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Stellingen 

1. Winter in The Netherlands is so cold that were it not for the central heating all the Dutch 
may have migrated back to Africa, the cradle of all human kind. 

2. The transfer of information from nucleic acid to nucleic acid, or from nucleic acid to 
protein, may be possible, but transfer from protein to protein, or from protein to nucleic acid, 
is impossible (Francis Crick, 1958 in Levin, B. (1994) Genes V). 

3. Knowledge of the proverbs of a people can often reveal their history, and culture. 

4. Murumirwo ndamenyaga igithira. 
One who is fed by somebody else does not realise when food runs out (Kikuyu proverb). 

5. The revival period for cassava research has coincided with great leaps in the field of plant 
molecular biology with gene cloning and transfer being readily applicable techniques (This 
thesis). 

6. It is important that some form of international legal arrangements are made to ensure that 
resource poor farmers in developing countries benefit from crops, like cassava, which after all 
they have nurtured over the centuries (This thesis). 

7. The history of genetics has shown that progress in understanding the functions and 
functioning of genes has depended on framing the right questions and using the right 
organism to answer them (Watson, J.D., 1989). 

8. To believe in evolution is to believe that a whirlwind passing through a junkyard can give 
rise to a fully functional motor vehicle. 

9. The genetic message, the programme of the present organism, therefore resembles a text 
without an author, that a proof-reader has been correcting for more than two billion years, 
continually improving, refining and completing it, gradually eliminating all imperfections 
(François Jacob, 1973 in Levin, B. (1994) Genes V). 

10. The listener is the clever one (Shona proverb). 

Stellingen behorende bij het proefschrift " Isolation and characterisation of starch 
biosynthesis genes from cassava (Manihot esculenta Crantz)" door Tichafa R.I. Munyikwa, in 
het openbaar te verdedingen op dinsdag 23 December 1997, te Wageningen. 
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General Introduction 

General Introduction 

Cassava (Manihot esculenta Crantz) of the family Euphorbiaceae is a tropical 

crop grown mostly for its starchy thickened roots in the lowlands of Asia, Africa, and 

South America. It is an important crop for over 500 million people (Cock, 1985). The 

annual world production of cassava roots was about 158 million metric tons in 1994 

(FAO, 1994). Of this amount about 21% was produced in Latin America, 33% in Asia, 

and 46% in Africa. The main producing countries are Thailand, Indonesia, Nigeria, 

Brazil and Zaire which together produce over two thirds of the total world output. Most 

of the cassava produced is consumed as food or feed in the producing countries. About 

20% of the Asian production (mainly from Thailand) is exported to Europe for use as a 

cheap source of carbohydrates for animal feed. 

The importance of cassava is increasing, especially in Africa, owing to its 

tolerance to drought, soil acidity and low soil nutrients, all of which hinder the 

production of cereals (Hahn & Keyser, 1985). One of the African countries which has 

embarked on cassava production as a way of feeding its people during times of famine as 

well as a source of income for resource poor fanners located in marginal areas, is 

Zimbabwe. 

Cassava in Zimbabwe 

Zimbabwe is a sub-tropical country situated in central Southern Africa, between the 

Limpopo and Zambezi rivers. Agriculture is the mainstay of the economy of the country 

with over three-quarters of the population deriving its livelihood from agriculture and 

related activities. In terms of contribution to total output (Gross Domestic Output) 

agriculture at 14% ranks only second to manufacturing which contributes 23% (Anon, 

1996). 

Due largely to the colonial history of the country over 60% of Zimbabwe's 11 

million people are crammed in the poorer agro-ecological zones, natural ecological regions 

(NR), NRTV and NRV (Fig 1). These are low lying areas (average 800m above sea level) 

typified by poor sandy soils, scanty and unpredictable rainfall (less than 800 mm per 

annum) and mid season dry spells all of which adversely affect the cultivation of maize, the 

staple food. 
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Fig 1: Map of Zimbabwe showing the location of communal areas in relationship to the natural 
agro-ecological regions (NR) [after Mehretu, (1994)] 

This in addition to the recurrent droughts which the country experiences, five out of every 

ten years are drought years (C. Chasi personal communication), reduces food security and 

makes cassava the crop of choice within these areas. 

Cassava or "mufarinya" as it is called in Zimbabwe is not a staple food for 

Zimbabweans as it is in neighbouring Zambia, Malawi and Mozambique. The crop is 

thought to have been largely introduced into Zimbabwe by migrant workers from these 

countries. However, the rise to prominence of maize as a cash crop led to the demise of 

sorghum, millet and cassava production and the loss of the traditional knowledge to process 

the cassava crop. In view of the cyanogenic potential of cassava (Rosling, 1988) and the 

lack of traditional knowledge to process it, many Zimbabweans are reluctant to grow the 

plant. At present cassava is grown largely as hedges around homesteads and sometimes 

farmers fields in the areas bordering the afore mentioned countries (Mharapara and Nzima, 

1985). 

Between 1979 and 1985 surveys as well as field trials were initiated by the 

3 
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Zimbabwean Ministry of Agriculture, University of Zimbabwe and Delta Corp. (a private 

company) to determine the feasibility of producing cassava in Zimbabwe. Using planting 

material from the International Institute of Tropical Agriculture (UTA) as well as material 

collected in Zimbabwe, selection and breeding programmes to determine cassava varieties 

best suited for the local agro-ecological zones were set up. Market surveys showed a high 

potential for income generation by communal farmers in Zimbabwe as they would be able 

to sell excess cassava roots to the starch industry (Brian et al., 1989). 

Cassava in the Modern Economy 

World wide cassava has entered the modern market economy and there is a growing 

demand for its use in processed food and feed products. Increasingly cassava starch and 

starch derivatives such as dextrins, glucose, and high fructose syrups have become the main 

products of the cassava agro-industry. Cassava starch has also found uses in the paper and 

textile industry as well as in the manufacture of alcohol and adhesives (Kay, 1987). 

The various uses of starch require different sorts of starch with distinct physical and 

chemical properties. Generally these properties are produced by various techniques which 

are largely based on chemical modification of the extracted starch. The inherent 

environmental pollution and cost of such modifications make the genetic modification of 

cassava, to produce cultivars with starch of differing physico-chemical properties, a viable 

option. 

Information on the process of starch biosynthesis, particularly for cassava, is largely 

inadequate. In this thesis the present state of knowledge of cassava starch biosynthesis and 

its regulation is described. In addition it is shown how genetic modification of cassava 

could lead to the production of starch with distinct physical and chemical properties. 

Occurrence of Starch 

Starch is stored in the form of osmotically inactive, water-insoluble granules in amyloplasts 

(storage starch) and chloroplasts (transitory starch). In cassava most of the starch is stored 

within amyloplasts in the thickened roots commonly known as tubers. The starch content in 

tubers varies from 73.7% to 84.9% on dry weight basis (Rickard et al., 1991). 

Cassava starch granules are round structures, flat on one side and containing a 

4 
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conical pit that extends to a well defined eccentric hilum. They have a size range of 5-40 

|jjn (Moorthy, 1994). An eighteen month investigation into granule size variation with age 

showed an increase in size of the granules up to the 6th month. Thereafter the granules 

remained a constant size throughout the study period (Moorthy & Ramanujan, 1986). 

Structure and Composition of Starch 

In common with other plant starches, cassava starch can be fractionated into two 

types of polymers namely amylose and amylopectin. Amylose consists essentially of linear 

chains of 100-10000 a (1-4) linked glucose residues. There is a low degree of a (1-6) 

branching within the amylose chains. Amylose imparts definite characteristics to starch and 

is thus an important factor in starch quality. The amylose content of cassava starch ranges 

from 13.6% to 23.8% (Ketiku & Oyenuga, 1972; Kawabata et al., 1984; Moorthy & 

Ramanujan, 1986). Insignificant differences were found in the amylose content when 

various varieties of cassava were compared during their growth period (Moorthy, 1985; 

Moorthy, 1994). The soluble amylose (which is thought to be mainly responsible for 

cohesiveness in cooked starch) content of cassava was determined to range from 10-40% of 

total amylose (Moorthy, 1994). Purified amylose forms stiff gels due to hydrogen bonding 

between molecules. It may also undergo rétrogradation (shrinking and crystallisation) after 

heating. 

Amylopectin is made up of much shorter chains of oc-D glucopyranose units. These 

are primarily linked by a (1-4) bonds with a (1-6) branches. The outer regions of the 

amylopectin molecules which are short and unbranched are called the A chains, whereas the 

B chains exhibit multiple branching, the C chains have a single non reducing end (Guilbot 

& Mercier, 1985). The short nature of the A chains in cassava is apparent when cassava 

starch is debranched with isoamylase and analysed for its chain length distribution by 

Dionex. A peak corresponding to single glucose units thereby indicating short chain length 

is visible for cassava but not for potato, after 10 minutes retention time (Fig. 2). Cassava 

amylopectin has a molecular weight of 4.5 x 10 (Banks et al., 1972). 
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Figure 2: Distribution of chain length in cassava and potato using Dionex-HPLC after isoamylase 
treatment. A peak corresponding to single glucose units (an indication of short chain length) is clearly 
visible for cassava at retention time 10 minutes ( marked by the arrow) 

The amylopectin molecules are highly organised and have a definite crystalline 

nature. According to Blanshard (1987) amylopectin chains are arranged radially into 

alternating semi-crystalline and amorphous lamellae growth rings. The semi-crystalline 

region consists of domains of parallel packed double helices which also have disordered 

regions within or between the crystalline areas. The disordered regions between the 

crystallites may contain amylose or non organised regions of amylopectin chains. Three 

main types of X-ray diffraction crystalline pattern have been described, namely; A, B, and C 

starch patterns (Gallant et al., 1982; Guilbot & Mercier, 1985). Cassava has been found to 

consist largely of the A type pattern which is characteristic of cereal starches. This 

arrangement reflects a closely packed array of double helices in contrast to the more open B 
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arrangement of crystallites of the maize endosperm and potato tuber starches. The latter 

have considerably more water incorporated into their structures (Gallant et al., 1982; 

Guilbot & Mercier, 1985; Moorthy, 1994) 

Extracted amylopectin is more stable than amylose due to limited hydrogen 

bonding. This enables it to remain fluid and confers high viscosity and elasticity to pastes 

and thickeners. Cassava starch also contains crude fat (0.08-1.54%), crude protein (0.03-

0.6%), ash (0.02-0.33%) and very low phosphorous levels (0.75-4%) (Rosenthal et al., 

1974; Soni et al., 1985). A better understanding of the process of starch biosynthesis is 

essential if any alteration of starch production in plants, in both nutritionally and 

commercially useful ways, is to be considered. 

Biosynthesis of starch 

Several pathways of starch biosynthesis have been proposed. These have been based 

on in vitro studies of isolated enzymes and increasingly on molecular analysis of the genes 

which give rise to these proteins. It is generally held that starch is synthesised from sucrose. 

Most cytosolic sucrose is converted to hexose phosphates which are then transported to the 

amyloplast via a hexose translocator. The glucose-6-phosphate formed is then converted 

into glucose-1-phosphate by the enzyme phosphoglucomutase (Viola et al., 1991) 

The key step in starch biosynthesis in plants takes place inside the amyloplast where 

the enzyme adenosine diphosphate glucose pyrophosphorylase (AGPase; EC2.7.7.23) 

catalyses the synthesis of ADP-glucose and pyrophosphate from ATP and glucose-1-

phosphate (Espada, 1962; Preiss, 1982. The pyrophosphate is removed by inorganic 

alkaline phosphatase thereby driving the reaction in the direction of ADP-glucose synthesis. 

ADP-glucose is the primed glucose molecule which functions as the glucosyl donor for a-

glucan synthesis by various starch synthases. 

The starch synthases (SS; EC 2.4.1.21), mainly granule bound starch synthase 

(GBSS), catalyse the conversion of ADP-glucose into amylose through (1-4) linkage of a 

ADP glucose to a pre-existing glucan chain. In vitro SS are able to utilise both amylose and 

amylopectin as substrates. How the initial primers for glucan chain formation in vivo are 

produced remains unclear. However, in bacteria, which synthesise glycogen through a 

process similar to starch biosynthesis in plants, like maize, priming proteins termed 

7 
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glycogenin and amylogenin respectively, have been identified (Hengge-Aronis & Fisher, 

1992; Singh et al., 1995). 

Amylopectin is thought to be formed mainly due to the action of Branching Enzyme 

(BE; EC 2.4.1.18) and Soluble Starch Synthase (SSS). BE introduces branch points in the 

amylose molecules by hydrolysis of the a ( 1,4) glucan chains at 15 - 20 units from the non-

reducing end. It then catalyses the formation of an a (1,6) cross linkage between the 

reducing end of the cleaved chain and another glucose residue (Smith & Martin, 1993). 

It would, therefore, seem as if the postulated pathway for starch biosynthesis is 

relatively simple involving only three committed enzymes namely; AGPase, SS and BE. 

However in all species investigated it has been shown that the participating enzymes have 

several isoforms that are involved in the process of starch biosynthesis. These isoforms 

differ in their tissue specificity, timing of expression, kinetic properties and products. The 

existence of these isoforms is thought to provide the plants with an ability to adjust the 

process of starch formation depending on the prevailing conditions and stage of growth. 

Investigation of the role and function of these "committed" enzymes through biochemical 

and molecular analysis enables us to understand the molecular control of the process of 

starch biosynthesis. Our research has been focused on identifying and characterising the 

genes and enzymes involved in cassava starch formation. 

ADP Glucose Pyrophosphorylase 

Plant AGPases exist as heterotetrameric proteins (ca. 210-240 kDa) composed of 

two small (ca. 50-55 kDa) and two large (ca. 51-60 kDa) subunits, and their size depends 

on the plant species (Preiss et al., 1990; Kleczkowski et al., 1991). These subunits are also 

called AGPase B and S respectively, from the Brittle and Shrunken loci in maize, from 

which the first AGPase cDNAs were cloned (Bae et al., 1990; Bhave et al., 1990; Preiss et 

al., 1990). In contrast, AGPase in bacteria, from which the plant AGPase is thought to have 

evolved, consists of four equally-sized subunits (Preiss et al., 1990). Genes encoding both 

subunits of AGPase have been cloned from several species, e.g. the monocotyledons maize 

(Bae et al., 1990; Bhave et al., 1990), barley (Villand et al., 1992), wheat (Ainsworth et al., 

1993) and rice (Anderson et al., 1989) and the dicotyledons potato (Müller-Röber et al., 

1990), and spinach (Smith-White & Preiss, 1992). Isoforms of AGPase S have been found 

in Arabidopsis (Villand et al., 1993) and in potato (La Cognita et al., 1995). 

In general there is greater homology between genes encoding small subunits from 
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different species than large and small subunits in the same species. The potato small subunit 

has 84% amino acid identity to the rice endosperm small subunit and 93% amino acid 

identity to the spinach leaf small subunit. This is in contrast to the 52% and 35% amino 

acid identity between small and large subunits of potato and spinach leaf respectively 

(Nakata et al., 1991; Preiss et al., 1991). 

Most plant AGPases are allosterically regulated. The metabolite 3-phosphoglyceric 

acid (PGA) activates, and ortho-phosphate (Pi) inhibits the enzyme (for reviews see Preiss, 

1984; Okita et al., 1993). Sensitivity to these metabolites has been demonstrated in 

photosynthetic as well as non photosynthetic tissues (Sowokinos & Preiss, 1982). 

According to Kleczkowski et al. (1993) barley AGPase is insensitive to PGA and Pi 

regulation. This demonstrates the heterogeneity in the allosteric response of the plant 

enzyme. 

An abundance of evidence demonstrates the prominent role of AGPase in the 

biosynthesis of starch in plants. A dramatic reduction of maize endosperm AGPase activity, 

leading to reduced starch levels, was shown to be caused by mutations at the independent 

loci Shrunken-2 and Brittle-2 (Hannah et al., 1980). In Arabidopsis thaliana, a mutant 

containing less than 0.2% of the leaf starch content observed in the wild type, showed only 

0.2% of the wild type AGPase activity in leaf without alterations in the activities of the 

other enzymes involved in starch biosynthesis (Lin et al., 1988a and b). Furthermore, by 

using kinetic models, Petterson & Ryde-Petterson (1989) showed the importance of 

AGPase in starch biosynthesis. More recently, Müller-Röber et al. (1992) showed a 

decrease in starch production and the accumulation of soluble sugars in potato tubers 

caused by the antisense inhibition of the expression of the gene encoding for the small 

subunit of the AGPase. 

In addition, a mutant glgC gene from Escherichia coli which caused a 33% increase 

in glycogen content in E.coli, was fused to a chloroplast transit peptide and a patatin 

promoter and introduced into potato. This resulted in an increase in tuber starch content of 

35% compared to the control tubers (Stark et al, 1992). 
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Starch Synthases 

Starch synthases, which make amylose, can be sub-divided into two groups based 

on their location. Granule bound starch synthase (GBSS) is found tightly bound to the 

starch granule, whereas soluble starch synthase (SSS) is located in the stroma of the 

amyloplast or chloroplast as a soluble form (MacDonald & Preiss, 1985). 

Both groups (soluble and granule bound starch synthases), can further be divided 

into two other groups, based on their elution from a sepharose column (MacDonald & 

Preiss, 1985). These are probably the isoforms of GBSS and SSS, which have now been 

found in several species including pea, potato and wheat (Dry et al., 1992; Denyer et al., 

1995; Edwards et al., 1995). 

Although GBSSI of maize can extend amylopectin in vitro (MacDonald and 

Preiss, 1985), it is in vivo predominantly involved in the synthesis of amylose. This is 

shown by the absence of amylose in mutants of different species lacking the GBSSI gene 

(Shannon and Garwood, 1984). Moreover, Visser et al. (1991) and Salehuzzaman et al. 

(1993) demonstrated that by using an antisense GBSSI gene from potato and cassava 

respectively, there can be a reduction of the GBSS activity. This led to reduced amylose 

levels in potato tuber starch down to about 0%. 

SSS is thought to be predominantly involved in the synthesis of amylopectin. 

Chlamydomonas st-3 mutants, defective for one (SSSH) of two isoforms of SSS, showed 

an increased amylose content, whereas the length of the amylopectin chains shifted from 

intermediate size (8-50 units) to short chains (2-7 units) (Fontaine et al., 1993). 

Now that the GBSSII isoform in wheat (Edwards et al., 1995) and potato (Denyer et 

al., 1995) has been found in the granule bound fraction and the soluble fraction, the 

distinction between the granule bound and soluble starch synthases has become less 

profound. In potato, GBSSII is present throughout the development of the tuber, but only 

accounts for a maximum of 15% of the total starch synthase activity in this tissue. Northern 

analysis indicated a prominent role for GBSSII in the early stages of pea development 

(Edwards et al., 1995). 

Branching Enzyme 

Branching enzyme is present in multiple isoforms in several plant species like 

spinach, sorghum and maize (Hawker et al., 1974; Boyer, 1985; Fisher et al., 1993). In 
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cassava Salehuzzaman et al. (1992) were able to clone only one type of BE cDNA from a 

cassava tuber specific library. This cDNA has 70-75% similarity with BEI from other plant 

species but less with BEU. The open reading frame encodes a protein of 852 amino acids of 

which 74 amino acids form a transit peptide whose cleavage site motif was identified as 

ISA/A. The mature protein of 778 amino acids has a calculated MW of 88.7 kD and is 

highly expressed in cassava tubers. The enzyme also shows differences in expression 

between various cassava genotypes. It remains unclear as to whether or not the different 

protein bands which react with the BE antibody, in cassava, represent different isoforms of 

BE (Salehuzzaman et al., 1992). 

The activity of BE is important for starch quality and quantity. The wrinkled seeded 

pea and the amylose extender mutant of maize are due to the lack of activity of one of the 

isoforms of BE. Consequently the plants are characterised by less branched amylopectin, a 

high ratio of amylose over amylopectin, reduced starch levels, increased amounts of sugars, 

as well as deeply fissured starch grains (Bhattacharyya et al., 1990, Shannon and Garwood, 

1984) 

Production of new cassava varieties 

The availability of cloned and characterised cassava starch genes has opened new avenues 

for altering cassava starch composition and structure. The development of new cassava 

cultivars with starch having a range of physico-chemical properties and uses is dependent 

on the availability of a reproducible transformation and regeneration method. For cassava 

such a protocol has recently become available (Sofiari, 1996). With this procedure cassava 

embryogénie calli are bombarded with gold/tungsten particles coated with DNA of the 

appropriate gene constructs. The transformed embryogénie calli are then selected using a 

selection marker such as kanamycin or luciferase. The calli are allowed to regenerate into 

plantlets using the technique of somatic embryogenesis (Raemakers et al., 1992). 

Transgenic cassava plantlets can be easily screened in vitro without the need to wait for at 

least six months before tuber formation in the field. This can be done using the starch filled 

thickened stems obtained when in vitro plantlets are grown on high sucrose media 

(Salehuzzaman et al., 1994). 

The content and composition of cassava starch can be altered by down regulation or 

increase of the expression of the committed enzymes in the pathway of starch biosynthesis. 

In general down regulation of any gene product can be achieved by the antisense technique. 
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Antisense inhibition of gene expression leads to a reduction in the steady state mRNA 

levels, a reduction in the amount of protein, and consequently reduced enzyme activity. 

Before the advent of a reproducible transformation protocol in cassava, Salehuzzaman et al. 

(1993) were able to demonstrate the antisense effect of cassava GBSSI in potato. The use of 

antisense technology for down regulation of genes has now become common. It has been 

used in suppression of chalcon synthase (CHS) gene expression in Petunia (van der Krol et 

al., 1988), potato for example for AGPase B (Müller-Röber et al., 1992), GBSS (Visser et 

al., 1991) and UDP glucose pyrophosphorylase (Zrenner et al., 1993). 

Use of the antisense technique to produce new cassava cultivars has a distinct 

advantage over the use of naturally occurring or chemically induced mutants. Most of these 

mutations are recessive in nature whilst an antisense gene acts as a dominant suppressor 

gene. It can thus be used directly in allotetraploid cassava thereby reducing the time 

required to breed a new variety for this trait. 

Modifying cassava starch content 

Reduction of starch content in cassava could be achieved by using antisense 

AGPase gene constructs. Inhibition of AGPase would in principle reduce the amount of 

ADP-glucose available for amylose and amylopectin formation and reduce starch levels in 

the cassava tubers. Such experiments have been carried out using antisense AGPase S gene 

constructs by Müller-Röber et al. (1992) in potato. The transgenic plants that showed the 

highest inhibition had AGPase activity that was less than 2% of the wild type. Additionally 

the dry weight was reduced by 40% compared to the wild type potato. The tubers stored 

more sugars (sucrose up to 30% and glucose 8%) and less storage protein. 

Reduction in branching enzyme activity in cassava with antisense constructs may 

also decrease starch content as for the rugosus (r) mutation in pea. Pea plants with this 

mutation, in addition to increased sucrose levels, also exhibited higher than normal lipid 

levels (Bhattacharyya et al., 1990). Starch altered in this way is commercially important, 

due to its greater palatability it may be desirable for use in food products. 

Storage organs devoid of starch can also be modified genetically to become storage 

sites for other compounds. Such compounds could be sucrose derived ones such as fructans 

and cyclodextrins as has been shown in potato (Oakes et al., 1991, van der Meer et al., 

1994). In the field, plants with high sucrose levels may become susceptible to pathogen 

attack during germination or sprouting. However, the availability of organ specific, 
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inducible promoters is expected to make it possible to express the gene constructs in 

specific organs and at the appropriate time. 

Increasing starch content in plants could have a very dramatic effect on the 

economics of plant production. It would enable the cost of tuber harvesting and transport to 

be offset by the profit from an increase in the dry weight to fresh weight ratio. In cassava, 

starch content could be increased by over-expression of the AGPase enzyme or by the use 

of the mutant bacterial AGPase gene (glgC) as was achieved in potato (Stark et al., 1992) 

Modifying cassava starch structure 

In cassava, an altered starch structure can be introduced by reducing the activities of 

the "committed" enzymes especially BE and GBSS. This will considerably alter the ratios 

of amylose to amylopectin as well as the degree of branching in the starch. A range of 

cassava cultivars with altered granule size, as well starch composition can thus be 

theoretically produced. 

Genetic alterations in starch structure have been reported in other starch storing 

plants. The cassava GBSSI gene, when introduced in antisense in wild type potato, led to 

the production of starch with reduced levels of amylose and in some cases to amylose free 

potato starch (Salehuzzaman et al., 1993). A similar phenomenon was observed for potato 

GBSSI in potato (Visser et al., 1991) 

An amylose free variety or mutant is currently not available for cassava. Hence the 

availability of GBSSI as well as GBSSII would be ideal for the production of such plants in 

cassava based on the antisense suppression of the endogenous gene (s). Plants with a range 

of amylose were produced in potato by using the antisense approach (Kuipers et al., 1994). 

Some of these genetic modifications may result in reduced synthesis and yield of starch. 

This is the case with most naturally occurring mutants (Visser & Jacobsen, 1993). This may 

be overcome by incorporating genetic strategies that increase yield like over-expression of 

AGPase. In some cases the type of starch produced such as the amylose free type is of such 

high value that the profits offset possible losses due to yield (Visser & Jacobsen, 1993). 
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Outline of the thesis 

In this study the cloning and characterisation of cassava cDNAs encoding enzymes 

involved in cassava starch biosynthesis was undertaken. Chapter 2 describes the cloning 

and developmental Northern analyis of a granule bound starch synthase (GBSSII) of 

cassava. The possible role of GBSSII vw a vis GBSSI in amylose synthesis is discussed. 

Chapter 3 examines the critical role of the enzyme ADP glucose pyrophosphorylase 

(AGPase) in starch biosynthesis. In this chapter the isolation of two cDNAs encoding the 

small and large subunits of AGPase is described. In addition to sequence and 

developmental Northern analyses, investigations into AGPase activity in various cassava 

tissues are described. Chapter 4 is devoted to the transformation and analysis of transgenic 

potato plants carrying a cassava antisense AGPase B gene construct. In Chapter 5 the use 

of particle bombardment to successfully transform cassava friable embryogénie calli with 

the cassava AGPase B antisense cDNA is described. Investigations of possible changes in 

starch biosynthesis in transgenic cassava plants are described and discussed. In this chapter 

investigations on the improvement of the transformation and regeneration procedures for 

cassava were also performed. A general discussion focused on the impact of genetic 

modification of cassava starch, the potential benefits to resource poor farmers in southern 

countries of introducing transgenic cassava as well as the possible risk assessment 

strategies is provided in Chapter 6. 
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Chapter 2 

Isolation, characterisation and developmental regulation of granule bound starch 

synthase II from cassava (Manihot esculenta Crantz) 

Abstract 

A 2708 bp cDNA clone coding for granule bound starch synthase II (GBSSÏÏ) was isolated 

from a cassava tuber specific cDNA library. GBSSII encodes a 751 amino acid 

polypeptide that showed homology to potato (61%) and pea (59%) granule bound starch 

synthase II (GBSSII). The derived amino acid sequence of this cassava GBSSII exhibited 

low sequence homology to cassava GBSSI (35% identity). There was an N-terminal 

domain of 203 amino acids in cassava GBSSII which was similar in size to that found in 

pea and potato and thus was characteristic of GBSSII polypeptides. Southern analysis of 

cassava genomic DNA as well as segregation analysis of a cross between the cassava 

cultivars TMS 30572 and CM 2177-2 revealed that GBSSII was a single copy gene that 

was localised on linkage group T of the male derived cassava genetic map. Cassava 

GBSSII was highly expressed in young leaves, and exhibited much lower expression in 

developing tubers. These results are indicative of the differing and complementary role to 

GBSSI that GBSSII plays in leaf and tuber starch production. 
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Isolation and characterisation ofGBSSII 

Introduction 

In general plant starch consists of 20% a 1,4 linked glucan chains termed amylose and of 

80% amylopectin, a polymer composed of a 1,4 and a 1,6 linked glucan chains. The 

generally accepted pathway for starch biosynthesis in higher plants and algae involves the 

following reactions and enzymes. 

