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Both from a structural and from a functional viewpoint, fuzzy systems 
can be regarded as a special type of feedforward neural networks. 

(Chapter 2, this thesis) 

Fortunetellers are one special type of fuzzy-rule-base model predictors. 
However, in contrast to control practice, when they feel well, most 
people don't need a predictor. 

Translation of foreign terms into Chinese is a kind of art, which shall try 
to keep both the meaning and the pronunciation as close as possible to 
the original ones. For example, 'fuzzy' can be translated as ';?lt$f', 
because ';£' means 'be short of' and 'Bflf', the 'clearness'. Hence, ';? Bftr' 
in Chinese gives you a clear impression that fuzzy is short of clearness. 
Another interesting example of the translation of 'Holland' in Chinese is 
'infBfi'. where '$f' means the lotus and 'JfJ' the orchid. Surely, '-ffiÜf 
presents you a beautiful imagination that Holland is a country full of 
flowers everywhere. 

- » -
The orthogonal least squares algorithm makes it possible to prune 
redundant fuzzy rules from the prototype rule base and to assess the 
remaining weight parameters of the neural-fuzzy model by one-pass 
estimation. (Chapter 3, this thesis) 

- Hi -
Computer related products that are MIT (Made In Taiwan) are as 
renowned as the Massachusetts Institute of Technology, due to the fact 
that R.O.C. (Republic Of China in Taiwan) also stands for Republic Of 
Computer in Taiwan. 
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A good model accuracy can be achieved by just tuning the consequent 
weights of the neural-fuzzy model. (Chapter 4, this thesis) 

- m -
It is easier to split off an atom than to break down the bias of people. 

(Albert Einstein) 

The severely fluctuating weather in Holland stimulates the 
development of advanced climate control technology for Dutch 
greenhouses. 

- & -
Defuzzification of a Mamdani type of fuzzy model offers a clue to link 
the Takagi-Sugeno fuzzy mode! and the Mamdani fuzzy model, and 
thus enables linguistic interpretation of crisp consequents of the 
Takagi-Sugeno fuzzy rules in the same manner as Mamdani fuzzy 
rules. (Chapter 5, this thesis) 

- KÏ -
Some officials are not really aware that 'it is nice to be important, but it 
is more important to be nice', so that they can easily destroy the good 
fame of all other nice and important officials. 
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ABSTRACT 

Tien, B. - T. (1997) Neural - Fuzzy Approach for System Identification. 
Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands 
Key words : neural-fuzzy model, modeling, system identification, agriculture 

In the real-world most processes have nonlinear and complex dynamics. Conventional 
modeling methods based on first principles are often cumbersome and time consuming, and 
approximations by linearized models are not always suitable. Thus, a nonlinear system 
identification procedure from observational data using artificial neural network and fuzzy 
models for black-box and gray-box modeling, respectively, can be an attractive alternative. In 
this thesis we consider the combination of both approaches to perform function approximation 
of unknown dynamic systems. 

An integrated neural-fuzzy model, named NUFZY, is developed in this thesis, which combines 
advantages of both neural network and fuzzy modeling, and compensates for their weaknesses. 
The NUFZY system is a special type of neural network, which is characterized by partial 
connection in its first and second layers. Through its network connections the NUFZY system 
carries out a particular type of fuzzy reasoning. The transparency of network structure and the 
self-explanatory representation of fuzzy rules can be obtained from the NUFZY system. 
Moreover, it is functionally equivalent to a zero' -order Takagi-Sugeno (T-S) fuzzy model, so 
that it can be seen as an universal function approximator to perform nonlinear mapping. Two 
existing learning methods are used to train the model parameters of the NUFZY system. One is 
the orthogonal least squares algorithms, which is used to find redundant fuzzy rules from the 
prototype rule base and to find the weight parameters of the NUFZY model by one-pass 
estimation. The other is the prediction error algorithms, which gives a fast adaptation of 
parameters of the NUFZY model. The developed NUFZY system is used to model several 
agricultural problems and results in sound performance, showing its capability for function 
approximation to deal with the real world modeling problems. 

In this thesis we also discuss the possibility of obtaining linguistic interpretations of the crisp 
consequent from T-S fuzzy rules. This is relevant because the NUFZY model is a special case 
of the zero' -order T-S fuzzy model. Promising results on the interpretability of the T-S fuzzy 
model have been attained. Besides, we investigate how to incorporate the a priori knowledge 
into the T-S fuzzy model in a systematic way. It has been shown that, when the qualitative a 
priori knowledge is taken into account in modeling, the resultant T-S fuzzy model becomes 
more robust in the extrapolation domain. This approach can be extended to neural-fuzzy 
modeling without difficulty. 
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GLOSSARY 

The following general symbols and notations are used throughout this thesis. Some may have 
different meanings locally, but they shall be clear from the text. 

VARIABLES FOR FUZZY SYSTEMS 

XJ the i' input variable 
Xj universe of discourse of Xj 
X joint universe of discourse of all Xj 
Arj fuzzy set for Xj in the antecedent of the r' fuzzy rule 
Ar

ki(Xi) the ki"1 fuzzy set of input xt in the antecedent of the r' fuzzy rule 
yn the n"1 output variable 
Yn universe of discourse of yn 

Y joint universe of discourse of all Yn 

Br
n fuzzy set for Yn in the consequent of the r' fuzzy rule 

y single output variable 
B"j(y) the j " 1 fuzzy set of output y in the consequent of the r' fuzzy rule 
Xj' the i' numerical/measured input variable 
Aj' fuzzy set with singleton membership function resulted by x/ 
A' joint fuzzy set of all premise fuzzy sets Aj' 
Br'(y) resultant consequent fuzzy set of y based on implication of all premise fuzzy 

relations of the r'* fuzzy rule 
B' resultant consequent fuzzy set based on aggregation of all Br'(y) 
fry r(Xj) the i' fuzzy relation of the fuzzy proposition 'xj is Ar

ki(Xj)' in the antecedent of 
the xth fuzzy rule 

./'j.rCy) the )'h fuzzy relation of the fuzzy proposition 'y is Bfj(y)' in the consequent of the 
x'h fuzzy rule 

frpr conjunctive/disjunctive fuzzy relation of the antecedent part of the r' fuzzy rule 
FRT implicated fuzzy relation of the x'h fuzzy rule 
FR aggregative fuzzy relation of all fuzzy rules 
arj the integrated area of the j ' fuzzy set of output y in the r' fuzzy rule 
a' resultant active area of all active fuzzy sets of B(y) 
mrj the integrated first moment of the j ' h fuzzy set of output y in the x'h fuzzy rule 
m' resultant active first moment of all active fuzzy sets of B(y) 

VII 



VIII Glossary 

INDICES AND CONSTANTS 

i denotes the i' input variable x^ i = 1,. . , ni 
ni the total number of input variables 
ki denotes the ki' membership function of x;; ki = 1,. . , N; 

Nj the total number of membership functions of input x; 

n denotes the n' output variable yn; n = 1,. . , nb 
nb the total number of output variables 
j denotes the j ' membership function of single output y; j = 1, . . , Nb 

Nb the total number of membership functions of output y 
r denotes the r' fuzzy rule; r = 1,. . , R 

R the total number of all fuzzy rules, is equal to n™ i N; 

m denotes the m' membership function of the set that stacks all input membership 
functions; m = 1, . . , M 

M the total number of all input membership functions, is equal to y N( 

t denotes the t' pattern of input x from the training set; t = 1, . . , np 
np the total number of training set of input x 
q denotes the q' pattern of input xs from the training set; q = 1, . . , ns 
ns the total number of training set of input xs 

k denotes the k' pattern of input xa from the training set; k = 1,. . , na 
na the total number of training set of input xa 

nv the total number of validation data set 

OPERA TORS AND ABBREVIA TIONS 

T fuzzy T-norm operation 
S fuzzy S-norm operation 
Sa fuzzy S-norm operation used for aggregation 
I fuzzy implication 
ICj fuzzy implication complies with classical implication 
I c c fuzzy implication complies with classical conjunction 
cog centroid of gravity method for defuzzification 
T-S Takagi-Sugeno type of fuzzy rule / model 
EM extended Mamdani type of fuzzy rule / model 

NOTATIONS 

Oki(Xj) the ki' membership node of the input x( 

Hki(Xj) theki' membership function of the input XJ; or denoted by an 

cki(Xi) the ki' center of the membership function uki(Xj) 



CTki(Xj) the ki ' bandwidth of the membership function nki(Xj) 

Glossary IX 

:h of the meml 
5Rr the r ' rule node 
v, the firing strength of the r' fuzzy rule 

^r the normal ized vr 

w m t h e n ' consequent weight of the output with respect to the r'h fuzzy rule 

yn the n ' prediction output o f the N U F Z Y system 

Ä r
(M) the r' fuzzy rule of the Mamdani type of fuzzy rule 

Ä r
(TS) t he r ' fuzzy rule o f the Takagi -Sugeno type of fuzzy rule 

^ ( E M ) the r' fuzzy rule of the extended Mamdan i type of fuzzy rule 
prj the j ' consequent significant level in the r'h fuzzy rule 
Ç the ratio of np to ns 
r\ the ratio of np to na 
CT Gcv the generalized cross-validation criterion 
y the update gain in the prediction error algorithm 
X the penalty weighting parameter accounts for penalty caused by non-smoothness 

of the T-S fuzzy model; or, a forgetting factor in the prediction error algorithm 
ß the penalty weighting parameter accounts for penalty caused by violating soft 

constraints 
a the penalty weighting parameter accounts for penalty caused by mismatch 

between the T-S fuzzy model and a default model; or, the stacked membership 
value of uki(Xi) 

VECTORS AND MA TRICES 
Vector is denoted by bold font with lower case letter, for example, 

c = [c, .. cm .. c M ] T ( = 0C) 

a = [ a , .. a m .. o M ] T ( = 9„) 

w„ = [ w l n . . w m .. W R J 1 

T T T T 

TO = [W! .. Wn .. Wnb ] ( = e j 
0 = [ race] 
v = [v, .. vr.. vR]T 

T 
Pr = [Prl •• Prj •• PrNbl 
x = [x, .. Xi.. xni]

T; or, = [x(l).. x(t) .. x(np)]T 

y = [yi •• y„ •• y„b]
T; or, = [y(l).. y(t).. y(nP)f 

xa = [xa(l) .. xa(k).. xa(na)]T 

ya = [ya(i) - ya(k).. ya(na)]T 

xs = [xs(l) .. xs(q).. xs(ns)]T 

ys = [ys(i)-ys(q)-ys(ns)]T 

T 
Z = [Zi .. Zj .. ZNb] 

P = [A. ß a ] T 



Glossary 

Matrix is denoted by bold font with upper case letter, for example, 

W 

¥ 

= [w, ;.. wn ; .. wnb](Rxnb) with wn = [w ln.. wm .. wRn]
T 

IR 

RM 

dy 

LÖÖ«J 
= 

v • 

0 • 

0 • 

0 • 

• 0 • 

• v • 

0 • 

• 0' 

• 0 

• 0 

• V 

(Mxnb) 

((nb-R)xnb) 

_dy_" 
aec 

It 
a J(Mxnb) 

= [^ro J ̂ c ; *P(i]((nbR+2M) * nb) 

RxR identity matrix (note, IRXi is a Rxl vector of elements of ones) 
RxM relationship matrix (note, denoted by Italic and bold font) 



1. GENERAL 

INTRODUCTION 

The Master said "Is it not pleasant to learn with a constant perseverance 
and application? Is it not delightful to have friends coming from distant 
quarters? Is he not a man of complete virtue, who feels no discomposure 
though men may take no note of him?". 

- Confucius (Kung Fu-Tze), The Lun Yu, Analects of Confucius 
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Chapter 1 General Introduction 

1.1 MOTIVATION • WHY NEURAL-FUZZY MODELING 

A model is used to represent the essential aspects of an existing system (or process) in a 
usable form, with which the underlying input-output relations can be approximated. Many 
modern control designs demand precise and reliable models of the controlled processes in 
order to achieve a good performance. Most real-world processes have nonlinear and complex 
dynamics. Hence, if the system is to be operated over a wide range of operating conditions, the 
common linearization approach is not appropriate. Conventional methods of constructing 
nonlinear models from first principles are time consuming and require a level of knowledge 
about the internal functioning of the system that is often not available. Consequently, in such 
cases a nonlinear system identification procedure from observational data is a more attractive 
alternative. In such a procedure, first parameterized models (i.e. model structures) have to be 
postulated, the best model can then be found by optimizing parameters with respect to certain 
criteria across a set of input-output observations. If the model structures to be investigated are 
purely chosen from a set of mathematically convenient structures (e.g., autoregressive moving 
average, ARMA model), without incorporation of knowledge about the internal functioning, 
this is called black-box modeling. A black-box model is a model with flexible model structure 
which can be used to approximate a large variety of different unknown systems [54] . More 
specifically, the goal of black-box modeling is to perform function approximation of the 
unknown dynamic system using a set of observation data. In case that some qualitative a 
priori information can be used in the above modeling procedure, it is sometimes called gray-
box modeling. Artificial neural network modeling and fuzzy modeling are typical examples of 
black-box and gray-box modeling, respectively. In the following, we will first analyze these 
two types of modeling. 

1.1.1 Neural network modeling 
Artificial neural networks (or 'neural networks' for short) have been attracting growing 
interest in the past decade and have been successful in various applications of nonlinear 
system identification and control problems, e.g., [7] [9] [10] [12] [48] [76] . Good surveys are 
given in [28] [29] . A thorough study of viewing neural network modeling as nonlinear 
system identification can be found in [52] . 

Neural networks perform nonlinear mapping from the space of independent variables to the 
space of dependent variables by parallel architectures, which comprise processing units that 
communicate the data flow through weighted connections. The appealing features of neural 
network modeling lies in its approximation ability and learning capabilities. Based on the 
Stone-Weierstrass theorem, it has been shown in [27] [82] that multilayer feedforward 
networks can approximate any continuous function to arbitrary accuracy, provided sufficient 
hidden units are available. In this sense, multilayer feedforward networks belong to a class of 
universal approximators. Besides, several algorithms of learning/tuning model parameters 
have been developed and can be readily applied to neural networks [1] [39] [52] . However, it 
is difficult to interpret the information representation from the internal configuration of neural 



1.1 Motivation - why neural-fuzzy modeling 

networks directly. Their homogeneous structure also impedes the use of any qualitative a 
priori knowledge. 

1.1.2 Fuzzy modeling 
In contrast to neural network modeling, fuzzy modeling is capable of processing available 
expert knowledge or experience which can be expressed in the form of a set of linguistic 'IF -
THEN fuzzy rules and graded membership functions. It is therefore user-friendly and 
provides comprehensive knowledge representation. In terms of approximation ability, it has 
also been shown in [6] [80] that fuzzy systems can be universal approximators, like neural 
networks. So, fuzzy systems can be used to pursuit a high precision of function 
approximation. Yet, another appealing characteristic of the fuzzy model which is different 
from the neural network model is often neglected, i.e., the ability to deal with imprecise 
information by means of fuzzy rules generated from accumulated experience of human beings. 
This means that the fuzzy model is equipped with advantages over the neural network model, 
both in the transparent representation of knowledge and the ability to deal with imprecise 
information. Fuzzy models have been considered useful when confronted with systems whose 
underlying dynamics are unknown or too complex for analysis by conventional mathematical 
methods, e.g., [58] [60] [61] [62] [66] [67]. 

Since conventional fuzzy reasoning is performed by a set of fixed fuzzy rules given by experts 
in order to carry out the function of static mapping, it is, however, usually difficult to modify 
the fuzzy rules. This indicates that the learning/tuning ability of conventional fuzzy systems is 
restricted, a characteristic opposite to the case of neural networks. Moreover, in the literature 
the handling of a priori knowledge of problems under study is ad hoc, and its use is unclear, 
so that it is often hard to set up prototype fuzzy rules for modeling. Alternatively, one can use 
a set of observation data to generate fuzzy rules, resulting in a data-driven fuzzy model [79] 
[81] . This approach creates the possibility of training fuzzy models, in the same spirit of 
training neural networks. It is worthy to note that, among the data-driven fuzzy models, the 
Takagi-Sugeno type of fuzzy model with crisp terms in its consequent is commonly adopted. 
Because of the crisp terms in the consequent, however, it is not easy to associate a full 
linguistic interpretation to the fuzzy rules from the Takagi-Sugeno fuzzy model. 

The above comparison indicates that, in addition to the functional equivalence between the 
fuzzy model and the neural network model, one may try to seek the similarities between their 
structures and hopefully, to make use of their advantages and to make up for their weaknesses. 
This brings to mind the idea of combining both paradigms to create an integrated neural-
fuzzy model. 

1.1.3 Neural-fuzzy modeling 
Although neural networks and fuzzy systems stem from different origins, they share the same 
property of parallel processing, and both can serve as universal approximators to perform 
nonlinear mapping. The recognition of the functional equivalence of both as universal 
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approximators has prompted a new research to inject new driving forces from the field of 
neural networks into the 'fuzzy' discipline, and vice versa. That is, one attempts to combine 
the transparent representation of the fuzzy system and the learning capability of the neural 
networks in a unified framework, thus giving rise to an integrated neural-fuzzy or fuzzy-
neural model, like [26] [31] [42]. 

What can one gain from the integrated model? The integrated neural-fuzzy model, as 
proposed by [21] , is expected to be able to carry out the so-called 'IQ2' reasoning (intelligent 
qualitative and quantitative reasoning). This means that the qualitative reasoning is based on 
fuzzy logic, and the adaptive numerics is quantitatively processed via neural networks. In 
other words, the integrated system can be seen as either an advanced state in the evolution of 
conventional fuzzy systems - being able to perform data-driven optimization - or as an 
extension of neural networks - realizing the integration of rule based knowledge [23]. 

This thesis is primarily motivated by the benefits to be gained when the integrated neural-
fuzzy model combines advantages of both paradigms and concurrently compensates for their 
weaknesses. We will, next, state further details of our objective and highlight some required 
properties of our integrated neural-fuzzy model, which are different from the existing ones. 

1.2 OBJECTIVES OF THIS THESIS 

One of the objectives of this thesis is first to construct an integrated neural-fuzzy model in 
order to perform function approximation of an unknown system via given input-output 
observations. In addition to obtaining a good accuracy of the modeling, the neural-fuzzy 
model shall fulfill the following requirements: 

• Efficient implementation - the developed modeling techniques from either theoretical or 
computational aspects shall be easily and readily applicable to the developed neural-fuzzy 
model. This suggests that the construction of the model and the tuning of its parameters 
must be kept simple. 

• Good generalization - the integrated neural-fuzzy model shall be able to deal with unseen 
inputs. By means of using correct fuzzy rules in the modeling, the resultant model will 
become robust and be capable of having good extrapolation to some distance. 

• Transparency and interpretability - the knowledge representation of the integrated model 
shall be transparent to help users to understand the underling characteristics of the 
unknown system. Fuzzy rules deduced from the internal structure of the neural-fuzzy 
model can be interpreted in a linguistic way such that they benefit the validation of the 
local behaviors of the model. 

• Ability to incorporate a priori knowledge - since there is much useful qualitative 
information concerning certain aspects of system behavior and operation, the neural-fuzzy 
model shall be able to utilize these different knowledge sources as much as possible. 



1.2 Objectives of this thesis 

It will be shown that the developed integrated neural-fuzzy model can, in fact, be deemed as a 
zero'*-order Takagi-Sugeno fuzzy model. Hence, issues of interpretability of its fuzzy rules 
and the incorporation of a priori knowledge are examined with the zero'*-order Takagi-
Sugeno fuzzy model. Therefore, the second objective of this thesis is devoted to investigate the 
feasibility of obtaining transparent interpretations of the Takagi-Sugeno fuzzy rules and to 
investigate how to incorporate a priori knowledge into the Takagi-Sugeno fuzzy model. 

13 THESIS OVERVIEW 

This thesis comprises published papers and internal reports, some of which have been 
rewritten for the sake of easy reading. They are arranged in sequential chapters to be in line 
with the above objectives. In this section, we outline the organization of this thesis and point 
out the contributions made in each chapter. 

Chapter 2 describes the fundamentals of neural networks and fuzzy logic. The contribution is 
the systematic establishment of an integrated neural-fuzzy system, named NUFZY. 
The NUFZY system is a simplified fuzzy system represented by the zen/'-order 
Takagi-Sugeno fuzzy model. It is a special type of neural network characterized by 
partial connections in its first and second layers. Through the network connections 
the NUFZY system performs a particular type of fuzzy reasoning. Yet, this does not 
restrict its ability of function approximation. 

Chapter 3 is devoted to the estimation of weight parameters of the NUFZY model in an off­
line fashion via a batch of observation data. Our contribution in this chapter is to 
use the orthogonal least squares algorithm to detect redundant fuzzy rules in the 
prototype fuzzy rule base, while, at the same time, finding the weight parameters of 
the NUFZY model by one-pass estimation. We also use several agricultural 
examples to illustrate the identification ability of the NUFZY model. 

Chapter 4 demonstrates the use of the prediction error algorithm to tune parameters of the 
NUFZY model in a recursive manner (which is useful for on-line applications). The 
contribution of this chapter is in obtaining the sensitivity derivatives of the NUFZY 
system so that they can be easily applied to the recursive prediction error algorithm 
to attain a fast adaptation of model parameters. Examples are presented to show 
that good model accuracy can be obtained by merely tuning the consequent weight 
parameters of the NUFZY model. 

Chapter 5 compares two types of fuzzy rules and their models. The result evokes the 
possibility to interpret fuzzy rules deduced from the zero'*-order Takagi-Sugeno (T-
S) fuzzy model in a linguistic way. In our analysis, it is found that a fuzzy model 
has a natural property of dual representations, i.e., the defuzzified output can be 
represented as a linear function either of system inputs (like the T-S fuzzy model), 
or, of system outputs (like the Mamdani fuzzy model). This applies to both the 
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Takagi-Sugeno fuzzy model and the Mamdani fuzzy model. This property 
implicitly allows the transfer of the above two types of models to each other, thus 
enabling a linguistic interpretation of the T-S fuzzy rule. We also introduce a new 
parameter, named consequent significance level, to the ordinary Mamdani fuzzy 
model. This results in an extended Mamdani fuzzy model, which has a more 
flexible modeling ability compared to the ordinary Mamdani fuzzy model. 

Chapter 6 illustrates an optimization approach to systematically incorporate the a priori 
knowledge into a Takagi-Sugeno fuzzy model. Our contribution lies in the 
application of the idea to formulate additional a priori knowledge as constraint 
terms imposed to the criterion function to be minimized. In particular, it is shown 
that if the knowledge about the system behavior outside the identification data 
range is expressed in the form of a qualitative Mamdani fuzzy model, then this 
model can be incorporated in the objective function of the parameter estimation 
problem as an additional penalty term. Thus, the estimation of the parameters of 
the T-S fuzzy model from the identification data is constrained by the involvement 
of a priori knowledge. As a consequence, the resultant fuzzy model becomes more 
robust in the extrapolation domain. 

Chapter 7 concludes this thesis and suggests future research prospects. 



2. CONSTRUCTION OF 

THE NEURAL-FUZZY 

SYSTEM-NUFZY 

There are three friendships which are advantageous, and three which are 
injurious. Friendship with the uplight; friendship with the sincere; and 
friendship with the man of much observation : - these are advantageous. 
Friendship with the man of specious airs; friendship with the 
insinuatingly soft; and friendship with the glib-tongued : - these are 
injurious. 

- Confucius (Kung Fu-Tze), The Lun Yu, Analects of Confucius 
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This chapter gives the basics of neural networks and fuzzy logic. Fuzzy reasoning can be cast 
into a feedforward network structure to perform the fuzzy inference procedure. The present 
study will regard the role of neuron units and node connections of the neural networks as 
joints and bonds which form the body of fuzzy reasoning. In other words, the neural network 
performs as a vehicle, in which fuzzy logic based reasoning is embedded, to achieve the goal 
of function approximation. First, a brief introduction of neural networks is given in section 
2.1, followed by a more detailed, but conceptual, review of fuzzy logic reasoning in section 
2.2. Based on the understanding of both neural networks and fuzzy logic, we will construct an 
integrated neural-fuzzy system, named NUFZY system, in section 2.3. Concluding remarks 
are addressed in section 2.4. Readers who are familiar with neural nets and fuzzy reasoning 
may proceed directly to section 2.3. 

2.1 BASICS OF NEURAL NETWORKS 

A typical neural network consists of a basic unit called 'neuron', which drives some finite 
inputs of connections represented by weighted values from the preceding layer of units and 
whose output is connected to the next layer of units. The i'* neuron of layer k is depicted in 
Figure 2.1. 

Layer k 

o ( k ) 

Figure 2.1: The fundamental unit of the neural networks - neuron. 

Where uWj represents the j ' * input, associated with the weight w0^, to the i'* neuron of layer k. 
Subscript j = 1,.., p, p is the total number of inputs of the preceding layer that connects to the 
neuron of this layer. Superscript (k) denotes the layer number and o00; denotes the i'* neuron 
output of layer k. The neuron of a feedforward neural network consists of a summator and a 
nonlinear activation function. The summator associated with p inputs of the preceding units is 
a function a() which serves to combine information from all nodes of the preceding layer. 
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This function then provides the net-input to the nonlinear activation function in this node, 
i.e., 

(k) (k> (k> (k> (k> (k> (k) w w 
net-input = a (u 1? « 2,.., M p ; w ,,w 2,.., w p) = ̂ ( i = U p ) " ^ ; (2.1) 

The nonlinear activation function denoted asfi-) maps the net-input onto a bounded interval. 
Several nonlinear activation functions have been proposed for a neuron in the literature [1] 
[76]. Typical nonlinear activation functions, for instance, are 

(1) threshold function (or, hard limitor) 

f(a) = \l ifa>° (2-2) 
JK [0 else 

(2) sigmoidal function 

f(a) = (l + exp(-a))1 (2.3) 

(3) radial basis function (RBF)* 
Some different choices of radial basis functions are possible [9] [11] [40], such as 

f(r) = r2 log(r) : thin-plate-spline function (2.4.a) 

f(r) = exp(-(r 2I a 2)/2) : Gaussian function (2.4.b) 

ƒ (r) = ( r2+o2)"2 : multiquadratic function (2.4.c) 

f(r) = ( r2+a2)'"2 : inverse multiquadratic function (IMQ) (2.4.d) 

where r = || x - c || is the Euclidean distance from a point x of the input to the center c of 
the RBF. The parameters c and a denote the center and width of RBF, respectively. 

Hence, the node output is then given by 

output = 0 (k)
i=/(a) (fxf(r)) 

It is noted that, among the above nonlinear activation functions, the Gaussian and inverse 
multiquadratic functions tend to zero outside the region where they are centered, and are 
therefore most suitable for the purpose of bounded output. In the present work, we will use 
these two radial basis functions as nonlinear activation functions to develop the network-like 
fuzzy logic system because they offer an additional advantage that they can represent the 
fuzzy membership functions in a fuzzy system. 

Neural networks that use radial basis functions are usually referred to as radial basis function 
networks. 
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22 BASICS OF FUZZY LOGIC 

Systems based on fuzzy logic [85] are characterized by a set of IF-THEN fuzzy rules, in which 
the system behaviors can be described and analyzed by linguistic variables [86] . Each fuzzy 
rule, either gathered from accumulated experience or identified from empirical data, 
represents the local input-output underlying relations of systems. Based on the consequence 
used in fuzzy rules, we can distinguish two types of fuzzy rules : Mamdani type of fuzzy rule 
and Takagi-Sugeno type of fuzzy rule. The Mamdani type of fuzzy rule was the first reported 
fuzzy application in control in the literature since 1975 [45] . The later development of the 
Mamdani type of fuzzy reasoning is based on the composition of fuzzy relations, which forms 
the foundation of fuzzy inference by Mamdani type of fuzzy rules. Hence, in what follows, we 
will start with an introduction of the important concepts used in the Mamdani type of fuzzy 
rule. Then the variant fuzzy rule, the Takagi-Sugeno type of fuzzy rule [62] , is discussed. The 
term Mamdani type used here does not refer to the original operators used by Mamdani and 
his co-workers, but refers to the fact that the fuzzy rules have fuzzy propositions as their 
consequence, and that the implication is represented by T-norm conjunction (stated later). 
Furthermore, in this section we do not attempt to give all details of fuzzy logic, but will focus 
on introducing some concepts that might help to understand the spirit of fuzzy logic and to 
construct the integrated neural-fuzzy system. Therefore, most definitions and terminologies 
used in this section are adapted from the excellent work of [30] . Of course, many other 
references of fuzzy logic can be found, for instance, in [22] [37] [38] [39] [41] [50] [51] [66] 
[67] [83] [89]. Besides, the extension of fuzzy logic to approximation reasoning can be found 
in [87] [88]. 

2.2.1 Mamdani type of fuzzy rule 
A fuzzy rule consists of two parts, the antecedent and the consequent, which correspond to IF 
and THEN statements in the fuzzy rule, respectively. Consider a multi-input-multi-output 
(MIMO) fuzzy system, which has ni input variables x,, i = 1,.., ni, and nb output variables y„ 
, n = 1,.., nb. A typical Mamdani type of fuzzy rule can be expressed as 

Ä(M) : IF xi is Ai AND .. Xj is A; AND .. xm is Ani 

THEN yi is B1 ( . . , yn is Bn , . . , ynb is Bnb 

where A; and Bn are fuzzy sets for the universe of discourses of input and output, X; and Yn, 
respectively. The subscript (M) denotes a Mamdani type of fuzzy rule and distinguishes it 
from the Takagi-Sugeno fuzzy rule to be discussed later. Based on fuzzy relation analysis, it 
was shown that the above MIMO fuzzy system can be decomposed into nb multi-input-single-
output (MISO) fuzzy systems, in which the fuzzy rule has only one output variable in its 
consequent [41]. Hence, the fuzzy rule of such a MISO fuzzy system can be simply expressed 
as 

Ä(M) : IF xi is A! AND .. x; is As AND .. xm is Ani THEN y is B 
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Without loss of generality, in this section we will only consider the MISO fuzzy system to 
describe the following properties of fuzzy logic. Using more detailed notations to denote the 
above fuzzy rule of a MISO fuzzy system, it can be rewritten as below. 

R\M) : IF x, is Ar
kl(Xl) AND .. Xi is A^x,) AND .. x„, is A'^Jx*) THEN y is Brj(y) (2.5) 

where RT denotes the r'* fuzzy rule of the rule base with a total number of R, and r = 1, .. , R. 
Superscript r corresponds to the r'h fuzzy rule. Each input variable x; has its own Nj fuzzy sets 
Ay with subscript ki = 1,.. , Ni( denoting the ki'* fuzzy set of input x; for i = 1, .. , ni. Output 
variable y has Nb fuzzy sets, Bj , with subscript j = 1, .. , Nb. Fuzzy sets A '̂s and Bj use input 
Xi and output y as their arguments, respectively. Further explanations of terminology used will 
be given in the following subsections. We start with 'fuzzy relation'. 

2.2.1.1 Fuzzy relation of a fuzzy rule 

In Eq.(2.5), the linguistic expression A (or B) is & fuzzy set which maps the input Xi (or output 
y) into a bounded interval [0,1] via a membership function u,A(xO (or u.s(y)), where the input 
X; can be either a fuzzy number or a crisp number. The term, x; is A

r
kl(x1), is a fuzzy 

proposition which defines a fuzzy relation ./r„r(xi), or simply frif, that associates the input Xi 
with the linguistic descriptor Ar

ki(xi). Similarly, y is Brj(y) also forms a fuzzy relation denoted 
as fr^ (y) or simply frw. 'AND' in the antecedent part of Eq.(2.5) plays the role of fuzzy 
conjunction of all fuzzy relations fr-v in the r"1 rule and then forms a conjunctive fuzzy 
relation, denoted as frpr, of the antecedent part of a fuzzy rule. The conjunction can be 
achieved by the triangular norm (T-norm) as defined by 

frpT =T(fru,fr2f,..,fri,,..,frùf) 

= fru A frit A •• A frur A •• A/ ' 'ni/ 

= T(/Jv);fori=l , . . ,ni (2.6) 

An alternative operation named the triangular conorm (T-conorm or S-norm) may be used for 
linguistic disjunction 'OR', 

frpx = S (fru ,fr2, ,..,fr„ ,..,fr^ ) 

= fru vfrif v .. vfri, v .. vfrnij 

= SO»v);fari = l , . . ,ni (2.7) 

The commonly used operation of T-norms and S-norms are illustrated in the table below. 
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Table 2.1: The commonly used T-norm and S-norm operators. 

Zadeh 
Bandler and Kohout 
Lukasiewicz and Giel 

T(p,q) 
min(p , q) 

PQ 
max(p + q - 1,0) 

S(p,q) 

max(p , q) 

P + q-pq 
min(p + q , 1) 

Arguments p and q in Table 2.1 can be either fuzzy numbers or crisp numbers. For example, 
when a set of numerical inputs is given, the corresponding numerical value of fuzzy relation 
can be obtained from either Eq.(2.6) or Eq.(2.7) accompanied by any of the operators listed in 
Table 2.1. Such a process is called fuzzification, as it maps a crisp point x' in X, the universe 
of discourse of input x, into a fuzzy set A(x') in X via a chosen membership function. Several 
choices of this mapping can be made. Among them, for a crisp input x', the most commonly 
used is singleton fuzzification, i.e., fuzzy set A(x') is characterized by its membership function 
for HA(X') = 1 when x' = x, and U-A(X') = 0 for all other x' e X but x'* x. Hence, such a fuzzy 
set A(x') is called singleton and it is represented by a crisp number (either 1 or 0) rather than 
by a fuzzy number. Other possible choices of mapping can result in a non-singleton fuzzy set, 
such as triangular or Gaussian shaped membership functions. 

2.2.1.2 Fuzzy implication of a fuzzy rule 

Fuzzy implication, denoted as I, is performed by fuzzy relations of the antecedent part of a 
fuzzy rule together with the fuzzy relation of the consequent part of a fuzzy rule, (i.e., all frjs 
and fry), and then generates an implicated fuzzy relation FR\ where superscript r represents 
the r fuzzy rule. Hence the fuzzy relation FR' of the r'* fuzzy rule, Eq.(2.5), can be 
constructed as follows 

FRr = I (frpr(x), fi-Js)) 

= I (TUMxi) ) . .My>> fori=l,..,ni (2.8) 

There are two types of fuzzy implications, One is the fuzzy implication complying with 
classical implication, i.e. 

type I: p ^q = la(p ,q) = -^P^ q (2.9) 

The other is the fuzzy implication complying with classical conjunction, i.e. 

typeïï: p -+q = lcc(p ,q)=P A <?. (2.10) 

Based on these two implications one can generalize the following five fuzzy implications: 

(1) S - norm implication: I (p , q) = S (c(p) ,q) (2.11) 
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where c(p) = 1- p means the complement of argument p; S represents a S - norm operation 
(refer to in Table 2.1). For example, Kleene - Dienes implication, \{p , q) = min(l- p , q). 

