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Stellingen [% 1]

=
- = -

Both from a structural and from a functional viewpoint, fuzzy systems
can be regarded as a special type of feedforward neural networks.
(Chapter 2, this thesis)

-#® -
Fortunetellers are one special type of fuzzy-rule-base model predictors.
However, in contrast to control practice, when they feel well, most
people don't need a predictor.

- B

Translation of foreign terms inte Chinese is a kind of art, which shali try
to keep both the meaning and the pronunciation as close as possible to
the original ones. For example, 'fuzzy' can be translated as 'Z M,
because ".%' means 'be short of' and 'Hfi’', the ‘clearness'. Hence, 'Z Mii'
in Chinese gives you a clear impression that fuzzy is short of clearness.
Another interesting example of the translation of 'Holland' in Chinese is
'far B, where 'fif' means the lotus and ‘' the orchid. Surely, '{ifRE'
presents you a beautiful imagination that Holland is a country fult of
flowers everywhere.

- £ -
The corthogonal least squares algorithm makes it possible to prune
redundant fuzzy rules from the prototype rule base and to assess the
rermaining weight parameters of the neural-fuzzy model by one-pass
estimation. (Chapter 3, this thesis)

- fh -
Computer related products that are MIT (Made In Taiwan) are as
renowned as the Massachusetts Institute of Technology, due to the fact
that R.O.C. (Republic Of China in Taiwan) also stands for Republic Of
Computer in Taiwan.




- B -
A good model accuracy can be achieved by just tuning the consequent
weights of the neural-fuzzy model. {(Chapter 4, this thesis)
B T

It is easier to split off an atom than to break down the bias of people.
{Albert Einstein)

- M-
The severely fluctuating weather in Holland stimulates the
development of advanced climate control technology for Dutch
greenhouses.

-
Defuzzification of a Mamdani type of fuzzy model offers a clue to link
the Takagi-Sugeno fuzzy mode! and the Mamdani fuzzy model, and
thus enables linguistic interpretation of c¢risp consequents of the
Takagi-Sugeno fuzzy rules in the same manner as Mamdani fuzzy
rules. (Chapter 5, this thesis)

S
Some officials are not really aware that 'it is nice to be important, but it
is more important to be nice’, so that they can easily destroy the good
fame of all other nice and important officials.
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ABSTRACT

Tien, B. - T. (1997) Neural - Fuzzy Approach for System Identification.
Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands
Key words ; neural-fuzzy model, modeling, system identification, agriculture

In the real-world most processes have nonlinear and complex dynamics. Conventional
modeling methods based on first principles are often cumbersome and time consuming, and
approximations by linearized meodels are not always suitable. Thus, a nonlinear system
identification procedure from observational data using artificial neural network and fuzzy
models for black-box and gray-box modeling, respectively, can be an attractive alternative. In
this thesis we consider the combination of both approaches to perform function approximation
of unknown dynamic systems.

An integrated neural-fuzzy model, named NUFZY, is developed in this thesis, which combines
advantages of both neural network and fuzzy modeling, and compensates for their weaknesses.
The NUFZY system is a special type of neural network, which is characterized by partial
connection in its first and second layers. Through its network connections the NUFZY system
carries out a particular type of fuzzy reasoning. The transparency of network structure and the
self-explanatory representation of fuzzy rules can be obtained from the NUFZY system.
Moreover, it is functionally equivalent to a zero™-order Takagi-Sugeno (T-5) fuzzy model, so
that it can be seen as an universal function approximator to perform nonlinear mapping. Two
existing learning methods are used to train the model parameters of the NUFZY system. One is
the orthogonal least squares algorithms, which is used to find redundant fuzzy rules from the
prototype rule base and to find the weight parameters of the NUFZY model by one-pass
estimation. The other is the prediction error algorithms, which gives a fast adaptation of
parameters of the NUFZY model. The developed NUFZY system is used to model several
agricultural problems and results in sound performance, showing its capability for function
approximation to deal with the real world modeling problems.

In this thesis we also discuss the possibility of obtaining linguistic interpretations of the crisp
consequent from T-8 fuzzy rules. This is relevant because the NUFZY model is a special case
of the zero”-order T-S fuzzy model. Promising results on the interpretability of the T-S fuzzy
model have been attained. Besides, we investigate how to incorporate the a priori knowledge
into the T-S fuzzy model in a systematic way. It has been shown that, when the qualitative a
priori knowledge is taken into account in modeling, the resultant T-S fuzzy model becomes
more robust in the extrapolation domain, This approach can be extended to neural-fuzzy
modeling without difficulty.
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GLOSSARY

The following general symbols and notations are used throughout this thesis, Some may have
different meanings locally, but they shall be clear from the text.

VARIABLES FOR FUZZY SYSTEMS

Fal

I(x])

F 22X

=

<

)
i

BY{(y)
X'
A}
Al
B"(y)

Bl
f ri,r(xi)

the i* input variable

universe of discourse of x;

joint universe of discourse of all X;

fuzzy set for X; in the antecedent of the r* fuzzy rule

the ki® fuzzy set of input x; in the antecedent of the r** fuzzy rule

the n” output variable

universe of discourse of y,

joint universe of discourse of all Y,

fuzzy set for Y, in the consequent of the r’ fuzzy rule

smgle output variable

the j" " fuzzy set of output y in the consequent of the r" " fuzzy rule

the i” numerical/measured input variable

fuzzy set with singleton membership function resulted by x;'

joint fuzzy set of all premise fuzzy sets A;'

resultant consequent fuzzy set of y based on implication of all premise fuzzy
relations of the r** fuzzy rule

resultant consequent fuzzy set based on aggregation of all B"(y)

the i 1 fuzzy relation of the fuzzy proposition 'x; is A"(x;)' in the antecedent of
the r fuzzy rule

the i fuzzy relation of the fuzzy proposition 'y is B',(y)' in the consequent of the
r' fuzzy rule

conjunctive/disjunctive fuzzy relation of the antecedent part of the r fuzzy rule
implicated fuzzy relation of the r fuzzy rule

aggregative fuzzy relation of all fuzzy rules

the integrated area of the j* fuzzy set of output y in the r” fuzzy rule

resultant active area of all active fuzzy sets of B(y)

the integrated first moment of the j’ fuzzy set of output y in the r' fuzzy rule
resultant active first moment of all active fuzzy sets of B{y)

Vil



Vil Glossary

INDICES AND CONSTANTS

i denotes the i input variable x;;i=1, .., ni

ni the total number of input variables

ki denotes the ki” membership function of x;; ki=1, .., N;

N; the total number of membership functions of input x;

n denotes the n” output variable y,;n=1, .., nb

nb the total number of output variables

j denotes the j"’ membership function of single output y;j=1, .., N,

N, the total number of membership functions of output y

r denotes the " fuzzy rule;r=1,..,R

R the total number of all fuzzy rules, is equal to l'lfi; N,

m denotes the m” membership function of the set that stacks all input membership
functions;m=1,.. .M

M the total number of all input membership functions, is equal to ZLN‘

t denotes the t” pattern of input x from the training set; t=1,..,np

np the total number of training set of input x

q denotes the q”' pattern of input x, from the training set; q=1,..,ns

ns the total number of training set of input x,

k denotes the k” pattern of input x, from the training set; k=1,..,na

na the total number of training set of input x,

nv the total number of validation data set

OPERATORS AND ABBREVIATIONS

T fuzzy T-norm operation

S fuzzy S-norm operation

S, fuzzy S-norm operation used for aggregation

4 fuzzy implication

Iy fuzzy implication complies with classical implication
Iec fuzzy implication complies with classical conjunction
cog centroid of gravity method for defuzzification

T-8 Takagi-Sugeno type of fuzzy rule / model

EM extended Mamdani type of fuzzy rule / model
INOTATIONS

D, (x)) the ki membership node of the input x;

(%) the ki” membership function of the input x;; or denoted by «,,
ca(X) the ki” center of the membership function p(x,)



Glossary IX

o.(x) the ki” bandwidth of the membership function py,(x;)

R the r” rule node

v, the firing strength of the r'* fuzzy rule

v the normalized v,

W, the n” consequent weight of the output with respect to the " fuzzy rule

¥, the n” prediction output of the NUFZY system

Ry the " fuzzy rule of the Mamdani type of fuzzy rule

R the r' fuzzy rule of the Takagi-Sugeno type of fuzzy rule

R gy the r” fuzzy rule of the extended Mamdani type of fuzzy rule

Py the j"’ consequent significant level in the " fuzzy rule

€ the ratio of np to ns

n the ratio of np to na

ey the generalized cross-validation criterion

Y the update gain in the prediction error algorithm

A the penalty weighting parameter accounts for penalty caused by non-smoothness
of the T-S fuzzy model; or, a forgetting factor in the prediction error algorithm

B the penalty weighting parameter accounts for penalty caused by violating soft
constraints

o the penalty weighting parameter accounts for penalty caused by mismatch
between the T-S fuzzy model and a default model; or, the stacked membership
value of p(x;)