AMYLOSE 

nAEP + ct(l,4Dglucosyl-a-l,4-D glucan 

GBSS 

AGPase _ . „„„_, , 
^T + a (1,4 D glucan) n 

Glucose-1-P+ATP 

AGPase - ADP glucose pyrcphoshorylase 
BE/SSS 

GBSS - granule bound starch synthase 

BB5SS -branching enzyme /soluble starch synthase AMYLOPECIIN 

Blanched a l,4/a-l,6-Dglucan 

The critical role of AGPase and the correlation between AGPase activity, ADP-glucose 

formation and ultimately starch synthesis has been established for several plant species 

(Preiss et al., 1982). This lends credence to the above pathway being the predominant 

route by which starch is synthesised in higher organisms. 

Starch synthases are involved in extending glucan chains. Maize, rice, sorghum 

waxy mutants and the amylose free mutant (amf) of potato have reduced starch synthase 

activity accompanied by appreciably reduced amylose levels in their starch (Echt and 

Schwartz, 1981; Sano, 1984; Hseih, 1988; Jacobsen et al., 1989). These mutants lack a 

protein of approximately 60 kDa which is present in the wildtype or Waxy plants. This 

starch synthase was shown to be largely bound to the starch granule and was termed 

granule bound starch synthase (GBSS) in contrast to soluble starch synthases which are 

present in the stroma of the amylopast. Little or no change in total starch content in waxy 

compared to Wary grains was observed thus affixing the role of GBSS to amylose 

formation and less to amylopectin synthesis (Shannon and Garwood, 1984). Using this 

protein, cDNA clones have been isolated from several plant species including potato and 

cassava (Salehuzzaman et al., 1993). The primary sequences of GBSS are highly 

conserved in all species examined thus far (Salehuzzaman et al., 1993). The role of GBSS 

in amylose synthesis has been demonstrated further by transforming potato with an 
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antisense GBSS gene from potato and cassava. Some of the transgenic plants produced 

had no starch synthase activity and the tubers contained amylose free starch. (Visser et al., 

1991, Salehuzzaman et al., 1993). 

Studies carried out on Chlamydomonas GBSS mutants showed that in addition to 

lacking amylose they lack a particular amylopectin fraction thereby indicating that GBSS 

may also be directly or indirectly involved in amylopectin synthesis (Delrue et al., 1992). It 

was further established that whilst GBSS was important in certain tissues such as 

endosperm, pollen, embryo sac etc, the waxy mutation did not reduce amylose levels in 

other parts of the maize plant or at different developmental stages (Echt and Schwartz, 

1981). The existence of several isoforms of granule bound starch synthase was thus 

postulated. These starch synthase isoforms have been found in maize; with 4 GBSS and 2 

SS polypeptides (Macdonald and Preiss, 1985), potato and developing pea embryos with a 

60 kDa (GBSSI) and 77 kDa GBSSH polypeptide (Dry et al., 1992). The 77 kDa GBSS 

polypeptide, termed GBSSII, is highly active in developing pea embryos and has been 

shown also to be active in both the soluble phase and granule bound in pea and potato. The 

GBSSII of potato plays a relatively minor role in starch synthesis and is thought to 

contribute only 15% of the total amylose content (Edwards et al., 1995) but to 60-70% of 

the synthase activity of pea embryos (Denyer and Smith, 1992). 

Now that the GBSSII isoform of pea and potato has been shown to be present in 

the granule bound and soluble phases, the distinction between the two categories of starch 

synthases (SS) has become less profound. It has been suggested that the soluble starch 

synthase (SSS) may actually become bound to starch granules due to entrapment within 

the growing starch granule (Mu et al., 1994). Within the starch granule SS would then 

make predominantly amylose whilst in the soluble phase it predominantly makes glucan 

chains which are more readily acted upon by branching enzyme (BE). However the 

evidence for this view is largely circumstantial. What remains clear is that there are several 

isoforms of SS within a plant. These are active in both the granule bound and soluble 

phases. The extent to which each SS isoform participates in starch synthesis is largely 

dependent on the tissue and stage of development of the plant. 

This study was carried out to determine if there were any GBSS isoforms in the 

tropical crop cassava (Manihot esculenta Crantz). Analysis of the primary sequence of a 

putative GBSSH of cassava as well characterisation of the expression of the gene during 

development was carried out. 

24 



Isolation and characterisation ofGBSSH 

Materials and Methods 

Screening of a cassava cDNA library 

Approximately 3,0x10 plaque forming units of a lambda gtll cassava tuber specific 

cDNA library were screened with a 1.5 kb fragment of the potato GBSSII cDNA (kindly 

provided by Dr. C. Martin, John Innes Institute, Norwich U.K.). The probe was labelled 

with [32P] dCTP (2'-deoxycytidine 5'triphosphate) by the random primer labelling tech

nique (Feinberg and Vogelstein, 1983). The blots were hybridised overnight at 60°C and 

washed three times with 2xSSPE (3M NaCl, 0.2 M Sodium phosphate) and 0.1% Sodium 

dodecyl sulphate (SDS) at 60°C for 30 minutes each time. Autoradiography was carried 

out at -80°C within intensifying screens. The positive cDNA was isolated and cloned into 

the Kpnl site of pUC18. 

Sequencing and Sequence analysis 

The clones and subclones of the putative GBSSII cassava cDNAs (in pUC18) were se

quenced using the dideoxy method of Sanger et al. (1977). The analysis and manipulation 

of the sequences was carried out using the PC-Gene programme (Intelligenetics, Mountain 

View, CA, U.S.A). Homology searches to sequences in data banks was carried out using 

the blast programme (Altschul et al., 1990) on the WWW site of the NCBI 

(http://www.ncbi.nlm.nih.gov). 

Plants and bacteria 

The Latin American cassava genotype M.col 22 was grown in the greenhouse at 25-35 °C. 

Leaves and tubers at various developmental stages were harvested, frozen in liquid 

nitrogen and stored at -80 °C for later use. The E.coli strain DH5a (Bethesda Research 

Laboratories) was cultured according to standard protocols (Sambrook et al., 1989) 

Southern Hybridisation 

Genomic DNA isolation from cassava was carried out using the method of Dellaporta et 

al. (1983). The DNA was digested with various enzymes, electrophoresed on 0.8% 

agarose gels and blotted on to nitrocellulose. Hybridisation with the isolated cassava 
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cDNA labelled with [32P] dCTP was carried out at 60°C for 16 hours. The filters were 

washed twice with 2X SSPE +0.1% SDS at 65 °C. The blots were exposed to Kodak 

XOMAT-AR films between intensifying screens at -70°C for 2 days. 

Localisation of the putative GBSSII on to the cassava genetic map 

The cassava mapping population was described by Fregene et al. (1997). It consisted of 

150 Fi plants from an interspecific cross between TMS 30572 (the female parent), an elite 

cultivar tolerant to african cassava mosaic disease, and CM 2177-2 (the male parent) 

which had tolerance to bacterial blight and good cooking qualities. Localisation of the 

GBSSII gene on to the cassava genetic map was carried out using the computer package 

MAPMAKER (Lander et al., 1987) and linkage positions were assigned as described by 

Fregene et al. (1997). 

Northern Hybridisation 

RNA preparation and northern blot analysis was performed according to the protocol of 

Visser et al. (1989). Some 50 .̂g of total RNA were used per lane. The RNA was then 

transferred to Hybond-N (RPN203N, Amersham, U.K.). Hybridisation and washing of 

filters was performed in the same way as described for southern blot analysis. 

Starch isolation 

Starch was isolated from greenhouse grown cassava tubers as described by Kuipers et al., 

(1994). Cassava tubers were washed, homogenised in extraction buffer (50 mM Tris pH 

7.5, 10 mM EDTA, 2 mM Na2S205, 1 mM DTT), and then filtered through synthetic 

cloth. The solution was allowed to stand at room temperature to allow the starch granules 

to settle. The starch was washed twice with extraction buffer and acetone, collected and 

dried at 4°C. 

SDS PAGE and Immunoblotting 

An amount of 20 mg finely ground cassava leaf or starch was boiled in 200 .̂1 of sample 

buffer (20mM Tris pH 8.0, 2 mM EDTA, 20% glycerol, 2% SDS and 10% 2-

mercaptoethanol). The solubilised protein was electrophoresed on a 10% SDS 

Polyacrylamide gel, and then blotted on to a nitrocellulose membrane. The blot was then 

analysed immunochemically as described by Hovenkamp-Hermelink et al. (1987) using 
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antisera raised against potato GBSSI and GBSSII (Vos Scheperkeuter et al., 1986; 

Edwards et al., 1995). 

Results and Discussion 

Sequence of GBSSII 

Screening of a cassava tuber specific cDNA library, using a potato GBSSII cDNA, 

resulted in one positive clone being isolated, after three rounds of screening and 

amplification. The cDNA hybridised strongly with the potato GBSSII cDNA under 

stringent conditions. It was cloned into the Kpnl site of pUC18, and characterised by 

restriction analysis (Fig.la). The entire cassava GBSSII cDNA was sequenced. 

Pst I EcoRI Hindi Bglll Sac I Pst I 

GBSS II cDNA 

515 616 764 1317 1723 2221 2575 

ATG TGA 

^ H EcoRI linker 

^ ^ f l Untranslated leader sequence 

I I GBSS II protein 

Bill Poly A tail 

Fig la. Restriction map of the cassava GBSSII cDNA 
This clone of about 2.7 kb proved to be full length: there is an ATG start codon at position 150 and 

a TGA stop codon at position 2303 on the nucleotide sequence of cassava GBSSII. Several putative 
polyadenylation signals AATAAA (Joshi, 1987) are present at positions 2264 and 2348 upstream of the poly 
A tail at the 3'end (Fig. lb). Two putative hairpin loops centred at position 1318 and 1092 are predicted. In 
addition there are 9 inverted repeats of minimum length 10 bp. Two of the repeats have palindromic 
sequences and one spans the cDNA being set at position 80 (ATCCAAACCA) and also at position 2502 
(TGGTTTGGA) [Fig. lb] 
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1 GTTTGATGAA CCCCATCTCA AGÇTGTTGGG GCTGTCGCAC TTGTGAGAAA TGGCATTTAT 

61 AGGATCACTT CCTTTTATTA TCOiiCCik AGCAGAAAGT TCIGTCCTTC TCCATGACM 
121 AAACCTACAG CGATCCAGAT TCTCCGTTTT CCCAIGTAGA TCACAAAACT CTTTTAATTT 
181 AGCCGTTTCG TTATCTTTGA GTTTTAAGCC TGTAAGAGCT ACAGGTAAGG AAGGCGTTAG 
241 TGGTGATGGG TCAGAGGATA CACTTCAAGC CACCATCGAG AAAAGCAAGA AAGTTCTCGC 
301 CTTGCAAAGG GACCTACTTC AGAAGATTGC TGAAAGAAGG AAATTGGTTT CTTCTATACA 
361 AAGTAGTGTT GGTGACCACG ACACAAACAA AACTTCTCAT GAACAGAGGG AAAACTCTTT 
421 GGCAAATTCA GATAATACTT CAACTAGTGA TGTGAATATG CACCAACAGC AAAATGGCCC 
481 AGTTCTTCCG AGTAGCTATG TCCATTCAAC IGCAGAIGAG GTATCAGAAA CTGCATCTTC 
S41 AGCTATTAAT AGAGGTCATG CTAAAGATGA TAAGGAACTT GAACAACATG CATCTCCTAG 
601 AACAGCCTTT GTTAAGAATT CTACCAAACA GTTTAAAGAG ATGGATTCTG AGAAACTACA 
661 GACAGATGAG ATACCATCTT TTCTTTCAAA CACCACAGAT ATTTCCACTA TAAATGAAGA 
721 AAATAGTGAA CATTCAAATG AATCAACCTC ACCTATGGTC GACAITTTIG AAAGTGATTC 
781 TATGACTGAA GACATGAAGC CACCTCCTTT GGCTGGGGAC AATGTCATGA ATGTTATTTT 
841 GGTAGCTGCA GAATGTGCTC CATGGTCCAA AACAGGTGGC CTTGGTGAIG TCGCTGGATC 
901 TTTACCAAAG GCTTTGGCTC GGCGTGGACA TCGGGTTATG GTTGTGGCAC CGCGATATGG 
961 CAACTATGTT GAACCTCAGG ATACTGGAGT CCGAAAGAGG TATAAGGTGG ATGGTCAGGA 

1021 TTTTGAAGTA TCATACTTCC AAGCCTICAT TGATGGGGTT GATTTTGTAT TCATTGACAG 
1081 TCCTATGTTT CGCCACATAG GGAATGATAT ATATGGAGGA AACAGAATGG ATATATTAAA 
1141 GAGGATGGTA TTATTTTGCA AAGCTGCTGT TGAGGTTCCT TGGCATGTCC CATGTGGTGG 
1201 AGTCTGCTAT GGGGATGGAA ATTTGGCTTT CATTGCAAAI GATIGGCATA CAGCATTGTT 
1261 GCCAGTGTAT CTGAAGGCAT ATTATCGGGA TAATGGTTTA ATGCAATATA CAAGATCTGT 
1321 TC1TGTAATT CATAACATAG CTCACCAGGG TCGGGGTCCC AGTGGAGATT TCTCTTACGT 
1381 GGGTCTACCA GAACATTACA TTGATCTCTT CAAACTGCAT GATCCGATTG GTGGTGACCA 
1441 CTTCAATATC TTTGCACCTG GTCTTAAGGT GGCAGATCGT GTGGTTACTG TTAGTCATGG 
1501 ATACGCCTGG GAGCTTAAAA CATCTGAAGG TGGTTGGGGT CITCACAATA TCAIAAATGA 
1561 GAACCACTGG AAATTGCAGG GCATTGTTAA TGGGATTGAT GCCAAAGAAT GGAATCCACA 
1621 GTTTGATATT CAACTGACAT CAGATGGTTA TACTAACTAT TCCCTGGAAA CACTTGATAC 
1681 TGGCAAGCCT CAGTGCAAGA CAGCCTTACA GAACGAGCTC CGGTTTGCCA TCCCCCCAGA 
1741 TGTCCCTGTT ATTGGGTTCA TTGGAAGGTT GGATTATCAG AAAGGIGTCG ATCTCATAGC 
1801 TGAGGCAATT CCCTGGATGG TGGGTCAGGA TGTGCAACTA GTAATGTTGG GTACTGGCAG 
1861 ACAAGACTTG GAAGAGATGC TTAGACAATT TGAAAACCAA CATAGAGATA AAGTGAGGGG 
1921 ATGGGTTGGT TTTTCTGTGA AGACAGCTCA CAGGATAACT GCTGGTGCAG ATATTTTGCT 
1981 CATGCCATCA AGATTTGAAC CATGTGGGCT AAACCAGTTA TATGCTATGA TGTACGGGAC 
2041 GATTCCTGTA GTACACGCTG TGGGTGGACT AAGGGACACG GTGCAACCTT TCGATCCATT 
2101 TAATGAGTCG GGGCTTGGGT GGACATTTGA TAGCGCTGAA TCACATAAAC TGATACATGC 
2161 ATTAGGCAAT TGCTTGCTCA CTTACCGAGA GTACAAGAAG AGCTGGGAAG GCCTGCAGAG 
2221 AAGAGGGATG ACTCCAAACC TCAGCTGGGA CCATGCTGCT GAGAAATATG AGGAGACTCT 
2281 TGTTGCAGCC AAGTACCAGT GGTGAGCAAI AGTGCTTTTC CTTAAAÎTTT GACTTTTTTT 
2341 TTTCTGTTAA ATAATGCTTC CAAGAGGTTG CCCTCTGATG CTAGTAAGGG GGCCAATAGA 
2401 TGGCCATGTA TGTTCTGCIÄ EAIBfiCrCAA TGTGTAATCA GCTTAGAGTT ATGAITCAGG 
2461 AGTTGTAATC CTTTCTGGTT TTATCACACA TTAGCAGAGG ATGGTTTGG2. SSTGATGAGT 
2521 GGTGACCCAT GTTTTAICCT TGTGCTTATT CTGTTATCTG AAAAAAAAAA AAAAA 

DNA sequence composition: 739 A; 477 C; 614 G; 745 T; 

Fig. lb. The complete nucleotide sequence of the cassava GBSSII cDNA. The translational start codon 
(ATG) and stop codon (TGA) are shown in bold. The putative polyadenylational signals A A T A A A are 
underlined. One inverted repeat (situated at position 80 and 2502) which is also palindromic is highlighted in 
bold and italics. 
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Properties of the cassava GBSSII protein 

The cassava GBSSII cDNA has an open reading frame of 751 amino acids. The protein 

has a calculated molar mass of 83.7 kDa. It has a net negative charge at pH 7.0 and is 

hydrophobic. Cassava GBSSII has a largely hydrophilic and serine rich N-terminal region. 

A transit peptide (TP) which is thought to target the enzyme to the amyloplast is predicted 

in position 1-57 of cassava GBSSII according to the rules of Gavel and von Heijne (1990). 

This is slightly smaller than the 78 amino acid GBSSI TP which has a cleavage site 

predicted as IVC/G (Salehuzzaman et al., 1993) whereas that of GBSSII is predicted as 

being PVR/A. The mature protein is thus predicted to be 694 amino acids long with a 

calculated molar mass of 77.5 kDa. 

There is a 203 amino acid N-terminal region of GBSSII which forms part of the 

mature protein. This domain is effectively the reason why GBSSII is much larger than 

GBSSI of cassava. The N-terminal domain of cassava GBSSII shares only 10% homology 

with that of the GBSSI N-terminal region. Significantly similar N-terminal extensions 

have been found in pea and potato GBSSII (Dry et al., 1992; Edwards et al., 1995) 

marking this out as a feature distinguishing these GBSS isoforms. The N-terminal region 

of cassava GBSSII exhibits low homology to the N-terminal domain of potato GBSSII 

(28.5%) and of pea GBSSII (22.6%) [Fig. 2]. This homology is largely due to the high 

proportion of the serine amino acids which makes this domain highly flexible. Within the 

cassava GBSSII N-terminal domain there is a 210 amino acid ORF that is in a different 

frame from the mature protein. Its significance is unclear at present. 

At the C-terminal of this domain there is a region of three consecutive prolines 

(PPP) which Martin and Smith (1995) have termed the turn in the "flexible arm" of 

GBSSII. Expression of pea GBSSII in E. coli without the novel N-terminal domain 

resulted in a fully active enzyme indicating that the flexible arm is not involved in the 

catalytic mechanism of the enzyme (Martin and Smith, 1995). Whilst the role of this novel 

N-terminal domain is still unclear some workers have suggested that it may be involved in 

physical association of GBSSII with starch branching enzyme. It has been also suggested 

that this region may be important in the partitioning of the enzyme between the soluble 

and granule bound phases. However, analysis of the primary sequence of the N-terminal 

region of GBSSII does not readily reveal these functions. More research is required to 

determine the significance of the N-terminal domain. 
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CASGB2T 
P0TGB2T 
PEAGB2T 

CASGB2T 

P0TGB2T 

PEAGB2T 

ATGK EGVSGDGSEDTL-QATIEKSKKVLALQRDLLQKIAERRKLVSS 4 6 
ATGENSGEAASADESNDAL-QVTIEKSKKVLAMQQDLLQQIAERRKWSS 4 9 
AVGKSFGADENGDGSEDDWNATIEKSKRFLLCKGNLFNRLLKERNLVSS 5 0 

****** 

CASGB2T IQS-SVGDHDTNKTSHEQRENSLANSD NTSTSDVNMH 82 
P0TGB2T IKS-SLAN AKGTYDGGSGSLSDVDIPDVDKDYNVTVPSTAATGITDV 95 
PEAGB2T IDSDSIPGLEGNGVSYESSEKSLSRDSNPQ KGLPAAAVL 89 

CASGB2T QQQNGPVLPSSYVHSTAD EVSETASSAINRGHAKDDKELEQHASPRT 129 
P0TGB2T DKNTPPAISHDFVESKREIKRDLADERAPPLSRSSITASSQISSTVSSKR 145 
PEAGB2T LKPNGGTVSFNYVRSKETETWAVS SVGINQGFDEIEKK 127 

CASGB2T AF VKNSTKQFKEMDSEK LQTDEIPSFLSN-TTDISTINEE 168 
P0TGB2T TLNVPPETPKSSQETLLDVNSRKSLVDVPGKKIQSYMPSLRKESSASHVE 195 
PEAGB2T NDAVKASSKLHFNEQIKNKLYERPDTKDIS—SSIRT—SSLKFE 168 

NSEHSNESTSPMVDIFESDSMTEDMKPPPLAGDNV- 203 

Q R N E N L E G S S A E A N E E T E D P V N I D E K P P P L A G T N V - 230 

NFEGANEPSSKEVANEAENFESGGEKPPPLAGT^A^- 203 

******* ** 

Fig. 2. Alignment of the N-terminal domains of the GBSSII isoforms of cassava (CASGB2T), potato 

(POTGB2T) and pea (PEAGB2T). Amino acids perfectly conserved in all three sequences are indicated by 

'*' whilst those which are well conserved in two of the sequences are indicated by '.' The prolines PPP which 

form the hook of the flexible region are highlighted in bold. Sequence data are from: CASGBT2 (present 

work); POTGB2T (Edwards et al., 1995); PEAGB2 (Dry et al., 1992). 
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CASG82 

CASGB1 

CASGB2 

CASGB1 

CASGB2 

CASGB1 

CASGB2 

CASGB1 

CASGB2 

CASG81 

CASGB2 

CASGB1 

CASGB2 

CASGB1 

CASGB2 

CASGB1 

CASGB2 

CASGB1 

CASGS2 

CASGB1 

CASGB2 

CASGB1 

CA5GB2 

CASGB1 

CASGB2 

CASGB1 

CASGB2 

CASGB1 

CASGB2 

CASGB1 

CASGB2 

CASGB1 

CASGB2 

CASGB1 

CASGB2 

CASGB1 

CASGB2 

CASGB1 
CASG82 
CASGB2 

MAFIG: 
I I 
MA-

;SLI PFIIQTKAESSVLLHDKNLQRSRFSVFPCRSQNSFNLAVSLSL -50 

SFKPVRATGKEGVSGDGSEDTLQATIEKSKKVLALORDLLQKIAERRKLV -100 

SSXQSSVGDHOTNKTSHEQRENSLANSDNTSTSDVNMHQQQNGPVI.PSSY -150 

VHSTADEVSETASSAINRGHAKDDKELEQHASPRTAFVKNSTKQFKEMDS -200 

EKLQTDEIPSFLSNTTDISTINEENSEHSNESTSPMVDIFESDSMTEDMK -250 

-2 

P P P L A G 
I 

- T V I A A H F V S R S S H L S I H A L E T K A N N L S H T G P W T Q T I T P N G L R S U J T M D K 

DNVMNVILVAAECAPWSKTGGl^j 

II I I II I I I I I I I I I 
L Q M K T Q S K A V K K V S A T G N G R P A A K I 1 C G H G H N L 1 F V G A E V G P W S K T G O L G 

D V A G S L P K A L A R R G H R V M V V A P R Y G N Y V E P Q D T G V R K R Y K V D G Q D F E V S Y 
I I I I I I I I I I I M I I I I t I I I I I 
D V L G G L P P A M A A R G H R V M T V S P R Y D Q Y K D A W D T S V S V E I K I G D R I E T V R F 

F Q A F I D G V D F V F I D S P M F R H I G N D I Y G G N R M D I L K R M V L F C K A A V E V P W H 
I I I I I I I M I 
F H S Y K R G V D R V F V O H P M F 

V P C G G V C Y G D G N L -

L E K V W G K T G S K I Y G P R A G L D Y Q Û N Q L R F S L L C L A A I . E A 

A F I A N D W H T A L L P V Y L K A Y Y R D N G L M Q Y T R 
I I I I I I I I I I I I I I I I I I I 

PRVLNLNSSKNFSGPYGEEVAFIANDWHTAI.LPCYLKAIYQPMGIYKHAK 

- 2 5 6 

- S I 

- 2 7 9 

- 1 0 1 

- 3 2 9 

- 1 5 1 

-319 

- 1 6 9 

- 3 9 2 

- 2 0 7 

- 4 2 2 

- 2 5 7 

- 4 5 4 SVL.VIHNIAHQGRGPSGDFSYVGLPEHY I D L F 
I I I I I I I I I I I I I 

VAFCIHNIAYQGRFAFSDFPRLNIPDKFKSSFDFIIXSYEKPVKGRKINWM - 3 0 7 

KLHDPIGGDHFNIFAPGLKVADRWTVSHGYAWE1. - 4 8 9 
I I I I I I I I I I I 

K AGILESORVLTVSPYYAQEVISGVERGVELDNFIR -34 3 

KTSEGGWGLHNIXNENHWKLQGIVNGXOAKEWNPQFDIQLTSDGYTNYSL. -539 
II I I I I I I I I I 
K T G IAGIINGMDVQEWNP -361 

ETLDT GKPQCKTALQNELRFAIPPDVPVIGFIGRL -57 4 
I I I I I I I I I I I I I I I I I 

V T D K Y I D I H Y D A T T V M D A K P L L K E A L Q A E V G L P V D R N V P L I G F I G R L -4 08 

D Y Q K G V D L I A E A I PWMVGQDVQL.VMLGTGRQDLEEMLRQFENQHRDKVRG -624 
I I I I II I I I I I I I I I I I I I I 

E E Q K G S D I F V A A I S Q L V E H N V Q I V I L G T G K K K F E K Q I E H L E V L Y P D K A R G - 4 5 8 

W V G F S V K T A H R I T A G A D I L L M P S R F E P C G I M Q I . Y A M M Y G T I P W B A V G G I . -674 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I III 
VAKFNVPLAHMITAGADFMLVPSRFEPCGiaQIJtAMRYGTVPIVASTGGX. - 5 0 8 

RDTVQ -67 9 
I I I 

VDTVKEGYTGFQMGALHVECDKIDSAOVAAIVKTVARAI-GTYATAA1.REM -558 

p -680 
I 

ILNCMAQOLSWKGPARMWEKH1.1.DLEVTGSEPGTEGEEIAPLAKENVPTP - 6 0 S 
• FDPFNESGLGWTFDSAESHKLIHALGNCIXTYREYKKSHEGLQRRGMTPN - 7 3 0 