(2) Quantum Logic implication: I (p , q) = S (c(/>), T (p , q)) (2.12.a) 

where T is a T-norm operation. This implication is also called 'prepositional calculus'. When 
p is replaced by 1 - q and q is replaced by 1 - p, then an 'extended prepositional calculus' is 
obtained 

l(p,q) = S(T(c(p),c(q)),q) (2.12.b) 

(3) Residuated implication: l(p,q)-
1 ifp<q 
0 ifp = \Aq = Q (2.13.a) 
6 [0,1) otherwise 

This implication is also referred to as generalization of modus ponens (GMP), which is 
expressed as 

I(p,q) = supRe [0,1] | T(p,X)<q] (2.13.b) 

Similarly, if argument p is replaced by 1 - q and q is replaced by 1 - p, a generalization of 
modus tollens (GMT) is expressed as 

l(p,q) = 1-inf R e [0,1] | S(q,\)<p) (2.13.c) 

(4) T - norm implication: I (p , q) = T (p , q) (2.14) 

Where T stands for the T-norms operation (refer to in Table 2.1). For instance, Mamdani's 
minimal implication \{p , q) = min (p , q) and Larsen's product implication \{p , q) = pq. 

(5) classical intersection: l(p,q) =M {\e [0,l]\S(l - p,X)<p] (2.15) 

Based on the above definitions of implications, a fuzzy relation FR' obtained by Eq.(2.8) can 
be used for aggregation (stated next), or for the use of inference of a fuzzy rule, see subsection 
2.2.1.4. 

2.2.1.3 Aggregation of a set of fuzzy rules 

A fuzzy rule base consists of a set of different fuzzy rules, where each fuzzy rule connects to 
the others by means of a linguistic connective term 'ALSO' to form a complete fuzzy rule base. 
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Still, based on fuzzy implication, each fuzzy rule (in Eq.(2.5)) forms a fuzzy relation FR' 
(from Eq.(2.8)). Therefore, for a set of fuzzy rules with a total number of R, the resultant 
fuzzy relation FR can be aggregated by 

FR = 

U R 

FR' = S FR' if rule connective'ALSO 'is interpreted as disjunction 'OR ' 
r=l 

Ä R 

[ \FR' = T FR' if rule connective'ALSO 'is interpreted as conjunction 'AND ' 
' ' r=l 
r=l 

where S and T represent the S-norm and T-norm operations, respectively. 

2.2.1.4 Inference of a fuzzy rule 

Based on the above fuzzy relation analysis, and given a premise proposition to an existing 
fuzzy rule, one can infer a consequent output fuzzy set by applying Zadeh's compositional rule 
of inference to compose the fuzzy relation of the given premise proposition and the fuzzy rule 
implication. The composition of fuzzy relation is done with a T-norm operation. This can be 
explained with the following example. If only two inputs Xi and x2 and one output y are 
considered, the Mamdani's type of fuzzy rule is expressed as 

R\u) : IF xi is A'i(xi) AND x2 is A
r
2(x2) THEN y is Br(y) (2.17) 

where Eq.(2.17) forms a fuzzy relation FR' as defined by Eq.(2.8). Given a set of fuzzy input 
(A]', A2') and the 'AND' conjunction, all fuzzy rule implications are based on the T-norm 
operation. The resultant output fuzzy set Br' (with respect to the r'* fuzzy rule) can be inferred 
by composition of A' and FR' as below, where fuzzy set A' is a conjunction of Ai' and A2' and 
is denoted as Tc(Ai',A2'). 

Br' =A'oTiF/?r 

= Tc(A1',A2')oTiF/?r 

= TcCAi', A2') oT| Ti Tc(A
r! , Ar

2), B
r ) (2.18) 

= Tj ( TC(A,', A2'), U Tc(A
r,, Ar

2), B
r ) ) * 

= Tj ( hgt( Tj( TC(A!', A2'), Tc(A
r! , Ar

2)) ) , Br )+ 

Since T ( p , T (</,/•)) = T ( T (p , q), r) in the above expression, if we regard argument p as Tc(Ai', A2') 
and T( q , r) as Ti ( Tc( A

ri , A r i) , Br ), then the next expression can be derived accordingly. 
The term 'hgt' stands for the highest value of the argument. 
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where 'oT' denotes a T-norm composition operation, and Tc and Ti denote the T-norm 
conjunction and T-norm implication, respectively. When the min operator is used as the T-
norm operation, the inference fuzzy output of Eq.(2.18) can be expressed in terms of 
membership function by 

IV(y)=S"P{[HA- (*I)A(HA. (x2)]AHFR,(x1,x2,y)} 
x, ,x 2 ' 2 

= sup(^A.(x1)AU.A2(x2)]A[HA[(x1)A(M,A,(x2)A|xBr(y)]} 

={supt(HAi(x1)A(u.A2(x2)AHA,(x1)AU.A,(x2)]}AU.Bt(y) (2.19) 
x, ,x 2 

={sup[^. (x^A^^x^lASuptu^ (x2)AHAr(x2)]}AHB,(y) 
*i ' ' x 2

 2 2 

=hgt(Ai n A[)Ahgt(A2 n A2)A|aBl(y) 

This resultant inference output fuzzy set of the r'* fuzzy rule can be used to derive the final 
output of the fuzzy system based on all fuzzy rules; see next subsection and defuzzification 
procedure. 

2.2.1.5 Inference of a set of fuzzy rules 

There are two approaches to derive the resultant inference of a set of fuzzy rules. One is the 
local inference approach that first performs inference with individual rules and then 
aggregates the results afterwards. The other is referred to as the global inference approach 
where a fuzzy relation FR is first obtained by aggregating all the fuzzy relations FR', then the 
result is inferred from this resultant fuzzy relation FR. The difference in these two approaches 
lies in the implication method on which the fuzzy rule is based. For example, if the fuzzy rule 
applies the classical-conjunction-based implication IcC (see Eq.(2.10)), the disjunction 'OR' 
(see Eq.(2.16» is then used as the rule connective to aggregate all fuzzy rules. This will result 
in no difference between the global and the local inference approaches. Taking Eq.(2.17) as 
an example, the aggregated output fuzzy set B' can be expressed as follows 

B' = A' o FR (this is a global approach, since FR is used, rather than FR*) (2.20.a) 

= A' o {ur FRr} (FR is a disjunction of FR' based on Ice) 

= u r {A' o FR' } (this is a local approach, since FR' is used) (2.20.b) 

= u rB
r ' 

where FR' is implicated according to the classical-conjunction : 

FR' = Icc( Tc(A
r! , Ar

2), B
r ) = Tc(A

r! , Ar
2) A Br (2.20.c) 
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Hence, the above example using the T-norm as implication makes no difference between the 
result of global and local inference. 

In contrast, if the fuzzy rule applies the classical-implication-based implication l a (see 
Eq.(2.9)), then the conjunction 'AND' (see Eq.(2.16)) is used as the rule connective to 
aggregate all fuzzy rules. The result of the global inference will differ from that of the local 
inference. In this case, the output fuzzy set B' becomes 

B' =A'oFR (global approach) (2.21.a) 

= A' o {n r FR'} (FR is a conjunction of FR' based on IQ) 

ç n r {A' o FR1} (local approach) (2.21.b) 

where FRr is implicated according to the classical-implication : 

FRr = Ici( Tc(A
r!, Ar

2), B
r ) = ( 1 - Tc(A

r!, Ar
2) ) v Br (2.21.c) 

Eq.(2.21.b) indicates that the results of local inference are less restrictive (informative) than 
those obtained from the global inference. 

However, in cases where numerical input is used and the fuzzy input A' is replaced by a 
singleton value i', there is no difference between the two approaches. The following 
derivation explains this situation. 

B' =x'oFR (global approach) (2.22.a) 

= i'o{ntFR' } 

= n r ( T ' o « ? ) (local approach) (2.22.b) 

= nr{t ,oI(Tc(A
r
1,A

r
2),B

r)} 

= n r I ( hgt (f n Tc(A
r, , Ar

2)), B
1)} (2.22.c) 

2.2.1.6 Commonly used inference methods 

After introducing the fuzzy inference based on fuzzy relations of the Mamdani type of fuzzy 
rule, a summary is given in this subsection of some commonly used inference methods. The 
fuzzy inference based on fuzzy relations includes two main factors: construction of the fuzzy 
relation FR (model) based on implication of all fuzzy rules and, the use of the FR to actually 
infer the output from the inputs by composition. The construction of FR from all fuzzy rules is 
mainly achieved by linguistic conjunction (or disjunction) and implication, whilst the 
conjunction, in fact, refers to aggregation based on the choice of rule connective. Moreover, 
composition consists of two phases: a combination and a projection phase. These concepts are 
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explained by the following example, where we assume a new set of inputs x' (-[x\ .. x', . 
x'ni]T) is given and is described by a fuzzy set A'(x') (denoted as A' for short in the following). 

(1) Max-min method 

aggregation 

HB(y)= max min (vr(x), nB,(y)) 
implication 

r = l , . . , R (2.23.a) 

where 

projection combination 

vr(x)= min [ sup min (u,A.(Xj'), u.A,(xi))] 
i 

conjunction composition 

i = 1,.. ,ni (2.23 .b) 

vr(x) (or, vr for short), as defined in Eq.(2.23.b), is a firing strength or degree of fulfillment 
(DOF) with respect to the r'* fuzzy rule. The projection on Eq.(2.23.b) means the result of 
combination, min(u,A(Xj') , u,A

r(x,)), is projected onto bounded interval [0,1], and then it 
conjugates with results of other inputs (Xj). Finally, a firing strength, vr(x), with respect to the 
r'h fuzzy rule of all inputs x, is thus obtained. This method is used by Mamdani and his co­
workers, where the term Max-min comes from the fact that the implication uses the min 
operation and aggregation uses the max operation. It is also called sup-min method. 

(2) Max-prod method 

aggregation 

HB,(y)= max (vr(x) • |XB,(y)) 
implication 

r = l , . . , R (2.24.a) 

where 

vr(x) = 

conjunction composition 

min [ sup min (|xA.(Xi') ,|xAr(xi))] 
i 

or i = 1,.. , ni (2.24.b) 

n [ sup min ( u ^ x / ) , u. .,(x{))] 
composition 

conjunction 

vr, as defined in Eq.(2.24.b), is similar to the definition of vr defined in Eq.(2.23.b), but the 
conjunction operation could be chosen either as a min operation or as a product operation. 
The term Max-prod comes from the fact that the implication uses the product operation in 
Eq.(2.24.a) and aggregation uses the max operation. It is also called max-dot or sup-prod 
method. 
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(3) Sum-prod method 

aggregation 

H»(y)= £ K (x ) ^ ^ B r ( y ) ) r = l , . . , R (2.25.a) 
r implication 

where vr is defined in the same manner as Eq.(2.24.b) and the conjunction operation could be 
either min or product operation. The term Sum-prod comes from the fact that the implication 
uses the product operation and aggregation uses the summation operation based on all R fuzzy 
rules. It is noted that the summation of all product terms (V^B1) will likely result in a 
supernormal fuzzy set* on the output universe, that does not conform to the fuzzy set theory. 
Therefore, a bounded summation may be used to modify Eq.(2.25.a) in order to alleviate the 
supernormal situation, 

^.(y)=min(£(v r-u,B ,(y)),l) r = l , . . , R (2.25.b) 
r 

Some remarks of the above inference methods are made below. 

(R.1) If the input x' is fuzzified by a singleton membership function u.A(x'), the result 
of fuzzification becomes crisp, then the result of the combination of nA(x') and 
u,A

r(x) (see Eq.(2.23.b) and Eq.(2.24.b)) is crisp rather than fuzzy. By virtue of 
the sup-min operation, the result of composition remains as crisp as it is 
projected onto interval [0,1]. Therefore, for any crisp input x' (for instance, any 
crisp measurement signals), the result of composition can be simplified by just 
evaluating the membership value of u,A

r(x') directly (see Eq.(2.27.a), shown 
next). On the other hand, if x' is characterized by a non-singleton fuzzy set A', 
the resultant conjunction will still be crisp because the sup-min operation 
projects the fuzzy combination of fiA(x') and u,A

r(x) onto [0,1]. Hence, a crisp 
value is obtained as a result of composition. To put it briefly, irrespective of the 
use of crisp or fuzzy inputs, thanks to the sup-min composition, the resultant 
DOF, vr, is crisp. 

(R.2) One might wonder which of the various implication methods is a good one to be 
implemented. The author in [78] defines a number of intuitive criteria and 
shows that the min-implication and the producf-implication (both are T-norm 
implications) fulfill many of these criteria. From the computational point of 
view, among these two T-norm implications, it can be seen that the product-
implication is much easier to manipulate than the w/n-implication. 
Furthermore, in [46] simulation results show that the sum-product method 

A supernormal fuzzy set means that its maximum membership value is greater than 1; a normal fuzzy 
set, its maximum membership value reaches 1; a subnormal fuzzy set, less than 1. 
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together with centroid of gravity (COG) defuzzification (shown later), is more 
intuitive, simple in nature and performs better, in contrast to the max-min 
method together with COG defuzzification. 

(R.3) Two types of aggregation are mainly used to infer the result, viz. max-
aggregation and ram-aggregation. It should be noted that this aggregation 
procedure implicitly relates to the defuzzification procedure, as will be shown in 
the next subsection. Furthermore, the mox-aggregation causes a nonlinear result 
of HB'(Y) - which is not preferable - in contrast to a linear HB'(Y) which results 
from the ram-aggregation. As indicated in Eq.(2.25.b), a bounded summation 
can be used to avoid the occurrence of supernormal fuzzy sets. Nevertheless, it 
is interesting to note that, if the DOF had been normalized in advance, then an 
ordinary .sum-aggregation can be used without the supernormality problem. 

2.2.1.7 Defuzzification 

Defuzzification defuzzifies the inference output when a quantitative result of the fuzzy 
reasoning is required. It should be noted that the defuzzification method actually integrates 
aggregation and defuzzification into one operation implicitly. Several possible defuzzification 
methods can be employed, such as centroid of gravity, mean of maximum, indexed 
defuzzification and center of area. Details can be found in [30] and [41] . We will only 
introduce the centroid of gravity (COG) defuzzification as it is the most commonly used 
defuzzification method up to date. Once the individual inference output of each fuzzy rule is 
obtained, the defuzzified output can be obtained with the COG method after aggregation. The 
defuzzified output y(M), denoted as cog(B'), is obtained from the membership function Hß(y) 
as, 

y ( M )=œg(B-)=J^B ( y ) y d y (2.26.a) 
JYnB,(y)dy 

and the discrete version is 

N„ 

y(M) = cog(B' ) = ^ L (2-26-b) 

d=l 

where yd is the equi-distant quantization, in a total number Nd, used to discretize the 
membership function Hs(y) of the fuzzy output B' on the universe of discourse Y. 
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2.2.1.8 Practical fuzzy inference procedure 

This subsection summarizes the fuzzy inference procedure from a practical point of view. The 
term 'practical' is used because the input and output are quantitative values rather than fuzzy 
values in most control applications. Hence the results obtained from the local inference 
approach are similar to those of the global inference approach. Assuming a new input x' is 
given with elements Xj', and fuzzy rules according to Eq.(2.5), the inference procedure, which 
is based local inference, can be summarized in the following five steps : 

Step 1 : find the matching degree \ r (XJ') (or denoted as \ lf ) of each input with respect to each 
fuzzy rule 

JhgtfAi'.Aj) ingeneral 
Si r = \ , . x • , • (2.27.a) 

M-A.(Xj ) numerical input 

It can be seen that this step only performs a composition of A'(xi') and Ar(xj) (denoted as A'j 
and Arj, respectively, in above Eq.(2.27.a)) or, in fact, finds the membership value of input Xi'. 

Step 2 : perform conjunction of each input in the antecedent part of a fuzzy rule to get a firing 
strength vr(x'), denoted by vr for short, 

V r=M-A , (x1 ' )AU, , ( X 2 ' ) A - A H r ( x / ) A -AU, r (Xni ') 
" 1 " 2 rti rtm 

ni 

= Tu.Ar(Xi') (2.27.b) 
1=1 A ' 

m 

i=iS ,- r 

FT Ç; r T - norm is the product operation 
i=l 
min(^ir) T-norm is the min operation 
. i 

Step 3 : find the implication of each rule 

liB
r(y) = I(vr, M-Br(y)) r = 1,..,R (2.27.C) 

The implication operation I is defined by a choice from Eq.(2.11) to Eq.(2.15). 

Step 4 : aggregate all fuzzy rules 

MliB.. (y)=ljlcc (vr 'M̂ B' (y)) Implication based onclassical conjunction 

iMy)= A A (2.27.d) 
I |M-B..(y)=| Ua(vr'l^B'(y)) ImpUcation based onclassical implication 

Step 5 : defuzzification, when COG is employed 
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y(M) = cog(B' ) = £ - 5 (2-27-e> 
JY^B,(y)dy 

It can be seen that the processes in step 1 to 3 apply to each individual fuzzy rule. The 
defuzzification in step 5 implicitly includes the aggregation of step 4 and then defuzzifies the 
aggregated results from all fuzzy rules. 

2.2.2 Takagi-Sugeno type of fuzzy rule 
The previous subsections have considered the Mamdani type of fuzzy rule and analyzed the 
fuzzy reasoning based on the fuzzy relation. In this subsection, we will discuss the type of 
fuzzy rule which was first introduced by Takagi and Sugeno [56] [62] and further developed 
by Sugeno and his co-workers [61] . We will call it the Takagi-Sugeno fuzzy rule, or T-S 
fuzzy rule for short, which, in fact, is a variant of the ordinary Mamdani fuzzy rule. The 
consequent is expressed differently, where the output fuzzy set is replaced by a function, 
denoted as gn below. Hence, the 'generalized T-S fuzzy rule' can be written as 

Aprs) : IF xi is Ai AND .. x; is A; AND .. x„i is A„i 

THEN yi = gi(x),..,yn = gn(x),..,ynb = gnb(x) (2.28) 

In what follows, we will introduce two special cases of such a fuzzy rule, the so-called first-
order and zero'*-order T-S fuzzy rule [32] . The first-order T-S fuzzy rule of a MISO fuzzy 
system uses a linear function as its consequence and can be expressed by 

R : IF X! is Ar
kl(xO AND .. x, is A'̂ Xj) AND .. x^ is A'^xJ 

THEN y ^+ JTa ' x , (2-29) 
i=l 

where constants d0, d\, ..and d^ in the consequent linear function with respect to the r'A T-S 
fuzzy rule are unknown parameters to be identified. There are several successful control and 
modeling applications using this type of fuzzy rule, e.g., [57] [58] [59] [60] . At first glance, 
one can easily distinguish the difference between a T-S fuzzy rule and a Mamdani fuzzy rule. 
Both may share the same structure in the antecedent part, but differ in the consequent part. 
This common feature allows us to obtain the firing strength vr of a T-S fuzzy rule in the same 
way as for a Mamdani fuzzy rule. Besides, the resulting firing strength vr, Eq.(2.27.b), 
performs a T-norm conjunction of all input fuzzy sets A's which use all inputs x;'s as 
arguments to their input membership functions, U-A(X). Hence, the information content of 
input variables Xj's is already embedded in the firing strength vr. Consequently, input variables 
need not necessarily be involved (or, appear) again in the consequent linear function. Based 
on this consideration, another variant and more simple type of T-S fuzzy rule, the so-called 
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zero^-order T-S fuzzy rule, which has only one constant denoted by wr as its singleton 
membership function in the rule consequent, can be represented as below, 

Ä(TS): IF x, is Ar
kl(Xl) AND .. x,is A'̂ Xj) AND .. xniis A ' ^ x J THEN y = wr (2.30) 

Because the consequent is crisp, whether a linear function or a constant, we can easily employ 
the weighted sum as the defuzzification method to the T-S fuzzy rules in order to get the 
resultant output of the T-S fuzzy model. In the case of the linear consequent function as in 
Eq.(2.29), this will result in 

£vr(x)-(a;+|>:x.) 
y<TS)^-X) R 

Ivp(x) (2.31) 
P=I 

R ni 

= Xvr(x)K + X«,rxi) 
r=l i=1 

where the term, vr(x), represents the normalized firing strength, as defined by 

vr(x)= ^ ( X ) (2.32) 

In the case of a constant consequent as in Eq.(2.30), this gives 

R 

£v r(x)-W r R 

ycrs)W=-ElR = £v r(x)-w r (2.33) 
£v p ( x ) r=1 

P=I 

Eq.(2.33) has the attractive property that the output is linear-in-the-parameters. 

Moreover, it is also interesting to note that when the consequent functions, g(x)'s in Eq.(2.28), 
are continuous, the output of the generalized T-S fuzzy model obtained by weighted sum 
defuzzification can optimally represent a global model [33]. See Appendix A. 

In the development of an integrated neural-fuzzy model following next, we will prefer the 
zero'A-order T-S fuzzy rule, because of its simplicity. Also, several advantages can be gained 
using the zero^-order T-S fuzzy model. One is that the problem of over-parameterization is 
less likely to occur than the first-order T-S fuzzy model when the number of system inputs 
and the total number of fuzzy rules are large. Second, the output of a zero^-order T-S fuzzy 
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model is linear-in-the-parameters, allowing a very fast estimation of the unknown consequent 
parameters, wr's in Eq.(2.33). Third, the zero""-order T-S fuzzy model is functionally 
equivalent to a radial basis function network. This facilitates the construction of the neural-
fuzzy model and gives it the property of a universal function approximator. 

2.3 CONSTRUCTION OF THE NUFZY SYSTEM-

A fuzzy system consists of four basic elements: (1) fuzzifier, (2) fuzzy rule base, (3) fuzzy 
inference mechanism, and (4) defuzzifier. These elements can be represented in various forms; 
for example, see [41] . Options for executing these basic elements for fuzzy reasoning have 
been described in the previous sections. In this section, we will establish an integrated neural-
fuzzy system, called the NUFZY system, to carry out fuzzy reasoning and to achieve the goal 
of function approximation. In order to obtain functional equivalence between the fuzzy system 
and a neural network structure, the functions of each corresponding element of the fuzzy 
system are cast into network terms and are thus represented by neurons as well as weighted 
connections. Without loss of generality, we confine ourselves to the radial basis function as 
the membership function, the algebraic product as T-norm operation for the AND conjunction 
in the rule antecedent, and the centroid of gravity as the method of defuzzification. To 
construct a multi-input-multi-output NUFZY system with ni inputs xi( i = 1,.., ni, and nb 
outputs yn, n = 1,.., nb, the following assumptions are made: 

(A.l) Each input xs has Ni membership functions, each associated with its own 
linguistic label A*, with index ki = 1, .. , Ni? and i = 1,.., ni. The number of 
membership functions, and the shape and location of the membership functions 
for each input Xj can be determined a priori by the users. 

(A.2) The fuzzy rules take the form of a zero'*-order Takagi-Sugeno fuzzy rule by 
taking the consequent as a singleton value, denoted as wm (a constant term), 
rather than a linear function of system inputs. Hence, the fuzzy rule is expressed 
as 

Är
(TS) : IF xi is Ar

ki(x!) AND .. X; is A'̂ Xj) AND .. x^ is A^OO 

THEN yi = wri,.., yn = wm, , ynb = wrnb (2.34) 

where A'̂ Xj) represents the ki'* linguistic label of x; with respect to the r'* fuzzy 
rule R', and wra the consequent weight of output yn with respect to the r'* fuzzy 
rule. 

This section of construction of the NUFZY system is extracted from the paper of [72] , titled 'A neuro-
fuzzy approach to identify lettuce growth and greenhouse climate'. To appear in Artificial Intelligence 
Review - special issue of AI applications in Biology and Agriculture, 1997. 
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A schematic architecture of the hybrid NUFZY system given in Figure 2.2. It resembles a 
triple-layered feedforward neural network. Layer 1 and layer 2 of the NUFZY system conduct 
the antecedent part of the fuzzy system and layer 3 the consequent part. 

(Antecedent} (Consequent ) 

Figure 2.2: The structure of the neural-fuzzy, NUFZY, system. 
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2.3.1 Architecture of the antecedent part of NUFZY 
Layer 1 

This layer consists of the input node x; and membership node Oinfo) and fixed connection 
weights between input nodes and membership nodes. The input node only distributes the 
input into the membership nodes with fixed weights of unity, whereas the membership node, 
defined by a radial basis function, is used to obtain the fuzzified values (degree of 
membership), Hkifa). Two types of radial basis functions are considered, 

(1) Gaussian function: 

-c, , , )2 

(2.35) Hki(*i) = = exp(- 1 ( X i - C i , k i ) \ 
2 CTi,ki 

(2) inverse multiquadratic function (IMQ): 

Hki(*i) = 
J(M 

1 
1 1 

_ci,ki) +°i,ki 

(2.36) 

where c^ and a^ are the \d'h center and bandwidth of Oiäfa), respectively. The total number 
of membership nodes O^x;) in layer one, M, is given by 

M = X Ü i N i (2-37) 

Once all N;'s are decided for each xit the center and width of each membership function can be 
determined from the available data set. For instance, given np pairs of input data x(t)=[xi(t).. 
Xj(t) .. Xni(t)]T, t = 1,.., np, the centers of the membership functions can be taken as equally 
spaced in the range of each input x;, i.e. 

ciJd = min(Xi) + [max(x;) - min(Xi)] / [N; -1] for ki = 1,.., Ni (2.38) 

The width of the membership functions, oiiki, can be chosen as reasonable values in a range 
guided by the values of the variance or standard deviation of the available data set in order to 
ensure the suitable overlap of the membership functions, thus guaranteeing the continuity of 
the predicted output of the fuzzy system. The output of each neuron in this layer corresponds 
to a fuzzified value Hki(xi). 
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Layer 2 

This layer consists of the rule node %, which represents a fuzzy rule for r = 1, 2,.., R, where 
R is the total number of all fuzzy rules. When we use a full combination of all inputs in each 
rule node, the total number of all fuzzy rules is given by 

R= n-iiNi (2.39) 

Inputs to the rule node are the fuzzified values of u.ki(x,) from layer one. Each rule node 
performs a two-step operation as will be described later. According to Eq.(2.34), each rule 
node involves only one membership function for each input. Therefore, the existence of a 
connection between a rule node % and a membership node <&kj(Xj) is represented by a value of 
either 1 or 0, forming a relationship matrix RM with dimension RxM. Each row r of RM, 
represents the status of the antecedent part of a fuzzy rule, i.e., a value of 1 represents a link 
between the rth rule node and the corresponding membership node, whilst an element with 
value 0 indicates no connection. Hence, the relationship matrix indeed constructs a prototype 
fuzzy rule base with all possible combinations of input variables provided each Ni is assigned. 
The following example shows how the RM matrix is used to represent the connections 
between nodes on layers one and two. Suppose we had three inputs, x1? x2, x3, having 2, 3 and 
2 membership functions, respectively. The membership values, for input X! are u,i(*i) and 
u,2(xi); for input x2 are u,i(x2), |X2(x2), and u,3(x2); for input x3 are U-i(x3) and |J.2(x3). They are 
denoted by u,n, U-i2, u.2i, |i22, U-23, u.3i and u,32, respectively, for short in below. In this case, R = 
2 x 3 x 2 = 12 and M = 2 + 3 + 2 = 7. The relationship matrix is denoted as ÄM(23>2) with 
values as follows: 

r = 1 
r = 2 

r = 3 

r = 4 
r = 5 
r = 6 
r = 7 
r = 8 
r = 9 
r = 1 0 
r = 11 
r = 1 2 = R 

1 

L 

Hn 
l 
0 

1 

0 
1 
0 
1 
0 
1 
0 
1 
0 

M-12 

0 
1 

0 

1 
0 
1 
0 
1 
0 
1 
0 
1 

M-21 U-22 M-23 

1 
0 

0 

1 
0 
0 
1 
0 
0 
1 
0 
0 

0 
1 

0 

0 
1 
0 
0 
1 
0 
0 
1 
0 

0 
0 

1 

0 
0 
1 
0 
0 
1 
0 
0 
1 

M-31 u . 3 2 

1 0 1 
1 0 1 
1 0 1 
1 0 1 
1 0 1 
1 0 1 
0 1 1 
0 1 1 
0 1 1 
0 1 i 

0 1 1 
0 1 J 

From the above example, it can be seen that the third fuzzy rule (r = 3) is composed by Un, 
u,23, and (i3], respectively from the first, third, and first membership node of input Xi, x2, and 
x3. Obviously, when the number of input variables increases, this prototype fuzzy rule base 
will become considerably large. Therefore, methods to reduce the dimension of the model 
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structure (number of fuzzy rules in this case) must be taken into account. In the next chapter 
we will consider how to remove redundant fuzzy rules. 

Now let's come back to the two-step operation of the rule node to generate the node output in 
this layer. First, the algebraic product T-norm operation is used to realize the linguistic 'AND' 
conjunction of the antecedent part of Eq.(2.34). Consequently, the transient firing strength of 
each rule vr(x), or vr for short, is obtained as a function of input x; via HÜ(XJ) together with the 
RM matrix by 

vr = n™! M(r,fli:60 H,(x) (2.40) 

where RM(r, ai.bï) represents a subset of the r'* row vector of the RM matrix with partial 
elements from at to b\, with bx = ENP, p = 1,.., i, and a, = b\- N, +1. Vector \ii(\) is given by 
(Ai(x) = tHi(x;) u.2(Xi) .. ^(Xi) .. u,Nj(Xj)]T. Eq.(2.40) specifies that vr is obtained by just 
multiplying the membership functions involved in the r'h fuzzy rule, according to the 
connections shown in Figure 2.2. Second, to normalize vr the normalized firing strength vr is 
calculated by 

v, = • (2.41) 
SP=,VP 

This normalized firing strength vr represents the output of the rule node in this layer. 

2.3.2 Architecture of the consequent part of NUFZY 

Layer 3 

The output node, denoted as yn, stands for the n"1 output of the NUFZY system output. The 
link in this layer represents a weight parameter denoted as wm, for r = 1,.. , R, and n = 1, .. , 
nb, that connects node yn and 9tr. These weighs, wm's, actually represent the constant 
parameters in the consequent part of the r** fuzzy rule given in Eq.(2.34). With the centroid of 
gravity defuzzification method, this node then performs a weighted summation such that the 
n'* model output is given by 

R 

X v ' x w ™ R 
Yn= J =4 = £ w m v r = w][v forn=l , . . ,nb (2.42) 

> P r = 1 

P=I 
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where w„ is the consequent weight parameter vector given by w„ = [wi„ .. wra .. WRJT and v 
is a normalized firing strength vector given by v= [ v, .. vr .. vR]T with element vr defined 
by Eq.(2.41). It is interesting to note that the model output is linear in the weight parameters; 
this means that the unknown weight parameters can be identified by some standard least 
squares parameter estimation method, for example, the orthogonal least squares (OLS) 
method. Note further that this linear property in the NUFZY system will be still retained for 
other choices of T-norm operators for the AND connection in the fuzzy rules as well as for 
other choices of the membership functions. Moreover, the normalized firing strength vr can 
be viewed as a fuzzy basis function [80] , so that the NUFZY output forms a fuzzy basis 
function expansion. Hence, the NUFZY system has the property of a universal function 
approximator. 

2.4 CONCLUDING REMARKS 

Several aspects of fuzzy systems have been addressed in this chapter. A fuzzy system can be 
cast in a network structure to perform input-output mapping, just like artificial neural 
networks. We distinguish the Mamdani type fuzzy rule and the Takagi-Sugeno type fuzzy 
rule. The former is intuitively comprehensible due to the use of linguistic terms in both 
antecedent and consequent of the rule, but its fuzzy reasoning process is more complicated 
because it is based on fuzzy relations as well as the composition of fuzzy relations. In contrast, 
the latter, using linear functions of system inputs as consequence, paves the way for easier 
fuzzy reasoning. However, although the linear function in the consequence can explain the 
local linear relationship of system input and output, it is less interprétable compared to the 
Mamdani fuzzy rule. Based on the zero'*-order T-S fuzzy rules, we can establish an integrated 
neural-fuzzy system, the NUFZY system, which has a transparent network structure and gives 
a self-explanatory representation of the fuzzy rules. Since there is only one weight parameter 
in the consequent of each fuzzy rule and due to the use of weighted sum defuzzification, 
outputs of the NUFZY system are linear-in-the-parameter. Hence, very fast estimation of these 
consequent weight parameters can be accomplished by least squares estimation. This implies a 
fast learning method for training the integrated neural-fuzzy network. In the next chapter, we 
will illustrate how to apply the NUFZY system for modeling of nonlinear systems. 



3. BATCH 

LEARNING OF THE 

NUFZY SYSTEM 

I daily examine myself on three points:-whether, in transacting business 
for others, I may have been not faithful;-whether, in intercourse with 
friends, I may have been not sincere;-whether I may have not mastered 
and practiced the instructions of my teacher. 

- Tsang, The Lun Yu, Analects of Confucius 

29 



30 Chapter 3 Batch learning of the NUFZY system 

3.1 INTRODUCTION' 

It has been shown that the established neural-network-like fuzzy inference system, NUFZY, 
can implement fuzzy reasoning through a special type of network with partial connections in 
the antecedent part of its structure. The fact that the connection is only partial does in no way 
impair the function approximation ability of the system. Moreover, the structural network 
property of the NUFZY system allows us to train it in a similar way as neural networks. On 
the other hand, due to the fuzzy inference, the network structure of the NUFZY system can be 
interpreted in a linguistic way and becomes more transparent, in contrast to ordinary neural 
networks. In this chapter we will consider the training of the NUFZY system. We assume the 
antecedent structure of the NUFZY system could be determined a priori by the users. In that 
case the unknown weight parameters in the consequent of the NUFZY system form a linear-
in-the-parameter problem. As such, given a batch of training data, the consequent weights can 
be identified with a very fast least squares method. This identification problem is usually 
called batch learning or off-line learning since the parameter identification is carried out off­
line. 

The performance of NUFZY for function approximation can be improved by increasing the 
number of fuzzy rules. In terms of linear regression the number of fuzzy rules is equivalent to 
the number of regressors. Likewise, there exists a problem of redundant fuzzy rules which 
should be taken care of in the NUFZY modeling. The orthogonal least squares method can 
detect redundant fuzzy rules and remove them from the NUFZY model. It also identifies the 
remaining consequent weight parameters of the reduced fuzzy rule based NUFZY model. 

We will first outline the principle of orthogonal least squares method in section 3.2, on which 
the batch learning of the NUFZY model is based. Section 3.3 explains the removal of 
redundant fuzzy rules, hence establishing the NUFZY model with a reduced fuzzy rule base. 
Two nonlinear static examples are given in section 3.4 to illustrate the identification 
performance of the NUFZY model with the orthogonal least squares method. Special attention 
is given to applications to agricultural problems in section 3.5, in which we will deal with two 
nonlinear dynamic problems, identification of lettuce growth and greenhouse temperature in 
the greenhouse production system. Finally, a discussion is given in section 3.6 and section 3.7 
concludes this chapter. 

t This chapter is adopted from two published papers [69] , titled Neural-Fuzzy systems for non-linear 
system identification - orthogonal least squares training algorithms and fuzzy rule reduction' in 
Preprints of the 2nd IFAC/IFIP/EurAgEng Workshop on AI in Agriculture .Wageningen, The 
Netherlands, May 29-31, 1995, pp 249-254, and [72] , titled 'A neuro-fuzzy approach to identify 
lettuce growth and greenhouse climate' accepted for publication in Artificial Intelligence Review -
special issue of AI applications in Biology and Agriculture, to appear in 1997. 
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3.2 ORTHOGONAL LEAST SQUARES LEARNING 

The least squares identification method is an effective optimization tool that yields a unique 
solution for the values of the parameters in a linear regression model. Because it is necessary 
to offer a set of training data to estimate the parameters, the procedure is sometimes referred 
to as batch learning or off-line training. 

