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“The Structure of Particle Gels as Studied with Confocal Microscopy and Computer Simulations”
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Met het aannemen van DLCA-modellen als de standaard voor colloidale aggregatie wordt aan
het doel van zulke modellen totaal voorbijgegaan.
dit proefschrift, Hoofdstuk 2

Een fractale struktuurbeschrijving van deeltjesgelen is onvolledig indien men in de beschrijving
volstaat met de fractale dimensionaliteit.
dit proefschrift, Hoofdstuk 4 en 5

Zelfs als eigenschappen van een deeltjesgel zich niet louter met de fractale dimensionaliteit laten
beschrijven kan een fractale struktuurbeschrijving nog steeds waarde hebben.
dit proefschrift, Hoofdstuk 4 en 5

Verdichting kan gepaard gaan met een afname van de fractale dimensionaliteit.
dit proefschrift, Hoofdstuk 5

Gelering bij hoge volumefractie (¢ > 0.2) kan gepaard gaan met gaten van vele malen de
deeltjesgrootte zolang er voldoende reorganisatie optreedt.

B.H. Bijsterbosch, M.T.A. Bos, E. Dickinson, J.H.J. van Opheusden, P. Walstra, Faraday
Discuss. 101 51-64, 1995

Het DLCA-model geeft hoogstens argumenten dat aggregatie uiteindelijk leidt tot een
gepercoleerd netwerk; spinodale ontmenging geeft hoogstens argumenten dat aggregatie
uiteindelijk leidt tot verdichting. Een deeltjesgel is het resultaat van deze tegenstrijdige
argumenten.

dit proefschrift, Hoofdstuk 2

Decltjesgelen zoals gesimuleerd met Brownse Dynamica geven anomale, ofwel stijgende
multifractale spectra. Dit resultaat is geen gevolg van een programmeerfout en toont aan dat de
theorie die beweert dat multifractale spectra altijd dalend zijn, onjuist is.

JH.J. van Opheusden, M.T.A. Bos, G. van der Kaaden, Physica A 227 183-196, 1996
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Voor het bereiken van een zo hoog mogelijke resolutie in scanning-microscopie zijn
opnamecapaciteit en signaal-ruisverhouding doorslaggevend, niet de golflengte van het licht of
de apertuur van het objectief.

dit proefschrift, Hoofdstuk 3

De veronderstelling dat elke goede jurist de wet van buiten kent is equivalent aan de
veronderstelling dat elke goede chemicus het "CRC Handbook of Chemistry and Physics”
moeiteloos opdreunt.

Straatmuzikanten spelen veelal muziek vit de zestiger jaren omdat er aan publiek dat deze tijd
bewust heeft meegemaakt het meeste te verdienen valt.

Het opstaan tijdens applaus bij concert- en theaterbezoek is geen blijk van erkenning dat het een
uitzonderlijk mooie uitvoering was, maar van de wens zich niet door anderen het uitzicht te laten
benemen.

. In veel industrieel onderzoek loopt empirie vooruit op inzicht; het feit dat empirisch onderzoek

beter te plannen is, speelt daarin een belangrijke rol.

Omdat het wettelijk niet is toegestaan om een octrooi naderhand te generaliseren, zal het door de
werkgever verstrekken van een bonus per toegekend octrooi een inefficiénte strategie blijken.
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1. General Introduction

1.1 Gels

Gels are perhaps best introduced by probing them with one's own bands; simple hair setting gel will
serve as an excellent study material for this. The way a gel reacts to manual or mechanical probing
shows that it is neither completely liguid (but can nevertheless flow), nor completely solid (but is
nevertheless elastic up to a certain yield stress). Indeed, the rheological definition of a gel is
straightforward: it is a material that exhibits a yield stress, viscoelastic properties and has a moderate
modulus (i.e. < 10® Pa)l.

The practical importance of materials that are neither liquid nor solid can be seen from its use in
foods. Here it can be very desirable to exploit both liquid-like and solid-like properties in one single
product, Jelly, for instance, which is a sweet dessert made from sweetened water and pectin, gives the
consumer an impression of eating something substantial even though it consists for more than 95%
by weight of water. Unlike water, it can be cut into slices and chewed; yet one need not apply much
pressure before it yields, hence it can be swallowed casily.

The reason for the peculiar rheology of gels lies in their structure. Gels consist of interconnected
material, i.e. a network of material, dispersed in a fluid. Elasticity of the material causes elasticity of
the gel as a whole. The network consists of cross-linked subunits, which can be torn apart by
applying a large enough strain. Above a certain stress applied to the gel, disruption of cross-links will
destroy the network, causing the gel to flow. In the case of jelly, the subunits are polymeric pectin
molecules, which become cross-linked upon cooling by the formation of microcrystalline regions.
Because the network is made from cross-linked polymers, jelly is called a polymer gel. Polymer
molecules in a good solvent can have a very large spatial extent, i.e. the size of a dissolved molecule
can exceed the size of a crystalline molecule by one order of magnitude or more. For this reason, the
formation of a network, and therefore a gel, is possible even when very little dry material is used.
Many food gels are made from polymeric material in a similar way as jelly. Examples of food
polymer gels are agar gels (used in setting soup) and gelatin gels {used in puddings).

1.2 Particle gels

As described above, an essential element of gel structure is a network consisting of cross-linked
subunits. In particle gels these subunits are particles, cross-linked through interparticle bonds. An
example of a particle gel is fat, which can be obtained by cooling a mixture of triglyceride oils. Fat
essentially consists of a network of triglyceride crystals dispersed in liquid triglyceride oil. Sintering



of adjacent crystals gives the network its strength, with leads to fat plasticity. Another important
example of a particle gel is a milk or caseinate gel. Milk contains casein micelles, which are spherical
particles of about 120 nm average diameter, sterically stabilised by k-casein molecules. When rennet
is added to milk, a proteolytic enzyme removes the stabilising layer, causing the casein micelles to
aggregate, i.e. stick and form clusters. The result of this, shown in Figure 1.1, is a network of cross-
linked strands.

Figure 1.1: Micrograph of a casein gel; 42 by 42 pm.

The facts that both the casein micelles and the cross-links between them are deformable, and that
bonds between casetn particles can be broken, lead to viscoelasticity and a finite yield stress, i.e. gel-
like behaviour.

1.3 Aggregation and gelation

In a stable colloidal suspension, the effective interaction between particles is repulsive, so there will
be neither cross-links between particles nor a connected network. Upon destabilisation, particles will
start to form bonds, but this will not always lead to the formation of a particle gel. Instead of a gel,
aggregation often produces a compact structure which either creams or precipitates. To answer the
question "will an aggregating suspension of particles form a particle gel or not; and if so, what will
be the gel structure?”, we need to understand the aggregation process and the cross-linking of



particles to form a connected network. Because the aggregation is a non-equilibrium process, it can
be appreciated that this is a difficult problem.

The introduction of fractal aggregation models® 3. has given research on particle gelation a
formidable impulse. It has been recognised by Bremer? that these aggregation models must
eventually result in a connected network of particles, i.e. a gel, regardless of particle volume fraction
or interaction details. This has led to fractal scaling laws, which have proven quite useful in
explaining properties of gels, like viscoelasticity.

In this study we will use the understanding as presented in Bremer's thesis to revisit the question
mentioned above. This discussion is initiated in Chapter 2, which may be regarded as the scientific
introduction to this thesis. In Chapter 2 we attempt to form a connection between equilibrium
thermodynamics and fractal aggregation models. We will use two techniques: microscopy to study
the structure of particle gels, and computer simulation to investigate particle gelation models. Both
techniques are used to visualise particle gels and to quantify their structure. The type ol microscopy
is confocal scanning microscopy, which is especially suited for a three dimensional study. Computer
simulations are used as a tool for identifying aggregation mechanisms; here the visualisation in itself
is straightforward.

In terms of practical relevance, the structure of a particle gel translates into porosity and into
viscoelastic properties of the gel. A clearer connection between aggregation models and gel structure
will contribute to more control over products, from which many applications, most notably foods,
can benefit.

1.4. Contents of this thesis

Chapter 2 of this thesis introduces aggregation and gelation of particles as well as fractal aggregation
models. Chapters 3 and 4 introduce and apply confocal scanning microscopy as a tool for studying
the structure of particle gels made from three different model colloids. In Chapters 5 and 6 Brownian
Dynamics Simulations are used as a tool for forming a better connection between aggregation and gel
structure. Finally, chapter 7 summarises and generalises the conclusions of all previous chapters,
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2. Theory of aggregation and gelation

2.1 Aggregation and phase separation
2.1.1 Introduction

Monodisperse colloidal suspensions can be regarded as idealised models for molecular systems.
Depending on their interactions they can undergo phase transitions like the gas-liquid transition!, or
they can crystallize?. To be more precise, for colloidal systems one can find phase diagrams which,
similar to phase diagrams for molecular systems, describe their thermodynamic state as a function of
density (or volume fraction) and temperature. Although it is difficult to condense all colloidal
interactions into a single parameter named "temperature”, this has in some cases shown to be
possible®*. An example of a part of the phase diagram of a simple molecular substance is given in
figure 2.1, using arbitrary units for both the temperature T, and the volume fraction ¢ (or rather the
density o).

vapour

metastable

unstable solid

(Pv (pD (p (P]
Figure 2.1: Equilibriuvm phase diagram.

In figure 2.1, we concentrate on the liquid-vapour coexistence region, because it suffices to explain
the salient behaviour. The curves shown are boundaries between the stable and the unstable regions,
the outer one is the binodal, the inner one the spinodat curve. Above the binodal we have a stable
fluid phase. Upon cooling a system of a certain volume fraction, the metastable or unstable region is
reached. In the metastable region, the system may stay in a homogeneous supersaturated vapour state
for a relatively long time, until it nucleates into liquid droplets dispersed in a gaseous surrounding. If
we cool rapidly enough to move below the spinodal curve the unstable region is reached, and phase
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separation starts spontaneously, as the formation of dense droplets is not hindered by a free energy
barrier. The minimum free energy state of the system at volume fraction ¢, quenched at a low
temperature 7, will be a macroscopic phase separation of two states: a liquid state at volume fraction
@ in thermodynamic equilibrium with its vapour of volume fraction ¢,. This is indicated by the
horizontal dashed line in the figure. During phase separation, particles within dense regions of
volume fraction ¢ are nearer to each other than before, and can therefore aggregate easily.

For a colloidal suspension we can also use the phase diagram as a guideline for aggregation. It is
important to realise, however, that the equilibrium phase diagram does not telt us how, nor in how
much time this minimum in the free energy will be achieved. Microscopically, condensation must be
achieved by aggregation of molecules or particles. Especially in the case of colloidal suspensions,
where the dynamics of particles are governed by irregular Brownian motion and short-ranged
interparticle forces, we can expect the condensation {o be a non-trivial dynamic process. If' ¢, is
much smaller than ¢, particles must travel large distances before "liquid droplets” can be formed.

2.1.2 Aggregation: microscopic dynamics

A system which is thermodynamically unstable will tend to show growing spatial density
fluctuations®. For an unstable colloidal system with attractive interactions, particles will move into
interaction range due to inertial or Brownian motion, and form clusters connected through bonds.
Both the bonding and the unbonding probabilities depend on the particle interactions and volume
fraction. During the aggregation process, the distribution of cluster sizes will graduaily shift towards
larger clusters.

A problem in reaching the global minimum in the free energy is that the growth of clusters through
diffusion tends 1o produce tenuous structures, Indeed, if the bonding is irreversible, models exist
predicting that growing clusters are fractals, i.e. the clusters become ever more tenuous as they grow.
Therefore the way by which clusters grow locally opposes the global tendency to form compact
zones of volume fraction ;. This means that the global minimum in free energy will not be reached
unless tenvous clusters reorganise to form more bonds and hence more compact clusters. Note that
for strictly irreversible bonding the inherent history dependence of the aggregation process prevents
description of the system in terms of thermodynamics, and the concept of a phase diagram becomes
quite useless. We will in the second part of this chapter describe how one can treat such systems.




2.1.3 Cluster recrganisation

Strong bonds clearly obstruct reorganisation of tenuous {i.e. open) clusters. Even though the system
can gain energy by the formation of more bonds, the breaking of bonds can require a greater
activation energy than the system will be able to produce within reasonable time. For condensation of
argon, the interactions between the atoms are reversible enough to allow for enough cluster
reorganisation. For many colloidal systems, however, bond formation leads to the forming of strong
cohesive or even covalent bonds. With the breaking of these bonds, large amounts of energy are
involved. Only external forces like gravity or shear can continuously provide the system with this
energy. If such forces are not present, the system will attain a frozen-in non-equilibrium structure that
changes only very slowly.

2.1.4 Particle gels

In colloidal systems where, upon destabilisation, bond formation is irreversible and external forces
are absent, particle gels are formed. The structure of such particle gels is a space-spanning network
made of cross-linked tenuous clusters. In this network, which itself can be thought of as a single
percolating cluster, the identity of the earlier clusters is lost. The scenario described above leading to
a frozen-in non-equilibrium structure may very well be the way by which these gels are formed: a
logical consequence of aggregation irreversibly obstructed by the formation of tenuous clusters. This
is a possible basis for a thermodynamical understanding of particle gelation.

To understand the formation of a frozen-in non-equilibrium structure we need to know more about
the geometry of clusters. The geometry of larger clusters has been succesfully described using fractal
models. The following section will explain these models.



2.2 Fractal geometry of clusters

2.2.1 Fractal objects

We give an example of a fractal object in figure 2.2,

Tt a%n;%;:%o

e

B S )

,?HT%:%’“%
-

Figure 2.2: Fractal object.

The object in figure 2.2 is called a deterministic fractal object, because it is generated following a
well-defined iterative algorithm. This algorithm is shown in figure 2.3:

object = particle

(_.
Join five objects
in a cross-shaped way
chject = cross
_)

Figure 2.3. Fractal algorithm.
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Evidently, an object generated by following this algorithm for a number of iterations has a self-
similar structure. We can now study the number of particles N in the object as a function of the object
dimensionless size L (expressed as the number of particles along the main axes of the cross). We find
that for the j-th iteration:

=3/
L=3 | y= [/ _ zd; (1)
N=5/

Equation (1) predicts universal scaling regardless of j . The constant scaling exponent d; (value =
1.465) is a fingerprint of the type of recurrence present in the algorithm in figure 2.3. For close-
packed objects built from particles, N scales as L to the power 2 (in two dimensions) or 3 (in three
dimensions). The object in figure 2.2 has a non-integer scaling exponent, which is for this reason
called the fractal dimensionality. The object itself is called a fractal.

For the object in figure 2.2 we can define a dimensionless particle number density Pp:

N —
pp=g =t @)

Because d is smaller than 2, p, decreases as a function of L, which can also be seen in figure 2.2.
Generally we can say that the larger the size of a fractal object, the more tenuous it is, provided the
fractal dimensionality is less than the number of dimensions the object is embedded in.

Many iterative algorithms like figure 2.3 have been proposed to construct deterministic fractal
objects; the related fractal dimensionalities are either calculated as in (1), or measured as the slope of
a double logarithmic plot of N versus L. Iterative algorithms can also introduce randomness, when,
for instance, the joining depends on a random number. In this case the object is called a stochastic
fractal.

2.2.2 Diffusion limited aggregation

A special iterative algorithm that is of interest to aggregation phenomena is the Diffusion Limited
Aggregation® (DLA) algorithm, which is given in figure 2.4:
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Fix one particle
at the origin

l

Flace new particle at random
position far from the origin

!

Randomly move the particle

| t 1

Overlap between
two particles?

Pull new particle back
until surfaces just touch and

fix position; new particle is

now a member of the cluster

Figure 2.4. DLA-algorithm.

A lattice version of the DLA-algorithm has been implemented on a computer to generate clusters of
more than 10° particles. An example of such a DLA-cluster in two dimensions is given in figure 2.5.

Figure 2.5: DLA-cluster, generated on a square lattice,
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Analysis has shown® that DLA-clusters are stochastic fractal objects with a fractal dimensionality of
1.7 in two dimensions and 2.4 in three dimenstons. The fact that the very tenuous cluster shown in
Figure 2.5 can be quite well defined using a fractal model is encouraging. The question which arises
is: can colloidal aggregation be modelled with algorithms comparable to DLA with a corresponding
fractal dimensionality?

2.2.3 Diffusion limited cluster aggregation

For modelling colloidal aggregation, the DLA-algorithm is unrealistic because of the notion of a seed
particle and the sequential addition of new particles. A more realistic algorithm was introduced by
Meakin and Kolb in 19837%, This algorithm, depicted in figure 2.6, is called Diffusion Limited
Cluster Aggregation {DLCA).

Make initial configuration
of N particles in box

L]

Randomly move all particles

no —

Overlap between
two particles?

ves

i Pull particles back until

| surfaces just touch; create -
" cluster and treat it as a
' particle with a scaled diffusion
coefficient

Figure 2.6: DL.CA-algerithm.

Simulation resuits show that the DLCA-algorithm yields clusters which are fractal objects, with a
fractal dimensionality of 1.4 in two dimensions and 1.8 in three dimensions.

An important aspect of the DLCA-algorithm is the treatment of clusters as scaled particles, with a
scaled diffusion coefficient. The cluster diffusion coefficient D, is calculated by using a scaling law:



D, = N 3)
with 0 < v < 1. It was found® that the fractal dimensionality does not depend on the diffusion scaling
exponent v. This suggests that the results of the DLCA-algorithm are insensitive to aggregation
details, and that therefore the DLCA-dimensionality can be regarded a universal physical constant.
Assuming this to be the case, it is expected that for an aggregating colloid the DLCA-algorithm is
generic enough to predict the fractal structure of clusters, and that discrepancies between theory and
experiment do not really change the fractal properties. In other words, the same universality observed
in DLCA-calculations is also expected for an aggregating colloid.

The DLCA-algorithm has become widely used as a model for colloidal aggregation. It has been used
in particular by Walstra®, Bremer!%!! and Rouw? as a model for particle gelation. Bremer has
recognised that DLCA must eventually lead to the formation of one very large cluster containing all
the particles in the system. This can be understood as follows. For a growing DLCA-cluster,
Equation (2) holds, only there is a lower bound to p,. This bound is determined by the number
density for the whole system p,. When all DLCA-clusters have a p,, equal to p,, the volume of the
system is completely filled with clusters. When then p,, for clusters has to become less than p,,
clusters must overlap. The DLCA-algorithm only allows for a limited degree of interpenetration of
clusters: when two interpenetrating clusters overlap, they simply form a bond to become a new
cluster. Summarising, DLCA-clusters grow individually until thetr p, becomes p,, after which they
all connect to one cluster containing all particles. This one ciuster is not a fractal object; it is a close
packing of many fractal sub-clusters with (average) size L given by (2) with p, substituted for p,.
According to this model, there will not be a nonzero number density for which gelation becomes
impossible: L simply increases as p, decreases.

The DLCA algorithm provides a suitable and simple model to describe the early stages of particle
aggregation and consecutive gelation. It leads to an open, fractal structure with a fractal
dimensionality that should be in the range of 1.7 to 1.9 approximately. Slightly different values can
also be found, depending on the initial volume fraction. After all DLLCA is a model for which only in
the limit of large cluster size and dilute initial systems the standard type of [ractal scaling is found.
Small clusters or overlapping clusters close to gelation can and probably will yield different values.
On the other hand the occurrence of a fractal structure with a dimensionality in the right ball-park
does not imply that the particles have aggregated according to a mechanism similar 1o DLCA. Other
mechanisms {e.g. spinodal decomposition) and hence other models may also yield such structures.
The main point we want to stress is that one needs specific dynarnical models to describe the early
stages of the phase separation process of the thermodynamically unstable suspension, and we simply
use DLCA as an example of such a mode! for the discussion, but one has to keep an open mind for
other models by which colloidal aggregation can be modelled.
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2.2.4 Scaling in diffusion-limited clusteraggregation

The aim of this study is to determine, describe and understand the formation and the structure of
particle gels. The DLCA-model helps us to understand the formation of a particle gel consisting of
tenuous fractal clusters. For clusters of various size and mass we expect, analogous to (1), the
following scaling:

=g (£)" @)

In Equation (4) n is the number of particles contained in a cluster of radius r. The radius of the
particles is a, ng is a dimensionless proportionality constant (generally of order unity - the actuai
value of ny, depends on the definition of r used) and d the fractal dimensionality. Equation (4) can
be used to describe clusters produced by any aggregation mechanism; its use is by no means limited
to the DLCA-algorithm. For spherical, close packed clusters dy equals 3 and 5y equals @, the
volume fraction of close packing.

