructan contents reached maxima before the 
phase of rapid starch synthesis, but then decreased as the kernels matured. We 
found a similar pattern in w.s.c, but the percentage of w.s.c. attained relatively 
higher values ( ± 1 5 à 20%). The quantity of sugars remained constant during 
kernel-filling: this corresponds to data published by Jennings & Morton (1963). 

In contrast to the w.s.c. content, the starch content was relatively low, so a part 
of the polysaccharides was determined as 'water-soluble' carbohydrates instead of 
as starch. The percentage total non-structural carbohydrates (starch + w.s.c.) de
creased with warmth. This was compensated for by an increase of the structural 
carbohydrates. However, the protein content also increased with warmth. Thus 
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warmth not only affected dry weight, but also the chemical composition of the 
grain. 

In our experiment, water and sugar uptake were affected both by temperature 
and by light intensity. The rate of desiccation was determined by temperature. It is 
not clear whether the water content is a reflection of ripening or actively affects 
ripening processes. Radley (1976) found that the water loss of the grains is pre
ceded by an increase in the abscisic acid content. This endogenous growth substance 
might be a regulating agent in changing the biochemical and physical attributes of 
the pericarp, which are related to water loss of the grain. Jenner & Rathjen (1975) 
stated that the onset of the decrease of starch accumulation in the grain is caused 
by a fall in the synthetic capacity of the endosperm and not by a reduction in the 
supply of sucrose to the sites of starch synthesis. They hypothesized that enzymic 
changes involved in converting sucrose to starch affect the duration of grain growth. 
We found that the kernel-filling period was longer as the levels of carbohydrates 
and proteins in the vegetative organs were higher and the grains had a higher water 
content. The high level of proteins might help prolong the photosynthetic activity 
of the leaves, and the available carbohydrates might promote the functioning of the 

r0°The final grain yield depends both on the rate of dry matter accumulation and 
on the length of the grain-filling period. The duration of grain S^***™™* 
by processes involved in the senescence of the vegetative organs and processes 
uy processes inyoiveu m number of days between anthesis and 
governing the ^ T t ^ J ^ J ^ ^ Z ^ S m g period', amounted to maximum kernel weight, the so-called ettective gram mu g F , 
81, 63 41 and 29 days corresponding to temperature treatments of 10, 15, 20 and 
25 -C respectively Grain growth per unit of degree-day was the same with all 
te^SrSenïinta 300 degree-days. From that point onwards the decline 
S C ^ C ^ Ï Ï in the sequence 25, 20, 15 ^ r ^ Z Z t ä Z 
elude fhat at high temperatures ^ ^ S ^ ^ ^ ^ ^ ^ ^ 
high respiration caused a shortage of carbohydrates, wmu a ootimal 
towards the end of the kernel filling. At V r a . t m ^ Z ^ ^ ^ . 
growing conditions, we observed that the ripening of the ears preceded the 

cence of the top leaves _ wheat crops in different seasons has 
An analysis of yield differences ^ f ^ ^ g r l growth (Spiertz, in prepara-
shown positive effects of warmth ° ^ ^ g

 dJed a s grain-leaf ratio, were 
tion). Positive effects of warmth on the ̂ i e n c y s importance of 
also found with a A ^ i î ™ c r o ^ d b a Ä ^ » ^ ^ & R 

light intensity in a field crop * « » * ™ ^ f ^ s f g n i knce of light intensity is 
and Fischer (1975) in shading « P ^ t ^ 0

g
f t h e effect of shading on the 

over-estimated in this type of « p e n ^ ° difficulties, the results of field 
temperature of the wheat plant. In spite oi 
and phytotron experiments agree well. - fe w e r e b e ü e r a d a p t e d 

Grain yields of wheat might, be enhancea ^ ^ ^ ^ ^ ^ ^ ^ ^ 
to hot spells during the kemeï-filhng pen<>a. associated with warmth, 
benefit more from the higher light intensity that is mostly 
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Summary 

Grain growth and yield components of winter wheat (cv. Lely) were studied in a 
field experiment in 1976 with four regimes of nitrogen dressing (50, 100, 100 + 50 
and 100 + 100 kg N ha—1). Growing conditions were characterized by a high 
level of solar radiation, warmth, ample nutrient supply and no damage by diseases. 

Nitrogen raised grain number per m2 from 16 700 to 20 600 and grain yield from 
640 to 821 g dry weight m~2. Grain growth duration was short, due to warmth, 
but the fate of the grain filling was very high: from 24.0 to 29.2 g nr-2 day—i 
during the effective grain-filling period. A high grain yield was associated with 
a high nitrogen percentage of the grains, wich resulted in a grain protein yield 
ranging from 63.8 to 107.1 g m -2 with an increased nitrogen dressing from 50 
to200kgha-i . 

The carbohydrate demand of the grains was provided by current photosynthesis 
and relocation of stem reserves. The latter was reflected in a decline of the stem 
weight after the mid-kernel filling stage. Nitrogen and phosphorus demand of the 
grains were supplied by withdrawal from the vegetative organs (leaves, stem, chaff) 
and to a large extent by post-floral uptake and assimilation. 

Under the prevailing growing conditions the grains turned out to be very strong 
sinks for carbohydrate, nitrogen and phosphorus as shown by the harvest-indices. 
Additional nitrogen dressings increased the harvest-indices of dry matter, nitrogen 
and phosphorus from 0.40 to 0.48, from 0.75 to 0.81 and from 0.91 to 0.93, res
pectively. 

It was suggested that a more restricted vegetative crop development at high nitro-

* Present address: Centre for Agrobiological Research (CABO), P.O. Box 14, 
6700 AA Wageningen, the Netherlands. 
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gen levels and a longer duration of root activity, photosynthesis and grain growth 
after anthesis would considerably favour grain yield. 

Introduction 

Grain yield of wheat is a function of the number and growth rate of kernels per 
unit ground area. The growth rate is the result of production of assimilates and 
storage of carbon and nitrogen compounds in the developing grains. The carbon 
supply depends mainly on the green area duration and the net photosynthesis 
of leaves, glumes and stem after anthesis (Evans & Wardlaw, 1976; Stoy, 1975). 
rhe nitrogen supply depends on the relocation of reserves in the vegetative organs 

nennl8rTS
t T ̂ T** *** ^ ^ ^ °f n i t f a t e d u r i ng t h e g ra in ^ 

période (Austin et al., 1976; Balling et al., 1976; Campbell et al.! 1977b). 
H r i ? a m fi e X p e r i m e n t w a s t 0 studY the effect of various levels of nitrogen 
c Z T l f ' ? T l ° n P l 3 n t g r 0 W t h a n d cr°P development (number of 
nuS nf m "p f if T a ) ' ° n t hC pOS t- f l o r a l e c o n o my of carbohydrates and 

ÔSS J , 3nd ° n *e grain g r ° W t h P a t t e r n of winter w h e*t under 

optimal growing conditions in the field. Methods 

v î r s i t v T T H W a l C a ™ e d °U\ ° n t h e e x p e™tal farm of the Agricultural Uni-
3 char tt ™ ?* F eVOpo lde r- ™* type of soil was marine clay of the fol-

PHKC17 3 CaCOC10?/y TT £ ^ ^ ^ °^C ^ ^ 
^ 250 ke ne h?£%o, / o ; r! V a l U C 2 2 ; K _ H C 1 2 4 ; P w v a l u e 2 3 ' B e f o r e s o w i n S 

it was a l r e a ^ l i* * T e r p h o s p h a t e w a s »PP**; potassium was omitted sincç 
of 0 75 m denth 7 , ?.*" ^ N i t r a t e - n i ^gen , available in the soil layer 
arv me Thl' , t 0 aPP r o x i m a t e Iy «O kg N per ha at the end of Febru-
tf 1976 w J s X r ? ?K°V,f n i t r0gen in t h e Soil d u r i n § the growing season 
w thsIedToa O I T " 8h- T h C W h e a t C r 0 p W a s g r o w n i n a nine-yearrotation wnn seed potatoes as previous crop 

kernes "oerm^ N ^ ^ ^ ^ °" 2 3 ° C t o b e r 1 9 7 5 ™th a seed rate of 400 

^ÄS^T8*1 was appIied as split dressing with the following treat-
N 16 March 20 May Total 

1 JV 0 e n 
N9 mn " 5 0 S2 100 
N 3 100 
N 4 100 

0 100 
50 150 

100 200 

an!hîo7îu^°^Td °/ 3 T P l e t d y r a n d ° m b I o c k designwithfournitrogen 

w l t r r i eZu da S T ^ a T Tf^ ^ ***** " " * » 
vistin M which contained 240 I u Î ^ S t a g£S W k h 4 k g h a _ 1 o f B a " 
stance. s t a i n ed 240 g carbendazim and 1700 g maneb as active sub-
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Weeds were controlled by spraying with 4 litres MCPP per ha at the end of April. 
This spraying was combined with the application of 2 litres chlormequat (CCC) 
per ha. 