Using the same notations used in the previous chapter, given a set of training data with np 
events, the nixnb multi-input-multi-output NUFZY model can be expressed as a linear 
regression model in a matrix form as follows 

Y = V W + E (3.1) 

where Y is the npxnb desired output, V is the npxR normalized firing strength matrix whose 
elements are obtained from Eq.(2.40) and Eq.(2.41). Matrix W is the Rxnb consequent weight 
parameter to be identified, and E is the npxnb matrix of model errors. Hence, the solution of 
the estimated parameter W can be obtained by ordinary least squares estimation taking the 
pseudo-inverse of the normal equation of Eq.(3.1), 

W = ( V T V ) 1 : V T Y (3.2) 

However, this ordinary least squares method suffers from the singular value problem which 
occurs when the matrix V V is ill-conditioned or not invertable, in which case the 
estimated parameter W will seriously be effected by round-off errors accumulated during 
calculation. In order to avoid the numerical problem, the orthogonal least squares method 
based on the classical Gram-Schmidt method is a better alternative of ordinary least squares 
computation [11] . In addition, this method provides information that can be used to restrict 
the model size. 

The main idea of applying the orthogonal least squares method (OLS) to the NUFZY model is 
to perform fuzzy rule selection such that a set of R, significant rules (Rs < R), that make the 
maximum contribution to the variance of the desired output Y in Eq.(3.1), jire selected from 
the initial R rule base. The orthogonal least squares method decomposes V into QA such 
that Eq.(3.1) becomes 

Y = (QA)-W + E =Q G + E with G = A-W (3.3) 

where Q = [q! .. qr.. qR] is a npxR matrix with orthogonal column vectors, qr ( = [qr(l).. qr(t) 
.. qr.(np)]T), i.e., q ^ = 0, for i * j , 1 < i, j < R. Matrix A is a RxR invertable upper triangular 
matrix with l's on the diagonal, i.e., 
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with Oir = - ^ — ; for 1 < i < r (3.4) 

where vector vr is the r'* column of V defined by [vr(l) .. vr(t) .. vr(np)]T according to 

Eq.(2.41). Therefore, the least squares solution of Eq.(3.3) is given by 

G = (Q 1 Q)" 1 Q 1 Y (3.5) 

where G = [gi . .g„--gnb] with column vector gn= [gln .. gm .. g^] 1 . The element gm is 
calculated as 

0 q f y n t=i 

np 

np 

Xq?o> 

1 < r < R, 1 < n < nb (3.6) 

t=i 

Once the matrix G is obtained, the orthogonal least squares solution W is then given by 

W = A_1G (3.7) 

Since matrix A is upper triangular, the inverse of A is easily achieved by backward 
substitutions. 

The algorithm for orthogonal decomposition of V into QA based on the classical Gram-
Schmidt method (CGS) can be summarized as 

Q i = vi 

q^vr 

q.qi 
l < i< r 

I r ^ r - ^ a ^ i 

for r = 2,..,R (3.8) 

1=1 
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33 FUZZY RULE REDUCTION 

In general, better approximations can be attained by increasing the number of fuzzy rules -
similar to increasing the number of hidden nodes in neural networks or the regressors in the 
linear regression problem -, but at the same time the redundancy in the rules increases, 
causing the problem of overfitting where the estimated parameters are heavily determined by 
the noise in the data which has a negative effect on prediction ability. Also, having too many 
fuzzy rules will make the final fuzzy rule base difficult to interpret. To solve this problem, the 
classical Gram-Schmidt OLS procedure can be used for rule selection, i.e., { vr | 1 < r < R, < 
R }, such that the R, significant fuzzy rules are extracted from the initial candidate rule base. 
In other words, the orthogonal least squares algorithm not only solves the unknown 
parameters, but also implicitly reveals a procedure for determining the structure of the fuzzy 
system. The following describes the principle and procedure of fuzzy rule selection, which is 
based on a criterion called 'error reduction ratio' [11]. 

First, we consider the case of a single output, the n'* desired output vector, yn ( = fy„(l) » y„(t) 
.. yn(np)]T). This is one column of Y and can be expressed as 

yn = Q g„ + e„ 

An estimate of the variance of output y„, after its mean has been removed, is given by 

—yïy„ -— £QTQg„ +—*l*«~—^&ti<i, +—«£eB (3.9) 
np np np n P ^ nP 

where gm is the element of G as defined in Eq.(3.6). It is seen that the term (g2
ra q

T
r qr)/np is 

the increment of the estimate of the variance of the desired output due to introducing an 
additional regressor, qr, which according to Eq.(3.8) follows from previous regressors and the 
fuzzy rule node output v r, while (eT„en)/np is the unexplained variance of error. Once a set of 
regressors has been orthogonalized and added to the model, the contribution of each 
individual regressor to the desired output variance can be determined by the criterion 'error 
reduction ratio', [err], which is defined as 

2 T 

[err]m = - imSt i 1 < r < R (3.10) 
J n " n 

Subscript rn denotes the error reduction ratio of the r** regressor with respect to the n'* desired 
ouqiut. It is noted from Eq.(3.9) that because the left hand side is fixed, the variance of the 
system error decreases whenever a new regressor is added to the model. 

During the regressor selection process, at every step of the iterative procedure according to 
Eq.(3.8), the values of [err] of each candidate regressor will be calculated and only the one 
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with the maximum [err] value is selected and added to the model. If the model contains 
certain highly correlated regressors, which means that they are almost linearly dependent, or 
redundant in the NUFZY model, it will result in an ill-conditioned problem. This condition 
can be detected by simply checking the norm of the newly added orthogonalized regressor to 
the model: ||qr||

2. A value of ||qr||
2 = qT

rqr = 0, simply implies that the newly selected 
regressor qr is a linear combination of formerly selected orthogonalized regressors in the 
model. It therefore does not add to the information content of the model and should be kicked 
out. In practical the norm will almost never be equal to zero. Accordingly, a small value of 
107 is specified as a threshold value of the norm ||qr||

2 in order to check the almost linear 
dependence of orthogonalized regressors. 

The orthogonalization procedure terminates when all candidate regressors have been 
processed. Among the results is a sequence of indices ranking the significant rules, and a list 
of indices of regressors which have been removed. Consequently, the total number of rules at 
the end, Rj , is less than the theoretical number of total rules belonging to the given input 
partition, provided almost linear dependent regressors did occur. A new set of weights is then 
calculated according to the selected linear independent rules that are used as a final rule base 
and the weights belonging to those almost linear dependent rules are set to be zeros. 

In the case of multiple outputs, we can modify the error reduction ratio as the sum of [err]ra 

and define a new criterion, [ERR]r, for the MIMO system, i.e., 

nb 

[ERR]r=£[err]n 

n=l 

One should be aware that the above criterion of 'error reduction ratio' for fuzzy rule selection 
only considers the performance of the model, i.e., the variance of residuals, and does not take 
into account the model complexity. Many possible alternatives of model subset selection 
criteria can be used that compromise the performance and complexity of the model, such as 
Akaike's information criterion AIC [8] , or a cross-validation based criterion [49] *. In spite of 
this, we will use this error reduction ratio as a criterion for fuzzy rule selection in this chapter 
to demonstrate the method. 

Before proceeding, it is worthwhile to compare our present study to others. Previous works on 
application of OLS in neural networks [11] aimed at the selection of potential centers of radial 
basis functions from a large set of numerical data. The procedure of fuzzy rule selection 
therefore has a comparable function as the selection of centers in RBF neural networks. The 
procedures outlined above are inspired by the approach in [80] . In their work, the total 
number of fuzzy rules is initially equal to the number of input data, leading to a huge rule set. 
This set is then reduced by application of OLS, where the final number of rules is set 
arbitrarily on the basis of some subjective judgment. In contrast, our present study uses the 

$ As a matter of fact, when the maximum likelihood estimation is used for the model, the criterion AIC 
is asymptotically equivalent to the cross-validation criterion, see [55] . 
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OLS algorithm as a tool to reduce redundant or insignificant fuzzy rules, provided the 
prototype NUFZY model, i.e., the number of membership functions of the inputs, has been 
determined a priori. In practice, this may be an easier task than specifying in advance the 
number of required rules. 

As shown in the previous chapter, a prototype of the fuzzy rule base can be constructed 
whenever the number of membership functions of each input variable, Ni( is chosen. Nj as well 
as the parameters in layer 1 (center, c, and bandwidth, o) either can be determined by the 
designer based on experience, or alternatively the parameter values of c and o can be 
estimated from the data set. In that case N; becomes the only parameter that has to be assigned 
by the user. In the present study, we adopt the latter approach. The centers of membership 
functions are uniquely chosen by equal spacing in the range of x; and a suitable value is taken 
as the bandwidth to ensure moderate overlap of the membership functions for each input x;. 
During the identification procedure, parameters of layer 1, c and a, are kept constant for the 
specified prototype fuzzy rule base and the OLS method is solely used to estimate the 
consequent weight parameter, w, of layer 3 and to delete redundant fuzzy rules. Hence, the 
determination of the most effective structure and the estimation of the optimal parameters (in 
the least squares sense) can be carried out at once by the OLS method. In summary, in 
addition to estimating the consequent weight parameters, the OLS algorithm mainly acts as a 
tool to eliminate redundant or insignificant fuzzy rules from the prototype NUZFY system. 

3.4 EXAMPLES OF NONLINEAR STATIC SYSTEMS 

The following subsections will present examples of the NUFZY identification for nonlinear 
static systems. Without loss of generality, only the single output case is considered. A notation 
marked as NUFZY(NixN2x..xNni ; R«; Gau/IMQ) represents a NUFZY model with xi, x2,.., 
Xnj inputs, where each input has Ni, N2, .., N^ Gaussian or IMQ membership functions, 
respectively, and the number of the final identified fuzzy rules is Rj. For example, 
NUFZY(3x5;10;Gau) means that there are two inputs xx and x2; 3 Gaussian membership 
functions are assigned to \i and 5 to x2; and the total number of identified fuzzy rules is 10. 

3.4.1 Example 1 - synthetic nonlinear system 
The NUFZY model is first applied to identify a nonlinear static MISO system given by 

YD = exp(-xi) x sin(6x2)/2 (3.11) 

A set of training data with 63 points is generated, by taking xi and x2 randomly from the 
input space within the range of [-1,1] x [-1,1] and calculating the desired outputs using 
Eq.(3.11). These data are used to train the NUFZY model in order to get the estimated 
weights. Another independent data set, named validation data set, with a total of 441 points 
taken as grid points at 0.1 intervals in the range of [-1,1] x [-1,1], is used for verifying the 
trained NUFZY model. In this example, 4 membership functions are assigned to input 
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variable Xi and 6 to x2. Both Gaussian and IMQ membership functions are investigated in this 
example. The centers of these membership functions are taken as equally spaced according to 
Eq.(2.38), whereas the bandwidth is assigned as the variance value of x, in the case of 
Gaussian, and three times the variance of x; in the case of the IMQ membership function. 

Using the training data set, the development of the sum of squared error (sse) during the OLS 
identification is depicted in Figure 3.1. It is obvious that the value of sse decreases at every 
addition of a newly selected rule to the fuzzy rule base. At the end of the OLS procedure, 
using the IMQ membership function, a NUFZY(4x6;20;IMQ) model is found. This means 
that out of 24 possible rules, there are 4 (almost) linear independent rules that have been 
removed by OLS. With Gaussian membership functions, however, the result is (4x6;24;Gau), 
i.e., no rules have been deleted in this case. Using the identified weights, both NUFZY models 
are verified by applying them to the validation data set. Figure 3.2 and Figure 3.3 show the 
performance in reconstructing the nonlinear surface expanded by Xi and x2 as described in 
Eq.(3.11). Good interpolation is obtained by the identified NUFZY model. The squared error 
plot, Figure 3.2.(d) and Figure 3.3.(d) show that NUFZY with IMQ membership functions 
performs better than that with Gaussian membership functions despite less fuzzy rules. 
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Figure 3.1: The development of SSE of the NUFZY model with 
NUFZY(4x6;24;Gau) (line-circle) and NUFZY(4x6;20;IMQ) (line-
star) during the identification process 



3.4 Examples of nonlinear static systems 37 

desired output YD=exp(-x1)*sin(6*x2)/2 (b) NUFZY output(4*6;24;Gau) 

0 
X2 -1 -1 X1 

(c) error(4*6;24;Gau) 

Figure 3.2: Validation of the NUFZY model with NUFZY(4x6;24;Gau). (a) 
desired output (b) NUFZY model output (c) error surface (d) 
squared error surface. 

(a) desired output YD=exp(-x1)*sin(6*x2)/2 
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Figure 3.3: Validation of the NUFZY model with NUFZY(4x6;20;IMQ). (a) 
desired output (b) NUFZY model output (c) error surface (d) 
squared error surface. 
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In order to demonstrate the efficient performance of the NUZFY system as a function 
approximating network, a comparison is made with two layered neural networks which are 
trained by back-propagation algorithms. The simulations of these feedforward neural 
networks are performed by the neural network toolbox of Matlab® [15] . Four neural 
networks, denoted as 2-10-1 NN, 2-20-1 NN, 2-30-1 NN, and 2-40-1 NN , are set up, each 
with two inputs and one output, and 10, 20, 30, and 40 neurons in the hidden layer, 
respectively. The nonlinear functions of the neurons used in the hidden layer are tan-sigmoid 
functions and those in the output layer are linear functions. The back-propagation training is 
initialized by the Nguyen-Widrow initialization. Moreover, a momentum term and an 
adaptive learning rate to speed up the procedure are used. During the identification procedure, 
the training is halted when the sse value of the neural net is less than 0.04 or when the 
training arrives at 5000 epochs (iterations). The value of 0.04 is estimated according to the 
maximum sse value obtained by the NUFZY model with the IMQ membership function 
during the OLS training procedure. Unfortunately, despite long training times, most of these 
networks are still unable to reach the requirement of a sse being less than 0.04 within 5000 
epochs. After the training , the networks are verified by the validation data set. The results are 
shown in Figure 3.4. 

(a) 2-10-1 NN output (b) 2-20-1 NN output 

(c) 2-30-1 NN output 

0 
x2 -1 -1 x1 

(d) 2-40-1 NN output 

Figure 3.4: The results of validation procedure of neural networks with 
different neurons in the hidden layer, (a) 10 neurons, (b) 20 
neurons, (c) 30 neurons, and (d) 40 neurons. 

The numbers of the parameters required for the neural networks with back-propagation are 
32, 62, 92, and 122, respectively. In constrast, the identified parameters of the NUFZY model 
are 24 for the Gaussian and 20 for the IMQ membership function. It can be seen that the pre-
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determined input parameters (centers and widths) together with the OLS algorithm makes it 
easy to identify a NTJFZY network with less free parameters and yet results in better 
approximation as compared to ordinary neural networks in conjunction with back-propagation 
training. 

3.4.2 Example 2 - tomato production 
In this example, the NUFZY model is applied to an agricultural problem which concerns the 
dry matter production of tomato. Data were obtained from three experiments of tomato in 
multispan Venlo-type greenhouses in Wageningen [2] . The temperature set-point was 
maintained at 18 °C day and night and no C02 enrichment was used. Environmental factors, 
such as indoor temperature, relative humidity, C02 concentration, and outdoor global 
radiation were recorded hourly. During the period of 25 January to 23 November, 1988, three 
experiments were done. In each experiment, six tomato plants were sampled for destructive 
measurement at about weekly intervals. In this identification example, accumulated radiation 
(W/m2) over time t and averaged CO2 concentration (ppm) from the initial date to time t are 
taken as input 1 and 2, respectively, and the total dry weight (TDW) of tomatoes (kg/m2) at 
time t as the output for the NUFZY model. Data of experiments 1 and 3 are used for training 
in order to identify the underlying tomato production and those of experiment 2 are used for 
validation of the NUFZY model. By trial and error, eight IMQ membership functions have 
been assigned to input 1, and four to input 2 which together construct a prototype fuzzy rule 
base with a total number of 32 rules. The centers of the membership functions are determined 
as equally spaced and widths are taken equal to the value of the standard deviation of the 
inputs. At the end of the OLS procedure it appears that only 10 rules are left. 

The results of the TDW measurements and the NUFZY predicted output are depicted in 
Figure 3.5. As shown in Figure 3.5.(a), (b) and (c), most of the NUFZY predicted outputs are 
located within the 95% confidence interval of measured TDW. It demonstrates the ability of 
the NUFZY approach to identify the tomato production process. Figure 3.5.(d) shows a 
prediction according to NUFZY(8x4;10;IMQ) of how expected TDW of tomato is related to 
accumulated radiation and period averaged C02 concentration. The figure suggests that TDW 
increases as accumulated radiation increases, and that TDW is higher when the averaged C02 

over the growth period has been higher. 

It should be noted that the model result is restricted to a limited C02 range because no C02 

dosage has been applied. Average C02 is used rather than instantaneous C02 because the 
latter is influenced by the instantaneous irradiation due to plant photosynthesis, and therefore 
is not a truely independent variable. The C02 effect may also partly contain a temperature 
effect, because in the raw data, despite temperature control, there was a slight negative 
correlation between prevailing C02 and temperature. However, the NUFZY model does not 
contain more than 10 rules to describe the complex process of tomato production. This 
compares favorably with sophisticated models like TOMSIM and TOMGRO [2] . 
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Figure 3.5: The measured TDW of tomato (circle-dotted line) with 95% 
confidence interval (dotted line) and NUFZY simulated output 
(star-dotted line) for experiments 1 (a), 3 (c). (identification data) 
and 2 (b) (validation data), (d) The predicted TDW by 
NUFZY(8x4;10;IMQ) is related to accumulated radiation (xlOOO 
W/m2) and the C02 concentration (ppm) averaged over the period 
from the first day to the measurement day. 

20 

3.5 EXAMPLES OF NONLINEAR DYNAMIC SYSTEMS -

APPLICATIONS TO AGRICULTURAL PROBLEMS 

In the optimal control of greenhouse crop production, one has to deal with different time 
scales: slow crop growth and fast greenhouse physics. In the work of [77] , a two-time scale 
decomposition using a singular perturbation method was employed to solve the optimal 
control problem. The same idea is used in examples of this section to separate the crop growth 
problem and the greenhouse physics problem. For crop growth, the fast dynamics of climatic 
conditions are regarded as irrelevant and one can utilize the mean climatic values for the crop 
growing period. On the other hand, during the short term identification of the greenhouse 
climate, the states of the crop are assumed to be constant. 
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From the point of view of control applications the models should have predictive ability. 
Accordingly, in the following two examples, NUFZY models are established to predict the 
lettuce growth and the greenhouse temperature. In the development of models, a set of data is 
first gathered from previous experiments and taken as the training set, so that the consequent 
weight parameters of the NUFZY model can be identified by the above OLS method. With 
these identified parameters, another independent set of data, named validation set, is used to 
evaluate the prediction ability of the identified NUFZY model. 

3.5.1 Identification of lettuce growth process 

3.5.1.1 Problem description 
In [77], a lettuce growth model is described by a single state variable, namely total dry weight 
Xd. The governing differential equation is 

^ - = cpfca(|)phot-<t)resp; (3.12) 

where cp and c„ are conversion parameters; <|>phot and <t>resp, represent gross photosynthesis gain 
and maintenance respiration loss of lettuce, respectively. They are complex nonlinear 
functions of the dry weight itself and several input variables, e.g., greenhouse indoor C02 

concentration (denoted as Zc), greenhouse indoor air temperature (denoted as Zt), and outdoor 
radiation (denotes as Vi). Parameters of ca and cp in these relationships were determined 
empirically. Further details can be found in [77]. Two experiments were done to calibrate the 
model parameters and to validate the above model. The lettuce used in the experiments is 
Lactuca sativa L., which was grown in an experimental greenhouse in Wageningen from 
17/10/1991 -16/12/1991 (cultivar 'Berlo') and from 21/1/1992 -17/3/1992 (cultivar 'Norden'). 
The greenhouse was under computer control according to the rules used in normal Dutch 
horticultural practice. During the two experiments, destructive measurements of the lettuce 
(10 and 9 sampling dates, respectively) were performed, whereas the greenhouse climate, the 
actuators and the outdoor climate conditions were recorded for further analysis. 

Eq.(3.12) defines a continuous-time model of the lettuce growth rate, which is a relationship 
between the biomass and the external input variables. In the set up of the NUFZY model, the 
same variables are used. First, the time step is taken as one day (24 hours), using the daily 
averaged measurements of V, , Z, and Zc as approximations of the input signals. Due to the 
fact that the lettuce dry weight is not available every day for these experiments, linearly 
interpolated values are taken as estimates of the data. Hence, a modified discrete-time model, 
based on daily averaged data of Vi, Z, and Zc and linear interpolated Xd, is applied to 
approximate the continuous growth of lettuce. It is represented as 

^ Q = ytfXd(k),Ze(k),Zl(k), V,(k)) = *d(k + D-Xd(k) (3.13) 
AT(k) Jn d c ' ' T(k + 1)-T(k) 
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where k is the discrete time index, Xd(k) is the dry weight of lettuce at day T(k); ƒ!(•) 
represents the nonlinear function to be identified. Therefore, a one-day-ahead prediction of 
lettuce dry weight according to Eq.(3.13) can be obtained as 

Xd(k + l) = Xd(k)+/,(Xd(k),Zc(k),Z[(k),V,(k))AT(k) (3.14) 

An alternative formulation of a one-day-ahead prediction of lettuce dry weight is to 
incorporate the previous values of inputs in the nonlinear function directly, 

Xd(k + l) = /2(Xd(k),Zc(k),Zt(k),V,(k)) (3.15) 

3.5.1.2 NUFZY model establishment 
In [77] , a sensitivity analysis has been done on the lettuce growth model of Eq.(3.12) 
suggesting that dry matter production of lettuce is mainly dominated by a limited number of 
inputs. In particular, the C02 concentration has a stronger positive effect on dry matter 
production than greenhouse indoor air temperature. Because the temperature in the 
greenhouse was controlled in order to keep it within operation bounds, the variation of the 
temperature is too small to be informative. Besides, it can be seen that the indoor air 
temperature strongly correlates to the outdoor radiation. Hence, on establishing the NUFZY 
model, the function variables have been restricted to outdoor radiation V;, indoor C02 

concentration Zc, and the present state of crop Xd. In practice, a derived quantity, temperature-
day, is commonly used, which suggests that the summation of temperature values over the 
growing periods should be taken into account. In terms of outdoor radiation V„ this 
temperature-day quantity can be replaced by another quantity, accumulated radiation, XVj(k) 
(denoted as ACVffa) in below), which sums up the daily averaged radiation over time T(k). 
Therefore, for the NUFZY modeling, the chosen variables are Xd, Zc and ACV,. Formally, the 
goal of the identification of the lettuce growth is to establish the NUZFY models, /NUFZYI and 
/NUFZY2, such that they can approximate the unknown nonlinear functions ƒ! and f2 in Eq.(3.14) 
and Eq.(3.15), respectively. Here, we call /NUFZYI and /NUFZY2 the first kind and the second 
kind of NUFZY modeling, respectively. It can be seen that in the first kind of NUFZY 
modeling the one-step-ahead prediction of lettuce growth is obtained indirectly based on the 
inferred growth rate, whilst the second kind of NUFZY modeling infers the one-step-ahead 
prediction of lettuce growth directly. The predicted dry weight of lettuce by the NUFZY 
model, x„(k +1) > can be written as 

The first kind of NUFZY modeling 

XA(k + l) = Xd(k) + /rafzn(Xd(k),Zc(k)MCV,(k)) • AT(k) (3.16) 

and the second kind of NUFZY modeling 

Xd(k + l)=/„^2(Xd(k),Zc(k)MCV,(k)) (3.17) 
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When using the model in a real application, the biomass is usually not observed. Therefore, 
the validation was done in such a way that no measurements of Xd were employed except for 
the initial point. Thus, on validation of the NUFZY model, Eq.(3.16) and Eq.(3.17) become 

Xd(k + l) = Xd(k) + /„WCT,(Xd(k),Zc(k),ACV,(k)) • AT(k) (3.18) 

and 

K (k +1)- fNUFZr2 (Xd (k), Zc (k), ACV, (k)) (3.19) 

where the input variable xd(k) is obtained from the prediction of the trained NUFZY model at 
the previous step k-1. At the next step, the present estimate xd(k + l) is iteratively fed into the 
model as input. The validation by this method therefore tests the ability of the model to 
predict n-steps ahead. This procedure, sometimes called the parallel method [48] , is a much 
more severe test than the serial-parallel method, as in Eq.(3.16) and Eq.(3.17), which just 
takes the real value of Xd into the NUFZY model. The training and validation process of 
NUFZY modeling is given as follows. 

3.5.1.3 Training process 
The training of the NUFZY model is done with data taken from experiment 1 (17/10/1991 -
16/12/1991, in total 61 days). In this set of training data, the values of daily averaged C02 

concentration Zc (ppm) and accumulated daily averaged outdoor radiation ACV; (W/m2) as 
well as the linear interpolated dry weight of lettuce Xd (g) are treated as external inputs. 
Hence, in total, 60 tuples [Xd(k), Zc(k), ACV,(k), AXd(k)/AT(k)] or [Xd(k), Zc(k), ACV^k), 
Xd(k+1)] are used to train the first and the second kind of NUFZY modeling, respectively. 
From the training set, when each Nj is assigned (see below), the centers of the IMQ 
membership functions (c in Eq.(2.36)) are taken equally spaced in each input range, whilst to 
the width, a, of the membership functions of each input three times the value of the standard 
deviation is assigned. The consequent weight parameter Wj and w2 of the NUFZY models, 
/NUFZYI and /NUFZY2, are estimated by the OLS method such that the sum of square errors 
Ek[AXd(k)/AT(k) -/NUFZYI(;WI)]2 and Zk[Xd(k+l)- /NUFZY2(;W2)]

2 are minimized, where k = 1 
to 60. The number of membership functions for each input, N„ (i = 1,2, and 3, corresponding 
to Xd, Zc, and ACV„ respectively) varies from 2 to 4. Therefore, the initial number of fuzzy 
rules ranges from 2x2x2 = 8 to 4x4x4 = 64. By taking the sum of squared errors as a criterion 
function, the final structure used is the one that has the lowest sum of squared errors. 

3.5.1.4 Validation process 
After obtaining the consequent weight parameter wi and w2, another set of data taken from 
experiment 2 (21/1/1992 - 17/3/1992, in total 56 days) is used to validate the first and second 
kind of NUFZY models. Since the values of Xd(k) is unknown at every moment except the 
sample dates, the validation process is carried out according to the parallel method. The mean 
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value of the measured Xd on the first sample date, 0.15 g, is used as an initial value Xd(l). 
Values of the other inputs Zc(k) and ACVi(k) are measurable for the whole experiment period. 
So, after the first step, the estimate xd(k) is obtained from Eq.(3.18) or Eq.(3.19) with 
available measurements Zc(k-1) and ACV,(k-l) and the initial value Xd(l) (using the 
parameter set Wi or w2), whereas in the following sequence, this estimate xd(k) is iteratively 
fed into Eq.(3.18) or Eq.(3.19) together with Zc(k) and ACVi(k), in order to generate the next 
step prediction of xd(k +1). 

3.5.1.5 Results 
Figure 3.6 and Figure 3.7 demonstrate the results of both models for the training and the 
validation process. The results of the training process show that the first kind of NUFZY 
modeling, denoted as NUFZYl(3x4x3:15;IMQ), can achieve a good approximation, where 
the notation NUFZYl(3x4x3:15;IMQ) indicates that 3, 4, and 3 IMQ membership functions 
are assigned to Xd, Zc, and ACVK respectively. As a result of the OLS identification, only 15 
fuzzy rules are chosen to be involved in the fuzzy rule base and, consequently, 21 redundant 
rules have been removed from the initial 36 ( = 3x4x3) rules. The best result of the second 
kind of NUFZY modeling is NUFZY2(2x2x3:10;IMQ), so that Xd, Zc, and ACV, have 2, 2 and 
3 IMQ membership functions, respectively, and the number of identified fuzzy rules is only 
10. For the purpose of comparison, in these figures the mean values of the dry weight 
measurements with 95% confidence intervals are plotted as vertical bars and the simulated 
results from [77] , by Eq.(3.12), are presented too. It can be seen that both results obtained 
from /NUFZYI(;WI) and/NUFZY2(;W2) perform as well as the mechanistic model Eq.(3.12) 
during the training process and are slightly less accurate compared to the result of the 
mechanistic model in the validation process. However, the number of estimated parameters 
(15 and 10, respectively) in the NUFZY models compares favorably to the 19 parameters of 
the mechanistic model. 

Among the identified fuzzy rules, one example (Rule 6) of the generated fuzzy rules of the 
first kind of NUFZY modeling is listed below, which suggests that when the crop is in the 
initial stage of development (Xd is small, Alt and ACV{ is low, Ci), a very high C02 

concentration (Zc is B4) will result in a negative effect on the growth rate. Other identified 
rules are similar to it and will not be presented here. 

Rule 6: IF Xd(k) is A! AND Zc(k) is B4AND ACVßa) is d THEN AXd(k)/AT(k) = -2.0663 

The centers and widths of linguistic variables [Ai A2 A3] of input Xd(k) (g) are [0.15 3.38 
6.61] and [1.9532 1.9532 1.9532], respectively. For Zc(k) (ppm) with the linguistic variables 
[Bi B2 B3 B4], centers and widths are [422.65 498.05 573.46 648.86] and [61.10 61.10 
61.10 61.10], respectively; whereas for the linguistic variables [Ci C2 C3] of ACV{(k) (W/m2), 
[21.62 420.01 818.41] and [210.47 210.47 210.47], respectively. Linguistic variables of [Aj 
A2 A3] represents small, medium, and large, respectively. [Bi B2 B3 B4] represents low, 
medium, high, and very high; [ d C2 C3] represents low, medium, and high. 
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Some remarks about this example are made below. In this example, we have used two 
NUFZY models, /NUZFYI and /NUFZY2- The above results show that both of them have 
comparative prediction ability as that of Eq.(3.12), a mechanistic model describing the lettuce 
growth. Yet, the prediction behavior of the two forms is different. It is noticed from 
Figure 3.6.(b) that the increment model /NUZFYI leads to a smoother growth curve than the 
direct model/NUZTO in Figure 3.7.(b). However, it should be kept in mind that if the sampling 
interval becomes large (i.e., less sampling is done), the linear interpolation used for training 
of both NUFZY models should be circumvented since it leads to a model that tries to mimic a 
piecewise linear growth curve rather than the true growth curve of lettuce. In this example, 
however, the sampling interval is around one week, which does not cause severe problems in 
this respect. 

NUFZY1(3*4*3:15;IMQ) on training 

30 
day (k) 

NUFZY1(3*4*3:15;IMQ) on validation 

Figure 3.6: Prediction of lettuce dry weight by NUFZYl(3x4x3:15;IMQ) 
during experiment 1, training (one-step-ahead) (a); and experiment 
2, validation (seasonal prediction) (b). Solid line indicates output 
from NUFZY 1 and dash-dot line indicates result from the one state 
variable model, Eq.(3.12), described in [77] . The vertical bars 
show a 95% confidence interval around the mean value of the 
measurements. 
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Figure 3.7: Prediction of lettuce dry weight by NUFZY2(2x2x3:10;IMQ) 
during experiment 1, training (one-step-ahead) (a); and experiment 
2, validation (seasonal prediction) (b). Solid line indicates output 
from NUFZY2 and dash-dot line indicates result from the one state 
variable model, Eq.(3.12), described in [77] . The vertical bars 
shows a 95% confidence interval around the mean value of the 
measurements. 

Another factor of interest is that although the models are trained to yield one-day-ahead 
predictions, the validation is done by running the model for the whole growing season of 
experiment 2 without updating from the actual measurements (a parallel method). In this 
approach, there might exist a risk that the prediction becomes worse because of the 
accumulation of model errors. In this particular example, the results remain within the 
measurement uncertainty, thus indicating that, from the training data set, the NUFZY model 
matches the lettuce growth dynamics sufficiently well to achieve a reasonable seasonal 
prediction, which can be used, e.g., in production scheduling. 
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3.5.2 Identification of greenhouse temperature dynamics 

In contrast to the slow response of crop growth, the greenhouse climate shows very distinct 
fast dynamics. Based on a time scale in minutes, the effect of crop growth is assumed to be 
negligible. In the following example, the NUFZY model demonstrates the modeling of the 
dynamics of the greenhouse temperature and performs a one-step-ahead prediction based on 
the present indoor states, control inputs, and outdoor disturbances. Extensions to other 
climatic states is possible but will not be discussed here. 

3.5.2.1 Problem description 
For control purposes, several dynamic models of greenhouse physics have been developed. 
Among them, models based on first principles such as [4], and more recently [13] ; others are 
transfer function models such as [74] [75] or intermediate [65] . In [64] based on energy and 
mass balances, the dynamics of the greenhouse temperature, denoted as Z,, is described by a 
first order differential equation with heat losses from natural ventilation, through the roof 
cover and to the soil; and heat gains from heating pipes and solar radiation. The differential 
equation is written as 

^ • = — [(cv+c,)(V;-Z t) + c f(Z.-Z t) + cp(Zp-Z t) + ciVi] (3.20) 
dt cg 

where cg is the greenhouse heat capacity, and Cv, c,, cs, and Cp are the effective heat transfer 
coefficients of ventilation, roof cover, soil and heating pipe, respectively. V,, Z*, and Zp stand 
for outdoor air temperature, indoor greenhouse soil temperature and heating pipe temperature, 
respectively. Cj and V, are radiation efficiency factor and disturbance from outdoor radiation, 
respectively. In Eq.(3.20), the control of window opening C/w and two disturbances, outdoor 
wind speed Vs and wind direction Vd, are implicitly involved in the coefficient c,, whereas 
control of the heat supply Ut determines the heat pipe temperature Zp. Hence, taking these 
implicit relations into account, Eq.(3.20) can be formally written as 

Z,(k +1) = /3(Zt(k), Z.(k), £/„(k), C/t(k), Vt(k), Vs(k), Vd(k), V,(k)) (3.21) 

where/3() is a complex nonlinear function describing the greenhouse temperature dynamics 
as a function of the input variables described above. 

3.5.2.2 NUFZY model establishment and results 
In this example, greenhouse climate data are taken from the experimental results of [63] . The 
experiment of tomato production is done where one greenhouse compartment is controlled by 
a receding horizon optimal control (RHOC) algorithm in order to compare it to another 
compartment controlled by a current commercial greenhouse climate control computer. The 
experiment was conducted from 1/8/1995 to 30/10/1995. All the input variables mentioned in 
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Eq.(3.21) were measured every minute. In the following, the training and validation data used 
for the NUFZY modeling make use of measurements and records taken from the optimal 
controlled greenhouse compartment. 