For spherical objects the choice of » may be obvious, for anisometric clusters various definitions of
the radius can be used, and the choice is reflected in the value of . If we take for instance a needle-
shaped cluster (d; = 1) consisting of one row of particles, and define » as its gyration radius, then rg
equals /12 . If we define r simply half its length, then ny equals 1/2. For the fractal of figure 2.2,
using L/2 for r, ny equals 1/2. The value of ny is very important in understanding measured data on
cluster sizes; we will address this point later.

The scaling relation as defined in equation (4) is valid for a set of clusters of various size and mass. If
one can measure these quantities for a large number of clusters a simple log-log fit of the data will
directly yield the parameters as defined. In practice these figures are hard to obtain; apart from
computer simulations it is generally impossible. Moreover in the gelled system one studies a single
cluster only, in which, although it is built of fractal subclusters, the identity of these clusters has been
lost. The point now is that one may determine the fractal properties of a cluster alternatively by a
version of the so-catled sandbox method!2. In this method one considers the number of particles n{r)
in a sphere of radius » around any particle of the cluster. Simple linear regression on log(n ) versus
log(r ) yiclds the parameters one secks. Particles near tips in relatively void regions will have low
values of ng, while particles in dense parts of the cluster can give values up to the close packing
limit. By pre-averaging of the n(r ) over all particles one finds average values for the fit parameters.
In fact this averaging process amounts to calculating the scaling of integrated pair correlation
function. Later we will directly use the scaling of the pair correlation function, which in many cases
can relatively easily be determined experimentally, to find the fracial dimensionality of real gels.
(Note that in some versions of the sandbox method one takes the centre of mass of the cluster as the
origin for calculating n(r ). Though this may yield values for the dimensionality and the intercept by
fitting to a linear regime, these values depend strongly on the specific shape of the cluster. Moreover
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they cannot directly be related to the scaling of the pair correlation function.) For the computer
simulations we will use the sandbox method to determine the momentaneous structure of the
developing system. Now assume we have a system which is aggregating into clusters that scale
exactly as equation (4}, with ny = 0.4 and d; = 1.8 according to the DLCA model we have defined
before.
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Figure 2.7: Fractal scaling in DLCA

In our fractal aggregation model (FAM) at a certain time ¢ during the aggregation process the
function n(r ) calculated according to the sandbox method for a destabilised system at volume
fraction ¢ is given in figure 2.7. For low values of r we see a fractal regime which ends at the size
of the average cluster in the system (we have neglected effects of monomers, which have zero close
neighbours and hence suppress ng ). At high values of r we have the homogenous regime, where the
number of neighbouring particles simply scales with the volume of the surrounding sphere, the
prefactor then becomes the volume fraction.

rr)=¢- [5)3 )

In between these two regimes there will be a cross-over, which depends on the details of the diffusion
and aggregation process; this cross-over 1s omitted from figure 2.7 for the sake of simplicity. If all
clusters have equal size, and are equally spaced, there would be a horizontal line in the cross-over
regime. In a more random system, with clusters of various sizes and shape, the cross-over would be
more gradual. Because of the finite time the homogeneous regime is always reached at some finite r.

When the clusters grow further, the value of r /g at which the fractal regime crosses over to the
homogenous regime increases, but that growth is limited. Once the average volume fraction inside




15

the clusters reaches that of the overall system, the individual clusters cannot grow further. They start
overlapping, and form a gel. When the fractal regime reaches the homogeneous regime this situation
happens. If the fractal regime extends all the way to the homogeneous regime, the cross-over regime
is reduced to the intersection point of the two lines (as it is drawn in figure 2.7). This point, or rather
the radius corresponding to it, is called the correlation length £ of the gel. It is an indication of the
average size of the aggregates close to gelation. In actual or simulated systems gelation will occur at
a somewhat earlier stage, and there will be a finite cross-over regime left. Nevertheless the
correlation length can be defined for such systems by linear extrapolation of the fractal and
homogeneous scaling regime to the intersection point.

The above is an illustrative exercise to investigate the scaling of a system aggregating as described.
In reality diffusion and detailed interaction effects will play a role in, for instance, the scaling in the
cross-over regime. Another difference with DLCA is that the bond between two particles of different
clusters that unites them into a single one in general is not as rigid as assumed in figure 2.6, nor need
the bonding process be so irreversible. Bond reversibility and flexibility are two phenomena by
means of which the system can further diminish its free energy. We will now look into these in some
more detail.

2.2.5 Aggregation and reorganisation

The aggregation as given by DLA and DLCA-algorithms is purely irreversible. Once two particles
have formed a bond, this bond is permanent. This means that when small clusters aggregate to form a
larger cluster, the (fractal} geometry of the smaller clusters is maintained. We have seen earlier that
irreversibility can hinder phase separation of thermodynamically unstable systems (section 2.1.3). On
the other hand the DLCA model, which is based on strictly irreversible reactions, will not apply
exactly if there is even a small amount of reversibility, and other types of structure will be the result.

The effect of reversibility on the geometry of clusters has been tested in a number of computer
simulations that are derived from the DLCA-algorithm. It has been shown!*15 that reversible
bonding results in a fractal dimensionality larger than the DLCA-dimensionality, and increasing with
time. The reverse is found in a simulation where DLCA-aggregates are reformed and compactified
after they are formed!®: here a decreasing d; is found. A different approach is a modified DLCA-
type scheme, in which upon collision a bond is formed with probability p. It is found that when p is
taken very small, the clusters are still fractal objects with ¢ =2.1 independent of the diffusion scaling
exponent or time. This limit is called Reaction Limited Cluster Aggregation (RLCA). For larger p,
d; remains equal o the DLCA-dimensionality. It should be noted that once a bond is formed in
RLCA, it will never break.
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It appears that if the DI.CA-algorithm is complicated by introducing reversibility or reorganisation,
universal fractal scaling with a constant d; does not hold anymore. In the literature, the effects of
reversibility or recrganisation on the value of &; are not yet fully understood. Furthermore, in
studying this non-universal scaling the attention is focused on the value of d;, whereas the value of
ng, which forms the connection between scaling and absolute values, is often assumed to be merely
an unimportant constant of order unity. When universal fractal scaling does not hold, this need not be
the case,

Let us have a closer look of the effect of reorganisation on our fractal aggregation model. The
introduction of a different phenomenon also introduces a different time scale. It now becomes
necessary to specify which is the faster process. We consider the case where the binding takes place
irreversibly but the bonds formed are highly flexible. For low volume fraction this means that trimers
after formation will reorganise into compact triangles before they bind to a different cluster. Thus
compact small clusters are formed. A1l some point the flexibility of the single bond will not allow for
a full reorganisation into a compact object, for instance the formation of multiple bonds between two
compact clusters may stop the process. At that point we regain a FAM, but now with much larger
objects. If we wait until the system has gelled, the sandbox plot will look like figure 2.8.
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Figure 2.8: Bounds in DLCA.

In figure 2.8 there are three regimes, one compact homogenous regime at small r at volume fraction
P @ fractal scaling regime starting at the size x; of the average compact cluster from which the gel
is build and ending at the (now much larger) correlation length, and a homogencous random regime
with volume fraction ¢ at high r. Again in real systems and simulations all cross-overs will be
gradual, both in the regimes found and in the aggregation and reorganisation mechanism. Important
is that at short range, due to the bond flexibility, the system adapts to the dense phase one would
expect to find from thermodynamic arguments.
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Instead of making specific assumptions on the values of 4; and ny, it is also possible to simply
measure both parameters from a fit of the fractal scaling region in n{r); figures 2.7 and 2.8 illustrate
how this should be done. In the above we have introduced the parameter #); clearly, for a
reorganising system #; can become more than just one particle radius. We can determine ) from d¢
and ny following the construction of figure 2.8:

L \W3=dp)
0
m=a-|—— {®)
0 [“’cp )
An alternative formulation of the scaling relation (4) now becomes:
3 d,
—o B
onf2](3)

Especially for reversible or reorganising systems, r, will be an interesting parameter to study. If the
system shows substantial compactification due to some reorganisation process, we may expect values
of 5y larger than the primary particte radius a.

2.3 Conclusions

For the modelling of aggregation and gelation of colioidal particles, we have seen two approaches:
one based on thermodynamics and one on DLCA. The former is appropriate for reversible
aggregation, the latter for irreversible aggregation. For all types of colloidal aggregation which are in
between these two extremes, an understanding based on both approaches is needed.

For the modelling of particle gelation we have chosen DLCA as a starting point. Simultaneously we
can regard the gelling system as an unstable colloid with two separated phases as a minimum in free
energy. It is clear that if the clusters contain some mternal flexibility, the well-defined tenuous cluster
geometry of DLCA will not remain intact. By compactification at small length scales the system has
the opportunity to increase ry, but this increase is strongly constrained by the connectedness of the
clusters.

When a gel is formed we expect that aspects of the equilibrium phase diagram can skill be found up
to a length #,. Considering 2 gel as a frozen non-equilibrium state, the increase of #; can still go on
after gelation, depending on flexibility and reversibility of bonds. Therefore by a complicated
pathway, the equilibrium state may be reached after all.
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The points mentioned is this chapter form the basis by which we will study and interpret structural
data on particle gels.
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3. Theory of confocal scanning microscopy

3.1 Confocal microscopy
3.1.1 Introduction

The use of microscopy is limited by its resolving power. In colloid chemistry, where one mostly
works with particles of sub-micron size, electron microscopy is widely used. Electron micrographs
are used quantitatively, for instance, in the case of particle sizing, and qualitatively in many other
cases. An important drawback of electron microscopy is that only solid samples can be studied. For
colloids this implies that the continuous phase must either be evaporated or frozen. Both are rigorous
treatments, and the resulting micrographs may not be fully representative of the structure before
treatment. Light microscopy can be used to study colloids under more gentle conditions. The
resolution however, limited by the wavelength of the light and the aperture of the optical system, is
much less than in electron microscopy. Both light and electron microscopy often yield transmission
micrographs, which are projections: the axial (i.e. perpendicular to the plane of view) position of the
visible objects is unknown.

In this study confocal scanning light microscopy is used, a technique that allows liquid samples to be
studied without rigorous sample preparation. The greatest advantage of confocal scanning
microscopy is that it enables three-dimensional reconstruction from a series of two-dimensional
micrographs. The success of this reconstruction depends on the resolution of the microscope. In this
chapter we will give a short description of confecal scanning microscopy, including relevant
operational parameters, after which we will derive a quantitative relation describing image formation
and resolution using three dimensional point spread functions. Finally, we will describe methods
based upon Fourier Transformation that can be used to enhance the resolution, especially the axial
reselotion, of a confocal microscope, without amplifying noise. In the next chapter we will apply the
method described here to various samples of particle gels,

3.1.2 Experimental setup

Confocal microscopy uses laser light as a source. Most common is fluorescence confocal scanning
microscopy, where the sample is labelled with a fluorochrome and the emitted light is detected. A
laser beam is pointed at a very small aperture, the source pinhole, which in good approximation
constitutes a point source. A lens focuses it on a point F in the sample. This lens is aligned in such a
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way that the image of F, /", coincides with another aperture (hence the name confocal), the detector
pinhole, where a photomultiplier tube measures the intensity. The setup is illustrated in Figure 3.1.

PMT | Detector

Filter Block:
Excitation Filter
Dichroic Mirror

Block Filter

Laser

Focal Plane

Sample

Figure 3.1: Schematic picture of a confocal microscope.

The effect of this alignment is that the light emitted from any other position than F is not focused on
the detector pinhole, and will reach the photomultiplier tube with considerable less intensity. To
ensure that only the light emitted by the fluorochrome reaches the detector pinhole, a filter block is
used, which contains a dichroic mirror and two block filters. The dichroic mirror is used as a beam-
splitter; in combination with the filters it reflects the light with excitation wavelength A, from the
source pinhole onto the lens and into the sample, but transmits the emitted light with wavelength
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Aoy - For common fivorochromes like rthodamine B and fluorescein, ready-to-use filter blocks can be
plugged into the microscope.

A confocal micrograph can be obtained by moving either the object or the laser beam, thus producing
a scanning micrograph. In most confocal microscopes, including the one used in this study, the laser
beam scans the plane of view at a fixed axial position using scanning mirrors; one scan can be
considered an optical section. Scans are stored on a computer as a digitized matrix of intensities; one
element of this matrix is called a picture element or pixel. By recording scans at various depths in the
sample, the three-dimensional structure of the sample can be imaged. Confocal microscopy as
described here is generally referred to as CSLM {(confocal scanning laser microscopy), although
LSCM is also used in the literature.

3.1.3 Microscope parameters

Parameters that are important for the resolution are the wavelengths 4., and A, the magnifying
power and the numerical aperture (NA) of the lens. Also important is the pixel size, as this sets a
lower limit to the resolution. The pixel size is determined by the scanned area and the number of
pixels used for storage.

Other parameters are: pinhole sizes, illumination intensity and photomultiplier tube settings. We
assume the detector pinhole small enough to be approximated by a point. The size of the detector
pinhole can be increased to obtain a stronger signal, but the integration over the pinhole area would
very much complicate the relation between the signal measured at the detector and the intensities in
the sample. In the case of a weak signal, the illumination intensity can be increased, at the risk of
photobleaching of the fluorochrome. In digitization of the matrix of intensities, only a limited
number of levels are used (normaily 256). The photomultiplier tube settings (i.e. baseline signal and
amplification) are adjusted in such a way that all available levels are used as efficiently as possible.

3.2 Image formation in confocal scanning microscopy
3.2.1 Introduction

Small objects can be imaged under a microscope regardless of their size. An object much smaller
than the wavelength used would still give fse to a spot on a micrograph, only the size of this spot is
no longer a correct measure of the size of the particle. As it appears, the particle becomes smeared
over an area which can be considerably larger than its size. The distance of smearing is a measure of
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the resolving power of the microscope: a microscope with high resolving power smears a small
object only over a small distance, so that two objects close together can still be recognized as distinct
objects. When lenses are used., the resolving power depends strongly on the numerical aperture.

The aim of this section is to find a quantitative description of smearing. We will see that this is
possible with the use of Fourier methods; appendices Al and A2 give a brief reference to these,
adapted to their use in this specific situation.

3.2.2 Image formation in fluorescence microscopy

In describing the interaction between matter and radiation inside a microscope, we will use position
vectors r for the distribution of matter through space, and wave vectors k for the description of the
incident and emitted light. The wave vector k points in the direction of propagation: its components
ky, ky and k, are expressed in reciprocal metres. The "reciprocal length” 1| of a wave vector
describing a ray of light is 27/ A, with A the wavelength of the light. The space spanned by all
possible wave vectors is calied k-space, or reciprocal space!l.

We consider a fluorescent sample illuminated by a single monochromatic ray of light with wave
vector k;. The light is re-emitted by a fluorochrome molecule at position r as a single
monochromatic ray of light with wave vector k;. Monochromatic light means that 1kl = &g is fixed.
The field at the detector is build up from the interference of fluorescent light from various molecules.
The phase differences are inctuded in the field

Utk; kg,r) = Uy - —ky)(r~f) "

where fis the present focal point in the sample (F in Figure 3.1). Arbitrarily, we have set the phase of
a fluorochrome molecule at fto zero. The factor Uy, in (1) contains the amplitude of the radiation, the
distance between the object and the detector, and parameters depending specifically on the
interaction process. We assume {/; to be identical for all fluorochrome molecules in the sample. In
(1), the field is given in complex notation; this is allowed provided that measurable quantities derived
from (1), like the detected intensity, are real numbers. The intensity, as measured with a
photomultiplier tube, is proportional to | {7 |2. Equation (1) does not contain a time-dependence: as all
fields (or rather intensities) are studied in a microscope over time scales much longer than the ratio
{wavelength / light speed), we will restrict ourselves to the position and wave vector dependencies in
the field.

In a confocal microscope, a cone of light focused on the point F in the sample causes illumination
from many different angles k; depending on the aperture angle of the lens used. Also, many detected
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rays with wave vectors k; come together in the point F'. Equation {1) contains the contribution of
one incident ray of light, one flucrochrome molecule, and one detected ray of light. To obtain the
field in £, the contributions of all fluorochrome molecules, all %; and all k,; must be summed. We
can write this summation as an integration by introducing three distribution functions.

The first function describes the spatial distribution of fluorochrome molecules. This function a{r)
equals 1 if there is a fluorochrome molecule at position r, and 0 otherwise. One can consider a{r) as
a "black-and-white picture” of the structure.

The second function describes the distribution of plane waves with which the sample is illuminated.
For a ray with wave vector k, the distribution function Wj(k) equals 1 if the wave vector k is part of
the illumination cone, and (¢ otherwise. For monochromatic radiation, Wi(k) can be equal to [ only
for wave vectlors with Ikl = kpy; therefore all non-zero points of Wj(k) lie on a sphere in &-space with
radius kg.

Assuming an aberration-free lens, W(k) is only determined by k; and the aperture angle e, as
indicated in Figure 3.2, with the positive z-axis directed from the light source to F. Indicated is a
sphere with centre F and radius (1/4q) and two vectors v pointing in the propagation direction of the
rays by which the sample is illuminated, with length (1/ky). All illumination vectors v together form
a spherical cap (drawn bold) bounded by the illuminating cone with top angle (2«}, with @ the
aperture angle of the lens. In the &-space, all nonzero points of Wi(k) form the equivalent of this
spherical cap.

Figure 3.2: Construction of the distribution function Wy(k).
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The last function Wy (k), the distribution function for detected wave vectors, is defined analogously
1o Wi(k).

Using the three distribution functions, the field in F', which we denote by U(f), can be written as a

triple integral: once over Euclidean space (all fluorochrome molecules) and twice over k-space
(illuminating and detected radiation):

U(f) = Uy H j' a(ry- Wytk;) Woky)- €& X r=Dgrak. 2)

During a scan in the CSLM, the point £ is moved through the sample. The structure itself, or a{r) in
(2), is fixed. At a given f, the measured intensity is given by:

KNy=U"(N)-Uf) 3)

where U~ denotes the complex conjugate of IJ. Substitution of (3) vields a sixfold integral:

= [US [ [a o w @ wogy ettt ’dr'dka‘d"d']
@
" |:U0 Jjja(f) N “’[Uf[) - WD(kd)'Ei(ki _kd)'(r_f)drdkidkd:l

Equation (4) may appear complex, but we will restructure it in a form which not only makes it more
readable, but also more clearly displays the relevant physical phenomena.

As the functions ¢ and W are real functions, ' =aand W =W.A further simplification comes
from the fluorescence process. As the fluorescence decay time (typically of the order of 1078 s) is
much larger than the ratio (wavelength / light speed) and varying throughout the sample, the radiation
from different fluorochrome molecules will be completely incoherent. The consequence of this is that

in (4}, contributions to f(f) from points » and »' must be added as intensities, rather than amplitudes,
unless r = . This reduces (4) to:

I(f)=Ug-Up- j aX(rdr
'Jjwl(ki) Witk ) e RO g ke )

_jJWD(kd)_WD(kd,).ei(kd’—kd}(r—f)dkddkd.

We now define the function T(k), which is an autocorrelation function of W:
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Tk)= j W) - Win —-k)du (6)

By using (6) the double integrals over the k-space in (5} can be simplified. When we use the
substitutions # = k' and v = k' —k we arrive at:

_[ j Wik)- Wk')- & * I~ Dgrgre = - “ W ~v)- W) - S audy
0
=— jT(v) Ny = — 2y T - f)

with TV"(k) the inverse Fourier transform of T(k).