The individual plots had an area of 6 X 20 m2 with row widths of 15 cm. An in
ner strip of 3 m was reserved for the combine harvest. Sampling during the 
growth period were carried out in the inner rows of the border strips, each consist
ing of 10 rows of 20 m length. 

Observations 

Measurements of crop growth and plant development were carried out on 27 
April, 18 May, 1 June and weekly from 15 June onwards. The area sampled at 
these intermediate harvests amounted to 0.30 m2 ( = 4 rows of 0.50 cm) per plot. 
After determining fresh weight and tiller number the samples were sub-divided 
for measurements of leaf area per leaf layer and dry weight of the various parts 
of the culm. For the chemical analyses small samples were prepared. All samples 
were dried at 70 C (for details, see Spiertz, 1977). Chemical analyses of nitrogen, 
phosphorus and potassium were done by the Department of Soils and Fertilizers 
of the Agricultural University. 

The light interception by the crop was measured in all plots perpendicular to the 
rows with an integrating photometer (0.4-0.7 nm) of one metre length 

-r M l
1

976
A

t] le g r O W m g S e a S ° n S t a r t e d r e l a t i v e ly cold, sunny and dry in April (see 
labie 1). After anthesis, on 12 June, the weather became much warmer and dryer 
than average, especially from a fortnight after anthesis onwards. The crop se-
nesced very rapidly therefore and the grain filling period was comparatively short. 
In spite of this extreme weather conditions there was ample water available at 
60 cm depth m this polder soil; thus the early ripening was obviously not caused 
by water shortage. J 

Disease infections were very limited during this growing season. Only during the 
early stages of crop development Septoria tritici could be observed From the fun
gicide treatments it appeared that no damage of leaf and ear diseases had occurred. 

Results 

The data are presented without considering fungicide treatments. At intermediate 
I T S T i n T ° f r e p H c a t e S a m o u n t e d to four, whilst at the harvests of 27 
and 29 July a complete analysis of variance was computed (Table 2). 

Canopy structure, yield and yield components 

T i r ^ M WaS
t
qUi* !?igh' a b°Ut 344 P l a n t s P e r m2> due to the high seed rate 

2?„wT / T i ? ,rmg amounted on a v a r a s e to about 2-5 and 4-1 tillers 

at the n̂H nf 1 ? F " ' ' r e sPec t ive ly- ^ maximum tiller number was achieved 
ference I>m H ^ a m o u n t e d t o " 1 0 per m2. There was no significant dif-
ZZZr f T t y b C t W e e n t h e n i t r °8 e n öeatments. The weather in May did 
not favour leaf and stem elongation of the wheat plant, so the crop remained 
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L A I f lag leaves 
10 

L A I 2nd leaves 
1-0 r 

L A I 3 th leaves 
1.0r 

L A I 4 th leaves 
10r 

— 50 kgNAia 
»100 

x — 1 0 0 »50 
<s—A 100.100 

15, 22, 29, 6, 13, 20, 15, 22, 29, 6, 13, ' 20, 15, 22, 29, 6, 13, 20, 15, 22, 29, 6, 13, 20, 
'6 % '6 '7 '7 '7 % '6 '6 '7 '7 '7 % 76 % '7 '7 7 '6 76 % '7 '7 '7 

dates 

Fig. 1. Leaf area index per leaf layer after anthesis at four levels of nitrogen dressing. 

short and stiff-strawed. The areas of the leaves were much smaller than is nor
mally expected; the flag leaf in particular was very short (Fig. 1). The area of the 
upper leaves remained rather constant for two weeks after anthesis; from then 
on senescence proceeded very rapidly, especially with the lower nitrogen treat-
TnntSJ B f , c h f f e r e i l c e i n t h e duration of the green area between the plots with 
50 and 200 kg N/ha was about seven days. 

Despite the low leaf lamina area index, light interception by the crop 2 weeks 
after anthesis ranged from 83.5 to 91.5»/„ of the incident visible radiation (Table 
I). Stems and ears therefore must also have intercepted a large amount of radia
tion. The contribution of the leaf laminae to the total (one-sided) green area 
amounted to about 40%. ' 

The positive response of grain yield to a rise in nitrogen supply must be attri
buted mam y to an increase in the number of kernels per ear (Table 2). This num-

on / / M IT i t 0 3 5-9 k e m d s P e r e a r ^ " teasing * e nitrogen dressing 
on 16 March from 50 to 100 kg ha-i. An additional nitrogen dressing of 50 kg h J 
during the boot stage gave an extra response of about two kernels per ear. 

72Jirg ? n r
t
g r f I m C r e a S e d f r ° m 40-° t o 42A m § a s nitrogen dressings were 

mTeain H ° 1 0 ° + 5 ° k g N ^ r e sP^ively. The number of ears was also 
ear r r ï n y - e f i r a ^ 1 ^ ' b U t t 0 a l eSSer e x t e n t t h a n the number of kernels per 
ear. Grain yield was therefore mainly determined by the number of kernels per 

L d t ^ r T S e m t h f , n T b e r ° f k e r n d s P e r m 2 f r o m 1 6 700 to 20 600 corres-
(2S> My) g r a m y i 4 ° a n d 8 2 1 8 d r y W e i 8 h t P e r m 2 a t t h e f i n a l h a r v e s t 

harîestWoefnh?n0f î " C^U W e r e determined on samples from an intermediate 
fn^ralId t r, 7 ^ M y ' T^ n i t r 0 g e n t r e a t m e n t s we r* only partly reflected 
to l " p

t 0 , a , d r y m a t t e r y i d d ' i n sP i t e «f a clear response of the grain yield 
WeM of a : l Z ^ n T u t h e t 0 t a l ^ W e i g h t w a s a l s o c a l c u l a t ^ from the grain 
Sen î~?f Vïnhy m e a n S ° f t h e h a r v e s t i n d e x" T h e total dry matter yield 
100 S - i V6;0 %u1A t 0 nS With n i t r o g e n d r e s s i"g s «f 50 and 100 + 
weLtg a ; ! '"SeCt7ely- Th lS i n c r e a s e w a s l e s s than the rise in the total grain 
S e nam nf IJ f S an, i m p r W e d l o c a t i o n of assimilates from the vege
tative parts of the wheat plant to the grains with increased nitrogen supply. Thus 
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the range from 0.40 to 0.48 for the harvest index was mainly brought about by 
the differences in grain yield. 

When individual treatments instead of the whole range of nitrogen dressings are 
compared, Student's test (confidence level of 50°/0) did not show any significant 
differences in grain yield and yield components between 100 + 50 and 100 + 
100 kg N ha - 1 . Thus the maximum grain yield, as far as nitrogen was concerned, 
was almost completely realized with a split dressing of 100 + 50 kg N ha - 1 . 
A further increase of nitrogen did not raise the yield substantially. The effect of 
nitrogen on the uptake of nutrients and on the chemical composition of the va
rious parts of the wheat plant are discussed further on in the paper. 

Rate and duration of grain growth 
Grain growth of this winter wheat crop was characterized by a short growth period. 
The effective grain-filling period lasted about 4 weeks, while the period from 
anthesis to maximum grain weight amounted to about 5 weeks. The period with 
a high rate of grain growth ended before mid-July, followed by only a small in
crease in grain weight later on. 

Despite the very short kernel-filling period grain yields turned out to be quite 
high. So the rate of grain growth must have been exceptionally fast. From the end 
of anthesis (15/6) until the stage of maximum kernel weight (20/7) the daily grain 
growth ranged from 1.13 to 1.19 mg dry weight per kernel, from 33.4 to 41.1 
mg dry weight per ear and from 19.0 to 24.0 g m—2, due to an increased nitro
gen dressing (Fig. 2). 

From approximately 29 June to 6 July, the growth rate of individual grains was 
hardly affected by nitrogen and amounted on average to 2.5 mg kernel-1 day1. 
After the midkernel filling stage late nitrogen treatments increased grain growth 
rate from 0.78 to 1.09 mg kernel"1 day1. 
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Fig. 2. Growth curves of grain dry weight per kernel, per ear and per m2 at four levels of 
nitrogen dressing. 
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Fig. 3A. Distribution pattern of dry weight for the above-ground parts of the wheat plant at 
nitrogen dressing of 100 + 100 kg N ha—1. 
Fig. 3B. Course of dry weights of grain, chaff, stem and leaves after anthesis at a nitrogen 
dressing of 100 + 100 kg N ha- 1 . 

As additional nitrogen increased both the number of kernels per m2 and the 
growth rate per kernel, more assimilates must have been made available from grain 
growth either by an increased photosynthetic production or by an improved utiliza
tion of stored assimilates in the stem. In fact, additional nitrogen promoted photo-
synthetic production, as shown by the increase in the total matter yield of the 
crop (Table 2). Nevertheless a gap in the dry weight balance for the grains existed, 
which can only have been filled up by an increased relocation of assimilates from 
the stem to the grains. 