From Eq.(3.21), it is seen that the large number of input variables causes a large fuzzy rule 
base for the NUFZY model. For ease of modeling, the higher order effects induced by the state 
of soil Zs are neglected. It is also observed that the windward and lee side windows are almost 
fully open every day in August because of the high air temperature inside the greenhouse. 
Hence, in this demonstration, the input variables, C/w, Vs, and Vâ, can be further left out by 
properly choosing those days on which the windows are open. Therefore, a NUFZY model 
with restricted validity is established to give a one-step-ahead prediction of Z, with reduced 
input variables as 

Z1(k + l)=/A,t/ray3(Zt(k),£/l(k),Vt(k),Vi(k)) (3.22) 

where the input variables are greenhouse temperature Zt (°C), heating valve opening Ut (0 -
100 %), outdoor air temperature Vt (°C) and radiation V; (W/m2). The effect of the disregarded 
input variables will appear as unmodeled effects in the model errors. 

A set of data originating from 23/8/1995 - 25/8/1995 is taken as training data. During this 
period, the windows are almost always fully open. In order to reduce the amount of data to be 
processed, measurements are taken for analysis every five minutes. The training process, 
similar to the previous example, is carried out by the OLS method. Independent data sets on 
several dates in three different periods of the experiment, viz. in the beginning (21/8 - 22/8, 
26/8 - 27/8, and 31/8 - 4/9), halfway (21/9 - 25/9), and toward the end (16/10 - 20/10), are 
taken to validate the identified NUFZY model. In contrast to the previous example, only the 
one-step-ahead prediction capability was tested, using the measured temperature as the input 
for the next prediction (serial-parallel prediction). 

Results of the training and validation process are shown in Figure 3.8. The identified model is 
NUZFY3(3x4x3x2:31;IMQ), showing that, to input variables Z,, (/,, Vt, and V{ are assigned 3, 
4, 3, and 2 IMQ membership functions, respectively, and the final number of identified fuzzy 
rules is 31. For the training data process, Figure 3.8.(a) shows that a fairly good fit is obtained 
with this reduced set of fuzzy rules, since 41 rules are removed from the prototype rule base 
(3x4x3x2 =72). Figure 3.8.(b) illustrates that the relative error of the residuals is less than 
±10% (around ± 2°C). The larger discrepancies mainly occur when outdoor radiation 
disturbance has large fluctuations, i.e., during day time. Other factors, such as wind speed and 
direction that are not used in the modeling, may have considerable influence on the 
discrepancy too. The validation results in the beginning period (Figure 3.8 (c) date 21/8 -
22/8, (d) 26/8 - 27/8, and (e) 31/8 - 4/9) possess a fair fit to the measured data. However, 
larger discrepancies can be found in the other two periods. This result confirms that black-box 
models are firmly data dependent and need retraining as the process slowly moves to other 
operating regions. 
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Figure 3.8. (a)- (d) (to be continued) 
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Figure 3.8: Simulated one-step-ahead prediction of greenhouse temperature by 
NUFZY3(3x4x3x2:31;IMQ) during 23/8 - 25/8 , training process 
(a) and relative residuals of training (b); validation on date 21/8 -
22/8 (c); 26/8 - 27/8 (d); 31/8 - 4/9 (e); 21/9 - 25/9 (f) and 16/10 -
20/10 (g). Solid line: measured greenhouse temperature; dotted 
line: NUFZY prediction. In figures (a) and (c), it is hard to spot the 
difference between the measurement and the NUFZY prediction. 
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It is worthwhile to make some remarks on this simplified example of identifying the 
greenhouse temperature. It is the fast fluctuation (within the 5 minutes period) of outdoor 
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radiation during day time that results in larger model errors. Also, by neglecting the effects of 
window opening and wind speed, the NUFZY model occasionally tends to overestimate the 
greenhouse temperature. For instance on 27/8 in Figure 3.8.(d) and on 24/9 in Figure 3.8.(f), 
it can be verified that the wind speed increases from the range 0 - 6 m/s (used in the training 
process) to 0 - 10 m/s. This creates an extra heat flux due to extra ventilation out of the real 
greenhouse which, of course, does not occur in the present model. As identification is done by 
off-line training, this phenomenon confirms, again, that the NUFZY model is data dependent 
- just like any other black box approach - and that the model can only be expected to perform 
well if it is used under similar conditions as encompassed in the training process. In order to 
construct a more general model for long term prediction, further study is needed to involve 
more climate factors into the NUFZY model. Or, alternatively, for control purposes, a 
recursive identification can be used which adjusts the model to the most recent data. For 
example, in [70] a recursive adaptation of the parameters of the NUFZY model has been 
studied, showing the feasibility for on-line application. This recursive learning scheme will be 
presented in next chapter. 

3.6 DISCUSSION 

On the basis of the experience with the previous examples, some aspects of application of the 
NUFZY model deserve further attention. First, the construction of the antecedent part of 
NUFZY is based on some a priori knowledge such that one is able to assign the number of 
membership functions likely to be needed for each input variable. The question of how many 
membership functions can both partition the input space well and establish a moderate size of 
the fuzzy rule base, concerns a trade-off between accuracy and complexity. As mentioned 
before, several criteria can be used for compromising between performance and complexity of 
the model, such as Akaike's information criterion AIC, and the generalized cross-validation 
criterion. Analogous approaches are known in neural network research. It seems necessary 
that a similar criterion has to be taken into account for the NUFZY model in order to decide 
on the size of the fuzzy rule base. Moreover, although the NUFZY model with the OLS 
algorithm does give a theoretical basis for removing truly linear dependent fuzzy rules, care is 
needed in selecting the threshold value used to remove insignificant rules. 

Second, by employing the numerical data set as guideline, the determination of centers and 
widths of the membership functions of input variables is very similar to a clustering problem. 
For simplicity, in this chapter equally spaced centers and equal widths of the membership 
functions have been chosen. This is significant because it eliminates a considerable number of 
otherwise free parameters in the antecedent part of the fuzzy rule base and allows for a very 
fast estimation of the remaining parameters in the consequent part, since the model is linear 
in these parameters. Yet, for certain applications, the modification of the antecedent 
parameters may be desirable, which leads to a nonlinear parameter optimization problem. 
This task can be facilitated by the relationship matrix RM, since it offers a coding table that 
makes it easy to calculate the gradient of the output with respect to each parameter. When the 
system is expected to change in time, or when the network has to be trained on-line, the 
training parameters need ongoing justification. To this end, a recursive scheme of parameter 
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adjustment can be employed. In chapter 4, examples of dynamic systems will show that the 
implementation of a recursive scheme is straight-forward in the NUFZY system. 

Third, one of the appealing properties of fuzzy logic lies in the ability to interpret fuzzy rules 
linguistically. In the present NUFZY model, one hopes to deduce any interprétable fuzzy rules 
that describe the system's behavior from the particular fuzzy-rule-like network structure. An 
example of interpreting the fuzzy rule of the NUFZY model illustrated in section 3.5.1.5, 
shows some difficulty on direct interpretation of the identified fuzzy rule from the NUFZY 
model as its consequent is expressed by a crisp number, rather than a fuzzy set. In chapter 5, 
we will investigate the issue of interpretation of the fuzzy rules deduced from the T-S fuzzy 
model. 

Another appealing feature of applying a fuzzy system is that the expert's knowledge can be 
utilized and incorporated into the framework of the fuzzy system. However, the present 
approach has not used this feature. The merit gained from the present NUFZY approach is 
that it only uses available experimental data to construct a specific model to carry out function 
approximation, like an ordinary feedforward neural network does. Yet, compared to the 
mechanistic models such as Eq.(3.12) and Eq.(3.20), the NUFZY modeling may save a lot of 
work on parameter calibration and model development, provided a comparable model 
accuracy is required. 

With respect to the use of expert knowledge in fuzzy modeling, there are several possibilities 
to incorporate qualitative information into fuzzy models. One is by collecting the expert's 
knowledge and then directly aggregating it as fuzzy rules which are suitable for fuzzy 
modeling. In practice, this approach is not easy to implement since usually further refinement 
of those aggregated fuzzy rules is needed to match the modeling task. More specifically, 
parameters of membership functions of each fuzzy rule have to be defined by trial and error. 
Another approach is to incorporate qualitative information as an initialization of parameters 
in both the antecedent and the consequent part of fuzzy rules [78] . During the training 
process, the parameters are trained in order to give a good match of the model to the given 
data. As a result, the final rules may be quite different from original rules proposed by 
experts. When this happens it reveals contradictions in the consistency of qualitative 
information used in such an adaptive fuzzy system. If the qualitative information used in the 
initialization does contain the key behavior of the unknown system, this method will just 
facilitate the convergence of the fuzzy system; otherwise, the contradiction remains. Another 
aspect that seems to interfere with the ability to insert qualitative information is the 
observation that if the antecedent part of the fuzzy rule is fixed, like in the NUFZY model, a 
good model accuracy can still be achieved by merely tuning the consequent weights of the 
fuzzy rules [68] . It is, however, conceivable that simultaneous training of the antecedent and 
the consequent parameters would allow models with fewer rules which may be easier to 
interpret. In any case, more work has to be done to clarify the issue of utilizing qualitative 
information. In chapter 6, we will investigate the issue of how to incorporate a priori 
knowledge into a T-S fuzzy model. 
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3.7 CONCLUSIONS 

In this chapter, we have demonstrated the batch learning procedure for the developed NUFZY 
system. Due to the pre-determination of the antecedent part of the NUFZY system, the 
consequent weights become the only unknown parameters to be identified. Because the model 
is linear in these parameters, they can be identified efficiently by an orthogonal least squares 
algorithm based on the classical Gram-Schmidt decomposition. Moreover, the OLS 
identification procedure gives a convenient way to remove the linear dependent or almost 
linear dependent fuzzy rules from the prototype fuzzy rule base, thus solving the redundancy 
problem. Some simulation results presented in this chapter show that a NUFZY model with 
the fast OLS training algorithms and a reduced fuzzy rule base can perform fairly well to 
mimic nonlinear systems. 

The capability of the NUFZY model for real systems is demonstrated by a practical example 
involving tomato plant growth. We also apply the NUFZY model to other agricultural 
applications. Examples are taken from real experimental data, including a developing system, 
i.e., lettuce growth, and a system with a stationary operating point, i.e., greenhouse 
temperature. In the case of lettuce growth, the established NUFZY model offers seasonal 
prediction as a function of the accumulated solar radiation and actual C02 concentration. In 
contrast, the greenhouse temperature model is evaluated as a one-step-ahead prediction 
model. Results show that the NUFZY model can give a suitable identification of lettuce 
growth and greenhouse temperature. 
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4. RECURSIVE 

LEARNING OF THE 

NUFZY SYSTEM 

Honest people use no rhetoric; Rhetoric is not honesty. Enlightened 
people are not cultured; Culture is not enlightenment. Content people are 
not rich; Riches are not contentment. So the sage does not serve himself; 
The more he does for others, the more he is satisfied; The more he gives, 
the more he receives. Nature flourishes at the expense of no one; So the 
sage benefits all men and contends with none. 

- Lao Tze, TaoDeJing 
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4.1 INTRODUCTION' 

In the identification of systems which may contain time-variant properties, on-line tuning is 
required to follow the varying characteristics of the system. A recursive scheme for adjusting 
the system parameters is considered as a potential method. The commonly used back-
propagation algorithm for neural network training, where the steepest descent gradient serves 
as the search direction, is not suitable for recursive adaptation, because it encounters problems 
of slow convergence. In contrast, a recursive prediction error algorithm based on the 
alternative approximate Gauss-Newton search direction, was reported to have improved 
learning capabilities [10] . The recursive prediction error (RPE) algorithm was shown to have 
similar convergence properties as its off-line counter part in the case of linear systems [44] 
[53] . More specifically, for a chosen criterion, the estimated parameters obtained by the RPE 
method will converge with probability one either to a stationary point (local minimum) or get 
stuck at the boundary of the domain as time approaches infinity. The asymptotic convergence 
property of the estimates makes it attractive to adopt these ideas to multi-layered networks and 
to extend the application to nonlinear systems [10] . Compared to on-line identification of 
neural networks with back-propagation learning, the fast convergence of the RPE method is 
appealing in cases where the system parameters are slowly time-variant, provided the 
networks were previously trained well enough in an off-line way in order to provide good 
starting values. 

Although neural networks identification has been very successful, the information 
representation of the internal network structure seems rather obscure, as little information can 
be extracted about the actual functioning of the system. On the other hand, fuzzy rule based 
models do have content but seem difficult to train. Like neural networks [27] [82] , fuzzy 
systems are also universal approximators that can approximate any real continuous function 
on a compact set to arbitrary accuracy [6] [80] . It has been shown in the previous chapter that 
the integrated neural-fuzzy system, NUFZY, based on the structural similarity and functional 
equivalence between fuzzy systems and neural networks, can be used to identify nonlinear 
systems with fairly satisfactory performance. Due to the resemblance of the NUFZY system 
and multi-layered neural networks, it is attractive to try to adapt the recursive prediction error 
algorithm to the NUFZY system. In contrast to the batch learning procedure, our goal in this 
chapter is to investigate the applicability of the adapted recursive prediction error algorithm 
for the NUFZY system as a recursive learning scheme. Based on this procedure, parameters 
on both the antecedent and consequent parts of the NUFZY system can be tuned in an on-line 
manner to achieve recursive adaptation. 

When employing recursive learning we need to know the sensitivity derivatives of the NUFZY 
system with respect to the tuning parameters. Hence, for completeness, in section 4.2, the 

t This chapter is modified from the paper [70] , titled 'Recursive prediction error algorithm for the 
NUFZY system to identify nonlinear systems' in Proceedings of the 9th International Conference on 
Industrial & Engineering Applications of Artificial Intelligence & Expert Systems IEA/AIE-96, 
Fukuoka, Japan, June 4-7,1996, pp 569-574. 
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structure of the NUFZY system as developed in chapter 2 will be restated briefly and the 
sensitivity derivatives are given as well. The gist of the RPE algorithm and its implementation 
are described in section 4.3. Examples are demonstrated in section 4.4, and conclusions are 
drawn in section 4.5. 

42 SENSITIVITY DERIVATIVES OF THE NUFZY 
SYSTEM 

As shown in Figure 2.2, the developed NUFZY system is characterized by a triple-layered 
feedforward network. The first and second layer of NUFZY deal with the antecedent part of 
the fuzzy rule base and the third layer concerns the consequent part of the fuzzy rule base. 
The NUFZY model performs a Takagi-Sugeno (T-S) type of fuzzy inference [62] , i.e., the 
consequent part is formed as a linear combination of the premise variables. A variant of this 
T-S type of fuzzy model is that the consequent part just uses crisp real values, which is the 
method adopted in the NUFZY model. Given a system with ni input variables Xj, i = 1 , . . , ni, 
and nb output variables yn, n = 1 ,.. , nb, where each Xj has its own N; membership functions. 
Then the zero'*-order T-S fuzzy rules used in the NUFZY model can be expressed in the form 

Är
(TS) : IF xi is Ar

ki(x!) AND .. Xj is Ar
kj(xi) AND .. x„i is A ^ x J 

THEN yi = wri,.., yn = wm, , ynb = wrnb (4.1) 

where superscript r denotes the r"1 fuzzy rule and Ar
ki(xi) represents the ki'* linguistic label of 

x, with respect to the fuzzy rule R'. It is also noted that the membership function in the 
consequent part is expressed in the form of a singleton value denoted by wm in the r'* fuzzy 
rule. As in chapter 2, this chapter only considers two bell shaped membership functions for 
the input fuzzy sets. They are the Gaussian membership function (denoted as Gau) and 
inverse multiquadratic membership function (denoted as IMQ). The AND connection in the 
antecedent part of the fuzzy rule is implemented by the algebraic product, and the centroid of 
gravity (COG) defuzzification is used to construct the NUFZY reasoning functions. In the 
following we will briefly review the node definitions of each layer and describe their 
corresponding sensitive derivatives. Detailed derivations can be found in Appendix B. 

4.2.1 Nodes and derivatives in Layer 1 of the NUFZY 
system 

The input node, xi5 only serves to distribute the input into the first layer nodes with fixed 
weights of unity. The membership node, denoted as O^Xj), represents a membership function 
that performs fuzzification of the input variables. Each Xj has its own N; linguistic labels 
associated with membership functions ^(x,). The fuzzified values ^(x^'s represent node 
outputs of this layer. 



58 Chapter 4 Recursive learning of the NUFZY system 

(1) Gaussian (Gau) membership function 

Mx.^expC-I^^l) <4-2-a> 
2 o i i k i 

where index ki = 1 , . . , Ni; i = 1,.. ,ni; cifki and a ^ are the ki'* center and bandwidth of O^x;) 
for the input Xj, respectively. 

In contrast to chapter 2, a slight modification of the Gaussian membership function is made in 
order to avoid getting a membership value of zero when a new input is located outside the 
predefined domain of x,. Hence, the shape of the membership function on the left and the 
right edges are modified to make them monotonously decreasing and increasing, respectively. 
These edge functions are defined as follows* : 

on the left edge of the domain of xl 

H,(Xi) =
 l- (4.2.b) 

l + expCCXj-CyVOj,) 

and on the right edge of the domain of xs 

u N ( x ) = - (4.2.C) 
l + exp ( - (x , - c i N i ) a i N j ) 

For ease of notation, the Hki(xj) will be reordered sequentially and is denoted by oc^x,) where 
subscript m runs from l to M. M is the total number of membership functions of all 
membership nodes, which is given by Eq.(2.37) as 

M = i r= l
N . = N . + - + N n i <4-3> 

The transformation of Hto(xi) to a^x,) can be done with the following expression relating the 
index of m and ki, 

m = m(i, ki) = ̂ ~l_ Nf + ki (4.4) 

$ Since with the same c and o" the BMQ membership function at edges does not go to zero as fast as the 
Gaussian membership function, this modification is only made on the Gaussian membership function. 
The disadvantage of these edge functions is that the O effect is opposite to that of the membership 
function. When o is large, the edge functions switches from 0 to l near the centers, or vice versa. 
When o is small, it makes a narrow band of membership function with less overlap of each other. 
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where i = 1,.. , ni; ki = 1,.. , N; and when i = 1, N0 = 0. As one can see m forms a function 
of i and ki, m(i, ki), which indicates a sequence index to stack all membership functions. To 
avoid complicated expression in following formulations, m(i, ki) will be simply denoted by m. 
It is easy to verify that the final index number of m is equal to M when i = ni and k^ = N„i, 

= (N,+N2+-+Nm_1)+NDi 

= Y m N i = M 

Hence, with this new subscript and notation, am(Xj) can be expressed as 

am(xi) = e x P ( - I ^ - > l ) (4.2.d) 
2 <*m 

The center c , and bandwidth am corresponding to ciiki and o^ can be obtained in the same 
manner as above. 

(2) Inverse multiquadratic (IMQ) membership function 

Mx,) = T
 1=^^ <4-5-a> 
V(xi-ci,K) +°l 

.2 
i.ki 

or 

a (x)= . 1 (4.5.b) 
V(*i-cJ +<*» 

Hence, for a specific input vector x = [xi x2 ..xi...xni]
T, the corresponding membership values 

can be denoted in a vector form, a = [ai a2 . . . a,,,... aM]T, which only stacks the outputs of 
the membership functions for all inputs. As an example, suppose we had three inputs, Xi, x2, 
x3, having 2, 3 and 2 membership functions, respectively. The membership values, for input 
X! are M-i(xi) and p:2(x0; for input x2 are p.i(x2), n2(x2), and M-3(x2); for input x3 are Hi(x3) and 
|i2(x3). They are denoted by |4.u, \in, JA2I, ji22, n23, JLX3I and p:32, respectively, below. In this 
case, M = 2 + 3 + 2 = 7 and a = [ax a2 a3 0C4 a5 o* a?]T = [Un Hi2M21 ^22I*z3 M~3i Unf-

The node parameters to be determined in this layer are c ^ and aiJCi (or, Cm and am). Initially, 
Ihe centers are chosen as equally spaced on the range of x; (from a set of training data) and the 
values of the variance of Xj are taken as bandwidths. By the above definitions, it is easy to 
deduce the derivatives of the outputs of membership nodes with respect to parameters, i.e. 
dMkiW/dCijti and d^ixu/da^ (or 3am(xi)/3cm and dam(x,)/3am); see Appendix B. 
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4.2.2 Nodes and derivatives in Layer 2 of the NUFZY 
system 

In this layer, the rule node, denoted as %, represents a fuzzy rule, where subscript r = 1,.. , R 
and R is the total number of all fuzzy rules given by Eq.(2.39), 

R=n : = 1 N i (4.6) 

The existence of a connection between a rule node and a membership node is represented by a 
value of either 1 or 0. They are recorded in a RxM relationship matrix RM, which is defined 
in section 2.3.1. Each rule node performs a two-step operation, 

Step one : the transient firing strength vr is obtained by 

vr = UtrlUHTAibd-Hi (4.7) 

where notations of RM(r,aï.bù and jij are defined in the same way as those in section 2.3.1. 

Step two: the normalized firing strength vr is calculated as 

v = v ' (4-8) 

In this layer, there is no parameter to be determined. Yet, due to the chain rule used for the 
sensitivity derivatives of the NUFZY system, we need the partial derivative of vr with respect 
to On,, which forms a R by M Jacobian matrix; see Appendix B. 

4.2.3 Nodes and derivatives in Layer 3 of the NUFZY 
system 

The node, yn, n = 1, .. , nb, stands for the NUFZY model output. The link in this layer 
represents a weight parameter wm, for r = 1,.. , R, n = 1,.. , nb, and connects nodes yn and 
%. Using the centroid of gravity defuzzification method, the model output is obtained by 

R 

y n =X w ™^ = w n v (4-9) 

r= l 
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where w„ is the consequent weight parameter vector given by wn = [win.. wra .. WR„]T and v 
is a normalized firing strength vector given by v= [ v, .. vr .. vR]T with element vr defined 
by Eq.(4.8). The derivatives of the NUFZY output with respect to weight parameter and 
normalized firing strength can be found in Appendix B. 

4.2.4 Sensitivity derivatives of the NUFZY system 
From the above derivation, we can define the parameter set 8 of the NUFZY system that needs 
to be tuned as either 8 = GJ, or 0 = [GJ c]T, or 0 = [GJ c a]T, where parameter vector 8 just 

w„ stacks all the tuning parameter vector of GJ = [wi .„ wn .. wnb ] , with w„ = [wi„ 
WR„]T, and c = [ci.. Cm .. CM]T as well as o = [ai .. am .. aM]T- Hence, the dimension of 8 can 
be nbxR, or nbxR+M, or nbxR+2M where M is defined in Eq.(4.3). Hereafter, we will use d 
to denote the dimension of 8, i.e., d = dim(8). In this subsection, the results will be outlined. 
Details of derivation and matrix notations used are given to in Appendix B. 

(1) Sensitivity derivative of the NUFZY system output with respect to w 
In this case, the parameter set 8 is defined as 80 = GJ = [w/ .. wn

T .. wnb
T]T (a (nb-R)xl 

vector). For single output yn (i.e., nb = 1), the partial derivative of yn with respect to Qm , 

Vyn i.e., the sensitivity derivative ' P^ = 
aem 

, becomes a Rxl vector 

*P = 9y„ 
98„ 

B(wlv)" 

: [0T .. VT T-iT . 01] 

d(wlv) 
3w„ 

0 

0 

9(wlv) 
3w, 

-)T 

'nb 

where 0 is a R by 1 zero vector. 

For the multi-output case, the sensitivity derivative *P0 = _3y_ 
38ra 

, becomes 
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* m 
dy 

ae« 
V • • • 

0 

0 

0 

3y, 

[d%\ 
0 

v ••• 

0 

0 

0 

0 

V 

\ryn] 
lderaJ 

aynbl 

[dQm[ 

((nb-R)xnb) 

(2) Sensitivity derivative of the NUFZY system output with respect to c 
Let 8C = c = [ci .. Cm .. cM]T (or , 0C = [cn .. C; ̂  .. Cn, N n i ]

T , Mxl vector). Then, an element 

of the sensitivity derivative of *PC (= 
30,. 

, Mxnb matrix), *Fc(n, m) can be obtained as 

dcm dvT dvr 3 a m dc„ 

:M( : ,m)T* 

àya 

dv{ 

3y» 
dvT 

9y„ 
dvR 

* 

dvl 

3V[ 

d'vr 

dvt 

dvR 

dvR 

* 

3vj 

9 a m 

9vr 

^ a m 

3vR 

da m 

* 

3 a m 

3cm 

^ a m 

dcm 

dam 

dom 

(3) Sensitivity derivative of the NUFZY system output with respect to o 
Let 0„ = a = [a i . . CTm .. CTM]T (or 0O = [au - Oiki •• OniNni]T, Mxl vector). Then, an element 

ay of the sensitivity derivative of *F0 (= 
90n 

, Mxnb matrix), ^E*a(n, m) can be obtained as 

«Fa(n,m) = _ 9yn ^R dyn 9vr dvt da 
9o„ 3v_ 3vr 3am do„ 

= RM(:,my * 

ay. 
3vj 

ay„ 
3vr 

öy„ 
3vR 

* 

dvj 

3v[ 

avr 
3vr 

3vR 

3vR 

* 

3v[ 

3 a m 

dvr 

dam 

dvR 

dam 

* 

3on 

3?" 
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43 PREDICTION ERROR ALGORITHM 

Recursive estimation by the prediction error method has been studied systematically [43] [44] 
[84] . In this section we give results based on [44] , from two aspects, off-line and on-line 
identification, which correspond to batch and recursive learning, respectively. 

4.3.1 Batch prediction error learning 
Parameter estimation methods need some objective criteria to measure the fitness between the 
real system output y(t) and the model predicted output y(t), where dim(y(t)) = nb. For a time-
invariant system, given an available set of data jx(t) y(t)}t = i,.., np, a good choice of the 
objective criterion is a quadratic form of the prediction error weighted by its covariance 
matrix, 

1 Ä 
V e ) = T2eT(t,e)A-1e(t,0) (4.10) 

2 t=i 

where e(t,9) = y(t) - y(t), a nb by 1 column vector used to evaluate the search direction, is the 
discrepancy between the real system output and model predicted output. Matrix A is a d by d 
covariance matrix of the prediction error, which is evaluated based on the true parameter 90 of 
the system. Minimizing the above criterion, the estimated parameter 6 has minimal variance, 
and asymptotically converges to the true parameter G0 when the sample number np goes to 
infinity. Since a set of sampled data {x(t) y(t)}, = i, ... np is available, 9 can be updated 
iteratively by estimation based on the Robbins-Monro stochastic approximation method [44] 
shown in the next equation, using all np observed samples until the minimum of Eq.(4.10) is 
reached. 

ê(i+D = 0(i)+Y(i)S(0(i)) ( 4 1 1 ) 

where the superscript (i) denotes the iteration step in the minimization procedure; y is a 
positive gain, which tends to zero and modifies the step size of update as well as influences 
the convergence of the iteration; E(è(0)is a search direction based on information about 
V„p(9) acquired in the previous iteration. The search direction H(ê(1)), determined by the 
negative gradient of Vnp(9) with respect to 0, can be further expressed together with a search 
direction modification matrix, M( è(i) ) 

5(9(i)) = M(9(i))(-Vn'p(9
(i))) (4.12) 
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where V'„p( e
l,> ), a dxl column vector, is the gradient of Vnp with respect to 0. If we define the 

sensitivity derivative as 

¥(t,0(i)) = - ^ 
8=9 co 30 

) (4.13) 
9=8« 

then V'np( 8
(l) ) can be written as 

np 

Vn'p(0
(i)) = -£«F(t,0(i))A_1e(t,0(i)) 

t=i 

Hence, Eq.(4.11) becomes 

(4.14) 

0(i+1> = 0(i)+Y(i)M(0(i)) 
np 

^T(t,e(i))A-1e(t,0(i)) 
t=i 

(4.15) 

It is interesting to note that different learning algorithms can be derived by choosing different 
representations of the matrix M(0) [52]. For instance, 

(1) Gradient direction, simply take 

M(0) = I (4.16) 

The parameter updating method based on the gradient direction is referred to as the 
gradient algorithm or steepest-descent algorithm. It is fast in the initial stage but 
tends to have very slow convergence near the optimum. The commonly used back-
propagation learning in neural networks is one example employing this gradient 
direction. 

(2) Gaussian - Newton direction, use the inverse of Hessian matrix, H(0), of the system 
as M(0), i.e., 

M(0) = H"'(0) (4.17) 

where the Hessian matrix H(0) is 

H(0) = 
np np 2 -

^ T(t,0)A-1«PT(t,0) + £ ^ - f A-'e(t,8) 
t=i t=i 

(4.18) 

It is notice that the second derivative term in above equation is in fact a tensor, 
which makes the estimation of H(0) in the 'true' Gaussian-Newton direction more 
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complex. This complex second derivative in the estimation of H(9) is, however, 
often not taken into account. Hence, for simplicity, a modified Gaussian-Newton 
search direction, using an approximation of the Hessian matrix, also called Fisher 
information matrix R(9), can be an alternative neglecting the second derivative of 
Eq.(4.18). This results in the following: 

(3) modified Gaussian - Newton direction, 

M(9) = R"1(0) and R(8) = 
np 

]£^(t,e)A-1^T(t,e) 
t=i 

= H(9) (4.19) 

The parameter updating method based on this modified Gaussian-Newton direction 
is also termed Quasi-Newton algorithm, which has better convergence performance 
than the steepest-descent algorithm at the expense of increased complexity. It is 
noted that, in addition to the diagonal block elements, matrix R(9) has other 
elements which exist over the entire matrix. A more simplified version of matrix 
R(9) can be made by merely making use of the diagonal block elements of R(9) and 
let the off-diagonal block elements be zero. This is termed parallel prediction error 
algorithm by [7] [10] .In contrast to the 'full' R(9) matrix, this simplified matrix 
R(9) increases the computational efficiency and is a good compromise as compared 
to even further simplifications as, e.g., Eq.(4.16). 

(4) Levenberg - Marquardt direction, 

M(9) = H\Q) and H(9) = 
np 

2«P(t,9)A_Vr(t,9) + ÔI 
t=i 

(4.20) 

where 8 is a small positive value and the identity matrix is with appropriate 
dimension. The term 81 is introduced to avoid singularity of the Hessian matrix. 

The iteration procedure starts with initial estimates of the unknown parameters, 9^, and 
updates the parameter according to Eq.(4.15) based on Eq.(4.13) and Eq.(4.16) - Eq.(4.20), 
using all the observed samples until the minimization of Vnp is reached. Since this iteration is 
done off-line, it can be regarded as a batch prediction error learning algorithm. We will 
denote these off-line estimates of the parameter as 8np. 

4.3.2 Recursive prediction error learning 
In case we deal with a time-variant system, or applications of on-line identification, the above 
process of updating the parameter must be recursive. The consequence is that the recursive 
methods cannot be expected to determine the off-line estimates 8 . Instead, one has to be 
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content with recursive approximations to the 6 . In the following derivation, we will focus 

on the modified Gauss-Newton direction where the search direction M(6) is represented by 
the inverse of the approximated Hessian, R_1(6), as defined in Eq.(4.19). 

Now, consider that t sampled data (k = 1, .. , t) are available, the objective function then 
becomes 

vt(e)=i-^eT(k,e)A-,e(k,e) (4.21) 
k-l 

Let O(t-l) be the estimate at time t-1. Our goal is to find an estimate 6(t) that can minimize 
the objective function Vt(6) based on the previous estimation ê(t- l) . This means that the 
approximations of M(6) and V',(6) (the gradient of Vt(6)) in the next update equation, similar 
to Eq.(4.15), are also both evaluated based on the estimate B(t -1 ) at time t-1. 

ê(t) = ê(t -1)+-KO • [ v ' t (ô(t -1))]"1 • [-V t (ê(t -1))] (4.22) 

where matrix M(ê(t-1)) is replaced by |v" t(0(t-l)) | and V"t(ê(t-1)) means an 

approximation of the second derivative of Vt(6) based on observations up to time t. If we 
denote the approximation of second derivative V' ' t (ê(t -1)) by R(t), then the update equation 
is written as 

ê(t) = ê(t - 1 ) + m • R-1 (t) • [-v t (è(t -1))] 

From Eq.(4.21), the derivative of V,(0) with respect to G, V',(G), can be obtained. 

V t , ( 0 ) =£ae^)A_ l e ( k 0 ) 

(4.23) 

k=l 

(4.24) 

Similar to Eq.(4.13), if the sensitivity derivative (a dxnb Jacobian matrix) is defined as 

^(1,9) = \ry] ( = -
"de" 
d9 (4.25) 

then V't(9) can be represented recursively, 
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V\ (0) = X ^ % ^ A-'eOcO) = - £ *P(k,9)A-1e(k,9) 

t-i 

= - 2 m0)A_ 1e(k,0)- «P(t,0)A_1e(t,0) (4.26) 
k= l 

= Vt.1(0)-'P(t,0)A-1e(t,0) 

In order to evaluate Eq.(4.23), we have to introduce several approximations. First we assume 
that the next estimateè(t)is to be found in the vicinity of 9(t-l) . This assumption is 
reasonable if t is large. Then we assume that estimate ê(t—1) is indeed the optimal estimate at 
timet- 1, suchthat 

Vt.1(Ô(t-l)) = 0 (4.27) 

Hence, according to the above assumptions and Eq.(4.26), the gradient V't( 8(t -1 ) ) becomes 

V't (0(t -1)) = V M (0(t -1)) - ¥(t,0(t -1)) AMufa - D) 

= -VitMt - l))A_1e(t,0(t -1)) (4.28) 

= -»P(t)A-1e(t) 

where Y(t, Ô(t -1 ) ) and e(t, ê(t -1 ) ) are denoted by ¥(0 and e(t), respectively, for short. 

The approximation of the Hessian matrix R(t) at 0 = 0(t -1) based on t-1 observations can be 
expressed in a recursive manner together with the gain factor, y(t). I.e., 

R(t) = R( t - l ) + Y(t)[^(t)A"1,PT(t)-R(t-l)] with initial R(0) = R0 (4.29) 

As mentioned above, the covariance matrix A based on the true parameter 0O is the optimal 
choice for weighting in the objection function Vt(0). However, this optimal covariance is 
typically unknown because the true 0O cannot be obtained. Consequently, a reasonable 
approximation of the covariance, Â(t), has to be estimated recursively in a similar fashion as 
in Eq.(4.29), 

Â(t) = Â(t -1) + Y(t)[£(t)e(t)T - Â(t -1)] (4.30) 

In order to avoid the inverse of R in Eq.(4.23), a more convenient algorithm can be obtained 
from the recursive form of Eq.(4.29) by applying the matrix inverse lemma, i.e., if we 
introduce 
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P(t) = >y<t)R'1(t) (4.31) 

as an approximation of the inverse of the Hessian matrix. Applying the matrix inverse lemma, 
we obtain the recursive expression of P(t), together with the 'forgetting factor', X.(t), as below. 