VECTORS AND MATRICES

Vector is denoted by bold font with lower case letter, for example,

= [c) . Cp - o]’ (=8,

<

o = [0} .. O - Opl' (=65)

wn = [wln - Wi o wR.n]T

© = [w, W, W] (=6,

8 = [me cr]T

A = [v;..v . vk]T

Pr = lpn - P - th]T

X = [X; .. % xni]T; or, = [x(1)..x(1) ..x(np)]T
y = Y1 Yoo Yul 5 05, = [Y(1) . ¥(® .. y(up)]”
X, = [x,(1}.. X,(K) .. x,(na)]"

Ya = [y(1) - yolk) - y(na)}

X, = [x(1).. X(@) .. x(ns)]”

Ys = [y 1) .. yd@) .. ysns)]"

z = [z .- Z . zNh]T

= [ABa



X Glossary

Matrix is denoted by bold font with upper case letter, for example,

A = Iwy ;. Wa o Woplpeon With w, = [w, ow wR,,]T
(v ¢ -~ 0
5% 0 : 0
¥, = [—y} =10 v :
95 : : 0
\-0 SR V((nb.R)mb)
80, Mt
¥, = [ 9y l
304 Mxnb)
¥ = [¥o: ¥ Yalguvrramy <o)

Iz RxR identity matrix (note, I, is a Rx1 vector of elements of ones)

RM RxM relationship matrix {(note, denoted by Italic and bold font)



1. GENERAL
INTRODUCTION

The Master said "Is it not pleasant to learn with a constant perseverance
and application? Is it not delightful to have friends coming from distant
quarters? Is he not a man of complete virtue, who feels no discomposure

though men may take no note of him?".
- Confucius (Kung Fu-Tze), The Lun Yu, Analects of Confucius
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2 Chapter 1 General Introduction

1.1 MOTIVATION - WHY NEURAL-FUZZY MODELING

A model is used to represent the essential aspects of an existing systemn (or process) in a
usable form, with which the underlying input-output relations can be approximated. Many
modem control designs demand precise and reliable models of the controlled processes in
order to achieve a good performance. Most real-world processes have nonlinear and complex
dynamics. Hence, if the system is to be operated over a wide range of operating conditions, the
comunon linearization approach is not appropriate. Conventional methods of constructing
nonlinear models from first principles are time consuming and require a level of knowledge
about the internal functioning of the system that is often not available. Consequently, in such
cases a nonlinear system identification procedure from observational data is a more attractive
alternative. In such a procedure, first parameterized models (i.c. modet structures) have to be
postulated, the best model can then be found by optimizing parameters with respect to certain
criteria across a set of input-output observations. If the model structures to be investigated are
purely chosen from a set of mathematically convenient structures (€.g., autoregressive moving
average, ARMA model), without incorporation of knowledge about the internal functioning,
this is called black-box modeling. A black-box model is a model with flexible model structure
which can be used to approximate a large variety of different unknown systems [54] . More
specifically, the goal of black-box modeling is to perform function approximation of the
unknown dynamic system using a set of observation data. In case that some qualitative a
priori information can be used in the above modeling procedure, it is sometimes called gray-
box modeling. Artificial neural network modeling and fuzzy modeling are typical examples of
black-box and gray-box modeling, respectively. In the following, we will first analyze these
two types of modeling.

1.1.1 Neural network modeling

Artificial neural networks (or 'meural networks' for short) have been attracting growing
interest in the past decade and have been successtul in various applications of nonlinear
system identification and conitrol problems, e.g., [7] [9] [10] [12] [48] [76] . Good surveys are
given in [28] [29] . A thorough study of viewing neural network modeling as nonlinear
system identification can be found in [52] .

Neural networks perform nonlinear mapping from the space of independent variables to the
space of dependent variables by parallel architectures, which comprise processing units that
communicate the data flow through weighted connections. The appealing features of neural
network modeling lies in its approximation ability and learning capabilities. Based on the
Stone-Weierstrass theorem, it has been shown in [27] [82] that multilayer feedforward
networks can approximate any continuous function to arbitrary accuracy, provided sufficient
hidden units are available, In this sense, multilayer feedforward networks belong to a class of
universal approximators. Besides, several algorithms of learning/mning model parameters
have been developed and can be readily applied to neural networks [1] [39] [52] . However, it
is difficult to interpret the information representation from the internal configuration of neural
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networks directly. Their homogeneous structure also impedes the use of any qualitative «
priori knowledge.

1.1.2 Fuzzy modeling

In contrast 1o neural network modeling, fuzzy modeling is capable of processing available
expert knowledge or experience which can be expressed in the form of a set of linguistic 'IF -
THEN' fuzzy rules and graded membership functions. It is therefore user-friendly and
provides comprehensive knowledge representation. In terms of approximation ability, it has
also been shown in [6] [R0] that fuzzy systems can be universal approximators, like neural
networks. So, fuzzy systems can be used to pursuit a high precision of function
approximation. Yet, another appealing characteristic of the fuzzy model which is different
from the neural network model is often neglected, i.c., the ability to deal with imprecise
information by means of fuzzy rules generated from accumulated experience of human beings.
This means that the fuzzy model is equipped with advantages over the neural network model,
both in the transparent representation of knowledge and the ability to deal with imprecise
information. Fuzzy models have been considered useful when confronted with systems whose
underlying dynamics are unkniown or too complex for analysis by conventional mathematical
methods, e.g., [58] [60] [61] [62] [66] {67] .

Since conventional fuzzy reasoning is performed by a set of fixed fuzzy rules given by experts
in order to carry out the function of static mapping, it is, however, usually difficult to modify
the fuzzy rules. This indicates that the learning/tuning ability of conventional fuzzy systems is
restricted, a characteristic opposite to the case of neural networks. Moreover, in the literature
the handling of a priori knowledge of problems under study is ad hoc, and its use is unclear,
so that it is often hard to set up prototype fuzzy rules for modeling. Altemnatively, one can use
a set of observation data o generate fuzzy rules, resulting in a data-driven fuzzy model {79]
[81] . This approach creates the possibility of training fuzzy models, in the same spirit of
training neural networks. It is worthy to note that, among the data-driven fuzzy models, the
Takagi-Sugeno type of fuzzy model with crisp terms in its consequent is commonly adopted.
Because of the crisp terms in the consequent, however, it is not casy to associate a full
linguistic interpretation to the fuzzy rules from the Takagi-Sugeno fuzzy model.

The above comparison indicates that, in addition to the functional equivalence between the
fuzzy model and the neural network model, one may try to seek the similarities between their
structures and hopefully, to make use of their advantages and to make up for their weaknesses,
This brings to mind the idea of combining both paradigms to create an integrated neural-
fuzzy model.

1.1.3 Neural-fuzzy modeling

Although neural networks and fuzzy systems stem from different origins, they share the same
property of parallel processing, and both can serve as universal approximators to perform
nonlinear mapping. The recognition of the functional equivalence of both as universal
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approximators has prompted a new research to inject new driving forces from the field of
neural networks into the 'fuzzy’ discipline, and vice versa. That is, one atiempls to combine
the transparent representation of the fuzzy system and the leamning capability of the neural
networks in a unified framework, thus giving rise to an integrated neural-fuzzy or fuzzy-
neural model, like [26] [31] [42] .

What can one gain from the integrated model? The integrated neural-fuzzy model, as
proposed by [21] , is expected to be able to carry out the so-called TQ™ reasoning (intelligent
qualitative and quantitative reasoning). This means that the qualitative reasoning is based on
fuzzy logic, and the adaptive numerics is quantitatively processed via neural networks. In
other words, the integrated system can be seen as either an advanced state in the evolution of
conventional fuzzy systems - being able to perform data-driven optimization - or as an
extension of neural networks - realizing the integration of rule based knowledge [23] .

This thesis is primarily motivated by the benefits to be gained when the integrated ncural-
fuzzy model combines advantages of both paradigms and concurrently compensates for their
weaknesses. We will, next, state further details of our objective and highlight some required
properties of our integrated neural-fuzzy model, which are different from the existing ones.

1.2 OBJECTIVES OF THIS THESIS

One of the objectives of this thesis is first to construct an integrated neural-fuzzy model in
order to perform function approximation of an unknown system via given input-output
observations. In addition to obtaining a good accuracy of the modeling, the neural-fuzzy
model shall fulfill the following requirements:

¢ Efficient implementation - the developed modeling techniques from either theoretical or
computational aspects shall be easily and readily applicable to the developed neural-fuzzy
model. This suggests that the construction of the model and the tuning of its parameters
must be kept simple.

¢ Good generalization - the integrated neural-fuzzy model shal! be able to deal with unseen
inputs. By means of using correct fuzzy rules in the modeling, the resultant model will
become robust and be capable of having good extrapolation to some distance.

¢ Transparency and interpretability - the knowledge representation of the integrated model
shall be transparent to help users to understand the underling characteristics of the
unknown system. Fuzzy rules deduced from the intemal structure of the neural-fuzzy
model can be interpreted in a linguistic way such that they benefit the validation of the
local behaviors of the model.

s Ability to incorporate a priori knowledge - since there is much useful qualitative
information concerning certain aspects of system behavior and operation, the neural-fuzzy
model shall be able to utilize these different knowledge sources as much as possible.
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It will be shown that the developed integrated neural-fuzzy model can, in fact, be deemed as a
zero'-order Takagi-Sugeno fuzzy model. Hence, issues of interpretability of its fuzzy rules
and the incorporation of a priori knowledge are examined with the zero”-order Takagi-
Sugeno fuzzy model. Therefore, the second objective of this thesis is devoted to investigate the
feasibility of obtaining transparent interpretations of the Takagi-Sugeno fuzzy rules and to
investigate how to incorporate a priori knowledge into the Takagi-Sugeno fuzzy model.