Dry matter distribution and carbohydrate reserves 
There were only smal changes in the dry weights of the leaf blades and the chaff 
from flowering onwards, but stem weight increased during the two weeks after 
anthesis, succeeded by a sharp decline (Fig. 3). Thus initially the production of 
assumlates by current photosynthesis was greater than the demand for grain 
growth. The decrease in stem weight took place simultaneously with the start of 
a hot spell, which obviously accelerated grain growth. The loss of stem weight 
amounted within a 3-week period, to 3360 and 2760 kg ha-i with 50 and 200 
kg N ha-i respectively (Table 3). It may be assumed, that a part of the loss in 
stem weight was caused by respiration, but relocation of assimilates to the grains 
and the roots may also have contributed to it. Especially during the latter part 
of the grain filling period, when grain growth coincides with a decline in current 
photosynthesis of senescing green organs, relocation of stem reserves may have 
been important source of assimilates. 
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Table 3. Losses of dry weight and water-soluble carbohydrates (w.s.c.) from the stem during 
the grain-filling period. 

Nitrogen 
dressing 
(kg N ha-1) 

stem dry weight 
50 

100 + 100 

w.s.c. content 
50 

100 + 100 

29 June 

mgper 
culm 

1.91 
1.75 

0.63 
0.47 

g m—2 

972 
928 

323 
249 

20 July 

mgper 
culm 

1.25 
1.23 

0.08 
0.05 

g m—2 

636 
652 

38 
26 

Loss from 29-6 to 20-7 

mgper 
culm 

0.66 
0.52 

0.55 
0.42 

g m—2 

336 
276 

285 
223 

Changes in dry weight of the stems are mainly caused by changes in the non-struc
tural carbohydrates. The influence of nitrogen on the percentage and amount of 
water-soluble carbohydrates in stem, leaves and grain is shown in Fig 4. Generally 
the carbohydrate percentages are lowered by an increased nitrogen supply. How
ever, the pattern of accumulation and decrease of carbohydrate reserves in the 
vegetative organs during the post-floral period is more interesting. It gives more 
insight into the reserves available for energy-requiring processes (e.g. respiration) 
and for grain growth. 

The water-soluble carbohydrates (w.s.c.) accumulated in the stem up to a fort
night after anthesis. The w.s.c. percentage at that stage ranged from 26.8 to 33.2 in 
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Fig. 4. The water-soluble carbohydrate content of grain, leaves and stem after anthesis at 
four levels of nitrogen dressing. 
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Fig. 5. Amounts of nitrogen (N), phosphorus (P) and potassium (K) in the wheat culm during 
the growing season at four levels of nitrogen dressing. 

the stem, from 2.7 to 5.5 in the leaves and amounted to 5°/o in the grains for nitro
gen dressings from 200 to 50 kg N ha—1. The storage function of the stem is also 
strongly expressed by the quantity of w.s.c. available in it. This quantity increased 
for two weeks after anthesis from for two weeks after anthesis from about 250 to 
about 280 g m"2, followed by a sharp decrease from 280 to 60 g irr2 after the 
mid-kernel filling stage. The w.s.c. quantities in the other organs are on a lower 
level: at anthesis for leaves, chaff an grain about 9.5, 12.5 and 5.0 g m-2, respec
tively. During the post-floral period the carbohydrate quantities of the leaves did 
not decrease linearly, but there was a second peak 3 weeks after anthesis. This 
peak coincided with a decline in the rate of grain growth. The amount of w.s.c. in 
Ihe grains increased up to 35.0 g nr2. 

These data show that the w.s.c. reserves in the stem play an important role as a 
carbohydrate source for the grains, when the production of assimilates by current 
photosynthesis is reduced, due to progressive senescence of the photosynthetic 
tissues. 

Uptake and distribution of nitrogen, phosphate and potassium 
The uptake of nitrogen, phosphorus and potassium showed a peculair pattern, 
which was characterized by a temporary slow-down of nitrogen and potassium 
uptake during the heading phase followed by an accelerated assimilation of nut
rients during the post-floral period (Fig. 5). This phenomenon may be associated 
with the cool, dry weather during the pre-anthesis period, interrupted by a sharp 
rise in temperature after anthesis and a significant amount of rainfall (18.3 mm) 
one week after anthesis. 

The maximum nitrogen (N) and phosphorus (P) yields of the above-ground parts 
of the plant were attained at ripening and ranged from 147 to 248 kg ha~i and 
from 30 to 35 kg ha-1 with 50 and 200 kg nitrogen dressing, respectively. The 
potassium yield reached maximum levels at the mid-kernel filling stage and ranged 
from 175 to 223 kg ha-1 (Fig. 5). The highest rates of uptake amounted to 4.6, 
0.4 and 2.4 kg ha~i day-1 of nitrogen, phosphorus and potassium, respectively, 
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during the kernel-filling period. The assimilation of these nutrients by the grains 
amounted during the same period to 7.6, 1.4 and 1.1 kg h a - 1 day -1, with the 
highest nitrogen dressing. Thus the demand of the grains, as far as nitrogen and 

%N 
Kernels 

8 - 0 4 - - — 

Chaff »stem 

J I I L_ 

0.6 r 

0.2 

i 22/6 29/6 6/7 13/7 20/7 15/6 22/6 29/6 6/7 13/7 20/^ 15/6 22/6 29/6 6/7 

Kernels r Chaff »stem r Leaves 

13/7 20/7 
date 

X 

B 

15/6 22/6 29/6 6/7 13/7 20/7 15/6 22/6 29/6 0/7 13/7 20/7 15/6 22/6 29/6 6/7 13/7 20/7 
date 

%K 
3 r 

.—. 50 kg N/ha 
o—o 100 kg N/hi4 
«—» 100» 50 kg N/ha 
A—A 100» 100 kg N/ha' 

- * = E 4 

Chaff«stem Leaves C 
es 8 * 0 * 

15/6 22/6 29/6 6/7 13/7 20/7 15/6 22/6 29/6 6/7 13/7 20/7 15« 22/6 29/6 6/7 13/7 20/7 
date 

Fig. 6. Effects of the nitrogen dressings on nitrogen (A), phosphorus (B) and potassium (C) 
percentages of the grains, stem and leaves after anthesis. 
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Fig. 7. Post-floral nitrogen percentages (A) and contents (B) of the various leaf layers at 
50 and 200 kg N ha-1 . 

phosphorus are concerned, was considerably higher than the post-floral uptake 
by the plant. From these figures it follows that a supply from the vegetative parts 
was made available to the grains. 

The pattern of nitrogen, phosphorus and potassium contents, expressed as per
centages of the dry weight of leaves, stem and grain, is shown in Fig. 6. On ave
rage the nitrogen percentages of the leaves decreased during the post-floral period 
from 2.4 to 0.6, but there were large diffencences due to nitrogen level and leaf 
layer. 
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The nitrogen concentration of the other vegetative above-ground organs — stem, 
rachis and chaff — also increased with additional nitrogen supply. The nitrogen 
concentration of the stem increased from 0.45 to 0.70% and of the chaff (inclu
ding the rachis) from 1.48 to 1.69%. These nitrogen percentages decreased linear
ly during the grain-filling period to levels of about 0.25% and 0.50% for the 
stem and chaff, respectively. 

The nitrogen percentage of the grain decreased during the first three weeks after 
anthesis from about 2.80 to 1.80% and rose again at the end of the grain-filling 
period to about 2.09%. As a result of the nitrogen dressings the nitrogen contents 
of the grain at ripening ranged from 1.72 to 2.25%. 

The nitrogen treatments hardly affected the phosphorus content of the various 
components, but increased the potassium content of the vegetative parts of the culm. 
Nitrogen applied at Feekes stage 8 raised the potassium content of the stem, but 
not of the leaves. The potassium content of the grains was not affected by nitro
gen at all. 
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Fig. 8. Distribution pattern of nitrogen (A), phosphorus (B) and potassium (C) in the wheat 
culm after anthesis at four levels of nitrogen dressing. 
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A rise in the nitrogen dressing from 50 to 100 + 100 kg N ha-i increased the 
nitrogen percentages of the leaves: for the flag leaf from 2.87 to 3.90%, for the 
penultimate leaf from 2.34 to 3.35°/0, for the third leaf from 1.82 to 2.68"/o and 
for the fourth leaf from 1.40 to 2.16% at 10 days after anthesis (Fig. 7A). These 
differences in nitrogen percentages persisted during the grain filling period until 
the leaves senesced. Even then a small difference in nitrogen concentration re
mained. The pattern of nitrogen content of the leaves clearly shows that additional 
nitrogen delayed senescence of the top leaves by 8 to 10 days and considerably 
increased the amount of nitrogen available in the leaves for re-distribution to the 
grains (Fig. 7B). 