LSWOHAAEKYEETL.VAAKYQW - 7 5 1 

Fig 3: Amino acid sequence alignment of cassava granule bound starch synthase II of cassava 
(CASGB2) with cassava GBSSI (CASGB1). The cleavage site motif (PVRA) for cassava GBSSII is shown 
and the splice site is indicated by an arrow. The conserved regions encompassing the KTGGL ADP-glucose 
binding site motif (Furukawa et al., 1990) BOX I; conserved domains SRFEPCGLXQL (BOX II) and 
XXGGLXDT (BOX III) are shown in bold. Source of CASGB1 (Salehuzzaman et al., 1993). 
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CASGB2 MAFIGSLPFIIQTKAESSVL-LHDKNL-QRSRFSVFPCRSQNSFNLAVSL 48 
P0TGB2 M ENSIL-LHSGNC-FHPNLPLIALRPKK-LSLIHGS 33 
PEAGB2 M MLSLGSDATVLPFHAKNLKFTPKLSTL—NGDIAFSKGLGV 40 

CASGB2 
POTGB2 
PEAGB2 

CASGB2 
POTGB2 
PEAGB2 

CASGB2 
POTGB2 
PEAGB2 

CASGB2 
POTGB2 
PEAGB2 

CASGB2 
POTGB2 
PEAGB2 

CASGB2 
POTGB2 
PEAGB2 

CASGB2 
POTGB2 
PEAGB2 

CASGB2 
POTGB2 
PEAGB2 

CASGB2 
POTGB2 
PEAGB2 

CASGB2 
POTGB2 
PEAGB2 

CASGB2 
POTGB2 
PEAGB2 

CASGB2 
POTGB2 
PEAGB2 

CASGB2 
POTGB2 
PEAGB2 

CASGB2 
POTGB2 
PEAGB2 

CASGB2 
POTGB2 
PEAGB2 

S LSFKPVRATGK—EGVSGDGSEDTL-QATIEKSKKVLAL 
SR EQMWRNQ.RVKATGENSGEAASADESNDAL-QVTIEKSKKVLAM 
GRLNCGSVRLNHKQKVRAVGKSFGADENGDGSEDDWNATIEKSKRFI.LC 

QRDLLQKIAERRKLVSSIQS-SVGDHDTNKTSHEQRENSLANSD 
QQDLLQQIAERRKWSSIKS-SLAN AKGTYDGGSGSLSDVDIPDVDK 
KGNLFNRLLKERNLVSSIDSDSIPGLEGNGVSYESSEKSLSRDSNPQ 

_ * *̂ *̂***_* *_ t ## ** 
NTSTSDVNMHQQQNGPVLPSSYVHSTAD EVSETASSAINR 

DYWTVPSTAATGITDVDKNTPPAISHDFVESKREIKRDLADERAPPLSR 
KGLPAAAVLLKPNGGTVSFNYVRSKETETWAVS SVGINQ 

* * _ 
GHAKDDKELEQHASPRTAF VKNSTKQFKEMDSEK LQTDEI 
SSITASSQISSTVSSKRTLNVPPETPKSSQETLLDVNSRKSLVDVPGKKI 
GFDEIEKK NDAVKASSKLHFNEQIKNKLYERPDTKD 

* * 
PSFLSN-TTDISTINEENSEHSNESTSPMVDIFESDSMTEDMKPPPLAGD 
QSYMPSLRKESSASHVEQRNENLEGSSAEANEETEDPVNIDEKPPPLAGT 
IS—SSIRT—SSLKFENFEGANEPSSKEVANEAENFESGGEKPPPLAGT 

* *..*.,.*.* ******* 
BOX I 

NVMNVILVAAECAPWSKTGGLGDVAGSLPKALARRGHRVMWAPRYGNYV 
NVMNIILVASECAPWSKTGGLGDVAGALPKALARRGHRVMWAPRYDNYP 
NWMIILVSAECAPWSKTGGLGDVAGSLPKAIARRGHRVMIVAPHYGNYA 

** *** ***************************** *** * ** 
EPQDTGVRKRYKVDGQDFEVSYFQAFIDGVDFVFIDSPMFRHIGNDIYGG 
EPQDSGVRKIYKVDGQDVDVTYFQALIJIDCDFVFIHSHMFRHIGNNIYGG 
EAHDIGVRKRYKVAGQDMEVTYFHTYIDGVDIVFIDSPIFRNLESNIYGG 
* * **** ****** *_**_f t t ****_*f>** (>**** 
NRMDILKRMVLFCKAAVEVPHHVPCGGVCYGDGNLAFIANDWHTALLPVY 
NRVDILKRMVLFCKAAIEVPWHVPCGGVCYGDGNLVFIANDWHTALLPAY 
NRLDILRRMVLFCKAAVEVPWHVPCGGICYGDGNLVFIANDWHTALLPVY 
******************************************** 
LKAYYRDNGLMQYTRSVLVIHNIAHQGRGPSGDFSYVGLPEHYIDLFKLH 
LKAYYRDNGIMNYTRSVLVIHNIAHQGRGPI.EDFSYVDLPPHYMDPFKLY 
LKAYYRDHGLMNYTRSVLVIHNIAHQGRGPVEDFNTVDLSGNYLDLFKMY 
******* ******************** (** **a * * **__ 
DPIGGDHFNIFAPGLKVADRWTVSHGYAWELKTSEGGWGLHMIINENHW 
DPVGGEHFNIFAAGLKTADRWTVSHGYSWELKTSQGGWGLHQIINENDW 
DPVGGEHFNIFAAGLKTADRIVTVSHGYAWELKTSEGGWGLHNIINESDW 
** ** * * * * * * * * * * * * * * * * * * * * * * * * * ****** ****a * 
KLQGIVNGIDAKEWNPQFDIQLT-SDGYTNYSLETLDTGKPQCKTALQNE 
KLQGIVNGIDTKEWNPELDVHLPRSDGYMNYSLDTLQTGKPQCKAALQKE 
KFRGIVNGVDTKDWNPQFDAYLT-SDGYTNYNLKTLQTGKRQCKAALQRE 

* ***** *****_* *_ **** **t*.**,***#******_* 
LRFAIPPDVPVIGFIGRLDYQKGVDLIAEAIPWMVGQDVQLVMLGTGRQD 
LGLPVRDDVPLIGFIGRLDPQKGVDLIAEAVPWMMGQDVQLVMLGTGRRD 
LGLPVREDVPIISFIGRLDHQKGVDLIAEAIPWMMSHDVQLVMLGTGRED 

* *** * ****** ********** *** *********** * 
BOX II 

LEEMLRQFENQHRDKVRGWVGFSVKTAHRITAGADILLMPSRFEPCGLNQ 
LEQMLRQFECQHNDKIRGWVGFSVKTSHRITAGADILLMPSRFEPCA1NQ 
LEQMLKEFEAQHCDKIRSWVGFSVKMAHRITAGSDILLMPSRFEPCGLNQ 

** ** ** ** ** ******** ********************* 
BOX II, 

LYAMMYGTIPWHAVGGLRDTVQPFDPFNESGLGWTFDSAESHKLIHALG 
LYAMKYGTIPWBAVGGLRDTVQPFDPLMSQDWGGPSDRAEASOLIPRIR 
LYAMSYGTVP\A/BGVGGLRDTVQPFNPFDESGVGWTFDRAEANK1MAALW 
**** *** ****t***********#*t * ***_ _*̂  
NCLLTYREYKKSWEGLQRRGMTPNLSWDHAAEKYEETLVAAKYQW 751 
NCLLTYREYKKSWEGIQTRCMTQDLSWDNAAQ.NYEEVLIAAKYQW 768 
NCLLTYKDYKKSWEGIQERGMSQDLSWDNAAQQYEEVLVAAKYQW 752 
****** ******* * * * _>**** **_#***_*#****** 

85 
77 
90 

128 
123 
137 

168 
173 
176 

208 
223 
212 

257 
273 
258 

307 
323 
308 
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358 
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408 

457 
473 
458 

507 
523 
508 

556 
573 
557 

606 
623 
607 

656 
673 
657 

706 
723 
707 
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Cassava GBSSII is more similar to other GBSSII sequences than to GBSSI of 

cassava 

Comparison of the derived amino acid sequence of cassava GBSSII to that of cassava 

GBSSI revealed an overall 35% amino acid identity (Fig. 3). This is low compared with 

the identity of cassava GBSSI to potato GBSSI of 74% (Salehuzzaman et al., 1993). At the 

same time cassava GBSSII, minus the N-terminal region, exhibits increased amino acid 

sequence homology with other cloned GBSSII cDNAs from pea (79% identity) and potato 

(80% identity) [Fig. 4]. 

A dendrogram was produced after comparison of cassava GBSSII with isoforms of 

GBSS in potato, pea, cassava, and E.coli. The GBSSII sequences fall, because of their 

high similarity, into a distinct group separate from that formed by the GBSSI type and also 

one which encompasses the prokaryotic glycogen synthase genes as illustrated by 

Escherichia coli gig A (Fig. 5). It is also noteworthy to mention that potato soluble starch 

synthase 3 (POTSSS3) exhibits greater homology to GBSSII sequences when only the 

region from position 780 to 1230 of the polypetide is used in alignments. This may 

indicate that one of the ways starch synthases may have evolved is by introgression of 

additional sequences within the N-terminal region whilst maintaining the basic sequences 

required for starch synthase activity. 

Thus despite the rather low homology between GBSSII and GBSSI certain 

domains which may play a critical role in the catalytic and allosteric activity of the enzyme 

are conserved. These include the glycine rich Box I encompassing the KTGGL ADP-

glucose binding site (Furukawa et al., 1990). In addition other highly conserved regions 

denoted as BOX II (SRFEPCGLXQL) in which there is 90% identity and Box in 

(XXGGLXDT) with 75% homology, were identified (Fig. 3). Such regions and other 
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Fig. 4 Alignment of the granule bound starch synthase sequences from pea (PEAGB2), potato 
(POTGB2) and cassava (CASGB2). Conserved regions (BOXI, BOX II and BOX III) are indicated as for 
Fig. 3. The putative splice site of the transit peptide of cassava GBSSII is indicated by an arrow. 
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al., 1992). 

conserved single amino acid positions indicate their importance to the overall structure of 

the starch synthase protein in relation to its function in starch polymerisation. 

Southern analysis and localisation of GBSSII on to the genetic map of cassava 

Southern analysis of allotetraploid cassava revealed that GBSSII is a low copy number 

gene (Fig. 6a). This is a situation which is common amongst the known starch genes in 

cassava (Salehuzzaman et al., 1993; Munyikwa et al., 1997). Linkage analysis of a 

segregating population of 150 F, cassava plants enabled the GBSSII gene to be localised 

on to the male derived linkage group T (Fig. 7a and Fig 7b). Although the genetic map of 

cassava is still under construction, currently consisting of 20 non-overlapping male and 

female linkage groups instead of the 9 linkage groups expected (Fregene et al., 1997), the 

map position of cassava GBSSII indicates that this gene is localised on one linkage group 

and not dispersed throughout the genome. This is in contrast to the small subunit genes of 

ADP-glucose pyrophosphorylase which appear to be localised on at least two positions 
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within the cassava genetic map (Fregene personal communication). Thus on the basis of 
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Fig 6A: Southern blot analysis of cassava DNA. 10 (ig per of cassava DNA per lane was digested with the 

enzyme indicated, electrophoresed and probed with the 2.5 kb putative cassava GBSSII cDNA. Molecular 

weight markers are indicated in kb on the left. 

Fig 6B: Organ specific expression pattern of cassava GBSSII. The lanes are: L, leaves; P, petioles; S, 

stems; R, roots; T, tubers. For each tissue type 40mg of RNA was electrophoresed and probed with the 

putative cassava GBSSII cDNA labelled with [32P] dCTP. 

the simple pattern of restriction fragments and the simple segregating pattern in the 

offspring it can be concluded that GBSSII is a single copy gene on the male linkage group 

T. 

Localisation of GBSSII and other starch genes will aid in the construction of a 

genetic map for cassava and enable breeders to be able to monitor transfer of traits 

associated with starch quality and quantity. 
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Male-Derived Linkage group T 

Dia Maifcar 

- GY106-1 
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- K3Y20 

Fig. 7b 

Fig. 7a Southern hybridisation of Hind III digests of parental lines and mapping population probed 
with cassava GBSSII. F, female parent (TMS 30572), M, male parent (CM 2177-2). An amount lOug of 
genomic DNA was used per lane. The probe used was the 2.5 kb cassava GBSII cDNA. Only 28 out of a 
total 150 Flplants probed are shown in this panel. 
Fig. 7b Localisation of cassava GBSSII on the male derived genetic map of cassava. The other markers 
shown are RFLP markers (CDY; cDNA, GY genomic, and the RAPD marker denoted as rZ18b). 

Tissue specific expression of GBSSII 

GBSSII is highly expressed in leaf tissue while expression in other tissues is low (Fig. 6b). 

This is different from the expression of cassava GBSSI which is most prominent in tubers 

and low in leaves (Salehuzzaman et al., 1993). 
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Developmental Expression of Cassava Granule Bound Starch Synthases 

.eaves 
VY M O 

© 

liibers 

© 

Fig. 8: Expression of cassava GBSSII in tissues at different developmental stages. Arrows indicate the 
position of the GBSSII mRNA. VY = very young : leaves (Icm) and tubers (1 cm diameter) Y = young: 
leaves (1 to 6 cm long) and tubers (1-3.0 cm diameter); M = middle : leaves (7 to 12 cm long) and tubers (3.5 
to 5.0 cm diameter); O = old leaves ( > 12 cm) and tubers ( >5.0 cm in diameter) 

Expression in leaves 

Developmental northern analysis of total cassava leaf RNA revealed a GBSSII transcript 

of about 3.0 kb. Cassava GBSSII exhibits high expression in leaves with the highest level 

of expression being in source leaves and lowest in sink leaves (Fig. 8a). However, the 

pattern of expression was not closely matched by the polypeptide level as the amount of 

protein was approximately the same at all stages of leaf development. 

While there was no discernible RNA transcript in leaves for GBSSI, a clear 

antigenic reaction was observed on western blots probed with GBSSI antibody (results not 

shown). This may indicate very low GBSSI expression in leaves that would require a more 

sensitive technique than total RNA northern blotting to detect it. 
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Expression in tubers 

GBSSII mRNA starts to accumulate in the very young tubers and is expressed to a similar 

level in sink tubers. Similarly the pattern of polypeptide accumulation mimicked the 

transcript levels (Fig. 8b). GBSSI exhibits high constant expression in tubers at different 

developmental stages. At the polypeptide level the amount of protein produced in these 

different categories is approximately the same (Salehuzzaman et al., 1993). 

Based on the results above it would seem that there are differing roles for cassava 

GBSSII and cassava GBSSI in tuber and leaf amylose production. The higher expression 

of GBSSII in source leaves would indicate a prominent role for the enzyme in this tissue, 

whereas GBSSI would seem to be more important in sink tubers where it is highly 

expressed with high enzyme activity (Salehuzzaman et al., 1993). In pea it was observed 

that GBSSII is expressed in all organs, but most abundantly early in embryo development 

and in roots (Dry et al., 1992). Whereas potato GBSSII is present throughout the 

development of the tuber, it only accounts for a maximum of 15% of the total starch 

synthase activity in this tissue (Edwards et al., 1995). Thus for cassava in addition to being 

expressed early on during development in leaves, GBSSII would seem to have a 

complementary role to GBSSI the predominant amylose producer in tubers. 
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Isolation and characterisation of cDNAs encoding the large and small subunits of 

ADP-glucose pyrophosphorylase from cassava (Manihot esculenta Crantz) 

Abstract 

Screening of a tuber specific cassava cDNA library resulted in the isolation of full length 

cDNA clones designated AGPase B and AGPase S. The two clones exhibited 35% and 

54% homology with each other at nucleotide and amino acid sequence levels, respectively. 

AGPase B has high homology (74-84%) with previously cloned small AGPase subunit 

polypeptides. AGPase S also exhibits high amino acid sequence homology to polypeptides 

from genes encoding the large subunit of AGPase enzymes in other plant species. Analysis 

of the genomic DNA of allotetraploid cassava revealed that AGPase B and AGPase S are 

low copy genes and originate from different loci in the cassava genome. Segregation 

analysis of a cross between the cassava cultivars TMS 30572 and CM 2177-2 revealed that 

AGPase S is a single copy gene that is localised on the female derived linkage group E of 

the cassava genetic map. The two genes are expressed in all cassava tissues but AGPase B 

exhibits a higher steady state mRNA level than AGPase S and is highly expressed in leaf 

and tuber tissue. Post-transcriptional control of small subunit polypeptide levels could be 

inferred from the discrepancy between AGPase B mRNA and polypeptide levels. The 

AGPase enzyme activity was much higher in young cassava leaves as compared to older 

leaves and tubers. Cassava leaf AGPase activity was increased 3 fold by the addition of 3-

PGA and inhibited by up to 90% in the presence of inorganic phosphate (Pi). The tuber 

enzyme was relatively unaffected by 3PGA but was highly inhibited by Pi. 
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Introduction 

Glycogen and starch are important storage compounds in bacteria and plants, respectively. 

These polysaccharides share important similarities in the way in which they are 

synthesised and in their structure. Basically, they are a-1,4 glucan compounds with 

varying degrees of branching, and have highly analogous enzymes involved in their 

synthesis namely ADP glucose pyrophosphorylase (AGPase), glycogen or starch synthases 

and branching enzyme (Okita, 1993). 

AGPase (AGPase; EC 2.7.7.27) catalyses the synthesis of ADP-glucose and 

inorganic phosphate from ATP and glucose-1-phosphate. This reaction is a critical step in 

the synthesis of bacterial glycogen and plant starch as ADP glucose acts as the main 

glucosyl donor for a-glucan synthesis by branching enzyme and various starch synthases 

(Preiss, 1991) 

The bacterial AGPase enzyme is homotetrameric in structure and is encoded by a 

single gene locus the gig C gene in Escherichia coli. The enzyme has a molecular weight 

of approximately 200kDa with each subunit being 48kDa (Preiss, 1991). In contrast the 

plant enzyme has a much more complex heterotetrameric structure. It is about 210-240 

kDa in size and is based on 2 subunit types (Copeland and Preiss, 1981), a large subunit 

(between 54 and 60 kDa) and a small subunit (between 50 and 55 kDa). The two subunits 

are encoded by different genes in various plant species (Bhave et al., 1990, Bae et al., 

1990, Müller-Röber et al., 1990). Both subunits are required for full activity of AGPase. 

Mutants lacking either of the two subunits in maize (Hannah et al., 1980), Arabidopsis 

(Lin, 1988), pea (Smith et al., 1989) and transgenic potato plants expressing an AGPase 

antisense cDNA (Müller-Röber et al., 1990), exhibit significant reductions in AGPase 

activity and consequently reductions in starch levels. This is exemplified by the 

Arabidopsis mutant adg2 which has 5% ADP-glucose pyrophosphorylase activity and only 

40% of the wild type starch due to lack of the large subunit of AGPase (Lin, 1988). 

The bacterial and plant AGPases differ further in the way in which they are 

regulated. In E.coli AGPase is activated by fructose 1,6 diphosphate and inhibited by 

adenine monophosphate (AMP) or adenosine diphosphate. The plant AGPases in 

photosynthetic tissue are closely regulated by fluctuations in the ratios of the 

photosynthetic metabolites 3-phosphoglyceric acid (3-PGA) and orthophosphate (Pi). 

Studies on AGPase from non-photosynthetic tissue have shown that the enzyme shows 

similar responses to allosteric activation and inactivation by 3-PGA and Pi respectively, 

like the enzymes from photosynthetic tissue. Generally plant as well as algal and 
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cyanobacterial AGPases are activated by 3-PGA and inhibited by orthophosphate (Preiss, 

1991). An exception is the barley AGPase which is relatively insensitive to these 

metabolites and actually shows high activity in the absence of 3-PGA (Kleczkowski, 

1993). 

CDNA as well as some genomic clones encoding plant AGPases have been cloned 

from several species such as maize (Bhave et al., 1990), sugar beet (Müller-Röber et al., 

1995), rice (Anderson et al., 1989) potato (Müller-Röber et al., 1990), spinach (Smith-

White and Preiss, 1992), and sweet potato (Bae and Liu, 1997). 

It has been shown that multiple genes encode the large or S subunits in plants such 

as potato and Arabidopsis where from each 3 genes encoding AGPase S isoforms have 

been cloned (La Cognita et al., 1995; Villand et al., 1993). These genes are strongly tissue 

specific (AGPase S3 of potato is only expressed in tubers, La Cognata et al., 1995) and are 

induced under specific conditions such as increased sucrose levels as is the case with 

AGPase S2 of potato whose expression was induced 2 to 3 fold by exogenous sucrose (La 

Cognata et al., 1995). Investigations into the small or B-subunit have also revealed the 

existence of various small subunit isoforms which also exhibit tissue specificity in bean, 

maize and sweet potato (Weber et al., 1995; Prioul et al., 1994; Bae and Liu, 1997). 

Although the cDNAs encoding the small subunit isoforms in sweet potato did not exhibit 

differences in tissue specificity, one of them was sucrose inducible as well as light 

responsive (Bae and Liu, 1997). 

The molecular identification and characterisation of genes involved in starch 

biosynthesis in the tropical root crop cassava {Manihot esculenta Crantz) is our major 

goal. This will provide us with invaluable tools not only for analysing the process of starch 

biosynthesis, but also for modifying the composition and quantity of starch produced by 

cassava plants. This paper describes the cloning and characterisation of two cDNAs 

encoding the small and large subunit of AGPase from cassava respectively. 
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Materials and Methods 

Plant Material and Bacterial Strains 

Cassava genotype M.Col22 was used in this study. The plants were sprouted from stem 

cuttings and grown in the greenhouse under a 16 hour light/ 8 hour dark regime. The day 

and night temperatures were maintained at 28°C and 16°C respectively. Leaves, tubers, 

roots, petioles and stem were harvested from plants which had been growing for 6 months. 

The tissue was frozen in liquid nitrogen and stored at -80°C for later extraction of DNA 

and RNA or homogenised immediately for antigen and enzyme activity determination. 

Escherichia coli strains DH5 alpha and Y1090 were cultured and transformed using 

standard techniques (Sambrook et al., 1992). 

Screening of cDNA library 

A cassava M.Col 22 tuber specific cDNA library (preparation described in Salehuzzaman 

et al., 1993) in lambda gtl 1 was screened by plaque hybridisation for the genes encoding 

ADP-glucose pyrophosphorylase B and S subunits. The cloned genes from potato labelled 

with [32P] dCTP by the random primer labelling technique (Feinberg and Vogelstein, 

1983) were used as probes. Approximately 2 xlO pfu were screened for each probe at the 

first round of screening. The blots were hybridised overnight at 60°C in 5 X SSPE, and 

0.3% SDS with 100mg/ml denatured herring sperm DNA added. Washing was carried out 

three times with 2xSSPE + 0.1% SDS at 60 °C for 30 minutes each time followed by 

autoradiography, at -80°C, within intensifying screens. The positive cDNAs obtained were 

cloned into the EcoRI site of pUC19. 

Isolation of DNA 

Minipreps of DNA from recombinant lambda gtl 1 were prepared from cultures of E.coli 

(Y1090) infected with individual plaques. These were grown at 43 °C for 6 hours on L 

agar with 50ug/ml ampicillin and lOmM MgSÛ4. Minipreps and large-scale preparations 

of plasmid DNA were carried out according to Sambrook et al. (1992). Genomic DNA 

isolation from cassava was carried out using the method of Dellaporta et al. ( 1983). 
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Sequencing 

The dideoxy chain termination method (Sanger et al., 1977) was used for sequencing the 

clones and subclones of isolated cassava cDNAs. Sequences were analysed for homology 

to data bases using the blast programmes (Altschul et al., 1990) located at the WWW site 

of NCBI (http://www.ncbi.nlm.nih.gov). All other sequence manipulations and analyses 

were carried out using the PC-Gene programme (Intelligenetics, Mountain View, CA, 

USA). 

Southern and Northern Hybridisation 

Cassava DNA, digested with various enzymes, was electrophoresed on 0.8% agarose gels 

and blotted on to nitrocellulose. Total RNA from plant organs was denatured using 

formaldehyde and formamide. This was then size fractionated in denaturing 1.4% (w/v) 

agarose gels. The RNA was then transferred to Hybond-N (RPN203N, Amersham, UK). 

Hybridisation with the isolated cassava cDNAs was carried out at 60°C as described by 

Salehuzzamman et al., (1992). 

Localisation of the putative AGPase cDN As on to the cassava genetic map 

The cassava cDNAs were mapped using 150 Fi plants from an interspecific cross between 

TMS 30572 (the female parent) and CM 2177-2 (the male parent) described in Fregene et 

al, (1997). Localisation of the AGPase B and AGPase S cDNAs on to the cassava genetic 

map was carried out using the computer package MAPMAKER (Lander et al, 1987) and 

linkage positions were assigned as described by Fregene et al, 1997. 

Cloning of the AGPase B insert in the expression vector 

From the results of sequencing AGPase B (see results section) primers with a BamHI 

restriction site, were synthesised for PCR amplification of the coding sequence of AGPase 

B. The PCR product was cloned directly into the pGEMT vector (Promega, Madison, WI, 

USA). This was followed by restriction with BamHI and Hind HI resulting in a 1 kb 

Bam/Hind AGPase B insert containing an in frame ATG start codon. The expression 

vector pQE-32 (Qiagen GmbH, Düsseldorf, Germany), carrying a 6 X Histidine affinity 

tag at the 5' site of the expression box, cut with BamHI and HindEI was then ligated with 

the 1 kb Bam/Hind AGPase insert to give pQEB and its sequence was verified. 
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Cloning and characterisation ofAGPase B and S 

Expression of AGPase in E.coli 

pQEB was transformed into E.coli M15. This E.coli strain contains the plasmid pREP4. 

This plasmid carries the gene for neomycin phosphotransferase as well as the IPTG 

induceable lac I gene which encodes the lac I repressor. Over-expression of the AGPase B 

protein as well as its purification using an NI-NTA resin column was carried out according 

to the manufacturer's recommendations (Qiagen). 

Polyclonal antibodies were raised in a rabbit against the cassava AGPase B protein 

and obtained using standard techniques (Sambrook et al., 1992). The final serum, giving a 

high antibody titer, termed "ANTI B" serum, was collected and stored at -20°C. 