1.3 THESIS OVERVIEW

This thesis comprises published papers and intermal reports, some of which have been
rewritten for the sake of easy reading. They are arranged in sequential chapters to be in line
with the above objectives. In this section, we outline the organization of this thesis and point
out the contributions made in each chapter,

Chapter 2 describes the fundamentals of neural networks and fuzzy logic. The contribution is
the systematic establishment of an integrated neural-fuzzy system, named NUFZY.
The NUFZY system is a simplified fuzzy system represented by the zero™-order
Takagi-Sugeno fuzzy model, It is a special type of neural network characterized by
partial connections in its first and second layers. Through the network cornections
the NUFZY system performs a particular type of fuzzy reasoning. Yet, this does not
restrict its ability of function approximation,

Chapter 3 is devoted to the estimation of weight parameters of the NUFZY model in an off-
line fashion via a batch of observation data. Our contribution in this chapter is to
use the orthogonal least squares algorithm to detect redundant fuzzy rules in the
prototype fuzzy rule base, while, at the same time, finding the weight parameters of
the NUFZY model by one-pass estimation. We also use several agricultural
examples to illustrate the identification ability of the NUFZY model.

Chapter 4 demonstrates the use of the prediction error algorithm to tune parameters of the
NUFZY model in a recursive manner (which is useful for on-line applications). The
contribution of this chapter is in obtaining the sensitivity derivatives of the NUFZY
system so that they can be easily applied to the recursive prediction error algorithmn
to attain a fast adaptation of model parameters. Examples are presented to show
that good model accuracy can be obtained by merely nining the consequent weight
parameters of the NUFZY model.

Chapter 5 compares two types of fuzzy rules and their models. The result evokes the
possibility to interpret fuzzy rules deduced from the zero™-order Takagi-Sugeno (T-
S) fuzzy model in a linguistic way. In our analysis, it is found that a fuzzy model
has a natural property of dual representations, i.e., the defuzzified output can be
represented as a linear function either of system inputs (like the T-S fuzzy model),
or, of systern outputs (like the Mamdani fuzzy model). This applies to both the
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Takagi-Sugeno fuzzy model and the Mamdani fuzzy model. This property
implicitly allows the transfer of the above two types of models to each other, thus
enabling a linguistic interpretation of the T-S fuzzy rule. We also introduce a new
parameter, named consequent significance level, to the ordinary Mamdani fuzzy
model. This results in an extended Mamdani fuzzy model, which has a more
flexible modeling ability compared to the ordinary Mamdani fuzzy model.

Chapter 6 illustrates an optimization approach to systematically incorporate the a priori
knowledge into a Takagi-Sugeno fuzzy model. Qur contribution lies in the
application of the idea to formulate additional a priori knowledge as constraint
terms imposed to the criterion function tp be minimized. In particular, it is shown
that if the knowledge about the system behavior outside the identification data
range is expressed in the form of a qualitative Mamdani fuzzy model, then this
model can be incorporated in the objective function of the parameter estimation
problem as an additional penalty term. Thus, the estimation of the parameters of
the T-§ fuzzy model from the identification data is constrained by the involvement
of a priori knowledge. As a consequence, the resultant fuzzy model becomes more
robust in the extrapolation domain.

Chapter 7 concludes this thesis and suggests future rescarch prospects.



2. CONSTRUCTION OF
THE NEURAL-FUZZY
SYSTEM - NUFZY

There are three friendships which are advantageous, and three which are
injurious, Friendship with the uplight; friendship with the sincere; and
friendship with the man of much observation : - these are advantageous.
Friendship with the man of specious airs; friendship with the
insinuatingly soft; and friendship with the glib-tongued : - these are
injurious.

- Confucius (Kung Fu-Tze), The Lun Yu, Analects of Confucius

FOIAE A HWE A TAE AT LM ko LBER,
EE2E ABE EEo REFEE
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This chapter gives the basics of neural networks and fuzzy logic. Fuzzy reasoning can be cast
into a fecdforward network structure to perform the fuzzy inference procedure. The present
study will regard the role of neuron units and node connections of the neural networks as
Jjoints and bonds which form the body of fuzzy reasoning. In other words, the neural network
performs as a vehicle, in which fuzzy logic based reasoning is embedded, to achieve the goal
of function approximation. First, a brief introduction of neural networks is given in section
2.1, followed by a more detailed, but conceptual, review of fuzzy logic reasoning in section
2.2. Based on the understanding of both neural networks and fuzzy logic, we will construct an
integrated neural-fuzzy system, named NUFZY system, in section 2.3. Concluding remarks
are addressed in section 2.4. Readers who are familiar with neural nets and fuzzy reasoning
may proceed directly to section 2.3,

2.1 BASICS OF NEURAL NETWORKS

A typical neural network consists of a basic unit called ‘neuron’, which drives some finite
inputs of connections represented by weighted values from the preceding layer of units and
whose output is connected to the next layer of units. The i** neuron of layer k is depicted in
Figure 2.1,

Layer k

Figure 2.1: The fundamental unit of the neural networks - neuron.

Where 1™ represents the j* input, associated with the weight w,, to the i* neuron of layer k.
Subscript j = 1, .., p, p is the total number of inputs of the preceding layer that connects to the
neuron of this layer. Superscript (k) denotes the layer number and o*’; denotes the i* neuron
output of layer k. The neuron of a feedforward neural network consists of a summator and a
nonlinear activation function. The summator associated with p inputs of the preceding units is
a function a(-) which serves to combine information from all nodes of the preceding layer.
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This function then provides the net-input to the nonlinear activation function in this node,
i.e.
®, & (@© © ® ® ) ®

net-input=a (u plU et W LW W P)=)Il(i=1mp)u W

2.1)
The nonlinear activation function denoted as f-) maps the net-input onto a bounded interval.
Several nonlinear activation functions have been proposed for a neuron in the literature [1]
[76] . Typical nonlinear activation functions, for instance, are

(1) threshold function (or, hard limitor)

1 ifa>0
= 2.2)
fla) {0 else
(2) sigmoidal function
-1
fla)=(1+exp (-a)) (2.3
(3) radial basis function (RBF)’
Some different choices of radial basis functions are possible [9] [11] [40] , such as
fr)=rlog(r) : thin-plate-spline function 2.4.2)
f(r) = exp((r* 6%)2) : Gaussian function (2.4.b)
fry=(ri+c?"” : multiquadratic function (24.5)
flry=(ri+c?)-"? : inverse multiquadratic function (IMQ) (2.4.4)

where r = | x - ¢ | is the Euclidean distance from a point x of the input to the center ¢ of
the RBF. The parameters ¢ and o denoic the center and width of RBF, respectively.

Hence, the node output is then given by
output = 0", = £ (@) (or f(r))

It is noted that, among the above nonlinear activation functions, the Gaussian and inverse
multiquadratic functions tend to zero outside the region where they are centered, and arc
therefore most suitable for the purpose of bounded output. In the present work, we will use
these two radial basis functions as nonlinear activation functions to develop the network-like
fuzzy logic system because they offer an additional advantage that they can represent the
fuzzy membership functions in a fuzzy system.

* Neural networks that use radial basis functions are usually referred to as radial basis function
networks.
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2.2 BASICS OF FUZZY LOGIC

Systems based on fuzzy logic [85] are characierized by a sel of IF-THEN fuzzy rules, in which
the system behaviors can be described and analyzed by linguistic variables [86] . Each fuzzy
rule, either gathered from accumulated experience or identified from empirical data,
represents the local input-output underlying relations of systems. Based on the consequence
used in fuzzy rules, we can distinguish two types of fuzzy rules : Mamdani type of fuzzy rule
and Takagi-Sugeno type of fuzzy nile. The Mamdani type of fuzzy rle was the first reported
fuzzy application in control in the literature since 1975 [45] . The later development of the
Mamdani type of fuzzy reasoning is based on the composition of fuzzy relations, which forms
the foundation of fuzzy inference by Mamdani type of fuzzy rules. Hence, in what follows, we
will start with an introduction of the important concepts used in the Mamdani type of fuzzy
rule. Then the variant fuzzy rule, the Takagi-Sugeno type of fuzzy rule {62] , is discussed. The
term Mamdani type used here does not refer to the original operators used by Mamdani and
his co-workers, but refers to the fact that the fuzzy rules have fuzzy propositions as their
consequence, and that the implication is represented by T-norm conjunction (stated later).
Furthermore, in this section we do not atiempt to give all details of fuzzy logic, but will focus
on introducing some concepts that might help to understand the spirit of fuzzy logic and to
construct the integrated neural-fuzzy system. Therefore, most definitions and terminologies
used in this section are adapted from the excellent work of [30] . Of course, many other
references of fuzzy logic can be found, for instance, in [22] [37] [38] [39] [41] [50] [51] [66]
[67] [83] [89] . Besides, the extension of fuzzy logic to approximation reasoning can be found
in [87] [88].