The distribution patterns of nitrogen, phosphorus and potassium in the wheat 
culm are shown in Fig. 8 and Table 4. During the post-floral period the grains 
are a large sink for nitrogen and phosphorus. The supply from the reserves stored 
in the vegetative parts of the culm at anthesis did not fulfil the demand of the 
grains. Therefore, the nitrogen and phosphorus yields could not have been realized 
but for a substantial contribution through uptake during the grain-filling period. 
The amount of nitrogen uptake after anthesis corresponded on average to 48°/0 

of the nitrogen yield of the grains. Thus the reserves in the vegetative organs con
tributed only about 52% of the nitrogen stored in the grain. The same pattern 
was established with phosphorus: 45% was contributed by uptake after anthesis 
and 55% by relocation from the vegetative organs. The rachis and chaff con
tained relatively more phosphorus than nitrogen at anthesis and also acted as an 
important source of phosphorus for the grains. The distribution of the nutrients 
in the wheat culm expressed as harvest index is presented in Table 4; this para
meter is calculated as the ratio of the nutrient amount in the grain and in the 
above-ground part of the culm. The harvest index of phosphorus ranged from 
0 91 to 0 93 and of nitrogen from 0.75 to 0.81. Late nitrogen applications pro
moted the uptake of nutrients during the kernel-filling period and consequently 
raised these harvest indices. , , . 

The potassium economy of the wheat shoot was quite different from that of nitro
gen and phosphorus. Although potassium uptake by the grain was small, potassium 
contents of the stem and the leaves dropped from about the mid-kernel filling stage 
onwards The main storage centre for potassium was the stem (including the leaf 
-sheaths); with lower nitrogen applications potassium accumulated m the stem 
for two weeks after anthesis, followed by a linear decrease until matunty. With 
additional late nitrogen applications the potassium accumulation in the stem con
tinued for four weeks after anthesis, followed by a short period of potassium 
loss from the stem. Generally, the balance between uptake and loss of potassium 
in the vegetative parts of the culm after anthesis seemed to be more negative w.th 
lower nitrogen applications (Table 4). Thus an increased nitrogen dressing greatly 
promoted the potassium yield in the vegetative parts of the culm; the potassium 
content of the grain responded less to nitrogen. The potassium harvest index de
creased therefore with a higher nitrogen supply. 
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Fig. 9. The relation between grain growth and nitrogen uptake at weekly intervals with foui 
nitrogen dressings. 

Interrelationship between carbohydrate and nitrogen metabolism 
Carbohydrate and nitrogen supply to the grain are partly interrelated because 
nitrogen translocated from the vegetative parts to the grains consist mainly of 
amino acids. 

The relationship between the rate of grain growth and the rate of nitrogen up
take is shown in Fig. 9. Nitrogen dressings hardly affected the nitrogen uptake in 
the first two weeks after anthesis, but had a considerable effect during the third 
and fourth weeks. Thus the regulation of the nitrogen uptake by the grain was 
not under genetic control alone but also depended on the nitrogen supply, whether 
by transfer from the vegetative parts or by direct contribution from the roots. The 
greatest demand of the grains for nitrogen occurred during the mid-kernel filling 
phase. Then the nitrogen uptake ranged from 5.7 to 9.6 kg ha~i day - 1 with 50 
and 200 kg N ha - 1 dressing, respectively. 

Not only is the supply of carbon and nitrogen to the grain interrelated, but also 
the loss of these components from the vegetative organs: leaves, stem and chaff. 
Assuming that the nitrogen was translocated as amino acids containing 16% nitro
gen (Austin et al., 1977), the losses of carbohydrate associated with the export 
of nitrogen can be calculated. The total loss of nitrogen from the vegetative parts 
of the plant ranged within the applied nitrogen dressings from 70 to 105 kg N 
h a - 1 (Table 4), which corresponded to a dry matter loss from 437 to 656 kg 
ha - 1 . Stem and leaves contributed equally, each about 38%, to this loss of nitro
gen; the remaining part, about 24%, came from the chaff. The dry weight loss 
of the stem by nitrogen compounds contributed only slightly (from 6 to 9%) to 
the total losses, but nitrogen compounds accounted for about 40% of the weight 
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loss of the leaves. 
When there is simultaneous import and export of nitrogen compounds in the ve
getative organs, then the estimates are only related to the net differences in the 
amount of stored nitrogen. It is possible that more nitrogen passes through the 
vegetative parts (e.g. leaves) during grain filling, which implies a higher dry weight 
loss associated with nitrogen assimilation and relocation. 

Discussion 

The weather conditions during the growing season of 1976 were characterized by 
an exceptionally low rainfall and an exceptionally high level of radiation (Table 1). 
In April the cloudless sky caused frequent night frosts. Simulation studies of crop 
behaviour during April showed a negative water balance in the plants on many 
days (W. Dekkers, pers. commun., 1977). During May growing conditions were 
more favourable, although the relative humidity was low. Leaf growth and stem 
extension were relatively more reduced than dry weight increase. This resulted 
in short and stiff culms with small leaves, but also root growth may have been 
favoured. 

The thorough study of interactions between soil moisture and fertilizer N by 
Campbell et al. (1977a) on wheat growth and grain production showed that the root 
distribution was affected by moisture and growth stage. They found that due to a 
hot and dry spell between booting and anthesis the crop depleted all available 
water in the soil region to 90 cm depth and from 45 to 75 cm depth with the dry 
and irrigated treatments, respectively. Thus even with an additional water supply 
there may be, under conditions of high évapotranspiration, soil moisture deficits 
in the regions with a high root density. Usually, more than half the root mass is 
located in the top 30 cm of the soil (Campbell et al., 1977). Under the conditions 
of 1976 the phenomenon of temporary water stress of the root system in the top 
layer of the soil might have occurred. This could also explain the reduction of 
nutrient uptake (and even loss) compared with dry matter increase during the dry 
period before anthesis. . 

The general response of the crop to warmth after anthesis, showed a pattern of 
grain filling similar to those found by various studies of temperature effects on 
grain growth in phytotron experiments (Sofield et al., 1974; Spiertz, 1974; Ford & 
Thome 1975- Warrington et al., 1977). This pattern is characterized by the ap
parent absence of a lag period, a high grain growth rate of short duration and 
premature senescence of the plant. There was one major difference with these in
door experiments; the final grain size was less affected by warmth. This might 
be explained by the better supply of assimilates to the fast growing grains in the 
field experiments, due to the higher level of radiation, as compared to the con
ditions in phytotron experiments. Nevertheless lower temperatures during the 
grain-filling period would certainly have favoured the dry weight of the grains. 
If lowering of the temperature by 5 degrees kelvm would have been possible withou 
changing the level of solar radiation, then the corresponding increase of the kernel 
weight could be estimated to be 15 to 20°/« according to the response curve to 
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temperature in phytotron experiments (Spiertz, 1977; Warrington et al., 1977). 
Analysis of nitrogen effects on the grain production pattern under these particular 

growing conditions showed that an increased nitrogen supply raised the number 
of kernels per ear. The effect of top dressings at the boot stage on grain num
ber was striking. This positive response to a late nitrogen application was also 
found in previous experiments and is confirmed by long-term field experiments 
(Gliemeroth & Kubier, 1977) under conditions of a low level of nitrogen mineral
ization and only inorganic fertilization. A more detailed study of nitrogen effects 
on spike fertility was done by Langer & Lieuw (1973) with spring wheat grown 
in solution culture. They found that raising the nitrogen supply at the double-ridge 
stage increased the number of spikelets, and a high nitrogen level between floret 
initiation and ear emergence favoured the number of kernels per spikelet. In our 
experiment the number of spikelets per ear was not affected by raising the early 
dressing from 50 to 100 kg N ha - 1 , this was obviously due to an adequate supply 
of soil nitrogen. The number of spikelets per ear amounted on average to 22 and 
the number of kernels per spikelet ranged from zero (the basal and top spikelet) 
to about three (spikelets 7 to 9 in the central part of the ear). Thus the major 
part of the positive effect of additional nitrogen on the number of kernels per 
spikelet was attributable to greater grain numbers in the lower and central part 
of the ear. The considerable increase in grain number per ear combined with the 
relatively small positive effect of nitrogen on the number of ears per m2, resulted 
in an increase in grain number per m2 from 16 700 to 20 600. The rise in grain 
yield was mainly attributable to the number of grains per m2. This agrees with the 
general view that under very sunny conditions and high temperatures the number 
of grains per unit ground area is a major component of grain yield (Biscoe & 
Gallagher, 1977). Since final grain number was fixed soon after anthesis it may be 
concluded that the grain pattern of the individual kernels will be decisive for the 
grain yield. 

Additional nitrogen affected both the growth duration and the growth rate of 
individual grains. However, with all nitrogen treatments the rate of grain growth 
was very high due to warmth. The growth rates during a seven-day period in the 
linear phase of grain filling amounted on average to 2.5 mg kernel—i day—1. 
This value is higher than the maximum rate of 2 mg day-i quoted for wheat in 
a recent review of literature (Evans & Wardlaw, 1976). With the cultivar Maris 
Huntsman, however, Meredith & Jenkins (1976) found a grain growth rate of 
2.6 mg day-i during 11 days and Gallagher et al. (1976) reported an increase 
in the rate of grain growth up to 2.11 mg day-i during 14 days under the hot 
and sunny conditions of 1976. 