SDS-PAGE and Western Blot Analysis 

Cassava tuber and leaf tissue were ground in extraction buffer (50 mM Tris-HCl pH 7.5, 

lOmM EDTA, 2 mM Na2S20s, and 2.5 mM Dithriothreiol). The homogenate was filtered 

and then centrifuged at 13000rpm for 5 mins. The supernatant was concentrated to 2 

mg/ml protein, mixed 1:1 with sample buffer (20 mM Tris-HCl pH 8.0, 2 mM EDTA, 

25% glycerol, 2% SDS, 10% 2-mercaptoethanol) and then boiled for 5 mins followed by 

electrophoresis in a 10% SDS Polyacrylamide gel. The separated proteins were then 

transferred onto nitrocellulose membranes. The blots were blocked with 3% BSA, probed 

with "ANTI B" serum diluted at 1:500. Goat anti-rabbit IgG phosphatase conjugate 

(diluted 200 times) was used as the secondary antibody. The immuno reactive bands were 

detected by incubating the membranes in the dark in lOOul AF buffer (100 mM Tris-HCl 

pH 9.5, lOOmM NaCl, 5mM MgC12) containing 200ul NBT (4 nitro-blue 

tetrazoliumchloride; 75 mg/ml in dimethylformamide) and 200ul BCPIP (5-bromo-4-

chloro-3-indoyl phosphate; 50 mg/ml in H20). 

AGPase Enzyme activity 

The formation of NADH measured at 340nm and 25 °C, using a continuous 

spectrophotometric method was used to determine AGPase activity (in the reaction leading 

to Glucose-1-P synthesis) in various cassava tissues. Enzyme extraction and reaction was 

carried out as described by Weber et al., 1994. NADH synthesis was linear for at least 15 

minutes. The allosteric regulators 3-PGA and Pi were added to the reaction at between 0.5 

to 5mM. 
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Results 

cDNA library screening 

About 2.0 x 10 plaque forming units of a cassava tuber specific cDNA library were 

screened separately with: (a) a 1.2 kb EcoRI fragment of the potato AGPase B cDNA, (b) 

a 1.5 kb EcoRI cDNA fragment of the potato AGPase S2 cDNA and (c) a 1.5 kb EcoRI 

fragment of the potato AGPase S3 cDNA. Hybridisation with the 1.2 kb EcoRi fragment 

of AGPase B resulted in the isolation of 6 cDNA clones, ranging in size from 1.5 to 2.0 

kb. Digestion of the putative cassava AGPase B clones revealed identical restriction sites. 

The largest clone B45-1 (2.0 kb), hence forth referred to as AGPase B, was completely 

sequenced. 

AAAATAlCAGAICCICCCACGtAAATICAACACAAACACrcCACATTCAGClGCIC I lCUCAGIGAAGAGTGlCAGCCCGAGAAlC ICCAGGTUnGG 100 

TmTTCCAAAlCTGAACITGCTAATGGCCAGÎATGGCGCCCAÏCGGAGTTCCGAGAGTACCGTCllCTÎCCACTTCATCTTCTTCACAGrCCAATTCCT 2 0 0 

M A S M A A 1 G. V P R V P S S S T S S S S O S N S 

CGAATCTCAATCGGAGAACGCCÏGIGCAAACCCTMCGTrCTCCTCCTCTAGCATCTCCGCTGATAAGAÎTTACÎCCAAGGTlTTTlCTCCTCGCCGAGG 3 0 0 

S N L N R R T P V 0 S I S F S S S S 1 S G D K I Y S K V F S A R R G 

AAATGCTTATAAYCAGAAGACICCACGCATCGTUCTCCTAAGGCCCTITCTGAMCCAGGAAIICGCAAACTTGTCTTGACCCIGACGCIACTGAAAGT UOO 

N A Y N E K T P R I V S P K A V S 0 S R N S 0 1 C L 0 P D A S E S 

GTCTTGGGAATTAT1CTTGGAGGCGGTCCTCCGACCCGCCTTTACCCACÏTACAAAGAAGAGGCCAAAACCTCCTCTTCCTTTAGGAGCAAAT1ACACAC 5 0 0 

V L G I I L G G G A G T R L Y P L T K K R A K P A V P L G A N Y R 

TGAÏIGATATTCCTGÎCAGCAACTGCTTGAACAGTAATATATCAAAGATTTACGTTCnACACAAITCAAITCTGCATCTCTTAATCGTCACCTTTCACG 6 0 0 

L I D 1 P V S N C L N S N I S K I Y V I T O F N S A S L N R H L S R 

GGCATATGCAAGCAACATGGGTGGCTACAAGAATCAAGGTTTIGTTGAACTTC1TGCAGCCCAGCAGAGCCCAGAGAATCCAAATTGGTTCCAGGCCACA 7 0 0 

A Y A S N M G G Y K N E G F V E V I . A A . O O S P E N P N V F O G T 

^ _ B O X I I » — 

CCÎGAÎGCTGTCAGACAClACTTGTGCUGTTTGAAGAGCACAATGTÎCTGCAAnCTTGATTCTTGCTGGGGATCATTTATACCGCATGGAMATCAAA 8 0 0 

A D A V R O Y l W L r E E H N V L E F L I L A G O H L Y R M O Y E 

— B O X II — i 

CGTirAnCAAGCACACACAGAAACTCAIGCAGATAIAACAGTACCTGCTCIACCAATGGATGAAAAACGIGCACAGGCCTTTGGICTGATGAAAATTGA 9 0 0 

R F I O A H R E T D A D I T V A A L P M O E K R A O A F G I . M K I O 

TGAACAAGGGCGCATAATTGAATMCCTGAGAACCCAAAGCGAGAGCAATTGAAAGCTATCAACGTTGATACTACAATTCTAGGTCT1GATCATGAGAGA 1 0 0 0 

E E G R I I E F A E K P K G E 0 L K A M K V D T T 1 L G I . 0 0 E R 

GCAAAACAGTIGCCTTTTATTGCIAGTAICGGGATAIATCICGTCAGCAAAAATGTGATGITAGATCHCTAAGAGATAAGITTCCTCCAGCCAATGATI 1 1 0 0 

A K E L P F I A S M G I Y V V S K N V M L D L L R O K F P C A N O 

| B O X III | 

TTGGAAG1GAAGTTATTCCTGGTGCTACTTCCATTGGGAÏGAGAGTGCAACCTTACTTATATGATGCCTACTCGGAAGA1ATTGGAACAATTGAACCATÏ 1 2 0 0 

F G S E V I P G A I S I G M R V O A Y L Y D G Y W E D I G T I E A F 

TTACAATGCCAATCTCGGTATAACYAAAAACCCAG1GCCAGATTÏCAGCTTCTATGATCGTTCATCÏCCAATTTATACTCAGCC1CGATAÏUGCCCCCA 1 3 0 0 

Y N A N I . G I T K 1 C P V P 0 F S F Y Ó R S S P 1 Y T 0 P R Y L P P 

TCCAAGATGCTTGATGClGAIGTTACTGACAGTGlTAl IGGTGAGGGGTCTcnATTAAGAACTGTAAGAÎTCACCACTCTGTGGlTGGGCnCGArcCT 1 1 0 0 

S K M 1 . 0 A D V 7 D S V I G E C C V I K W C K I H H S V V G L R S 

GCATA1CAGAAGGTGCAATCATAGAGGATACATTAC1AATGGGAGCAGATTACTATGAGAC1GA1GCTGACAGGAGGTTTCTGGCAGCCAAGGGTAGTGT 1 5 0 0 

C I S E G A I I E D I L L M G A O Y Y E t O A O R R F L A A K G S V 

ICCAATlGGIAlTGGCAAGAATTCÏCATATTAAGAGAGCCATTAllGACAAAAATGCtCCCATTGCGGTCGATGTGAAGAICATTAATGGIGATAAÎGTC 1 6 0 0 

P I G I G K N S H I K R A l I D K N A R I G V O V K I I N G O N V 

CAAGAAGCACCGAGGGAAAClCAIGGAlAIUCAIAAAGAGlGGAAI IGI IACCGIAAlCAAGGACGCGTIGATTCCCAGCGGAACCGIGAICIAGAtGA 1 7 0 0 

O E A A R E T O G Y F I K S C I V T V I K D A L I P S G T V I 

| BOX IVI | c=> 

1CCACAACTÎATAGTCTTGCATC1TGGGATGTAAÏACCACGTCTAATTTCATTTCCAGCCCTCTTCTTGTTTTGATGGATGCTATGTATATGCCCTGG1Ï 1600 

C1ATAATGTCTTAA1CAA1CGAIAGACTAAGGAGGAGGAGACCCCACGAAAATTCATCIGCTAAAAA11TTCCCGCACCGATITAAATATCTTCCITTCA 1900 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 1958 

Fig. 1 The complete nucleotide and derived amino acid sequence of the cassava AGPase B cDNA. 
Regions which have been shown to be functionally important and are conserved in bacterial and plant 
AGPases are highlighted as: Box I ([AG]GGXG[ST]XLX(2)L[TA]X(3)AXPAV) and Box II 
(W[FY]XGTA[DN][AS][LrVMFYW]) have been proposed to be part of the allosteric and or substrate 
binding site in the E.coli enzyme glgC (Nakata et al, 1991). Box III 
(ASMG[LIVM]Y[rV][LIVMFY]X(2)[DENPH]), corresponds to a conserved region in the central part of the 
enzyme. Box IV (SGIVTVIKDALIPSGTV) has been proposed to be the binding site for the activator 3-PGA 
in higher plant enzymes (Smith-White and Preiss, 1992). The putative polyadenylation signals AATA are 
underlined. 
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Cloning and characterisation ofAGPase B and S 

Ten clones of 2.5 kb in size, were isolated with the potato AGPase S2 probe and 

two clones of 2.5 kb each were isolated using the potato AGPase S3 probe. Restriction 

analysis as well as hybridisation between the S2 and S3 cassava clones under stringent 

conditions (65 °C) suggested that the two sets of clones were identical. This was confirmed 

by sequencing the 2.5 kb S2 -24 and S3-312 cDNAs which will now be referred to as the 

AGPase S cDNA. 

Structure of cassava AGPase B and AGPase S cDNAs 

The cassava AGPase B cDNA is 1958bp long (Fig. 1). It has an open reading frame (ORF) 

of 1572 bp. There is a 124 bp 5' untranslated leader sequence, and a 262 bp 3' untranslated 

sequence terminated by a poly A stretch of 59 nucleotides. There are putative 

polyadenylation signals ATAA (Joshi, 1987) at position 1803 and 1884 on the AGPase B 

sequence. 

The AGPase S cDNA is 2385 bp long (Fig. 2). It has an ORF which at 1593 bp is 

only 21 nucleotides larger than that of AGPase B. There is a long 5' untranslated leader 

sequence and 3' untranslated sequence of 419 bp and 373 bp respectively in the AGPase S 

cDNA. AGPase S has a poly A stretch of 6 nucleotides and there is a putative 

polyadenylation site located 215 bp from the poly A tail. 

In frame stop codons (TAA) were located upstream of the ATG start codons for 

both ORFs indicating that the cDNAs are full length. The sequences flanking the start 

codon for AGPase B (AGT ATG GC) and AGPase S (GGA ATG GA) differ from the 

consensus sequences proposed for eucaryotes of, ACC ATG GC , by Kozak (1984) and 

AC A ATG GC, Lutcke et al., (1987). 

The AGPase B cDNA shares a similarity between 82.2 % and 88.8% with other 

cloned small subunit cDNAs but only 40.0 % similarity at nucleotide level to the AGPase 

S cDNA . On the other hand the AGPase S cDNA has nucleotide identity of between 54% 

and 74% with cloned large subunit AGPase cDNAs. 

The cassava AGPase S and B proteins 

Translation of the 1572 bp AGPase B ORF resulted in a polypeptide which is 524 

amino acids long, overall negatively charged at pH 7.0 and has a MW size of 57.3 kDa. 

The 1593 nucleotides of the AGPase S ORF translate into a protein of 531 amino acids. 

The polypeptide has a calculated MW of 58.7 kDa and is overall positively charged at pH 
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7.0. 

Comparison of the AGPase B and AGPase S polypeptides shows that they share 

45% homology at the amino acid level (Fig. 3). There is larger divergence in homology 

between the two proteins in the N-terminal region. 

CfTrTGCtATölGniTClGCTTTC*TCTTTTCTTCT*TTTTTACTTAAATTTTCCTlCTTAACCTTCTQGOT*CTTTTTCTOC*TTATCAAOATTTTTT lOO 

TTTTOTGGGtCCTGGACACATATTAACTTTATTTCAACTITCCTTCTGCGTTTGTTTAGAriICcTTTTTACATTATTCCICTAGTGAOTIÏCACCTCAT 2 0 0 

GICGAACAACTGTCATTCATTTIATATCCATCATCCTCTTTAATTTCtATTIAAIGCGTIAATCTTCGTGGGAtCICCACTTTATTTCCTTACTAAGTTT 3 0 0 

GAATCttTIATTCGTTGCAATATCTGTCTCCTTTltTTTAAGACTCAAACACTATTCAACTGTGATCTATCATCArCATCTTCACCATCATCATtTGAGC «OO 

TTCTTGeGAGATTATTGCAATCCAtTCTtGCTGTGTGCCCCTGAAAGCCAATGCCCATGTGGCAAAAACTAGCAAAGCTGATTTCATCTATGCAGATAAA 5 0 0 
M O S C C V A L K A N A H V A K T S K C O F H Y C D K 

CACTTTTCGGCTGAAACGATCACAGGGACTCTCAACAATACTATTTCGTCCÀATCAGATGACAACGGAAGCCTTAAGGAGCCTGGAGGAIGGGAATGCCA GOO 
£ F W G E R 1 R G S L M N S i W S N O f l T R E G L R R l E O G N A 

TCAAGGTCAAGCCrGGTGTTGCTCATGCTGTTTCAACATCAAACAATCCAACCAOTCTATGGACCTTACAACCACCAAGATTTCAGAGACGAAAAGTGGA 7 0 0 
1 K V K P C V A H A V S T S N N P R S L W T L O P P R F E R R K V O 

CCCAACAAATCTACCACCAATCATATTGGGAGGACGTCCACGGACTCAGCTGTTTCCTCTTACCACAACCCCAGCAACACCAGCTCTGCCAGTCCGACGA 8 0 0 
P T N V A A I f L G C C A G 1 Q L F P L T R R A A T P A V P V G C 

| '!•• • " II ̂ — M BOX I « H ^ v ^ B ^ ^ ^ a a M B M M M B ^ 

TGCTATAAACTAATGGACATTCCAATGACCAACTGCATCAACACTGGCATAAACAAAATATTTGTACTCACCCAATTCAACTCTGCTTCCCTTAATCGGC BOO 
C Y K L tt O 1 P M S N C I N S C I M K I F V L T O F N S A S L N R 

ACCTTGCACCCACATACTTTGGAAATGGTATTAACTTTGGAGACCGITTTGTCCAGGTCCTAGCAGCAACTCAAACGCCTGGACAAGCAGGAATCCAGTC lOOO 
H i. A R T T F G N G I N F C O G F V E V L A A T O T P G E A G H O W 

H 
CTTCCAACGAACTGCAGATGTTCTGGAGAAATTTATTTGCGTTTTTGACCATGCCAACAACAGAABTGTTGACAATATArTGATCTTGTCCGGAGATCAT 1lOO 

F O G T A O V V E K F I W V F E O A K N R S V E N I L r L S G O M 
— • — — ^ BOX II • • — ^ — ^ 

CTTTACCGAATGGATIATCTGGATTTTTTGCACCAICATGTTCACAGTAATGCTGATATCACCAITTCATGtGCICCAGTCAGTGAGAGCCGCGCATCAG 1200 
l _ V f t n D Y L O F L G H H V O S N A O I T I S C A P V S E S R A 5 

ATTATGGTTTCGTCAACATACACAACAGCGGACCAA1TGTCAATITTGCTGAAAAACCAACTGGTGCTGAGCTGAAAtCAAIGCAACCTGAIACCACICA 1300 
O » G L V K I D N R G R 1 V N F A C K P T G A E L K S M 0 A D T T M 

TCTACGA1TATCTCTGCAACATGCCCTCAAAACCCCITATATCGCATCAATGGGAGTCTATGTATTTACGACICAGATTCTCCTGAAGCTTCIACGGIGC 1«00 
L G L S L O O A L K T P Y I A S M G V Y V F R T E I L U K L L R W 

}—mmm*—Êm BOX IK M M U M H 

AGATACCCTACATCAAATGACTTTCGATCTCAAGTCATCCCCCCTCCTCTTATCGACCCCAATCTTCAACGATATATTTTTACACACTACTGCGAAGATA ISOO 
R Y P T S N O F G S E V I P A A V H E R N V Q G Y I F R O Y W E D 

TAGGAACAATAAAGACATTTTATCAAGCAAACTTGGCTCTCACTGATGAGCCTCCAAAGTTTCAATTTTATGACCCAAAGACACCCTTCTACACATCTCC LEOO 
i G T i K T F V E A ' N L A L T D E P P K F E F Y O P K T P F Y T S P 

TCGATTTCTACCACCAACCAAAATGGATACGTGCCGGATTGTAGATGCTATAATTTCCCATGCCTGCTTCTTGCGAGAATGTACTATACAACACTCTCTG 1700 
R F L P P T K M O I C F t V D A I I S H G C F L R E C T I Q H S V 

GTTGCTCAACCCTCACGTTTAGGTTATGGTGTAGAGCTAAACGACACTGTGATGTTGGGAGCTGACAACTACCAAACTGAAGCTGAAAICCCAICTCTTT ISOO 
V G E R S R L C Y G V E L K D T V M L G A O N Y O I E A E I A S L 

tGCCACAGGGCAAAGtCCCTAlTCGTGTTGGAAGAAACTCAAAGATCAAGAACTGCATAATTGACAACAATCCCAAACTACCAAAAAATCtGArCATCAC lOCX) 
L A E G K V P I G V C R N S K I K N C I I D K N A K V C K N V I I I 

AAACAAACATCCTCfCCAAGAACCAGATAGGCCACAAAAAGCATCTTACATTCGTICTGGAATCACAATTATAGCACAGAAGGCGACAAIACAAGATGGC 20O0 
N K O G V Q E A D R P E K G S Y t R S C I T I I A E K A I I E O G 

• BOX | 

TGAGCAGTGAlCATAATGGCAGCATTTTGTTCTCITGGGAAGAACCAAGCTCCACCTTCTTTATCACTATGT^AiliA,CAGGCICGICCAr.TGCTCATCA 2200 

AACrAGAGCTTCCTTCTAGTCTTATGGTCCCAATAAGCCTCCAAATAAATCAAAAGAGCATATCAATTAGCTACGTAGITTCTTTTAGAACATTTCTTTT 23O0 

TAGAGACTATCtATATGAGCTGATAAACTITGTATCAGIGTGGATCTTTTTTTAATAATATTATGGAGCCTIIATGTGTAAAAAA 23BS 

Fig. 2 Nucleotide and derived amino acid sequence of the cassava AGPase S cDNA. Functionally 
important and regions conserved in other bacterial and plant AGPases are highlighted as Box I to Box IV. 
They are illustrated as for Fig 1. 
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• Cloning and characterisation ofAGPase B and S 

Transit peptides (TPs) 

A transit peptide is predicted in the N terminal region of the amino acid sequence of both 

AGPase B and AGPase S based on features common to chloroplast TP as suggested by 

Gavel and von Heijne (1990). These features include the high proportion of hydroxylated 

S and T amino acids, and the hydrophobic A amino acid (totalling 40% in AGPase B). No 

cleavage site conforming to the DCA!A consensus motif for chloroplast TP could be 

identified for either AGPase transit peptide. However, based on the predicted start of the 

mature protein for the spinach leaf AGPase (Morell et al., 1987) the AGPase S TP is 

approximately 69 amino acids long ( 7.5 kDa) and that of AGPase B is 74 amino acids 

AGPase S - MDSCCVALKANAIWAKTSKGDFMYGDKEFWGERIRGSLNNSIWSNQMTRE -50 

AGPase 8 - MAS -3 

AGPase S - GLRRLEDGNAIKVKPGVAHAVSTSNNPRSLWTLQPPRFERRKVDPTNVAA -100 

AGPase B MAAIGV -9 

AGPase S - -100 

A G P a s e B - PRVPSSSTSSSSQSNSSNLNRRTPVQSLSFSSSSISGDKIYSKVFSARRG - 5 9 
B o x I 

A G P a s e S IILGGGAGTQI.FPI. - 1 1 4 
4 - I I I I I I I M 1 I I 

A G P a s e B - NAYNEKTPRIVSPKAVSDSRNSQTCLDPDASESVI.GIILGGGAGTRI.YPI. - 1 0 9 

* 
A G P a s e S - TRRAATPAVPVGGCYKLMDIPMSNCINSGINKIFVLTQFNSASLNRHLAR - 1 6 4 

I I 1111 I I I I I I I I I I I I I I 11111111111111 I 
A G P a s e B - TKKBAKPAVPLGANYRLIDIPVSNCLNSNISKIYVLTQFNSASLNRHLSR - 1 5 9 

B o * I I 

A G P a s e S - T Y F G N G I N F - G D G F V E V I A A T Q T P G E A G M Q W F Q G T A D W E K F I W V F E D A K - 2 1 3 
I I 11111111 I I 1111111 I I I I 

A G P a s e B - AYASNMGGYKNEGFVEVLAAQQSPEN—PNWFQGTADAVRQYLWLFEE— - 2 0 5 

A G P a s e S - NRSVENILILSGDHI.YRMDYI.DFI.QHHVDSNADITISCAPVSESRASDYG - 2 6 3 
I I I I I I I I I I I I I I I I I I I I I I I I I 

A G P a s e B - -HNVLEFLILAGDHLYRMDYERFIQAHRETDADITVAALPMDEKRAQAFG - 2 5 4 
* Boat I I I 

AGPase S - LVKIDNRGRIVNFAEKPTGAELKSMQADTTHLGLSLQDALKTPYIASMGV - 3 1 3 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

AGPase B - LMKIDEEGRIIEFAEKPKGEQLKAMKVDTTILGLDDERAKELPFIASMGI - 3 0 4 

A G P a s e S - YVFRTEILLKLLRWRYPTSNDFGSEVIPAAVM-ERNVQGYXFRDYWEDIG - 3 6 2 
I I I I I I I I I I I I I I I I I I I I I I I I I I 

AGPase B - YWSJtNVMLDI.I.RDKFPGANDFGSEVIPGATSIGMRVQAYI,YDGYWEDIG - 3 5 4 

A G P a s e S - TIKTFYEANIAI.TDEP-PKFEFYDPKTPFYTSPRFLPPTKMDTCRIVDAI - 4 1 1 
I I I I I I I I I I I I I I I I I I I I I I I I I 

A G P a s e B - TIEAFYNANLGITKKPVPDFSFYDRSSPIYTQPRYI.PPSKMI.DADVTDSV - 4 0 4 
* 

A G P a s e S - ISHGCFLRECTIQHSWGER3RLGYGVELKDTVMLGADNYQTEAEIASI.I. - 4 6 1 
I I I I I I I I I I I I I I I I I I I I I I 

AGPase B - IGEGCVIKNCKIHHSWGLRSCISEGAIIEDTLIMGADYYETDADRRFIA - 4 5 4 

A G P a s e S - AEGKVPIGVGRNSKIKNCIIDKNAKVGKNVIITNKDGVQEADRPEKGSYI - 5 1 1 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

AGPase B - AKGSVPIGIGKNSHIKRAIIDKNARIGVDVKIINGDNVQEAARETDGYFI - 5 0 4 
Boat IV 

A G P a s e S - RSGITIIAEKATIEDGTVI - 5 3 0 
I I I I I I I I I 

A G P a s e B - KSGIVTVIKDAI.IPSGTVI - 5 2 3 

Fig. 3 Alignment of the deduced amino acid sequences of cassava AGPase B and AGPase S. The 

conserved regions Boxes I to IV are highlighted and explained as for Fig. 1. 

52 



Chapter 3 ~~~ 

long with a calculated MW of 8.0 kDa. This results in a mature protein of 50 kDa and 48.4 

kDa for AGPase S and AGPase B respectively. Comparison of the TP regions of the two 

cassava AGPase polypeptides reveals a low amino acid homology of only 12% (Fig. 3). 

The cassava AGPase proteins are very similar to other AGPase subunits. 

The deduced amino acid sequences of the cassava AGPase S and AGPase B showed 

significantly high similarities to already sequenced AGPase amino acid sequences from 

other plant and bacterial species. AGPase B is highly homologous to the small subunit 

-c BEANB1 
PEAB 

-BEANB2 

-C 

•C 

CASSAVAB 
PCS 
TOMATB 

-ARABIE 
-SWETPOB 
-SWETP0B2 
-BARLEYB 
-WHEATB 
- R I C E 6 
-CYANOB 
- CASSAVAS 

-PEAS. 

- P0TS1 

- P 0 T S 2 

-MAKES 

-RICES 

-WHEATS 

P0TS3 

TOMATS 

BARLEYS 

ECOU 

3 3 . 5 . 

Fig. 4. Dendogram of the evolutionary relationship amongst the various plant and bacterial 
AGPases. This was constructed using the unweighted pair group maximum averages(UPGMA) method of 
Weir (1990). S=large subunit and B = small subunit of ADP- glucose pyrophosphorylase. Sequence data are 
from the following sources with Genbank accession numbers given for unpublished sequences. Arabidopsis -
ARABIB(Choi and Okita, unpublished accession # U70616); Barley B (Thorsjornsen et al, 1996); Barley S 
(Eimert et al., 1992); Bean B and Bean B2 (Weber et al., 1995), Cassava B and S (present work); Cyanobacteria 
- CyanoB (Chanig et al., 1992); Kcoli- ECOLI (Baecker et al., 1993); Maize S (Bhave et al., 1990); PEA B and 
S (Burgess etal., 1997);Potato B - POB (Okita et al, 1990); Potato SI- POTS1 (Okita and Preiss, 1991); POTS2 
and POTS3 (La Cognita et al., 1995); Rice B (Anderson et al., 1989); Rice S (Kavakli et al., 1996); Sweetpotato 
B and B2 - SWETPOB and SWETPOB2 (Bae and Liu, 1997); Tomato B - TOMATB (Chen and Janes, 
unpublished accession # L411260); TOMATS - (Parks and Chung, unpublished accession # U85497); Wheat B 
(Ainsworth et al., 1993); Wheat S (Park and Chung, unpublished accession # U85497). 
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cDNAs, in particular to pea AGPase B with which it shares 88.8% similarity. On the other 

hand AGPase S exhibits greater identity to genes encoding the large subunit - being 73.7 

% identical to the pea AGPase large subunit gene. Based on percentage similarity the 

small subunit sequences can further be grouped into monocots and dicots (Fig. 4). Three 

regions, which are conserved in all AGPases were identified in both AGPaseS and 

AGPase B (Fig. 3). The first two regions, Box I 

([AG]GGXG[ST]XLX(2)L[TA]X(3)AXPAV) and Box H 

(W[FY]XGTA[DN][AS][LrVMFYW]) have been proposed to be part of the allosteric and 

or substrate binding site in the E.coli enzyme glgC (Nakata et al., 1991). The third region, 

Box m (ASMG[LIVM]Y[rV][LrVMFY]X(2)[DENPH]), corresponds to a conserved 

region in the central part of the enzyme. The fourth conserved domain of 17 amino acids 

found within the C-terminal region, Box IV (SGIVTVIKDALIPSGTV) has been proposed 

to be the binding site for the activator 3-PGA in higher plant enzymes (Smith-White and 

Preiss, 1992). Within these conserved domains several functionally important amino acids 

were also found to be highly conserved (Fig.3). These include Lys 39 (numbered as per the 

bacterial gig C gene) which has been suggested as being located in the allosteric or 

substrate binding site in E.coli and may contribute to the regulatory or catalytic activities 

of the plant enzyme (Baecker et al, 1983; Okita et al., 1993). In the AGPase B sequence 

Lys 39 is replaced, as in most small subunit polypeptides, by arginine (Fig. 3). In the 

AGPase S sequence the corresponding amino acid is threonine. Another important amino 

acid that is also involved in substrate binding in E.coli is Tyr 114. This is present as 

phenylalanine in both cassava AGPase sequences. This amino acid is thought to co

ordinate the adenine rings of ATP or ADP glucose via hydrophobic interactions (Olive et 

al., 1989). The dendrogram (Fig. 4) shows how closely related the various cloned AGPase 

sequences are. There is greater similarity amongst the small subunit genes and more 

heterogeneity amongst the large subunit genes. 