Using the above substitution on W, and the substitutions &# =% and v =k - k' on W we obtain:
10 =10, 1% o2 j a ) Tir— £)- T (f —r)dr =10 P 27 2 [ ® (T T)If)  (8)

In (8), the symbol ® is shorthand for convolution or smearing, which is explained in some more
detail in Appendices Al and A2. The implication of (8) is that in fluorescence-CSLM the field
measured in F' is a spatially smeared version of the true structure a (because a only takes on the
values 1 or 0, a® = a). The degree of smearing in (8) is given quantitatively by inverse Fourier
transforms of T{k) (defined in (6)} for the incident and detected light. The knowledge of Tj(k) and
Th{k) is the basis to a quantitative understanding of resolution, and to all image restoration
techniques.

3.2.3 Degree of smearing: point spread function

To find an expression for T{(k) we have to calculate the autocorrelation of Wj(k) as defined in (6).
As we have seen in Figure 3.2, Wi(k) is a spherical cap with top angle 2a and radius ko = 27/ 4,
with A; the wavelength of the incident light. The autocorrelation of Wj(k) can be calculated
analytically, as explained in Appendix A.3. The resulting T;(k) is:

k- cos{B)+2-ky - cos(ax)
Ty (k) =T(k.8)=2 ko - K -arccos e K—s’in(e) i k>0 _ $))]
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2
K =1 - Elr" (10)

In (9), k is represented in polar coordinates & and 8, with k = Jk) and @ the angle with the k,-axis,
which is directed from the light source to the sample. When the spherical caps coincide, 1 (k)
becomes the surface area of either spherical cap:

with

(0 =27 - (1-cos(@)) (1

This results in a discontinuity in the 8-coordinate of Tj(k) for k = 0. The inverse Fourier transform
of Tj(k), however, remains a continuous function.

Figure 3.3 gives an example of 7j(k) fora 1.4 NA lens with A = 540 nm. Shown are cross-sections
of Ti(k) in the (&, = 0}-plane and the (ky = ()-plane respectively. Greyscales are used to indicate
the value of 7j(k) with white as maximum and black as zero level. The halfwidth of the function in

Figure 3.3ais 0.6 nm™.

(2) Tj(k) in k, = 0-plane {b) Tj(k) in ky = 0-plane

Figure 3.3: Ti(k) for NA =1.4 and A; = 540 nm.

As the spherical caps W] and W, only differ in radius, the function Tp,(k) is also calculated using
(9) and (10), only with kp ry used instead of kg 1- The combination A(r) = Ty(r)- T,(r) is called the
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point spread function® or PSF for fluorescence CSLM: when an infinitesimal object is studied with
fluorescence CSLM, the measured three dimensional intensity pattern is proportional to A(r}. The
PSF for a 1.4 NA lens using rhodamine B as fluorochrome excited at the maximum excitation line
(A, =540 nm; A, = 625 nm) was calculated using (9); the result is given in Figure 3.4. Shown are
cross-sections of the PSF in the image plane and a plane perpendicular to the image plane.
Greyscales are used to indicate the value of the PSF with white as maximum and black as zero level.
In Figure 3.4b, the halfwidth is 130 nm in the x-direction and 360 nm in the z-direction.

(a} PSF in image plane (b) PSF L image plane

Figure 3.4: Point Spread Function for thodamine; NA = 1.4.

An important feature of the PSF for confocal scanning microscopy is its anisotropy: the axial (i.e.
perpendicular to the image plane) smearing extends over a larger distance than the smearing in the
image plane; in other words the axial resolving power is less than the lateral resolution. Any finite
resolution micrograph is a smeared version of the structure which is studied; the three dimensional
PSF tells us quantitatively over what distance the structure becomes smeared.
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3.3 Deconvolution
3.3.1 Introduction

The resolution of the CSLM micrographs. especially in the axial direction, can be greatly improved
when the smearing process is inverted by digital image processing. This inversion process is called
deconvolution of the PSF. Deconvolution is usually done with the help of Fourier methods: The
Fourier convolution theorem states that if a measured function g is a convolution of the uncorrupted
signal s and a PSF k., 5 can be regained in Fourier space by a simple division (see A2).

(12)

-]
It
s
®
=
Coy
1l

=l

The circumflex accent indicates the Fourier transform of a function. This deconvolution scheme,
which is called inverse filtering, is easily implemented for a measured dataset g provided h is
known. The necessary Fourier transforms can be calculated using fast Fourier-transform methods.

3.3.2 Constrained deconvolution

The Fourier transform §(k) of a smooth, square integrable function will allways become 0 for large
|k|. Normally, £ in {12) becomes O at smaller || than #, so the ratio in (12) will always converge.
Problems arise, however, when g is subject to noise. Uncorrelated ("white") noise, which has a
constant spectrum, will always lead 1o a nonzero tail in g, which becomes amplified beyond
proportion when h becomes 0 at large |k|. As a consequence, the deconvolved micrograph severely
suffers from noise. An improved deconvolution scheme? is called constrained deconvolution which
allows for a discrepancy between g and s @ k caused by noise:

J-(g(r)—[s® WX dr = & (13)

with £ defined as the total amount of noise in one micrograph. [n most cases € is not known. Even
when £ 15 known exactly, an infinite set of functions s satisfies Equation (13); a deconvolution
scheme based upon (13) must therefore be closed with an additional constraint. A standard
assumption, though not necessarily correct, is that s, the uncorrupted signal, must be relatively free
of noise. Noise is normally characterized by short wavelength fluctvations; we will design a short
wavelength fluctuation response function L for s, and define € to be the total amount of short
wavelength fluctuations in one micrograph.
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£ = J‘([S ® L](r))zdr (14}

A good choice for L is 1o make the convolution s® L an approximation of V25, s0 noise
suppression will not directly affect intensity gradients. For digitized pictures this can be achieved by
giving L the form illustrated in Figure 3.5 (in one dimension), The distance A is chosen equal to the
pixel size. This choice for L is called the Laplace filter.

L{x)

Figure 3.5: Laplace filter.

The deconvolution scheme now becomes: find a minimum in £ +4-£ with ¢t a positive number
regulating the relative importance of £ and & in the minimalisation procedure. In this
minimalisation s is varied; £ and € are functionals of 5. The Euler-Lagrange equation for the
minimalisation is:

2 (is® LP + ulg - s®mF)=0 (15)

Differentiation with respect to the function s yields:

(S®LR®L)+ul(g®h)—(s®h®h)]=0 (16)

Fourier transformation of (16) gives an expression for §:

~

4

n .
§ = -

x-L-L

+ [=

— (a7
h-h

with k¥ =1/ . We can see that for x =0 the inverse filtering scheme is recovered. For increasing x,
§ will decay faster from 5(0) to 0. For very large x', only §(0) will be nonzero; the corresponding s
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is a constant. We see that, as could be expected, x sets the smoothness for s obtained by
deconvolution. A general prescription for X cannot be given; the strategy we will use is to choose k¥
close to (b, but large enough to avoid the noise amplification in inverse filtering.

For the Laplace-filter, [ L{r)dr = £(0)=0. Therefore in (17), regardless of x:

3(0) = 20
0)=50) (18)

Hence, in deconvolution, the total intensity in the picture is diminished by a factor equal to the
integrated PSF. This diminishing does not depend on noise.

Equation (17) can be directly applied to digitized pictures using discrete Fourier transforms. After
deconvolution using {£7), the resolution in the restored micrograph will now be determined by -
smoothness and round-off errors. Because the actual PSF cannot be known exactly, there will in
practice always be some residual smearing after deconvolution with the approximate PSF.

3.4 Analysis of CSLM micrographs
3.4.1 Density autocorrelation function

For a CSLM micrograph, a straightforward way to generalise the structure is a calculation of the
fluorochrome density autocorrelation function (DACF) ¢(r), which is defined as:

{pr )p(r +r)),.

(19)
{ptr )2

c(r)=

where p(r') is the fluorochrome density at position #', and <...>. denotes an average over all
positions r' in the micrograph. {p(r' ))r' , or simply < p >, is the average density. In the analysis of
CSLM images, measured intensities are treated as fluorochrome densities. Moreover, we assume that
the density of fluorochrome is simply proportional to the density of colloid material. ¢(0) is given
by:

R SNPEN

0)= = 20
C() (P(T'))i <P>2 (20}

For all density distributions other than uniform, < p2 > is larger than < p »2,
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When we study the correlation between p(#') and p(r' +r), it will be maximal for »=0. In a
disordered system, p(r') and p(r' +#) will become more uncorrelated the larger |r| becomes. In the
limit for infinite Jr| they will be completely uncorrelated:

{ptr' ) o), _<p>?

=1 2D
2 2
. <p>

lim c(r)=

Irl~see {ptr))

By definition, for an isotropic structure, ¢(r) hecomes ¢(r).

3.4.2 DACF and pair correlation function

In interpreting the structure of a colloid, we are interested in the distribution of particles through
space rather than in the distribution of densities through space. The former is described by the pair
correlation function g(#). The connection between ¢(r) and g(r) for a noise-free micrograph of a
homodisperse colloid containing N particles in a volume V, as explained in Appendix A4, is given

by:
o(r) = 3 P(r) +[g ® PI(r) (22)

The implication of (22) is that for large r, ¢(r} is a smeared version of g(r). The smearing function
P(r) is the DACF of an isolated single particle. For the local density p(r) within a single particle
(with its centre of mass placed on the origin) it is:

P(r)=mg -[p® pl(r) (23)

where m, = { ptrydr is the mass of one particle. The integral [ P(r)dr equals 1. Note that the total
smearing range is proportional to twice the size of a single particle. Alternatively one could use the
mass distribution within the particle to describe the fluorochrome density distribution inside particles.

The discrepancy between ¢(r) and g(r) is important in interpreting CSLM micrographs of colloids.
The smearing of g(r) makes it impossible to interpret the DACF on small length scales, and on
length scales where there are strong oscillations in g(r). Note that the finite size and the finite
resolution have the same effect on g{(r), and both could in principal be removed by deconvelution
techniques.

When the colloidal particles are small with respect to the pixel size, the smearing with P(r) becomes
unimportant. Here, the DACF can be considered a multiple pair correlation function: two particles at
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position r* and three particles at position r'+r contribute six particle pairs at separation vector r to the
average in (19). On length scales much longer than one pixel, the DACF is equal to g(r).

For an increasing pixel size, however, the structural information on which the deconvelution must be
based also decreases, which leads to improper deconvolution with residual smearing. The best, but
not the most economic option would be to choose the smallest possible pixel size and only interpret
the DACF at large r. This means that the amount of data that can be handled by both the microscope
and the deconvolution software should be substantial.

3.4.3 Fractal scaling in the DACF
In the case of a fractal structure, the DACF exhibits fractal scaling. We will start by deriving an

expression for scaling in g(r). As seen in Chapter 2 (equation 7), for fractal scaling in a colloid, the
number of particles within range of another particle n(r) obeys the following scaling region:

N ) PNV
n(r)=47£7j1 g(l)dl:qocp[-gJ [%J (25)
0

with Pep the volume fraction of close packing, 5, the fractal lower cutoff, a the particle radius and
dy the fractal dimensjonality. From (25) we can derive the scaling in g(r) in the fractal region:

d d. =3
g(r)= S0 '[Ljf (26)

in which @y is the overall volume fraction of particles in the system. We see that in the fractal
scaling region, g(r) is a decreasing function (d; < 3), from which d; can be calculated by applying a
double logarithmic fit. When the measured DACF is a substantially smeared version of g(r), as will
be the case without deconvolution, applying a logarithmic fit to ¢(r) instead can yield an incorrect
value for d.

In the logarithmic fit, also the fractal lower cutoff ry can be determined. Using a pixel size A, , the
fractal scaling in c(r/ Ay, } is given by:

3-d, d -3
dfcpcp o c r b
Sl (el I @

pix°
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From (27) we see that in a logarithmic fit, once dy is determined from the slope, 5, can be
determined from the intercept, given Pep and ;.

3.5 Discussion and conclusions

In this chapier the basis is presented for the use of confocal scanning microscopy as a tool to study
the structure of particle gels, and particularly the fractal scaling in particle gels. However promising
the "direct measurement of structure” may seem, or however informative the micrographs may
appear to the eye, a good quantitative structural analysis of a colloid is only possible if the main three
problems are understood and overcome:

1. Smearing of the structure with an anisotropic PSF in the microscope;
2. Noise effects in the deconvolution;
3. A discrepancy between the DACF and g(r).

It is described above how this can be done in principle. It should be noted that the optical treatment
contains a number of ideality assumptions. Firstly it is assumed that the optical system used shows no
aberration. Chromatic aberrations can in principle be treated in the calculation of the PSF2, but this
makes an analytical derivation impossible. Experimental determination of the PSF suggests the
presence of aberrations*. Measuring the PSF by deconvolution, however, is not easy: the
measurements must be done very carefully and noise effects influence the measured PSF just as in
the deconvolution in this chapter. In our work, we have chosen not to measure the PSF, but assume
that a proper deconvolution can be executed using a simple model with as only parameters the NA of
the lens, the wavelengths used, and a smoothness parameter k. In 4, the authors mention a strong
sensttivity of deconvolved pictures o small errors in the PSF. This sensitivity causes noise ("ringing
artefacts™) in the pictures. These artefacts were not observed in our deconvolutions.

Secondly, we assume infinitesimally small pinholes, which is in practice untrue. It is relatively
simple to incorporate a finite-sized pinhole in the calculation of the PSF. For a correctly aligned
CSLM (i.e. with minimal pinhole size), however, a finite-sized pinhole does not affect the resolution
strongly?. The wavelengths used and the NA of the lens are far more important parameters.

The limitation of constrained deconvolution is determined by the value of x in (17). Iterative
procedures to find the optimal « have been suggested®. We have followed a different scheme, based
upon the insensitivity of the observable we analysed (the DACF) for the choice of the smoothness
parameter.
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The discrepancy between the DACF and g(r) could in principle be solved by deconvolution of P(r)
in (22). We expect this deconvolution to be delicate in practice, especially when the smearing
distance is of pixel order, which will often be the case. Iterative reconstruction algorithms will
probably be a solution to this. This point merits further study.

Altogether, we have come to an important understanding of ways of improvement of quantitative
confocal scanning microscopy. The treatment of the three problems mentioned requires extensive,
but not impossible numerical calculations. Extrapolating the growth of computational strength
available to the average rescarcher, however, these calculations will probably become much more
accessible within a few years.
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APPENDICES

Al Convolution

The convolution g between two functions s and / in one dimension is defined as:
g = j s(EYR(r - £ )de = [s ® E)(1) (28)

For convolutions we use the shorthand symbol @. It can be imagined that a one-dimensional signal
s(t) (Figure 3.6a) is measured with an imperfect detector yielding a smeared version g(z) (Figure
3.6c) of the original. This smearing can be described quantitatively using (28) and a detector
response function #({¢). The response function which results in Figure 3.6¢ is a Gaussian, drawn in
Figure 3.6h.
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{a) True signal {b} Response function {c) Convolution

Figure 3.6. Example of convolution.

In many cases 2 measured signal can be described as a convolution between the true signal and a
measurement response function. In this example the halfwidth of the response function is a measure
of the degree of smearing. A special limiting case is the response function that would cause no
smearing at all; this is called the Dirac delta function. The Dirac deilta function in Figure 3.6 would
be a Gaussian with zero halfwidth and, as a consequence, the value infinity at its maximum. It is
clear that detectors with a response like this are unrealisable in practice,
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A2 Fourier convolution theorem; deconvolution

For many experimental situations, it is possible to obtain an expression for the detector response
function based on knowledge of the detector. To correct for detector imperfections, it would be
desirable (see Figure 3.6) to calculate the true signal s(f) from the measured signal g(r) on the basis
of a known A(¢t) using (28). This process is called deconvolution. In practice, deconvolution is

performed by using numerical techniques. An efficient way of deconvolution makes use of the
Fourier convolation theorem. The Fourier transform of a function g(z) is defined as:

8q) = jgm 2y (29)

Without any loss of information, the function g(f) can be calculated from g(q) by an inverse Fourier
transform:

glt) = j Bg) -2y (30)

The Fourier convolution theorem states that:

g =[s®hl) = g =8q) iq) (31)

Making use of the fact that in Fourier-space a convolution becomes a multiplication, the function s
can now be regained from £ and g by an inverse Fourier transform:

s(H= J-.f(q) . e_zmq'dq = J-‘Z;EZ—; . e_zmq'dq (32)

Therefore, for a complete deconvolution we need two Fourier transforms, one division and one
inverse Fourier transform. Fourier deconvolution can be implemented numerically in a very efficient

way using Fast Fourier Transformation (FFT).

Two integrals similar to (28), which may be encountered in problems related to convolution or
smearing, are given in Equation (33) with appropriate Fourier convolution theorems:

gl)y= JS(f W +E)E & §(q)=3(-q) hig) (33a)

§(1) = j SEME DA o g) = - ) -hi-q) (33b)
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The integral in (33a) is called the correlation between s(¢) and A(s).

A3. Convolution between two spherical segments

The construction leading to Equation (9} is illustrated in Figure 3.7:

7\
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Figure 3.7: Geometrical construction to Equation (9).

Figure 3.7 indicates two spheres each with radius &; whose centres ¢ and ¢;, both in the drawing
plane, lie a distance k apart. The k,-axis lies also in the drawing plane; ¢; is the origin of the
kyk k., -axis system. The spherical caps which form W are drawn bold (see Figure 3.2); o is the lens
aperture angle. The intersection of the complete spherical surfaces as a function of & is a circle with

radius equal to the distance md, with:

2 2
md:Jk&—"T:kO»\;]—;c—z:ko-K (34)

0

In Figure 3.7, the plane containing the intersection circle is directed perpendicular to the paper, and
paralle] to the line md, The intersection of the spherical caps is a segment of the complete intersection
circle; the function 7(k) is equal to the ar¢ length of this segment:

Tk)y=2 md- arccos(%] (35)
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For the distance ms we find:

hyhy _ ky-cos(at) + (1/2)-k -cos(8)

S = (@) sin{6) .
yielding:
T(h)=2ky K -arCCOS( 2 'k02' c]?:(o;();]:l(;;w(e)} .

A4 Pair correlation function and density autocorrelation function

For N point particles in a volume V, the local number density n{r} can be expressed using Dirac
delta functions:

N
nry= "y 8(r-1) (38)
i=l

where #; is the coordinate vector of the i-th particle. By definition, integration of number density over
volume gives the total number of particles:

J‘n(r)dr = i Ié‘(r —-r)dr|=N (39

v =]y

The number density autocorrefation function s, (r} is defined as follows:

e < e Jnr ;—r) 7r =vlepn>? -jn(r‘ n(r +r)dr
<n>
19
N (40)
=vlen>?. zé(r 1)
4=

with average number density <n>= N/V and particle separation Tpg =Tp— Ty
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The function #,(r) contains apart from the spatial number density correlation between particles a
trivial part where p and ¢ refer to the same particle (rpg = 0). This distinction is made in Equation
a1y

nyr)= vl <n>2 -ZS(r—rM)+V']v<n >72 -Zﬁ(r—rpq)
r=q pPEY

—<ns S+ vl cns? ~25(r—rpq) @1
P#q

=<n> S0 +glr)

where the pair correlation function g(r) is defined as the non-trivial part of ny(r). The pair
correlation function plays a very important role as a structure describing function in theories and
simulations on colloidal structure®”.

Now we consider the particles to have a finite size and mass, represented by p(r}, which is the mass
density at position r for one particle with its centre of mass placed on the origin. The mass iy, of one
particle is equal to [ p(r)dr. For the whole system, the density p(r) is given by

N
Py =1n®@plr) = plr-1) (42)

i=1

Combination of the definitions given in equations (38) and (42), and rearrangement of the functions
appearing in the three integrations (one average and two convolutions) one may show that the density
autocorrelation function of the full system can be written as:

<p{rplr'+tr)>, _
<p >?

c(r)= lry, ® PYr) (43)

with P(r) the density autocorrelation function of the mass distribution within a single particle.
P(ry=mt. I plr yp(r +r)dr' (44)

Applying the distinction of {41} in n,(r), Equation (43) can be rewritten as:

e(ry=<n>"'-P(r)+[g & Pl(r) 45
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Equation (45) tells us that for large r, the density autocorrelation function is a smeared version of the
pair correlation function. For r close to 0, ¢(r)is dominated by P(r), or the density autocorrelation
function within a single particle. Note that the finite size of the particles has the same effect on the
experimental results as the distortion of the picture due to finite optical resolution. Mathematically
the function P(r) acts in the same way as the point spread function, though the physical crigin is
completely different.
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4. Confocal microscopy applied to colloidal model systems.