2.2.1 Mamdani type of fuzzy rule

A fuzzy rule consists of two parts, the antecedent and the consequent, which correspond to IF

and THEN statements in the fuzzy rule, respectively. Consider a multi-input-multi-output

(MIMO) fuzzy system, which has ni input variables x; , i = 1, .., ni, and nb output variables y,
n=1,..,nb. A typical Mamdani type of fuzzy rule can be expressed as

R(M) : IF X1 is A] AND .. X is Ai AND .. Xu is Ani
THEN vy isBy, .., ¥,i8 By, .., You 1S By

where A; and B, are fuzzy sets for the universe of discourses of input and output, X; and Y,,
respectively. The subscript (M) denotes a Mamdani type of fuzzy rule and distinguishes it
from the Takagi-Sugeno fuzzy nile to be discussed later. Based on fuzzy relation analysis, it
was shown that the above MIMO fuzzy system can be decomposed into nb multi-input-single-
output (MISQ) fuzzy systems, in which the fuzzy rule has only one output variable in its
consequent [41] . Hence, the fuzzy rule of such a MISO fuzzy system can be simply expressed
as

Ry : IF x,is A; AND .. x;is A; AND .. x,iis Ay THEN yis B
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Without loss of generality, in this section we will only consider the MISO fuzzy system to
describe the following properties of fuzzy logic. Using more detailed notations to denote the
above fuzzy rule of a MISO fuzzy system, it can be rewritten as below.

RT(M) IF x, is Arkl(X]) AND .. Xi is A'ki(xi) AND .. Xni is A'.mj(xm-) THEN Y is Brj(y) (2.5)

where R" denotes the 1" fuzzy rule of the rule base with a total number of R, andr= 1, .. , R.
Superscript r corresponds to the r** fuzzy rule. Each input variable x; has its own N; fuzzy sets
A,; with subscript ki = 1, .., N;, denoting the ki fuzzy set of input x, for i = 1, .. , ni. Output
variable y has N, fuzzy sets, B; , with subscript j = 1, .. , N,. Fuzzy sets Ay's and B; use input
x; and output y as their arguments, respectively. Further explanations of terminology used will
be given in the following subsections. We start with 'fuzzy relation'.

2.2.1.1 Fuzzy relation of a fuzzy rule

In Eq.(2.5), the linguistic expression A (or B) is a fuzzy ser which maps the input x; (or output
y) into a bounded interval [0,1] via a membership function pa(x;) (or Mg(y)), where the input
%, can be either a fuzzy number or a crisp number. The term, x; is A(x), is a fuzzy
proposition which defines a fuzzy relation fr (x;), or simply fr;,, that associates the input x;
with the linguistic descriptor A'y(x;). Similarly, y is B(v) also forms a fuzzy relation denoted
as fri, (y) or simply fi;,. '"AND’ in the antecedent part of Eq.(2.5) plays the role of fuzzy
conjunction of all fuzzy relations fii, in the r** rule and then forms a conjunctive fuzzy
relation, denoted as frp,, of the antecedent part of a fuzzy rule. The conjunction can be
achieved by the triangular norm (T-norm) as defined by

ﬁpr =T (ﬁl_r 9ﬁ2,r s--afri,r s--sﬁui,r)
=fricAafracn o Afrie A A s

=T{fr);fori=1,.. ,ni (2.6)

An alternative operation named the triangular conorm (T-conorm or S-norm) may be used for
linguistic disjunction 'OR’,

ﬁ'pr = S (frl,r ’ﬂz.r ,--,ﬁ'l.r ;--’ﬂni:)
sfrvirev v v o fru

=S8 {fr,);fori=1,.. ,ni 2.7

The commonly used operation of T-norms and S-norms are illustrated in the fable below,
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Table 2.1: The commonly used T-norm and S-norm operators.

T, ¢ S(.q)
Zadeh min{p , g) max(p , g)
Bandler and Kohout pq p+ag-pgq
Lukasiewicz and Giel max(p + g - 1, 0} min{p +g,1)

Arguments p and g in Table 2.1 can be either fuzzy numbers or crisp numbers. For example,
when a set of numerical inputs is given, the corresponding numerical value of fuzzy relation
can be obtained from either Eq.(2.6) or Eq.(2.7) accompanied by any of the operators listed in
Table 2.1. Such a process is called fuzzification, as it maps a crisp point x' in X, the universe
of discourse of input x, into a fuzzy set A(x"} in X via a chosen membership function. Several
choices of this mapping can be made. Among them, for a crisp input x', the most commonly
used is singleton fuzzification, i.e., fuzzy set A(x") is charactetized by its membership function
for pa(x’) = 1 when x' = x, and pa(x") = 0 for all other x' € X but x'# x. Hence, such a fuzzy
set A(x') is called singleton and it is represented by a crisp number (either 1 or 0) rather than
by a fuzzy number. Other possible choices of mapping can result in a non-singleton fuzzy set,
such as triangular or Gaussian shaped membership functions.

2.2.1.2 Fuzzy implication of a fuzzy rule

Fuzzy implication, denoted as I, is performed by fuzzy relations of the aniccedent part of a
fuzzy rule together with the fuzzy relation of the consequent part of a fuzzy rule, (i.e., all fr/'s
and frg .}, and then generates an implicated fuzzy relation FR', where superscript r represents

the " fuzzy rule. Hence the fuzzy relation FR of the r” fuzzy rule, Eq.(2.5), can be
constructed as follows

FR' =1(frp,(x), fri{y))
=I(T(frix)). frily))  fori=1,. ni 2.8)

There are two types of fuzzy implications, One is the fuzzy implication complying with
classical implication, i.e.

type I p—=q=la@p.Q=-pvy (2.9)
The other is the fuzzy implication complying with classical conjunction, i.e.
type II: p=2g=leclp.qg)=pag. (2.10)

Based on these two implications one can generalize the following five fuzzy implications:

(1) S - norm implication: Ip.q)=S(p).q) (2.11)



2.2 Basics of fuzzy logic 13

where c(p) = 1- p means the complement of argument p; S represents a S - norm operation
(refer to in Table 2.1). For example, Kleene - Dienes implication, I{p , g) = min{1- p , q).

(2) Quantum Logic implication: I(p,g)=S{cp),T (@, q) (2.12.a)

where T is a T-norm operation. This implication is also called ‘prepositional calculus’. When
p is replaced by 1 - g and g is replaced by 1 - p, then an 'extended prepositional calculus’ is
obtained

Lp.q)=S(T(c).c(a)) . @ (2.12.b)
1 ifp<q
(3) Residuated implication: I(p, g)=40 ifp=1ag=0 (2.13.a)

elo, 1) otherwise

This implication is also referred to as generalization of modus ponens (GMP), which is
expressed as

I(p,q) = sup{Ae [0,1]| T(p,A)}<q} (2.13.b)

Similarly, if argument p is replaced by 1 - g and q is replaced by 1 - p, a generalization of
modus tollens (GMT) is expressed as

1(p,q) = 1-inf{Ae [0,11|S(g,M)< p} {2.13.0)

(4) T - norm implication: 1¢.9)=T{.q) (2.14)

Where T stands for the T-norms operation (refer to in Table 2.1). For instance, Mamdani's
minimal implication I(p , g) = min (p , ¢) and Larsen's product implication I(p , g} = pg.

(5) classical intersection: 1(p,q) =inf{Ae [0,1]| S(1- p,A)< p} (2.15)

Based on the above definitions of implications, a fuzzy relation FR' obtained by Eq.(2.8) can
be used for aggregation (stated next), or for the use of inference of a fuzzy rule, see subsection
2.2.14.

2.2.1.3 Aggregation of a set of fuzzy rules

A fuzzy rule hase consists of a set of different fuzzy rules, where each fuzzy rule connects to
the others by means of a linguistic connective term 'ALSQ' to form a complete fuzzy rule base.
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Still, based on fuzzy implication, each fuzzy rule (in Eq.(2.5)) forms a fuzzy relation FR'
(from Eq.(2.8)). Therefore, for a set of fuzzy rules with a total number of R, the resultant
fuzzy relation FR can be aggregated by

(R
R
UFR‘ = S1 FR' if ruleconnective’ ALSO ' isinterpreted as disjunction 'OR '
=
=1
FR=1{ (2.16)
R
R
nFR' = T1 FR" if ruleconnective’ ALSO ' isinterpreted as conjunction ' AND '
=,

=1

where S and T represent the S-norm and T-norm operations, respectively.