P(t) = T^-{P(t-1)-P(t-l)«F(t) [À(t)Â(t) + «FT(t)P(t-lmt)]-1 ¥T(t)P(t-1)} (4.32) 

Moreover, using this expression for P(t), we can further write, 

L(t) = Y(t)R'1(t)'P(t)Â-1(t) 

= P(t)Y(t)A-1(t) (4.33) 

=p(t - i)*(t)[X(t) AW+«FT ©pa - î m o r 1 

Hence, the recursive prediction error algorithm based on the above derivation is summarized 
below [44] , 

e(t) = y(t)-y(t) 

Â(t) = Â(t -1) + Y(t)[e(t)e(t)T - Â(t)] 

S(t) = Mt)Â(t) + »PT(t)P(t - l)^(t) 

L(t) = P(t-l),P(t)S-1(t) ( 4 3 4 ) 

Ô(t) = Ô(t-l) + L(t)e(t) 

P(t) = T^-[P(t-l)-L(t)S(t)-1LT(t)] 
Mt) 

When employing the recursive prediction error method, one must be aware that the purpose of 
real-time identification is to track time-varying parameters. However, in the presence of noise, 
it is impossible to accurately follow parameters that change too fast. Obviously, a tradeoff 
exists between tracking ability and noise sensitivity and only slow time variation of the 
parameters can be achieved by recursive identification. If it is known beforehand which 
parameters are time-variant, it has been suggested [44] that the forgetting factor, X(t), in 
Eq.(4.34) could be generally chosen as a constant smaller than 1, and the gain sequence, y(t), 
is formed as a suitable function of X and t. In this case y(t) decreases to zero as t goes to 
infinite. Usually, however, the variation property of parameters in a system is not exactly 
known to us. In such a circumstance, we could start to treat it in a time-invariant or slowly 
varying manner. In the following examples where the time variability is to be studied, we 
have assumed that the systems have slow varying dynamics, and this is particularly obvious in 
the example of plant growth in agriculture. 
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Some initial values of the recursive prediction error learning are set as below. The initial 
value of the estimated covariance matrix of prediction error, Â(0), is set as 0.1x1 (nb by nb 
identify matrix). Matrix P(0) is initialized as a d by d diagonal matrix with a diagonal 
element of 10000; where d = dim (0), the dimension of 9 depends on the choice of the 
parameter set. It is desirable to set the forgetting factor A,(t) < 1 at the initial stage in order to 
achieve rapid adaptation and then let A,(t) -» 1 as t -» °°. Hence the forgetting factor, X(t), and 
the gain sequence, y(t), are chosen as [44] 

a.(t) = X<A(t-l) + (l-Ao) (4-35) 

7Ct)= 1 — (4.36) 
* ' X(t) + Y(t-D 

with initializations of Xo = 0.99 and X(0) = 0.95. 

4.4 EXAMPLES 

In this section, two examples are presented to demonstrate the implementation of the 
recursive prediction error method in the NUFZY system for identification of nonlinear MISO 
systems. The parameter sets of the NUFZY system that are desired to be tuned can be defined 
as either 9 = G$, or 0 = [BS c]T, or 0 = [05 c a]T. Among these options, our previous studies 
showed that good approximation could be achieved by the mere tuning of consequent weights 
(i.e. 9 = w, when only one output variable is considered) [68] . Hence, the next two examples 
presented here are based on using the recursive prediction error algorithm to tune the 
consequent weight parameters only. In the initialization of 0(O)( = w^), we compare two 
approaches. One uses the consequent weights w0is, that are first identified by orthogonal least 
squares method with a batch of training data set, as w^. The other uses zeros as w^, i.e., all 
parameter values starting from zero. 

4.4.1 Example 1 - synthetic nonlinear system 
This example is equivalent to example 4 of [48] . The dynamical system is given as 

v(k +1) = xix2x3x5(x3 ~ 1 ) + x4 (4.37) 
1 + x\ + x\ 

where [jcl5 JC2, x3, x4, x5] = [y(k), y(k-l), y(k-2) , w(k), «(k-1)]. In this example, the NUFZY net 
is employed to generate a one-step-ahead prediction y(k+l). First, 500 training data points 
are generated by the plant Eq.(4.37) with a random input signal uniformly distributed in the 
intervals of [-1,1]. These training data are used to train the NUFZY model with the 
orthogonal least squares method in order to get a trained output weight, denoted as wok. These 
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weights Wou can be regarded as representing the optimal parameter values from this batch of 
training data. The number of membership functions is assigned as two to each input variable. 
Hence, the total number of fuzzy rules will be 32 initially. After the orthogonal least squares 
training, it is found that only 26 rules are significant. These weights are then used as 
initialization of the RPE method for the subsequent validation step (i.e., w^ = w0is) where 
1000 pairs of data are generated according to Eq.(4.37), based on an input sequence w(k) 
given by 

«(k) = 
s in (—) 0<k<500 

252nk 27dc <438> 
0.8 sin ( )+0.2 sin (-!=•) 500 <k< 1000 

250 25 
Figure 4.1 shows the result of the validation. It can be seen that the NUFZY model gives 
excellent prediction. Figure 4.2 presents the variation of the consequent weights of the 
NUFZY model tuned by the RPE method during validation. 

On the other hand, if validation is initialized with initial weights set to zero (i.e. w^ = 0, a d 
by 1 column vector with zeros, rather than w0i5), a similar result (not shown) as Figure 4.1 by 
RPE tuning is obtained but with a little less accuracy than the previous one. However, the 
variation of the tuned weights is quite different from that shown in Figure 4.3. At the 500'A 

time step, the weights are clearly readjusted as input signals with different frequency come in. 
This implies that the RPE initialized with 0 was trapped on some local minimum and the 
tuning proceeds only locally. When the frequency of the input signals changes, the RPE 
readjusts these weights to another (local) minimum in order to get a good fit. This example 
demonstrates that it pays to initialize the RPE tuning with parameters obtained off-line from a 
good excitation signal. However, if not, the NUFZY model still fits the system well on that 
local excitation signal. 

In [48] a parallel model (i.e. the past model predictions are components of the input vector) 
was identified which requires 100,000 steps of training. In order to compare with the 
aforementioned simulation, this parallel approach is also adopted for the NUFZY model. As a 
result, a very good prediction is obtained as well (see [68] ) and the NUFZY model accuracy is 
far superior than that of an artificial neural network trained by back-propagation used in [48]. 
In addition, the NUFZY model requires less training efforts and has a lower model 
complexity. For the training phase, 500 samples are used in one step using the OLS 
identification in contrast to the 100,000 steps of back-propagation adaptation used in [48] . 
With respect to the model complexity, only 32 weights have to be adjusted in the NUFZY 
networks while 320 weights were used by them. The key is that good performance can be 
achieved by just tuning the output weights of the NUFZY model. This makes it very appealing 
for fast identification since the problem then is linear-in-the-parameters. 
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Figure 4.1: The predicted output of the NUFZY model superimposed on the 
desired output in a time-invariant case. Solid line - the desired 
output ; dashed line - the predicted output of the NUFZY model. 
Note, they are hardly distinguishable. 

T h e variation of parameters during the R P E identification (time—invariant case) 
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Figure 4.2: The variation of the identified weight of the NUFZY model during 
the validation in the time-invariant case, when initial weighting 
values are set to w0is. 
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T h e variation of parameters during the R P E identification (time—invariant case) 
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Figure 4.3:The variation of the identified weight of the NUFZY model during 
the validation in the time-invariant case, when initial weighting 
values are set to 0. 

In order to study time variability, the dynamical system is forced to change its status from 
Eq.(4.37) to the next status governed by 

V(k + D= •*•! X2XiX$ \Xi *•)+ X4 

Z + xl+xl 
(4.39) 

where, as before, [xu *2, *3»
 x^ xsi = Cy(k)> yte-l), y(k-2) , «(k), n(k-l)]. The following 

procedure was used to test this time-variant case. The training data are generated as before 
with a random input signal uniformly distributed in the intervals [-1,1], but the first 250 
training points were generated by following Eq.(4.37) and the remaining 250 by following 
Eq.(4.39), thus simulating a sudden change in parameters. Next, a validation data set is 
created by first generating 300 points according to Eq.(4.39) and then another 700 according 
to Eq.(4.37), which means that the system returns to its original status. The data are arranged 
in this way so that the adaptation ability of RPE method can be examined. The validation 
result of the RPE on-line tuning initialized with w0is shows that good prediction is still 
attained as shown in Figure 4.4. It is also observed that the RPE tuning converges fast to a 
new working point when the system parameters switch to other values at the 300"1 time step. 
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Figure 4.4: The predicted output of the NUFZY model superimposed on the 
desired output in a time-variant case. Solid line - the desired output 
; dashed line - the predicted output of the NUFZY model. Note, 
they are hardly distinguishable. 

4.4.2 Example 2 
production 

prediction of tomato dry weight 

Agricultural plant growth in a conditioned environment inherently represents a system with a 
nonlinear character and some undetected time-variant parameters. In this example, dry matter 
production of tomatoes as a function of environmental factors, such as temperature, C02 

concentration, and radiation, is considered. Data are from the experiments in Wageningen [2] 
where three experiments have been done on three different growing seasons in 1988. Every 7 
- 10 days during these experiment periods, the dry matter amount of the tomato plants is 
measured by destructive measurements. The total dry weights (TDW) are used for the 
simulation model. 

The goal of NUFZY modeling is to identify the dynamic growing process of tomato and to 
predict the total dry weights of tomato at the next sampling date. In other words, a NUFZY 
model was applied to describe the unknown relationships between the environmental factors 
and plant growth as given below: 

y(k + l)=/(D(k),y(k)) (4.40) 

where D(k) represents the disturbances to the system. In this case they are the averaged 
radiation (RAD) and averaged ambient C02 concentration of the greenhouse between the 
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sampling intervals from t(k-l) to t(k). y(k) and y(k +1) represent the measured and predicted 
total dry weights (TOW) of tomato at sampling dates t(k) and t(k+l), respectively. The 
function ƒ(.) represents the unknown dynamics of the plant. The NTJFZY model then 
approximates Eq.(4.40) as 

TDW(k +1) = ƒ NU^Y ( RAD(k), C02(k), TDW(k) ) (4.41) 

Data of experiment 1 and experiment 3, in total 31 tuples (RAD,C02,TDW), are used for 
training and to generate initial weights for the validation and on-line prediction with the data 
of experiment 2 (15 data pairs). Owing to limited data length, the RPE tuning of the NUFZY 
model is done by feeding these data to the NUFZY model repeatedly up to 5 times to tune the 
output weights, which are initially set to zero. At the end of the training process, it is found 
that the best identified results were obtained by NUFZY(3x4x2:12;Gau). This notation means 
that 3, 4, and 2 Gaussian membership functions are assigned to input variables RAD, C02, 
and TDW, respectively. The results of training and on-line prediction are depicted in 
Figure 4.5. 
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Figure 4.5: The measured TDW of tomatoes (circle-solid line) with 95% confidence 
interval (dotted line) and NUFZY(3x4x2:24;Gau) predicted TDW (star-
solid line) 

120 
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From Figure 4.5, it can be seen that the predicted TOW by the NUFZY model is located 
within 95% confidence interval of the measured TDW for both initialization and on-line 
prediction, showing that a good prediction of TDW has been achieved. This example exhibits 
the feasibility of RPE tuning for the NUFZY model in a real world application. 

4.5 CONCLUSIONS 

In this chapter, sensitivity derivatives have been derived for the NUFZY system, which 
enables the employment of the recursive prediction error method for tuning of the NUFZY 
model and the identification of the unknown dynamic nonlinear system in an on-line fashion. 
The recursive prediction error method demonstrates that good model accuracy can be 
achieved by just tuning the consequent weights of the NUFZY system. Since this problem is 
linear-in-the-parameters, it is convenient to apply an orthogonal least squares method to the 
first batch of data, in order to obtain a set of optimal weight parameters as initialization for 
the recursive prediction error method, thus enabling a faster adjustment for on-line tuning. 

Although the results of tuning the parameters of c and a in the antecedent part of the NUFZY 
system are not presented in this chapter, it is worthwhile to mention that simultaneous tuning 
of all parameters does not give much improvement on prediction, as compared to merely 
tuning the consequent weights of the NUFZY system, see [68] . This is a significant point to 
support us in exclusively adjusting the consequent weights, allowing fast tuning of parameters 
for on-line application while achieving comparative model accuracy. Moreover, it appears that 
if parameters c and o are tuned at the same time, they may get values that are outside the 
expected ranges, making the results difficult to interpret. To this point, an interior penalty 
method used in [36] can be an alternative to tune parameters c and a bounded in some 
reasonable domains after tuning. However, this leads to a complicated nonlinear parameter 
optimization problem that needs more computational efforts to deal with. As such, it is 
conceivable that one will favor the simpler tuning process, provided the similar model 
accuracy can be achieved. 
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5. KNOWLEDGE 

INTERPRETATION FROM 

TAKAGI-SUGENO 

FUZZY MODELS 

Sariputra, matter is not different from emptiness, and emptiness is not 
different from matter. Matter is emptiness and emptiness is matter. So too 
are sensation, recognition, volition and consciousness. 

- Heat of the Prajna - Paramita Sutra 

77 
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5.1 INTRODUCTION' 

The commonly used Mamdani type of fuzzy rule has advantages both with respect to the 
incorporation of a priori knowledge, as well as with respect to interpretability of the rules, 
because both the antecedent and consequent of rules are expressed linguistically, so that the 
Mamdani type of fuzzy rule is more intimate to the human's intuitive knowledge. 
Nevertheless, its main disadvantage is that information representations differ from one expert 
to the other. This will cause consistency problems in applications as it is difficult for the 
system developer to judge which representations should be taken and how to integrate them. 

Alternatively, the Takagi-Sugeno (denoted as T-S) type of fuzzy rule provides a means of 
simple calculation in a fuzzy system as it makes use of a linear combination of the system 
inputs (or a constant term) as its consequent and then the weighted average output is obtained 
based on all fuzzy rules. Yet, the interpretation of the T-S fuzzy rule is troublesome since the 
consequent is expressed by a linear function of system inputs, which does not help much to 
understand the global behavior of the system, not to mention a meaningful linguistic 
description of how the system works. Also, for T-S fuzzy rules the incorporation of qualitative 
information is difficult because most qualitative information is neither represented in a crisp 
form nor as a linear function. Hence, the fuzzy system using the T-S fuzzy rules is mainly 
applied for identification and to construct the corresponding fuzzy model from experimental 
data without utilizing much qualitative information. The very use of qualitative information of 
the T-S fuzzy model is merely limited to the determination of the number of fuzzy sets in the 
antecedent part of the fuzzy rule (i.e., the partitioning of input space of a fuzzy rule base) and 
the initialization of these parameters. 

With interpretability in mind, we propose to associate a set of parameters, called consequent 
significance level (CSL) p,j, to the consequent fuzzy sets of a MISO fuzzy system with 
Mamdani fuzzy rules, in order to overcome the above mentioned inconsistency problem. The 
CSL parameter describes the degree of confidence of the contribution of the ƒ* output fuzzy 
set to the consequent of the x'h fuzzy rule (where indices r and j will be discussed later). By 
introducing the concept of the consequent significance level, some interesting results are 
obtained. First, an extended Mamdani (denoted as EM) type of fuzzy rule can be established. 
It is found that the ordinary Mamdani fuzzy rule becomes a special case of the EM fuzzy rule 
when the CSL parameter is taken as either unity or zero. Second, under some conditions, the 
output of EM fuzzy rules can be related to that of T-S fuzzy rules. This implies that the crisp 
consequent of the T-S fuzzy rule can be transformed into a Mamdani like fuzzy rule - with an 
interprétable set of linguistic terms - associated with a CSL parameter. More specifically, the 
linear function of system inputs (or, a crisp real value) in the consequent of the T-S fuzzy 
model can be transformed to a linear function of outputs with the CSL parameters as 
coefficients. Hence, the T-S fuzzy rule becomes linguistically interprétable in a similar way as 

* This chapter is an extended version of the paper [71] , titled 'On the interpretation of two types of 
fuzzy rules' in Proceedings of the Second International ICSC Symposium on Fuzzy Logic and 
Applications ISFL-97, Zurich, Switzerland, February 12-14, 1997, pp 240-246. 
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the extended Mamdani fuzzy rule. The above transformation can be realized because the fuzzy 
model has dual representations, i.e., the output can be represented by a linear function of 
either the system inputs, or, the system outputs. This idea will be purified in this chapter. 

Without loss of generality, we will confine ourselves in the following discussion to the multi-
input single-output fuzzy system. In section 5.2, a comparison will be made between the T-S 
type of fuzzy rule and fuzzy model, and the ordinary Mamdani type of fuzzy rule and fuzzy 
model. In section 5.3, we will introduce the newly defined parameter and the resultant 
extended Mamdam' type of fuzzy rules. The link of the EM fuzzy rules to the T-S fuzzy rules 
is presented in section 5.4. A simple synthetic example in section 5.5 illustrates how the 
identified T-S fuzzy rule can be transformed to be interprétable as the EM fuzzy rule. Finally, 
the conclusion and discussion are addressed in section 5.6. 

5.2 COMPARISON OF TWO TYPES OF FUZZY RULES 

AND THEIR MODELS 

In this section, we will first describe the T-S fuzzy rule and model used to carry out fuzzy 
reasoning. Then a more detailed description of fuzzy inference is given for the Mamdani type 
of fuzzy rule in order to pave the way for the consequent significance level parameters to 
construct the extended Mamdani fuzzy rule in the next section. 

5.2.1 Takagi-Sugeno type of fuzzy rule and model 
Consider a MISO fuzzy system, then a first-order Takagi-Sugeno type of fuzzy rule is 
expressed as 

/F : IF X! is Ar
kl(xO AND .. x, is Ar

kl(x,) AND .. xni is Ar^xJ 
ni 

THEN y = al + ̂  afx, (5.1 .a) 
1=1 

or in short format 

ni 

K{1S- IF {x, is A^x,)} THENy = ar
0 + ]T a,rx, (5.1.b) 

i=l 

The consequent of an individual fuzzy rule is formed as a linear function of system inputs 
together with a set of parameters, a\, a\, .., ar

m, which need to be identified. In case of the 
zero^-order T-S fuzzy rule, which gives (in short) 

J f^: IF {x, is Ar
kl(x,)} THENy = wr (5.2) 
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the real number wr in the consequent of the T-S fuzzy rule represents a singleton membership 
function, which is hardly interprétable linguistically. 

Given a set of inputs x (e Rni), for all R fuzzy rules, the aggregated output, denoted as y(Ts), 
employing the weighted sum of the consequent part defined in Eq.(5.1), results in 

R ni 

Xvr(x)K+£ai
r
Xi) R 

y c r s ) « = ^ R = £ v r ( X ) ( a5+£a 1
r x i ) (5.3.a) 

£vr(x) -i '=• 
r = l 

or, in the case of a zero""-order T-S rule (Eq.(5.2)) 

R 

£v r (x) -w r R 

y(TS)(x)=^LR = £ v r ( x ) w r (5.3.b) 
£ v r ( x ) - i 
r= l 

where vr(x) and vr(x) represent the firing strength and normalized firing strength of the 
antecedent part of the r'A fuzzy rule, respectively. This firing strength vr is obtained as a result 
of a T-norm operation for the linguistic AND connection in the antecedent that uses the 
system inputs as arguments of membership functions. It can be defined either by min 
operation or product operation, 

vr(x) = T(n (Xl),---,u. (xni)) 
rtkl rtlcni 

min(n (Xl), -,\i (xni)) 
A k l Akni ( 5 4 ) 

ni v~ ' ' 

Once the term vr is obtained, Eq.(5.3.b) becomes a linear regression, so that parameters wr's 
can be identified by the least squares method. Analogously, the parameter set in the linear 
function a"s (Eq.(5.3.a)) can be found by the least squares method too. It is also noted that the 
defuzzified output is obtained by taking the summation of all R fuzzy rules as an aggregation. 
This method is referred to AS fuzzy-mean (FM) defuzzification [30] . The advantage of the T-S 
type of fuzzy rule is that the defuzzified output is linear in the parameters, facilitating 
mathematical analysis and calculation. Yet, the weakness is that the consequent cannot be 
interpreted easily. The rest of this chapter will focus only on the case of the zero""-order T-S 
fuzzy rules. 
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5.2.2 Mamdani type of fuzzy rule and model 
The Mamdani type of fuzzy rule mainly differs from the T-S fuzzy rule by its consequent part, 
where the consequent is expressed by fuzzy sets, rather than crisp values or linear functions of 
system inputs. Assuming that it has the same antecedent as that of the T-S rule, it is typically 
expressed as 

I?iM): IF x, is Ar
kl(x,) AND .. x, is Ar

kl(Xi) AND .. AND xni is A'yJ^ 

THEN y i s B » (5.5.a) 

or in short 

#(M): IF {x^sA1^} THEN y is B'fy) (5.5.b) 

where output y has Nb fuzzy sets indexed by j , for j = 1, .. , Nb. The notation Brj(y) indicates 
that in rule r the output belongs to the j " 1 linguistic set of y. Also, Br(y) refers to the linguistic 
set of rule r (irrespective of j), and Bj(y) refers to the linguistic set j of y (irrespective of r). It is 
obvious that the consequent of some fuzzy rule Br(y), r e [1, R], may share the same fuzzy set 
Bj(y)> j 6 [1> Nb], provided Nb < R. The following definitions will be used. 

(D.l) cardinal set CR is defined as a collection of the numbers of fuzzy rules indexed by 
subscript r. CR = {1, 2,.., r,.., R} 

(D.2) cardinal set CB is defined as a collection of the numbers of output fuzzy sets 
indexed by subscript j . CB = {1, 2,.., j , . . , Nb } 

(D.3) cardinal set CJ; indexed by subscript rj* and Cj c CR, is defined as a collection of 
those fuzzy rules, whose consequent fuzzy sets, Br(y)'s, are identical, 
q = { i,* 11,* e CR such that Brj*(y) = Bj(y)} ; V j e CB 

(D.4) complement cardinal set, C ; , defined as a set which is complementary to Cj, is 

given by C; = CR - Q 

(D.5) cardinality of set Cj, denoted by NCj, is defined as the total number of its elements 
and is subject to 

£ N C J = N c l + N c 2 + - + N c N b = R 

j=i 

(D.6) indexing function, I(r), is defined as a function which returns the subindex 
(subscript j) of the fuzzy output set Brj(y) with respect to the r* fuzzy rule, i.e., 
I(r) = j * e CB such that B » (or, Br(y)) = BI(r)(y) = Br(y) = Bj(y) 
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Using definition (D.6), the consequent fuzzy set Brj(y) in Eq.(5.5) can be denoted as Bj*(y) via 
the indexing function I(r)t. Since the indexing function I(r) maps the causal relation of a 
consequent fuzzy set in the r'* fuzzy rule to its correct subindex in CB, it is needed to define 
both the cardinal sets CR and CB. Hence, in applying the Mamdani fuzzy model, it is 
necessary for the designers to define the output fuzzy sets in advance, which is implicitly 
linked to the fuzzy rules via the indexing function. 

The following example explains the use of the above definitions. Suppose we have 6 rules (r = 
1,.., 6) and three output fuzzy sets ('small', 'medium', and 'large' denoted by Bi(y), B2(y) and 
B3(y), respectively, j = 1, 2, 3). Rules 1, 3, and 4 have the same consequent 'medium', B2(y), 
and rules 2 and 6 correspond to consequent 'large', B3(y), and rule 5 has consequent 'small', 
Bi(y). Hence 

C1=(r1*|Bri*(y) = B1(y)} = {5}, C,= {1,2,3,4,6}, Ncl = 1. 

C2={r2*|Br2*(y) = B2(y)} = {l,3,4}, C2= {2,5,6}, Nc2 = 3 

C3={r3*|BV(y) = B3(y)} = {2,6}, C3= {1, 3,4,5}, Nc3 = 2 
3 

^ N c j =1+3+2 = 6; and 

1(1) = 2; 1(2) = 3; 1(3) = 2; 1(4) = 2; 1(5) = 1; 1(6) = 3. 

With the indexing function Eq.(5.5.b) can be rewritten as 

Är
(M): IF {x, is A'ufri)} THEN y is B^y) (5.5.c) 

In order to obtain the defuzzified output of the Mamdani fuzzy model, some additional 
assumptions of the output fuzzy set Brj(y) are made to simplify the calculation of 
defuzzification. 

(A.l): Brj(y) is a normal fuzzy set; i.e., max{nB
rj(y)} = 1 and M-ŝ y) £ [0,1]. 

(A.2): Brj(y) has compact support (CS) in the domain of Y, the universe of discourse of 
output y; i.e., CS(Brj(y)) = { y e YJ C Y | \Xn,(y) > 0}. For a compact support Brj(y), 
the argument y is only defined in a subdomain Yj, a finite subset of Y. Hence, the 
area of B'/y), f a , (y)dy , becomes finite integratable in the subdomain Yj. 

JY, BJ 

t CR and C B can be linked as followed, 

I ( r )=j*eCB 

CR (with element r) ^ CB (with element j) 

C,= {r j*eCR) 
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(A3): The areas of each compact support fuzzy set Brj(y) are identical. For example, if 

area(Br(y)) is defined as ar = [ u (y)dy (with respect to the r'h fuzzy rule), then the 
Jy B 

following equality exists: a1 = a2 = .. = ar = .. = aR. Analogously, the area(Bj(y)), 

defined as a, = f nB (y)dy (with respect to the j * output fuzzy sets), has the similar 

equality: ai = a2 = .. = aj = .. = aNb 

It is noted that if Brj(y) is symmetrical, then the location of the centroid of a compact support 
fuzzy set Brj(y) projected onto Y, equals to the point where the membership function of |Vj(y) 
reaches its maximum value. This point, will be denoted as zr

J; (or, zr or zJ; in the following) is 
a numerical representation of Brj(y) and is defined by zr

J = { y e Yj I max((xB
rj(y)) = 1}. When 

there are several maximum values (such as trapezoidal membership function), the location of 
the point which takes the mean of these maximal points is taken as zrj. Due to property of 
compact support in Brj(y), one merely has to take the mean value of Yj as its zrj, provided 
Brj(y) is symmetrical. Hence, according to (A.2) - (A.3), the first moment of Brj(y), 

f )i (y)ydy , can be just represented by arj-zrj.(or, arzr or aj-Zj in the following). 
JY J 

When implementing Mamdani fuzzy rules, a resultant consequent fuzzy set B'(y) shall be 
calculated in order to carry out the fuzzy inference. B'(y) can be obtained in two ways. One is 
that B'(y) is aggregated based on all R fuzzy rules (using fuzzy sets denoted as Br(y)); the 
other is based on all the Nb output fuzzy sets (using fuzzy sets denoted as Bj(y)). In the 
following, we will discuss these two aggregation methods. 

First, when B'(y) is aggregated based on all R fuzzy rules, using R fuzzy sets Br(y), it can be 
expressed in terms of a membership function |%(y) as 

^ • ( y ) = U I c c ( v r « ^ B ' ( y ) ) 

I (5.6) 
= Sa(vr(x)oHBr(y)) 

r= l 

where I c c indicates a fuzzy implication based on classical conjunction performed by '°', a T-
norm operation; see Chapter 2; whereas Sa is a S-norm operator for aggregation and |V(y) is 
the membership function of the consequent fuzzy set Br(y) in the r"1 fuzzy rule. (Note that 
He'(y) usually has a complicated shape.) 

When the sum-product inference method is used to replace Sa and °, the membership function 
(j.B'(y) of B'(y) in Eq.(5.6) becomes (Note, in terms of R fuzzy sets Br(y)) 

R 

»B.(y)=^vt(x)-yLBr(y) (5.7) 
r= l 
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Next, we define the following properties of Br(y). 

(D.7) active area of Br(y), denoted as ar 

a r = J Y My> d y 

(D.8) first moment of B'(y), denoted as mr 

m r=J nB,(y)ydy=ar-zr 

where zr is the location of centroid of Br(y) projected on Y under the assumption (A.3). If 
assumption (A.3) is dropped, (D.8) usually defines z'. From definitions (D.7), (D.8), and 
Eq.(5.7), one can derive the resultant active area, a', and the resultant first moment, m', of 
B'(y) as 

a' = j B̂ (y)dy = J (£v r(x)-|iB , (y))dy 
r=l 

R R 

= X v ' ( x H j Y M y ) d y ) = £ v ' ( x ) - a r 
'"' R <5-8> 

m ' = j Y ^B- ( y ) y dy=JY
 ( S V r (x) ' ̂ B - (y^ y dy 

r=l 

R R R 

= £v r (x ) ( J nBr(y)ydy) = £ v r ( x )m r =^v r ( x ) a r z r 

(5-9> 

r=l r=l r=l 

Eq.(5.8) and Eq.(5.9) represent a weighted sum of active area and first moment of B'(y), 
respectively. Hence, based on the above assumptions (A.l) - (A.3), the defuzzified output of 
such Mamdani fuzzy rules, denoted as y(M), is then obtained by 

, I > r ( * ) a r z r
 R 

y (M)(x)=-m-=^L = £v r(x)-z r (5.10) 
r=l 

r=l 

where vr is defined as in Eq.(2.41). From Eq.(5.10), it is interesting to note that the system 
output of the ordinary Mamdani fuzzy model forms a linear function of zr, a numerical 
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representation of the output fuzzy set Br(y) under above assumptions. This linear function is 
R 

subject to the constraint V ? (x) = 1, as similar to the zero'A-order T-S fuzzy model. 

We will next derive the resultant output fuzzy set B'(y) from Nb output fuzzy sets Bj(y). This 
will contrast with the derivation of Eq.(5.8) and Eq.(5.9), which are based on R fuzzy sets 
Br(y). The membership function u,s(y) of B'(y) is modified from Eq.(5.6) based on the Nb 

fuzzy sets Bj(y) together with definitions (D.3) and (D.5), 

M-B(y) = SR
a(vr(x)oU,Br(y)) 

fNb NCJ (5.11) 
= Sao[(Saiv ,(x))on (y)] 

It can be seen that Eq.(5.11) performs two steps of aggregation through the outer and the 
inner S-norm aggregations, Sao and Sa,. Since there exist predefined ownership relations that 
map R firing strength sets into Nb classes of output fuzzy sets (see definitions (D.3)-(D.6)), 
first those firing strengths vr's (in total Nq) which have the same consequent part Bj(y) can be 
aggregated by the operation Sa„ together with u,Bj(y) to perform the fuzzy implication by a T-
norm operator '°'; whereas Sao finally aggregates results from all Nb output fuzzy sets. When 
Sao and S0, are chosen as summation and the T-norm operator, °, as algebraic product, 
Eq.(5.11) becomes (in terms of Nb fuzzy sets Bj(y)) 

N b NC J 

^• (y)=I [ ( Iv I j t (x ) ) . | iB j (y ) ] (5.12.a) 
j=i f j*=i 

where the term \ " vr *(x) indicates the sum of all vr's which have the same output fuzzy set 
r j»=l ' 

Bj(y). It can also be denoted by ßj? with the following definition 

(D.9) implicated DOF (degree of fulfillment), ft 
Ncj N b N b N c j R 

ßj(x) = X v ( x ) with property £ ß i W = £ ( Jv,..(x))= Jv r (x) 
rj*=l j=l j=l r j*=l r=l 

Hence, Eq.(5.12.a) can be rewritten as 

^B(y)=XPj (x)^BJ(y) (5.12.b) 
j=l 
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Similarly, we can also define the active area and the first moment of Bj(y), respectively, 

(D.10) active area of Bj(y), denoted as aj 

a J = L ^Bj(y)dy = f HBjûOdy+f o-dy 
j j 

= IY/Bj(y)dy 

(D. 11) active first moment of Bj(y), denoted as rrij 

m j = f i^B,(y)ydy = f u-B,(y)ydy 
J
 J Y ' JYJ > 

= a r z j 

Note, in definition (D.10), since Bj(y) has compact support in Yj and (Xßj(y) e (0,1] when y e 
Yj, therefore, |iBj(y) = 0 in the complementary domain of Y-Yj. In (D.ll), Zj is defined as the 
point where the centroid of Bj(y) projected on Y according to (D.8). Using definitions (D.9) -
(D.ll) and Eq.(5.12.b), the resultant active area, a', and the resultant first moment, m', of 
B'(y) are derived as below, 

a' = JY jiB. (y)dy = j y ( £ ßi (x) • u,B. (y))dy = £ ßj « • (Jy u.Bj <y)dy) 
j=i j=i 

Nb Nb 

= ̂ ßj(x) ( ƒ nBj (y)dy) = 52ß j(x)a j 

(5.13) 

and 

m'= f \iB(y)ydy = T ß j ( x ) a j z j (5.14) 
J Y j=i 

Hence, the defuzzified output of such Mamdani fuzzy rules, based on the Nb output fuzzy sets 
and the centroid of gravity method, is obtained by 

W * ) ™ ^ (5-15) 
a j 
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According to assumption (A.3), together with the property of ßj from (D.9), the defuzzified 
output can be simplified further to 

Î>J (X).ZJ Sßi«-*i N b 
y(M)W=J^ = ^ ^ h P ^ j <5-16-a) 

j= l r=l r=l 

if we define the term ßj as 

(D. 12) normalized implicated DOF, ßj 

SX*00 N 
ßj(X) fij J ^ i _ 

£vr(x) ^ V f ( x ) ,/=l 
r=l r= l 

Nb R 

N > - N> ß(x) 2 > ( X ) S V r ( X ) 

with property £ ß j (*) = £ ( R ) = JIT ^ = 1 

^ J=1 £vr(x) £vr(x) £vr(x) 
r=l r=l r=l 

Therefore, Eq.(5.16.a) can be rewritten as 

N b _ 

y(M)(*) = 5 > j ( x ) Z j (5.16.b) 
j=i 

From Eq.(5.16.b), it is again noted that the system output forms a linear function of zJ; a 
numerical representation of output fuzzy set Bj(y) under the above assumptions. 

This linear function is subject to the constraint V ß = i , defined in (D.12). 

We have the following remarks for the above definitions and assumptions. 

(R.l) With respect to the assumption (A.l), most applications of fuzzy systems usually let 
the fuzzy set Brj(y) be normal since it typically reflects the human intuition. Other 
non-normal fuzzy sets, like subnormal (max{ U-Brj(y)l < 1) and supernormal (max{ 
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M«rj(y)}>l}), are also possible but are rarely applied in practice since they do not 
agree to the fuzzy theory. 

(R.2) The finite subset Yj of Y is defined as a compact set and enables the calculation of 
the area of Brj(y) in practice. In addition to the symmetry property, the assumption 
that each Bj(y) has identical areas will simplify the calculation process as well. As a 
result, only the parameter zrj is needed, which can be easily determined based on a 
priori knowledge of the designers. Although the shape factors, like the bandwidth 
of HBj(y), are important in some sense, it becomes insignificant to define these 
factors 'precisely' when one is to incorporate qualitative information because the 
qualitative knowledge from human itself is essentially vague. The merit that one 
can gain is a less complex fuzzy system to be processed. In any case, a numerical 
representation of output fuzzy set, zrj, suggests that the shape factors of the output 
membership functions are insignificant under our present assumptions. As long as 
zrj is determined, the fuzzy reasoning of the Mamdani fuzzy model can still be 
realized under the above assumptions. It is noticed that the commonly used 
Gaussian type of membership function of fuzzy set Bj(y) is not compact support in a 
finite interval since its membership value is greater than zero for the whole 
universe of Y. Instead, other types of modified membership functions can be 
applied to agree with the properties of compact support, symmetry, and identical 
area. For instance, the triangular shape of membership that is generated by B-
splines functions, or, by the modified compact Gaussian function [5] as defined 
below. 