4.1 Introduction

In very few studies confocal microscopy is used quantitatively other than for particle sizing. An
excellent example of CSLM (confocal scanning laser microscopy) in colloid chemistry is given by
the work of Van Blaaderen et al.}; here CSLM is used for the determination of colloidal crystal
morphology (FCC or BCC) and for the study of colloidal glasses. The researchers use a system of
fluorescently labelled silica particles dispersed in chloroform, which may be considered as the ideal
model system for CSLM. In this system the particles and the solvent are both isorefractive (identical
refractive index) and isopycnic (identical densities), which means that the laser light can penetrate
the sample freely and that sedimentation will be negligible.

In water dispersed colloids, this is usually quite different. Most dispersible solids and liguids have a
refractive index considerably higher than that of water, leading to multiple scattering”. An example
of this is common milk, which multiply scatters back almost all incident radiation. Studying such a
turbid system with CSLM is pointless; all relations between incident and detected radiation as
described in Chapter 3 will be destroyed by the multiple scattering. Designing a water dispersed
model colloid suitable for CSLM is a difficult task; this seriously limits the use of CSLM in colloid
chemistry. Still, in this thesis a few model systems are used successfully. Two of these are new and
may in the future become important in guantitative optical studies of water dispersed colloids.

This chapter starts with a description of the three model systems wsed. Next we will describe the
preparation of the gels. The image analysis procedure will then be described in detail. The object of
this study is to determine fractal properties of the gels; the results of these measurements will be
presented and discussed.

4.2 Model systems
4.2.1 Casein micelles

Milk contains proteinaceous particles witli an average radius of 60 nm, called casein micelles. These
consist predominantly of casein, i.e. a mixture of tg|-, ®g3-, B- and k-caseins, calcium phosphate
and water. Their voluminosity (total micellar volume per gram dry material) is rather high, between
1.8 and 4.5 ml/g. Casein micelles are sterically stabilized by protruding peptide chains, which are
part of the x-casein. Contributing to their stability, the micelles are negatively charged at
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physiological pH. The casein micelles in milk can be made (o aggregate by adding rennet. Rennet
contains the proteolytic enzyme chymosine, that specifically splits the k-casein, removing the
stabilizing peptide chains. Another way of destabilizing the casein micelles in milk is acidification: at
pH 4.6 the charge on the micelles becomes zero and the peptide chains collapse.

Being a complex mixture, milk is less suitable as a colloidal model system for aggregation. A
solution of sodium caseinate in water at pH 5.2, however, contains roughly the same particles as milk
but is less complex. This system has been used in this work and is referred to as "casein micelles”.
Casein micelles are a convenient model system for CSLLM: as the micelles are no compact protein
particles, refractive index and density do not differ much from that of the solvent, which results in
mild scattering and virtually no sedimentation. A drawback for fundamental research is that the
micelles contain a mixture of the different caseins and the solvent, of which the composition can
change with temperature, pH and ionic strength, resulting in a varying voluminosity, and hence a
varying particle radius*. Another drawback is the polydispersity of the system. Nevertheless, the
practical relevance of this colloid strongly favours its use in the study of aggregation and gelation.

4.2.2 PFAT Latex particles

A model colloid consisting of perfluoro-alkoxy teflon (PFAT) latex is the result of the search for
solid particles with a refractive index nearly matching that of water. The only solid materials suitable
for our experiments satisfying this requirement are polymerised perflucrinated carbon compounds.
Water dispersed colloids of these materials are prepared by emulsion polymerisation. Unlike the
preparation of polystyrene latex, these are extremely hazardous preparations requiring very high
pressure and (emperature.

Standard teflon or PTFE (poly-tetrafluoroethylene) has a refractive index of 1.31, but is highly
crystalline. For this reason, PTFE particles dispersed in water show strong multiple scattering. The
crystallinity is reduced to less than 1 percent in PFAT, where the PTFE main chain is substituted
with a perfluorinated ether. The PFAT particles have a refractive index of 1,38, This means that by
adding fructose (or other inert solutes) to water refractive index matching can be obtained. PFAT
dispersions up to a volume fraction of 0.3 can be made transparent.

The dispersions used are charge stabilised with sulfonate groups which stem from the polymerisation
initiator potassium persulphate. To enable aggregation, we adsorb the polyelectrolyte PMA-Pe
(partially esterified polymetacrylic acid) on the particle surface, which gives a steric stabilisation
roughly comparable to x-casein. At low pH, the adsorbed PMA-Pe undergoes a conformation
transition, leading to attractive interactions between particles. Details of the adsorption will be given
in section 4.2.4.
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The PFAT latex dispersions used are monodisperse with a radius of 80 nm; in this sense it is a much
better defined model colloid than casein micelles. A drawback is the density of the particles, which is
1.8 kg/l. Where for small particles the effect of sedimentation is negligible compared to that of
Brownian motion, for large aggregates this is certainly not the case. We will address this problem in
section 4.2.6.

Unlike silica in chloroform, PFAT latex is a refractive index matched colloid that has hardly been
used in colloid science. Piazza and Degiorgio® have used partly crystalline PFAT particles for
measuring rotational diffusion coefficients; Maste” has used PFAT particles for measuring Fourier
infrared spectra. The unique optical properties of PFAT latex make it a model colloid that can in
future become very important for colloidal research with optical methods. In the experiments with
PFAT latex, we have received important help from Dr. D. Lévy from Du Pont de Nemours SA, Le
Grand-Saconnex, Switzerland. Dr. Lévy has generously sent us samples of PTFE and PFAT latex.
For this help we are greatly indebted.

4.2.3 Glycerol tricapryline emulsion droplets

Both the casein micelles and the PFAT particles are far smaller than the wavelengths of visible light,
To facilitate the use of light microscopy in determining the fine structure of particle gels a third
model system is vsed: oil emulsion droplets dispersed in water. This emulsion s made with a Foss
Electric 12705 lab homogeniser, the average particle radius is ca. 2 um. Again, we have selected an
0il with a refractive index as close as possible to that of water: glycerol tricapryline (refractive index
1.45; density 0.95 g/ml). The refractive index matching is not very close; a fairly large concentration
of fructose is used to obtain samples suitable for microscopy. The emulsion droplets are sterically
stabilised with PMA-Pe. At large enough concentration (10 mg per ml ¢il) this adequately prevents
droplet coalescence. At low pH, the emulsion droplets aggregate; an example of emulsion droplets
forming a cluster is shown in Figure 4.1 on the next page.

In the system used, the density of the oil phase implies emulsion creaming. For particles of 2 pm
diameter, this will not be negligible against Brownian motion. Indeed, aggregation of particles this
large cannot easily be compared to aggregation of the smaller particles. Here cluster formation is
more the result of velocity gradients induced by rocking the sample. Stil!, Bibette? found very
ramitied fractal clusters using silicon oil emulsion droplets dispersed in water. We will study this
model system and see whether fundamental differences are found with aggregation of smaller
particles.

This model colloid can be easily prepared and is suitable {in terms of particle size) for light
microscopy; drawbacks are its polydispersity, possible coalescence of droplets and creaming.
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However, this systern makes it possible to locate the particles on a micrograph, which should make
the interpretation of the micrographs easier. Also, like the casein micelles, the system in all its
complexity is relevant to many industrial products.

Figure 4.1: CSLM micrograph (29 by 29 pm)
of cluster from emulsion droplets.

4.2.4 Preparation of the dispersions

A suspension of casein micelles was simply made by dissolving the caseinate (provided by the
Netherlands Institute of Dairy Research NIZO) in a 0.1 M NaCl solution. A batch of volume fraction
@ = 0.1 {assuming a voluminosity of 2.7 ml/gram casein®) was prepared and diluted to desired
volume fractions.

The PFAT-latex suspension as provided by Du Pont contained salts and small amounts of
perfluorinated surfactants. To remave these products the suspension was cleaned by microfiltration.
An Amicon microfiltration apparatus with a Millipore VC filter (pore diameter 50 nm) was filled
with the suspension and filtered under an overpressure of 0.5 atm while continuously refreshing the
solvent with demineralized water. In this procedure the solvent volume was replaced about 25 times.
The resulting suspension was stable due to charged sulphonate groups on the particle surface.
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After cleaning, a solution of PMA-Pe (Rohagit $°) at dissociation grade 0.5 was added to the
suspension. In all samples the concentration of polymer was 10 mg per ml particles'?; for ¢ = 0.03
this amounts to 0.5 mg per ml. For comparison, the bulk gelation concentration for PMA-Pe al low
pH is of order (.1 g per ml®, so the formation of a PMA-Pe polymer gel is highly unlikely. The result
was a suspension that remained stable over months.

Both before and after the adsorption, the hydrodynamic radius was determined using dynamic light
scattering. Before adsorption it was found to be 82 nm; after adsorption 87 nm was found. The small
value of the second order cumulant!! indicated a monodisperse distribution.

The oil in water emulsions were prepared by adding a solution of PMA-Pe at dissociation grade 0.5
to glycerol tricaprytine, and homogenising the mixture for 30 minutes in a Foss Electric 12705 lab
homogeniser (¢ =0.1). In all samples the concentration of polymer was 10 mg per ml oil.

4.2.5 Labeliing of the dispersions

The dispersions were labelled with thodamineB, which has an excitation maximum of 540 nm and an
emission maximum of 625 nm. Rhodamine solutions of 4 mg per ml were prepared freshly and were
tiltered through a | um membrane to remove rhodamine crystals. For all model systems, a ¢ = 0.1
stock suspension was labelled with one droplet of rhodamine selution, colouring the sample a pale
shade of pink.

4.2.6 Use of a rotating wheel to prevent sedimentation

All suspensions show sedimentation or creaming due fo differences in density between particles and
solvent. For stable suspensions, this effect became visible after hours for the emulsions, one day for
PFAT latex and several days for casein. For aggregating suspensicns, however, sedimentation or
creaming has a significant effect on the resulting structure. When we think of gelation in terms of a
competition between percolation and phase separation, then gravity will shift the balance towards the
latter, as it promotes the formation of a phase rich in particles. This can be clearly seen when an
emulsion is destabilised: after a few minutes, a thick cream layer has formed above a clear solution.

The formation of a sediment or a cream layer can he prevented by vertically rotating the sample. (see
Appendix A.l} A rotating wheel of which the angular velocity can be varied is used to rotate the
aggregating suspensions. Care is taken that no air is contained in the rotating sample; a rotating air
bubble would lead to stirring and disruption of the gel structure. This kind of compensation for
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gravity is not the final solution to the problem, but at least it results in homogeneous gels for PEAT
latex suspensions and emulsions at low volume fractions, which without rotation would either
sediment or cream.

4.2.7 Preparation of the gels

For all systems, we used GDL (Glucono-8-lactone) to induce aggregation. GDL dissolves readily in
water, and slowly hydrolyses to form gluconic acid. This form of homogeneous acidification is
preferable to a simple addition of acid, where the addition causes concentration gradients and stirring
causes structure disturbances. A drawback of this type of acidification is that the gelation becomes
chemically lirnited by the hydrolysis kinetics of GDL.

All gels were prepared as follows. Stable suspensions at ¢ = 0.1 were first iabelled with rhodamine,
after which the samples were left for an hour in order to allow the rhodamine to adsorb on the
particle surface. Then the samples were diluted (o the required volume fraction, after which a
calculated amount of GDL was added.

For casein, two GDL concentrations were used: (.25 and 1.0 g GDL per g sodium caseinate. For a
suspension of casein micelles with ¢ = 0.1, the lower concentration caused gelation within 30
minutes; the higher concentration cansed visible gelation in 10 minutes.

For PFAT latex and the emulsions, the number of carboxyl groups in PMA-Pe and GDL were
equivalent at 13.8 g GDL per g PMA-Pe; the two concentrations used for aggregation were 50 and
100 g GDL per g PMA-Pe. For the lower concentrations of GDL, pH values of around 4 were
measured after 24 hours; for the larger concentrations of GDL, pH values amounted to around 3.

Upon addition of GDL, the suspension was guickly placed in a hollow objective glass, and sealed
with a cover slide. The slide was then placed in the rotating wheel, allowing the sample to gel for
approximately 1 hour. All experiments were conducted in the room where the microscope was
situated. This room was kept at a constant temperature of 20° C.

4.2.8 Microscope setup

The microscope used was a BioRad MRC 600 with an ILT Argon / Krypton laser as light source. The
sample was illuminated at the 568 nm laser line; to filter out stray light in the detector a block filter
was used for wavelengths smaller than 585 nm (BioRad YHS filter block). The illumination




47

wavelength does not correspond with the maximum of the excitation spectrum, which is at 340 nm;
nevertheless enough fluorochrome molecules are excited to analyse a CSLM picture at the current
filter settings. In the deconvolution procedure we shall use the wavelengths 568 nm for illumination
and 6235 nim for detection, which is the emission maximum of rhodamine B.

A Nikon Plan-Apo 60x 1.4 NA oil-immersion objective was used for the imaging. In all cases the
data set analysed consisted of 32 layers of 512 by 512 pixels; this limitation is given by the memory
capacity of the most powerful computer available for the deconvolution. A scanned area of 512 by
512 pixels is generally not enough to obtain both a good resolution down to particle level and a
sufficient sampling of large scale inhomogeneities in the gel, especially at the lower volume
fractions. As we are mainly interested in scaling at length scales larger than the particle size, we have
chosen to select for each gel an area larger than the largest inhomogeneities in the gel, as estimated
visually.

The axial step size, which was 100 nm in all cases, was corrected for the refractive index difference
between the solvent and the immersion oil'2,

In all measurements, the pinhole was used at its minimal size. The photomultiplier tube settings were
adjusted in such a way that all available levels of intensity (256) were used as efficiently as possible,

but without overflow. This was optimised for every micrograph.

For each gel iwo micrographs from different regions were recorded.
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4.3 Image analysis
4.3.1 Introduction
We will estimate the fractal properties of the gel from the micrographs by using the density

autocorrelation function (DACF). To reduce the effect of finite resolution imaging, we deconvalve
measured data sets of 32 layers, using a calculated point spread function (PSF).

4.3.2 Deconvolution

An example which illustrates the effect of deconvolution is given in Figure 4.2, which shows the
16th layer of a series of 32 scanned layers (with axial stepsize 100 nm) for a gelled PFAT latex
system of @ = 0.05, representing 21 by 21 pm.

(a) Original micrograph (b) After deconvolution

Figure 4.2: Deconvolution example.

One can see that the deconvolved micrograph contains much more detail than the original. The result
shows what can be expected from an optical slice: not alt connections present in the 3D network are
present in the 2D slice. Nevertheless the objects in Figure 4.2 form a connected network; their
position remains fixed in time. Near the edge of the deconvolved micrograph we see an oscillating
pattern. This pattern is a known edge effect in deconvolution. For a proper reconstruction of
intensities near the edge, intensities from beyond the edge are needed wich are simply not available.
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Fourier deconvolution procedures imply that the micrograph is assumed to be periodic; hence near
the left edge reconstruction is incorrectly based on intensities from near the right edge'?.
Theoretically, the range of this effect is half the nonzero part of the PSF. In Figure 4.2 we find an
edge of 300 nm, which indeed corresponds to half the nonzero part of the PSF used in the
deconvolution. For turther calculations, this edge is simply omitted.

In the axial direction, the range of the PSF is larger. Here half the nonzero part of the PSF is about 1
pm, which amounts to 10 scanned layers. As a consequence, 20 of the 32 layers cannot be used
because of the deconvolution edge effect. It should be noted that no improvement is made when the
axial stepsize is increased; when this is done one simply disregards intermediate layers, and the
information needed for reconstruction diminishes for the whole picture instead of just near the edges.
In this chapter we maintain an axial stepsize of 100 nm, which is the smallest value that could be
realised experimentally. Given the current limitation in storage and calculational power, this means
that only a single 2D micrograph can be reconstructed for further analysis. Still, there is no
theoretical limitation to a full 3D reconstruction; this will become possible using the same program
as soon as the practical limitations are overcome.

4.3.3 k-Parameter

The deconvolution procedure contains a parameter x, which indicates the degree of noise
suppression for the deconvolved micrograph. The effect of x is best visualised at larger volume
fractions. Figure 4.3 shows the 16th 1ayer of a series of 32 scanned layers for a gelled PFAT latex
system of @=0.1, representing 20.4 by 20.4 wm, deconvolved for different values of x.

(a) x=0.0001 {b) x=0.01 {c) x=0.1

{cont.)
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(d) k=1 {e) k=10 (N x=100

Figure 4.3: Effect of the Kk -parameter on the deconvolution

It can be seen that larger values for k¥ give the micrograph a mere smooth appearance, whereas
smaller values of ¥ give the micrograph a grainy appearance. This is in agreement with the trend
described in Chapter 3.3.2.

We now come to the point of selecting the optimal value for k. We will base this choice on the
experimental result for the DACF. To do so we start by studying the intensity distribution within one
deconvolved micrograph. The purpose of this approach is to further investigate the relation between
intensity and the local density of colloidal particles.

4.3.4 Intensity distribution: background removal

The intensity histogram of the micrograph from the previous series deconvolved with k=10 is given
in Figure 4.4, To calculate this histogram, all intensities present in the micrograph were truncated
into 512 tevels of equal bandwidth. In Figure 4.4, Count(fnr) is the number of times that a pixel with
an intensity in the level around In¢ occurs in the micrograph.
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Figure 4.4: Intensity histogram

A striking feature is the dominating peak at low intensities. To find out what structural elements
contribute to this peak, we have thresholded the micrograph of Figure 4.3(e) at an intensity I, of
twice the peak maximum, indicated in Figure 4.4 by a vertical line: all intensities larger than [, are
made white, all intensities smaller than [, are made black. The result is given in Figure 4.5:

Figure 4.5: Micrograph of Figure 4.3(e) thresholded at I,
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If we compare Figure 4.5 with Figure 4.3, we can see that the peak at low intensities corresponds
with empty regions in the micrographs. In contrast, clusters and strands of the gel are represented by
intensities larger than /,.

For a gel at low volume fraction, it can be expected that the empty regions will dominate the intensity
histogram. To analyse the distribution of intensities originating from clusters and strands, it is clearer
to study the intensity-weighted histogram ( Count - Inr), which gives the contribution of an intensity
Int to the total intensity in the micrograph. This histogram is given in Figure 4.6:

310°

210°]

Count x Ins

110°]

Figure 4.6: Intensity-weighted histogram

In the analysis in chapter 3.4.1 we assumed a simple proportionality between the observed intensity
and the colloid density. In this histogram we see that a large fraction of the total intensity, and hence
the total mass, comes from the low density regions. One reason may be that there is still a large
fraction of all particles in the sol phase, not associated with the dense network of the gel phase. The
intensity over an individual 80nm particle in the sol phase would, however, be substantially larger
than the peak intensity in figure 4.6.

Our conclusion is that the peak represents intensity contributions from other sources than particles in
the image plane. This intensity, which we shall denote as background intensity, can be the result of
rhodamine that did not adsorb to particles; it can also be the result of a Fourier artefact in the
deconvolution procedure. In the deconvolution, numerical errors are most likely in regions where the
intensity does not vary with position (e.g. empty regions). This results in a systematic error in the
zero level intensity, which can be perceived as background intensity. This error occurs locally for the
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empty regions and would not be present in regiens where the intensity does vary with position (e.g. a
cluster)'*. For both explanations, subtracting a background intensity from the whale micrograph
would be incorrect. Finally the intensity could originate from particles outside the image plane,
which has not been completely removed by the deconvolution. The conclusion about this background
is corroborated by the fact that the total mass in the dense regions, assuming close packed structure at
maximal intensity pixels, independently reproduces the volume fraction of the full sample within
reasonable error (see section 4.3.6).