The proportionality between grain number and grain yield implies that the photo-
synthetic system of the plant has produced adequate amounts of assimilates to 
satisfy the demands of the grains. This assumption is supported by the storage 
of excess assimilates in the stem for two weeks after anthesis (Fig 3) and the high 
content of carbohydrates available in the stem for relocation to the grains (Fig. 4). 
Although additional nitrogen promoted leaf area development and duration and 
thereby the photosynthetic capacity, the content of water-soluble carbohydrates 
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was decreased from 33 to 26% of the stem dry weight. The lower content of 
carbohydrate reserves may have been caused by a higher respiration rate and/or 
a greater demand of assimilates for grain growth (Höfner & Orlovius, 1977). Austin 
et al. (1977) found that losses of dry matter from the stems during the post-floral 
period ranged from 82 to 256 g var2 with various genotypes of winter wheat. 
The proportion of these losses caused by respiration was estimated to be about 
62<>/o. The rate of stem respiration ranged from 0.28 to 0.35 mg C02 g-i dry 
weight h-i at 15 °C. Assuming a Q10 value of 2 for the data of Austin et al. 
and a mean temperature of 20 °C in our experiment, then the stem loss due to 
respiration can be estimated to be about 1500 kg ha-i for the period from 29 
June to 20 July. Based on this average respiration loss and with a correction of 
500 kg ha—i for translocation of carbohydrates to the roots, the contribution of 
stem reserves to the grains may have been in the order of 760 to 1360 kg ha"1 

or 9.0 to 2I.30/0 of the final grain yield with 200 and 50 kg N ha-i, respectively. 
It seems that when plants are grown at a high nitrogen level, stem reserves might 
be less important because of the availability of more assimilates produced by the 
prolonged photosynthetic activity of the green tissues. 

The enormous decrease in stem weight was mainly (from 80 to 85%) due to the 
loss of water-soluble carbohydrates. The remaining proportion of dry weight losses 
may have been caused by the relocation of various compounds (proteins, amino 
acids, organic acids, nutrients, etc.) and, to a small extent, by lignification pro
cesses. It was estimated that the relocation of nitrogen compounds contributed 
from 6 to 9% of the total stem weight loss. 

When all above-ground vegetative organs are considered, the nitrogen economy 
is as important as the carbon economy. If the nitrogen requirement of the grains 
exceeds the nitrogen uptake of the plant, then the nitrogen reserves in the vege
tative parts will be used as nitrogen source. A fast depletion of these reserves may 
affect the photosynthetic activity of the leaves by an earlier senescence, thereby 
shortening the grain growth period (Sinclair & de Wit, 1975). In our experiment 
high grain yields were associated with nitrogen contents which were higher than 
in normal years. This agrees with the finding in phytotron experiments that nitro
gen assimilation by the grains is favoured more by warmth than is the accumu
lation of carbohydrate in the grains (Spiertz, 1977). The high rate of nitrogen up 
take by the grains, especially during the third week after anthesis (range 0.57-0.96 

m - 2
y

d a y - i ) ; required a high supply of organic nitrogen compounds. The re
serves in the vegetative part could only satisfy about 52«/G of this demand; the 
otherpart^ (480/fcame L m nitrogen taken up after anthesis. Such a consider-
aMTotale afte anthesis is confirmed by Sturm et al. (1973) with high-yielding 
whea^ ons- o her authors (e.g. Austin et al., 1976; Spratt & Gasser, 1970) stated 
7 h a r i 3 t a ^ T S r P l a n t t already contained 83o/„ of the total nitrogen pre
l l at maturirHoweve' the ability of the plant to continue to take up nitrogen 
during the grain filling was recognized as an advantage 

Neales et al (1963) suggested that the role of green leaves in the supply of nitro-
JNeales et ai. ^oi) ^ ë s carbohydrate source to the roots there-

gen to the wheat grain is firstly to serve a.* a. 3 
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by promoting the uptake of nitrogen, and secondly as a direct nitrogen source. The 
first role is enhanced if the level of soil nitrogen in the root environment during 
grain growth is high. 

The considerable uptake of nitrogen after anthesis was also reflected in the pattern 
of phosphorus and potassium uptake (Fig. 6). It demonstrates that healthy wheat 
crops under favourable growing conditions keep up their root activity for some 
weeks after anthesis. The continuous uptake of phosphorus during the growth 
period and the loss of potassium at the ripening stage confirm the results of pot 
experiments with spring wheat (Slangen, 1971). Potassium is assumed to be re
located from the stem and leaves to the roots during the ripening stage. It has been 
stated that phosphorus is only re-distributed from the stem and not from the 
leaves to the grain (Slangen, 1971). However, it was concluded by Marshall & 
Wardlaw (1973) that the translocation of phosphorus and photosynthate are closely 
related in the wheat plant; the direction of movement being governed by the sup
ply and demand for carbohydrates. In our experiment there was relocation both 
from the leaves as well as from the stem (including leaf sheaths); the latter was 4 
to 5 times greater. 

The distribution patterns of nitrogen and phosphorus are rather similar. At harvest 
a major part of these nutrients was stored in the grain. Additional nitrogen dres
sings promoted the storage in the grains, which is illustrated by the rise in nitro
gen and phosphorus harvest index from 0.75 to 0.81 and from 0.91 to 0.93, res
pectively (Tabel 4). These values of the nitrogen harvest index are much higher 
than those quoted by Austin et al. (1976): 0.68 on average. Under Dutch growing 
conditions Dilz (1971) found values within the range of 0.65 to 0.75, whilst 
Ellen & Spiertz (1975) measured 0.78. Canvin (1976) reviewed data from literature 
and concluded that the nitrogen harvest index is subject to, considerable variation, 
from 0.50 to 0.84, due to factors such as water, nitrogen and carbohydrate supply. 
Our finding confirms the results of Gliemeroth & Kubier (1977); they found nitro
gen harvest indices of about 0.80 as a mean for three relatively dry growing sea
sons and of about 0.55 as a mean for unfavourable growing conditions (wet season, 
lodging and disease). Similar variations in nitrogen distribution were also found 
with spring wheat (Pearman et al, 1977). This study shows that increased nitrogen 
application under the prevailing growing conditions gave a higher grain yield and 
also a higher grain protein content. This high protein content could result from: 
— the positive effect of warmth on the capability of the developing caryopsis to 
attract and convert nitrogen (sink strength) 
— a considerable capacity for uptake and assimilation of nitrogen during the 
grain filling period (production source) 
— a high efficiency of translocation from vegetative parts to the grains (reserve 

The rate of these processes and of photosynthesis was promoted by additional 
nitrogen; so high rates of starch and protein accumulation by the grains were pos
sible. The nse in grain yield (from 640 to 821 g m-2) and in protein content 
(from 9.98 to 13.05»/0) resulted in an increase of the protein yield from 63.8 to 
107.1 g m-2. v J 
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Summary 

The crop performance of a semi-dwarf cultivar (Maris Hobbit) was compared 
with a standard-height cultivar (Lely), at various levels of nitrogen supply. The 
grain yields of Maris Hobbit were considerably higher due to a higher num
ber of grains and a heavier grain weight. Owing to the higher grain yield and a lo
wer stem weight, the harvest index of Maris Hobbit was higher than that of Lely: 
0 47 and 0 40, respectively. The content of water-soluble carbohydrates in the stems 
of both cultivais appeared to be very high until 3 weeks after anthesis, despite the 
occurrence of low light intensities. Lely used more assimilates for structural stem 
material than did Maris Hobbit. 

Quantity and time of nitrogen application greatly affected grain number, but af
fected grain weight to a lesser extent. Thus within each cultivar grain number per 
m2 was the main determinant of grain yield. Late nitrogen dressings promoted pho-
tosynthetic production, grain weight and protein content of the grains. The low 
protein percentages of the grains were attributed to the low temperatures during 
grain-filling period. The distribution of nitrogen within the wheat plant was only 
slightly influenced by nitrogen dressings and cultivar differences. Nitrogen harvest 
index ranged from 0.74 to 0.79. Grain nitrogen was derived from the vegetative 
organs (63-94%) and from uptake after anthesis (6-37%). The importance of 
carbohydrate and nitrogen economy for grain yield are discussed. 

* Present address: Centre for Agrobiological Research (CABO), P. O. Box 14, 6700 AA 
Wageningen, the Netherlands. 
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Introduction 

Variations in grain yield between cultivars are often attributed to differences in 
disease resistance. However, under disease-free conditions grain yields between 
cultivars have also been found to vary (Spiertz, 1973). The harvest index of cereal 
cultivars has tended to rise progressively, with little change in biological yield (Van 
Dobben, 1962; Fischer, 1975; Kramer, 1978). 