(Zj,2-Zj,i)2 

nB,(y) = " 

exp '(-1)*exp(- -4 -) ; if y e Yj = {z-x,z-2) 
( Z j , 2 - y ) ( y - Zj.i) 

(5.17) 

; otherwise 

(R.3) In most situations, the output universe of discourse Y is defined in a "bounded" way 
to agree with reality. However, at the edges of this bounded domain, a Z- and an S-
shaped membership functions may be chosen to be the most left and the right side ( 
u.Bj(y) and u.BNb(y), respectively) membership function within the bounded domain 
of Y. By moderately choosing the minimal and the maximal values of Y, [Ymin, 
Ymax], the assumption (A.2) can be satisfied. Alternatively, as mentioned above the 
B-splines function and modified compact Gaussian function can also be chosen as 
output membership functions since they are defined in finite intervals. 

(R.4) Comparing Eq.(5.10) and Eq.(5.16.b) to Eq.(5.3.a), it is found that the fuzzy 
system has a property of dual representations; i.e., the defuzzified output of the 
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fuzzy system can be represented as a linear function either of system inputs (e.g., a 
T-S fuzzy model output, see Eq.(5.3.a)), or, of system outputs (e.g., a Mamdani 
fuzzy model output, which is subject to assumptions (A.l) - (A.3), see Eq.(5.10) 
and Eq.(5.16.b)). This property, as will be shown later, offers a clue to enable us to 
link the T-S fuzzy model and the Mamdani fuzzy model. In general, the number of 
output fuzzy sets is smaller than the number of total fuzzy rules, i.e., Nb < R. When 
Nb = R, Mamdani type of fuzzy rules become Takagi-Sugeno type of fuzzy rules, 
implying that there are R linguistic descriptive levels of y, characterized by 
singleton membership functions, existing in the output domain. In such a special 
case, the consequent weight wr (in Eq.(5.2)) of the NUFZY system can be regarded 
as a singleton membership function in the output domain Y. 

(R.5) Although different aggregation methods have resulted in different representations 
of the defuzzified outputs of the Mamdani fuzzy model (Eq.(5.10) and Eq.(5.16)), 
they are equal to each other. The different representation of the zr (in Eq.(5.10)) 
and Zj (in Eq.(5.16)) can be made equivalent through the indexing function. For 
instance, zr can be transformed to Zj using the indexing function I(r), so that zr can 
be denoted as zrj, or equivalent to Zj ( because of z^j), when I(r) = j . Moreover, 
comparing Eq.(5.10) to Eq.(5.16), it can be found that the calculation of defuzzified 
output based on the aggregation of R fuzzy sets Br(y) is much easier and straight­
forward than that based on the Nb output fuzzy sets Bj(y). It can be seen that the 
DOF vr in Eq.(5.10) can be obtained directly by manipulating the inputs, whereas 
the implicated DOF ßj in Eq.(5.16) needs further processing with the predefined 
ownership relations between vr and ßj. 

From the previous analysis, it has been shown that the output of a Mamdani fuzzy model 
forms a linear function of z'j under the above assumptions, similar to the T-S fuzzy model. 
Therefore, to interpret the zero'*-order T-S fuzzy model when directly relating Eq.(5.3.b) to 
Eq.(5.10), an inconsistency might arise that makes the direct interpretation of consequent 
weight wr, in terms of zrj, become difficult. For instance, in the Mamdani fuzzy model, 
although ri and r2 indicate two different fuzzy rules, they refer to the identical consequent 
Br*j(y) (with center z^j), for r* = r! or r2. From the T-S fuzzy rule, one may have two distinct 
values of the consequent weight, wr, (= zr> j) * wr2 (= zr2j), implying zr> j * zr*j. But, from the 
Mamdani fuzzy rule one has the equality zr'j = zr^r The contradiction means that if Nb < R it 
is not possible to interpret the T-S fuzzy rule directly by an ordinary Mamdani fuzzy rule. 
Next, we will find out how to resolve it through modification of the Mamdani fuzzy rules by 
the introduction of the CSL parameter. 

5.3 EXTENDED MAMDANI FUZZY RULE AND MODEL 

In the ordinary Mamdani type of fuzzy rule, the output fuzzy sets in the consequent are 
defined by the designers. Though each rule accompanied by a specific fuzzy set reflects the 
designer's own experience concerning the problem, it seems that the Mamdani type of fuzzy 
rules without modification cannot fit well to the same problem in a different situation. 
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Usually, these predefined fuzzy sets are fixed without further adjustment in the application of 
ordinary Mamdani fuzzy rules. From the functional approximation point of view, it has been 
shown in [30] that the Mamdani fuzzy model containing only one fuzzy set in the consequent 
of each rule has restricted ability to reproduce certain functions, even if the antecedent 
structure is correct. Also, it has been observed that by introducing extra parameters to each 
fuzzy rule, one can increase the flexibility of the Mamdani fuzzy models by relaxing its 
dependency on the definitions of the output sets [5] . Yet, if one is allowed to adjust the output 
fuzzy set of ordinary Mamdani fuzzy rules via some optimization methods, a conflict might 
occur where the optimized parameters of the output fuzzy set become controversial to the 
original knowledge. As an example, the center of the fuzzy set 'BIG' BBK;(y) may become 
smaller than that of 'SMALL' BSMALL(y) after optimization. Typically, it is assumed that the 
essence of the expert's rule shall be kept consistent for the same problem and, in practical 
application only the level of significant contribution of these fuzzy sets might differ from one 
situation to another. 

Hence, in order to increase the modeling flexibility and overcome the above conflict, in this 
section, a new parameter, the consequent significance level p<j, is introduced. It describes the 
degree of confidence of the contribution of the j ' * output fuzzy set to the consequent of the r'A 

fuzzy rule. The idea is that, for each Mamdani fuzzy rule, the parameters of consequent 
significance level p^ are assigned to all output fuzzy sets Brj(y)'s, j = 1, .. , Nb, thus forming 
multiple output fuzzy sets existing in the consequent of each fuzzy rule, in contrast to a single 
output fuzzy set in the consequent of the ordinary Mamdani fuzzy rule. Therefore, we have an 
'extended Mamdani fuzzy rule' (denoted as EM) whose consequent is characterized by 
multiple fuzzy sets Brj(y)'s. From now on, the output fuzzy set Brj(y) will be denoted as Bj(y) as 
they are the same for all rules and because of the introduction of p,j. 

As in the ordinary Mamdani fuzzy model, all output fuzzy sets B,(y)'s in the extended 
Mamdani fuzzy model, as determined by the designers in advance, are assumed to remain 
invariant; i.e., the shape factor and center location of Bj(y) will not be adjusted after they are 
assigned. Hence, the consistence of a priori knowledge applied in the fuzzy system can be 
retained, and so the occurrence of the previously mentioned conflict can be avoided after 
tuning. Accordingly, the unknown consequent significance level p0 becomes the only 
parameter that needs to be tuned. Another possible way to avoid such a conflict is to apply the 
interior penalty method to seek optimal parameter values with predefined constraints to the 
shape and location parameters of membership functions, see [36] . However, this requires a 
more complex constrained optimization process. Instead of this in the present approach we 
will merely focus on tuning the consequent significance level as explained in the next section. 

When associating the consequent significance level to the ordinary Mamdani fuzzy rule, an 
extended Mamdani type of fuzzy rule can be constructed as below. 

R\EMYIF X! is Ar
kl(Xl) AND .. x, is Ar

b(Xi) AND .. xni is A'U*m) 
THEN y is B^y) with prl, and .., y is Bj(y) with p,, and .., y is BNb(y) with prNb 

(5.18.a) 
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or in short 

R\EM;. IF {Xi is A
r
b(xi)} THEN {y is B/y) with p,} (5.18.b) 

The parameters Prj's of the above extended Mamdani type of fuzzy rule are subject to the 
following constraints, 

(C.l) p, e [0,1] 

(C.2) £ p r j = l ;Vr 6CR={l ,2 , . . ,R} 

R 

(C.3) 0 < ^ P l j < R ; V j e C B ={l,2,..,Nb} 
r= l 

One can consider that all the output fuzzy sets Bj(y)'s, j e [1, Nb], form a class of Nb fuzzy 
sets, and the consequent significance level Pq indicates the membership value of the rM fuzzy 
rule associated with the j ' * fuzzy set Bj(y). A larger value of p0 means that the r"1 fuzzy rule is 
more certain of being associated with the j ' * output fuzzy set Bj(y). The second constraint 
(C.2) shows the sum of all membership values of any single fuzzy rule (r = 1, .. , R) has to be 
unity. The third constraint (C.3) indicates that there can be no empty classes and there can be 
no classes which contain all R fuzzy rules, complying to the general knowledge used by 
human beings. It should be noted that all rules in the rule base formed like Eq.(5.18) are 
assumed to have contribution. In case any redundant rule (Äk) occurs in the rule base, it shall 
be removed from the rule base and its corresponding p values (p^ p^ .. PkNt>) are not taken 
into account in the following analysis. 

Remark: 

(R.6) it is obvious that when prj is taken as a crisp value of either 0 or 1, i.e. p^ e (0,1}, 
then the extended Mamdani type of fuzzy rule (see Eq.(5.18)) is equivalent to an 
ordinary Mamdani fuzzy rule (see Eq.(5.5)). This will be confirmed later with more 
details. For example, suppose there are 3 output fuzzy sets B^y), B2(y), and B3(y), 
in the consequent. For the ordinary Mamdani type of fuzzy rule, the r'A fuzzy rule is 
merely assigned as 'y is B2(y)' via the index function I(r) = 2. Then, in the extended 
Mamdani fuzzy rule context, this is the same as saying that the consequent of the r'* 
EM fuzzy rule is 'y is Bi(y) with prl ( = 0), and y is B2(y) with pr2 ( = 1), and y is 
B3(y) with pr3 ( = 0)'. 

Since the defuzzified output of Mamdani fuzzy rules is calculated based on the first moment 
and aggregated active area of B'(y), we modify the previous definitions to associate them with 
the CSL parameters. 

(D.13) significant active area of Bj(y), defines the active area of the r'A rule associated with 
the j ' * output fuzzy set and is denoted as arj, given by 
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arj = p^ • aj 

Using the definition (D.10), one can further derive the following relations, 

N„ Nh Nh 

a r = Ë a j = Ëprjaj=SprJ(L^Bj(y)dy) 
j=i j=i j=i > 

Nb Nb 

=5>n • < L ^ (y)dy ) = J Y ( £p^ B j (y»dy 

P«i= n-

j=i - ' Y J = . 

Hence, according to definition (D.7), the joint membership function of Br(y) of the r"1 EM 
fuzzy rule can be expressed in terms of |XBj(y) associated with pq 

My)=£p r j ^Bj(y) (5-19) 
j=l 

Remark: 

(R.7) As mentioned above, when p^ is chosen as either unity or zero, i.e. Pq e {0,1}, 
through the indexing function I(r), there exists a j * e CB such that 

1 ; j=I(r)=j*ECB 

0 ; j e C B \ j * 

therefore, Hßr(y) in Eq.(5.19) becomes 

Nb 

»V(y)=SX • ̂ j ( y ) = pn* • ^Bj. (y) = HB, *(y) 
j=i 

This means that the fuzzy set Br(y) with respect to the r"" fuzzy rule of the extended 
Mamdani fuzzy rule is identical to the )*th output fuzzy set Bj»(y) of the ordinary 
Mamdani fuzzy rule according to the definition (D.6). This also shows that the 
Mamdani fuzzy rule (as in Eq.(5.5)) can be regarded as a special case of the 
extended Mamdani fuzzy rule (as in Eq.(5.18)), provided that the rule significance 
level Prj is chosen as a crisp value (either unity or zero) rather than a fuzzy 
membership value in [0,1] and condition (C.2) holds. 

Again, as in the case of Eq.(5.6), when the sum-product inference method is used, the 
resultant membership function U-B'(y) of B'(y) is derived by associating it with the rule 
significance level p^ as 
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^B-(y)=S„(vr(x)o(i (y)) = V vr(x)-ji r(y) 
'=1 r=l 

R N„ 

= 2[v,W-(XPn-fiBJ(y))] 
r=l j= l 

(5.20.a) 

^B(y)=]T[(£p r jv r(x))M-B.(y))] (5.20.b) 

or, by interchanging the first and the second summation notations, we have 

N„ R 

I 
j= l r=l 

Hence, analogous to definition (D.9), we define 

(D.14) extended implication DOF, Tij, as 

V X )=£P r j V r ( X ) 
r=l 

with property ]£Hj(x) = £ ( £ p r j v r ( x » = X V r ( x ) ( S P r J ) = 2 v ' ( x ) 

r=l 

N b N„ R 

j=l j= l r=l r=l j= l r=l 

Nh 

Note, the term, V p . = i , is from the constraint (C.2). Hence, Eq.(5.20.b) can be rewritten as 
j=i 

Nh 

H ß - ^ X w ^ C y ) (5-21) 

The normahzation of T|j is defined next. 

(D. 15) normalized extended implication DOF, Tjj , is given by 

R 

«frf E P ó ' V r W R R 
— , \ ^ j ' ^ r=l V / V r ( x ) x V - / N 
11jW=-R-J = H = 2 ,P r j ( R ) = 2.P-J-VrW 

£ v r ( x ) £ v r ( x ) - i £ v r ( x ) 
r=l 

• ' i-V'*- ' 

r=l r=l r=l 

Nb Nb R R R R 

with property J ^ x ) =X<£p r j ïïr(x))=X ^ ( x ) ( S P r J ) = 2 ^ ( x ) = 1 

j=l j=l r=l r=l r=l r=l 
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Remark: 

(R.8) Again, the extended Mamdani fuzzy rule can become equal to the ordinary 
Mamdani fuzzy rule when p̂  is chosen from {0,1}. I.e., if there exists a rj* e Cj 
such that 

J l j r - y e C j 
Pr> [OireCj 

then r|j is equal to ßj, since 

R Ncj Ncj 

r=l rj*=l ij*=l 

Therefore, TÏj becomes ßj 

_ îlj(x) ßj(x) 
îlj(x)=V = V = ßj(x) 

I v r W XV rW 
r=l r=I 

It is obvious that definitions (D.14) and (D.15) of the extended Mamdani fuzzy rule 
are analogous to definitions (D.9) and (D.12) of the ordinary Mamdani fuzzy rule. 

With Eq.(5.21) and definitions (D.10) and (D.14), the resultant active area, a', is derived as 

Nb N„ 

a'=j nB.(y)dy = j ( J ^MUB. (y ) )dy = £î l j(x)(J ^ ^ y ) 

N„ Nb 

= 2>j(*)(J »iBJ(y)dy) = XTijW-aJ (5-22-a) 
j=i Y ' j=i 

Nb R 

= X [ (ZprJV rW) a
J ] 

j= l r=l 

The first moment of B'(y), m', is then 
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N„ 
m' = XT |J ( x ) 'aJ'Z i 

J ' (5.23.a) 
N„ R 

2 [ (XPn'Vr(x ) )aJ'zJ ] 

j= l r=l 

Alternatively, according to Eq.(5.20.a) and definitions (D.10), a' and m' can be written as 

R N 

Jy" ~ " ' " J Y 
a' = J ^B'(y)dy=J (£ [v r (x ) (^p r jHB j (y ) ) ] )dy 

Y Y r= l j = l 

R N b 

= X [ V ' ( X ) - ( X M J ^ (y)dy))] (5.22.b) 
r=l j = l Y ' 

R N„ 

=S[vrW-(£prJ
aj)] 

r=l j = l 

and 

R N„ 

m ^ ^ t v ^ ^ C ^ p ^ a j - Z j ) ] (5.23.b) 
r=l j = l 

Hence, the defuzzified output of the extended Mamdani fuzzy rules, denoted as Y(EM) , can be 
obtained from Eq.(5.22) and Eq.(5.23), based on Nb output fuzzy sets, 

N» 

Xvx)'arzj 
y(EU)^)~=^k (5-24-a) 

or, based on R fuzzy rules, 

X[vr(x)'(£pri'aJzJ)] 

y (EM)W=—-^ 4 ; (5.24.b) 
£ [ v r ( x ) - ( ^ p r r a j ) ] 
r=l j = l 
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Again, further simplification can be done according to assumption (A.3); i.e., the area of each 
output fuzzy set is identical, ar = .. = a, = .. = aNb. Using the property of (D.14), 

N„ R 

V T| = Y vr , and (D.15), Eq.(5.24.a) then becomes 
j=l r=l 

N„ N b 

Sî l jW-^j 2>iG0- z i Nb 
, x J=l J=l _ . V / T\]\*>> N 

y<EM)W-—N; - R ~ Z / - R >'zi 
2> j (x ) £ v r ( x ) >=l £ v r ( x ) (5.25.a) 
j=l r=l r=l 

N b N„ R 

=Xïïj(x)-Zj (or = £[(^p d-v r(x))-z j]) 

j=l j=l r=l 

Remark: 

(R.9) When the rule significance level p, is chosen as {0,1}, rfj = ßj, from the previous 
remark (R.8) means that the defuzzified output of the extended Mamdani fuzzy 
rules (Eq.(5.25.a)) is identical to that of the ordinary Mamdani fuzzy rules 
(Eq.(5.16.b)), y(EM) = V(M> . This shows that, under the assumption (A.3), ai = .. = a, 
=.. = aNb, the ordinary Mamdani fuzzy rule is, again, a special case of the extended 
Mamdani fuzzy rule. 

N„ 

Similarly, with the same assumption of ai = .. = a, =.. = aNb, and constraint (C.2), Y p = l, 

Eq.(5.24.b) becomes 
R N„ R N„ 

X K ( X ) - (£Pr j- Zj)] £ K ( X ) - (£pd- ZJ)] 
, x__[=l j=l r=l j=l 

YCEM) W - R N; - R 
£ [ v r ( x ) ( ^ P r j ) ] £ v r ( x ) 
r=l j= l r= l 

R N 

=Êhr*^-<£po-zi>l (5-25-b) 
r=1 2 v ^ ( x ) J=1 

r=l 

R N b 

X[v r ( x ) (Xp r j Z j ) ] (or=^[(^p l j-v r(x))-z j]) 
r=l j=l j=l r= l 

r=l 

R N b N b R 
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5.4 INTERPRETATION OF THE IDENTIFIED T-S FUZZY 
RULES BY EM FUZZY RULES 

From the previous section, one can see that the defuzzified output of the extended Mamdani 
fuzzy model can be represented either by Eq.(5.25.a), or by Eq.(5.25.b), where the two 
summation terms indexed by r and j are interchangeable without affecting the results. This 
allows us to make an easy comparison to that of the T-S fuzzy model, since the defuzzified 
output of both models are based on R fuzzy rules. In this section, we will consider how to link 
the T-S fuzzy rule and the extended Mamdani fuzzy rule, and how to solve for the consequent 
significance level parameters. 

5.4.1 To link the T-S fuzzy rule and the extended 
Mamdani fuzzy rule 

As mentioned in remark (R.4), the property of dual representation of the fuzzy system may 
lead to a linkage of the T-S fuzzy rule to the extended Mamdani fuzzy rales. I.e., the resultant 
output of the Mamdani fuzzy model V(EM), Eq.(5.25.b), is comparative to the output of the 
zeroft-order T-S fuzzy model y(TS), Eq.(5.3.b), if the following equality relation holds. 

wr = XPrj-zj ; V r = l , . . , R (5.26) 
j = i 

Eq.(5.26) reveals that the consequent of the zero^-order T-S fuzzy rule, wr, can be 
transformed into a combination of some fuzzy sets Bj(y)'s of the extended Mamdani fuzzy 
rule, that are centered at z/s and are associated with p,j's. If this transformation is achievable, 
then the consequent part of the zero""-order T-S fuzzy rule, which is represented by real 
numbers, can be interpreted linguistically in the same way as the extended Mamdani fuzzy 
model does with the extended Mamdani type of fuzzy rule, Eq.(5.18). Hence, knowledge 
interpretation of the zero^-order T-S fuzzy rule in a linguistic way becomes feasible. 

5.4.2 To solve the parameters w and p 

It can be verified from Eq.(5.26) that the value of wr should be bounded on some reasonable 
domain of Y that may be characterized by the minimal (zmin) and maximal (z,^) values in 
order to obtain a meaningful transformation. Practically, these bounded domains can be 
determined from the predefined z/s values either by the users or from the observation data 
available. Hence, to solve the parameter values of wr and prj, a method based on constrained 
optimal searching is proposed and described below. 
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First, the users have to define the possible output domain of Y bounded on [zmin, z j and the 
number of output fuzzy sets Bj(y)'s, Nb, as well as their corresponding centers z/s. In practice, 
this is not a difficult task, since they can be estimated either from experimental data, or from 
the expert's experience. Second, the optimal values of wr's, denoted by a vector w* = [w/ w2* 
.. wr*.. WR*]T, are searched to minimize the squared error between the real system output and 
the model output, 

w = are mm 
Vw „ e n . 

np 

t=l 

. r 

yd(0-X^ (x ( t ) )'w' 
r=l 

(5.27) 

where, Qw = [z,^, z,,^], the bounded output domain; t = 1,.., np, the number of available data 
set; and yd, the desired value of the system. So, this means that in contrast to the ordinary T-S 
identification, its parameters w should be constrained in order to make the two models 
comparable. 

Once all wr's are obtained from Eq.(5.27), then the optimal values of Prj's, pr = [pri pr2 •• prj 
prNb] , for r = 
Eq.(5.26), 

1, R, can be found by minimizing an objective function deduced from 

pr=arg min 
Nb 

Wr-XprJZJ forr=l , . . ,R (5.28) 

with all solutions are subject to constraints (C.l) - (C.3). Hence, when we have solved the 
constrained consequent weight w* of a zero^-order T-S fuzzy model using Eq.(5.27), we can 
further search the values of the consequent significance level that satisfy constraints (C.l) -
(C.3) by Eq.(5.28). Making use of these consequent significance level parameters, the zero"1-
order T-S fuzzy model is thus transferred to the extended Mamdani fuzzy model and can be 
interpreted accordingly. 

5.5 EXAMPLE 

This section presents a synthetic example to illustrate how to interpret the identified T-S fuzzy 
model in the sense of the extended Mamdani fuzzy model. The example is a nonlinear single-
input-single-output system, described by 

y = l (5.29) 

First we generate 41 sets of data pairs [x(t) yd(t)] for training the fuzzy model, where t runs 
from 1 to 41 and input x is randomly picked from the interval [-1, 1]. The desired value yd 
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generated according to Eq.(5.29) is contaminated by some noise. Five triangular membership 
functions with equal center distance are set for the input x and denoted by linguistic terms 
'NM', 'NS', 'ZO', 'PS', and 'PM', that stand for negative medium, negative small, zero, positive 
small, and positive medium, respectively (see Figure 5.1.(a)). Accordingly these five 
membership functions construct an initial fuzzy rule base with five rales. 

Three fuzzy sets [Bsmau(y) Bmedium(y) Bbjg(y)] are defined based on the training data. These 
correspond to linguistic terms 'S', 'M', and 'B' and centers at z (= [zj z2 z3]

T = [0.0278 0.5217 
1.0156]7), respectively. Next, a set of bounded consequent weight w* of the zero'A-order T-S 
fuzzy model is obtained by Eq.(5.27). They are identified as w* = [0.0278 0.7852 1.0156 
0.8216 0.0454]7. All weights are located in the observed output domain from the training 
data [min(yd), max(yd)]. So, the five fuzzy rules of the identified zero'Ä-order T-S fuzzy model 
are read as 

Rl 

R 

R3 

(TS) 

(TS) 

R 

(TS) 

(TS) 

(TS) 

JFx i sNM 

/ F x i s N S 

/ F x i s Z O 

/ F x i s P S 

J Fx i sPM 

THEN y = w / ( = 0.0278) 

THEN y = w2* ( = 0.7852) 

THEN y = w3*(= 1.0156) 

THEN y = w4*( = 0.8216) 

THEN y = w5* ( = 0.0454) 

Second, the values of pr/s are obtained according to Eq.(5.28), subject to the constraints (C.l) 
- (C.3), giving the following values. 

(rule 1) 

(rule 2) 

(rule 3) 
(rule 4) 
(rule 5) 

z l (0.0278) 

1.0000 

0.0028 

0.0000 
0.0983 
0.9646 

z2(0.5217) 

0.0000 

0.4609 

0.0000 
0.1960 
0.0353 

Z3(1.0!56) 

0.0000 

0.5363 

1.0000 
0.7057 
0.0001 

(Wi* 

(w2* 

(w3] 
(w4* 
(w5* 

= 0.0278) 

= 0.7852) 

= 1.0156) 
= 0.8216) 
= 0.0454) 

Hence, as an example, the second zero' -order T-S fuzzy rule can be transformed to an 
extended Mamdani fuzzy rule to read as 

TFxisNS THEN {y is S 
y is M 
y i sB 

with p21 = 0.0028, and 
with P22 = 0.4609, and 
with p23 = 0.5363} 

The above results show that it is possible to transform the zero' -order T-S fuzzy model 
(Eq.(5.3.b)) to the extended Mamdani fuzzy model (Eq.(5.18)). Figure5.1.(b) shows the result 
of the extended Mamdani fuzzy model, y<EM) 
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An important remark should be made with respect to the transformation. The consequent 
weight parameters of the T-S fuzzy model are optimal, i.e., they minimize the error between 
data and model in the least squares sense. This means that the EM fuzzy model is always 
somewhat less accurate. In addition, if the weights w of the unmodified T-S fuzzy model are 
not contained in the interval [z^, z,^], direct comparison is possible only by constraining the 
T-S parameters according to Eq.(5.27). This again reduces the mapping accuracy. So, one 
could say that the gain of transparency by transforming the T-S fuzzy model into the extended 
Mamdani form goes at the expense of some loss in model accuracy. 

0.5 I - - - - - - - - - • - - - - - - - - -

-0.5 0.5 

Figure 5.1: (a) membership function of input x. (b) The desired output yd 

(circle) and extended Mamdani fuzzy model output y(EM) (solid 
line). 
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5.6 CONCLUSION AND DISCUSSION 

In this chapter we have analyzed two different types of fuzzy rules, namely the Takagi-Sugeno 
type of fuzzy rule and the Mamdani type of fuzzy rule. From the interpretation point of view, 
the T-S fuzzy model with T-S fuzzy rules are less interprétable than the fuzzy model with 
ordinary Mamdani fuzzy rules. Although it is easy to understand the fuzzy rules of the 
Mamdani fuzzy model, the modeling flexibility is limited due to the single output fuzzy set in 
the rule consequent. In order to relax the dependency on the definition of the output fuzzy set 
of the Mamdani fuzzy model, we introduce a new parameter, namely the consequent 
significance level, that is associated to the consequent part of each Mamdani type of fuzzy 
rule. As a result, an extended Mamdani fuzzy rule base can be established, which is 
characterized by multiple output fuzzy sets in its consequent. 

It is shown that the ordinary Mamdani fuzzy rule is a special class of the extended Mamdani 
fuzzy rule with a consequent significance level parameter equals to either unity or zero. 
Furthermore, we have analyzed the possibility of deducing linguistic interpretation from an 
identified T-S fuzzy model. The result shows that the zero^-order T-S fuzzy rule base can be 
transformed to be equivalent to an extended Mamdani fuzzy rule base under some certain not 
too restrictive conditions. Therefore, a zero^-order T-S fuzzy rule can be interpreted in the 
same way as an extended Mamdani fuzzy rule via the consequent significance level 
parameters. As consequent significant level parameters of the extended Mamdani fuzzy model 
are subject to some constraints, it takes more effort to identify these parameters than the 
consequent weight parameters of the zero^-order T-S fuzzy model. However, what one can 
gain is that the linguistic interpretation of the zero^-order T-S fuzzy rules becomes possible, 
yet, perhaps at the expense of some loss in model accuracy. It should be noted, however, that 
it is not necessary try to get linguistic interpretation from the T-S fuzzy model in case the 
model is merely used for function approximation. 

It is also worthwhile to address a possible problem which may arise in the above 
transformation. Since the transformation of w to the linear combination of p and z is a one to 
many mapping, the uniqueness of the inverse relation is not always guaranteed by just 
complying to constraints (C.l) - (C.3). Apart from the uniqueness problem, how one can have 
a reasonable interpretation of these p values is another concern. Consider the following two 
situations, when 

(1) all elements of the obtained pr vector, which is formed by [prl .. p,j .. prNb]T with respect to 
the r"1 fuzzy rule, have the same mean values, i.e., 1/Nb; 

or 

(2) any two non-consecutive elements of vector pr have identical values of prj, and prj2, where 
ji and j 2 indicate two indices of the corresponding fuzzy sets not consecutive to each other; 
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then the interpretation of these p values becomes equivocal. Hence, further constraints shall 
be taken into account to avoid the above problematic interpretation. One of the possible 
solutions is that an extra constraint shall be satisfied when the optimization is carried out. 

(C.4) elements of pr (= [pr] .. p,, .. prNb]T) are convex in the sequence. This means that if 
the relation holds for ji < j 2 < J3 and ji, j 2 , J3 e {1, 2,.., Nb }, then prj2 > min (prjl, 
Pas)-

Complying to this constraint implies that the values of sequential elements in the row vector 
pr should be either monotonously increasing or decreasing, or formed as a bell-shaped 
distribution. Another way to get reasonable values of p can be found in [5] , where B-spline 
functions with different orders are suggested to represent the membership functions of output 
variables, because B-spline functions naturally fulfill the requirements of assumptions (A.l) -
(A.3) and constraints (C.l) - (C.3). (Therefore, this will result in a faster and easier estimation 
of the corresponding p^ values, provided that the identified wr is bounded in the predefined 
domain of these B-spline functions.) In constrast, the present analysis shows that any possible 
general function can be used as the membership functions of the outputs; as long as they 
satisfy the requirements of assumptions (A.l) - (A.3) and constraints (C.l) - (C.4). The B-
spline functions can therefore be regarded as a special of those general functions. 



6. INCORPORATING 

A PRIORI KNOWLEDGE 

INTO T-S FUZZY 

MODELING 

Love is patient, love is kind. It does not envy, it does not boast, it is not 
proud. It is not rude, it is not self-seeking, it is not easily angered, it 
keeps no record of wrongs. Love does not delight in evil but rejoices with 
the truth. It always protects, always trusts, always hopes, always 
perseveres. Love never fails. 

- 1 Corinthians 13, Bible 
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6.1 INTRODUCTION 

In this chapter, we will consider how to incorporate available a priori knowledge from 
different sources into the fuzzy modeling problem. 

Following the terminology from computer science we can distinguish two approaches, which 
are 'Case-Based Reasoning' (CBR) and "Rule-Based Reasoning' (RBR). These approaches use 
different knowledge sources to construct a 'Case-Based Model' (CBM) or a "Rule-Based 
Model' (RBM), respectively. It turns out that 'Case' refers to the identification from the 
observation of the input/output relation of a system, i.e., a single piece of knowledge based on 
direct observation. On the other hand, "Rule' implies the collection of the above mentioned 
observations to form a set of rules that describe the fundamental behavior of a system in the 
observed domain. These rules can be obtained by some generalization processes by human 
beings or by machine learning. The so-called a priori knowledge refers to a collection of rules 
codified by experts over the years and converted as experience. The very use of a priori 
knowledge in modeling results in a hybrid model in the sense that it combines both case-based 
and rule-based information. Generally, the correct use of a priori knowledge in modeling will 
lead to a better model that can stand up against a deficient or incomplete data set. Hence, in 
addition to the improvement of model performance, our primary motivation of merging a 
priori knowledge and data-driven modeling is to see whether the extrapolation ability can be 
improved in such a hybrid approach. Thus, the goal of this chapter is to combine the CBM 
and RBM into a uniform representation to improve efficiency and accuracy of the hybrid 
model [19], as well as to achieve extrapolation ability. 

Since a priori knowledge is a compact representation of accumulated experience it can often 
be presented in the following form : 'IF some conditions are met THEN the corresponding 
reactions reply'. The 'IF .. THEN .. ' statement, that is characterized more by qualitative than 
by quantitative information, is the most suitable candidate in fuzzy modeling, as qualitative 
knowledge with the same foundation as the fuzzy rule base can be incorporated. Although 
many successful applications of fuzzy logic control have been reported in the past decade, 
there are rare studies on fuzzy modeling which address how to utilize the qualitative 
information from the literature in a systematic way. The difficulty is due to the fact that the 
use of qualitative information in fuzzy modeling is very problem-dependent and usually ad 
hoc. Hence, our present attempt focuses on how to incorporate a priori qualitative information 
into data-driven fuzzy modeling; in particular, the model that is based on the zero""-order 
Takagi-Sugeno fuzzy model. 

Identification of a T-S fuzzy model is classified in [61] as structure identification and 
parameter identification. In the issue of structure identification, one has to find the input 
variables, i.e., how to select the input candidates and to determine the suitable input variables. 
One also has to construct the input-output relation, i.e., determine the fuzzy rules and 
partition of input space. The structure identification problem is deemed as the most difficult 
since it takes much more effort than parameter identification. Once the structure is identified, 
the identification of parameters can easily be attained. In what follows, we will only pay 
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attention to the zero'*-order T-S fuzzy model. It is assumed that the input candidates and the 
suitable input variables are determined based on some a priori knowledge. Furthermore, the 
construction of the fuzzy rules is determined from some heuristics. Beyond the piece of a 
priori knowledge used for the formulation of the structure of the T-S fuzzy model, other types 
of qualitative knowledge can be incorporated into the modeling. It turns out that the 
identification problem then becomes a parameter estimation problem. Before we move to the 
next section, it is essential to assume that, in case conflicts arise between the observation data 
and the a priori knowledge in the region of interpolation, precedence will always be given to 
the observation data. Moreover, one has to rely on the a priori knowledge used in the 
extrapolation region where the observation data are lacking. 

The chapter is organized as follows. Section 6.2 will introduce the optimization approach on 
which the incorporation of a priori knowledge into a T-S fuzzy model is based. Moreover, the 
formulation of the performance criterion for optimization and the estimation procedure of the 
parameters will be addressed. Section 6.3 offers a simple example to demonstrate the 
proposed optimization approach. Fairly convincing results are given in section 6.4. Finally, 
conclusions are made in section 6.5. 

6.2 OPTIMIZATION BASED APPROACH 

We have seen that the zero'A-order T-S model is similar to a neural network performing 
nonlinear mapping of input space to output space, like the NTJFZY model. It is noticed that in 
the T-S fuzzy model less a priori knowledge can be incorporated than in Mamdani fuzzy 
model. If any available a priori knowledge is imposed to the T-S fuzzy modeling, the resultant 
model will be regulated to comply with the required properties described by the imposed a 
priori knowledge. Hence, the idea of incorporating qualitative information into the T-S fuzzy 
model is to regard the different pieces of a priori qualitative information as soft constraints or 
penalty terms that are imposed to a performance criterion, which is to be minimized. This 
idea was inspired by [73] who discussed how to use different sources of knowledge to 
construct the model and optimization problem, followed by an unifying framework proposed 
by [34] as an optimization formulation of the modeling problem. 