A closer look at the intensity histogram of figure 4.6 allows us to distinguish two peaks, a high and
narrow one at low intensities, which we identify with the background contribution, and a broad and
weaker one at higher intensities, which is the signal from the clusters and strands that make up the
gel. In figure 4.6 we have sketched these two contributions (the two dotted lines). In some of the
micrographs, especially those for the lower volume fractions, the distinction can be made more
reliably. In general the background contribution is not very well separated from the signal. Even if
the curves could be identified uniquely, there would be the problem of how to handle pixels in the
overlap region. Therefore we simply estimate at which intensity the curves intersect, and use this
intensity 7, as a threshold for background removal; intensities below the threshold are set to zero.

The result of the background removal is given in Figure 4.7. We can see that the operation does not
significantly erode the clearest objects in the original.

Figure 4.7: Micrograph of Figure 4.3(e)
after background removal.
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The removal of background intensity is important for the calculation of the DACF. Without this
correction the DACF is influenced by spatial correlations in the background level, as these are
weighted equally strong as spatial correlations attributed by clusters and strands. The effect of this
would be more unwanted smearing in g(r).

4.3.5 Influence of the deconvolution parameter x on the DACF

After removal of background intensity, we calculate the DACF c(r) for the [6th layer of
deconvolved data sets. This calculation is done using two-dimensional discrete Fourier transforms.
Figure 4.8 shows a contour plot of ¢(r) decaying from ¢(0) = 3.1 to 1 with contour intervals of 0.1
for k=10.

x (um)

Y

y (um)

Figure 4.8: contour plot of c(r}.

The result shows that ¢{(r) is nearly isotropic; we approach ¢(r) by averaging horizontal and vertical
directions in c(r}. The result for the test series vsing 4 different values for «x is given in Figure 4.9.
Figure 4.9 shows a decaying function in which a region of power law scaling can be identified
around r=1yum. The scaling region is small and not very clear, so scaling results can only be
interpreted semi-quantitatively. At smaller distances the slope of ¢(r} is rather flat, indicating a lower
bound on the scaling region: the fractal structure as determined from the micrograph consists of large
dense building blocks. A larger value for & results in a steeper slope (i.e. a lower fractal
dimensionality); the scaling region remains more constant between x =1 and x=10.
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Figure 4.9: DACEF for various values for x.

For k=100, a lower dimensionality is found, but the deviation from power law scaling occurs at
larger r, indicating more smearing at small length scales. As explained in Chapter 3, too large a value
for k will have this effect; an explanation for the lower dimensionality could be that deconvolution
at large x reduces contrast, after which contributions from less concentrated regions are more likely
to be removed along with the background. The net result of this would be a "sharpening” of local
concentrated points in the micrograph, which canses lower fractal dimensionalities.

For x=0.1, a higher dimensionality is found. At small x, the background peak in the intensity
histogram broadens (i.e. larger background intensities are found} due to deconvolution errors; it will
therefore be increasingly difficult to remove both background and noise. As both are homogeneously
distributed through the micrograph, the resuit will be an overestimation of the fractal dimensionality.

At large length scales, ¢(r) fluctuates around the value 1. These fluctuations are caused by statistical
error: the larger r, the less pixels contribute to the average in o(r).

The intermediate values for x give approximately the same scaling behaviour, which suggests that
here the scaling region is not an artefact of the deconvolution procedure, but that it really gives a
structural description of the system. As the scaling region for the fractal fit is small, errors in the
fractal parameters may be substantial; we will try, however, to explain the results from the analysis
and see in what way they can shed light on gel structure and underlying mechanisms.

By fitting the fractal scaling region (see Chapter 3.4.3), we determine the parameters d; and »:

d o di =3
e
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In Equation (1}, it is assumed that on the length scales where fractal scaling applies, the DACF and
the pair correlation function g(r} are equal. For @, the value 0.76 is used for all micrographs; for
¢y the known suspension volume fraction is used. From d; and r,, the correlation length & was
calculated (see Chapter 2.2.4) according to:

13=d,
5:("’&} e @

T Do

The resulting values of the fractal parameters for Figure 4.7 are: 4;=1.9; 1,=340 nm; £=2.6 pm. As
the diameter of the largest voids that can be discerned in Figure 4.3 is about 5 pm, the value of £
seems reasonable. The value of r, is about four times the particle radius, which indicates substantial
reorganisation. In the micrograph we can indeed see compact objects larger than one particle, so the
result dees not seem unreasonable.

4.3.6 Suspension volume fraction

As a consistency test, we will determine the volume fraction from the micrographs and compare it
with the known suspension volume fraction. This is not a straightforward determination: although
clearly the average intensily < /7> is proportional to the suspension volume fraction ¢, the
proportionality constant is unknown. We assume that the maximum intensity [ .. is proportional to
the volume fraction of close packing Pepe yielding:

P _<iI>

_q;;-i T nax

3)

A practical problem of this assumption, however, is the fact that I, is statistically the least reliable
intensity in the whole micrograph. Also, 1., is likely to be underestimated because of residual
smearing, which has the greatest effect on peaks with a large intensitiy over a small length scale.
Nevertheless we have found that for ¢ > 0.04 equation (3) reproduces the value of the volume
fraction within 10%. For smaller volume fractions, equation (3} yields a systematic overestimation of
the volume fraction by up to a factor 2. We assume that in these cases I, has become quite
unteliable because of residual smearing, As mentioned in 4.2.8, the scanned area is chosen on the
basis of the largest scale inhomogeneities in the gel, and the number of pixels is fixed (512 by 512
pixels). This means that for the lowest volume fractions, the resolution on particle level is the worst,
and here residual smearing will indeed be a serious problem. The good reproduction at high volume
fractions indicates that this problem could be solved by simply using more pixels.




4.3.7 General approach

The analysis as described here comprises three consistency tests for each micrograph, based on the
histogram for /,, on the DACF for x and on the suspension volume fraction in general. We will give
a short summary of the treatment:

1. Deconvolution using four values for x (0.1, 1, 10 and 100);

2. For each deconvolution, background removal according to the intensity-weighted histogram;

3. Fitting of the scaling region confirmed by at least two values for x.

Before fitting, c{r} is tested for isotropy. In practice, we observed an anisotropic ¢(r) only when the
scanned area contained just one single strand.
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4.4 Results and discussion

The results of the fractal analysis are compiled in the following tables.

Casein:

series 9, [GDL] (g™ | 4 n, (nm) & (um)
1 0.08 0.25 2.2 193.6 3.07

2 0.08 1.0 2.2 174.8 2.84

3 0.05 0.25 2.1 249.0 5.29

4 0.03 1.0 2.0 333.3 4.94

5 0.025 0.25 2.1 311.2 12.47

6 0.025 1.0 23 95.5 10.73
*aram GDL per gram casein

PFAT-latex:

series P, [GDL] (g/)™* | dr % (nm) & (um)
1 0.08 50 23 144.1 3.83

2 0.08 100 2.5 46.6 3.71

3 0.04 50 2.3 195.6 16.34

4 0.04 100 23 1574 11.03

5 0.025 50 2.1 255.8 11.63

6 0.025 100 2.2 188.5 12.644
7 (.01 50 2.3 37.6 25.53

8 0.01 100 2.1 79.7 11.93
**gram GDL per gram PMA-Pe

Emulsions:

series @ [GDL] (g/g)™™" | s 1, (m) & (um)
1 0.1 50 23 0.42 8.4

2 0.1 100 2.1 1.0 9.7

3 0.05 50 26 0.026 16.6

4 0.05 100 24 0.14 15.0

dok

gram GDL per gram PMA-Pe

In Appendix A.2 a selection of micrographs is presented for the three model] systems.
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Generally we see that, as expected, a lower volume fraction results in a larger correlation length &.
The other fractal results do not show a clear trend. Given the standard deviation in d;, which is
around 10%, on the basis of this data set we can only conclude that all dimensionalities are
approximately the same, namely 2.3, a value slightly lower than the consistently found
dimensionality of 2.35 by Bremer’, but larger than DLCA or RLCA-values. Given the standard
deviation, many more measurements must be done to confirm that d¢ is constant, or to discover a
trend in d.

More significant differences occur in the values of 7. In this data set, no uniform effect of either g,
or GDL concentration on #, is found. To identify more explicit dependencies the amount of data is
insufficient. We conclude that the structure of particle gels as studied with CSLM at this stage does
not lead to a clear picture.

The fact that no clear picture arises can (¢ some extent be expected: a high ¢, and a low pH both
induce aggregation, but simultaneously also hinder the progress of aggregation because of
irreversible cluster formation. To study the balance between these effects many more experiments
need be done. From these one may also obtain a clearer understanding between the GDL
concentration and the interaction between casein micelles. In this set of experiments the GDL
concentration was proportional to the amount of casein present in the system, which means that ¢,
and GDL concentration are correlated. The other extreme would be the variation of the absolute
concentration GDL, but this would mean a higher final pH for gels from more concentrated
suspensions, l.e. alse a dependence. Probably, an intermediate situation would give the best tuning of
the interaction. Also the time dependence of the interaction is unclear. The final gel structure is not
just determined by the final pH of the system, but also by the rate at which the interaction changes
from repulsive to attractive. This rate, or even the hydrolysis rate of GDL is not related in a simple
fashion (o the initial GDL concentration, which is the parameter varied in this set of experiments. A
recent study has shown!? that changes in temperature have a large effect on the structure of GDL-
induced casein pels.

Despite the absence of a clear trend, we will make a few remarks on the values of r,, and give some
possible suggestions that may be used in further research.

A striking feature for the cascin gels is the large value of 5. This value varies from 2 to
approximately 7 times the radius of a casein micelle, which suggests that in an early stage of the
aggregation casein micelles must have combined to form larger compact units. This is indeed
possible as the hydrolysis of GDL takes some time, allowing for a stage of moderately reversible
aggregation, which results in compact clusters. We will call this early stage pre-aggregation.

For the casein gels, the value of 7, seems to increase with decreasing volume fraction. Following the
previous suggestion, this can be expected: as the amount of GDL is proportional to the amount of
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casein, at low volume fractions the hydrolysis takes more time, allowing for a longer pre-aggregation
stage. The totally inconclusive effect of GDL concentration on r,, however, does not help us to
understand the role of GDL in the pre-aggregation stage.

For the PFAT-latex gels, r, is generally smaller than for casein gels, which is the more surprising
regarding the larger particle size. Again #, seems to increase with decreasing volume fraction. The
GDL concentration seems to have a more pronounced effect on «, for this system: for smaller GDL
concentrations r, is larger, which is in accordance with the idea of a pre-aggregation stage.

We would suggest for further research that the hypothesis of a pre-aggregation stage be tested. For
the understanding of the aggregation process it would be better if the fractal parameters could be
studied as a function of time.

Generally, we find that gels with the same fractal dimensionality do not necessarily have similar
structures and underlying aggregation processes. To illustrate this, Figure 4.10 shows two
micrographs of casein gels at the same volume fraction (¢ = 0.08) but prepared differently: Figure
4.10(a) was prepared by adding 1 g/g GDL; Figure 4.10(b) by first adding 0.1 g GDL per g casein,
then waiting for 30 minutes and finally adding 0.9 g GDL per g casein.

(a): Fast gelation; 28 by 28 pm . {b): Slow gelation; 70 by 70 pm

Figure 4.10: Comparison of two gels with identical d;.

As calculated from the DACF, both gels turn out to have the same fractal dimensionality {d¢=2.1),
despite the fact that they are very different, A more discriminating factor is the value of r, which is

175 nm in Figure 4.10(a) and 680 nm in Figure 4.10(b). We can see that in Figure 4.10(b} compact
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regions indeed extend over larger length scales. This can be attributed to the first addition of GDL,
after which aggregation proceeds slowly and reversibly, giving time and opportunity for small length
scale compactification. The micrographs show that the aggregation processes for these two systems
are different; this does not follow from the fractal dimensionality only.

Even structures with the same values determined for dy and » are not necessarily identical. To
illustrate this, figure 4.11 shows two micrographs of different model systems.

(a) Casein, series 3, 42 by 42 um (b) PFAT, series 5, 84 by 84 pum

Figure 4.11 Comparison of two gels with identical d; and k

The two micrographs shown have the same dimensionality {d¢=2.1) and #, (250 nm); their volume
tractions differ by a factor two (@, = 2¢,, ) as do their determined correlation lengths (&, = 2¢, ). By
showing the micrographs at different magnifications (the pixel size of 4.11(b) is twice the pixel size
of 4.11(a)) their structures can be compared; if the determined values are correct we should see
identical structures. On large and intermediate length scales the structures indeed seem identical:
there are no large differences in branching or in the distribution of voids. On smaller length scales,
however, difterences can be seen: the structure of Figure 4.11(b) appears to be built from
homogeneous fragments larger and more ramified than the small compact fragments of Figure
4.11(b), which suggests different aggregation mechanisms. The fact that the parameter 7, does not
discriminate between the two is caused by the assumption that the value of ¢, which must be used
in Equation (1) is 0.76, whereas the local volume fraction in the homogeneous regions in Figure
4.11(b) is probably less than 0.76. This leads to an underestimation of r,. For a more reliable
calculation of 7, local measurement of Pep by separately enlarging homogeneous regions would be a
significant improvement.
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4.5 Conclusions

In this chapter we have attempted to find a quantitative geometrical description of particle gels from
confocal micrographs, using a fractal model. Accepting the large statistical variance, it appears that
all fractal dimensionalities are about equal, with values larger than the DLCA limit. The values of 7
show that there can be significant differences between gel structures despite identical values of 4.
The dependence of 5, on the parameters volume fraction and GDL concentration is unclear, which
makes the results in this chapter inconlusive. Still, by speculating on the values of r, a hypothesis
about a "pre-aggregation stage” is formulated which might serve as a starting point for further
research. The fact that the results are inconclusive suggests that no simple model can be applied on
these systems.

The analysis method followed in this chapter is thorough, but given the heavy requirements and the
many artefacts this work is by no means finished. The combination of model colloid and image
analysis procedure can be further optimised on many accounts. The main suggestions are a better
[abelling, a clearer understanding of the relation between GDL concentration and the interaction
between particles and more calculational power for the deconvolution. It would be more informative
if the fractal parameters could be studied as a function of time during the aggregation process. We

hope that by doing this study, a number of intricacies and pitfalls have been brought to the attention
of future investigators.
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Appendices

A.1 Suspension rotation

If a vessel containing a colloidal particle undergoes vertical rotation, the particle experiences two
forces: the gravitational force and the centripetal force. This is illustrated in Figure 4.12;

O axis

centripetal

force gravitational

force
Figure 4.12: Suspension rotation.
Because of the rotation, the angle between both forces changes continuously. During one period of

revolution, the path of the particle as viewed from inside the vessel is aimost circular, as depicted in
Figure 4.13:

yrelll’l’cp {a.u)
-
>

L L FL_F {a.u.)

Figure 4.13: particle path.
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The path from Figure 4.13 has been calculated numerically; x,. and yg (¥, parallel to the
centripetal force F,} are the co-ordinates inside the vessel and A, is the net displacement caused
by the centripetal force. This net displacement, which is normalised on the particle radius, is given

by:

2
.7 Ludp
Ap = 4030 T, ()

ey

where L, is the distance between the particle and the axis of the rotation wheel, Ap the density
difference between the particles and the solvent, 17 the viscosity of the solvent and 7., the period of
revolution. The rotational displacement A, or the diameter of the circle in Figure 4.13
perpendicular to the centripetal force, is given by:

ApT
By = 2546.43_% (2)

A, 18 also normalised on the particle radius. Ideal compensation of gravity is obtained when both
Ay, and Ay are negligible compared to the relative Brownian displacement during one period of
revolution. This is never really obtained, but for PFAT latex particles a substantial improvement can
be made by adjusting the period of revolution of the rotating wheel T..,. T.., must be chosen not too
large (then A, would become too large} and not too small (then Acp would become too large). For
most cases a T, of around 10 seconds is used.

rev
A.2 Selection of micrographs

The following page shows 6 micrographs, which illustrate the structure of colloidal gels from the
three different mode! systems. The following legend should be used:

(a) Casein, series 1, 21 by 21 pm;

(b) Casein, series 4, 42 by 42 ym;

{c} PFAT latex, series 1, 28 by 28 pum;
(d) PFAT latex, series 4, 84 by 84 um;
{e) Emulsion, series 2, 58 by 58 pm;

() Emulsion, series 4, 88 by 88 um
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5. Brownian Dynamics simulation of Gelation and Ageing in
Interacting Lennard-Jones Systems

5.1 Introduction

Lyophobic colloids can be stabilised by charging the surface of the dispersed particies. Alternatively,
a layer of polymer with high affinity for the solvent can be applied to the particle surface, resulting in
steric stabilisation. If the stabilisation is taken away, the colloidal particles will aggregate: particles
that collide through Brownian motion will form a cluster. At first clusters are held together by
relatively weak attractive forces (e.g. Van der Waals forces) between the particle surfaces. On a
larger time scale, ageing and sintering lead to more rigid clusters.

A laboratory example of aggregation is the destabilisation of carboxyl-stabilised latex particles
dispersed in water. Under alkaline conditions, the particles in this system carry charged groups.
Addition of the acid Glucono-8-lactone removes the charges, resulting in aggregation. Steric
destabilisation can be found in cheese making, where rennet is added to a dispersion of casein
micelles in an aqueous medium ("skim milk"). Here the enzyme removes the stabilising layer of -
casein.

For a lyophobic colloid consisting of homodisperse solid spherical particles, the structure that
minimises the free energy is a close packed cluster. On the other hand, in most systems particies are
actually brought together by Brownian diffusion, resulting in ramified clusters. Therefore the
development of the structure in time is determined by a competition between Brownian diffusion and
reorganisation of clusters to a more close packed structure. Both processes can have different time
scales depending on the system used.

In the aggregating systems mentioned above, the resulting structures are often far from close packed.
Figure 5.1 gives a micrograph of an aggregated system of teflon latex particles, showing a cloudy
network of cross-linked ramified clusters. Here, at a relatively low volume fraction (¢ = 0.05), a
percolated structure is formed that cannot reorganise easily to a close packed aggregate. If bonds
between particles become rigid due to ageing and sintering, recrganisation becomes impossible, and
no close packed clusters will be formed.
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Figure 5.1: Micrograph of a casein gel; 42 by 42 um.

An important question for many colleidal systems is which structures will be formed upon
destabilisation, and what dynamics lead to them.

Destabilisation of colloids has been modelled as phase separation!->, Using density functional theory,
the development in time of an initially uniform density pattern can be written in the form of a
diffusion equation. This diffusion equation is of no use when inhomogeneities on many length scales
are to be modelled over longer time scales; a mean-field theory is inadequate for describing
structures like in Figure 5.1.

Aggregation of hard-core particles to irregular structures has been studied extensively in computer
simulations®3 {more recently®?) and experiments®13 using fractal models to describe aggregated
structures. In many simulations clusters are regarded as rigid entities, which are treated as particles
with!3 a scaled diffusion and interaction behaviour. Following this scheme, aggregation by diffusion
has been studied, although cluster reorganisation has been taken into account by allowing reversible
aggregation'4, desorption of particles from clusters!® or by deformations of aggregates’. The
behavior of these systems under shear has received much attention in both theory!, simulation'? and
experiment!?, In this article we present the results of a Brownian Dynamics simulation of aggregating
Lennard-Jones particles, in which both cluster growth and cluster reorganisation occur
simultaneously, and all particles are considered explicitly. The resulting structures will be interpreted
using fractal models.
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5.2 Brownian Dynamics
5.2.1 The model

In the simulation we keep track of the co-ordinates of N particles in three dimensions. The Brownian
Dynamics method'? is based on the Langevin equation:

4
FreS=H’J'j?!’f=zIU(ﬁj)+Ri+Hj 1)
J

Equation (1) gives the resulting force on particle i with mass m, where I is the force modelling
interaction between particles, R the force modelling diffusion and H the force modelling
hydrodynamic interactions. Equation (1) is a coupled system of differential equations that can only
be solved numerically. The solution gives the particle trajectories.