Based on theoretical considerations, Donald (1968) has outlined a wheat ideo-
type that should be most efficient in grain production. The main features of his 
ideotype are: single culm, strong stem, dwarf stature and large spike. Such a plant 
should be a poor competitor in a crop stand. It should also provide an improved 
harvest index. Austin & Jones (1976) contended that there is no single ideal model 
plant or ideotype for wheat. They gave a list of desirable attributes, but conclu
ded that many of these attributes are mutually exclusive. In fact the response of 
the wheat plant to various growing conditions (drought, nitrogen stress, etc) is still 
imperfectly understood. 

To study the magnitude of cultivar differences in crop response to prevailing 
weather conditions and to a varying nitrogen supply, observations were made on 
the cultivars Lely and Maris Hobbit. The former is a Dutch standard cultivar for 
fertile soils; which has shown a high-yielding capacity under favourable growing 
conditions (Spiertz & Ellen, 1978); the latter was chosen because of its attributes 
of superior grain set and dry matter distribution (Anonymous, 1977). Maris Hobbit 
is one of the semi-dwarf winter wheat cultivars that are well adapted to growing 
conditions in the Netherlands. 

The aim of the experiment was to study cultivar differences in grain yield and 
grain growth pattern at various levels of nitrogen supply. 

Materials and methods 

The experiment was carried out in 1977 on the experimental farm of the Depart
ment of Field Crops and Grassland Husbandry, Agricultural University, Wageningen. 
The experiment was laid down on a fine-textured clay soil. The nitrate-nitrogen 
content of the top 1 m of the soil layer was found to be approximately 50 kg N per 
ha at the end of February 1977. The preceding crop was potatoes. 

The wheat was sown on 15 October 1976 at a rate of 350 kernels per m2 and a 
row distance of 0.25 m. The basic fertilizer dressing consisted of 500 kg N-P-K mix
ture (0-15-30) per ha on 15 March. 

Nitrogen was applied as a split-dressing in the following treatments: 

March (Fs *) May (FstoFd*) Total 
N i 50 o 50 kgNha-i 
N2 0 50 50 kgNha-i 
N i + 2 50 50 100 kgNha-i 
* According to developmental stages of the Feekes scale. 

Control plots without nitrogen dressing were only present with the cultivar Lely. 
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The fungicide applications were sequential according to the following scheme: 
11 May: 4 kg Bavistin M + 5 kg sulphur per ha 
6 June: 4 kg Bavistin M + 5 kg sulphur per ha 

24 June: 5 kg sulphur per ha 
30 June: 0.5 kg Bayleton per ha 

The complete experimental field was protected against insect damage by an ap
plication of 0.5 kg Pyrimor and 0.5 kg Dimethoaat per ha on 24 June and 6 July, 
respectively. 

The experiment consisted of a split-split-plot design with cultivars and fungicide 
treatment in the splits. Nitrogen treatments were completely randomized and there 
were 6 replicates. The individual plots were 9 m long and 3 m wide. During the gro
wing season the plots protected against diseases were sampled. The samples were 
taken from 2 rows of 0.50 m length. At the final harvest, 24 August, the complete 
plots, except for two border rows, were harvested. 

The sampling procedure at the intermediate harvests and the chemical analyses 
were carried out as described by Spiertz & Ellen (1978). 

Crop photosynthesis was measured from anthesis onwards by enclosing an area 
of 1 m2 in a perspex chamber about 1.20 m high. C02 content was maintained at 
about 320 mg/kg during daytime; during the dark much higher values occurred. 
Air temperature was generally kept at 20 °C, but under high radiation condi
tions cooling capacity was insufficient and this resulted in the temperature rising to 
a maximum of 25 °C. C02 exchange rate was measured with an URAS infrared 
gas analyser by sampling ingoing and outgoing air. To prevent gas exchange at 
soil level the chamber was kept constantly at an overflow pressure, which varied 
between 0.5 and 2.0 cm H20. Solar radiation, air temperature and C02 content of 
air were monitored on recorders and cassette tape. These data were processed by a 
computer; calculations of net photosynthesis were based on at least four sampling 
runs. 

Growing conditions 

Wcüthcv 
The growing season was characterized by a mild winter followed by exceptionally 
high temperatures during the first half of March (Fig. 1). During the tillering phase 
weather was unfavourable: cold, wet and overcast sky. Poor light conditions also 
occurred during flowering and after mid-kernel filling. High radiation and tempera
ture occurred during the last 10 days of May and the first week of July. Much rain 
fell during ripening and grain harvest. 

Diseases 
Although yellow rust was prevalent in wheat crops in the Netherlands in the 1977 
growing season, the cultivars in our experiment were only slightly infected. 

Early mildew infections were controlled with funglcides. At the end of the ker
nel-filling period there was a late infection of brown rust (Puccinia recondita). 

Fungicide applications caused the leaf tips of Maris Hobbit to turn yellow. 
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Global radiation 

Growing season 1977 

+---+ max. temp. 
x—x mean temp, 
o—o min. temp. 

• n m ~ i » HI i n m i 5 m J u~ in i — t m 
March April May June July Aug. 

Fig. 1. Average values per decade of solar radiation and air temperature during the 1977 sro-
ing season. ° 6 

Results 

Grain yield and yield components 
Grain yields of Maris Hobbit were considerably higher than those of Lely, although 
the above-ground biological yields showed hardly any difference at the highest ni
trogen dressing (Table 1). Thus Maris Hobbit had a more favourable dry matter dis
tribution than Lely as shown by the harvest index: 0.47 and 0.40, respectively. 
The higher grain yield of Maris Hobbit was caused by a higher grain number per 
ear and per m* as well as by a considerably larger grain weight. Estimates of the maxi
mum evel of grain yield are derived from the harvest of 10 August, because subse
quently losses occurred due to pre-harvest sprouting. At the highest nitrogen dres
sing, 50 + 50 kg N ha-i, Maris Hobbit and Lely yielded 813 and 635 g grain nr* 
respectively. The corresponding numbers of grains per m* were 16 400 and 14 90o' 
whilst the grain weight ranged from 50.8 to 46.0 mg kerneH 

The cultivars responded similarly to the various nitrogen dressings A single late 
nitrogen dressing of 50 kg N ha-* decreased grain number considerably more tnan 
an early dressing. This reduction was partly compensated for by an increased grain 

I ? v ï mL r 0 g e n fng ' r e d U C e d S t r a w y i d d m o r e t h a n g r a i" Yield, resul
ting m a higher harvest index. The combination of an early plus a late nitrogen 
gift increased grain number as well as grain weight. Thus grain yield was consider-
236 
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Fig. 2. Course of grain weight (10-3 g) and rate of grain growth (10-3 g day-1) per kernel in 
the cultivars Lely and Maris Hobbit at a nitrogen dressing of 50 + 50 N ha-1. 

ably increased by the additional nitrogen dressing. This marked response to nitrogen 
was quite unexpected in the growing season of 1977. Nitrogen mineralization during 
the growing season was obviously below normal. 

Fungicide application increased grain yield by 420 kg ha -1 in Lely, but had a 
slightly negative effect on the grain yield of Maris Hobbit. Harvest index and 
individual grain weight were not affected. These small effects of the frequent 
fungicide treatments show that diseases were unimportant in this experiment. 

Rate and duration of grain growth 
Grain growth started about four days earlier in Maris Hobbit than in Lely: 13 and 17 
June, respectively. Both cultivars had a grain growth pattern characterized by a slow 
initial growth rate followed by a two-week period of 'linear' growth and a simulta
neous decline until maximum kernel weight was reached (Fig. 2). 

The lower grain weight of Lely was mainly caused by a slower rate of grain growth 
during the first half of the grain-filling period. Both cultivars showed the highest 
rate of grain growth in the period from 4 to 11 July, when a rate of about 2.25 mg 
day~i kernel-! Was reached. From the point of maximum grain weight until final har
vest on 24 August, Maris Hobbit lost 9.7% and Lely 6.4% of the grain weight. 
These losses must have been caused by respiration. 

The effective grain-filling period lasted 42 and 48 days in Maris Hobbit and 
Lely, respectively. Late nitrogen dressings barely affected the duration of grain 
growth, but delayed a decline in the rate of grain growth after the mid-kernel filling 
stage. Grain growth per m2 depended more on number of grains than on grain weight. 
The small differences in the course of grain growth per m2 between an early and a 
late nitrogen dressing of 50 kg N ha~i were striking (Fig. 3). Mutual compensation 
occurred between grain number and grain weight. During the effective grain-filling 
period the level of nitrogen supply caused mean grain growth rates to vary from 
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14.7 to 18.4 g m-2 day-* and from 17.9 to 21.0 g m-2 day* with Lely and Maris 
Hobbit, respectively. Actual growth rates during the lineair phase were consid
erably higher: from 22.8 to 30.7 and from 28.6 to 32.1 g m-2 day-i with Lely and 
Maris Hobbit, respectively. The unfertilized treatment had much lower growth 
rates: 11.8 and 17.1 g nr2 day1 during the effective and linear phase of grain-
filling, respectively. 