In this section, we will refer to [34] . The author uses an optimization approach to incorporate 
qualitative information into the T-S fuzzy model. For simplicity, in this work we assume the 
structure of a zero^-order T-S fuzzy model is determined and fuzzy rules of this T-S fuzzy 
model will not change. For identification purposes, a batch of np input-output observations for 
training and nv observations for validation are available. Furthermore, we also have available 
a default model that contains possibly imprecise qualitative information. In particular, we are 
interested in a default model described by a Mamdani fuzzy model with a set of Mamdani type 
of fuzzy rules. An optimization problem can then be formed based on the empirical data and 
the a priori qualitative information, allowing us to seek the optimal consequent weight 
parameters of the T-S fuzzy model in the parameter space. The performance criterion for 
optimization will be penalized by the following conditions, 
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(1) Mismatch between the model prediction of the T-S fuzzy model and the observation data. 
(2) Non-smoothness of the T-S fuzzy model*. 
(3) Violation of the soft constraints. 
(4) Mismatch between T-S fuzzy model and the default model. 

For the purpose of prediction, it is noticed that, in general, a performance criterion merely 
based on condition (1) is not sufficient to achieve model performance beyond the empirical 
data. A modified performance criterion based on condition (1) and (2) has been studied either 
as an effect of regularization* by the neural networks community [17] [18] [52] [53] [54] , or 
as a ridge regression problem by statisticians [14] [47] . It has been shown that the 
regularization method allows a smooth interpretation of the model. In this study the zero'*-
order regularization is adopted because of its simplicity. 

If a Mamdani fuzzy model is available, one can easily get some qualitative description from 
its fuzzy rule base to describe the system behavior. Some of these qualitative descriptions can 
be regarded as soft constraints imposed on the T-S fuzzy model for identifying the system. 
They might include steady-state description of a dynamic system, or specifically known input-
output relations around the operation points gathered from the accumulated experience of the 
users. Hence, condition (3) accounts for the penalty by violating these soft constraints. 
Condition (4) can be seen as a measure of discrepancy between the T-S fuzzy model and an 
existing default model. This default model may contain partially imprecise information based 
on some a priori knowledge. For instance, a Mamdani type of fuzzy model provides a basic 
model that can be used in regions where no observation data are available. When the default 
model is taken into account for modeling, the operation range of such a model is expected to 
be as large as possible to cover all operating conditions of the identified system. Next, we will 
define the performance criterion used for this optimization approach, which may include all 
the above conditions as well as some inequality constraints (hard constraints) that regulate the 
range of the consequent weight parameter values of the zero'A-order T-S model. 

The real system under study is, in fact, assumed to be smooth. The smoothness can be defined as the 
existence and continuity of some sufficiently high-order derivatives of the system [34] . 
Regularization is originally used to avoid the occurrence of an ill-condition in an information matrix 
of a model. The method used here, referred to as zero'*-order regularization or equivalently, ridge 
regression, is to add a small positive quantity to the diagonal of the ill-conditioned matrix, so that the 
matrix remains positive definite, and the determinant of the matrix increases or the elements of the 
inverse decrease. In other words, the added quantity introduces a bias term to its mean-squared-error 
evaluation, which favors solutions involving small absolute parameter values. As a result the output 
of a function becomes less sensitive to the variation of parameters, or is smooth. Other methods that 
are perhaps more effective in achieving the smoothness property, such as second-order regulariztion 
based on curvature, are more complicated. 
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6.2.1 Formulation of the performance criterion 
As stated earlier, we assume that we have established the structure of a MISO zero'*-order T-S 
fuzzy model containing R fuzzy rules. Following from previous chapters, the predicted output 
of this specifically defined T-S fuzzy model is given by the linear equation 

yTS(x(f))= V(x(t))-w (6.1) 

where input x(t)(or, xeRm) and normalized firing strength V(x(t)) (or, V(x)eRnpXR) are 
indexed by the sample instance, t, for t = 1, .. , np. The consequent weight vector of this T-S 
fuzzy model is denoted as w (e RR). 

In addition, assume that there is a default model related to the system under study described 
by a Mamdani fuzzy model. Given na sets of input xa(k)(or, Xa€ Rm) chosen from the possible 
operation range, one can obtain the corresponding output ya(k) from this default Mamdani 
fuzzy model, where index k = 1,.. , na. Similarly, with this chosen input Xa on hand, we can 
also calculate the corresponding normalized firing strength matrix Va (Xa) (or, Va e RnaxR) and 
its prediction output, Va w, by the T-S fuzzy model, so that the discrepancy between the T-S 
fuzzy model and the default Mamdani fuzzy model can be evaluated. Note, the chosen input Xa 
is different from the real observed input x. Since ̂  is artificially chosen and generated for the 
default model, it can be regarded as excitation signals that cover the most possible operation 
range of the system; especially, in regions where the observation data are not available. 

Some soft constraints describing specific characteristics of the system may be available, which 
come from the real additional information, like steady state points; time averages; long-term 
off-sets and trends, etc. Hence, a set of ns rules is likely to be found. 

R\) : IF x is A'te) THEN y is Bq(ys) 

where rule index q = 1, .. , ns. Fuzzy set Aq(Xs) characterizes the specific input state x,, and 
Bq(ys) represents the consequent output fuzzy set characterizing the specific output ys. Both 
fuzzy sets correspond to the q'h specific fuzzy rule. Specifically, we can read the above special 
rules as following, 

R c») : IF x is close to state 'Xs' THEN y is close to system response 'ys' (6.2) 

where x,, represents some known operating points or steady states of a dynamic system 
provided it exists, and ys is its corresponding output or system response to the specific input 
Xs. Associating these ns specific fuzzy rules to constrain the T-S fuzzy model, one can expect 
that it shall possess the expected behaviors complying to the imposed a priori knowledge. 
With this limited number of input Xs(e Rm) one can calculate the corresponding normalized 
firing strength matrix vs fe) (or, Vs e Rm*R) by the T-S fuzzy model and its prediction output, 
Vs w. Again, the discrepancy, representing the violation of soft constraints, between the T-S 
fuzzy model and the specific system response, can be evaluated. 
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There are different forms in which knowledge from various sources can be incorporated into a 
unified optimization problem. For demonstration, we will integrate all the above qualitative 
information together with the requirement of smoothness in a performance criterion, J, 
defined by 

np 

J(w;X,ß,a) =—T[yd( t)-V t(x(t))w]2+—\YwJ 
n P ^ nP £ 

+ß 
1 n S 1 n a 

—y[y s (q)-vq (x s (q))w]2 +a — Y [ya(k)-vk(xa(k))w] ns^ J L n a t f 

(6.3.a) 

where row vectors vt, vq, and vk (all eR ) represent the t'\ q'A and k"1 row of normalized 
firing strength matrices V (x), Vs (x,,), and Va (xj, respectively. yd(t), the desired output of the 
t'* training set, ys(q), the specific output of the q'A constrained fuzzy rule, and ya(k), the k'* 
output of the default Mamdani fuzzy model, correspond to the inputs of x(t), Xs(q), and Xa(k), 
respectively. wr is the consequent weight of the r1* T-S fuzzy rule among the R fuzzy rules, np, 
ns and na are the corresponding number of input patterns. Penalty weighting parameters X, ß, 
and a account for the above penalty conditions (2), (3) and (4), respectively. In a compact 
vector-matrix format, can be expressed as 

J(w; X, ß, a) = [yd - V (x)w]T[yd - V (x)w]/np + X wTw /np 

+ ß[ys - VsCxOwftys - Vs(Xs)w]/ns + a[ya - Va (xa)w]T[ya - Va(xa)w)/na (6.3.b) 

where yd, ys, and ya are RDp, Rm, Rn\ respectively; information matrices of the T-S fuzzy 
model Ve TT ̂  OnPXR 77 ^ Dn sXR , Vsel , and VaeR are normalized firing strength matrices using 
input x, Xj and Xa as augments. Eq.(6.3.b) can be further expanded by a quadratic form as 
below* 

J(w; A,,ß, a)= l/2wT[2v V/np + 2X,IR/np + 2 ßv s Vs/ns + 2 a v a Va/na]w 

-2[V yd/np + ßv s ys/ns + aVa ya/na]Tw 

+ [yd
Tyd / np + ß ys

Tys / ns + a yd
Tyd / na] 

If we define ratios of np to ns and np to na, we have 

Ç = np / ns 

T| = np / na 

(6.3.c) 

(6.4.a) 

(6.4.b) 

The purpose of this quadratic formulation is to be in line with the quadratic programming (qp) in 
Matlab®, which can be used to find the minimum of the performance criterion, J, provided the values 
of A,, ß, and a are given. 
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Then, for any given values of penalty weighting parameters, X, ß, and a, the optimal 
consequent weight parameter of w, W'LS, can be easily solved by the least squares method, 

W*LS = A_1-( VTyd + C ß Vs
Tys + *1 a v / y . ) (6-5) 

where the covariance matrix As IR containing penalty weighting parameters X, ß, and a, is 
defined by 

A= v T V+XI R + CßVs
TVs+T|aVaTVa (6.6) 

Note that the obtained W*LS by the least squares estimation is not subject to any constraint of 
w. In cases when these w values are expected to be located in some specific interval [z,,», v ] 
(for instance in chapter 5, if we want to have a meaningful interpretation of these w values in 
the output domain; also see [71] ), then we can use the quadratic programming (for example, 
the subroutine of qp from Matlab®) to find the optimal w values. These values are obtained by 
minimizing the following quadratic criterion and are subject to inequality constraints 

W*QP = {w | minimize J(w) = 1/2 wTQw + cTw +Y0 and Bw < b} (6.7) 

where Q = 2 v T V / n p + 2X,IR/np + 2 ßV s
TV s/ns + 2aV a

T V a /na (eRRxR) 

c = -2(VTyd /np+ßV5
Ty s /ns + aVa

Tya/na) (eRR) 

Y0 = y/yd / np + ß ys
Tys / ns + a ya

Tya / na (e R) 

B = [-IR;IR] (eR2RxR) 

b = [Znua ; ZnuJ (6 R2R) 

Matrix B and vector b are used to restrict the searching of optimal w, in order to ensure that 
the searched optimal values of w belong to the desired interval [z,^, z j . 

6.2.2 Estimation of the penalty weighting parameters 
It is noted that the w values obtained from either Eq.(6.5) or Eq.(6.7) above, are optimal in 
the least square sense, presuming the penalty weighting parameters p = [A, ß oc]T are given. 
However, these penalty weighting parameters are in general unknown and need to be 
estimated. It is noted that the model complexity, which is partially influenced by penalty 
weighting parameters p, will depend on the set of available empirical data (training data) on 
which base the T-S fuzzy model is identified. As such, one may try to make use of the 
available empirical data to estimate penalty weighting parameters in order to get the best 
performance of the model. It has also been studied and suggested by [34] that the model 
performance indeed depends on penalty weighting parameters p. For instance, too small 
values of X, ß, and a will likely yield over-fitting, and lead to poor performance when 
extrapolating. In contrast, too large values of X, ß, and a give too little emphasis on the 
empirical data; as a result, the model may become too biased under the operation conditions 
where the a priori knowledge is incorrect or incomplete. In this subsection, we attempt to find 
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the optimal penalty weighting parameters p to minimize the performance criterion, J (in 
Eq.(6.3)). In the ordinary least squares problem (i.e., there are no penalty weighting terms in 
J, or, p = [X ß oc]T = [0 0 0]T), the optimal value of w is directly estimated from the available 
training data. Yet, due to the extra introduction of penalty terms in the present situation and 
with no further information available (no extra training data) to the identification problem, it 
is natural to take the best of the current available training data in order to estimate the optimal 
values of w associated to the presence of penalty terms. This problem implicitly relates to the 
selection of model structure. Various model structure selection heuristics from statistics can be 
used, such as the coefficient of determination, R2*, or, residual mean square, s2+, or several 
cross-validation based criteria (e.g., see [47] ), etc. In the following development, we refer to 
[49] , who uses a re-estimation procedure to attain the optimal values of the penalty weighting 
parameter X which is based on one of the cross-validation criteria*, generalized cross-
validation (GCV, denoted as O2GCV below) [20] [24] [25] . In order to explicitly express the 
GCV criterion as a function of penalty weighting parameters p and model parameters w, the 
O2GCV is formulated as 

'GCV — , _ , T 7 

T 

- ( — ) 
(utVA-'V1))2 np 

np (6.8) 

where matrix A, as defined in Eq.(6.6), is a covariance matrix which involves the given 
parameters of p (=[A, ß a]T). These given parameters of p are used to estimate the optimal w* 
according to Eq.(6.5). As soon as the optimal w* is obtained based on given p, the prediction 

1,nP error, ee M , can thus be calculated by 

e = yd - V w (x,f5,a) 

= (Inp - V A"1 V T)-yd - Cß V A"1 Vs Tys - m V A"1 Va V (6.9) 

Hence, taking the derivative of a2ocv with respect to penalty weighting parameters p, we have 

da. GCV 

3cp 

- 2np 2 

( t^VA- 'V 1 ) ) 
•tr(V 

3A-1 

9(p 

T 
. e eN 

np 
V X H — ) + - T - T 2 

np ( » (VA^V 1 ) ) 2 

a(eTe) 
d(p 

cp = X,, ß , or a and p = [ A, ß a ]T (6.10) 

R is defined as the ratio of regression sum of square to the total sum of square, i.e. SSrcg/SStot«i. 
s2 is also called estimate of error variance, defined as the residual sum of square divided by the 
residual degree of freedom, i.e., SSres/df(residual). 
Other relevant cross-validation based criteria are leave-one-out (LOO) cross-validation (or called 
PRESS residuals in statistics), unbiased estimate of variance (UEV), final prediction error (FPE) 
criterion (based on Akaike's information criterion AIC, as similar to Mallow's Cp in statistics), and 
Schwarz's Bayesian information criterion Q3IC). We will use the generalized cross-validation (GCV) 
criterion to select the model structure because it is the most convenient method, see [49] . 
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The unknown part in Eq.(6.10) consists of the derivatives of A"1 and eTe with respect to p. 
They are derived in Appendix C. Here we merely list the results: 

~3A- r 

= 
"9A-1 j 3A"1 j 3A"1" 

dX 1 3ß j 3a 

- A ; 'A^+An 2 - A-V- •A0 (A0 A0A A0) A0 

,-i A -1 -CAö^Ao - A0A-'A0)^ IT1 V,1 Vs F"1 A 

- W ( A „ - AoA^Ao)2 F"1 \J X F"1 A„ 

(6.11) 

where 

A0 = VTV +AIR 

F =Cßv s
T V s + n a v a

T V a 

A =An + F 

(6.12.a) 

(6.12.b) 

(6.12.C) 

Note that in Eq.(6.11) we need to calculate the inverse of matrices A, A0, and F. In general, 
matrices A and A0 are not singular, indicating that it is possible to take their inverses. 
However, in some situations, F can be singular such that its inverse becomes problematic. To 
avoid this singular problem, we modify Eq.(6.12) as follows, where we decompose the X term 
into two parts, (X - XP) and A,F, and distribute them into Eq.(6.12.a) and Eq.(6.12.b), 
respectively. This does not change the property of A in Eq.(6.12.c), but guarantees matrix F 
being non-singular due to the small constant XF added in its diagonals. In this study we set the 
small constant value, XPy as 10"6. As a result, the modified Eq.(6.12.a) and Eq.(6.12.b) become 

A 0= VTV + (X-XF)lR 

F =CßV s
TV s +n,aVaTVa+A,FlR 

(6.12.d) 

(6.12.e) 

For the derivative of eTe with respect to p, we have 

3(eTe) 
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3(eTe) 
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=JJ (-v 

3(eTe) 
3ß 

3 A"1 

3(eTe) 
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3p 
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(6.13) 
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where 

K = I n p - VA_1VT 

Kb = CßvA"1Vs
T 

Ka = T |avA1VaT 

(6.14.a) 

(6.14.b) 

(6.14.C) 

"3Kb" = 

f 3 K b l 
dX 

8Kb 
3ß 

3 Kb 

3a 

=Cßv 
[a A-1] 

^ + 

0 
- I vT CVA-'V, 
0 

(6.14.d) 

3Ka 

aP 

3K. 

3 K , 

aß 
3Ka 

3a 

=TiaV 
TT 3A - l 

3p 
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0 
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TlVA_1Vs 

(6.14.e) 

In [49] the re-estimation procedure is achieved by letting the derivative of O2GCV with respect 
to p (Eq.(6.10)) be zero, so that the estimate of p is expressed as a function of these 
parameters themselves explicitly and implicitly through the covariance matrix A. Given the 
initial value of penalty weighting parameter, p0, the generalized cross-validation criterion, 
Eq.(6.8), can be calculated and leads to a new estimate of p. This new estimate is re-fed to 
calculate the generalized cross-validation criterion which results in another new estimate of p. 
This procedure is repeated until the estimated values of p converge and finally an optimal 
estimate of p is obtained. Yet, due to the extra parts in Ç and r| terms, it is not easy to present 
the above mentioned explicit functions in our case. As an alternative, we use the routine 
constr* of Matlab® for linear searching, which makes use of Eq.(6.8) and its derivatives 
[3a2Gcv/dp] to search the optimal p. The resultant parameters X, ß, and a, will be greater or 
equal to zerost. During the search procedure, we recalculate the optimal w* based on the 
current searched penalty weighting parameters, and then re-estimate the current prediction 
error Eq.(6.9), which appears in Eq.(6.8). The re-estimation procedure is depicted in 
Figure 6.1. 

The search procedure of optimal penalty weighting parameters suggested by [34] is fminu. Since 
fminu searches the optimal parameter that minimizes the cost function without any constraints to 
these parameters, the results will sometimes appear to be negative, which violate the definition of 
penalty weighting. Hence, we use constr to replace fminu by constraining all the parameters to be 
greater or equal to zero, but without an upper limit. 
Also note from the modified Eq.(6.12.d), as Xp is set as 1CT6 we'll further set X to be greater than 10" 
to ensure a non-singular matrix Ao. 
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Figure 6.1: The re-estimation procedure to estimate the optimal values of X, ß, 
a, and w. 
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6.3 EXAMPLE 

We test this optimization approach to a synthetic nonlinear single-input-single-output 
example, 

y= l - 4x 2 + x4 (6.15) 

First we define a possible operation range of the system for input x as [-2.5 2.5], a training 
range of x as [-0.9 1.1], and a validation range of x as [-2 2]. We assume some a priori 
qualitative information is available within the operation range [-2.5 2.5]. Furthermore, 
quantitative data are available over the training range. In order to test the extrapolation 
properties of the hybrid optimization approach, we let the validation range of input x be much 
broader than the training range. 

A T-S fuzzy model is initialized by seven Gaussian membership functions to its input variable 
x. The widths of these Gaussian membership functions are set to be 0.5 and their centers are 
equally spaced in the operation range [-2.5 2.5] in order to be in line with the default 
Mamdani model (to be introduced later). The seven linguistic terms 'NB', 'NM', 'NS', 'ZO', 
'PS', 'PM', and 'PB', stand for negative big, negative medium, negative small, zero, positive 
small, positive medium, and positive big, respectively; see Figure 6.2.(a). Accordingly, seven 
fuzzy rules are constructed for the T-S fuzzy model. The training data contain 38 pairs of 
input-output observations (np = 38), where input x is randomly selected from the above 
training range [-0.9 1.1] and the corresponding real system output is generated from 
Eq.(6.15) and to which some noise with mean -0.0002 and variance 0.0053 is added. The 
validation of the identified T-S fuzzy model will be tested by 81 inputs of x independent from 
the training data (nv = 81), with intervals of 0.05 in the validation range [-2 2]. The real 
system output is depicted in Figure 6.2.(d), where a solid line represents the system output 
defined on the validation range and the curve marked by circles the training range. 

The qualitative information is represented by a Mamdani fuzzy model and is defined on the 
operation range [-2.5 2.5]. The default Mamdani fuzzy model has seven and four membership 
functions for its input and output, respectively (see Figure 6.2.(b) and (c)). The symbols 'NB', 
'NM', 'NS', 'ZO', 'PS', 'PM', and 'PB' of input x denote the same linguistic terms as above, but 
are characterized by seven different membership functions. The output membership function 
is termed by four linguistic symbols, 'NS' - negative small, 'NM' - negative medium, 'NB' -
negative big, and 'P' - positive. The seven fuzzy rules of the default Mamdani fuzzy model are 
listed below, 

Rule_al:IF xisZO THEN y is P (6.16.a) 

Ruleja 2: IF x is PS THEN y is NS (6.16.b) 

Ruleja 3: IF x is NS THEN y is NS (6.16.c) 

Ruleja 4: IF x is PM THEN y is NM (6.16.d) 
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Rule_a 5: IF x is NM THEN y is NM (6.16.e) 

Ruleja 6: IF x is PB THEN y is P (6.16.f) 

Rule_a 7: IF x is NB THEN y is P (6.16.g) 

Note that there are only 3 output membership functions are included in the default model 
currently due to the operation range used. The min-max fuzzy inference and centroid of 
gravity defuzzification method are used to obtain the prediction output of the default 
Mamdani fuzzy model. Choosing 167 input signals (na = 167) from the interval [-2.5 2.5] as 
default input Xa to the default Mamdani fuzzy model, results in 167 pairs of input-output 
records in the operation range. The default Mamdani fuzzy model has the approximate 
nonlinearity as that of the desired system, Eq.(6.15), but is quite imprecise in the validation 
range, see Figure 6.2.(d). This is allowed as the default Mamdani fuzzy model is not expected 
to be very accurate. It serves as a reference model to assist the estimation of the consequent 
weight parameters of the T-S fuzzy model under the present optimization approach. 
Furthermore, the following special situations of the system are regarded as soft constraints to 
the optimization criterion*, 

Rule_s 1: IF x is close to zero THEN y is close to 1 (6.17.a) 

Rule_s 2: IF x is close to positive 1 THEN y is close to -2 (6.17.b) 

Rule_s 3: IF x is close to negative 1 THEN y is close to -2 (6.17.c) 

Rule_s 4: IF x is close to positive 2 THEN y is close to 1 (6.17.d) 

Rule_s 5: IF x is close to negative 2 THEN y is close to 1 (6.17.e) 

We may regard these rules (Eq.(6.17)) as the specific states of the system x, = [0 1 -1 2 -2]T, 
which yields the specific output of the system y, = [1 -2 -2 1 1 ]T. So, there are five soft 
constraints (ns = 5) imposed on the performance criterion J. 

In the optimization of w and penalty weighting parameters p, we first assign random numbers 
as an initialization to penalty weighting parameters p0. Then we use the least squares method 
to find the optimal w based on the initial p0. Next, according to the generalized cross-
validation criterion, we re-estimate the penalty weighting parameter values, and then the 
corresponding optimal w is re-estimated based on the current p values on every iteration step; 
see Figure 6.1. For comparison of the performance of the identified T-S model affected by 
adding different kinds of a priori information, we consider the following cases in this 
example. 

In fact, in this example, the soft constraints contain similar information as the default rules but they 
have a higher a accuracy when compared to the Mamdani fuzzy rule base, although it is not necessary 
to deduce the fuzzy rules as independent soft constraints from the default Mamdani fuzzy model in 
this way. In many physical systems, we can gather this kind of soft constraint information based on 
first principles, e.g., the averaged mass/energy balance or some initial operation settings. 
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Figure 6.2: (a) The membership function of input x of the T-S fuzzy model, (b) 
and (c) the membership functions of input x and output y of the 
default Mamdani fuzzy model, (d) The real system response of 
validation data (solid line); training data (marked by 'o');the 
predicted output of the default Mamdani fuzzy model (dashed line). 

Casel : no a priori knowledge is added. I.e., the ordinary least squares method is used to 
identify the consequent weight parameters of the T-S fuzzy model, which means that 
the T-S fuzzy model merely makes use of the available training data. 

Case_2: only regularization is considered. I.e., we request the T-S fuzzy model to be smooth 
and only the penalty weighting parameter X is tuned. 

Case 3: smoothness is required and the default Mamdani fuzzy model (Eq.(6.16)) is included 
into the identification of the T-S fuzzy model. I.e., we tune both parameters X and a. 

Case 4: smoothness and soft constraints (Eq.(6.17)) are required. I.e., we tune both 
parameters X and ß. 

Case_5: smoothness and soft constraints (Eq.(6.17)) are required and the default Mamdani 
fuzzy model (Eq.(6.16)) is involved in the identification of the T-S fuzzy model. I.e., 
we tune all penalty weighting parameters X, ß, and a. 

As a result, five models (denoted as Model_l, 2, 3, 4, and 5, shown next) based on the above 
different combinations of a priori qualitative information will be identified. 
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64 RESULTS 

From the simulation, we have searched the non-trivial* optimal solutions for penalty 
weighting parameter values based on several trials of different initializations. The optimal 
penalty weighting parameters converge at the end of the re-estimation procedure and yield 
smaller values both on the generalized cross-validation criterion and the performance 
criterion. Shown below are the best values of the penalty weighting parameters of each model 
that have the minimal mean squared error to the training data. Besides, in order to evaluate 
the prediction performance of the identified T-S fuzzy models, we will compare the mean 
squared error based on training data and validation data, denoted by MSE_t and MSE_v, 
respectively, in the following table. If an identified T-S fuzzy model has a smaller MSE_v 
value than that of Model_l (based on Case_l), then this will indicate that a better 
extrapolation ability can be obtained by incorporating the extra a priori knowledge into the 
modeling. Table 6.1 lists typical results of the simulation corresponding to the above five 
cases. The subscript 'f denotes the resultant optimal value of penalty weighting parameters at 
the end of the re-estimation procedure. Predicted outputs of above five models based on the 
validation range of input x [-2 2] are depicted in Figure 6.3. 

Table 6.1: The result of optimization of five models incorporating different a 
priori knowledge, where the optimal consequent weight of the 
corresponding T-S fuzzy model, w\ is shown here for reference. It 
is calculated from Eq.(6.5). 

Model 1 
Model 2 
Model 3 
Model 4 
Model 5 

Af 
-

0.00061 
0.00001 
0.00009 
0.00001 

ß, 

-
-

0.83666 
0.03001 

Of 

-
-

0.04793 
-

0.00244 

MSE t 
0.00656 
0.00663 
0.01274 
0.00673 
0.00742 

MSE v 
7.48987 
1.72106 
0.18727 
0.00805 
0.00371 

Model 1 
Model 2 
Model 3 
Model 4 
Model 5 

e* 
6! 

-8.9789 
-0.1162 
3.8351 
10.4161 
9.1615 

e2 
-5.3543 
-5.4556 
-3.4875 
-5.9694 
-5.5461 

e3 
-1.0943 
-1.0887 
-1.5665 
-0.9987 
-1.0929 

e4 
2.1150 
2.0990 
2.3788 
2.0402 
2.1457 

e5 
-1.0791 
-1.0190 
-1.4252 
-0.9121 
-1.1047 

e6 
-5.0078 
-5.5094 
-4.3001 
-6.1472 
-5.5554 

e7 
-13.3197 
-0.4563 
4.5412 

10.6412 
9.3180 

If the identified penalty weighting parameters p is [0 0 0] , we call it a trivial solution as it does not 
make sense in the present approach and, in fact, is the same solution as that of the ordinary least 
squares identification. 
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-2 -1.5 

Figure 6.3: The predicted output of the identified models based on validation 
data. It is hard to distinguish between the output of Model_5 and 
the real system response (without noise). Points marked by circle 'o' 
denote the training data, whilst points marked by asterisk '*' the 
soft constraints, x, = [ 0 1 -1 2 -2]T and ys = [1 -2 -2 1 1]T. Note, 
some part of the output of Model_l is cropped in order to stress the 
distinct outputs of other models. 

From Table 6.1 we observe that Model_l, the T-S fuzzy model identified by ordinary least 
squares method without adding any further a priori knowledge, has very good interpolation 
performance in terms of the small MSE_t value. However, the extrapolation performance is 
very poor (MSE_v = 7.48987) and this can also be seen from Figure 6.3. Adding the extra a 
priori knowledge into the T-S fuzzy modeling, we can obtain comparable interpolation 
performance on the training range [-0.9 1.1] and much improved extrapolation performance 
on the validation range. (See Table 6.1; compare the MSE_v values). It is obvious from 
Figure 6.3 that the predicted output by the identified T-S fuzzy model, which involves any 
kind of a priori knowledge such as Model_2, 3,4, and 5, is significantly distinct from that of 
Model_l. The responses of these models outside the training range, in particular, is notably 
improved from that of Model_l. All approach to the real system response, showing that 
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superior extrapolation ability can be obtained by adding the extra a priori knowledge into 
modeling. 

Simulation results show that the searched non-trivial values of the penalty weighting 
parameters do have noteworthy effects on the T-S fuzzy modeling. These values may serve as 
indicators on the relative correctness or relevance of the corresponding a priori knowledge to 
the used empirical training data. Yet, it shall be careful to make a direct interpretation of 
these penalty weighting parameters, because their correctness or relevance to the empirical 
training data is not verified. If the a priori knowledge can be proved to be correct in some 
extent, and if there is a large amount of data available covering all possible operation 
conditions, then the interpretations of the penalty weighting parameters may be feasible and 
meaningful [34]. 

In this particular example, we notice that a larger X value of each model results in smaller 
consequent weight values of the T-S fuzzy model. This shows that a bias term is introduced 
into the mean-squared-error evaluation. Consequently, the result favors solutions involving 
small absolute parameter values and the model then becomes smoother. This can be seen from 
Table 6.1 by comparing the w values of Model_2 to Model_l. Yet, Model_4 is an exception. 
This is probably caused by adding the soft constraints to the model, which has resulted in 
some underlying compensation effects. Furthermore, compared to the default Mamdani fuzzy 
model and noise contaminated training data, we know that the soft constraints imposed on the 
modeling is truly correct. The result of using correct a priori information is reflected by a 
larger final ß value. This shows that it helps to incorporate correct soft constraints, like 
Eq.(6.17), into the T-S fuzzy model. On the other hand, since we are aware that the default 
Mamdani fuzzy model is not very precise (see Figure 6.2.(d)), the optimal value of a is not 
expected to be greater than ß, provided both soft constraints and default Mamdani fuzzy 
model are imposed on the optimization criterion. As shown in Table 6.1, the a value is far 
smaller than the ß value, certifying the difference in contribution to the fuzzy modeling. 
However, one shall be aware that the above example is particularly constructed to explain the 
modeling results by the optimization approach, rather than to deduce further information to 
interpret these penalty weighting parameters. 

6.5 CONCLUSIONS 

Often a priori qualitative knowledge can be put in a form like the ordinary Mamdani type of 
fuzzy rule. Thus, the Takagi-Sugeno type of fuzzy model is most suitable in using the 
quantitative information for modeling. In this chapter we have studied how to incorporate a 
priori knowledge into the T-S fuzzy model. It has been shown that combination of a Mamdani 
fuzzy model and a T-S fuzzy model in an optimization framework provides a basis for easy 
incorporation of the a priori knowledge into the fuzzy model. The resultant fuzzy model 
becomes more robust in terms of generalization on the extrapolation domain. Eventually, this 
approach can be extended to neural-fuzzy modeling. 

An important condition in this optimization approach is that we have to presume that the 
available a priori knowledge is correct to some degree and relevant to the information content 
used for identification. Otherwise, the incorporation of a priori knowledge will yield 
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misleading results. The principal idea is to regard a priori knowledge as constraints in the 
fuzzy modeling and to add penalties into the optimization performance criterion. The 
corresponding penalty weighting parameters are estimated in an optimal sense according to 
the generalized cross-validation criterion. With known penalty weighting parameters the 
consequent weights of the T-S fuzzy model with the extra a priori information, can be 
estimated optimally in the least square sense. The final estimates are obtained by iteration. 

It often appears in neural networks identification that the amount of training data is limited, 
or sparsely distributed in the important regions of the input space. Hence, an overfitting 
problem may arise when too many parameters are used for modeling. This situation also 
occurs in the over-parameterization fuzzy model or neuro-fuzzy model. The over-
parameterization problem becomes more significant to the first-order Takagi-Sugeno fuzzy 
model where the consequent part of the fuzzy rule is formed by a linear function of inputs, 
such that a large amount of free parameters have to be identified. Some studies, e.g., [3] [35] , 
have shown that regularization can reduce the overfitting problem. We have merely used the 
zero'*-order T-S fuzzy model as a basic model structure in our present example, and the over-
parameterization problem does not seem to be serious in this case. Still, this problem will 
become more obvious when the number of fuzzy rules increases. One must try to avoid this 
problem. In addition to employing the orthogonal least squares method to reduce the 
redundant fuzzy rules (consequent weight parameters), it will be an interesting topic to check 
the effect of regularization on the over-parameterized T-S fuzzy model or neuro-fuzzy model. 

Another pending question of this approach is the interpretation of the penalty weighting 
parameters. As mentioned before, the direct interpretation of these parameter values is not 
easy as the incorporated a priori knowledge is not yet justified. Provided that the a priori 
knowledge used can be certified as correct and relevant to larger operation conditions, then 
one could expect that these penalty weighting parameters would reveals the relative 
importance of the actual data vis-à-vis the a priori knowledge, from the point of view of 
prediction performance. More studies are needed on the interpretation of these penalty 
weighting parameters in conjunction with the a priori knowledge source used for modeling. 

The example presented in this chapter shows significant effects can be achieved by adding 
penalties to the optimization performance criterion, resulting in an identified T-S fuzzy model 
having a convincing improvement on extrapolation. Looking at the interpolation aspect, we 
notice from the example that, even if the a priori knowledge is not completely correct, (refer 
to Figure 6.2.(d)), the identified T-S model still maintains a good accuracy in the 
interpolation (training) region, provided the training data really represent the underlying 
characteristics of the unknown system and the T-S fuzzy model uses a correct model structure 
(fuzzy rules). This situation shows that the empirical data always dominate the identified 
result of the T-S fuzzy model, just like any other black-box identification approach that is 
notably data-dependent. However, the present approach enables us to easily incorporate the a 
priori knowledge into the identification process, which is advantageous especially when we 
want to deal with extrapolation to regions where the training data are deficient. 



7. CONCLUSIONS 

There are five essentials for victory: (1) He will win who knows when to 
fight and when not to fight. (2) He will win who knows how to handle 
both superior and inferior forces. (3) He will win whose army is animated 
by the same spirit throughout all its ranks. (4) He will win who, prepared 
himself, waits to take the enemy unprepared. (5) He will win who has 
military capacity and is not interfered with by the sovereign. 

- SunTzu, Art of the War 
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This chapter concludes the studies presented in this thesis and provides some prospects for 
further research. 