We approximate hydrodynamic interactions by simple Stokesian friction (ie. hydrodynamic
interactions between particles are neglected):

H, =3nno % (2)

with 77 the viscosity of the continuous phase and o the diameter of the particles. Diffusion is
modelled by a stochastic force that mimics collisions between particles and solvent molecules.

Equation (1) is sclved numerically using a constant time step Af. We choose this time step to be
much larger than the relaxation time for one stochastic pulse, and neglect the inertia term, the second
otder term in (1). This reduces (1) to a first order differential equation:

d 1
G =Tms | 2l R 3
J
We solve (3) using the Buler forward method?:

ar,(r + 80 = g | Y 10+ R )
j
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To avoid inaccuracy, Ar must be chosen small enough to ensure that the interaction forces do not
change significantly during one integration step. Values for A¢ will be given in the next section.

The stochastic displacement, which is the effect of R, is tuned to obey Einstein's law for an isolated
particle:

AxMt+Aan=G, - JM (5)
Innc

G, is a Gaussian distributed random number with unity variance. The index g indicates that different
random numbers are drawn: three random numbers to calculate the stochastic displacement vector for
one particle; 3N random numbers for the whole system in one time step. This ensures that in the
absence of interactions, the displacement vectors over different particles and times are uncorrelated.
In the absence of interactions, the system will asymptotically obey Einstein's law.

As the average resultant force on a particle is always zero (neglect of inertia), the energy of the
particles must remain constant. This means that the energy required for the stochastic displacements
is completely dissipated by friction. As both the stochastic term and the friction term in the Langevin
equation describe interactions with solvent molecules, we can conclude that in the absence of
interactions, also the solvent temperature T remains constant,

In the presence of interactions, the system has not only thermal but also potential energy, with total
amount V_:

Sys "

V,,=2U,r) ©)

i®f

where U, is the potential energy for a particle pair as a function of their separation #,. In one interval

At, the system will decrease V| when possible by particle displacement. Again, the decrcase in V,
is converted solely to friction energy, which would normally result in a rise in solvent temperature. In
this simulation, however, we keep T constant, which amounts to thermostatting the sample. This is
very well imaginable, as the decrease in V., is typically a slow process.

£y$

In this model interactions are described using the Lennard-Jones potential:

12 A
U, ()= e (E] [3] g
Fy 5

in which ¢ is the attraction energy at the minimum of U, and & is the distance at which U;; changes
from attractive to repulsive. The minimum in Uy; lies at r, = 2" . The interaction force follows
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from the gradient of the interaction potential. Lennard-Jones particles are "soft", i.e. it is possible to
find a pair of particles at a separation smaller than 0. We use ¢ as the hydrodynamic diameter in the
free draining limit of (2). To increase computational speed, U is taken zero at distances higher than
25:0.

5.2.2 Parameters in Browntan Dynamics

In the simulation, all distances are normalised to ¢ and all energies to kT. Equation (5) can be
written in dimensionless form:

AT+ AN =G, § (8)

where the tilde signifies a dimensionless quantity and § is given by:

2kT - At ©)

§ 1
3nnoc

\E is the dimensionless r.m.s. particle displacement in the absence of interactions. The value of \/E
has been 0.003 in all simulation runs; this ensures that most displacements will be small relatively to
the particle size, and that interaction forces will not change too much during one integration step.

The consequences of this choice for varying particle diameters are shown in Table 5.1, for a system
of polystyrene particles (density 1000 kg/ m*) dispersed in water (viscosity 107 Pas) at 298K:

Table 5.1: absolute time scales in the simulation

o {nm) Ar(psec) AtfT,

10 0.00344 618.79
10* 3,44 6187.9
107 3440 61879

The third column contains the ratio of At and the relaxation time for one stochastic pulse:
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_ ht
inno

(10

T

Table 5.1 shows that for these systems inertia effects can indeed be neglected. The only parameters
left for varying are N, the number of particles in the system, £, the well depth in (7) normalised to
kT, and the volume fraction ¢.

5.3 Fractal properties

Fractal structures in colloids can arise by cluster-cluster aggregation (CCA), where particles
aggregate to clusters, which then aggregate similarly on a larger length scale. A system undergoing
CCA consists of clusters that are fractals, and can be characterised by a fractal dimensionality 4, and
a proportionality constant #:

n(r):ﬁ'(-i)” (1n
g

where n(r} is the number of particles in one cluster of radius r. The fractal dimensionality
characterises the factor by which n(r) increases upon an increase in cluster size. The smaller d,, the
more ramified clusters become as they grow. For a system of fractal aggregates, n{r) can also be
interpreted as the average number of particles within a test-sphere of radius r. When r is in the fractal
scaling region, equation (11) holds,

CCA has been studied extensively by computer simulation*~; the resulting clusters show universal
fractal behaviour with a d, of 1.75 at large aggregation probability (diffusion limited aggregation} or
2.0 at small aggregation probability (reaction limited aggregation).

To measure the fractal properties of our results, we study the integrated pair correlation function:

.
R (r) = 4np0j 12g()d1 (12)
0

n.(r) is the average number of particles within range r of another particle.
We measure d, by identifying a linear region in a double loganthmic plot of n_(r), and applying a

least-squares fit 1o this region. This is equivalent to studying the scaling of the pair corretation
function®, but tends to smooth ouwt oscillations in g(r). At large length scales r.(r) is only
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determined by the overall volume fraction: g(r) then equals 1 and d, becomes 3. We will call this
the homogeneous scaling region.

For colloidal aggregates, the fractal scaling region will also have a lower bound r,, typically of the
order of the particle size. We can include this lower bound in the description of n(r) by assuming
that on length scales equal to and larger than #), the aggregate structure is fractal; while below #; the
aggregate structure is closely packed. This simplification will serve as a first approximation in
determining values for #;. The first assumption can be written as:

.
n(ry _{rY"
() o

where a cluster of radius 5, contains ry particles. The second assumption can be written as:
" 3
ry =80, (3“*) (14)

in which ?.0 is the volume fraction of close packing. Substitution of {11} and (14) in {13} gives an
expression for 7i:

PR
7= 8¢y, (;"] (15)

from which we see that # is determined by both r and d4,. To clarify this, we give an example of
values for i and ry for three deterministic fractals in two dimensions. All fractals have d,=In5/In3,
only the backbone is different;

o%o oGS
| || oo
080

a b v

o

SEEE°

Figure 5.2: deterministic fractals
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In figure 5.2 only a smali part of the fractals is shown; the rest of the fractal repeats this part self-
similarly. Note that Figure 5.2a constitutes a fractal object, even if it does not form a connecled
cluster. By writing n(r) as a series, # can be easily obtained numerically. #, is calculated from 7
using (15), assuming @, to be 1. The results are given in table 5.2;

Table 5.2: backbone parameters for fractals of Figure 5.2

R Rlo
a 2.208 0.329
b 2.761= 2% |0.500
c 3.313 0.703

Here we see that our choice for @, gives for case b the value for %, we would expect intuitively: the
particie radius. Both 7 and #, quantitatively reflect the differences in backbone, regardless the size

of the fractal.
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5.4 Results and discussion
5.4.1 Fractal results

An example of an n (r)-plot for ¢ =0.13 and £=2 is given in Figure 5.3. The particle volume
fraction ¢ is calculated using 2'/°¢ as the hard sphere diameter.

1000 . - . R
100
= B
= I
10 |

L ]

r/c

Figure 5.3: no(r)-plot of an aggregating system of 1000 particles.
Dots: after 100,000 iterations; triangles: after 350,000 iterations.

In Figure 5.3 we see that the fractal scaling region is very small. For this system the homogenecous
scaling region already sets in at 4 to 5 particle diameters, which makes a least-squares fit to some
extent arbitrary and the scating results no more than semi-quantitative. The oscillations in n_(r) at
small r are caused by excluded volume effects. The fractal scaling region grows in time.

From Figure 5.3 it follows that the proportionality constant # increases with time. Equation (15)
shows that we can interpret an increasing # as an increase in size of the close packed building blocks
of fractal clusters, i.e. compactification.
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In evaluating # for our simulation, we have to correct for using the Lennard-Jones diameter ¢

instead of the distance of lowest [/,

iy

2% Hence we use for @, in (15) the volume fraction of f.c.c.
close packed particles, 0.76, divided by ~/2.

In Figure 5.4 and 5.5 we show the results for &, and #, for three volume fractions. In all cases the
number of particles in the sitnulation was 1000.
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Figure 5.4: fractal parameters for £=4
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Figure 5.5: fractal parameters for £=2

From Figures 5.4 and 5.5 it is clear that there is no universal fractal behaviour in the aggregated
systems studied here. Generally, d, decreases with time, indicating more string-like clusters. Also r,
increases with time, indicating compactification.
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The values of d, and #; depend on both velume fraction and well depth. Compared to Figure 5.4, d,
in Figure 5.5 starts at a higher value and decreases more slowly; «, in Figure 5.4 starts at a higher
value than in Figure 5.5 and increases faster.

5.4.2 Discussion: higher volume fractions

The simulated systems with @ higher than 0.09 form percolated clusters. An example of such a
cluster is given in figure 5.6a, where only the particles belonging to the cluster are shown.
Compactification in time causes percolating clusters to be transient. This is illustrated in Figure 5.6b,
where compactification has caused a branch in the largest cluster to break. The largest cluster still
percolates; after more iterations we find that percolating clusters break up into loose clusters. The
reorganisation we see in Figure 5.6 is in accordance with a decreasing 4, and an increasing #.

a b

Figure 5.6: Largest cluster for N = 1000; ¢=0.093; £=4.

To understand the mechanism by which percolation occurs we studied a larger system (N=10,000)
using the same parameters. After 25,000 iterations 80% of all the particles were already in one
cluster. This cluster is drawn in Figure 5.7a. It appears that the system is separated into connected
regions with high particle concentration (the cluster) and low particle concentration (voids). Figure
5.7a somewhat resembles the initial structure of phase-separating liquids', in which both phases form
percolated networks.
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a b
Figure 5.7: Largest cluster for N = 10,000; ¢=0.093; £=4.

In the simulation, the number of particles contained in this cluster decreases with time. After 200,000
iterations the largest cluster contains only 10% of all the particles. The resulting cluster, drawn in
Figure 5.7b, has become more compact at small length scale, but has retained its percolative
properties. From Figure 5.7a to Figure 5.7b the cluster has compactified significantly, leaving thin
branched strands between larger voids.

We find that a greater well depth merely seems to speed up the processes described above. At high ¢
a percolated cluster is formed faster, but reorganisation is also faster (though not necessarily in the
same proportion). At Yower £ the clusters look less closely packed. At € of order kT we observed no
percolation in these systems.

For the percolated systems we have calculated the pressure in the system?%. We found (PV/NkT) -1
typically to be of order ~107, implying a very small underpressure caused by the network pulling on
itself, To investigate directional effects we calculated the stress tensor: the stress contribution of the
non-diagonal terms was about 2% of the contribution of the diagonal terms, and positive. None of
these results indicate percolation being an artefact of the simulation.
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5.4.3 Lower volume fractions

For volume fraction 0.074 we both start and end up with loose, non-percolating clusters. At well
depth € =2 one cluster was found with a linear shape, as given in Figure 5.8.

Figure 5.8: Largest cluster for ¥ = 1000; ¢=0.074; £=2.

Closer inspection of the simulation data showed that this cluster was formed by aggregation of
several smaller clusters. The formation of this strand-like cluster differs from that described in the
previous section. Here the number of particles contained in the largest cluster increases with time.

Like in the previous section, a larger ¢ leads to more closely packed clusters. At £ = 4, we only find
small compact clusters with a variety of elongated shapes, which are probably the effect of rotational
diffusion.
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5.5 Conclusions

For aggregating Lennard-Jones systems we find percolating networks at volume fractions above
@=0.07. These networks appear to be formed by reorganisation of large aggregates, during which
branched strands are formed with voids in between. During this reorganisation, the number of
particles in the largest cluster decreases. Fractal analysis gives non-universal results, which is not
surprising as the mechanism of aggregation differs from CCA: both diffusion and reorganisation
determine the aggregaled structure. Still, scaling regions are found which may be of importance to
experimentalists.

At lower volume fractions aggregation of clusters has been observed, but no percolating networks
have been found. Apparently, the region in which percolating structures are formed as described is
bounded by a lower volume fraction; below this bound there is a competition between cluster growth
and cluster reorganisation, which the latter wins in most of the sitnulations. However, it is very likely
that there is a region in which cluster growth prevails, If we denote such a region by CCA, the region
of loose clusters by L and the percolated region by P we can sketch a diagram in parameter space,
which 1s done in Figure 5.9

CCA

¢
Figure 5.9: Regions in parameter space, all units arbitrary
The diagram drawn is not a phase diagram, as all structures are transient due to reorganisation. This
is indicated by arrows showing how the "coexistence lines” will advance in time. In the P-region, the

attractive interaction forces cause in time both formation and fracture of percolating clusters.

The Lennard-Jones potential strongly favours reorganisation, as it has a very broad interaction range.
More realistic {i.e. short-range) interaction potentials will drastically alter the diagram. Also, in real
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systems, roughness of particles and sintering can freeze in structures. However, the notion of
different mechanisms to obtain percolated structures (CCA and P) helps to understand the structures
that can be expected at different volume fractions and interaction potentials. A computer simulation
where particles are considered explicitly is necessary to sample other regions in the "phase diagram”
than the CCA-region. Our next aim is to use Brownian Dynamics to simulate systems with short-
range potentials, and to include effects of sintering.

Literature

1 1. W.Cahn, J. Chem. Phys. 42,93 (1965).

2 H Liwen, Phys. Rep. 337, 249 (1993).

3 W.LiandJ. C. Lee, Physica A 202, 165 (1993).

T. Vicsek, Fractal growth phenomena, second ed. (World Scientific, Singapore, 1992).

P. Meakin, in Phase transitions and critical phenomena, Vol. 12, edited by C. Domb and J. L.
Lebowitz (Academic Press, New York, 1987).

6 P. Meakin, J. Colloid Interface Sci. 134, 235 (1990).

7 H. F. van Garderen, W. H. Dokter, T. P. M. Beelen, R. A. van Santen, E. Pantos, M. A. J.
Michels, and P. A. J. Hilbers, J. Chem. Phys. 102, 480 (1995).

8 D. A. Weitz and M. Oliveira, Phys. Rev. Lett. 52, 1433 (1984).
9 G. Dietler, C. Aubert, and D. S. Cannell, Phys. Rev. Lett. 57,3117 (1986).
10 p.w. Rouw and C. G. de Kruif, Phys. Rev. A 39, 5399 (1989).

It LGB Bremer, B. H. Bijsterbosch, P. Walstra, and T. van Vliet, Adv. Coll. Interf Sci. 46, 117
(1993).

12 M. Carpinetti and M. Giglio, Adv. Coll. Interf. Sci. 46,73 (1993).

13 P.W. Zhu and D. H. Napper, Phys. Rev. E 50, 1360 (1994),



14

15

16

17

18

19

20

82

M. Kolb, J. Phys. A: Math. Gen. 19, L263 (1986).

W. Y. Shih, I. A. Aksay, and R. Kikuchi, Phys. Rev. A 36, 5015 (1987).

A. A_Potanin, J. Chem. Phys. 96,9191 (1992).

A H. L. West, J. R. Melrose, and R. C. Ball, Phys. Rev. E 49,4237 (1994).

R. de Rooij, D. van den Ende, M. H. G. Duits, and J. Mellema, Phys. Rev. E 49, 3039 (1994),
J. M. van der Veer, Ph.D. Thesis, University of Twente, The Netherlands, 1992,

M. P. Allen and D. J. Tildesley, Computer simulation of liguids (Oxford University Press,
Oxford, 1993)



83

6. Brownian Dynamics simulation of aggregation in interacting
systems: shorter ranged potentials

6.1 Introduction

In Chapter 2, we have developed a model describing particle gelation as a balance between phase
separation and fractal cluster growth. A gel or a gelling system is described by the fractal
dimensionality dy, a number that characterises fractal growth, and the length scale #y up to which
phase separation has succeeded. It is important to understand which characteristics of the aggregating
system influence the "balance parameters” d; and ry at a given time. In Chapter 3, Lennard-Jones
particles at high volume fraction were studied. It was found that smalf length scale compactification
in a percolated network caused an increasing #, and a decreasing d;. The rate by which the two
parameters change is determined by the L] potential well depth £.

This simple conclusion could be drawn because of the simplicity of the system. At high volume
fractions a percolated network is formed rapidly. The long range of the Lennard-Jones potential
favours percolation: when g is large enough all particles are already within interaction range
(attractive energy = &T) from the very beginning. Lennard-Jones particles can roll freely over each
other's surfaces, causing small length scale compactification of clusters. Therefore the dominating
process in these systems is small length scale compactification of a percolated network.

For other systems, other processes or a combination of processes may be relevant. In this chapter we
will simulate systems that in terms of potential range are more related to aggregating colloids than
the Lennard-Jones particles. For the latter the attraction range is approximately 2 particle diameters,
which is rather uncommon for colloidal particles. We now perform a simulation with a shorter ranged
potential, which is a step forward to more realistic, i.e. more complicated systems. We expect that a
smaller potential range will decrease the reorganisation rate, so the balance between fractal growth
and phase separation will be less dominated by the former. As a consequence, other processes than
the reorganisation of an already formed network are possible.

We will assess the fractal parameters d; and # as a function of volume fraction ¢ and potential well
depth £. The simulation method used is Brownian Dynamics; for background information on this
method and to the calculation of the fractal parameters we refer to Chapler 5 section 2. As a bridge
with equilibrium thermodynamics we will also investigate the role of the well depth £ using
perturbation theory.



6.2 Short range potential

In Brownian Dynamics, we displace a particle at random and calculate the interaction force
afterwards. To prevent instabilities in this algorithmn, it is favourable to use a continuous potential
like the Lennard-Jones potential. Moreover, the r.m.s. displacement A, which limits the simulation
speed, should be small enough to prevent the occurrence of very large forces. For the Lennard-Jones
potential, A is tuned to the steepest part of the potential, which is the core repulsive part.

A short-range attractive potential U will automatically lead to larger forces, and therefore the need
to decrease A; the latter is obviously unfavourable in terms of simulation speed.We have chosen to
maintain the Lennard-Jones potential up to its minimum (7 = 2' ), and to maintain the value for 4
used in the Lennard-Jones systems. In this way we prevent the occurrence of very large repulsive
forces. For larger distances, we use a different functionality to described short-ranged attraction. In
doing so, the combined potential must be continuous up to its first derivative to prevent
discontinuities in the interparticle force. The required potential must be - £ at r =2"*c and for larger
distances increase to O at some tunable range. This can be achieved using the following potential:

Ve (e . -
SEF- Cr(:] BRI R * T3 Pl : +Cy  €XP(—te ) 8))

with ¢ through ¢, dimensionless constants and s, a dimensionless distance. Although (1) is
reminiscent of the DLVO-potential, the purpose of the potential (1} is not to repreduce DLVO-
interactions between colloidal particles. The functionality is used merely because it allows us to
design a potential without risk of instabilities from core repulsion forces. Using the following values
for constants ¢ through c,4

_ | o 2048 _ 409
“=3537@7 2! 3 Tosg3 4~ 531441 PO 2)

the potential (1} is always 0 for r,

-1=3. To combine this potential with the Lennard-Jones potential,
we define r, as follows:

rrel=k'('§-l) (3)

The dimensionless parameter k in (3} now determines the range of the combined potential. Using the
values &k =13.605 and ¢g = 456.804, which were determined numerically, we obtain a potential with
a minimum of -£ at r =2"""¢. The combined potential and force are shown in Figure 6.1:
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Figure 6.1a: Interaction potential Figure 6.1b: Interaction force

The combined potential becomes ¢ at (r/o)y=(3/k)=122; for larger distances we simply set
U, =0. Some instabilities in attractive forces may arise, but, as can be seen in Figure 6.1b, the
repulsive part of the potential will lead to a gentle relaxation of these forces.