Southern analysis and localisation of the AGPase genes on to the genetic map of 

cassava 

Characterisation of B45 and S312 by hybridisation to genomic DNA of cassava M. Col 22 

digested with various enzymes resulted in several bands being detected in each lane for 

both cDNAs (Fig. 5a). The different banding patterns obtained with the AGPase B and 

AGPase S cDNAs are a further indicator that these are indeed distinct genes. Linkage 

analysis of a segregating population of cassava plants enabled the AGPase S gene to be 
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localised on to the female derived linkage group E (Fig. 5b). The AGPase S gene is a 

single copy gene and exhibits a simple segregating pattern in the offspring (Fig. 5b). This 

is in contrast to the small subunit genes of ADP-glucose pyrophosphoryla.se that appeared 

to be localised on at least two positions within the cassava genetic map (Fregene personal 

communication). 
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Fig. 5a. Southern blot of cassava DNA, probed with P labelled AGPase B and AGPase S cDNA 
clones. An amount of 1 Ou.g of digested DNA was loaded per lane. Molecular weight markers and the 
restriction enzymes used are indicated. 

Fig. 5b Position of AGPase S on the female derived linkage group E of the genetic map of 
cassava 
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AGPase B is highly expressed in leaf tissue and AGPase S is expressed in all starch 
synthesising tissues 

The expression patterns of the cassava B45 and S312 cDNAs were determined by 

Northern hybridisation using RNA from various cassava tissues of greenhouse grown 

plants. The AGPase B cDNA hybridised to a mRNA transcript of 2.0 kb in size. The gene 

was highly expressed in leaf tissue while the expression in other tissues, including the 

tubers, was very low (Fig. 6). The AGPase B transcript was of the same size in all tissues 

examined. AGPase S, hybridises to a 2.3 kb transcript, and is expressed to the same extent 

in leaves, petioles, roots and tubers (Fig. 6) i.e. in all cassava tissues in which starch is 

synthesised. However, AGPase B exhibits considerably higher steady state mRNA levels 

than AGPase S in all the tissues examined. 

AGPase Bcas 

AGPase Seas 

Fig. 6. Expression of AGPase B and AGPase S in different tissues of greenhouse 
grown cassava 

MCol 22 plants. An amount of 40 ug of total RNA was run in each lane and probed with ',2P labelled 

AGPase B and AGPase S cDNAs. L, leaf; P, petiole; S, stem, R, root; T, tuber. In order to ensure to 

ensure equal loading of RNA per lane the same blot was deprobed and rehybridised with a 28S rRNA 

probe (results not shown). 

Expression of AGPase B in E.coli 

In order to study the distribution of the small subunit gene product in cassava, a 1 kb 

BamHI/Hind m fragment containing the transit peptide and three conserved AGPase 

regions was cloned and expressed in E.coli. The expressed protein has a size of about 40 

KDa (Fig. 7, lane 1). This lies in the same range as the calculated size of 38 kDa for a 

protein expressed from a 1 kb DNA fragment. Polyclonal antibodies specific to the 

AGPase small subunit were produced (as described in material and methods) and used in 
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western blot analysis of cassava tissue. 

i 
•EBEl 

200 kDa 

66kDa 

46 kDa 

*1P 
W 30 kOa 

1 
21 kDa 

Fig. 7. Profile of cassava AGPase B protein purified from Exoli on SDS page. 1 = purified protein; 2 : 
induced total protein, 3 = marker lane. Molecular weight markers are indicated on the right in kD. 

Western analysis of cassava AGPase 

Crude protein extracted from cassava leaves, petioles, stems, roots and tubers was 

electrophoresed in a 10% SDS Polyacrylamide gel. Polyclonal antibodies raised against 

the cassava small subunit cDNA detected a 50 kDa band (Fig. 8 lanes 1 and 2). This band 

possessed the same size in all tissues examined. Degradation of this band was observed 

especially in tuber tissue at 4 °C even when the extraction was carried out in the presence 

of reducing agents such as SDS or TCA (Fig. 8 lane 4). 
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Ld Td 

9 M 

50kDa 

30kDa 

Fig. 8 Cassava AGPase undergoes degradation under normal conditions of isolation and SDS 
PAGE analysis. Protein (5u.g/lane) from cassava tuber and leaf were separated by SDS-PAGE and 
visualised by immunoblotting, using the AGPase B antibody. Size markers are shown in kDa. The position 
of the AGPase B protein is at approximately 50 kDa - indicated by arrow. L, leaf, T, tuber, Ld degraded 
Leaf protein, Td, degraded tuber protein 

AGPAse activity is highest in cassava leaves 

AGPase activity in cassava leaves, roots, petioles and tubers was determined by assaying 

spectrophotometrically for NADH formation. The AGPase enzyme activity was highest in 

leaves with young leaves having an absolute value of .0039 uM/gFW/min which was 

considerably higher than that found in tubers (0.001 uM/gF/min (Fig. 9; 0 Pi/ 3PGA stage). 

Addition of 5mM 3-PGA gave rise to a three-fold increase in AGPAse activity in 

the leaf tissue resulting in young leaf lobes having absolute activity of 0.13 uM/gFW/min 

(Fig. 9). No such response was obtained with the tuber enzyme as activity only increased 

0.5 times with the addition of 5mM 3-PGA (Fig. 9). There was a considerable decrease in 

leaf enzyme activity (by 90%) and tuber enzyme activity (by 80%) due to the addition of 

the inorganic phosphate, Pi (Fig. 9). 
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0 Pi/ 3PGA 5mM 3PGA 2mMPi 

Young leaf §s: 

Old leaf 

^ young tuber 

Old tuber 

Fig. 9 AGPase activity in cassava leaves, and tubers at different developmental 
stages. The AGPase enzyme was extracted as described by Weber et al., 1994. The 
tissue used consisted of young leaves (5-6 cm long), old leaves (10-15 cm long), 
young tubers (1-3 cm in diameter), old tubers (4-8 cm in diameter). The absolute 
activities were determined by spectrophotometrically assaying for NADH. 
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Discussion 

Two groups of cDNA clones, designated AGPase B and AGPase S, were isolated from a 

cassava tuber specific cDNA library using DNA probes encoding the small and large 

subunit respectively of the potato AGPase. Following cloning and restriction analysis the 

largest cDNAs from each group were sequenced. Sequence analysis showed that they 

represented full length AGPase transcripts. AGPase B and S exhibit only 34% homology 

at the nucleotide level and 54% homology at the amino acid level, to each other (Fig. 3). 

The derived amino acid sequences of the mature proteins of AGPase B and AGPase S 

showed significant homologies with other cloned AGPase polypeptides from bacterial and 

plant species. The AGPase B cDNA shared close identity (74-94%) at amino acid level 

with already cloned small subunit cDNAs from potato, pea, bean, and sweetpotato. The 

AGPase S cDNA is very similar to genes encoding other AGPase large subunit cDNAs 

(70 -84% identity) than to genes encoding small subunit AGPases. All this is in agreement 

with investigations carried out by Smith-White and Preiss, (1992) when they compared the 

sequences of known AGPase genes. They found that there was greater similarity amongst 

the small subunit genes from different species than between the small and large subunit 

genes from within the same species. This is significant when we look at the dendrogram 

derived after comparison of AGPase genes from several plant species (including cassava) 

and those of bacteria and cyanobacteria (Fig. 4). The weighted dendrogram reveals the 

way in which the AGPase genes may possibly have evolved. According to Smith-White 

and Preiss (1992) the small and large subunits probably arose from a duplication of a 

common ancestral gene with subsequent divergence. Our analysis of the amino acid 

sequences of full length AGPases cloned thus far corroborates this hypothesis and further 

shows that the cyanobacterial gene is more closely related to the small subunit than to the 

large subunit (Fig. 4). This would mean that the small subunit and cyanobacterial enzyme 

are derived from a common ancestral progenitor which diverged from the large subunit. 

Further evidence for the relatedness of the small subunit to the cyanobacterial enzyme 

comes from the cross reaction of the cyanobacterial enzyme to antibodies specific to the 

spinach leaf subunit (Iglesias et al., 1991). 

With all these changes in the basic sequence of the AGPase genes there remained 

certain domains which were conserved and thus unaltered. These domains are those that 

are involved in the enzyme substrate complex such as, Box IV, SGr/TVIKDALrPSGTV 

which has been shown to be the binding site for the activator 3-PGA in higher plant 

enzymes (Smith-White and Preiss, 1992). 
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The isolation of two different groups of cDNAs encoding the AGPase enzyme 

would indicate that in cassava the AGPase enzyme is composed of two distinct subunits as 

has been shown to be the case in maize (Bhave et al., 1990) and other plant species (Bhave 

et al., 1990, Bae et al., 1990, Müller-Röber et al., 1990). Southern analysis revealed that 

both cassava AGPase subunits are encoded by genes that are present as only a few copies 

within the cassava genome. In the case of AGPase S we were able to map it to the female 

derived linkage group E on the cassava genetic map. The cassava AGPase B gene showed 

a more complex segregation pattern and appeared to be localised on more than one linkage 

group. Such a complex organisation for the small subunit genes has been observed 

previously in potato (Anderson et al., 1990). Although in our case we were able to isolate 

only one type of cDNA corresponding to the large and small subunit cDNA, this does not 

preclude the possibility of isoforms of these genes being present in cassava, especially as 

in all the plant species examined such as maize, potato, sweet potato, bean, and 

arabidopsis, isoforms of the small and large subunit of AGPase have been found (Weber et 

al., 1995, Müller-Röber et al., 1997, Prioul et al., 1994). 

The expression patterns of the AGPase genes were determined by Northern 

hybridisation using RNA from leaves, petioles, stems, roots and tubers from greenhouse 

grown cassava M.Col 22 plants. AGPase B showed the highest expression in leaves, the 

expression signal in tubers being some four fold less (Figure 5). Little or no expression 

was found in petioles, stems and roots. It, therefore, seems that the AGPase B cDNA is 

specific for leaf and tuber tissue. The AGPase S was expressed to equal levels in all the 

tissues examined. The significance of these results is that while it would seem that 

AGPase S is constitutively expressed in all tissues, AGPase B is highly expressed in tissue 

specifically involved in starch synthesis i.e. leaves and tubers. 

Expression of a 1 kb BamHI/Hindll AGPAse B fragment in E.coli resulted in a 40 

kDa protein being purified. Polyclonal antibodies to this protein were found to be specific 

for a 50 kDa protein in cassava leaves, tubers, roots and petioles. This indicated that the 

AGPase B protein in all cassava tissues was of the same size. This size falls well within 

the values determined for other small AGPase subunits from other plant species (Preiss et 

al., 1991, Okita et al., 1990, Nakamura and Kawaguchi, 1992). However storage of the 

crude protein extract at 0-4 °C resulted in a high rate of proteolytic degradation of this 

protein in both leaf and tuber tissue. Such degradation has been reported for the large 

AGPase subunit of barley endosperm (Kleczkowski et al., 1993). Degradation was still 
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observed even when extraction was carried out in the presence of denaturing agents such 

as TCA or SDS. 

The relative abundance of AGPase B polypeptide was the same in all tissues 

despite the differences in expression level. The difference in the quantities of mRNA 

produced specifying AGPase B and the corresponding polypeptide amounts may indicate 

some post-transcriptional control of AGPase B polypetide levels in leaf and to some extent 

in tuber tissue. This post-transcriptional control may manifest itself as a high turnover of 

any excess AGPase B mRNA in leaves (by proteolysis) hence the discrepancy between the 

high level of mRNA expression and polypeptide abundance in this tissue. Such a 

possibility of post transcriptional control of polypetide levels has been demonstrated by 

Nakata and Okita (1995) for the leaf AGPase small subunit in potato. 

AGPase activity was found to be highest in young leaves of cassava. There was 

considerably less enzyme activity in tubers and older leaves, there was virtually little or no 

AGPase activity in petioles, stems and non tuberous roots. An increase in AGPase activity 

with increased levels of 3-PGA added showed that the cassava leaf AGPase was 

allosterically activated by 3PGA. A corresponding increase in the levels of Pi reduced the 

leaf enzyme activity by 85%. Such a scenario whereby the levels of 3-PGA and Pi increase 

and decrease occurs in plants during the daytime (where they carry out photosynthesis) and 

during the night. These results confirm to what is generally known about plant leaf 

AGPases which in general have been shown to respond to allosteric inhibition and 

activation by Pi and 3-PGA respectively (Preiss et al., 1991). The only exception is the 

barley endopserm AGPase which is relatively insensitive to these effectors (Kleczkowski, 

1993). In the non-photosynthetic cassava tuber the enzyme activity was relatively 

unaffected by changes in the level of 3-PGA although the Pi further reduced the already 

low AGPase activity in this tissue. There is a close correlation between enzyme activity 

and mRNA steady state levels of the small subunit further indicating that there is a 

combination of transcriptional as well as post-transcriptional factors affecting the small 

subunit of cassava and consequently overall cassava AGPase activity. 

Salehuzzaman et al. (1993) have already shown that potato plants transformed 

with a cassava GBSS cDNA in antisense orientation produce almost completely amylose 

free starch. Thus by cloning the cassava AGPase B we have opened up more options and 

opportunities to alter starch quantity, as well as the nature of products stored within the 

cassava tubers. The introduction of the AGPase B gene in sense orientation in starch 

producing plants would lead to increased expression of this key enzyme of starch 
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biosynthesis and increased yield of starch as shown for bacterial AGPase in potato (Stark 

et al., 1992). Plants with an AGPase gene introduced in antisense orientation may have a 

reduced capacity to produce starch and may be used to accumulate other storage products 

such as lipids, sucrose (Müller-Röber et al., 1992), cyclodextrins (Oakes et al., 1991) or 

fructans (van der Meer et al., 1994) in their storage organs which are potentially of great 

nutritional benefit and commercial value. 
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Chapter 4 

Characterization of potato (Solanum tuberosum) plants containing and expressing 

the cassava (Manihot esculenta) small subunit ADP glucose pyrophosphorylase 

gene in antisense orientation. 

Abstract 

Data are presented on the analysis of diploid and tetraploid potato (Solanum tuberosum) 

plants that have been transformed with the cassava ADP-glucose pyrophosphorylase 

small subunit gene, AGPase B, in antisense orientation under the control of the CaMV 

35S promoter. While the 244 antisense AGPase B plants did not differ in appearance 

from the control non transgenic plants 45 of them, however, had on average 4 times 

more tubers. These tubers were half the mass of those from control plants. Northern 

analysis of the 45 transgenic plants revealed that 7% of the antisense AGPase plants had 

reduced levels of AGPase B mRNA (Category I plants). In addition the tubers from 

these plants had 1.5 to 3 times less starch than tubers from the control plants. The levels 

of the soluble sugars, sucrose, glucose and fructose, in the antisense plants, increased by 

at least five times when compared to that found in control plants. There was a 

correlation between a high number of T-DNA inserts, as revealed by Southern analysis, 

and the presence of an antisense effect at mRNA, starch, and soluble sugar levels. The 

results showed that it is possible to induce an antisense effect, in potato, by expressing a 

cassava AGPase B gene and at the same time confirm the significant role of this gene in 

the biosynthesis of starch in plants. 
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Introduction 

The conversion of glucose-1-phosphate to ADP-glucose by ADP-glucose 

pyrophosphorylase (AGPase) is an important regulatory step in the synthesis of starch in 

plants. Plant AGPases are heterotetrameric enzymes composed of two small and two 

large subunits encoded by different genes (Okita et al., 1993). We have cloned the 

cDNAs encoding both the large and small subunits of the cassava {Manihot esculenta) 

AGPase enzyme (Chapter 3, this thesis). Functional analysis and verification of the 

identity of these putative AGPase cDNAs from cassava can now be carried out by 

genetic transformation of cassava and other starch producing plants. Although a 

transformation and regeneration system for cassava has been developed recently 

(Raemakers et al., 1996; Schöpke et al., 1996) the procedures involved still remain 

labour intensive, inefficient and need to be optimised. Potato (Solanum tuberosum) on 

the other hand has a starch biosynthetic pathway which in many ways typifies higher 

plant starch metabolism and is mediated by essentially the same enzymes as in cassava 

(Salehuzzaman et al., 1993). In addition, regeneration and transformation of potato by 

Agrobacterium tumefaciens is a relatively simple procedure (Visser, 1991). This makes 

potato an ideal candidate in which to test the cassava AGPase cDNAs as has been 

confirmed by Salehuzzaman et al. (1993) using the cassava GBSSI gene. In a previous 

experiment Müller-Röber et al. (1992) introduced the potato antisense AGPase B gene 

in antisense orientation into the potato cultivar Desiree. This resulted in transgenic 

potato plants having reduced AGPase B mRNA levels, and smaller, more numerous 

tubers. These tubers stored lower levels of starch but higher levels of sucrose (40% of 

dry weight) and glucose (8% of dry weight). This paper describes the results of the 

transformation of the potato genotypes cv Kardal, cv Karnico, and RV with different 

constructs of the cassava AGPase B gene in antisense orientation and the subsequent 

analysis of tubers from these plants. 
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Materials & Methods 

Hind III 

BamHI 

I) pECaB 

SstI 

BamHI 

Xhol 

Hind HI 

II) pHB9 
BamHI 

H Nos terminator 
H CaMV35S promoter 
• NPTIIgene 

LB/ RB= left / right border of T-DNA 

Fig. 1 Design of the cassava AGPase B constructs used in the transformation experiments. 

I) Construct pECaB contains the full length cassava AGPase B cDNA (1.9 kb) cloned in antisense 
orientation into the BamHI between the left and right borders (LB and RB) of pECaGus (Irma Straatman, 
unpublished). II) A 1.6 kb fragment of the cassava AGpase B gene was restricted from pB45-l (Chapter 
3, this thesis) using the enzymes HindlH and BamHI. The DNA fragment was inserted in antisense 
orientation into the BamHI/ HindlH site of pJITIOO (Guerineau and Mullineaux, 1993) behind the 
CaMV35S promoter. PHB9 also contains the luciferase fire-fly (LUC) gene but this was not used in these 
experiments. Selection of the transgenics was based on kanamycin resistance which is conferred by the 
neomycin Phosphorylase gene (NPTII). 

Bacterial strains and DNA manipulations 

Agrobacterium tumefaciens LBA4044 and Escherichia coli strain DH5a (Bethesda 

Laboratories, Gaithersburg, USA) were cultivated using standard techniques (Sambrook 

et al., 1989). All DNA manipulations were largely as described in Sambrook et al. 

(1989). 

The cassava AGPase B antisense constructs 

The cassava AGPase B cDNA was recently isolated from a tuber specific cassava 

cDNA library and cloned into pUC19 forming the plasmid pB45-l (Chapter 3, this 
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thesis). In order to verify the function of the cassava AGPase B cDNA using the 

antisense technique, two antisense constructs pECaB, and pHB9 were made. The 

constructs are depicted in Fig. 1. 

Construct pECaB contained the full length cassava AGPase B cDNA (1.989 kb) 

in antisense orientation. It was made by restricting pB45-l with BamHI to release the 

complete AGPase B cDNA. The cDNA was then ligated into the BamHI site of 

pECaGUS (kindly provided Irma Straatman, Plant Breeding Dept., Wageningen 

Agricultural University) behind a double CaMV 35S promoter (Fig. 1). An internal 

Hind m site 1.6 kb from the N terminal of the AGPase B cDNA (1989 kb) was used to 

determine the orientation of the inserted gene. 

The construct pHB9 was made by digesting cassava pB45-l with Hindm and 

BamHI resulting in a 1.6 kb and 0.3 kb HindüI/BamHI fragment. The 1.6 kb fragment 

was chosen for use because it contained the three conserved domains of the AGPase 

small subunit gene (Chapter 3, this thesis). This DNA fragment was fused in antisense 

orientation, in the HindDI/BamHI site between a double 35S promoter and a CaMV35S 

poly A tail (Fig 1). Plasmid pHB9 also contains the luciferase firefly gene. This was, 

however, not used in the selection of transgenic plants. The constructs were transferred 

to Agrobacterium tumefaciens strain LBA4404 (Ooms et al., 1982) by triparental 

mating as described by Hoekema et al. (1983) 

Plant material, transformation and selection of transgenic potato-plants 

Three Solanum tuberosum genotypes were used for transformation. These were: the 

tetraploid genotypes Karnico (cv) and Kardal (cv); and the diploid potato clone RV 

(kindly provided by Ir. R. Eijlander of the Plant Breeding Department Wageningen 

Agricultural University). They were chosen for their ease of transformation or ability to 

form tubers readily. The in vitro plants were cultured on solid MS20 medium 

containing Murashige and Skoog (1962) salts and vitamins, 30 g/1 sucrose, 8 g/1 agar at 

21 EC and 14 h light. Stem segments derived from 3 week old plants of the genotypes 

above were transformed using Agrobacterium tumefaciens strain LBA 4404 carrying 

the plasmids pECaBl, pECaB2 and pHB9 according to the method of Visser (1991). 

The expiants were selected on plates containing the following regeneration medium 

(MS20, 200mg/l claforan, 200mg/l vancomycin, 1 mg/1 zeatine, 100 mg/1 kanamycin, 

8% agar, pH 5.8) and transferred to fresh medium every two weeks. Regenerated shoots 
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were cut off and transferred to tubes containing MS20 medium containing 100 mg/1 

kanamycin and 200 mg/1 claforan and vancomycin. Following root induction the plants 

were transferred to the greenhouse, and tubers were harvested after 18 weeks. In vitro 

tubers were induced according to Hovenkamp-Hermelink et al. (1988) 

Analysis of potato plants. 

Observations of the phenotype of the transgenic plants as compared to the control plants 

were carried out during growth of the plants in the greenhouse. Factors such as 

flowering time, appearance of tubers and location of tubers on the stolon were 

considered. 

Tuber fresh and dry weight 

Upon harvesting of the plants the number of tubers per plant and their weight were 

noted. The average weight per tuber was calculated for each plant. The dry weights of 

the tubers were determined by placing randomly selected tubers at 80 °C until there 

was no change in the weight. 

Iodine staining of tubers 

Iodine staining with Lugol's solution (frKI) of in vitro as well as greenhouse grown 

tubers was used to visualise the presence or absence of starch. At least two tubers from 

each plant were cut into 5 mm thick slices and stained with Lugol/H20 (1:1). The 

stained starch granules (including those from the isolated starch samples, see below) 

were examined with a light microscope. 

Isolation of starch, starch granule size and amylose content 

Potato tubers were first weighed, washed and cut into pieces. The pieces were then put 

into a blender with milliQ water containing a knife tip of Na2S2O3.5H20 and blended. 

The pulp was filtered through cheese-cloth and the filtrate collected in a beaker. The 

remaining pulp in the cheesecloth was blended in milliQ water and filtered through the 

cheesecloth once again. The filtrate was left for 2-3 hours for the starch to settle down 

and the supernatant was poured off. The starch was washed once again by resuspending 

it in milliQ water and letting it precipitate. After discarding the water the starch was 

allowed to air dry at room temperature. 

72 



Antisense cassava AGPase B potato 

The starch was first sieved through a micropore mesh and then suspended in 

water. The size and distribution of the starch granules within the different samples was 

then determined with the Coulter multisizer He according to the manufacturer's 

instructions. Granule morphology as well as iodine staining characteristics were 

checked microscopically. 

Starch and soluble sugar content of the starch granules 

The starch, sucrose, glucose and fructose content of the potato tubers were determined 

using kits supplied by Boehringer Mannheim Co., Germany). The volumes used were 

reduced 100 fold to enable measurements to be carried out using a microplate reader 

(Bio-Rad Model 3550-UV). 

DNA /RNA isolation and hybridisation 

DNA (from potato leaves) and RNA (from tubers) were isolated and prepared for 

Southern and Northern analysis respectively as described in Chapter 2. 

Western analysis and AGPase activity 

Protein isolation from potato tubers, blotting and immuno detection were carried out 

as described in Chapters 2 and 3 of this thesis. Immuno assays were carried out using 

antiserum raised against the cassava AGPase B protein (Chapter 3, this thesis). 

AGPase activity in potato tubers was determined as described previously (Chapter 3, 

this thesis). 

Results 

Antisense AGPase B plants have smaller and more numerous tubers 

A total of 244 independent kanamycin resistant shoots were produced by 

Agrobacterium mediated transformation of the three potato genotypes with the 

constructs pECaBl, pECaB2 and pHB9. For each genotype (whether diploid or 

tetraploid) at least 50 independent shoots derived from each of the antisense 

constructs and at least 15 shoots from the control non transgenic plants were isolated, 

rooted and transferred to the greenhouse. The transgenic clones were named 
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according to their original background and the construct that they carried (Table 1). 

Observations of the transgenic potato plants carrying the antisense cassava 

AGPase B gene during 5 months of growth in the greenhouse showed that they did 

not differ in appearance and time of flowering from the non transgenic potato plants. 

Upon harvesting, however, it was found that 45 out of the 275 transgenic 

plants produced smaller and more numerous tubers than control non transgenic plants. 

They had on average 4 times more tubers than the control plants. These tubers were 

twice as small as those from control plants and consequently they had a considerably 

lower average tuber fresh weight (Table 2). Antisense plants exhibiting this 

phenomenon had three or four tubers per stolon compared to one tuber per stolon for 

the control plants (results not shown). 

Iodine staining of the tubers showed that all the antisense plants invariably 

contained starch. There was little difference in the amount of stain retained and, 

therefore, it was not possible to categorise the antisense plants with this method. 

High number of TDNA inserts is correlated with reduced mRNA levels 

About 92% (206 out of 224 plants) of the transgenic plants contained between 1 and 2 

inserts of either pECaB or pHB9 (Table 2) as revealed by southern analysis of 

genomic DNA from these plants. Northern analysis of total tuber RNA from these 

plants, using the potato AGPase B gene as a probe, revealed that they had AGPase B 

mRNA expression levels which were similar to those of the control plants (see plant 

RVB17; Fig. 2 a and b). Some 7.4% (17 out of 224 plants) of the transgenic plants 

had between 3 and 7 inserts of either pHB9 or pECaB (Table 2). These plants had 

clearly reduced levels of AGPase B mRNA expression (e.g. RVB27, Fig. 2 a and b). 