Leaf area, solar radiation and crop photosynthesis 
Generally, tillering and leaf growth were favoured in 1977 by a mild winter and a 
warm spell during the first half of March. An early nitrogen dressing increased the 
leaf area considerably (Fig. 4). Maximum leaf area index had already been attained 
at the boot stage. A late nitrogen dressing delayed the decline of the leaf area 
during the post-floral period. Leaf-area index and duration were slightly higher for 
Maris Hobbit. But average stem length was about 15 cm longer in Lely than in Ma
ris Hobbit. 

Photosynthetic production of the crop depends on the activity of the green tissues 
and the amount of photosynthetic active radiation. Radiation was low for a fortnight 
after anthesis and at the end of the grain-filling period. During the period of linear 
grain growth there was a spell of bright sunshine. 

From anthesis onwards crop photosynthesis and dark respiration were measured 
weekly in the 50 and 50 + 50 kg N ha"1 plots of Maris Hobbit. Due to bad weather 
conditions and technical restrictions, most of the measurements in the Lely plots 
had to be cancelled. The available data on Lely showed only minor deviations from 
the net photosynthesis of Maris Hobbit. This finding is confirmed by the total dry 
matter yields of the two cultivars. 

400 

100 

Fig. 3. Course of the grain growth 
calculated from grain weight, ave
rage grain number and average 
number of ears of the cultivars 
Lely and Maris Hobbit at va
rious nitrogen dressings. 
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Fig. 4. Leaf area index (LAI) of the individual leaf layers of the cultivars Lely and Maris Hob-
bit at various nitrogen dressings. 

M? ?ë?l u a V e r y P ° S l t l V e e f feCt 0 n c r°P Photosynthesis. An additional 50 kg 
Nha-i at the booting stage slightly increased Pmax at anthesis, but had a considerable 
effect on net photosynthesis from 3 weeks after anthesis onwards (Fig. 6A and B). 

Estimates were derived for the daily course of net photosynthesis from the photo-
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Fig. 5. Daily values of solar radiation and mean air temperature during the grain-filling period. 
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Maris Hobbit - 5 0 kg N ha"1 Maris Hobbit-100 kg N ha'1 

kg CH20 ha 'V 1 

Fig. 6. Photosynthesis-light response curves for the Maris Hobbit crop. A (left): nitrogen dres
sing of 50 kg N ha-1; B (right): nitrogen dressing of 50 + 50 N ha-1. 

synthesis-light curves and the diurnal course of radiation. The data presented in Fig. 
7A, B and C are examples of the daily variation in the course of net photosynthesis 
These data also clearly show that the magnitude of the positive effect of additional 
nitrogen on net photosynthesis depend on light intensity. Under low light conditions 
the effect of additional nitrogen seemed to be small. The net photosynthesis curves 
of 23 June and 12 July also show that light saturation occurred during the midday 
period On 12 July the maximum photosynthetic rate had already dropped from 
about 42 to 30 kg CH20 ha-i h"i, whilst the light saturation period was longer 

than on 28 June. . , . ., . , 
The daily amounts of net photosynthesis are the main source of assimilates for 

the grains/Therefore the estimates of daily net photosynthesis were compared 
to the growth rate of the grains (Fig. 8). It appeared that during the: tat weeks 
after anthesis there was a surplus of assimilates, whilst at the end of the kernel 
filling there was a deficit. 

Carbohydrate reserves and distribution of dry mutter • • « • . , 
The balance of production of assimilates and utilization by the grains is re fleeted 
in the accumulation of reserves, mainly carbohydrates in the stem. The content of 
carbohydrate reserves in the stem proved to be quite high, 30-40%, from ear emer-
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Fig. 7. Daily pattern of solar radiation and net photosynthesis at two nitrogen levels. A (top) 
20 and 23 June 1977; B (middle) 27 June and 1 July 1977; C (bottom) 12 and 14 July 1977. 

• — 2 net photosynthesis- 50 kg N ha"1 

•—°£net photosynthesis-100kg N ha"1 

(kgCH20 ha"1) 
*—A Z grain growth - 50 kg N ha"1 

Ä--Äz] grain growth -100 kg N ha'1 

(kg dry weight ha"1) 

15 20 25 
June 

30 10 15 
July 

20 25 30 5 10 dates 
August 

Fig. 8. Cumulative amount of net photosynthesis after anthesis and actual grain growth of the 
cultivar Maris Hobbit at 50 + 50 kg N ha-i. 

gence until 3 weeks after anthesis (Fig. 9). On average, the water-soluble carbo
hydrates (w.s.c.) reached a higher content in the stem of Mans Hobbit than of Lely, 
especially during the period of poor light conditions after anthesis. A late nitrogen 
dressing raised the w.s.c. content of the stem in Lely during the first weeks of gram-
filling. Thus carbohydrate supply cannot have limited grain growth until 3 weeks 
after flowering. The sharp decline in the w.s.c. content of the stem coincides w. h the 
beginning of the linear phase of grain growth and with a drop in the photosynthetic 

""The wes.c0cPontent in the top leaves varied around the 5 •/. level with lower values 
during the period of bad weather one week after anthesis, and the highest values 
about 3 or 4 weeks after anthesis (Fig. 9). Generally, w.s.c. contents turned out to 
be somewhat lower with late nitrogen applications. 

Kernels and chaff were only analysed for w.s.c at the 50 + ^ ^ ^ 
The small differences between the cultivars were striking; although t h g r a n grow h 
of Maris Hobbit started earlier, w.s.c. contents of the grains of ^ y were only 
higher in first 3 weeks. On average, the w.s.c. content of the grains decreased 
from about 45 % to 7.5 % during the second to fourth week of gram^illing and 
levelled off to about 5 % during the following weeks. The w s.c. content of the 
chaff decreased during the grain-filling period from about 10 % to 2 % 

In contrast to the small differences in w.s.c. contents between the cultivais, clear 
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Fig. 9. Water-soluble carbohydrate content (%) in the stem of the cultivars Lely and Maris 
Hobbit at various nitrogen dressings. 

differences in dry weight distribution existed after ear emergence. The most impor
tant contrast was the increase in stem weight in Lely, from ear emergence 4 weeks on
wards, compared with a practically constant stem weight in Maris Hobbit (Fig. 10). 
Conversely, the ear weight of Maris Hobbit increased faster during this period than 
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Fig. 10. Dry weight distribution after anthesis in the above-ground part of the cultivars Lely 
and Mans Hobbit, averaged for the nitrogen treatments. 
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that of Lely. This indicates competition between stem and ear growth in Lely for 
several weeks after emergence. However, this competition for assimilates was not 
reflected in the w.s.c. content. 

Another consequence of the longer stem of Lely was that more assimilates were 
needed for the structural material of the stem. Consequently, stem weight stayed 
higher in Lely than in Maris Hobbit during grain growth. The dry matter weights 
of the leaves and the chaff were slightly higher for Maris Hobbit than for Lely (Fig. 
10). It was also shown that Maris Hobbit had a higher biological yield than Lely at 
the end of July, but part of this difference disappeared owing to a greater loss of 
dry weight in grains and straw due to bad weather conditions during ripening. 

Nitrogen uptake and distribution 
The pattern of nitrogen uptake was characterized by 
- a high nitrogen content at the first sampling date, 12 April; the amount of nitrogen 
in the shoots in Lely and Maris Hobbit ranged from 42 to 62 kg ha"i and from 
57 to 70 kg ha"1, respectively; 
- a very low nitrogen uptake in the plots without N dressing during May and June; 
obviously, nitrogen mineralization in the soil was very low during this period; 
- the nitrogen dressing at the boot stage favoured nitrogen uptake by the grains. 

Compared with the dry matter yields, the nitrogen yields of the aerial parts were 
low; the nitrogen yield of the wheat crop in Lely and Maris Hobbit varied from 106 
to 157 kg ha-i and from 124 to 161 kg ha-i, respectively. The control plots of Lely 
yielded only 76 kg N ha-i (Table 2). Although Maris Hobbit had a slightly higher 
nitrogen harvest index (76.7% compared to 75.8%) nitrogen content in the grains 
was extremely low. The lowest value corresponded with a protein content of 7.5% 
and the highest with 8.8%. The nitrogen content of the grains of Lely were consid
erably higher: from 8.2% to 10% protein. Nevertheless these values are still below 
the long-term average level. . 

Nitrogen supply to the grains could be accounted for partly by nitrogen loss from 
the vegetative organs (leaves, stem, chaff) and partly by uptake after anthesis. The 
relative contribution by the two sources depended greatly on the timing and amount 
of nitrogen dressing (Table 2). On average, 80% of the nitrogen amount in the 
grains was contributed by the nitrogen reserves of the vegetative parts and 20% 
was nitrogen uptake after anthesis. . 