7.1 GENERAL CONCLUSIONS 

As outlined by [88] , there is a considerable recent interest in soft computing dedicated to 
exploring the tolerance for imprecision and uncertainty, to learning from experience, and to 
adapting to changes under operation conditions. Soft computing points to an artificial 
intelligent system that consists of three principal components: fuzzy logic, neural network 
theory, and probabilistic reasoning. The fuzzy logic primarily deals with imprecision, the 
neural network with learning, and probabilistic reasoning with uncertainty. Although there 
are overlaps among these components, it is important to note that they function 
complementarity rather than competitively. Hence, advantages can usually be gained when 
they are employed in combination rather than exclusively. In this manner, remarkable results 
relating to soft computing have been achieved in recent times. The integrated neural-fuzzy 
model is exactly one instance of soft computing. In our present study, the integrated neural-
fuzzy system, NUFZY, is used to deal with function approximation, where the fuzzy logic 
serves as a tool for approximate reasoning, and the neural network is in charge of the learning 
ability. 

Although fuzzy logic theory is an extensive field that involves various concepts and principles 
as well as innumerous operators, it is limited in practice when actually being implemented in 
fuzzy reasoning. The first half of chapter 2 provides an introductory summary of both the 
Mamdani and the Takagi-Sugeno fuzzy models that is sufficient to explain the essence of 
fuzzy reasoning. The latter half of chapter 2 explicitly provides details of constructing the 
integrated neural-fuzzy system, which is functionally equivalent to a zero'A-order T-S fuzzy 
model, characterized by a transparent network structure and a self-explanatory representation 
of fuzzy rules. Two existing learning methods have been adapted and applied directly to the 
NUFZY model. This is illustrated in chapters 3 and 4, corresponding to the batch and the 
recursive learning schemes, respectively. Several practical examples with real data have been 
presented to demonstrate the capability of the NUFZY model for function approximation. 

Research in soft computing is still ongoing and many answers are still pending. Two 
questions concerning the integrated neural-fuzzy model represented by the T-S fuzzy model 
were : how to obtain a linguistic interpretation from the fuzzy rales deduced by learning from 
training examples, and how to incorporate a priori knowledge into the T-S fuzzy model. This 
thesis has offered answers to both questions. 

The first question arises since it has been often said that the T-S fuzzy rule cannot be easily 
interpreted linguistically due to its crisp consequent. In chapter 5, it is found that the fuzzy 
model has a property of dual representations. This property makes the T-S fuzzy model with a 
crisp consequent analogous to the Mamdani fuzzy model, if both models are defuzzified by 
weighed sum and all their rules are aggregated individually. As such, this offers a roundabout 
to transform the crisp consequent of the T-S fuzzy rule into a Mamdani - like fuzzy rule with 
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an interprétable set of linguistic terms, where a new parameter set, the consequent 
significance level, is associated to the consequent of each Mamdani fuzzy rule. Hence, we 
have an extended Mamdani fuzzy model that has more flexible modeling ability than the 
ordinary Mamdani fuzzy model, allowing it to perform function approximation as well as the 
T-S fuzzy model. 

Regarding the second question, it is not clearly shown in the literature how to incorporate a 
priori knowledge into the T-S fuzzy model. Since a priori knowledge is often qualitatively 
represented by a form like the Mamdani type of fuzzy rule and the T-S fuzzy model is most 
suitable in using quantitative information, a benefit for modeling shall be gained by 
combining both qualitative and quantitative information. In chapter 6, we employ an 
optimization approach to incorporate of a priori knowledge into the T-S fuzzy model. It has 
been shown that this approach constructs a basis for easily incorporating the a priori 
knowledge into the fuzzy model. The resultant fuzzy model becomes more robust in terms of 
generalization in the extrapolation domain. If desired, this approach can be extended to neural 
-fuzzy modeling without difficulty. 

In summary, this thesis has touched aspects of soft computing by constructing an integrated 
neural-fuzzy model for function approximation, and by analyzing the problem of 
interpretability of the T-S fuzzy model, as well as the incorporation of a priori knowledge into 
the T-S fuzzy model. 

7.2 FUTURE PERSPECTIVES 

The work in this thesis is only the beginning of developing a comprehensive neural-fuzzy 
modeling technique. Much work still remains to be done. The studies made in this thesis 
provide a foundation for the prospective extension of the integrated neural-fuzzy modeling. 
We suggest the following directions. 

• Constrained learning of membership functions: It has been pointed out in chapter 4 that 
the membership functions of input variables may lose their original linguistic 
interpretation after learning, due to the unawareness that the logical order on the universe 
of discourse of each input must be maintained. Another problem which may arise is that 
the original complete rule base on the linguistic level becomes incomplete on the 
numerical level after adaptation. The sparse rule base then gives blank intervals of non-
overlapping membership functions in the input domains. As a result, the input-output 
mapping hypersurface of the neural-fuzzy model behaves discontinuously and the model 
may suffer from the problem of hysteresis when dealing with a dynamic system. Hence, it 
seems necessary to set constraints on the tuning of input membership functions in order to 
maintain a complete rule base and to obtain linguistically interprétable parameter sets of 
input variables. Learning methods, which are subject to the constraint of fuzzy partitions 
on the input variables, can achieve the above objectives. 
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Structure identification: In the present learning process, we have only focused on 
identification in the parameter space based on a given model structure which is regarded 
as a reasonable representation of the unknown system. The model structure is established 
according to some a priori knowledge and trial-and-error. It is, however, necessary to 
carry out structure identification systematically in order to reduce the cost of trial-and-
error, or to prevent abuse of a priori knowledge. In particular, the problem of curse of 
dimensionality arises when the number of system inputs become large and lead to a rapid 
increase of the fuzzy rule base. Several structure adaptation algorithms, which are based 
on principles of constructive or destructive learning, have been used in artificial neural 
network research for some time. In the fuzzy logic discipline, it appears that fuzzy c-mean 
clustering gradually becomes a possible alternative to determine the prototype fuzzy rule 
base using a set of training data. Besides, methods based on statistics and conventional 
system identification are also available. We are convinced that all the above methods can 
be applied successfully to improve the structure identification procedure for the integrated 
neural-fuzzy model. 

Long-life learning: It means that, in addition to recursive (or on-line) adaptation of the 
model parameters, the model shall have the ability to create new rules and to discard some 
inadequate old rules, so that the integrated system approaches the role of an expert, but is 
more flexible to meet reality. This is an extreme expectation concerning the issue of 
learning ability in the neural-fuzzy model. 



Appendix A 

OPTIMALITYOFTHE 

GENERALIZED TAKAGI-

SUGENO FUZZY MODEL 

This appendix summarizes the results of the optimality of the generalized T-S fuzzy model. 
The details can be found in [33] . A MISO fuzzy system, the generalized T-S fuzzy rule is 
given by 

/f(TS): IF xisAr(x) THEN y = gr(x) (A.1) 

where input x e X c W\ ni is the dimension of input x and the joint universe of discourse of 
x, X, can be partitioned into R fuzzy subsets, Ai(x), A2(x), .. , Ar(x), .., AR(x). Each fuzzy 
subset is characterized by a membership function, HAT(X), for r = 1, .. , R, that maps Xinto the 
bounded interval [0 1]. The grade value of membership function HAT(X), is equivalent to the 
firing strength vr(x), in Eq.(2.31) and defined by Eq.(2.27.b). The local models (or consequent 
functions) gi(x), g2(x),.., gr(x),.., gR(x) are assumed to be continuous. 

Let us suppose that there exists a global model y = G(x), then G(x) can be interpreted to be 
close to the local model gr(x) when " x is in Ar(x) ". The fuzziness of Ar(x), represented by 
Î ArC*), suggests that a penalty on mismatch between G(x) and gr(x) shall be large when (IAT(X) 

is large. This means the more the degree of fulfillment of fuzzy proposition " x is in Ar(x) " 
(i.e., ^Ar(x) is large), the more the global model G(x) shall approach the corresponding local 
model gr(x) under this proposition. Hence, we can define a criterion functional ./(G(x)) as a 
measure of the mismatch between the inferred global model G(x) and the local models, gr(x)'s, 
which are derived from knowledge forming the T-S fuzzy rule base, as below, 

R 

J(G(x)) = V f [G(x) - g r(x)]2-/iAr(x) dx (A.2) 
r=l 

where J is defined in C(X), the space of all continuous functions on X The optimality 
theorem is then described below. 
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Theorem: 

Suppose the fuzzy partition Ai(x), A2(x), .. , Ar(x), .., AR(x) of Xis complete, and 
the membership functions HAIOO, HA2(X), .. , HAI(X), .. , HAR(X), and the g,(x), g2(x), 
.. , gr(x), .. , git(x) are elements of C(X). Then the fuzzy inference described by a 
Takagi-Sugeno fuzzy model is optimal in the sense that the function 

R 

G(x) = £v r(x)-g r(x) (A.3) 
r=l 

minimizes the criterion functional ./(G(x)) on C(X), where vr(x) is the normalized 
firing strength as defined by Eq.(2.32). 

It is easy to prove the theorem, since the completeness of the fuzzy partition Ai(x), A2(x), .. , 
Ar(x), .., AR(x) in X ensures that ./(G(x)) is convex and there exists a unique global minimum 
of J(G(x)). Hence, taking the variation of J(G(x)) with respect to any perturbation AG(x) e 
C(X), we have 

R 

5/(G;AG) = 2 Y f [G(x) - gr(x)]-^A (x)-AG(x) dx 
^ • ^ *xeX 
r=l 

A necessary and sufficient condition for the minimum of J(G(x)) is 
R 

£[G(x)-g r(x)]- / /A r(x)= 0 
r=l 

Hence, 

then 

| ]G(x)- /yA r(x)- | ;g r(x) . / .A r(x) = 
r=l r=l 

G(x)-£>Ar(*)] = 2 > A r « - g r « 
r=l r=l 

Therefore, replacing HAT(X) by the firing strength vr(x), we have 

R 

2]vr(x)-gr(x) R 

G(x) = ̂ _ = ^ v r ( x ) . g r ( x ) 

ZVP(X) r=1 

P=I 

This shows that the fuzzy inference mechanism by the generalized T-S fuzzy model, Eq.(A. 1), 
is optimal with respect to the criterion functional J(G(x)), defined in Eq.(A.2), which implies 
that it optimally mimics any continuous global mapping. 



Appendix B 

DERIVATION OF THE 

SENSITIVITY DERIVATIVES OF 

THE NUFZY SYSTEM 

In this appendix we will show the derivation of the sensitivity derivatives of the NUFZY 
system. First, the derivatives of the NUFZY system with respect to the node's parameters on 
each layer are given. By means of the chain rule, the sensitivity derivative of the NUFZY 
system can be obtained. It is noted that |Xid(Xj) and oc^x;) are functions of x, c, and a. For 
simplicity, Hkj(Xi,Ciju,aijci) is denoted as Hkj(Xj) and am(Xi)Cij£i,OijCi) as a^xi). If not particularly 
mentioned, parameter indexed by m will be used in this appendix for discussion, and the 
transformation of a„i(Xi) into |a.ia(Xi) is defined by Eq.(4.2.d). In the following derivation, index 
i runs from 1 to ni, m runs from 1 to M and n runs from 1 to nb. The tuning parameter set G 
can be defined as either 0 = tu, or 0 = [GJ c]T, or 0 = [05 c a]T , where parameter vector 0 just 
stacks all the tuning parameter vector of GJ = [w / .. wn

r .. wnb
T]T, with wn.= [wJn .. wra .. 

WR„]T, and c = [ci .. cm .. cM]T as well as a = [a^ .. am .. aM]T. Hence, the dimension of 0 can 
be nbxR, or nbxR+M, or nbxR+2M; M is defined in Eq.(4.3). Some notations of operations 
follow those used in Matlab®, i.e., .* and ./ represent array or element-by-element 
multiplication and division, respectively, kron means kronecker tensor product; r(:,m) and 
T(r,:) stand for the m'h column vector and the r'h row vector of matrix V, respectively. 

B.l NODE DERIVATIVES IN LAYER 1 OF THE NUFZY 
SYSTEM 

(1) The derivative of the Gaussian membership function 

(1-1) node parameter is c 
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^ i W = Oc m = oc, (x, -cra) am
 2 (B. 1 .a) 

on the left edge of the Gaussian membership function, 

^ i l = Ocu = (n,(x,))2exp((x, - C y ^ J - O y (B.l.b) 

on the right edge of the Gaussian membership function , 

^ t ó l = <5d̂, = -diMfexpHti -c^)o^)-o^ (B.1.C) 
OCi.Ni 

(1-2) node parameter is a 

jtoffiOO = o a m = oc (x, -cm)2 om-3 (B.2.a) 

on the left edge, 

teil =d,o ,1= _ ( ^ ( X i ) ) 2 e x p ( ( X i _ C i ] ) C n ) . ( X i _ C i ] ) (B.2.b) 

on the right edge, 

3^Nl(Xi) = *ow = (^ . (x.^expHx, -c lNi)a lNi)-(x, -c,,Nl) (B.2.c) 

(2) The derivative of the IMQ membership function 

(2-1) node parameter is c 

fa-fri) =Qcm = qm
3(x i-cJ (B.3) 

(2-2) node parameter is a 

9 " m ( x . ) = 0 o m = . a m 3 0 m ( B 4 ) 
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B.2 NODE DERIVATIVES IN LAYER 2 OF THE NUFZY 
SYSTEM 

(1) The partial derivative of firing strength, v r, with respect to membership function value, a,,, 

i l l 

111 

i=l 

3a„ 

—'- if/M#(r,m) = l 

0 ifRM(r,m) = 0 

(B.5) 

where fiM(r,m) means the element on the r"1 row and m'h column of the relationship 
matrix RM; notations RMir&.bi) and \i{ are defined in the same way as those in section 
2.3.1. 

(2) The partial derivative of vr with respect to vr 

dn d v _ l - v r 

dvr dvr V V 

p=l p=l 

(B.6) 

We can also use matrix notations to denote the above two partial derivatives. Firstly, let 
d v T 

matrix T represent a RxM Jacobian matrix of , where v = [vi ..vr .. vR] is a vector of 
da 

firing strengths of all fuzzy rules and a = [ai a2 ... oc, ... aM]T. One element of matrix r , 
dv 

r(r,m), is equal to ——. Then matrix T can be expressed by 
docm 

r = 
dv . d\ 3v 
da 3oii 3aN 

= RM* 
a, a» 

a. O.K 

v v 
= RM.*l—...— 

(B.7) 

= RM.*[\ vl./ 

M 

a, . .am . .aM 

a l " a m - - a M 

T = /JAf.*[kron(v,IlxM)]./ [kron(a' ,IRx l) ] 
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Note that the m"1 column vector of matrix r is given as 

r(:,m) = 
dv 

da „ 

3v, 

da„ da„ da„ 
(B.8) 

dv 
Secondly, the partial derivative of v with respect to v, T - is a RxR Jacobian matrix. Its 

element is expressed below. 

R—1 » i f i = J 

X». 
r = l _ 
- V : 

Sv, 
, i f i * j 

I r=l 

(B.9) 

Therefore, giving 

dv 
dv 

dvj 

dv, 

3|VR_ 

3v[ 

dvR 

dvR 

dvR 

' 1 - V ! - V ; 

-v 2 l - v 2 

-v, 

"R- l 

- V R - V D 1 - VR 

'X'. 
P=I 

(B.10) 

a? 

The diagonal of ~jr~ is given as 

dvj 
diag(—) = 

dv 

3v[ 

^ R 

dvp 

1-v, 

l - v R 

'Xv, 

R 

X-p 
p=l 

(B.ll) 
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B.3 NODE DERIVATIVES IN LAYER 3 OF THE NUFZY 
SYSTEM 

Node derivative of yn with respect to vr is 

^ = w 
dvr

 W m 
(B.12) 

so 

2k dyn dyn dyn 

3vj dvT 3vR 

: [wi nw 2 n . . .wm . . .wR n ]T 

:w„ 

(B.13) 

In the form of a matrix notation, let y = [yx.. yn.. ynb ] , then the derivative of y with respect 

to "v is a Rxnb Jacobian matrix, V^y , defined by 

V-y = - ^ 
v y dy 

(B.14) 

(Rxnb) 

dy{ 

.dv 
3yt 

3 vi 

dy. 

3yn 9ynb 

3v 3v 

a"y„ 
3vj 

ay» 

3y„b 

âv; 

dynb 
9vR 3vR 

W = [ w 1 - w n - w n b ] 

3vR 

The n'* column of V-y, -£=- ( = wn) , will be used later in Eq.(B.19). 
dv 
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BA THE SENSITIVITY DERIVATIVE OF THE NUFZY 
SYSTEM WRT TUNING PARAMETERS 

(1) The consequent weight parameters w are taken as tuning parameters. 

In this case, the parameter set 0 is defined as 

era = 05 = [W .. w„T .. wnb
T] T-iT ((nb-R)xl vector) (B.15) 

For single output yn (i.e., nb = 1), the partial derivative of yn with respect to 6ra, i.e., the 

' 9y n sensitivity derivative "Pœ,, = 
ae„ 

, becomes a Rxl vector 

1 m 
>y„ l 
[96«, J 

"py„" 
[3w[ 

1T 

fd(wïv)" 
dw i 

T 

[9y n ] 
3wn 

T 

"3(w2V 
8 W n 

3y« 
. 9 w n b . 

T 

T" T 

'a(w^v)" 
d Wnb . 

T" 

(B.16) 

TnT [0T . .VT . . 01] 

0 

0 

where 0 is a R by 1 zero vector. 

For the multi-output case, the sensitivity derivative *¥„ 

matrix 

dy 
aen 

, becomes a (nb-R)xnb 
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_dy_ 

aem 

pyi 
IaV 

\dya] öy„b] 
_dQm\ 

v • 

0 
0 

0 

0 

• v • 

0 

0 
0 

0 
• V 

(B.17) 

J((nb-R)xnb) 

(2) c and a are taken as parameters. 

Where parameter set 0 is defined as 

0c = c = [Ci .. cm .. cM]T (or , 0C = c = [en .. c ik i.. cni N n i ]
T , Mxl vector) 

9y then element of the sensitivity derivative of *PC (= 

dy„ 

30 , 

(B.18) 

, an Mxnb matrix), *Pc(n,m) ( = 

dc„ 
), can be obtained. 

vpc(n,m) = | ^ = i f = 1 ^ | ^ ^ - ^ 
dcm dvr dvr dccm dcre 

m ( : , m ) T * 

[ay„] 

3y„ 

9y„ 
dvR 

* 

3v] 

dvj 

dv"r 

3vr 

dvR 

dvR 

* 

3vj 

3a m 

9am 

dvR 

da m 

* 

-A 

da„ 

= RM(:,m)1 * 
,dv\ 

dc„ 

(B.19) 

wn .*diag(—).*r(:,m).* kron(Ocm ,IRxl) 
dv 

where wn follows from Eq.(B.15), representing the n'* column vector of weight matrix W of 
Eq.(B.14); diag(.) follows from Eq.(B.ll), representing the diagonal of the derivative matrix 
of v with respect to v ; T(:,m) follows from Eq.(B.8), representing the m"1 column vector of 
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the Jacobian matrix T; Oc, follows from Eq.(B.l) or Eq.(B.3), representing the derivative of 
oCm with respect to cm. 

Similarly, where parameter set 0 is defined as 

ea = a = [Oi.. om .. oM]T (or 0O = [on .. o ikl.. aniNni]
T, Mxl vector) 

3y then element of the sensitivity derivative of ¥(, (= 
ae„ 

(B.20) 

, an Mxnb matrix), »Pa(n,m) ( = 

3o„ 
), can be obtained. 

*«(n,m) = 
_^in__vR 3yn dvT dvr dan 

3o„ 
• = Z " r=l dvr dvr dam da„ 

RM(:,my * 

9y„ 
dvi 

3y„ 
dvr 

5y„ 
3vR 

* 

dvl 

dvl 

dvt 

dvr 

3vR 

dvR 

* 

3vj 

dam 

dvr 

dam 

dvR 

dam 

* 

RM(:,my * ,dv. 

ao„ 

3o„ 

(B.21) 

wn .*diag(—).*r(:,m).* kron(d>am,IRxl) 
dv 

where O^, follows fromEq.(B.2) or Eq.(B.4). 

Therefore, the sensitivity derivative of the NUFZY system, 4*, can be denoted either as *P,B, or 
VPn> ; *c ], or [*¥a ; *¥c ; ¥„]; representing (nb-R)xnb, or (nb-R+M)xnb, or (nb-R+2M)xnb 
matrix, respectively. The corresponding components of *P are obtained from Eq.(B.16), 
Eq.(B.17), Eq.(B.19), and Eq.(B.21). 
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DERIVATION OF DERIVATIVES 

OF c2ccv WITH RESPECT TO p 

In this appendix, we will show the derivation of the derivatives of (A"1) and (eTe) with respect 
to penalty weighting parameters p, which is defined by p = [X ß oc]T. 

C.l THE DERIVATIVE OF A'1 WITH RESPECT TO 

PENALTY WEIGHTING PARAMETERS p 

According to Eq.(6.6) we have 

A= v T v + A.IR + Çß v s
Tv s +r)oc v a

Tv a (C.l) 

where the third and the fourth terms on the right hand side of matrix A can be expressed by 
symmetrical matrix products, VS

TASVS and Va
TAaVa, respectively. Square matrices As and 

Aa are RxR diagonal matrices with diagonal elements of Cß and r|a, respectively. In order to 
reduce the complexity of formulation, we denote F as 

F = C ß VS
TVS +Î1CC Va

TVa (C.2) 

Hence, Eq.(C.l) becomes 

A = A0 + F= AO + IR-F-IR where A0 = VTV + AIR (C.3) 

First we take the inversion of matrix A, following the well-known matrix inversion lemma 
that 

A"1 = (A0 + XBY)'1 = Ao"1- AQ-'XCYAQ-'X + B '^ 'Y A0
_1 

Then 
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A"1 = (Ao + FT' = Ac"1- Ao"1 IR(IR A«"1 I R + F1)"1 IR Ao"1 

= Ao"1- Ao^Ao"1 + F'y'Ao"1 

If we denote matrix G as 

G = Ao'1 + F 1 

Therefore, A"1 becomes 

A"1 = Ao"1- AQ-'G-'AO"1 

(C.4) 

(C.5) 

Premultiplying A0 and postmultiplying A0 to both sides of Eq.(C5), it is easy to obtain the 
inversion of matrix G as 

G" = A0- A0A" A0 

Hence, from Eq.(C5), the derivative of A"1 with respect to p is 

3A-' 
dp = 

3A-' 

ap • i 
3A-' 

dp 
G-'A-' + A"1 3G" 

3p 
AQ' + A O ' G ' 

3A-' 

3p 

(C.6) 

(C.7) 

where, G"1 is defined by Eq.(C6) and its derivative with respect to p, together with Eq.(C4), 
is derived below. 

3G-' 

3p 

i , r - i \ - i 3(A-' + F ' ) 
3p 

3G 

3p 
-(A-'+F'r 

[5A-'l 
L dp i 

+ 
"3F"1" 

[dp \ 
(C.8) 

In Eq.(C7), the derivative of A"1 with respect to p mainly contains the derivatives of A0
_1 and 

F 1 with respect to p, respectively. We will derive the derivative of A0
_1 with respect to p 

foremost, and then, the derivative of F 1 with respect to p can be obtained accordingly. Both 
derivatives will be expressed in terms of matrices A0, F and A at the end. 

Since AQAQ"1 = IR and 

3A0 

dp 
AÖ +A 0 

3AÖ1 

dp 
. ^ R _ 

dp 
=0 

therefore, 

"3Aôr 

L 9 P J 
=-Aô'-

pA0l 
Lap J 

-1 (C.9) 
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From Eq.(6.12.a), we have 

aA0 

aP 

3A01 
dX 

3A0 

aß 
aA0 

3a 

dp 

a(vTv+^iR) 

a(vTv+xiR) 

3(VTV+MR ) 

3a 

(CIO) 

Similarly, we have 

~dF-'~ 

[dp ^ 
= - F - ' -

3F" 
F"1 
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and from Eq.(6.12.b), 
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Hence, substitute Eq.(C9) and Eq.(Cl 1) into Eq.(C7), we have 
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Therefore, substitute Eq.(C6), Eq.(C.lO) and Eq.(C12) into Eq.(C13), we can obtain 
Eq.(6.11) as follows: 
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C.2 THE DERIVATIVE OF e e WITH RESPECT TO 
PENALTY WEIGHTING PARAMETERS p 

First, we denote the following terms, 

K = I n p - V A - 1 V T 

Kb = C ß v A " 1 V s
T 

Ka = r\ a V A"1 v a
 T 

(C.15.a) 

(C.15.b) 

(C.15.C) 

Then the derivatives of these matrices K, Kb, and Ka with respect to the penalty weighting 
parameters p are expressed below. 
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According to Eq.(6.9) the error e is expressed by 
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and the square of error is, 

eTe = (Kyd - Kbys - K„y. )T-(Kyd - Kbys - Kaya) 

= yd
T-KTK-yd -2 yd
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Since matrices K, Kb, and Ka involve the penalty weighting parameters p, the derivative of 
eTe with respect to p can be derived and expressed by derivatives that are defined from 
Eq.(C.16)andEq.(C14). 
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Substitute Eq.(C14), Eq.(C16) and Eq.(C18) into Eq.(C17), we have the derivative of (eTe) 
with respect to p. 
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From Eq.(6.10) we have the expression of the derivative of 0"2GCV with respect to p 
(= [ X ß a ]T) as below, 
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Hence, substituting the corresponding components of Eq.(C14) and Eq.(C19) into Eq.(C20), 

we obtain derivatives 
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SUMMARY 

Most real-world processes have nonlinear and complex dynamics. Conventional methods of 
constructing nonlinear models from first principles are time consuming and require a level of 
knowledge about the internal functioning of the system that is often not available. 
Consequently, in such cases a nonlinear system identification procedure from observational 
data is a more attractive alternative. If the model structures to be investigated are purely chosen 
from a set of mathematically convenient structures, without incorporation of knowledge about 
the internal functioning, this is called black-box modeling. In case that some qualitative a 
priori information can be used in the above modeling procedure, it is sometimes referred to as 
gray-box modeling. 

Artificial neural network models and fuzzy models are typical examples of black-box and 
gray-box modeling, respectively. They have the same property of parallel processing and both 
serve as universal function approximators to perform nonlinear mapping. Each of them has its 
own weak and strong points. The fuzzy model has a transparent knowledge representation but 
has restricted learning ability. A neural network model can easily learn from new data, but it is 
difficult to interpret the information contained in its internal configuration. 

This thesis investigates how to construct an integrated neural-fuzzy model that can perform 
approximation of an unknown system via a set of given input-output observations. The result is 
the integrated neural-fuzzy model NUFZY, which combines the advantages of the above two 
paradigms, and concurrently compensates for their weaknesses. Thus, it has a transparent 
network structure and a self-explanatory representation of fuzzy rules. 

The NUFZY system is a special type of neural network, which is characterized by partial 
connections in its first and second layers. Through its network connections the NUFZY system 
carries out a particular type of fuzzy reasoning. Also, the NUFZY system is functionally 
equivalent to a zero' -order Takagi-Sugeno fuzzy model, so that it is an universal function 
approximator as well. 
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Two existing learning methods, i.e., the orthogonal least squares and the prediction error 
algorithms, can be applied directly to the developed NUFZY model. The former method, 
referred to as batch learning, can be used to detect redundant fuzzy rules from the prototype 
rule base and to find the weight parameters of the NUFZY model by one-pass estimation. The 
latter, referred to as recursive learning, allows a fast adaptation of parameters of the NUFZY 
model. Several practical examples with real data of agricultural problems, which address the 
tomatoes growth and the greenhouse temperature, have been presented in this thesis, showing 
the capability of the NUFZY system for modeling nonlinear dynamic systems. 

Two questions concerning the integrated neural-fuzzy model are addressed by studying the 
equivalent T-S fuzzy model: how to obtain a linguistic interpretation of fuzzy rules deduced by 
learning from training examples, and how to incorporate a priori knowledge into the T-S fuzzy 
model. 

It is found out that it is possible to have linguistic interpretations of the crisp consequent of the 
T-S fuzzy rules by transforming them into Mamdani - like fuzzy rules. A new parameter set, 
the consequent significance level, is associated to the consequent of each Mamdani fuzzy rule 
to form an extended Mamdani fuzzy model. This model has a more flexible modeling ability 
than the ordinary Mamdani fuzzy model and has a comparable model accuracy as that of the 
T-S fuzzy model. 

Regarding the second question, an optimization approach is employed to systematically 
incorporate the a priori knowledge into the T-S fuzzy model. If the knowledge about the 
system behavior outside the identification data range is expressed in the form of a qualitative 
Mamdani fuzzy model, then this model can be incorporated in the objective function of the 
parameter estimation problem as an additional penalty term. Thus, the estimation of the 
parameters of the T-S fuzzy model from the identification data is constrained by the 
involvement of a priori knowledge. As a consequence, the resultant fuzzy model becomes 
more robust in the extrapolation domain. This approach can be extended to neural -fuzzy 
modeling without difficulty. 

To conclude, the beauty of the integrated neural-fuzzy model, NUFZY, developed in this thesis 
is that it is a neural network, enabling the implementation of efficient learning algorithms in an 
easy way, and that it is a fuzzy model at the same time, allowing incorporation of priori 
knowledge and transparent interpretation of its internal network structure. So, among the 
various methods of nonlinear system identification, the NUFZY model can serve as an 
attractive alternative. 



SAMENVATTING 

De meeste processen in de praktijk hebben niet-lineaire en complexe dynamica. De 
conventionele methode om niet-lineaire modellen op te bouwen op basis van elementaire 
beginselen is tijdrovend, en vereist een mate van kennis over het intern functioneren van het 
systeem die vaak niet aanwezig is. Daarom is het in zulke situaties vaak aantrekkelijker 
modellen op te bouwen uit waarnemingsgegevens via een niet-lineaire systeem identificatie 
procedure. Indien de in aanmerking komende modelstructuren worden gekozen uit een 
verzameling van mathematisch handige structuren, zonder dat kennis over het intern 
functioneren daarbij wordt betrokken, dan spreekt men van 'zwarte doos' (black-box) 
modellering. In het geval dat wel enige kwalitatieve a priori informatie in de modelbouw kan 
worden meegenomen spreekt men van 'grijze doos' (gray-box) modellering. 

Artificiële neurale netwerk modellen en fuzzy modellen zijn typische voorbeelden van 'zwarte' 
resp. 'grijze' modelbouw. Zij werken beide parallel, en van beide is aangetoond dat zij 
universele functie approximators zijn, zodat zij niet-lineaire afbeeldingen kunnen verzorgen. 
Elk heeft zijn eigen sterke en zwakke punten. Het fuzzy model heeft een transparante 
kennisrepresentatie, maar kent slechts een beperkte leermogelijkheid. Neurale netten 
daarentegen kunnen gemakkelijk bijleren als nieuwe gegevens beschikbaar komen, maar het is 
moeilijk om de informatie die in de interne structuur is opgeslagen te interpreteren. 

In dit proefschrift wordt bestudeerd hoe een geïntegreerd neuraal-fuzzy model kan worden 
geconstrueerd waarmee een onbekend systeem uit gegeven ingangs- en uitgangswaarnemingen 
kan worden benaderd. Het resultaat is het geïntegreerd neuraal-fuzzy model NUFZY, dat de 
voordelen van bovengenoemde paradigma's in zich verenigt, en tegelijkertijd de zwakheden 
compenseert. Het NUFZY systeem heeft een transparante netwerkstructuur en een zichzelf 
verklarende weergave van fuzzy regels. 

Het NUFZY systeem is een speciaal type neuraal net dat wordt gekarakteriseerd door een 
partiële verbindingsstructuur tussen de eerste en tweede laag. Door zijn netwerk structuur voert 
het NUFZY systeem een bepaald soort fuzzy redeneerwijze uit. Het is functioneel equivalent 
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aan een nulde orde Takagi-Sugeno fuzzy model, zo dat het eveneens een universele functie 
approximator is. 

Twee bestaande leermethodes, te weten het orthogonale kleinste kwadraten algoritme en het 
predictiefout algoritme, kunnen direct worden toegepast op het ontwikkelde NUFZY model. 
De eerste methode, die een ladingsgewijze leermethode is, kan worden gebruikt om 
overbodige regels uit de verzameling fuzzy regels van het prototype te elimineren, en om op 
een niet-iteratieve wijze de gewichtsparameters te vinden van het NUFZY model. De tweede 
methode, die een récurrente leermethode is, maakt het mogelijk de parameters van het NUFZY 
model snel aan te passen aan nieuwe omstandigheden. In het proefschrift worden enkele 
praktische voorbeelden gegeven met gegevens ontleend aan agrarische problemen - met name 
tomatengroei en kastemperatuur modellering - die laten zien wat het vermogen van het 
NUFZY systeem is voor het modelleren van niet-lineaire dynamische systemen. 

Er zijn twee vragen betreffende het geïntegreerde neuraal-fuzzy model die kunnen worden 
beantwoord door het equivalente Takagi-Sugeno model te bestuderen: hoe kan men een 
linguistische interpretatie geven aan de fuzzy regels die ontstaan door training op beschikbare 
gegevens, en hoe kan men a priori kennis in het T-S fuzzy model verwerken. 

Een belangrijke bevinding van dit proefschrift is dat het mogelijk is om een linguistische 
interpretatie toe te kennen aan de getalsmatig geformuleerde consequent van de T-S fuzzy 
regels door deze te transformeren in Mamdani-achtige fuzzy regels met een interpreteerbare 
verzameling van linguistische termen, waar aan de consequent van elke Mamdani fuzzy regel 
een nieuwe parameter is toegekend: het consequent significantie niveau. Het op deze manier 
uitgebreide Mamdani fuzzy model is flexibeler dan het gewone Mamdani fuzzy model, en 
heeft een vergelijkbare nauwkeurigheid als het T-S fuzzy model. 

Voor de oplossing van de tweede vraag is een optimalisatie benadering toegepast teneinde de a 
priori kennis op een systematische manier in het T-S fuzzy model op te nemen. Kennis van het 
systeemgedrag buiten het gebied waarvoor directe meetgegevens beschikbaar zijn kan in een 
kwalitatief Mamdani model als additionele strafterm in de optimalisatiedoelstelling van de 
parameterschatting worden meegenomen. Aldus wordt bereikt dat de schatting van de 
parameters van het T-S fuzzy model uit de voor identificatie beschikbare gegevens wordt 
ingeperkt door de beschikbare voorkennis. Het gevolg is dat het uiteindelijke fuzzy model 
robuuster is in het extrapolatiedomein. Deze werkwijze kan gemakkelijk worden uitgebreid 
naar een neuraal-fuzzy model. 

Ter afsluiting: het mooie van het in dit proefschrift ontwikkelde geïntegreerde neuraal-fuzzy 
model NUFZY is dat het enerzijds een neuraal netwerk is, wat het gemakkelijk maakt 
efficiënte leeralgoritmen toe te passen, terwijl het tegelijkertijd een fuzzy model is, waardoor 
aan de interne netwerkstructuur een interpretatie kan worden gegeven, en waardoor voorkennis 
kan worden ingebracht. Het NUFZY model kan derhalve een aantrekkelijk alternatief zijn voor 
andere methoden van niet-lineaire systeemidentificatie. 
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