This indicated a correlation between a high number of pECaB or pHB9 T-DNA 

inserts and a reduction in AGPase B mRNA level. No plant was found which had 

complete absence of AGPase B mRNA, i.e. total inhibition of AGPase B mRNA 

expression. 
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Fig 2A: Southern analysis of genomic DNA from transgenic potato plants derived from the diploid 
genotype RV containing the cassava antisense AGPase B gene construct pECaB. A total of lOug of 
DNA was loaded per lane. A 0.5 kb fragment of the NPT II gene was used as a probe to confirm the 
presence of the cassava AGPase B containing T-DNA construct. Lanes a-z contain DNA from the 
transformants: RVB15, RVB16, RVB12, RVB17, RVB14, RVB16, RVB17, RVB19, RVB23, RVB22, 
RVB25, RVB21, RVB24, RVBB27, RVB35, RVB55, RVB71, RVB68, RVB65, RVB72, RVB74, 
RVB76, RVB80, RVB81, RVB87 and Control non transgenic RV, respectively 

Fig 2B: Minimum number of T-DNA inserts observed on southern blot in A for each transgenic plant. 

Fig 2C: Northern analysis of total RNA from tubers of transgenic potato plants transformed with 
the cassava AGPase B gene. There is a clear correlation between a high number of T-DNA inserts (Fig. 
2a) and a reduction in the level of AGPase B mRNA (Fig. 2b). The symbol d indicates that the sample 
was not included in this particular blot but was analysed with other samples. 20|ig of total RNA was 
loaded per lane and the potato AGPase B gene was used as a probe. The transcript size was about 1.9 kb. 
The lanes are demarcated and contain total RNA from plants described above. 

Over three quarters (14 out of 17) of the plants with reduced AGPase B 

mRNA levels were derived from expiants transformed with the full length cassava 

AGPase B cDNA (pECaB) while the rest carried the 1 kb AGPase B cDNA fragment 

of pHB9 (Table 2). Reductions in mRNA levels were more pronounced in 

transformants derived from the diploid genotype RV, that had 13 (7%) plants 

exhibiting this phenomenon as compared to 5 (4%) derived from the tetraploid 

genotypes (Table 2). 
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Correlation between reduced AGPase B mRNA expression and increased 

number of tubers 

All the 17 plants with reductions in AGPase B mRNA expression also belonged to 

the group of 45 antisense plants having more numerous and smaller tubers. They were 

classified as category I antisense plants (Table 2). The remaining 18 antisense plants 

exhibited AGPase B mRNA levels similar to those of control plants but had more 

numerous and smaller tubers than the control plants were classified as category II 

antisense plants. Antisense plants (199 plants) with tuber numbers and weight similar 

to those found in control plants were designated as category III plants. The transgenic 

plants in Category I had smaller tubers than those in category II and HI. This indicates 

that the size of the potato tubers is influenced by AGPase B mRNA expression. 

Detection of AGPase small subunit protein in antisense AGPase B plants 

Immunoblotting of total protein from the antisense plants showed that the plants with 

reduced mRNA levels had hardly any detectable AGPase B protein (Fig. 3). On the 

other hand the plants classified in category II cross reacted with the cassava AGPase 

B polyclonal antibody to the same extent as the category HI plants. This indicates a 

clear correlation between mRNA levels and the production of the AGPase B protein. 

J 1 
50 kD 

Category I Category II 
I i i _ i 

Fig 3: Immuno detection of the AGPase B protein in potato plants containing and expressing the 
cassava AGPase B gene. Total protein from tubers was separated by SDS-PAGE (20 ug/ lane) and 
analysed using the cassava AGPase B antibody. The protein detected was about 51 kDa. Lanes 1-5 contain 
protein from tubers of transgenic clones RVB14, RVB27, RVB25, RVB73 and RVB23 respectively. 
Lanes 6 and 7 contain protein from control plants RVC and KDC respectively. Lanes 8 to 10 contain 
protein from the transformants RVB25, RVB73 and RVB65 respectively. 

Low starch levels and high soluble sugar content are associated with reduced 

AGPase B mRNA levels 

A reduction in the amount of AGPase B mRNA expression due to the introduction of 

an antisense AGPase cDNA in potato was expected to result in a decrease in the 
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RVB73 RVB65 RVB25 RVB23 RVB26 RVB27 RVB14 

L Category I I antisense plant J L Category I antisense plants J 
Fig 4: Low starch levels are associated with high soluble sugar (glucose, fructose and sucrose) 
content. The values of the starch and sugars were determined from triplicate samples obtained from 2 to 3 
tubers per plant. The values are given in mg/g fresh weight. Similar observations were made when dry 
weights were used. In plant RVB73 the level of sucrose was below detectable limits 

amount of AGPase enzyme formed. Consequently this should have a negative 

effecton ADP-glucose formation and ultimately should result in less starch or no 

starch being formed in the plant because the pathway catalysed by AGPase is the 

predominant way by which starch is formed in potato. In order to verify this 

expectation the amount of starch in the transgenic as well as control plants was 

determined. 

The dry weight of the tubers varied between 15% to 23% of tuber fresh weight 

for the category I plants and between 24% to 26% of tuber fresh weight for the 

control plants and category in plants. The general trend in terms of starch and soluble 

sugar content was the same as with fresh weight data. 

Category I antisense plants, having reduced levels of AGPase B mRNA, 

showed dramatic reductions in starch levels. The amount of starch in these plants 
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ranged between 8% and 16% of the tuber fresh weight compared to 20.8% to 23.5% 

of the tuber fresh weight in the control and category IE plants. An example is the 

Category I plant RVB27, which had only 8% of the fresh weight of the tuber being 

starch. Category II plants had a starch level (18% to 23% of tuber fresh weight) that 

was intermediate between category I and category IH plants (Fig 4). These results 

were also mirrored at the level of the starch granule. The starch granules of category I 

plants were smaller than the starch granules of Category II and in plants which were 

found to be similar in size (Table 2). This is clearly illustrated by plant RVB27 that 

had an average diameter by volume of 20.94 um compared to an average value of 

30.19 \im for category n, HI and control starch granules. 

A reduction in the level of starch in antisense plants was accompanied by an 

increase in the level of the soluble sugars sucrose, fructose and glucose. This increase 

was most pronounced in category I antisense plants where for plant RVB27 there was 

10 times more glucose, 6 times the amount of fructose, and 5 times the amount of 

sucrose, per gram fresh weight than in the control plants (Fig. 4). Category I and n 

antisense plants had higher levels of fructose and glucose compared to sucrose. In 

plant RVB73 (category II plant) the level of sucrose was below detectable limits in 

contrast to the high level of fructose (35 mg/g FW) and glucose (45 mg/g FW) 

contained in the tubers (Fig 4). 

Discussion 

Introduction of the cassava AGPase B cDNA in antisense orientation into potato led to 

the suppression in expression of the native AGPase B mRNA in 17 out of 224 plants 

(Table 2). The reduction in AGPase B mRNA was accompanied by a reduction in the 

level of the AGPase B protein (Fig. 4) and subsequently by a dramatic reduction to 32% 

of the normal starch levels in plant RVB27 (i.e. 84 mg/g FW instead of 257 mg/g FW). 

These results reconfirm the major role of the AGPase enzyme in starch formation. 

Research on starch mutants in maize, amongst other plants, have shown that the 

reductions in starch level were the result of low endosperm AGPase activity caused by 

mutations at the independent AGPase loci Shrunken-2 and Brittle-2 (Hannah et al., 

1980). More recently Müller-Röber et al. (1992) showed that a dramatic reduction in 

potato starch levels could be obtained through the antisense expression of the potato 

AGPase B. The antisense effect was observed in plants that showed suppression of 
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AGPase B mRNA expression and was most severe in plants which showed no AGPase 

B mRNA expression. The frequency of transgenic plants exhibiting an antisense effect 

was about 23%. In the case of the potato plants carrying the cassava gene no plant with 

complete inhibition of AGPase B mRNA was found and the frequency of plants having 

an antisense effect was only 5%. This low frequency could be due to the use of a 

heterologous gene, cassava AGPase B, which exhibits only 68% amino acid homology 

(Chapter 3, this thesis) to the potato AGPase B gene. In cases of antisense suppression 

with heterologous genes it has been noted that the frequency of transformants showing 

antisense activity is lower than in cases where a homologous gene is used (Kuipers, 

1994). For cassava GBSSI which exhibits 74% homology to potato GBSSI 

Salehuzzaman et al. (1993) found that only 23 % of the transformants had an antisense 

effect as compared to 50 % when the potato gene was used (Kuipers, 1994). It would be 

necessary to analyse more plants carrying the cassava antisense AGPase B gene in order 

to find the plant exhibiting complete inhibition of AGPase B mRNA expression. 

The plants that showed reductions in AGPase B mRNA expression had at least 3 

T-DNA inserts indicating the strong influence of a high number of T-DNA inserts on 

the inhibition of AGPase B expression. A similar copy number effect was found in 

potato plants transformed with the potato antisense GBSS I gene (Kuipers et al., 1995). 

The antisense effect was more frequently observed in transformants of the diploid RV 

(12 plants) than in those of the tetraploid cultivars further indicating the copy number 

effect as far as the gene which is being suppressed is concerned. Ninety percent of the 

antisense plants that had reduced AGPase B mRNA levels were derived from the 

construct pECaB, that has the full length AGPase B cDNA. The rest carried a 1 kb 

Hindm/BamHI fragment of the N terminal region of cassava AGPase B. 

Antisense plants with reduced starch levels due to suppression of AGPase B 

expression had more numerous tubers per stolon, and smaller tubers than control plants 

(Table 1). Why this occurs still remains unclear but according to Müller-Röber et al. 

(1992) this may be due to changes in sink strength and /or nitrogen ratios. Even the 

sizes of the starch granules of plants with severe reduction in starch levels (plants 

RVB27 and RVB26) were smaller than those of normal plants. This indicates a role for 

AGPase in determining starch granule size and ultimately influencing the tuber-forming 

process. 

Reductions in tuber starch level were accompanied by an increase in the level of 
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the soluble sugars sucrose, fructose and glucose. This was most pronounced in antisense 

plants showing clear reductions in AGPase B mRNA expression such as for plant 

RVB14 that had up to 10 times more glucose, 6 times the amount of fructose, and 5 

times the amount of sucrose than that found in the control plants. These results are in 

agreement with those of Müller-Röber et al. (1992) who found high levels of sucrose 

(30% to 40% of dry weight) and glucose (8% of dry weight) in plants with reduced 

starch levels. The only difference is the high proportion of fructose and glucose as 

compared to sucrose levels in the potato plants carrying the cassava antisense AGPase B 

gene. This difference in the type of sugar accumulated may be as a result of metabolism 

of any accumulated sucrose to its components i.e. fructose and glucose. In general, 

sucrose is cleaved into uridine-5-diphosphate (UDPGlc) and fructose by sucrose 

synthase (Susy) or it can be hydrolysed by invertase resulting in glucose and fructose 

(Morrell and ap Rees, 1986). Sucrose synthase was found to have a high constant 

expression level in the antisense cassava AGPase B potato plants (results not shown), 

indicating that sucrose breakdown via the pathway catalysed by this enzyme was 

probably taking place. However, the role of invertase in degrading sucrose into fructose 

and sucrose cannot be entirely discounted. The actual differences in amount of sugars 

accumulated may also be influenced by the potato genotype used, i.e. cv Karnico in our 

case versus cv Desiree (used by Müller-Röber et al. 1992) and the conditions under 

which the plants were grown and harvested. What is clear from comparison with control 

plants is that these sugars accumulate as a result of the inhibition of AGPase activity 

due to suppression of AGPase B expression. 

The presence of osmotically active sugars instead of the osmotically inactive 

starch is thought to directly affect sink strength allowing for the formation of more than 

one tuber per stolon. However, the expression of levan sucrase from Erwinia amylocora 

which by producing the polymer fructan was thought to be able to reverse the 

accumulation of sugars only resulted in a further decrease in yield and in higher fructose 

levels (Röber et al., 1996). Recently Sonnewald et al., (1997) have shown that, under 

greenhouse conditions, cytosolic expression of a yeast invertase in potato leads to a 

reduction in tuber size and potato yield. In contrast when the invertase was targeted to 

the extracellular spaces, larger and fewer tubers than those from control plants were 

produced. Sonnewald et al. (1997) have put forward two hypotheses to account for the 

changes in tuber size. The first hypothesis is based on the reduced turgor pressure due to 
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breakdown of sucrose in the extracellular spaces leading to sucrose unloading through 

the plasmodesmata. The converse would happen when invertase was expressed in the 

cytosol. The second hypothesis looks at glucose accumulated in the extracellular spaces 

as being capable of acting as a signal to trigger cell division leading to tuber 

enlargement while glucose accumulated in the cytosol apparently does not have the 

capacity to act as a signal molecule. Much work still needs to be carried out to 

determine how tuber size is regulated. What is clear from our results and those of others 

is that the accumulation of sugars and their location within the tuber (sink) has a 

profound impact on tuber size and yield. 

The accumulation of fructans in starch deficient tubers (Röber et al., 1996) is an 

example of one way in which starch forming plants can be modified to store sucrose 

derivatives. It will, however, not be possible to knock out the AGPase activity 

completely by just inhibiting the synthesis of the AGPase B subunit. There will always 

be some residual AGPase activity due to the presence of isoforms of the small subunit 

in many plant species, which may be capable of combining with the large subunit to 

form an active heterotetrameric enzyme. In addition there is always the possibility that 

an active homotetrameric enzyme may be formed by the large AGPase subunit as 

shown by the expression of each subunit alone in E.coli (Igleasias et al., 1993). There is 

great potential to use the cloned cassava AGPase B cDNA to modify starch synthesis in 

cassava, in order to influence productivity as well as to produce new storage sinks. 
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Chapter 5 

Pinpointing towards improved transformation and regeneration 

of cassava (Manihot esculenta Crantz) 

Abstract 

Friable embryogénie callus (FEC) of the cassava genotype 60444 was transformed by 

particle bombardment with DNA from the plasmid constructs pHBl and pJITlOO. Both 

plasmids contained the luciferase (LUC) marker gene under the control of the CaMV 35S 

promoter. In addition pJITlOO had the CaMV35S driven phosphino acetyl transferase 

(PPT) gene while pHBl contained the cassava cDNA coding for the small subunit of ADP 

glucose pyrophosphorylase (AGPase B) in antisense orientation under the control of a 

double CaMV35S promoter. Two weeks after bombardment LUC positive FEC units 

(spots) were isolated and subcultured separately for further proliferation. Four weeks later 

those cultures having at least 4 positive LUC spots were subjected to three different 

selection regimes namely: stringent LUC selection, non stringent LUC selection and 

combined LUC/phosphinothricin (PPT) selection. Sixteen weeks after bombardment, 

stringent LUC selection gave rise to cultures in which 92% of the FEC units were LUC 

positive. Within the same time period non stringently LUC selected cultures and 

LUC/PPT selection had only 1% and 41% of the units being LUC positive, respectively. 

The number of LUC positive mature embryos formed was directly proportional to the 

percentage of LUC positive FEC units, within a culture, found with each selection method. 

Stringent LUC selection enabled transgenic plants to be produced in 28-36 weeks 

compared to 32-41 weeks for LUC/PPT selection and 53-78 weeks for non stringent LUC 

selection. This indicates that stringent selection is a more efficient and reliable method for 

obtaining transgenic cassava plants. Southern blot analysis of transgenic cassava plants 

revealed that they had between one to seven copies of the pHBl and pJITlOO construct. 

The production of the first cassava plants carrying an agronomically important trait 

affecting starch biosynthesis is reported. Expression of the antisense AGPase B gene 

resulted in cassava plants with extremely low levels of starch, compared to control plants, 

as shown by iodine staining of in vitro thickened stems. In plants exhibiting the highest 

AGPase B antisense effect, starch formation was limited only to the epidermal layer of in 

vitro thickened stems. 



Transformation of cassava with AGPase B 

Introduction 

The cultivation of cassava, a major crop in the tropics, is beset by many problems 

including diseases, pests, the high cyanide content of the roots and the low nutritional 

quality and commercial value of the starch. Improvement of the cassava germplasm by 

traditional breeding methods has been hampered by the non-availability of necessary genes 

in the germplasm, the alloploidy nature of the plant, and the low fertility of cassava, 

amongst other factors (for reviews see Thro et al., 1996 and references therein). The newer 

techniques of genetic transformation, whilst offering greater hope for improvement of 

cassava, have in the past been hindered by the lack of a reproducible transformation and 

regeneration system for this crop (for review see Raemakers et al., 1997a). The 

breakthrough came with the development of systems of regeneration based on friable 

embryogénie callus (Taylor et al., 1996) or on adventitious shoot formation (Li et al., 

1995). This enabled certain cassava genotypes to be transformed using particle gun 

delivery of DNA into friable embryogénie callus (FEC) cultures (Schöpke et al., 1996, 

Raemakers et al., 1996) as well as electroporation of FEC derived protoplasts (Raemakers 

et al., 1997b). In addition Li et al. (1996) have described a method that allows 

transformation of cassava with Agrobacterium tumefaciens infection of cotyledon expiants 

cultured for adventitious shoot formation. 

The methods used for selecting transgenic tissue, in FEC transformation, can 

basically be divided into procedures involving: 1) chemical selection with 

aminoglycosides such as paromomycin (Schöpke et al., 1996); 2) non invasive selection 

with the firefly luciferase gene (Raemakers et al., 1996); and 3) a combination of chemical 

selection with phosphinothrycin and use of the luciferase marker gene (Snepvangers et al., 

1997). While these methods have established the route by which cassava will be 

transformed in future they are not, however, optimally efficient for universal application. 

The main disadvantages of the methods being that they are genotype dependent, time and 

labour consuming, inefficient with respect to selection and /or regeneration. 

The FEC cultures used in the above mentioned studies were derived from the 

African cultivar called 60444. This cultivar was developed in a breeding programme led 

by Beck in the 1950's using material originating from Ghana and East Africa during the 

same period (Dr R. Dixon, ETA Nigeria, personal communication). Successful use of FEC 

derived from only this genotype means that much work still remains to be done to produce 

FEC from the important cassava cultivars world-wide. 
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For each of the methods described above it took from 8 months to more than a year 

to produce transgenic plants after the initial transformation procedure. This invariably 

implies that a lot of labour goes into maintaining the cultures on fresh media. The longer 

the time spent in tissue culture, the greater too is the expense of the procedure. Chemical 

selection with aminoglycosides such as paromomycin seemed to have a negative effect on 

the ability of transgenic FEC to regenerate into plants (Schöpke et al., 1997). Use of the 

luciferase gene for selection of transformed tissue remained labour intensive, since no 

selective advantage was given to the transgenic tissue over the non transgenic tissue. The 

use of the selection agent phosphinothricin (PPT) while not being detrimental to the ability 

of FEC to form plants, however, led to escapes and added extra steps to the whole 

procedure of producing transgenic plants (Snepvangers et al., 1997). There was a need to 

obtain an effective, reliable and less labour intensive transformation and regeneration 

method that can be applied universally. 

All the transgenic plants derived from the afore mentioned experiments carry 

marker genes such as ß glucuronidase (GUS), luciferase (LUC), phosphino acetyl 

transferase (PPT), hygromycin phosphotransferase (HPT) or neomycin phosphotransferase 

II (NPTIT) and no genes which confer new traits to the cassava germplasm. The cassava 

gene encoding the small subunit of ADP glucose pyrophosphorylase has been cloned 

(Chapter 3, this thesis). Use of this gene in antisense orientation in potato resulted in plants 

having reduced starch and elevated sugar levels in their tubers (Chapter 4, this thesis). This 

opened the possibility of increasing the commercial and nutritional value of cassava tubers 

by producing elevated levels of products such as fructans, cyclodextrins, and nutritionally 

important proteins in cassava tubers deficient in starch. This paper describes 

improvements in the procedure of cassava transformation using only luciferase selection 

and regeneration of FEC into plants. The plants produced carried the cassava AGPase 

small subunit gene in antisense orientation, in addition to the luciferase selection marker 

gene. 
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Materials and Methods 

Plant material and media 

The FEC culture used in the experiment was from the genotype 60444 (International 

Institute of Tropical Agriculture) and was kindly provided by Dr N. Taylor. The following 

media were used: Solid FEC proliferation medium (GD2) which consisted of Gresshof 

and Doy (1972) salts and vitamins (1972), 8 g/1 micro agar, 20 g/1 sucrose and 10 mg/1 

picloram, pH adjusted to 5.7 before autoclaving; Liquid FEC proliferation medium 

(SH6) made up of Schenk and Hildebrandt (1972) salts and vitamins, 60 g/1 sucrose and 

10 mg/1 picloram, pH adjusted to 5.7; 

Liquid (SH6) to solid (GD2) transfer medium (GD4) is identical to GD2 with 40 g/1 

sucrose added; Maturation media made up of Murashige and Skoog (1972) vitamins and 

salts, 20 g/1 sucrose (MS2), 8 g/1 Micro agar and 1 mg/1 NAA or 1 mg/1 Picloram; First 

cycle secondary somatic embryogenesis medium consisted of solid MS20 plus 8 mg/1 

2,4D; Second cycle secondary embryogenesis medium was made up of liquid MS2 and 1 

mg/1 NAA; Germination medium made up of MS2 plus 1 mg/1 BAP; Rooting medium: 

the shoots were rooted on solid (8 g/1 Micro agar) MS2 medium. 

Constructs and particle bombardment 

Standard molecular biology techniques were used in DNA manipulations (Sambrook et 

al., 1992). The constructs used were pHBl (8.0 kb) and pJITlOO (6.7 kb). The plasmid 

pJIT 100 contained the gene coding for luciferase (LUC) and phosphino acetyl transferase 

(PPT) both under the control of the CaMV 35S promoter and terminated by the CaMV 

polyadenylation region (Guerineau and Mullineaux, 1993). This construct was kindly 

provided by J. Guerineau of the John Innes Research Institute Norwich, U.K. Plasmid 

pHBl (Fig. 1) was made by introducing a 1.3 kb fragment of the cassava AGPase B 

cDNA (cut with Bamffl/Hindlll from plasmid pB45-l) in antisense orientation (HindlTJ 5' 

and BamHI 3') between the CaMV 35S promoter and the LUC gene of pJIT 100. Both 

constructs contained the ampicillin resistance gene for selection of bacteria carrying these 

Plasmids. For particle bombardment 20 ßg of plasmid DNA was coated on to 10 /ug of 

gold particles having an average size of 1.6 /xm. The method of coating the gold particles 

and bombardment of the FEC cultures was as described by Raemakers et al. (1996). 
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Plasmid pHBl was used together with pJITlOO for the transformation 

Ssü Xhol 

• CaMV poly A tail 
O Hindlll-BamHI fragmenc of cassava AGPase B 
H double CaMV 35S promoler 
Amp=ampicillln resistance gene tor bacterial selection 

Figure 1: Construct pHBl carrying the cassava antisense AGPase B gene. 

A 1.6 kb BamHI and Hindlll fragment of the cassava AGPase B gene from pB45-l (Chapter 3, this thesis) 

was cloned in antisense orientation into the Hindlll and BamHI site of pJITlOO (Guerineau and Millineau, 

1993) behind a CaMV35S promoter. Selection of transgenic tissue was based on the light emitting activity 

of the luciferase enzyme, encoded by the luciferase (LUC) gene 

experiments. The main interest, however, was in the plants transformed with pHBl 

because these contained an agronomically important gene (cassava AGPase B) unlike 

pJITlOO derived plants with only the marker/selection genes. 

Luciferase assays 

In order to select transgenic tissue, the firefly luciferase gene was used as a reporter gene. 

The luciferase gene encodes the enzyme luciferase (LUC) which converts the substrate 

luciferin into oxyluciferin in the presence of ATP, O2 and Mg + emitting light (de Luca 

and McElroy, 1978). Cassava FEC cultures, mature embryos or plants were sprayed with 

0.25 mg/ ml luciferin (Promega, E160). LUC activity was determined by measuring the 

amount of photons emitted by the expiants, using a VIM intensified CD camera and an 

Argus-50 photon counting image processor (Himamatsu Photonic Systems). 

Superimposition of the electronic image of LUC activity with the normal image of the 

expiant enabled the LUC positive tissue to be identified 
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and isolated. 

Selection of transgenic tissue 

Prior to bombardment new suspension cultures were initiated by transferring established 

FEC cultures from solid GD2 into liquid SH6 proliferation medium for two weeks. The 

new suspensions were then collected and spread out on solid (8 g/1 Micro agar) SH6 

medium. In total 50 petri-dishes were bombarded with pHB 1 and 40 Petri-dishes with the 

construct pJITlOO. The bombarded FEC cultures were then placed in 250 ml pots 

(diameter 10 cm) containing 50 ml of SH6 medium. After two weeks the cultures were 

collected on solid GD4 

medium and assayed for LUC activity. Putatively transgenic tissue was identified as LUC 

positive spots. Each spot plus the surrounding tissue (about 1 cm diameter around the 

LUC positive spot) was subcultured separately and grown for a further four weeks in 250 

ml pots (diameter 10 cm) containing 50 ml SH6 medium. Those cultures in which the 

number of LUC positive spots had increased to more than 4 were used for the following 

selection regimes: 

a) Non stringent luciferase selection 

Non stringent selection was applied on 16 cultures bombarded with DNA from pHBl and 

10 cultures bombarded with pJITlOO. For this selection procedure LUC positive FEC 

cultures were subcultured on GD2 medium and every 2 weeks LUC positive tissue plus 

the surrounding tissue (0.5 to 1 cm diameter around the LUC spot) was subcultured. After 

10 weeks (16 weeks after bombardment) the total LUC activity of the cultures as well as 

the proportion of LUC positive FEC units was determined. 

b) Stringent luciferase selection (pinpointing) 

Stringent LUC selection was applied on 8 cultures bombarded with pHBl. For this 

selection procedure LUC positive FEC cultures were subcultured on GD2 medium 

(discarding non transgenic FEC). Two weeks later LUC positive tissue plus the 

surrounding (0.5 to 1 cm diameter) was again selected and divided as fine as possible in 

individual FEC units. These selected embryogénie units were grown for a further two 

weeks on GD2 medium and then assayed for LUC activity. Because the FEC had been 
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spread out finely on the plates individual LUC positive FEC units in each culture could be 

pinpointed microscopically, isolated, collected 

together on fresh GD2 medium (positive selection). The cultures were grown for a further 

six weeks on GD2 medium and assayed every 2 weeks. Sixteen weeks after bombardment 

total LUC activity and the proportion of LUC positive FEC units was determined. 

c) combined luciferase and PPT selection 

Six weeks after bombardment 10 FEC cultures, transformed with pJITlOO, were placed on 

GD2 medium containing 20 mg/1 PPT. Every two weeks LUC positive tissue was 

identified and subcultured on to fresh medium. This process was repeated for 10 weeks 

after which the proportion of LUC positive tissue in each culture was determined. 

Maturation of FEC 

Two sets of experiments were conducted to determine the best conditions of maturation of 

the transgenic and non transgenic FEC. In the first set of experiments 0.1 g of FEC, 

derived sixteen weeks after bombardment from all three selection regimes, was 

subcultured in Petri-dishes on solid MS2 medium (8 g/1 Micro agar) supplemented with I 

mg/1 NAA (Schöpke et al., 1997) or 1 mg/1 Picloram (Raemakers et al., 1997c) and 0, 

0.01, 0.1, 1 and 10 mg/1 ABA. The cultures were transferred after 4 weeks to medium 

without ABA. 