The residual amounts of nitrogen in the vegetative parts did not vary ^ ^ a n t l y ; 
nitrogen residues in the leaves, stem and chaff ranged from 5 - 10, from 10 - 20 and 
from 4- 6 kg N ha-1, respectively. 

Discussion 

Grain yield response to nitrogen was very positive in this experiment, contrary to 
many other field experiments in the growing season of 1977 which showed a 
lack of positive response at higher nitrogen levels. This lack of positive response 
could be due to an abnormally high level of soil nitrogen after the dry season 
of 1976, to the occurrence of diseases, and to low levels of solar radiation during 
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the tillering, flowering and ripening phases in 1977. The high nitrogen response 
in this experiment was the consequence of an unexpectedly poor nitrogen min
eralization. This might have been caused by the irrigation of the previous potato 
crop, which lowered the amount of residual soil nitrogen and damaged the struc
ture of the fine-textures heavy clay soil. On the other hand the minor influence 
of diseases in this field experiment also promoted crop response to nitrogen. Prob
ably the nitrogen dressing of 50 + 50 kg N ha-1 was nearly sufficient to allow 
both cultivar to achieve their full potential grain production. The low nitrogen dres
sings, 50 kg N ha-1 and the control plot without fertilization would have occa
sionally suffered from nitrogen stress. This enabled us to compare Lely and Maris 
Hobbit under conditions of sub-optimal nitrogen supply. 

Grain yield differed considerably between Lely and Maris Hobbit with all nitro
gen dressings. The higher grain yield of Hobbit, on average about 135 g m"2, was 
caused by a greater number of grains per m2 and a heavier individual grain weight. 
The increase in both components may have a similar cause, namely, a distribu
tion of assimilates so that more goes to the developing ear and less to the stem. 
Obviously the balance between stem growth and ear growth is regulated by plant 
hormones. In some high-yielding cultivars it has been found that the improved 
ear/stem ratio is already evident by the time the first node of the stem is visible 
when the ear weighs less than 0.01 g (Lupton et al., 1974). Makunga et al. (1978) 
found that the ear of Maris Hobbit incorporated more 14C supplied to the flag 
leaf before anthesis than other cultivars. This favoured ear formation was re
flected in the dry matter distribution (Fig. 10) and also in a higher number of ker
nels per ear in our experiment. The upper leaves of Maris Hobbit had a larger 
leaf area and a greater dry weight than those of Lely. By contrast, the lower leaves 
of Maris Hobbit were smaller and weighed less. Differences in leaf and chaff 
weight were of minor importance; the lower straw yield of Maris Hobbit was 
mainly caused by a reduced stem weight. This pattern of dry matter distribution 
contributed largely to the increased harvest index of Maris Hobbit. Thorne et al. 
(1969) found higher harvest indices and grain yield/leaf area durations ratios for 
semi-dwarf compared to standard-height cultivars. The latter parameter suggests 
an improvement in the efficiency of photosynthesis by the crop in the use of 
assimilates for grain filling. Light response curves and maximum level of net 
photosynthesis of the 50 + 50 kg N treatment resembled the data presented by de 
Vos (1977) for the first weeks after anthesis. Contrary to his finding, we found 
that nitrogen had a considerable effect on the level of maximum rate of net photo
synthesis and on the decline in photosynthesis from 3 weeks after anthesis on
wards. These effects of nitrogen supply on the rate of photosynthesis were mainly 
but not exclusively associated with differences in leaf area index. Dark respiration 
was also increased by additional nitrogen; this may have been mainly caused by 
more rapid grain growth per m2. De Vos (1977) also found no differences in crop 
photosynthesis between two winter wheat cultivars approximately 15 days after 
flowering. 

In our experiment the number of measurements of photosynthesis and respiration 
in the Lely crop were too small to justify reliable conclusions to be drawn on dif-
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ferences between cultivars. However, large differences in the use of photosynthetic 
assimilates were inferred from the growth pattern of the ear and the stem after emer
gence. A higher stem weight in Lely was not caused by a higher water-soluble car
bohydrate content. Thus assimilates were used to a greater extent for structural stem 
material. Both cultivars showed very high levels of w.s.c. reserves in the stem up to 
3 weeks after anthesis. The explanation for these high w.s.c. contents, up to 40% 
under relatively poor light conditions, might be that grain growth and respiration 
were more restricted by the prevailing daily temperatures (about 14 °C) than was 

photosynthesis. 
The predominant effect of temperature on grain growth and w.s.c. content in the 

stem has also been established in phytotron experiments (Spiertz, 1977). In the pre
sent experiment there was no evidence of a difference between the cultivars in the 
utilization of the stem reserves for subsequent grain growth. This finding is 
confirmed by the results obtained by Rawson & Evans (1971). 

Differences in the growth of the individual grains due to nitrogen treatments 
occurred mainly during the second half of the kernel-filling period. Obviously 
assimilate supply was not limiting in the early phases of grain growth. Nitrogen 
effects on grain weight were of minor importance for grain yield, compared 
with the effects on number of grains to be filled. An additional nitrogen application 
at the booting stage increased number of grains as well as photosynthetic production. 
Thus nitrogen affected sink and source capacity in a balanced way, which was re
flected in the small effects on the harvest index. The small effect of Strogen on 
the distribution of assimilates was also found by Makunga et al. (1978) with C 
treatments. . , , . ,„„„ 

The higher yield potential of new cultivars is almost entirely due to an improve
ment in the carbohydrate economy of the plant. There have been only a smal in
crease in capacity to take up nitrogen from the soil and to produce grain protein 
Consequently, grain protein percentage has tended to fall as yielding abihty ha 
been increased (Bingham, 1976). Pushman & Bingham (1976) stated that h 
effect can be compensated by later nitrogen application. In our experiment this 
compensation was only partial. „;•,„„„„ ;„ 

However, there is no simple relation between yield and P™nia&f"^™ 
the grain. In cultivars or under conditions where senescence of leaveancI mobihza-
tion of nitrogen from the leaves is slow, higher gram yields may be associated with 
lower percentage nitrogen in the grain (e.g. 1.44% for Mans Hobbit m^977)^ 
the other hand? where leaf senescence is rapid, starch storage may e m adver 
sely affected than protein storage and lower yields may be associated with higher 
ciy diiecieu man piuic & balance is strongly go-

percentage nitrogen in the grain (Mcrseai ei <u., ^•")- o 
verned by temperature; high temperatures favourprotein storage m ° r e *an the ac
cumulation of starch in the grain (Campbell & Read, 1968; Spiert^1977) Thus 
the low temperatures in the growing season of 1977 would have reduced protein 
P e

M S a n £ Ä e grain protein may be derived * - ~ P j * * Ï 

trogen supply and root activity are adequate. 
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content of the grain may remain high or even rise as grain filling proceeds 
(Johnson et al., 1967). In our experiment only 23% and 20% of the grain ni
trogen in Lely and Maris Hobbit, respectively, was derived from uptake after 
anthesis. This indicates either poor root activity or depletion of soil nitrogen after 
anthesis. With little further uptake during grain filling, most of grain nitrogen will 
be derived by remobilization from leaves, stem and chaff (Austin et al., 1977). 
The differences in efficiency of translocation of nitrogen from the vegetative parts 
to the developing grains between cultivars and nitrogen treatments were very small. 
The overall mean for the nitrogen harvest index amounted to 76.3% within a 
range from 73.8 to 79.2% for all treatments (Table 2). 

At high yield levels a low nitrogen content of the grains need not result from a 
lower grain nitrogen yield, but can be caused by enhanced starch storage per unit 
available nitrogen. Despite large differences between Maris Hobbit and Lely in 
nitrogen content of the grains (1.44 and 1.62%, respectively) nitrogen yield per 
grain amounted to 0.73 nig for both cultivars. Late nitrogen dressing raised the nitro
gen contents of the grains considerably in both cultivars. 

In a study on the importance of nitrate reductase activity for grain protein Rao 
et al. (1977) concluded that no single identifiable factor can be used as a physiol
ogical criterion in selecting wheat genotypes for better nitrogen utilization. Selection 
must consider two or more factors simultaneously, including long-term capacity 
for nitrogen assimilation (uptake and reduction of nitrate) and efficiency of transloca
tion of vegetative nitrogen to the developing grains. 

Considering the patterns of grain growth and yield differences we may conclude 
that carbohydrate supply to the grains was not yield-limiting. However, this supply 
corresponded to the number of grains that had to be filled. Thus grain yield de
pended mainly on number of grains per m2. Nitrogen dressing affected grain num
ber and photosynthetic production to the same extent. An early nitrogen dressing 
favoured grain number more than a late dressing; the latter increased the protein 
yield of the grains. 

The results of this experiment confirm the great importance of ear formation for 
the final grain yield. It has already been shown that under various environmental 
conditions the formation of a larger ear with a high number of grains per ear fa
vours a high grain yield (Ledent, 1977 Evans, 1978). 
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