A potential with an even shorter range, which we shall call U, ., can be obtained by using a value of
100 for the range parameter k in (1). In order te obtain a continuous force, we must now shift the
Lennard-Jones part of the potential. We define the “shift distance” #y, as the distance at which U,
equals —&. Numerically, we find r; = 1.0165%c . The shifted Lennard-Jones potential then becomes:

LF X
Upglg) = Upp(5 + 1= -2+ Uy () @

The combined potential now becomes U}y, up to r, and U, at larger distances. U, becomes 0
at r=[.03g; for larger distances the combined potential is set 0. The result is given in Figure 6.2:
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Figure 6.2a: Interaction potential Figure 6.2b: Interaction force
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It should be noted that r,), does not represent the minimum of the combined potential, nor is the force
F(rn) equal to 0. The true minimum ligs at r=1.01666¢ with an interaction potential of
~-1.0013¢. As these differences are very slight we take the potential well depth to be €.

For all systems, the volume fractions ¢ are calculated by taking the position of the minimum in the
interaction potential as the hard-sphere diameter.
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6.3 Results and discussion
6.3.1 Short range potential

The development of the fractal parameters in time for all systems is given in Figures 6.3, 6.4 and 6.5.
A vertical dotted line indicates the moment at which percolation was first detected.
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Figure 6.3: Fractal parameters for ¢=0.074
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Figure 6.5: Fractal parameters for ¢=0.15

From Figure 6.3 we see that the fractal dimensionality first decreases and then slowly increases. The
value eventually reached here is close to the DLCA-limit, but the development in time shows that
this value is not uniform for the whole aggregation process. The first part, where d; decreases from 3
ta a significantly lower value, is difficult to interpret; in this stage the fractal dimensionality describes

a mixture of non-connected small clusters rather than a network. The low values reached near the

percolation point, however, suggest that the final network is formed by aggregation of very ramified
{ds£1.5) clusters.
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Another observation is that in most systems and especially {or large £, a plateau vatuce in both d; and
Iy appears to be reached. This is in contrast with the results for the Lennard-Jones particles in
Chapter 5. Generally, we can place the resulis in two categories. This can be done in two ways, either
by using the plateau value of d; and #, or by using their development in time.

For the plateau values we can distinguish between:

la. asmall d; (1.7) and a large #, (0.80) (¢=0.074; =2 kT for @=0.11);

Ib. alarge d; (2.1) and a small r, (0.60) (¢=0.15; £=10 kT for ¢=0.11);

For the development in time we can distinguish between:

Ila. d; increasing with time from the percolation point onwards (@=0.074; =0.11);
IIb. df decreasing with time from the percolation point onwards { ¢=0.15);

As the increase of d; for the two systems at ¢=0.11 is not very pronounced, we can merge the two
categories. This results in the following rough distinction:

a. asmall d; (1.7), a large x, (0.80) and an increasing d; (@=0.074; €=2 kT for @=0.11);
b. alarge dp (2.1), a small r; (0.66) and a decreasing d {9=0.15; £=10 kT for ¢=0.11),

These results can be explained in terms of aggregation pathways. An increase in dp can be explained
by interpenetration of clusters; a decrease in 4y, as in Chapter 5, can be explained by reorganisation
of a connected network. In the first case, cluster interpenctration leads to a net transport of particles
from the homogeneous region 1o the fractal scaling region. In the second case reorganisation
(reflected in an increasing ry} is obtained by transporting particles from the fractal scaling region to
smaller length scales. An increase in d; is possible when clusters are able to grow undisturbed by
reorganisation, and then interpenetrate. For ramified clusters, interpenetration can also continue after
percolation. It is not surprising that category a is found at lower ¢ (more roorn for cluster growth)
and lower & (more opportunity, yet a smaller driving force for reorganisation). At a large ¢ and large
g, percolatien is obtained quickly, leaving the system no other option than reorganisation of a
connected network, which amounts to category b.

The end values of dy and #y are not easily explained. Both the strong initial decrease in ¢ and the
strong initial increase in xy occur before percolation, making it impossible to make a connection with
the two described aggregation pathways. The large value of #, for category a can be explained by a
pre-aggregation stage (see Chapter 4): in the time available for cluster growth, there is alse some
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opportunity for reorganisation. The two pathways (interpenetration and reorganisation) can indeed
occur in the same system on different timescales, which illustrates that it is very difficult to attribute
a specific aggregation pathway to a value of d measured at a certain time.

6.3.2 Very short range potentials

En order to perform numerically stable simulations, the r.m.s. random displacement A had to be made
ten times smaller for the U, -systems. As these simulations require very much time to perform, only
two preliminary results are shown in Figure 6.6, both at £=10.
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Figure 6.6a: Fractal parameters; ¢=0.028 Figure 6.6b: Fractal parameters; ¢=0.083

In Figure 6.6, the number of iterations has been scaled yielding a time scale comparable to that of all
other systems in this chapter.

A low volume fraction, ¢=0.028, showed a decreasing d; accompanied by an increasing 7. At the
latest timne simnulated for this system, d¢=1.25 and percolation is not yet reached; this indicates loose
and probably rather linear clusters. The development of the fractal parameters in time suggests, as in
Chapter 5, that these clusters undergo reerganisation; apparently reorganisation still proceeds at a
noticeable rate even though the range of the attractive potential is very small. This is a consequence
of the particle smoothness: particles in the same cluster are always able to undergo lateral diffusion.
Reorganisation caused by lateral diffusion is much slower than reorganisation caused by long range
interactions (LJ systems) and is far more constrained than reversible aggregation (section 6.3.1,
g=2).
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Following the aggregation pathway of cross-linking of section 6.3.1, the linear clusters may still
aggregate to form a percolated network, but this may take much more simulated time.

A higher volume fraction, ¢=0.083, did resuit in percolation. Here the results can be placed into
category b of section 3.1, only with a smaller value for 7.

6.4 Effect of potential range on critical well depth

The theory of Song and Mason! provides an equation of state for a molecular fluid relating the
pressure (p) to the particle number density p ( = 6¢/mo} and the interaction potential U(r):

P +Bprap B B=E P ]
AT 1+B p+0:,0((4_15.‘0)3 1 (5)
in which the coefficients B, & and b are given by:
B=2x. jrl(l —exp[-U(r)/ kT))dr (6)
0
o=2r- j#(l —exp[-Uy(r)/ kT)dr {7a)
0
b=2r- Jr2(1 = [(+ Up(r) kT expl-Up(r)/ kT1]Jdr (7b)
0

where r, is the distance at which the potential U has its minimum (U{r,)=—-¢£} and Uy(r) is
defined as:

Ur)+e forr<rny,
0 forrzr,

Uo(r)={ (8

When the potential U(r) is sufficiently attractive, a Van der Waals loop can be identified in (5)
signifying a gas-liquid phase transition. For all three potentials used in this thesis (Lennard-Jones

potential U}y, short range potential L/ ., very short range potential U, ) the occurrence of a Van der
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Waals loop depends on the value of the potential well depth €. The critical well depth for this phase
separation £,, which is the minimal well depth to enable phase separation, can be calculated using:

dp

dp

_ O

i 0 ®

£,

Equation {9} can be solved numerically for all three potentials yielding £,. The results are compiled
in Table 6.1.

Table 6.1: critical well depths for different potentials

potential £

Uy 0.825
U, 2.262
Uy 6.497

Equation (5} only takes into account a gas-liquid phase transition. Even if ¢ is smaller than £, as
calculated from (9), a gas-solid phase transition will occur at large enough volume fractions. We
should therefore limit the discussion in this section to systems of volume fractions smaller than about
0.5. This still covers all systems studied in this thesis.

From Table 1 we see that when the potential range is decreased, £, shifts to larger values. This result
can be expected: for a narrow-ranged potential, aggregation is entropically less favourable, which can
only be compensated by a more favourable enthalpic (i.e. £-) effect. This effect is also found
experimentally for grafted silica particles in hexadecane?: here no phase separation is detected until
£z 4kT.

For the L] potential, €, is less than kT, which means that aggregation at a slightly larger £ can occur
by a reversible pathway. For very narrow ranged potentials like U, , however, g_ is significantly
larger than k7, which means that aggregation at a slightly larger £ will lead to the formation of
clusters with a significant lifetime. Especially for these systems, £ will have the ambivalent role, as
described earlier, of both promoting aggregation (i.e. the formation of more bonds) globally and
inhibiting it locally by irreversible cluster formation. In other words, when one wants to inhibit
reorganisation and promote cluster growth, one should use a colloid with strong, but very short

ranged attractive interactions.
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A number of sysiems in this chapter are indeed simulated using an ¢ smaller than £.. In these
systems aggregation, but also reorganisation is clearly visible. It should be noted that Equation (5)
can only be used to predict global stability or instability against phase separation. Local effects or
kinetics are not taken into account. Nevertheless, in the simulations the effect of potential range on
the observed aggregation pathways is considerable, as can be inferred from the differences between
fractal results from Chapter 5 and Chapter 6.

6.5 Conclusions

Brownian dynamics simulations of interacting particles with a shorter potential range (as compared
to the Lennard-Jones potential) enables a more complete study of aggregation pathways. The results
are by no means universal: a time-dependency of the fractal parameters was found with both
increasing and decreasing fractal dimensionalities. From these results two aggregation pathways are
suggested: cross-linking (increasing d¢) and local compactification of a connected network
(decreasing dy). For the LJ potential, the aggregation was dominated by the latter; by decreasing the
potential range this balance becomes more subtle. As the two pathways can occur in the same system
on different timescales, it is very difficult to atiribute a specific aggregation pathway (o a value of d;
measured at a certain time. Studying the development in time is a more reliable method.

Reorganisation of clusters occurs at a lower rate when the potential range is decreased. A large
potential well depth £ both promotes reorganisation and inhibits it because of irreversible clustering.

A thermodynarnical analysis shows that this effect will become more pronounced for shorter ranged
potentials.

Literature
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7. General conclusions and outlook

7.1 Picture of a particle gel

For a suspension of particles, there are (amongst others) two physical pathways known from the
literature that result in a connected network of particles. The first is given by the DLCA scheme and
related schemes, the second is that of a dynamically congealed suspension, or a colloidal glass. The
two pathways are extremes: DLCA can be regarded as the limit at small volume fractions (there
needs to be enough space for successive cluster-cluster aggregation), formation of a colloidal glass is
only relevant at very large volume fractions (a large volume fraction is needed for particles to
obstruct their own dynamics). Both mechanisms are affected by any reorganisation before and after
the formation of a network.

In this thesis we have studied gelation at volume fractions in between these two extremes where
neither of them gives a complete description. Moreover, we have looked at various rates of
reorganisation.

- Colloidal model systems with volume fractions between (.01 and 0.1 and with reorganisation
occurring in the early stage of aggregation (Chapter 4);

- Simulated model systems with volume fractions between 0.074 and 0.15 with reorganisation
occurring at all stages (Lennard-Jones particles in Chapter 5, short range attractive particles in
Chapter 6);

These systems all show some degree of fractal scaling like in DLCA-type models, but with different
and varying scaling exponents dy. When the clusters are studied more carefully at small length

scales, we see that they are often built of units larger than a single particle.

Simulated Lennard-Jones particles quenched rapidly at strong attractive interactions do not readily
phase separate, as is to be expected from the phase diagram; instead they form gels, possibly as a
transieni state. These "argon gels" exhibit fractal scaling, and look like frozen spinodal
decomposition patterns.

This thesis has resulted in a modified physical picture of colloidal gelation, which has enabled us to
understand complicated systems better. In this picture, colioidal gelation is the result of a
compelition between fractal cluster growth driven by Brownian motion and cluster compactification
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driven by atiractive interactions belween particles. For cluster compactification, we use the picture of
colloidal phase separation where a suspension with strong attractive interactions can lower its free
energy by forming zones of high volume fractions. The result has been applied directly in
experiments: we have measured both 4; and the length scale g, up to which zones of high volume

fraction are formed. We consider this an important step forward from only measuring scaling
exponents; as shown in Chapter 4, an identical d; does not necessarily mean an identical structure.

7.2 Confocal microscopy

We have used CSLM as a tool to study colloidal gels. Although processing of the structural data
proved to be difficult, the method provides a very useful tool: without extensive preparation of a
colloidal gel its 3D structure could be studied at room temperature. Imaging of complex structure
with a microscope has the advantage that both the overall structure and the local details are
accessible, and that pictures can be compared by eye. For comparison, information derived from
light or x-ray scattering is available in the Fourier domain, which requires a more elaborate
interpretation.

Confocal fluorescence microscopy requires a refractive index matched colloidal model system. In
this thesis a new and very promising system of PFA teflon latex particles in water is used that fulfils
this requirement. Further research on the synthesis of this model system, and on covalently binding
fluorochromes to the particles, may well enhance its potential as a model system for CSLM,

Confocal microscopy is especially useful for measuring the parameter 5. To correctly measure both
di and #y, it is essential that the effect of microscope resolution is treated properly. With the
deconvolution procedure described in Chapters 3 and 4, this thesis presents a good methad to do this.
A new and simple way to calculate the 31} Point Spread Function from laser excitation,
fluorochrome emission wavelength and lens aperture is presented in Chapter 3. The principle of
deconvolution was published as early as 1962; vet its use for 3D CSLM has only become possible
recently because of the large computing capacity required. Although the technique can be optimised
further, the deconvolution has been successfully achieved. For further research, Chapter 4 can serve
as a guideline for stepwise optimisation of the analysis path. As discussed in Chapter 4, the results
from the colloidal model systems do not yet give a clear picture of the dependence of the gel
structure on the physical parameters of the destabilised system; much more experimental work
would need to be done in this field. To identify aggregation mechanisms, it would be particularly
interesting if the structure could be studied as a function of time. Using a charge coupled device
(CCD) cameral, which is in essence an array of point detectors, 2 micrograph can be captured
instantaneously; this is much faster than capturing a micrograph through mechanical scanning.
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In this thesis, deconvolution comprises a reconstruction of one 2D micrograph from a 3D data set.
For the determination of d; and r, a 2D micrograph suffices assuming that the structure is isotropic;
the 3D data set is needed merely for the deconvolution. Using this method, a fractal characterisation,
may within a few years be possible on desktop computers instead of on powerful workstations. As
the capacity and computing power of workstations also grows, optimised and full 3D deconvolutions
or time-dependent measurements may also become possible within a few years. Because of the rapid
developments in computer science at this moment, further research in this line may be rewarding.

7.3 Computer simulations: pathways for aggregation

Brownian Dynamics simulation has been shown to be a useful tool for studying mechanisms in
aggregation. The method is most suitable for studying the relaxation of a quenched non-equilibrium
system, unlike for instance Monte Carlo simulations, which simply aim at obtaining equilibriam.
Molecular Dynamics simulations, normally used for simulating atomistic interactions, would be very
inefficient for a colloidal system at low volume fractions, as by far most of the time needed for the
calculation is spent on interactions between water molecules, not between particles.

Qur aim in simulating was to identify general pathways for aggregation and gelation from the
simulated configurations. This is possible, as all co-ordinates of particles are known exactly at any
time of the simulation.

Generally, upon varying volume fractions and interactions, we have found the following.

For all systems, the fractal parameters d; and 5, are time dependent The values of the fractal

parameters, their rate of change and the occurrence of a platform value depend on interaction
potential and volume fraction. We have found two “scenarios” in the aggregation process with an
opposite effect on dy:

I. Non-reorganising clusters cross-link to form a network, mass is transported from the
homogeneous regton to the scaling region; &; increases;

2. Clusters reorganise by compactification on small length scales, mass is transported from the
scaling region to the close packed region; dy decreases.

It should be noted that both scenarios can occur in the same system on different time scales.

If there is some flexibility in clusters, or if bonds between particles are in some way reversible, then
there will be pot just DLCA-like cluster growth driven by Brownian motion, but also a degree of
reorganisation. A combination of interaction strength and geometrical constraints will determine the
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degree of reorganisation and the timescales involved, which gives a non-trivial dependence on
volume fraction and interaction parameters.

A clear connection with the model systems could not be made; for these systems both d; and r,
were significantly larger than encountered in the simulations. As to df, the dependency on volume

fraction seen in te simulations was not found for the model systems. Time dependent effects were
not studied.

The simulation method neglects hydrodynamics and can handle only 10 10 104 particles. It seems
unlikely, however, that this will change the notion of reorganisation and interpenetration, and their
effects on the fractal parameters. To obtain a better connection with experimental values, we suggest
that the same simulation scheme be used using more complicated interaction potentials: time-
dependent potentials (modelling the hydrolysis of GDL) and potentials with a repulsive barrier. A
repulsive barrier will constderably slow down the aggregation process, allowing more time for
reorganisation, but simultaneously taking away the tendency of the system to phase separate {i.e. to
increase #,). Very possibly this is the "missing link" between the simulations and the colloidal model

systems,

7.4 Suggestions for further research

Relevant phenomena like reorganisation and rotational diffusion, both not contained in the DLCA-
scheme, complicate the simple picture of universal fractat scaling; therefore accepting DLCA as the
standard for colloidal aggregation is incorrect. This work contributes to explaining less trivial
experimental results, and there are many opportunities to continue this in further research projects.
The main suggestions for further research are given in sections 2, 3 and 4 of this chapter, and range
from optimising the synthesis of model colloids via optimising a CSLM analysis procedure to
performing more computer simulations.

An especially challenging area for further research is simulating the aggregation of attractive
particles with a potential energy barrier. Such a barrier is particularly refevant to charge stabilised
colloids. A modified DLCA scheme named RLCAZ has been used to describe aggregation in these
systems, with the same disadvantages as DLCA: neither rotational diffusion nor cluster
reorganisation is taken into account. We expect that a better knowledge of aggregation pathways for
attractive particles with a potential energy barrier, identified using Brownian Dynamics, will enable
a better link with experimental systems than achieved in this thesis. A Brownian Dynamics
simulation of these systems will not be simple, however, as a potential energy barrier slows down
the aggregation process considerably, so either more computing power or mare efficient algorithms
will be necessary.
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The aggregation and gelation of colloidal particles is an intriguing problem which is by no means
solved. To describe a particle gel, a non-equilibrium and almost irreversible aggregation has to be
combined in some way with the thermodynamic minimum free energy prediction of a phase
separated system. It is unclear how this combination should be made, as the latter may never, or at
least not within human time scale be reached. This type of research may be difficult, but it is also
very relevant, considering the wide application range of colloidal gels. Further investigators will be
rewarded with the opportunity to combine the disciplines of colloid chemistry, physics and
mathematics with technological aspects in one single project.
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Summary

This thesis contains the results of a PhD-study on the structure of particle gels. Part of it is directed at
a quantification of this structure from measured data, part of it at modelling the aggregation
processes that lead to particle gels. Chapter 1 of this thesis is a general introduction describing the
aim of this study.

Chapter 2 introduces aggregation and gelation of particles. As to the modelling of aggregation we
conclude that there are two types of approach: one based on thermodynamics and one based on
fractal aggregation (Diffusion Limited Cluster Aggregation or DLCA). The former is appropriate for
reversible aggregation, the latter for irreversible aggregation. For all types of colloidal aggregation
which are in between these two extremes, an understanding based on both approaches is needed. We
use fractal aggregation models as a starting point, but recognise the importance of cluster
reorganisation, which will cause gels with structures different than predicted in DLCA. As to
quantification of fractal structure, a lower cutoff length scale , is suggested as a valuable addition to
the fractal dimensionality dy.

Chapter 3 describes Confocal Scanning Laser Microscopy (CSLM) as a tool to study the structure of
various particle gels. An in-depth optical treatment of imaging in CSLM is presented, along with a
new way of image enhancement using calculated three dimensional point spread functions. It is
concluded that image enhancement is essential in order to get useful results from an analysis of
CSLM micrographs.