2.2.1.4 Inference of a fuzzy rule

Based on the above fuzzy relation analysig, and given a premise proposition to an existing
fuzzy rule, one can infer a consequent output fuzzy set by applying Zadeh's compositional rule
of inference 1o compose the fuzzy relation of the given premise proposition and the fuzzy rule
implication. The composition of fuzzy relation is done with a T-norm operation. This can be
explained with the following example. If only two inputs x; and x, and one output y are
considered, the Mamdani's type of fuzzy rule is expressed as

Ryt IF %, is A"y(x,) AND x; is A"y(x;) THEN y is B'(y) 2.17

where Eq.(2.17) forms a fuzzy relation FR® as defined by Eq.(2.8). Given a set of fuzzy input
(A;', A;) and the 'AND' conjunction, all fuzzy rule implications are based on the T-norm
operation. The resultant output fuzzy set B" (with respect to the r** fuzzy rule) can be inferred
by composition of A’ and FR" as below, where fuzzy set A’ is a conjunction of A;' and A;" and
is denoted as TAA, A3,

Bn = A' OT[ FRI
=TJ(A,', Ay) o, FR'
=TAA), Ay °T, T T(A" ,A%),B") (2.18)

=Ti(TAAL’, AY), T( Tc(Arl ’ Arz) , B’ } ) *
=T (hgt( T T{AL, A, TA" 1, A)) . BN T

* Since T {(p,TgrN=T(T(@.gq),r) inthe above expression, if we regard argument p as T(A', A2)
and T( g, r)as T\ T{ AT, A1), BY), then the next expression can be derived accordingly.
" The term 'hgt' stands for the highest value of the argument.
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where 'op denotes a T-norm composition operation, and T. and T; denote the T-norm
conjunction and T-norm implication, respectively. When the min operator is used as the T-
norm operation, the inference fuzzy outpui of Eq.{2.18) can be expressed in terms of
membership function by

e 0)=sup{lp . x)A R, R )IAR g (%1.X5.5))

XAy

= sup{l; (R AR, GDIAD s (K) A Gy KA (]}

LYELY)

={sup[ (1, (1) AML, (2)AM, () AR, (Xa)I Ak 6) @2.19)

XpsXp

={sup[p, KA (x)lasepln, Go) AR, (R)]IARE ()
=hgt(A; N A])ARgA, N A AL (Y)

This resultant inference output fuzzy set of the r** fuzzy rule can be used to derive the final
output of the fuzzy system based on all fuzzy rules; see next subsection and defuzzification
procedure.

2.2.1.5 Inference of a set of fuzzy rules

There are two approaches to derive the resultant inference of a set of fuzzy rules. One is the
local inference approach that first performs inference with individual rules and then
aggregates the results afterwards. The other is referred to as the global inference approach
where a fuzzy relation FR is first obtained by aggregating all the fuzzy relations FR', then the
result is inferred from this resuitant fuzzy relation FR. The difference in these two approaches
lies in the implication method on which the fuzzy rule is based. For example, if the fuzzy rule
applies the classical-conjunction-based implication Ioc (see Eq.(2.10)), the disjunction 'OR’
(see Eq.(2.16)) is then used as the rule connective to aggregate all fuzzy rules. This will result
in no difference between the giobal and the local inference approaches. Taking Eq.(2.17) as
an example, the aggregated output fuzzy set B' can be expressed as follows

B =A"°FR (this is a global approach, since FR is used, rather than FR") (2.20.a)
=A'c |\, FR"} (FRisadisjunction of FR' based on L)
=u,{A'«FR"} (this is a local approach, since FR is used) {2.20.b)
=w,.B"

where FR' is implicated according to the classical-conjunction :

FR =Ioo{ T{A" , ARLB ) =T(A" A AP (2.20.0)
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Hence, the above example using the T-norm as implication makes no difference between the
result of global and local inference.

In contrast, if the fuzzy rule applies the classical-implication-based implication Iy (see
Eq.(2.9)), then the conjunction 'AND' (see Eq.(2.16)) is used as the rule connective o
aggregate all fuzzy rules. The result of the global inference will differ from that of the local
inference. In this case, the output fuzzy set B’ becomes

B =A-FR (global approach} (2.21.2)
=A'o {n.FR'} (FRisaconjunction of FR' based on L.y
c M, {A'oFR"} (local approach) (2.21.b)

where FR' is implicated according to the classical-implication :
FR = I TAA" , A), B ) =(1-TAA"},A%)) v B (2.21.¢)

Eq.(2.21.b) indicates that the results of local inference are less restrictive (informative) than
those obtained from the global inference.

However, in cases where numerical input is used and the fuzzy input A’ is replaced by a
singleton value T, there is no difference between the two approaches. The following
derivation explains this situation.

B =1¢FR (global approach) (2.22.2)
=To{n FR'}
=M, {TFR"} (local approach) (2.22.b)
=N, {1 o I(TAA"; . AL). B))
=N, I(hgt (7" " TA(A", A%)), BN} (2.22.¢)

2.2.1.6 Commonly used inference methods

After introducing the fuzzy inference based on fuzzy relations of the Mamdani type of fuzzy
rule, a summary is given in this subsection of some commonly used inference methods. The
fuzzy inference based on fuzzy relations includes two main factors: construction of the fuzzy
relation FR (model) based on implication of all fuzzy rules and, the use of the FR to actually
infer the output from the inputs by composition. The construction of FR from all fuzzy rules is
mainly achieved by linguistic conjunction (or disfunction) and implication, whilst the
conjunction, in fact, refers to aggregation based on the choice of rule connective. Moreover,
composition consists of two phases: a combination and a projection phase. These concepts are
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]

explained by the following example, where we assume a new set of inputs x' (=[x} .. X} ..
x'u]") is given and is described by a fuzzy set A'(x") (denoted as A’ for short in the following).

(1) Max-min method

aggregation

Mp(y)= max min (v,(x),Hg O} r=1,...R (2.23.a)
r e

implication

where

projection combination

vx)= min [Tsup  min (%), (<)) i=1,..ni 2.23.1)
_..‘i,_J
conjunction composition

v(x) (or, v, for short), as defined in Eq.(2.23.b), is a firing strength or degree of fulfillment
(DOF) with respect to the r** fuzzy rule. The projection on Eq.(2.23.b) means the result of
combination, min{ua(x;") . Ha'(x)), is projecied onto bounded interval [0.1}, and then it
conjugates with results of other inputs (x;). Finally, a firing strength, v(x), with respect to the
r** fuzzy rule of all inputs x; is thus obtained. This method is used by Mamdani and his co-
workers, where the term Max-min comes from the fact that the implication uses the min
operation and aggregation uses the max operation, It is also called sup-min method.

(2) Max-prod method
aggregation
Hp()= max (v(x) - Hpg¥) r=1,..,R (2.24.2)
r S
implication
where

conjunction  camposition
I_J_\

" ’—_'—.~
]Tl.ll'l [ Sup min (’J’A'(xi') » u‘Af(xi))]
1

v, (x}=4or t=1,...n (2.24.b)
I [ sup min (uA‘(xi.) * MA' (xi ))]
composition
|corjunction

Vr, as defined in Eq.(2.24.b), is similar to the definition of v, defined in Eq.(2.23.b), but the
conjunction operation could be chosen either as a min operation or as a product operation.
The term Max-prod comes from the fact that the implication uses the product operation in
Eq.(2.24.a) and aggregation uses the max operation. It is also called max-doi or sup-prod
method.
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(3) Sum-prod method
aggregation
——t—
pp®= 3, (VX - o) r=1,..R (2.25.2)
—
r implication

where v, is defined in the samne manner as Eq.(2.24.b) and the conjunction operation could be
either min or product operation. The term Sum-prod comes from the fact that the implication
uses the product operation and aggregation uses the summation operation based on all R fuzzy
rules, It is noted that the summation of all product terms (v-ps") will likely result in a
supernormal fuzzy set” on the output universe, that does not conform to the fuzzy set theory.
Therefore, a bounded summation may be used to modify Eq.(2.25.a) in order to alleviate the
supernormal situation,

My )=min(Y (v, pg (). 1) r=1,..R 2.25b)
r

Some remarks of the above inference methods are made below.

(R.1) If the input x' is fuzzified by a singleton membership function p(x"), the result
of fuzzification becomes crisp, then the result of the combination of p,(x") and
Ma'(x) (see Eq.(2.23.b) and Eq.(2.24.b)) is crisp rather than fuzzy. By virtue of
the sup-min operation, the result of composition remains as crisp as it is
projected onto interval [0,1]. Therefore, for any crisp input x' (for instance, any
crisp measurement signals), the result of composition can be simplified by just
evaluating the membership value of p,(x) directly (see Eq.(2.27.a), shown
next). On the other hand, if x' is characterized by a non-singleton fuzzy set A',
the resultant conjunction will still be crisp because the sup-min operation
projects the fuzzy combination of py(x") and pa’(x) onto [0,1]. Hence, a crisp
value is obtained as a result of composition. To put it briefly, irrespective of the
use of crisp or fuzzy inputs, thanks to the sup-min composition, the resultant
DOF, v,, is crisp.

(R.2) One might wonder which of the various implication methods is a good one to be
implemented. The author in [78] defines a number of intuitive criteria and
shows that the min-implication and the product-implication (both are T-norm
implications) fulfill many of these criteria. From the computational point of
view, among these two T-norm implications, it can be seen that the product-
implication is much easier to manipulate than the min-implication.
Furthermore, in [46] simulation results show that the sum-product method

A supemnormal fuzzy set means that its maximum membership value is greater than 1; a normal fuzzy
set, its maximum membership value reaches 1; a subnormal fuzzy set, less than 1.
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together with centroid of gravity (COG) defuzzification (shown later), is more
intuitive, simple in nature and performs better, in contrast to the max-min
method together with COG defuzzification.