In the second set of experiments, FEC derived from non stringent selection was 

further cultured and assayed for LUC activity for 10 weeks. After which highly LUC 

active FEC was transferred to liquid proliferation medium for 2 weeks. Then it was 

cultured on solid MS2 medium plus 1 mg/1 BA for maturation. 

All FEC cultures were transferred to fresh maturation medium every two weeks 

until mature embryos appeared (up to 12 weeks). The mature embryos were harvested and 

assayed for LUC activity. 

Germination of mature embryos 

LUC positive mature somatic embryos were first multiplied on solid MS2 + 8 mg/I 2,4 D 

and then grown in liquid MS2 + 10 mg/1 NAA. The resulting mature somatic embryos 

were desiccated and then cultured for germination on MS2 + 1 mg/1 BA as described by 
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Raemakers et al. (1996). 

Southern and Northern analysis 

DNA, RNA, and protein from LUC positive cassava leaves were isolated, blotted and 

assayed as described in Chapter 2. The LUC and cassava AGPase B genes labelled with 
32P dCTP were used to probe Southern and Northern blots respectively. 

Iodine staining of in vitro thickened stems 

Thickened stems were induced by growing transgenic and non transgenic cassava plants in 

vitro for 4 weeks on solid MS medium supplemented with 80 g/1 sucrose as described by 

Salehuzamman et al. (1993). The presence or absence of starch was visualised by iodine 

staining of cross sections of the in vitro thickened stems with Lugol's solution (fcKI). The 

stained stem sections were visualised microscopically. 

Results 

Effect of selection regime on the proportion of Iuciferase positive tissue 

Two weeks after bombardment LUC assays revealed a mean number of one LUC positive 

spot per pHBl culture and two LUC positive spots per pJITlOO bombarded culture. Each 

spot was cultured separately and grown for the next four weeks in liquid SH6 medium. At 

the end of that period 26 of the 50 pHBl and 46 of the 80 pJITlOO LUC positive spots, 

had disappeared and, 24 pHBl and 18 pJITlOO cultures had more than four LUC positive 

spots (indicating continued growth of the transgenic tissue). The pHBl bombarded 

cultures were used in the experiments with the stringent and also the non stringent LUC 

selection regimes. Ten of the 20 pJITlOO bombarded cultures were used for the combined 

LUC/PPT selection and for the non stringent LUC selection. 

After ten weeks of selection (16 weeks after bombardment) dramatic differences 

were observed in the LUC activities of the cultures. Stringently selected cultures had 50 to 

100 times higher LUC activity than non stringently selected cultures and seven times 

higher LUC activity than cultures from the combined LUC and PPT selection (Table 1). 
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'Transformation of cassava with AGPase B 

Figure 2: Stringent luciferase selection for the production of transgenic cassava friable 
embryogénie callii (FEC) and plants. 

Panel a: A friable embryogénie culture (BH6) bombarded with the construct pHBl, expressing 
luciferase, two weeks after bombardment. Panel b) close up (magnification X 20) of luciferase 
positive FEC (8 weeks after bombardment) that was selected from the surrounding non 
transgenic FEC and spread out finely on solid GD2 for further culture. Panel c) view of 
stringently selected and well spread out FEC units under normal light, 16 weeks after 
bombardment. The precise pinpointing of LUC positive FEC units was possible, as shown in 
panel d. Using stringent selection it was possible to obtain cultures with >95% LUC positive 
FEC units, 16 weeks after bombardment as shown in panel e (normal view) and panel f (viewed 
in the dark, after adding luciferin. Following mature embryo formation and germination 
stringently selected cultures gave rise to luciferase positive plants shown under normal light 
(panel g) and expressing luciferase (panel h) 
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Microscopic examination of the cultures revealed that over 90% of the FEC units in a 

stringently selected culture were LUC positive. This is considerably higher than the 45% 

LUC positive FEC units obtained in combined LUC and PPT selection. Non stringent 

selection gave rise to cultures with less than 1% LUC positive FEC units. The process and 

results of the stringent LUC selection regime are shown in Fig. 2a-h. 

Mature embryo formation and regeneration of transgenic cassava shoots 

Regeneration of plants from FEC starts with the formation of mature somatic embryos. 

The percentage of LUC positive mature embryos after using the different selection 

regimes was directly proportional to the percentage of LUC positive FEC units (Table 1). 

An amount of 0.1 g FEC cultured on maturation medium supplemented with 1 mg/1 NAA 

or 1 mg/1 Picloram yielded 66 and 124 mature embryos respectively while the addition of 

ABA did not have a positive effect on this number (results not shown). 

For mature embryo formation the best results were obtained with FEC cultures that 

were grown first in liquid SH6 medium without refreshing for two weeks and then 

transferred to maturation medium. The FEC units became primed for maturation i.e. 

instead of initiating new FEC units they became bigger. These primed cultures gave rise to 

high numbers of mature embryos. 

About half of the mature embryos had a morphology similar to that observed for 

mature embryos derived from secondary somatic embryogenesis (Raemakers et al., 1993). 

The mature somatic embryos possessed two cotyledons that were in most cases fused 

together. Malformations that were observed included mature embryos with pinnulate, 

oval, and serrated cotyledons. In many cases a Petri-dish (with FEC derived from one 

transgenic line) contained predominantly mature somatic embryos from one aberrant type 

while another Petri-dish, from the same transgenic line and on the same medium contained 

normal looking mature embryos. Although this was not investigated systematically there 

seemed to be a relation between the morphology of the mature somatic embryos and their 

ability to form secondary embryos. However, all transgenic lines yielded secondary 

embryos that were cultured for germination 

Efficiency of production of transgenic plants 

The time required to obtain transgenic plants was dependent on the amount of transgenic 

FEC necessary for mature embryo formation and the time taken for mature embryo 
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Chapter 5 — — 

formation and germination. The chance that a mature embryo was transgenic was the only 

factor that differed amongst the three selection regimes used. Using stringent LUC 

selection it was possible to get large numbers of transgenic FEC and mature embryos 

within a period of 16 weeks compared to those obtained by the other two selection regimes 

(Table 1). Stringent selection led to a reduction in the time required to obtain transgenic 

FEC and mature embryos. The time required to produce transgenic plants with stringent 

selection and improved maturation and germination was only 28-36 weeks compared to 

32-41 weeks for LUC/PPT and 53-78 weeks for non stringent selection (Table 1). 

Morphology of transgenic plants 

In total 21 of the 24 pHBl luciferase positive cultures (Table 1) yielded a transgenic plant 

carrying the LUC selection marker gene. The other three lines are currently cultured for 

germination. The morphology of these plants was compared with those from three control 

groups, that is: 20 pJITlOO plants carrying the luciferase gene (AGPase control), non 

transgenic FEC derived plants (régénérant control), and non transgenic controls 

propagated in vitro via cuttings (overall control). Most of the transgenics and the 

régénérant controls did not grow as vigorously as the overall control. Some of the 

transgenics had an aberrant growth type: highly branched (probably due to a carry-over 

effect of BAP as this phenotype disappeared with subsequent micropropagation), zig-zag 

stem (overall control had a straight stem), plants with curled leaves, and fleshy thick stems 

with small shoots. All these phenotypes, except the last one, were also observed in the 

régénérant control plants. None of the aberrations was observed in the overall control in 

vitro propagated by cuttings. Ninety percent of the overall control and 40% of the 

transgenics and the régénérant controls survived the transfer to the greenhouse 

Evidence of an antisense AGPase effect in cassava stems 

The introduction of the AGPase B gene in antisense orientation is expected to result in a 

decrease in AGPase B expression. This should have a negative impact on starch 

formation, as reduced levels of AGPase would be available for ADP-glucose formation. 

To test this expectation it was necessary to check for starch formation in cassava roots. 

However, in the greenhouse it takes at least four months before any substantial cassava 

roots are formed. It was necessary to analyse some other part of the antisense AGPase B 

plants that had large amounts of starch and for this purpose in vitro thickened stems were 
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cortex region 

epidermal layer 

Figure 3: Iodine staining of in vitro thickened steins of cassava plants containing 
the pHBl construct 

a) Cross section of the in vitro thickened stem of HB-10, a category III plant stained with iodine. 
Note the strong staining of all tissue layers in the cortex and epidermal areas indicating the 
presence of starch, b) Category II transgenic plant (HB-10) had little or no staining in the cortex 
region but intense blue / black staining in the epidermal layer, c) category I transgenic plants 
(example is HB1) had no staining in the cortex region and very few starch granules in the 
epidermal region as shown in the close up (magnification X 50) transverse section in panel d. 

Sections of induced thickened stems of 16 of the 21 antisense AGPase B plants and 

controls (20 pJITlOO transgenics, 20 non transgenic régénérant and 20 overall control 

plants) were stained with iodine to determine the presence or absence of starch. The 

antisense AGPase B plants could be divided into three categories based on iodine staining 

of in vitro thickened stems, as shown in Fig. 3. Of the 16 transgenic plants containing the 

AGPase B antisense gene there were four which belonged to Category in (Table 2). These 

plants exhibit staining characteristics similar to the three groups of control plants i.e. all 

tissue in the cortex region and epidermal area stained blue / black with iodine (Fig. 3a). 
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Figure 4: Southern blot analysis of transgenic cassava plants containing the 
Plasmids pJITlOO and pHBl. 

An amount of 10 |j.g of DNA was applied per lane, blotted on to a hybond filter and hybridised with a 32P 
labelled 1.5 kb luciferase gene. M= 1 kb DNA marker lane. Sizes are as shown on the left hand side of the 
panel. C = control DNA from non transgenic in vitro propagated 60444 plants. Lanes 1-9 contain DNA 
from the transformants J1 to J9. Lanes 11 tol9 contain DNA from the transformants HB 10, HB19, HB 13, 
HB8, HB2, HB5, HB3, HB 18, HB23. DNA from all the transformants was derived from leaves of in vitro 
plantlets except for lane 19 (HB23) where DNA isolated from mature embryos was used 

There were nine plants (56%) designated as category II antisense plants (Table 2) 

with little or no staining in the cortex region but retaining more stain in the epidermal layer 

(Fig. 3b). Category I plants of which there were three transgenic plants (Table 2) had no 

staining at all in the cortex region (Fig. 3c). They showed some staining in the epidermal 

layer which was less than 10% of that found in category II sections. When examined 

microscopically only a few iodine staining starch granules were found in the cells of the 

epidermal layer as shown in Fig 3d for plant HB1. 

Staining of the induced in vitro thickened stems, revealed that in total 74% of the 

AGPase B antisense plants had reduced levels of starch compared to the three groups of 

control plants. The number of pHB 1 inserts in the antisense plants was determined by 

102 



Transformation of cassava with AGPase B 

Southern analysis using the LUC gene as a probe. This revealed that the plants contained 

between one to seven inserts of the AGPase B antisense construct and between one to six 

inserts of the pJITlOO construct (Fig. 4). There was no clear correlation between a high 

number of pHB 1 inserts and the degree of antisense effect (Table 2). 

Discussion 

Twenty one independent transgenic cassava plants were produced by particle 

bombardment mediated transformation of cassava 60444 FEC with the plasmid pHB 1. 

This plasmid carried the cassava starch gene AGPase B in antisense orientation under the 

control of a double CaMV 35S promoter. This is the first reported transformation of 

cassava with a gene conferring a new trait to the crop other than the previously described 

transgenic cassava plants, which carried reporter or marker genes (Li et al., 1996; 

Raemakers et al., 1996, Snepvangers et al., 1997, Schöpke et al., 1996). Southern analysis 

revealed that these plants carried between one and seven inserts of the pHBI gene 

construct. LUC assays conducted on the plants and expiants showed that they were indeed 

transgenic. In actual fact it was even possible to visualise the light emitted by these plants 

in the dark, upon spraying them with luciferin, using the naked eye. This phenomenon has 

not been previously reported by other researchers working with the LUC firefly gene in 

plants. This result is clearly correlated to the high activity of the luciferase enzyme in the 

antisense AGPase cassava plants. 

The time taken to produce transgenic cassava plants using the improvements in 

stringent LUC selection and improved maturation of transgenic FEC was only 28-36 

weeks compared to 32-41 weeks for combined LUC/PPT selection and to 53-78 weeks for 

non stringent LUC selection. The stringent selection procedure based on two cycles of 

microscopic identification, selection and growth of LUC positive FEC units was found to 

have clear advantages over the methods used previously of non stringent LUC selection 

(developed by Raemakers et al., 1996) and LUC/PPT selection (Snepvangers et al., 1997), 

see Table 1. An MS2 medium supplemented with lmg/1 NAA did not improve embryo 

maturation, as compared to MS2 medium supplemented with 1 mg/1 picloram. 

A higher efficiency rate of maturation was accomplished by using FEC which 

were "primed" for maturation. This was done by leaving the FEC cultures in liquid 

proliferation medium without refreshing, over a period of two weeks, and then transferring 
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the cultures on to maturation medium. These primed cultures gave rise to relatively high 

numbers of mature embryos. Further research is required to determine whether this 

priming effect is due to nutrient starvation or to density. 

Most of the trangenic and non trangenic FEC derived plants did not grow as fast as 

the overall control, in vitro propagated, plants. In about 50% of the cases continued in 

vitro propagation resulted in growth rates similar to those of overall control plants. The 

other 50% of the plants had more serious aberrations such as zig-zag stems, stunted 

growth, curly leaves, thick stems and numerous small shoots. The latter two were only 

observed in the transgenics. It remains unclear whether or not this is due to the 

introduction of the gene constructs, or to somaclonal variation induced by the regeneration 

process. 

The transgenic plants containing the construct pHBl potentially contain the 

AGPase B gene in antisense orientation. The AGPase B gene encodes the small subunit of 

the heterotetrameric AGPase enzyme. This enzyme plays a critical role in starch formation 

where it is involved in forming ADP-glucose from ATP and glucose-1-phosphate (Preiss 

et al., 1991). Suppression of the expression of this gene would lead to reduced levels of the 

enzyme and ultimately to a reduction in starch formation. Analysis of the starch present in 

in vitro thickened stems of the antisense AGPase B plants revealed that 74% of the 

transgenic plants had reduced levels of starch compared to the control non transgenic and 

pJITlOO transformed plants. This functionally confirms the identity of the AGPase B 

cDNA cloned from a cassava tuber specific library (Chapter 3, this thesis). It is also a clear 

indication that the introduction of the antisense AGPase B gene blocks the formation of 

ADP-glucose, the major glucosyl donor for starch formation (Preiss et al., 1991 ). The high 

frequency (74%) of transgenic plants exhibiting an antisense effect is in stark contrast to 

what was observed when the same cDNA was introduced into potato where the frequency 

of plants exhibiting an antisense effect was only 5% (as judged by reduced starch levels), 

[Chapter 4, this thesis]. This difference in response can be attributed to the reduced 

sequence homology between the cassava and potato AGPase B genes of only 68% hence 

probably the reduced response when the heterologous cassava gene was introduced into 

potato. 

Interestingly in the three plants exhibiting the highest antisense effect a cell layer 

within the stem still had some starch. This could be due to the fact that the CaMV35S 

promoter is not active in this tissue layer. The reduction in starch levels in AGPase 
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antisense cassava plants is similar to what was observed with the introduction of antisense 

cassava AGPase B in potato. This gave rise to plants with reduced starch levels and 

increased levels of fructose and glucose in their sugars (Chapter 4, this thesis). Similar 

reductions in starch levels and increase in glucose levels had been reported in potatoes 

carrying the antisense potato AGPase B gene (Müller-Röber et al., 1992). From the 

antisense work in potato it can be inferred that sweet cassava plants have been produced. 

This opens the way to be able to utilise such sweet cassava plants for sugar production in 

much the same way as sugar beet is used in Europe. The cassava plants may also be made 

to produce novel compounds such as fructans or cyclodextrins using the excess soluble 

sugars available. 
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Chapter 6 

Cassava Biotechnology: Impact of growing transgenic cassava in the field 

Cassava {Manihot esculenta Crantz) is a crop that in the very recent past has discarded its 

label as a poor man's crop. This has been brought about not only because of the 

recognition of its importance in the tropics where it is a staple food for millions but also 

because of its growing use in starch based industries such as the food and beverages 

industries amongst others. As a result, the study of cassava starch metabolism, diseases 

and pests, and other factors affecting cassava production have thus been stimulated. This 

revival period for cassava research has coincided with great leaps in the field of plant 

molecular biology with gene cloning, and transformation being readily applicable 

techniques. This has enabled the formulation of novel strategies to improve the cassava 

production of existing varieties. Much emphasis in cassava research is focused on 

improved tissue culture techniques for rapid propagation of planting material and 

increasingly on the cloning and transformation of cassava with genes for resistance to viral 

and other diseases, quality and quantity of cassava starch, and the cyanide pathway (Thro 

et al., 1996). 

Research into cassava starch biosynthesis has led to the cloning of the major genes 

involved in starch formation. These include the genes coding for: the large and small 

subunits of ADP-glucose pyrophosphorylase (Chapter 3), the two isophorms of granule 

bound starch synthase; GBSSI (Salehuzzaman et al., 1993) and GBSSII (Chapter 2), and 

branching enzyme (Salehuzzaman et al., 1992). Evidence from the characterisation of 

these genes and their products has revealed that, as expected, the process of starch 

formation, in cassava, is essentially the same as in other higher plants (Salehuzzaman et 

al., 1993, Munyikwa et al., 1997). Early verification of the biological role of these genes 

has been possible through transformation and analysis of transgenic potato plants. It has 

thus been possible in potato to produce plants with almost no amylose by expressing an 

antisense cassava GBSS cDNA (Salehuzzaman et al., 1993). Potato plants transformed 

with an antisense cassava AGPase B gene had reduced starch levels and stored more 

soluble sugars (Chapter 4). The possibilities are thus opened to use these genes to produce 

new cassava varieties with modified starch quality and quantity. Until recently it was not 

possible to transform and regenerate cassava. This has changed in the last year with the 

production of the first transgenic cassava plants by several research groups. These plants 

carry marker genes such as the luciferase (LUC) firefly gene, neomycin 

phosphotransferase gene (NPTII) and the ß glucuronidase gene (GUS), (Raemakers et al., 
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1996; Schopke et al., 1996, Li et al., 1996). The first transgenic cassava plants containing 

an agronomically important gene have recently been produced (Chapter 5, this thesis). 

These plants are the forerunners to new cassava varieties containing genes designed to 

improve existing cassava varieties. 

Novel cassava varieties 

In future it should be possible to produce cassava plants containing genes for resistance to 

viral, bacterial and insect disease. It will also be possible to produce cassava varieties with 

altered starch quality and quantity. Cassava varieties with low amylose may be produced 

through down regulation of GBSS. The starch from these plants would have a higher 

commercial value while also being beneficial nutritionally due to the low fat uptake of 

amylose free starch. Cassava varieties with high solid mass can be produced through 

expression of an AGPase gene modified in such a way that it would be largely insensitive 

to 3PGA/Pi regulation, hence increasing starch synthesis as has been shown for the 

Escherichia coli enzyme in potato (Stark et al., 1993). This would be beneficial for 

farmers who would have excess material for consumption as well as for selling to the 

starch industries. Expression in cassava of an antisense AGPase would lead to tubers 

having less starch and accumulating large amounts of soluble sugars. These starchless 

tubers could be used to produce high value products such as fructans and dextrins as has 

been done in potato. Expression of important nutrients such as vitamins in cassava would 

go a long way in improving the dietary value of the crop. Such a possibility has been 

demonstrated by the expression of an intermediate of provitamin A, phytoene, in rice 

endosperm (Burkhardt et al., 1997). 

Transformation and plant breeding 

All this is however dependent on the transformation and regeneration of cassava 

being universally applicable and reproducible. The method described by Li et al., 1996 

makes use of of somatic embryos that are cultured for adventitious shoot organogenesis. 

This method is relatively easy as plants can be produced in one step. However, at this 

moment only one lab has managed to obtain transgenic plants using this method and at 

least some of the transgenic plants were chimaeric (Li et al., 1996). 

The advent of the friable embryogénie callus (FEC) system (Taylor et al., 1996) and 

microprojectile mediated transformation of cassava has opened up another avenue by 
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which efficient transformation and regeneration of cassava can be achieved. However, the 

procedures developed up to date (Raemakers et al., 1996; Schopke et al., 1996) for 

transforming cassava were genotype dependent, time and labour consuming, and 

inefficient with respect to selection and /regeneration. 

The ideal transformation and regeneration procedure is one in which the transgenic 

callus is easily selectable and regenerated into plants. Stringent luciferase selection of 

transgenic material transformed with constructs carrying the luciferase firefly gene offers 

the possibility to drastically reduce the time required for transformation and regeneration 

of transgenic plants (Chapter 5, this thesis). While the system is easily manageable this is 

currently offset by the initial high cost of the detection equipment required. This limits the 

applicability of this method to labs in developed countries or international research 

institutions. However, with time and improvements in procedures for detecting transgenic 

tissue, transgenic cassava plants will soon be produced in national research institutions in 

developing countries. Besides, cassava is a tropical crop so any field trials will certainly 

have to be carried out in tropical countries. Hence transgenic cassava crops will eventually 

find their way into the tropics. 

The genotype 60444 while highly manageable for FEC production and 

transformation is actually not part of the current breeding population in many breeding 

programmes. This genotype was produced by Beck during the 1950s in a breeding 

programme involving cassava varieties from Nigeria and Ghana (Dr R.Dixon, UTA 

Nigeria, personal communication). Hence any new traits introduced by the transformation 

of 60444 will have to be transferred to existing varieties, by crossing, in order for new 

traits to be introduced into breeding material. However for 60444 this may prove to be 

difficult because observations of the number of chromosomes in some of the régénérants 

from transformation experiments with cassava AGPase B (Chapter 5) have revealed that 

they have 35 instead of 36 somatic chromosomes (Fig.l). These plants thus exist as 

aneuploids making it more difficult to cross with breeding populations. It will be 

necessary to produce and transform FEC from existing plant varieties which are already 

adapted for particular agro-ecological regions within the tropics. 

Benefits and biosafety implications 

There are clear advantages in introducing transgenic cassava in Southern countries. These 

have mainly to do with the introduction of engineered novel traits such as disease and pest 
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resistance and improved cassava tuber or starch production. This should lead to more 

stable productivity, 

Fig. 1 DAPI stained chromosomes of cassava transformant HB18 showing 35 metaphase chromosomes 
instead of the expected 36 chromosomes found in most genotypes of Manihot esculenta 

improved nutritional quality, and increased income for resource poor farmers in the south. 

Transgenic plants carrying herbicide resistance to biodegradable pesticides such as 

phosphinothrycin may help reduce the amount of chemicals which are used under normal 

circumstances enabling better environmental conditions to be created. 

However, there are also some disadvantages of introducing transgenic cassava into 

Southern tropical countries. The main one is the lack of knowledge by the majority of 

people in these countries about genetically modified organisms (GMOs) and their 

products. People in southern countries have in the main not been sensitised about GMOs 

and have not been involved in any public discussions about biosafety and durability of 

GMOs. In contrast in Northern countries there exists various consumer groups, 

environmental organisations and regulatory offices all dealing with and giving voice to 

issues pertaining to transgenic crops. 

Biosafety regulations are now on the statute books of several developing countries 
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including Thailand, Brazil, and South Africa. However, these regulations may not stop 

individuals bringing in transgenic plants illegally since this material in most cases does not 

differ from non transgenic material. There is also a danger of genetic flow whereby 

outbreeding of transgenic cassava with closely related relatives, such as other Euphorbia 

species, may result in the transfer of antibiotic or herbicide resistance genes into the wild. 

This may, in theory, lead to the development of new weeds which are difficult to control. 

Such a possibility of gene transfer has been demonstrated by Mikkelsen et al. (1996) who 

showed that it was possible for genes to flow quickly from a Brassica napus crop to its 

wild weedy relatives. For cassava, quantitative studies would need to be carried out to 

determine the potential gene flow into wild relatives of the crop before any large scale 

distribution of transgenic material can take place. 

If transgenic crops become very successful in Southern countries this may force 

farmers to move from their normal practise of intercropping cassava with other crops such 

as cowpeas or beans (in Africa and Indonesia) to extended monoculture of transgenic 

cassava. This may in turn lead to wholesale breakdown of disease resistance in transgenic 

crops. 

When transgenic cassava reaches the tropical southern countries there is no doubt 

about the profound effect these new varieties will have on the lives of the inhabitants of 

these countries. It is important that measures are taken by governments, international and 

national research institutions, and non governmental organisations to inform and initiate 

discussions with farmers, consumers and researchers about the advent, benefits and 

possible harmful effects of producing transgenic crops. 

Intellectual property rights (IPR) 

Lastly cassava is a crop which has been grown and bred over many generation by farmers 

in the developing countries. However, the development of transgenic cassava, and 

patenting of the genes, products and transformation processes (intellectual property rights) 

currently takes place in developed countries. It is important that some form of international 

legal arrangements are made to ensure that resource poor farmers in developing countries 

benefit from crops, like cassava, which after all they have nurtured over the centuries. This 

may involve the free transfer of transgenic material by commercial companies to 

communities as long as the material is being used for local consumption. Only when large-

scale production for export is undertaken would farmers be obliged to pay for any IPR 
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levy. The money from such a levy could then be used to help bolster agricultural research 

in developing nations either through national or international research institutions. 
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Summary 

Cassava {Manihot esculenta Crantz) is a tropical crop grown for its starchy thickened 

roots, mainly by peasant farmers, in the tropics, for whom it is a staple food. There is 

an increasing demand for the use of cassava in processed food and feed products, and 

in the paper and textile industries amongst others. This thesis describes research on the 

cloning of the genes encoding ADP-glucose pyrophosphorylase small and large 

subunits (AGPase B and S, respectively) and granule bound starch synthase II 

(GBSSII). These genes and their products were extensively characterised to determine 

their role in starch biosynthesis in cassava. Functional verification of the genes was 

carried out by transforming potato and cassava followed by analysis of the starch 

produced by the transgenic plants. 

In Chapter 1 cassava production in the world in general and in Zimbabwe in 

particular is examined against the backdrop of new cloning and transformation 

strategies to improve starch quality and quantity. The development of cassava cultivars 

whose starches have novel physico-chemical properties by genetic modification of the 

process of starch biosynthesis is examined therein. The main criteria for these new 

cultivars to emerge are set forth as being: the availability of cloned and characterised 

starch biosynthesis genes, a universally applicable transformation and regeneration 

procedure for cassava, transfer to appropriate cassava cultivars, and biosafety analysis 

of transgenic cassava plants before disbursement to farmers. 

The cloning of the cassava starch biosynthesis genes encoding granule bound 

starch synthase II (GBSSII) and the large and small subunits of ADP-glucose 

pyrophosphorylase (AGPase) is described in Chapters 2 and 3. The cloning of GBSSII 

reveals that there is indeed a second isoform of this enzyme in cassava as in other 

plants species. While sharing very little amino acid sequence homology with cassava 

GBSSI the GBSSII isophorm shares high amino acid sequence homology to other 

GBSSII genes from pea and potato. Cassava GBSSII seems to be more important in 

leaf tissue where it is more highly expressed than in tuber tissue where GBSSI 

predominates. Mapping of GBSSII revealed that this is a single copy gene located on 

the male derived linkage group T of the cassava mapping population. 