Chapter 4 shows the results on the fractal structure of particle gels derived from CSLM micrographs
of colloidal model systems. It explains thoroughly the details of the image analysis procedure and
identifies possible problems, most notably background intensities. From the results it appears that all
fractal dimensionalities are about equal, with values larger than the DLCA limit. The values of »,
show that there are significant differences between gel structures despite the similarities in dy. These
differences are difficult to connect with properties of the colloidal model systems. A hypothesis
ahout a "pre-aggregation stage" is formulated which might serve as a starting point for further
research,

In Chapters 5 and 6 Brownian Dynamics simulations are used as a tool for forming a better
connection between aggregation and gel structure. For aggregating Lennard-Jones systems (Chapter
5) we find percolating networks at high volume fractions; these appear to be formed by
reorganisation of large aggregates, during which branched strands are formed with voids in between.
The gel structure is influenced by both cluster growth and cluster reorganisation; fractal analysis
gives non-universal, i.e. time dependent results. For the Lennard-Jones potential, the aggregation is
dominated by cluster reorganisation, Aggregating particles with a shorter potential range (Chapter 6)
also show time dependent fractal results, but by decreasing the potential range the balance between
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cluster growth and cluster reorganisation becomes more subtle. Reorganisation of clusters occurs at a
lower rate when the potential range is decreased. A large potential well depth £ both promotes
reorganisation and inhibits it because of irreversible clustering. A thermodynamical analysis shows
that this effect will become more pronounced for shorter ranged potentials,

Chapter 7 generalises the conclusions of all previous chapters and gives suggestions for further
research. All results in this thesis have used available computing resources up to the maximum.
Given the ever growing computing power, significantly more sophisticated techniques for simulation
or image analysis will become available within years.

The work described in this thesis has led to the following publications:
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Samenvatting voor niet-vakgenoten

Gelen

Gelen zijn stoffen die voor 90% of meer uit een vloeistof, bijvoorbeeld water, bestaan, maar in hun
gedrag sterk van een vloeistof verschillen. Dit gedrag wordt duidelijk wanneer men een hoeveelheid
haargel op de hand deponeert. In tegenstelling tot water loopt het gel niet tussen de vingers door weg,
het is zelfs tot op zekere hoogte elastisch: als men de hand een klein beetje beweegt, trilt de
hoeveelheid haargel nog na. Uit hoeveel water haargel ook bestaat, dit "niet vloeien" en "elastisch
zijn" doet meer aan een vaste stof dan aan een vloeistof denken. Dat verandert als men het gel onder
iets grotere druk zet, bijvoorbeeld door de hand samen te knijpen: dan blijkt dat het niet meer
terugveert, maar dat het gel zwicht en weer gaat vloeien.

De verklaring van dit gedrag ligt verscholen in de kleine hoeveelheid niet-vioeibaar materiaal: die
vormt namelijk een doorverbonden netwerk binnenin de watermassa en daarmee de fundering van
het gel. Het gel staat of zwicht met dit netwerk: als het netwerk scheurt, dan zwicht het gel. Hoeveel
kracht ervoor nodig is om dat te bereiken hangt af van de stuktuur van het netwerk: de bouwstenen
waaruit het bestaat en op welke manier deze bouwstenen in de vloeistof zijn geplaatst.

Dit proefschrift gaat over de struktuur van gelen waarvan de fundering bestaat wit een netwerk van
kleine deeltjes. Een voorbeeld van kletne deeltjes is te vinden in melk: melk is een vloeistof waarin
onder andere eiwitrijke deeltjes van circa 50 nanometer ronddrijven. Bederf, maar ook het toevoegen
van stremsel in de kaasmakerij, leiden ertoe dat deze deeltjes aan elkaar gaan (en blijven) kleven, het
resultaat is een netwerk van deeltjes, een deeltjesgel, dat net als haargel in staat is om meer dan 90%
water overeind te houden.

Aggregatie

In het algemeen wordt het proces waarbij deeltjes (of molekulen) aan elkaar gaan kleven aggregatie
genoemd. Gelering is een bijzondere vorm van aggregatie met als eindresultaat een gel. Fysici en
kolloidchemici houden zich al enige tijd bezig met aggregatie en gelering van deeltjes. Het goed
begrijpen van dit proces is nuttig bij het maken van kaas maar ook bij het maken van zeolicten
(poreuze korrels die te vinden zijn in waspoeder), beton en chocolademelk. Hierbij helpt het als men
zich iets hij gelering kan voorstellen; een mogelijke voorsteiling van gelering wordt ook wel een
model voor gelering genoemd. Eén model voor gelering luidt als volgt: losse deeltjes in een vioeistof
bewegen, dit wordt ook wel Brownse beweging gencemd. De beweeglijke deeltjes kleven aaneen tot
clusters van deeltjes en de beweeglijke clusters kleven op dezelfde wijze aaneen tot grotere clusters,
Dit proces, schematisch weergegeven in de vorm van een “stripverhaal” op de volgende pagina, gaat
door tot alle deeltjes aan elkaar vast zitten. Het “stripverhaal” beschrijft 125 aggregerende deeltjes in
een vierkant gevuld met vioeistof. Het linkerplaatje geeft de beginsituatic van losse deeltjes; via twee
tussenstadia wordt uiteindelijk een grote cluster gevormd die alle zijden van het vierkant raakt, met
andere woorden: een doorverbonden netwerk.
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Het doorverbonden netwerk uit het laatste plaatje heeft een gelijkvormige of fractale struktuur. Dit
model wordt daarom het fractale model genoemd: het heeft als groot voordeel dat het een duidelijke
en kwantitatieve beschrijving geeft van zowel het aggregaticproces als de struktuur van
deeltjesgelen.

Aggregatie hoeft niet altijd tot een gel te leiden. De “bouw™ van een doorverbonden netwerk zoals
beschreven in het fractale model kan misgaan als de deeltjes z6 sterk kleven dat ze dikke klonten
vormen in plaats van vertakte clusters als in bovenstaande figuur. Om een netwerk bestaande wit dit
soort dikke klonten te voltooien is meer “bouwinateriaal” (lees: deeltjes) nodig; als dat niet
beschikbaar is komt het netwerk niet af, of wordt het instabiel. In het geval van melk kan deze vorm
van aggregatie leiden tot een ophoping van al het bouwmateriaal op de bodem van de beker melk.
Men zegt dan dat fasenscheiding heeft plaatsgevonden; de beide “fasen” vloeistof en deeltjes zijn
van elkaar gescheiden. Een groter contrast met een gel waarin beide elkaar overeind houden is
moeilijk denkbaar.

Aggregatie kan dus leiden tot twee volstrekt verschillende resultaten: een gel of een fasenscheiding.
Er bestaat een theorie op het gebied van aggregatie die ons voorrekent dat van deze twee
fasenscheiding vaak de meest gunstige toestand is. Dit impliceert dus dat een gel, hoe het zich ook
gevormd mag hebben, een djdelijke constructie is die viteindelijk wel in een fasenscheiding zal
vervallen, De theorie spreekt zich alleen niet uit over hoe lang het duurt voordat “uiteindelijk”
bereikt is. Het proces waarin een gel vervalt in fasenscheiding zal altijd een zekere tijd in beslag
nemen. Ter vergelijking: er is een algemeen gerespecteerde theorie die voorspelt dat glazen ruiten
uiteindelijk uit hun sponningen zullen druipen. De tijdsduur die hiermee gemoeid is loopt echter in
de honderden jaren; slechts een enkeling zal zich daar in de praktjk druk om maken. Voor gelen is
het belangrijk om te weten hoe, en hoe snel de effekten van fasenscheiding merkbaar beginnen te
worden. Het fractale model houdt geen rekening met fasenscheiding en dat zou een tekortkoming van
dit model kunnen zijn.

Dit proefschrift

Met welke voorstelling (gel met fractale struktuur, fasenscheiding of iets daar tussenin) een bepaald
systeem van geaggregeerde deeltjes het beste overeenkomt, hangt onder meer af van de
deeljesgrootte, de hoeveelheid deeltjes per volume vloeistof en de wisselwerking tussen deeltjes. Dit
proefschrift probeert hier een uitspraak over te doen. Eerder onderzock heeft geleid tot een goede



104

ontwikkeling van het fractale model toegepast op deeltjesgelen. Bijzonder aan dit proefschrift is dat
het fractale model wordt gebruikt zonder effekten van fasenscheiding te verwaarlozen. Het houdt
zich bezig met het meten van deze cffekten uit verschillen tussen door het fractale model voorspelde
gelstrukturen en gelstrukturen die in de praktijk gevonden worden. Bij het onderzoeken en
kwantitatief maken van gelstrukturen staan twee onderzocksmethoden centraal: confocale
mikroskopie en computersimulaties. Deze worden hieronder toegelicht.

Confocale Mikroskopie

Deze vorm van mikroskopie is in het bijzonder geschikt om de driedimensionale struktuur van
deeltjesgelen in kaart te brengen. Door een speciale stand van lenzen in het apparaat is het in staat
om nauwkeurig scherp te stellen op instelbare diepte in het gel. De afbeelding die dan zichibaar
wordt laat alleen de deeltjes zien die zich op de ingestelde diepte bevinden, het maakt dus een
dwarsdoorsnede van het gel zonder dat het gesneden hoeft te worden. Een stapel van foto's gemaakt
op verschillende dieptes vormt de driedimensionale struktuur, althans in principe. Er moet namelijk
wel rekening worden gehouden met het feit dat de deeltjes waaruit het gel bestaat, erg klein zijn,
vaak kleiner dan wat de mikroskoop zichtbaar kan maken. Dit heeft tot gevolg dat de deeltjes als
wazige vlekken op de foto verschijnen, en daardoor veel groter lijken dan ze in werkelijkheid zijn.
Op die manier lijkt een gel vaak uit dikkere klonten le bestaan dan in werkelijkheid het geval is. Om
de echte struktuur af te leiden vit de “wazige” struktuur moet een bewerking uitgevoerd worden die
te vergelijken is met het ontcijferen van een geheimschrift: met de juiste sleutel wordt de boodschap
ineens duidelijk. De “sleutel” is in dit geval de manier waarop de mikroskoop het beeld van een
deeltje wazig maakt. In dit proefschrift wordt deze “sleutel” uitgerekend; vervolgens worden met wat
wiskundige trucs de “wazige” foto’s aanmerkelijk opgescherpt, waama de gelstruktuur beter kan
worden bepaald. Voor het inlezen, corrigeren en interpreteren van de stapel foto's, ofwel de
beeldverwerking, is in dit promotieonderzoek nieuwe methodologie en programmatuur ontwikkeld.
Er waren erg krachtige computers voor nodig.

Computersimulaties

Computersimulaties, zoals gebruikt in dit onderzoek, maken het mogelijk om een bepaalde
wisselwerking tussen deeltjes in een computer te programmeren, en vervolgens te kijken of er wel
het verwachte uitkomt. Met name onverwachte vitkomsten dwingen dan tot herformulering van
veronderstelde ideeén. Een voorbeeld van een onverwachte uitkomst is de vorming van dikke
klonten, dat tot het idee van fasenscheiding heeft geleid.
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Modelsystemen

De metingen die in dit proefschrifi beschreven worden zijn niet gedaan aan haargel. Deeltjesgelen
zoals ze in het dagelijks leven worden gebruikt, zoals kaas, beton of chocolademelk, zijn om diverse
redenen niet geschikt voor onderzoek met confocale mikroskopie. In dit proefschrift zijn drie soorten
speciaal voor dit onderzoeck geschikte deeltjes gebruikt, ook wel modelsysiemen genoemd. De
gebruikte modelsystemen zijn: kleine oliedruppeltjes in water (een emulsie), teflon bolletjes in water
en kaaseiwit-bolletjes in water. De eerste twee modelsystemen zijn in dit promotieonderzoek
ontwikkeld. Goede modelsystemen voor onderzoek zoals beschreven in dit proefschrift zijn schaars,
daarom is deze ontwikkeling een nuttige bijdrage voor verder onderzoek.

Resultaten

In de computersimulaties is duidelijk te zien dat wisselwerking tussen de deeltjes zowel leidt tot
groei van clusters (zoals voorspeld in het fractale model), als tot vorming van dikke klonten
(fasenscheiding). Als er een gel is gevormd, stopt de groei van clusters - alles zit immers aan elkaar
vast - maar de vorming van dikke klonten gaat door. Uit de simulaties volgt een betere voorstelling,
zowel van de aard als van de snelheid van fasenscheiding in een gel. Dit heeft geleid tot een
aanpassing van het fractale model en een begrijpelijker samenhang tussen gelstruktuur en de
wisselwerking tussen deeltjes. Het blijkt dat fasenscheiding soms gelering kan voorkomen, dat aliijd
na gelering de structuur nog aanzienlijk verandert, en dat soms zelfs het gel weer kan “instorten”. Al
deze ingewikkelde verschijnselen waren al wel in experimenten gezien, maar de computersimulaties
laten zien dat er mogelijk een eenvoudige verklaring aan ten grondslag ligt.

Voor de deeltjesgelen die bestudeerd zijn met de confocale mikroskoop waren deze effekten ook
merkbaar en meetbaar, alleen was hier de samenhang tussen struktuur en wisselwerking
aanmerkelijk moeilijker te duiden, vooral omdat die wisselwerking niet goed bekend is. Een
vergelijking van de resultaten uit computersimulaties en mikroskopie geeft wel aanleiding tot
suggesties over welk soort wisselwerking tot de waargenomen structuren in de modelsystemen zou
kunnen leiden.

Voor confocale mikroskopie is de ontwikkeling van methodologie en programmatuur even belangrijk
geweest als de uitkomsten ervan. Wanneer onderzoekers verder werken aan deze methodologie en
kunnen beschikken over krachtiger computers voor beeldverwerking, zullen in dit proefschrift
onbeantwoord gebleven vragen kunnen worden beantwoord.

De toekomst
Dit werk heeft geleid tot een aantal nieuwe kanttekeningen bij fractale modellen. Overname hiervan
zal de toepasbaarheid van deze modellen uitbreiden tot meer ingewikkelde, dus meer interessante
gevallen van aggregatie. Er is nog veel nieuw onderzoek te doen aan deeltjesgelen; de rek is er nog
lang niet uit.



106
Levensloop

Martin Thomas Alexander Bos werd geboren op 11 maart 1967 te Utrecht. In 1985 behaalde hij het
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Nawoord

De tijd waarin dit proefschrift tot stand gekomen is, is voor mij een bijzondere geweest. Ik heb de
gelegenheid gekregen om een intensief leerproces te mogen doorlopen en daar heb ik meer van
opgestoken dan hetgene waarover in dit boekje wordt geschreven. Veel heb ik daarbij aan anderen te
danken, waarvoor ik hen in dit gedeelie mijn dank wil betuigen.

Mijn promotoren, Bert Bijsterbosch en Pieter Walstra, bedankt voor jullie intensieve begeleiding, die
me veel inspiratie en richting heeft gegeven. Jullie zorgvuldig schaafwerk aan de vele versies van dit
proefschrift heeft me uit vele linguistische en wetenschappelijke valkuilen gered. Bert, met plezier
denk ik terug aan onze discussies over de wiskundige achtergonden van dit proefschrift. Ook al
beweerde je telkens dat je hier geen expert in was, jouw kritische ondervragingen dwongen me wel
na te denken over de betekenis van al die formules. Dat heeft tot belangrijke doorbraken geleid, zoals
bijvoorbeeld de betekenis van de voorfactor in fractale schalingswetten. Allebei hebben jullie me de
vrijheid gegeven om me naast experimenten ook met simulaties en theorie bezig te houden. Het
kostte extra moeite om dat allemaal te combineren in één onderzoek, maar voor mij is het die moeite
dubbel en dwars waard geweest.

De maandelijkse bijeenkomsten van het “plenum” (Bert, Pieter, Joost van Opheusden, Ton van Vliet
en ik} waren altijd spannend en dynamisch. Er is wetenschappelijk enorm veel overhoop gehaald en
dat was een verrijkende ervaring. Ton, bedankt voor jouw bijdrage in deze discussies en voor je
correcties op artikelen en hoofdstukken.

Beste Joost, jouw toetreden tot het “plenum” heeft onizettend veel bijgedragen aan de kwaliteit van
dit onderzoek en ntet minder aan mijn eigen ontwikkeling. In jouw genuanceerde en heldere kijk op
dit onderzoek heb je barrieres tussen schijnbaar onverenigbare theorieén weggenomen, evenals
barridres tussen “experimentalisten”, “theoreten” en “simulanten”. Je bent mijn mentor geworden en
hebt me intensief en vooral opbouwend begeleid in het schrijven. Met veel plezier denk ik terug aan
discussies over clusters, stijgende multifractale spectra, het expanderende heelal en het opvoeden van
kinderen.

Op de vakgroep Fysische- en Kolloidchemie hebben slechts weinigen mij zien werken aan de
experimenten die toch wel degelijk in mijn proefschrift vermeld staan. Dat heeft de volgende
oorzaak. Toen ik ongeveer een jaar bezig was, werd duidelijk dat de confocale mikroskoop, waarvan
ik tot op dat moment gebruik had gemaakt, wegens reorganisatie naar Lelystad werd verplaatst.
Medewerkers van de vakgroep Plantencytologie en -Morfologie hebben mij uit deze moeilijke
situatie gered door mij hun mikroskoop te laten gebruiken. Alle mikroskoopfoto’s in dit proefschrifi
zijn daar genomen en ik heb er met veel plezier gewerkt. Ik zou met name Wim van Veenendaal,
Norbert de Ruijter, André van Lammeren en Jaques van Went hartelijk willen danken, alsmede
degenen die mij op 5 december 1995 in de mikroskoopkamer trakteerden op bisschopswijn en
pepernoten, precies waar ik op dat moment behoefte aan had.
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De grote groep mensen die samen de Vakgroep Fysische- en Kolloidchemie vormt ben ik veel dank
verschuldigd. Het was een voorrecht om aan deze vakgroep te mogen werken, ik heb vier jaar dicht
bij een wetenschappelijk, maar ook een sociaal vuur gezeten. Beste FysKo’ers, jullie hebben voor dit
boekje, maar ook voor mijzelf veel betekend. Op veel gebieden hebben jullie me ondersteund. Jullie
hebben me geholpen aan voor onderzoek onontbeerlijke dingen als koffie, drop, chemicalién,
glaswerk, computers, bier, papier, spuitflessen en pluche dieren. Met veel genoegen heb ik met jullie
gediscussieerd over het leven, de wetenschap en de zoutsterkte van de soep in de kantine. De sfeer
werd gekenmerkt door gezelligheid, humor en relativering; zowel promotieplechtigheden als
conferenties waren sociale evenementen. Mijn werkplek op FysKo, de experimentele zitkamer k021,
heb ik met veel plezier gedeeld met Ronald, Katinka en Jacomien. Beste kamergenoten, jullie
maakten het daar tot een bruisende sfeer waarvan ik heb genoten, en die veel tegenwicht bood aan de
introverte kanten van het onderzoek. Fysko’ers, bedankt voor jullie gezelschap!

De personen die het meeste tot dit proefschrift hebben bijgedragen zijn de mensen die ervoor
gezorgd hebben dat ik dat proefschrift schrijven kon. Hierom bedank ik mijn ouders, die me hebben
laten studeren en die me altijd gestimuleerd hebben om alles te onderzoeken en het goede te
behouden. Vrienden en familie hebben met me meepeleefd, wat een grote steun was. Jullie vormden
voor mij de wereld die tijdens het werken aan een proefschrift gewoon doordraaide. Zonder jullie
had ik veel van die wereld gemist en dan had ik de wetenschappelijke wereld ook niet aangekund.
Hanneke, mijn levensgezellin, jou wil ik bedanken voor het in alle facetten willen delen van mijn
promoveren. Samen hebben we over elke denkstap er elk voorval tijdens mijn promotie van
gedachten kunnen wisselen. Je hebt mijn enthousiasme aangewakkerd en me moed ingeblazen als ik
uitgeblust was. Het boekje is ook jouw boekje geworden, het einde van een lange klus en het
gelegenheid om te feesten!