(R.3) Two types of aggregation are mainly used to infer the result, viz. max-
aggregation and sum-aggregation. It should be noted that this aggregation
procedure implicitly relates to the defuzzification procedure, as will be shown in
the next subsection. Furthermore, the max-aggregation causes a nonlinear result
of ug'(y) - which is not preferable - in contrast to a linear ug'(y) which results
from the sum-aggregation. As indicated in Eq.(2.25.b}, a bounded summation
can be used to avoid the occurrence of supernormal fuzzy sets. Nevertheless, it
is interesting to note that, if the DOF had been normalized in advance, then an
ordinary sum-aggregation can be used without the supernormality problem.

2.2.1.7 Defuzzification

Defuzzification defuzzifies the inference output when a quantitative result of the fuzzy
reasoning is required. It should be noted that the defuzzification method actually integrates
aggregation and defuzzification into one operation implicitly. Several possible defuzzification
methods can be employed, such as centroid of gravity, mean of maximum, indexed
defuzzification and center of area. Details can be found in [30] and [41] . We will only
introduce the centroid of gravity (COG) defuzzification as it is the most commonly used
defuzzification method up to date. Once the individual inference output of each fuzzy rule is
obtained, the defuzzified output can be obtained with the COG method after aggregation. The
defuzzified output yp,, denoted as cog(B", is obtained from the membership function pg(y)
as,

Lu y)ydy

Yo = CO (B' )_ (2.26.&)
(M) ¢ JY B‘ (y)dy

and the discrete version is

Ny
ZIJ.B, ¥4l
Yon = Cog(B')="5
Zus ¥4

(2.26.b)

where y; is the equi-distant quantization, in a total number N, used to discretize the
membership function py(y} of the fuzzy output B’ on the universe of discourse Y.
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2.2.1.8 Practical fuzzy inference procedure

This subsection summarizes the fuzzy inference procedure from a practical point of view. The
term ‘practical’ is used because the input and output are quantitative values rather than fuzzy
values in most control applications. Hence the results obtained from the local inference
approach are similar to those of the global inference approach. Assuming a new input x' is
given with elements x;', and fuzzy rules according to Eq.(2.5), the inference procedure, which
is based local inference, can be summarized in the following five steps :

Step 1: find the matching degree £, (x;') (or denoted as ;) of each input with respect to each
fuzzy rule

hgt(A,",A]) ingeneral
§ir={ g(A;-A;) Ing (2.27.2)

B (%) numerical input

It can be seen that this step only performs a composition of A'(x;)) and A'(x;) (denoted as A}
and A", respectively, in above Eq.(2.27.a)) or, in fact, finds the membership value of input x;'.

Step 2 : perform conjunction of each input in the antecedent part of a fuzzy rule to get a firing
strength v,(x"), denoted by v, for short,

vr=uA{(xl‘)A NA; (xl')/\ /\HA: (xi.)A“AuA;i (Xni.)

=Th, &) (2.27.b)

_ Eflgi - Hgi_r T—nom is the product operation

=1 ot | =)

miin (€;;) T—norm is the min operation
Step 3 : find the implication of each rule

pe () =1 (v, ns(y)) r=1,.,R (2.27.0)
The implication operation I is defined by a choice from Eq.(2.11) to Eq.(2.15).

Step 4 : aggregate all fuzzy rules

Uuﬂ. . (Y)=Ulcc (v, Mg (y}) Implication based onclassical conjunction

W=7 : 2274
He® n"l‘ﬂ-'(Y)=nIa (Ve Uy (¥)  Implication based onclassical implication ( )

T

Step 5 : defuzzification, when COG is empioyed
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[ 1, Gxway
Yo = cog(B' )=W
"

Y

(2.27.¢)

It can be seen that the processes in step 1 to 3 apply to each individual fuzzy rule. The
defuzzification in step 5 implicitly includes the aggregation of step 4 and then defuzzifies the
aggregated results from all fuzzy rules.

2.2.2 Takagi-Sugeno type of fuzzy rule

The previous subsections have considered the Mamdani type of fuzzy rule and analyzed the
fuzzy reasoning based on the fuzzy relation. In this subsection, we will discuss the type of
fuzzy rule which was first introduced by Takagi and Sugeno [56] [62] and further developed
by Sugeno and his co-workers [61] . We will call it the Takagi-Sugeno fuzzy rule, or T-§
fuzzy nule for short, which, in fact, is a variant of the ordinary Mamdani fuzzy rule. The
consequent is expressed differently, where the output fuzzy set is replaced by a function,
denoted as g, below. Hence, the 'generalized T-S fuzzy rule’ can be written as

R(Ts)  IF X1 is A] AND .. X is A.’ AND .. Xni is Ani
THEN y = gi(x), .., Yn = 8a(%),.. , Yub = Zan(X) (2.28}

In what follows, we will introduce two special cases of such a fuzzy rule, the so-called first-
order and zero™-order T-S fuzzy rule [32] . The first-order T-S fuzzy rule of a MISO fuzzy
system uses a linear function as its consequence and can be expressed by

R‘ﬂs)z IF xyis Au(xy) AND .. x;is Au(x) AND .. Xy is A"wi(%a)

THEN y= aa + Za{xi (2.29)

i=]

where constants @', d"y, ..and o in the consequent linear function with respect to the *T-S
fuzzy rule are unknown parameters 1o be identified. There are several successful control and
modeling applications using this type of fuzzy rule, e.g., [57] [58] [59] [60] . At first glance,
one can easily distinguish the difference between a T-8 fuzzy rule and a Mamdani fuzzy rule.
Both may share the same structure in the antecedent part, but differ in the consequent part.
This common feature allows us to obtain the firing strength v, of a T-S fuzzy rule in the same
way as for a Mamdani fuzzy rule. Besides, the resulting firing strength v, Bq.(2.27.b),
performs a T-norm conjunction of all input fuzzy sets A's which use all inputs x's as
arguments to their input membership functions, pa(x). Hence, the information content of
input variables x;'s is already embedded in the firing strength v,. Consequently, input variables
need not necessarily be involved (or, appear) again in the consequent linear function. Based
on this consideration, another variant and more simple type of T-S fuzzy rule, the socalled
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zero”-order T-S fuzzy rule, which has only one constant denoted by w, as its singleton
membership function in the rule consequent, can be represented as below,

R(m IF x; is A'ui(x)) AND .. x;1s A"Li(x;) AND .. x,; is A'\(x) THEN y=w, (2.30)
Because the consequent is crisp, whether a linear function or a constant, we can easily employ
the weighted sum as the defuzzification method to the T-S fuzzy rules in order to get the

resultant output of the T-§ fuzzy model. In the case of the linear consequent function as in
Eq.(2.29), this will result in

R i
2 v 0 (g + X ax)
¥ s (X)= = R =l

ZVP(X) (2.31)

= zv (x) (a0+2alx])

r=1

where the term, % (x) , represents the normalized firing stwength, as defined by

v (x) = LX) (232)

Zp 1 VP (x)

In the case of a constant consequent as in Eq.(2.30), this gives

R

zv (x)-w,
Yersy(x) = 20— = Zv (x)-w, 2.33)
2 v, (X) r=1
p=1

Eq.(2.33) has the attractive property that the output is linear-in-the-parameters.

Moreover, it is also interesting to note that when the consequent functions, g(x)'s in Eq.(2.28),
are continuous, the output of the generalized T-S fuzzy model obtained by weighted sum
defuzzification can optimally represent a global model [33] . See Appendix A.

In the development of an integrated neural-fuzzy model following next, we will prefer the
zero”-order T-S fuzzy rule, because of its simplicity. Also, several advantages can be gained
using the zero™-order T-S fuzzy model. One is that the problem of over-parameterization is
less likely to occur than the first-order T-5 fuzzy model when the number of system inputs
and the total number of fuzzy rules are large. Second, the output of a zero*-order T-S fuzzy
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model is lingar-in-the-parameters, allowing a very fast estirnation of the unknown consequent
parameters, w,’s in Eq.(2.33). Third, the zero”-order T-S fuzzy model is functionally
equivalent to a radial basis function network. This facilitates the construction of the neural-
fuzzy model and gives it the property of a universal function approximator.

2.3 CONSTRUCTION OF THE NUFZY SYSTEM'

A fuzzy system consists of four basic elements: (1) fuzzifier, (2) fuzzy rule base, (3) fuzzy
inference mechanism, and (4) defuzzifier. These elements can be represented in various forms;
for example, sec [41] . Options for executing these basic clements for fuzzy reasoning have
been described in the previous sections. In this section, we will establish an integrated newral-
fuzzy system, called the NUFZY system, to carry out fuzzy reasoning and to achieve the goal
of function approximation. In order to obtain functional equivalence between the fuzzy system
and a ncural network structure, the functions of each corresponding element of the fuzzy
system are cast into network terms and are thus represented by neurons as well as weighted
connections. Without loss of generality, we confine ourselves to the radial basis function as
the membership function, the algebraic product as T-norm operation for the AND conjunction
in the rule antecedent, and the centroid of gravity as the method of defuzzification. To
construct a2 multi-input-multi-ontput NUFZY system with ni inputs x;, i = 1..., ni, and nb
outputs y,, n = 1,.., nb, the following assumptions are made:

(A.1) Each input x; has Ni membership functions, each associated with its own
linguistic label A, with index ki = 1, .. ., N;, and i = 1,.., ni. The number of
membership functions, and the shape and location of the membership functions
for each input x; can be determined a priori by the users.