Cloning of the cassava genes coding for the small (B) and large subunit (S) of 
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AGPase revealed interesting aspects about the cassava enzyme. The cassava AGPase is 

likely to be heterotetrameric in constitution as had been found in other plant species. 

Comparison of the cassava AGPase sequences with those of already cloned AGPases 

revealed that AGPase B is more similar to small subunit genes from other plants than to 

cassava AGPase S coding for the large subunit (Chapter 3). Segregation analysis of a 

cassava mapping population revealed that AGPase S is a single copy gene that is 

localised on the female derived linkage group E of the cassava genetic map. Both genes 

are expressed in all cassava tissues but AGPase B was shown to have a higher steady 

state mRNA level than AGPase S especially in leaf and tuber tissue. Post-transcriptional 

control of small subunit polypeptide levels could be inferred from the discrepancy 

between AGPase B mRNA and polypeptide levels. The AGPase enzyme activity was 

much higher in young cassava leaves than older leaves and tubers. Cassava leaf AGPase 

activity was increased 3 fold by the addition of 3-PGA (3-phospho-glycerate) and 

inhibited by up to 90% in the presence of inorganic phosphate (Pi). The tuber enzyme 

was relatively unaffected by 3PGA, but was highly inhibited by Pi. 

In order to verify the biological role of the AGPase B gene antisense constructs 

were made of the cassava AGPase B behind a CaMV35S promoter (chapter 3). This 

was transferred into potato plants by Agrobacterium tumefaciens. While the 224 

transgenic antisense AGPase B potato plants did not differ in appearance from normal 

potato plants, 45 transgenic plants, however, had more numerous and smaller tubers 

than control plants. Antisense plants with reduced AGPase B mRNA levels had 1.5 to 

3 times less starch than tubers from the control plants. The levels of the soluble sugars 

in the antisense plants increased significantly (up to 10 times more glucose, 6 times the 

amount of fructose, and 5 times the amount of sucrose) when compared to those found 

in control plants. These results show that a heterologous gene from cassava can have an 

antisense effect in potato, but that the number of plants required to find plants 

exhibiting maximum antisense effect has to be very large. This is probably due to 

sequence homology differences between the cassava AGPase B and potato AGPase B 

genes which share only 68% amino acid sequence homology. 

Chapter 5 describes the further development of an efficient, time and labour 

saving protocol for transforming cassava based on stringent selection of the luciferase 
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(firefly) marker gene. In addition the first reported transformation of cassava with a 

gene (AGPase B) other than a marker gene is described. An antisense construct was 

made for transforming cassava. This consisted of the cassava AGPase B gene which 

was placed in antisense orientation behind the CaMV35S promoter. This was then 

coupled to the luciferase gene driven by another CaMV35S promoter. After particle 

bombardment of cassava FEC transgenic tissue was selected using three different 

selection regimes: non stringent luciferase selection, stringent luciferase selection and 

combined chemical (phosphinothrycin) and luciferase selection. Stringent luciferase 

selection whereby luciferase positive FEC units were precisely pinpointed, isolated and 

cultured was found to be the most effective and time saving method. It was possible to 

generate cultures having more than 90% luciferase positive FEC tissue after 12 weeks 

of stringent LUC selection, compared to 45% and <1 % for combined selection and non 

stringent selection respectively. The number of luciferase positive mature embryos 

generated was directly proportional to the percentage of luciferase positive tissue in the 

original FEC culture. Stringent luciferase selection enabled the time taken for 

production of transgenic cassava plants to be reduced to 28-36 weeks as compared to 8 

months to a year with no stringent selection or LUC/PPT selection. 

Cassava plants carrying the AGPase B antisense gene had extremely low levels 

of starch, compared to control plants, as shown by iodine staining of in vitro induced 

thick stems. In plants exhibiting the highest AGPase B antisense effect, starch formation 

was limited only to the epidermal layer. These results functionally confirm the identity 

of cassava AGPase B as well as emphasising the critical role of AGPase in starch 

formation in cassava. 

A discussion about the significance and implications of cloning cassava genes 

and producing transgenic cassava for culture in developing countries is carried out in 

Chapter 6. While there are clearly many economic and nutritional benefits to producing 

transgenic cassava, for resource poor farmers, many people in the South are not aware 

of the biosafety implications of growing transgenic crops. It is further emphasised that 

discussions and debate should be initiated to make local communities aware of the 

issues surrounding transgenic crops and their products. In addition it is recommended 

that some form of international legal framework be set up to ensure that resource poor 
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farmers are not disadvantaged by the patenting of material originating from their 

communities by individuals and companies in the North. This thesis clearly 

demonstrates how it will be possible in the near future to produce new cassava 

cultivars carrying the appropriate genes to affect pronounced changes on tuber 

productivity and starch quality. 
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Cassave (Manihot esculenta Crantz) is een gewas dat geteeld wordt in de tropen door 

kleine boeren voor wie de zetmeelrijke verdikte wortels basisvoedsel zijn. Er is een 

toenemende vraag naar het gebruik van cassave bij onder andere de productie van 

levensmiddelen en diervoeders en in de textielindustrie. Dit proefschrift beschrijft het 

onderzoek naar het kloneren van de genen die coderen voor de kleine en grote 

subeenheid van ADP-glucose pyrophosphorylase (respectievelijk AGPase B en S) en 

korrelgebonden zetmeelsynthase II (granule bound starch synthase II, GBSSII). Deze 

genen en hun producten zijn uitvoerig gekarakteriseerd met betrekking tot hun rol in 

de zetmeelsynthese van cassave. De functie van de genen werd geverifieerd door 

transformatie van aardappel en cassave gevolgd door analyse van het zetmeel dat door 

de transgene planten werd geproduceerd. 

In Hoofdstuk 1 wordt de cassave productie in de wereld, en in het bijzonder in 

Zimbabwe, bestudeerd tegen de achtergrond van nieuwe klonerings- en 

transformatietechnieken die verbetering van de zetmeelkwaliteit en -kwantiteit 

mogelijk maken. Ook wordt de ontwikkeling van cassave cultivars besproken waarvan 

het zetmeel nieuwe fysisch-chemische eigenschappen heeft door genetische 

modificatie van de zetmeelbiosynthese. De belangrijkste criteria voor de ontwikkeling 

van deze nieuwe cultivars zijn: de beschikbaarheid van gekloneerde en 

gekarakteriseerde genen uit de zetmeelbiosynthese, een universeel toepasbaar 

transformatie- en regeneratiesysteem voor cassave, toepassing in de meest geschikte 

cassave cultivars en een veiligheidsanalyse van transgene cassave planten voordat 

deze beschikbaar komen voor de landbouw. 

De klonering van de cassave genen coderend voor zetmeelsynthase II (granule 

bound starch synthase II, GBSSII) en de kleine en grote subeenheid van ADP-glucose 

pyrophosphorylase (respectievelijk AGPase B en S) is beschreven in de Hoofdstukken 

2 en 3. De klonering van GBSSII laat zien dat er in cassave een tweede isoform van 

dit enzym bestaat, zoals dat ook in andere plantensoorten werd gevonden. Terwijl de 

sequentiehomologie op aminozuurniveau met GBSSI erg laag is, vertoont GBSSII een 

hoge sequentiehomologie met de GBSSü genen van erwt en aardappel. In bladweefsel 

lijkt GBSSII van cassave een belangrijker rol te spelen dan GBSSI, aangezien GBSSÜ 

sterker tot expressie komt, terwijl in knolweefsel voornamelijk GBSSI wordt 
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aangetroffen. Door kartering is aangetoond dat er één kopie van het GBSSÜ-gen 

bestaat die op de genetische kaart van cassave is gelocaliseerd binnen koppelingsgroep 

T, die van mannelijke afkomst is. 

Door de klonering van de cassave genen die coderen voor de kleine (B) en 

grote (S) subeenheid van AGPase zijn enkele interessante aspecten van dit enzym 

aangetoond. De AGPase van cassave is waarschijnlijk heterotetrameer van opbouw 

zoals ook voor andere plantensoorten is gevonden. Vergelijking van de cassave 

AGPase sequenties met die van al eerder gekloneerde AGPases heeft aangetoond dat 

AGPase B meer overeenkomst vertoont met genen voor de kleine subeenheid van 

andere planten dan met het cassave gen dat codeert voor de grote subeenheid 

(Hoofdstuk 3). Door splitsingsanalyse van een karteringspopulatie van cassave is 

aangetoond dat er één kopie van het AGPase S-gen bestaat die op de genetische kaart 

van cassave gelocaliseerd is binnen koppelingsgroep E, die van vrouwelijke afkomst 

is. Beide genen komen tot expressie in alle weefsels van de cassaveplant, terwijl 

AGPase B, vooral in blad- en knolweefsel, een hoger steady-state mRNA niveau bleek 

te hebben dan AGPase S. Uit de discrepantie tussen de AGPase B mRNA en 

polypeptide niveau's kon worden geconcludeerd dat het eiwitniveau van de kleine 

subeenheid onder post-transcriptionele controle staat. De AGPase enzymactiviteit was 

veel hoger in jong cassaveblad dan in ouder blad en knollen. De AGPase activiteit in 

blad nam toe met een factor 3 na de toevoeging van 3-phospho-glyceraat (3-PGA) en 

kon voor maximaal 90% worden geïnhibeerd in aanwezigheid van anorganisch fosfaat 

(Pi). Hetzelfde enzym uit de knol was relatief ongevoelig voor 3PGA, maar werd sterk 

geïnhibeerd door Pi. 

Om de biologische rol van het AGPase B gen te bepalen werden antisense 

constructen gemaakt van het cassave AGPase B gen achter een CaMV 35S promoter 

(Hoofdstuk 3). Deze constructen werden ingebracht in aardappelplanten door 

transformatie met Agrobacterium tumefaciens. Terwijl de 224 transgene antisense 

AGPase B aardappelplanten in uiterlijk niet afweken van ongetransformeerde 

aardappelplanten, bleken 45 van deze planten meer en kleinere knollen te vormen dan 

controle planten. Antisense planten met gereduceerde AGPase B mRNA niveau's 

hadden anderhalf tot driemaal minder zetmeel dan knollen van de controleplanten. De 

hoeveelheid oplosbare suikers in de antisense planten nam significant toe (tot 10 maal 

meer glucose, 6 maal meer fructose en 5 maal meer sucrose) ten opzichte van 
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controleplanten. Deze resultaten tonen aan dat een heteroloog gen van cassave een 

antisense effect kan bewerkstelligen in aardappel, maar dat het aantal transformanten 

dat nodig is om planten met een maximaal antisense effect te vinden erg groot zal 

moeten zijn. Dit wordt waarschijnlijk veroorzaakt door de relatief lage 

sequentiehomologie (68%) tussen de AGPase B genen van cassave en aardappel. 

Hoofdstuk 5 beschrijft de verdere ontwikkeling van een efficiënt 

transformatieprotocol voor cassave dat is gebaseerd op stringente selectie van het 

luciferase (vuurvlieg) merkergen. Bovendien wordt in dit hoofdstuk voor het eerst de 

transformatie van cassave met een ander gen (AGPase B) dan een merkergen 

beschreven. Voor de transformatie van cassave werd een antisense construct gemaakt 

waarin het cassave AGPase B gen in antisense oriëntatie achter de CaMV35S 

promoter werd geplaatst. Dit werd vervolgens gekoppeld aan het luciferase gen dat 

door een andere CaMV35S promoter wordt aangedreven. Na partiele bombardment 

van cassave werd FEC (friable embryogeen callus) transgeen weefsel geselecteerd met 

behulp van drie verschillende selectie regimes: niet-stringente luciferase (LUC) 

selectie, stringente luciferase selectie en gecombineerde chemische (phosphinothrycin; 

PPT) en luciferase selectie. De meest effectieve en snelste methode bleek de 

stringente luciferase selectie te zijn, waarbij luciferase positieve FEC-units precies 

konden worden gelocaliseerd, geïsoleerd, en verder worden opgekweekt. Hierbij was 

het mogelijk om cultures te verkrijgen met meer dan 90% luciferase positief FEC-

weefsel na 12 weken van stringente LUC selectie, tegenover 45% en <1% voor 

respectievelijk gecombineerde selectie en niet-stringente selectie. Het aantal luciferase 

positieve volgroeide embryo's stond rechtstreeks in verhouding tot het percentage 

luciferase positief weefsel in de oorspronkelijke FEC cultuur. Door stringente 

luciferase selectie werd de benodigde tijd voor de productie van transgene cassave 

planten verminderd tot 28-36 weken, een duidelijke reductie ten opzichte van de 8-12 

maanden die nodig zijn voor niet-stringente selectie of LUC/PPT selectie. 

Cassaveplanten met het antisense AGPase B gen bleken, na jodiumkleuring 

van in vitro geïnduceerde verdikte stengels, extreem weinig zetmeel te bevatten in 

vergelijking met controle planten. In de planten met het sterkste AGPase B antisense 

effect bleef de zetmeelvorming beperkt tot de epidermale laag. Deze resultaten 

bevestigen de functionele identiteit van cassave AGPase B en tonen tevens de 

essentiële rol van AGPase in de zetmeelvorming in cassave aan. 
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Een discussie van de significantie en de implicaties van het kloneren van cassave 

genen en de productie van transgene cassave voor de teelt in ontwikkelingslanden 

staat beschreven in Hoofdstuk 6. Terwijl er duidelijk veel economische en 

voedingskundige voordelen zitten aan de productie van transgene cassave door kleine 

boeren, zijn weinig mensen in het Zuiden zich bewust van de veiligheidsaspecten van 

de teelt van transgene gewassen. Benadrukt wordt dat discussies en debatten 

geïnitieerd zullen moeten worden om de lokale gemeenschappen bewust te maken van 

vraagstukken gerelateerd aan transgene gewassen en hun producten. Een andere 

aanbeveling is het opzetten van een internationaal wettelijk kader om te garanderen 

dat de kleine boeren niet benadeeld zullen worden door het patenteren van materiaal 

afkomstig uit hun gemeenschappen door personen en bedrijven uit het Noorden. In dit 

proefschrift wordt duidelijk gemaakt hoe het in de toekomst mogelijk zal zijn om 

nieuwe cassave cultivars te produceren die de juiste genen bevatten om de 

knolproductiviteit en zetmeelkwaliteit te beïnvloeden. 
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Mufarinya (Manihot esulenta Crantz) imbesa, inorimirwa upfu (starch) hurimumidzi mayo, 
nevanhu vanohuita chikafu vanogara munyika dzinopisa dzematropics. Kudiwa kwemufarinya 
unoshandiswa muchikafu chevanhu nemhuka nekugadzira mapepa nemachira kuri kukwira. 
Gwaro iri rinotsanangura wongororo iri maererano nezvekuraurwa kwe[moyo wemhodzi] 
unobudisa chidimbu chidiki nechikuru che ADP-glucose pyrophosphorylase (AGPase B ne S 
saizvozvo), netukwichidzi tunoumba hupfu twakabatira patumedu twetsanga (GBSSII). Mwoyo 
yetsanga iyi nezviumbwa zvayo zvakapenengurwa zvakadzama kuti paonekwe kushanda kwayo 
mukuwumbwa kwehupfu hwemufarinya. Nzira yekugutsikana nayo nemashandiro emoyo iyi 
yaive kusima moyo yekusandura mukati membesa yemagwiri nemifarinya zvichiteverwa 
nekudonongodzwa kwehupfu hunobva mumbeu idzi dzakasimwa moyo yemhodzi. 

Muchikamu chekutanga kurimwa kwemufarinya pasirino zvaro nemuZimbabwe kunyanya 
kunowongororwa maererano neruzivo rwamazuva ano rwekuraura nekusima-kunosandura 
zvinowedzera huwandu nekukosha kwehupfu hwemufarinya. Kugadzirwa kwembeu tsva 
dzemufarinya dzine hupfu hune huumbwa hutsva nekusima-kunosandura moyo yembeu kuno 
wongororwa muchikamu ichochi. Zviyereso zvikuru zvekuti tiwane mbeu tsva idzi ndeizvi: 
kuvepo kwemoyo yemhodzi yakaraurwa nekupenengurwa, kuvepo kwenzira inoshanda kwese-
kwese yekusima-kunosandura mbeu dzemufarinya, kusima-kunosandura mbeu dzakafanira 
nekuongororwa kwekururama kwembeu dzemufarinya idzi dzakasimwa moyo yemhodzi dzisati 
dzaparadzirwa kuvarimi. 

Kuraurwa kwemoyo yemhodzi yemufarinya inobudisa tukwichidzi tunoumba hupfu twakabatira 
patumedu twetsanga (GBSS H) nekubudisa chidimbu chidiki nechikuru chetukwichidzi tunonzi 
ADP-glucose pyrophosphorylase (AGPase B ne S saizvozvo) kunotsanangurwa muchikamu 
chechipiri nechechitatu. Kuraurwa kwechikwichidzi che GBSSII kunoratidza zvechokwadi kuti 
kune chikwichidzi chakasiyana chine maitire mamwe sezvakaonenkwa mune zvimwe zvirimwa. 
Kanahazvo GBSSII neGBSSI dzakasiyana pakurongwa kwema amino asidzi kwadzo, kurongwa 
kwema amino asidzi eGBSSII kwakafanana nemoyo yemhodzi yemamwe maGBSSII 
inowanikwa mu PEAS nemumagwiri. GBSSII yemufarinya inenge inokosha mumashizha umo 
inonyanya kuratidzwa pane mumidzi munonyanyo ratidzwa GBSSI. Mukuwongorora mbeu 
dzemufarinya tichitsvaga nharaunda inowanikwa moyo wemhodzi weGBSSII takawona kuti 
mhodzi iyi iri yoga uye inowanikwa muchikwata chinonzi T chakarerekera kugono remufarinya. 

Kuraura kwe[moyo wemhodzi] unobudisa chidimbu chidiki (B) nechikuru (S) che AGPase 
zvakaratidza makarekare anoyevedza etukwichidzi twemufarinya. Chkwichidzi che AGPase 
chemufarinya chnoratidza kuti chingangodaro chakauumbwa nenhengo ina dzakasiyana 
sezvakaonekwa mune zvimwe zvirimwa. Kuenzaniswa kwehurongwa hweAGPase B 
yemufarinya nehurongwa hwe mamwe maAGPase akaraurwa kare kwakaratidza kuti AGPase B 
yakanyanyo fanana nemimwe moyo yemhodzi inopa zvidimbu zvidiki mune zvimwe zvirimwa 
pane ne moyo wemhodzi unopa chidimbu chikuru che AGPase S (Chikamu chetatu). 
Mukuwongorora kwembeu dzemufarinya tichitsvaka nharaunda inowanikwa moyo wemhodzi 
we AGPase S zvakawonekwa kuti mhodzi iyi iri yoga zvakare irimuchikwata chechikadzi 
chinonzi E. Moyo yemhodzi inowanikwa munhengo dzomufarinya dzose, asi nhumwa dze 
AGPase B (mRNA) dzakawanda kupfuwura dze AGPase S kunyanya mumashizha nemumhidzi. 
Kudzorwa kwehuwandu hwe ma shoko anozopa zvikwichidzi zve AGPase B kwakawoneka 
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nekuwongorora kukusaenderana kwehuwandu we nhumwa ne ma shoko e AGPase B. Kushanda 
kwetukwichidzi twe AGPase mumufarimya kwakanga kuripamusomoro mumashizha matsva 
pane ekare nemumhidzi. Kushanda kwe AGPase ye mufarinya mumashizha kwakawedzerwa 
zvakapetwa katatu nekuiswa kwe 3-PGA uye kushanda uku kwaka dzvanyirirwa zvinosvika 
makumi mapfumbamwe kubva muzana (90%) painge paiswa inorganic fosifeti (Pi). 
Chikwichidzi chomumidzi chakaratidzwa kusa kanganiswa ne 3-PGA asi chave 
chinodzvanyiririswa ne Pi. 

Pakutsvaka nzira yekugutsikana kwemashandiro emoyo wemhodzi unopa AGPase B, takavaka 
nhumwa dzakatakura shoko re AGPase B raka tsveyama dzichitumwa nemutumi anova 
CaMV35S (Chikamu chechina). Zvivakwa izvi takazvisima mumagwiri tichishandisa 
Agrobacterium tumefaciens. Miti yemagwiri mazana maviri ane makumi mavirinemana, 
yakasimwa moyo ye mhodzi inopa AGPase B, yaka ratidza kusasiyana nemagwiri kwawo, asi 
paive nemiti yemagwiri makumi mana aneshanu ayive nemagwiri akawanda uye arimadiki. Miti 
yemagwiri yayive nenhumwe dze AGPAse B dzakaderedzwa yayive nemagwiri ane wupfu 
hwakaderera ne 1.5 kubva mu 3 tichi enzanisa ne wupfu hwemagwiri kwawo. Huwandu hwe 
tsvigiri dzinonyunguduka hwaka wedzerwa zvakanyanya mumiti yakasimwa nhumwe dze 
AGPase B dzaka tsveyama (gurukozi yaka kwira kusvika kakapetwa ka gumi, furukutozi 
kakapetwa rutanatu, ne sukurozi) tichi enzanisa ne wupfu hwemagwiri kwawo. Zvakabuda izvi 
zvinoratidza kuti moyo wemhodzi unobva mumufarinya unokwanisa kutsveyamisa shoko 
mumagwiri, asiwo kuti kuno dikanwa kuwongorora miti yemagwiri yakawanda kuti tiwone miti 
inoratidza kuti shoko rakatsveyamiswa. Izvi zvingangove zvinobva mukusiyana 
kwemarongerwo ema amino asidzi eAGPase B yemufarinya ne emagwiri anongofanana 
zvinongova 68% mukurongwa kwazvo. 

Chikamu chechishanu chinotsanangura nekugadzira kwenzira isingapedzi nguva, ichidawo 
vashandi vashoma, yekusima moyo yemhodzi mumufarinya tichishandisa kupenya kunopiwa 
nemoyo wemhodzi unobva muzvitayitayi kuti tiwone miti yaka simwa moyo yemhodzi 
unosandura. Akandiko kekutanga kekunyorwa nezveku sima moyo we mhodzi unosandura 
mumufarinya kunze kwezvakambonyorwa apo kwayishandiswa moyo yemhodzi inopa kuti 
tiwone kuti nzira iyi yekusimwa kwe moyo yemhodzi inoshanda, zvatinoti zviratidziri. 
Takavaka nhumwa dzakatakura shoko re AGPase B raka tsveyama dzekusima mumufarinya. 
Nhumwa idzi dzainge dzichitumwa nemutumi anova CaMV35S uye dzainge dzaka batanidza 
kuzviratidziri zvezvitayitayi sezviratidziri zvekuwona miti yaka simwa moyo yemhodzi idzi. 
Mhodzi dzemufarinya dzakasimwa moyo ye mhodzi nekupfura moyo yemhodzi iyi nepfuti ye 
helium inemabara akazodzwa moyo yemhodzi idzi. Mhodzi dzainge dzapindwa nemabara awa, 
dzainge dzasimwa moyo yemhodzi iyi, dzaiwonekwa nekutaima. Mhodzi dzaitaima dzakatorwa 
dzikasarurwa nenzira nhatu dzinova: kusarura nezvakatenderedza mhodzi dzinekutaima, 
kozowuya kunanga mhodzi dzinekutaima chete, nemubatanidzwa wekusarura nenzira mbiri 
dzinova yemushonga (phosphinothrycin) nekutaima kwemhodzi. Kusarura kwekunanga 
tichishandisa kutaima kwemhodzi kwakawonekwa kuti ndiyo nzira inoshanda nemazvo, uye 
ichingoda vashandi vashoma, pakusima moyo yemhodzi mumufarinya. Zvakaita kuti tikwanise 
kuwana zvikamu makumi mapfumbamwe kubva muzana zvemhodzi dzaitaima mushure me 
mavhiki gumi nemaviri ekusarura kwekunanga, tichienzanisa makumi mana nezvishanu 
kubvamuzana ne chidimbu chimwechete kubva muzana zvemubatanidzwa wekusarura ne 
kusarura nezvakatenderedza mhodzi dzine kutaima saizvozvo. Huwandu hwemhodzi dzaitaima 
dzakabva mukusarura kwekunanga hwayinge huchi endererana nekuwanda kwemhodzi 
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dzayitaima pakutanga kwesarudzo iyi. Kusarura kwekunanga kwakaita kuti nguva inotorwa 
mukuva nemiti yemufarinya yakasimwa moyo yemhodzi inosandura ideredzwe kubva muma 
vhiki anobva pa makumi mavirinesere zvichisvika pa makumimatatu anesvitanatu tichienzanisa 
nemwedzi misere kusvika kugore tichishandisa mubatanidzwa wekusarura kana kusarudza 
nezvakatenderedza. 

Miti yemufarinya yakasimwa moyo yemhodzi ye AGPase B inenhumwa dzaka tsveyama yainge 
iyine hupfu hushoma mumidzi, tichienzanisa ne miti yemufarinya kwayo. Izvi tichizviwona 
nekushandisa mushonga unoratidza upfu weiyodini mumhanda dzemifarinya yakasimwa 
mumabhodoro. Mumiti yemifarinya yayitaridza kutsveya mashoko eAGPase B upfu waingo 
wanikwa huri mugavi remhanda idzi. Izvi zvinoratidza mashandiro eAGPase B nekukosha 
kwayo mukugadzirwa kwe hupfu mumufarinya. 

Nhaurwa dzakadzika maererano negumisiro rekuraurwa kwe moyo yemhodzi yemifarinya 
nekugadzira mufarinya yekusimwa moyo yemhodzi munyika dzichiri kubudirira kunokurukurwa 
muchikamu chechitanhatu. Kunyangwe hazvo zviri pachena kuti kugadzira mifarinya 
yakasimwa moyo zvinopundutsa upfumi nekudya kunyanya kuvarimi varombo, ruzhinji 
rwenyika dzekumaodzanyemba haruzivi nezvegumisiro rekurima mbesa dzakasimwa moyo 
idzodzi. Zvinosimbisiswa zvakare kuti nhaurwa dzakafanira kutangiswa kuti ruzhinji rwevagari 
vemumaruva vazive nemaererano ezvembesa dzakasimwa moyo nezvadzinopa. Tichivedzera, 
zvinokurudzirwa kuti pave nenzira yekudzika mitemo yepasi rose yekudzivirira varimi varombo 
kuti vasarasikirwe nekupamba kwekudhindiswa kwezvinhu zvinobva munzvimbo dzavagere 
nevanhu vane umbimbindoga nemakambani enyika dzekuchamhembe. Gwaro iri rinoratidza 
pachena kuti zvinozokwanisika sei munguva inotevera kugadzira zvirimwa zvemidzi zvine 
moyo yemhodzi kwayo inopa kusanduka kunoonekwa muhuwandu nekukosha kwehuphu 
hwacho. 
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