(A.2) The fuzzy rules take the form of a zero™-order Takagi-Sugeno fuzzy rule by
taking the consequent as a singleton value, denoted as w,, (a constant term),
rather than a linear function of system inputs. Hence, the fuzzy rule is expressed
as

Rrsy: IF x;is A'i(x;) AND .. x;is A'(x) AND .. xyis A'i(Xa)
THEN Y1I=Wrlh oo s Yo = Wms » Yob = Wenp (2.34)
where A'Li(x;) represents the ki” linguistic label of x; with respect to the ** fuzzy

rule R, and w,, the consequent weight of output y, with respect to the r** fuzzy
rule.

* This section of construction of the NUFZY system is extracted from the paper of [72] , titled 'A neuro-
fuzzy approach to identify lettuce growth and greenhouse climate'. To appear in Artificial Intelligence
Review - special issue of Al applications in Biology and Agriculture, 1997.
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A schematic architecture of the hybrid NUFZY system given in Figure 2.2. It resembles a
triple-layered feedforward neural network. Layer 1 and layer 2 of the NUFZY system conduct
the antecedent part of the fuzzy system and layer 3 the consequent part.

| Antecedent ' | Consguent '

_A u'l(x])

L))
2 Pet(X1)

Layer 1 Layer 2 Layer 3

Figure 2.2: The structure of the neural-fuzzy, NUFZY, system.
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2.3.1 Architecture of the antecedent part of NUFZY
Layer 1

This layer consists of the input node x; and membership node ®y(x;) and fixed connection
weights between input nodes and membership nodes. The input node only distributes the
input into the membership nodes with fixed weights of unity, whereas the membership node,
defined by a radial basis function, is used to obtain the fuzzified values (degree of
membership), Wi(x;). Two types of radial basis functions are considered,

(1) Gaussian function:

1(x; ¢y 2
Wi (x;)= exp(-;%) (2.35)

ki
(2) inverse multiquadratic function (IMQ):

W (X;)= ,/ d (2.36)

2, .2
®i—Cin) +0iy

where ¢;); and O;y; are the ki” center and bandwidth of ®y(x;), respectively. The total number
of membership nodes ®y;(x;) in layer one, M, is given by

M=%" N, 2.37)

i=l

Once all Ni's are decided for each x;, the center and width of each membership function can be
determined from the available data set. For instance, given np pairs of input data x(t)=[x,(t) ..
M .o xuO t=1,.., np, the centers of the membership functions can be taken as equally
spaced in the range of each input x;, i.e.

Cixi = min(x;) + [max(x;) - min(x;}] / [N; - 1] forki=1,..,Ni (2.38)

The width of the membership functions, oy, can be chosen as reasonable values in a range
guided by the values of the variance or standard deviation of the available data set in order to
ensure the suitable overlap of the membership functions, thus guaranteeing the continuity of
the predicted output of the fuzzy system. The output of each neuron in this layer corresponds
to a fuzzified value Pi(x;).
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Layer 2

This layer consists of the rule node ‘R,, which represents a fuzzy rule forr = 1, 2..., R, where
R is the total number of all fuzzy rules. When we use a full combination of all inputs in each
rule node, the total number of all fuzzy rules is given by

R=[T% N, (2.39)

Inputs to the rule node are the fuzzified values of p,(x;} from layer one. Each rule node
performs a two-step operation as will be described later, According to Eq.(2.34), each rule
node involves only one membership function for each input. Therefore, the existence of a
connection between a rule node R, and a membership node @;(x,) is represented by a value of
either 1 or 0, forming a relationship matrix RM with dimension RxM. Each row r of RM,
represents the status of the antecedent part of a fuzzy rule, i.e., a value of 1 represents a link
between the r* rule node and the corresponding membership node, whilst an element with
value 0 indicates no connection. Hence, the relationship matrix indeed constructs a prototype
fuzzy rule base with all possible combinations of input variables provided each Ni is assigned.
The following example shows how the RM matrix is used to represent the connections
between nodes on layers one and two. Suppose we had three inputs, x;, x3, X3, having 2, 3 and
2 membership functions, respectively. The membership values, for input x, are w;(x;) and
Ma(x,); for input x; are jy(x;), Ma(X2), and us(x,); for input x, are py(xs) and py(xs). They are
denoted by My, Mz, Kz, Moz, Kas, Mag and Lag, tespectively, for short in below, In this case, R =
2x3x2=12and M =2+ 3 + 2 = 7. The relationship matrix is denoted as RM, 3, with
values as follows:

Bz Hap M2z Mas Hare K
r=1 101 1001 10 ]
r=2 |l o011 0101 t 0 |
r=3 | 101 0011 101 |
r=4 l o011 1001 10 |
r=5 [ 101 010+ 10 |
r=6 |l o101 0011 10 |
r=7 |l 10! 1001 01 I
r=8 | o611 0101 01 |
r=9 |l 101t 0011 01 |
r=10 |l o1 1 1001 01 |
r=11 l to1 o101 01 |
r=2=R L o111 0011 01 |

From the above example, it can be seen that the third fuzzy rule {r = 3) is composed by M1,
Ma3, and Ly, respectively from the first, third, and first membership node of input x;, x;, and
Xs. Obviously, when the number of input variables increases, this prototype fuzzy rule base
will become considerably large. Therefore, methods to reduce the dimension of the model
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structure (number of fuzzy rules in this case) must be taken into account. In the next chapter
we will consider how to remove redundant fuzzy rules.

Now let's come back to the two-step operation of the rule node to generate the node output in
this layer. First, the algebraic product T-norm operation is used to realize the linguistic 'AND'
conjunction of the antecedent part of Eq.(2.34). Consequently, the transient firing strength of
each rule v,{x), or v, for short, is obtained as a function of input x; via p(x;) together with the
RM matrix by

ve= [, RM(r.azb) w(x) (2.40)

where RM(r, a;:b;) represents a subset of the r'* row vector of the RM matrix with partial
elements from a; to b;, with b; = ZN,,, p = 1..., i, and a; = b; - N; +1. Vector pi(x) is given by
Ri(x) = [(x) ma(x) .. s(x) .. uNi(xi)]T. Eq.(2.40) specifies that v, is obtained by just
multiplying the membership functions involved in the r* fuzzy rule, according to the
connections shown in Figure 2.2. Second, to normalize v, the normalized firing strength ¥, is
calculated by

5oV (2.41)

r ZR
p=1 vP

This normalized firing strength ¥, represents the output of the rule node in this layer.

2.3.2 Architecture of the consequent part of NUFZY
Layer 3

The owtput node, denoted as y, , stands for the n™ output of the NUFZY system output. The
link in this layer represents a weight parameter denoted as w, forr=1,.. ,R,andn =1, ..,
nb, that connects node y,and R, These weighs, wy's, actually represent the constant
parameters in the consequent part of the r** fuzzy rule given in Eq.(2.34). With the centroid of
gravity defuzzification method, this node then performs a weighted summation such that the
n” model output is given by

R
Ev, XWo o
¥ =‘L=R—=2Wme —wiy forn=1,.. ,nb (2.42)
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where w, is the consequent weight parameter vector given by w, = [wy, .. Wy .. Wgo]T and ¥
is a normalized firing strength vector given by v=1[%, .. ¥, .. ¥, 1" with element 7, defined
by Eq.(2.41). It is interesting (o note that the model output is linear in the weight parameters;
this means that the unknown weight parameters can be identified by some standard least
squares parameter estimation method, for example, the orthogonal least squares (OLS)
method. Note further that this linear property in the NUFZY system will be still retained for
other choices of T-norm operators for the AND connection in the fuzzy rules as well as for

other choices of the membership functions. Moreover, the normalized firing strength v, can

be viewed as a fuzzy basis function [80] . so that the NUFZY output forms a fuzzy basis
function expansion. Hence, the NUFZY systern has the property of a universal function
approximator.

2.4 CONCLUDING REMARKS

Several aspects of fuzzy systems have been addressed in this chapter. A fuzzy system can be
cast in a network structure to perform input-output mapping, just like artificial neural
networks, We distinguish the Mamdani type fuzzy rule and the Takagi-Sugeno type fuzzy
rule. The former is intuitively comprehensible due (o the use of linguistic terms in both
antecedent and consequent of the rule, but its fuzzy reasoning process is more complicated
because it is based on fuzzy relations as well as the composition of fuzzy relations. In contrast,
the latter, using linear functions of system inputs as consequence, paves the way for easier
fuzzy reasoning. However, although the linear function in the consequence can explain the
local linear relationship of system input and output, it is less interpretable compared to the
Mamdani fuzzy rule. Based on the zero'-order T-S fuzzy rules, we can establish an integrated
neural-fuzzy system, the NUFZY system, which has a iransparent network structure and gives
a self-explanatory representation of the fuzzy rules. Since there is only one weight parameter
in the consequent of each fuzzy rule and due to the use of weighted sum defuzzification,
outputs of the NUFZY system are linear-in-the-parameter. Hence, very fast estimation of these
consequent weight parameters can be accomplished by least squares estimation. This implies a
fast learning method for training the integrated neural-fuzzy network. In the next chapter, we
will illustrate how to apply the NUFZY system for modeling of nonlinear systems.



3. BATCH

LEARNING OF THE
NUFZY SYSTEM

I daily examine myself on three points:-whether, in transacting business
for others, | may have been not faithful,-whether, in intercourse with
friends, I may have been not sincere;-whether I may have not mastered

and practiced the instructions of my teacher.
- Tsang, The Lun Yu, Analects of Confucius
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3.1 INTRODUCTION?

It has been shown that the established neural-network-like fuzzy inference system, NUFZY,
can implement fuzzy reasoning through a special type of network with partial connections in
the antecedent part of its structure. The fact that the connection is only partial does in no way
impair the function approximation ability of the system. Moreover, the structural network
property of the NUFZY system allows us 1o train it in a similar way as neural networks. On
the other hand, due to the fuzzy inference, the network structure of the NUFZY system can be
interpreted in a linguistic way and becomes more transparent, in contrast to ordinary neural
networks. In this chapter we will consider the training of the NUFZY system. We assume the
antecedent structure of the NUFZY system could be determined @ priori by the users. In that
case the unknown weight parameters in the consequent of the NUFZY system form a linear-
in-the-parameter problem. As such, given a baich of training data, the consequent weights can
be identified with a very fast least squares method. This identification problem is usually
called batch learning or off-line learning since the parameter identification is carried out off-
line.

The performance of NUFZY for function approximation can be improved by increasing the
number of fuzzy rules. In terms of linear regression the number of fuzzy rules is equivalent to
the number of regressors. Likewise, there exists a problem of redundant fuzzy rules which
should be taken care of in the NUFZY modeling. The orthogonal least squares method can
detect redundant fuzzy rules and remove them from the NUFZY model. It also identifies the
remaining consequent weight parameters of the reduced fuzzy rule based NUFZY model.

We will first ontline the principle of orthogonal least squares method in section 3.2, on which
the batch learning of the NUFZY model is based. Section 3.3 explains the removal of
redundant fuzzy rules, hence establishing the NUFZY model with a reduced fuzzy rule base.
Two nonlinear static examples are given in section 3.4 to illustrate the identification
performance of the NUFZY model with the orthogonal least squares method. Special atiention
is given to applications to agricultural problems in section 3.5, in which we will deal with two
nonlinear dynamic problems, identification of lettuce growth and greenhouse temperature in
the greenhouse production system. Finally, a discussion is given in section 3.6 and section 3.7
concludes this chapter.

T This chapter is adopted from two published papers [69] , titled Neural-Fuzzy systems for non-linear
system identification - orthogonal least squares training algorithms and fuzzy rule reduction’ in
Preprints of the 2nd IFAC/IFIP/EurAgEng Workshop on Al in Agriculture ,Wageningen, The
Netherlands, May 29-31, 1995, pp 249-254, and {72] , titled 'A neuro-fuzzy approach to identify
lettuce growth and greenhouse climate' accepted for publication in Artificial Intelligence Review -
special issue of Al applications in Biology and Agriculture, to appear in 1997,




3.2 Orthogonal least squares learning 31

3.2 ORTHOGONAL LEAST SQUARES LEARNING

The least squares identification method is an effective optimization tool that yields a unique
solution for the values of the parameters in a linear regression model. Because it is necessary
to offer a set of training data to estimate the parameters, the procedure is sometimes referred
to as batch learning or off-line training,

Using the same notations used in the previous chapter, given a set of training data with np
events, the nixnb multi-input-multi-output NUFZY model can be expressed as a linear
regression model in a matrix form as follows

Y=VW4+E 3.D

where Y is the npxnb desired output, V is the npxR normalized firing strength matrix whose
elements are obtained from Eq.(2.40) and Eq.(2.41). Matrix W is the Rxnb consequent weight
parameter to be identified, and E is the npxnb matrix of model errors. Hence, the solution of

the estimated parametechan be obtained by ordinary least squares estimation taking the
pseudo-inverse of the normal equation of Eq.(3.1),

~ .]—T

W=(V'V) V'y (3.2)

However, this ordinary least squares method suffers from the singular value problem which
occurs when the matrix VTV is ill-conditioned or not invertable, in which case the

estimated parameter W will seriously be effected by round-off errors accumulated during
calculation. In order to avoid the numerical problem, the orthogonal least squares method
based on the classical Gram-Schmidt method is a better alternative of ordinary least squares
computation [11] . In addition, this method provides information that can be used to restrict
the model size.

The main idea of applying the orthogonal least squares method (OLS) to the NUFZY model is
to perform fuzzy rule selection such that a set of R, significant rules (R, < R), that make the
maximum contribution to the variance of the desired output Y in Eq.(3.1), are selected from
the initial R rule base, The orthogonal least squares method decomposes V into QA such
that Eq.(3.1) becomes

Y=(QA)W+E =Q-G+E with G = A-W (3.3)
where (@ = [q; .. q, .. qr] is a npxR matrix with orthogonal column vectors, g, ( = [q(1) .. q.{t)

 qe(np)]"), e, q'q = 0, fori # j, 1<i,j<R.Matrix A is a RxR invertable upper triangular
matrix with 1's on the diagonal, i.e.,
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where vector v, is the r** column of V defined by [V,(1) .. ¥,() .. ¥ (np) I according to
Eq.(2.41). Therefore, the least squares solution of Eq.(3.3) is given by

G =Q"Q)"'QTY 3.5)

where G = [§,..8, .. 8., ] with column vectorg, = [gin .. Eu . Zrs]. The clement g, is
calculated as

np
e 2La0y,0
g =dto 1o 1<r<R, 1<n<nb (3.6)

- T np
q:9;
X HY)
t=1

Once the matrix G is obtained, the orthogonal least squares solution W is then given by
W=A"G (3.7

Since matrix A is upper triangular, the inverse of A is easily achieved by backward
substitutions.

The algorithm for orthogonal decomposition of V into QA based on the classical Gram-
Schmidt method (CGS) can be summarized as

q1=v]
1=
o, =3 f<i«r
qiqir_] for r=2,..R (3.8)

4, =V —Zaw%
i=1
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3.3 FUZZY RULE REDUCTION

In general, better approxirmnations can be attained by increasing the number of fuzzy rules -
similar W increasing the number of hidden nodes in neural networks or the regressors in the
linear regression problem -, but at the same time the redundancy in the rules increases,
causing the problem of overfitting where the estimated parameters are heavily determined by
the noise in the data which has a negative effect on prediction ability. Also, having 100 many
fuzzy rules will make the final fuzzy rule base difficult to interpret. To solve this problem, the
classical Gram-Schmidt OLS procedure can be used for rule selection, i.e., {7, |1 <r<R, <
R }, such that the R, significant fuzzy rules are extracted from the initial candidate rule base,
In other words, the orthogonal least squares algorithm not only solves the unknown
parameters, but also implicitly reveals a procedure for determining the structure of the fuzzy
system. The following describes the principle and procedure of fuzzy rule selection, which is
based on a criterion called "error reduction ratio' [11] .

First, we consider the case of a single output, the n™ desired output vector, ¥, { = [¥a(1) .. )
v yn(np)]T). This is one column of Y and can be expressed as

YD=Q'§n + €,

An estimate of the variance of output y, , after its mean has been removed, is given by
LI, —L“TQTQ” +LeTe -Li 2 Tq. +—eTe (3.9)
npynyn npgn gn l'lp nvn np 1‘=lgmqrqr l'lp n-n *

where g, is the element of G as defined in Eq.(3.6). It is seen that the term (g, q', g)/np is
the increment of the estimate of the variance of the desired output due o introducing an
additional regressor, q,, which according to Eq.(3.8) follows from previous regressors and the
fuzzy rule node output v., while (ee,)/np is the unexplained variance of error. Once a set of
regressors has been orthogonalized and added to the model, the contribution of each
individual regressor to the desired output variance can be determined by the criterion 'error
reduction ratio', [err], which is defined as

2. T
[er], =Bz=dede 1< rcR (3.10)

0¥n

Subscript m denotes the error reduction ratio of the r'* regressor with respect 1o the n™ desired
output. It is noted from Eq.(3.9) that because the left hand side is fixed, the variance of the
system error decreases whenever a new regressor is added to the model.

During the regressor selection process, at every step of the iterative procedure according to
Eq.(3.8), the values of [err] of each candidate regressor will be calculated and only the one
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with the maximum [err] value is selected and added to the model. If the model contains
certain highly correlated regressors, which means that they are almost linearly dependent, or
redundant in the NUFZY model, it will result in an ill-conditioned problem. This condition
can be detected by simply checking the norm of the newly added orthogonalized regressor to
the model: |g.]°. A value of |q.|* = q'-q, = 0, simply implies that the newly sclected
regressor q, is a linear combination of formerly selected orthogonalized regressors in the
model. It therefore does not add to the information content of the model and should be kicked
out. In practical the norm will almost never be equal to zero. Accordingly, a small value of
107 is specified as a threshold value of the norm ||q.||* in order to check the almost linear
dependence of orthogonalized regressors.

The orthogonalization procedure terminates when all candidate regressors have been
processed. Among the results is a sequence of indices ranking the significant rules, and a list
of indices of regressors which have been removed. Consequently, the total number of rules at
the end, R, , is less than the theoretical number of total rules belonging to the given input
partition, provided almost linear dependent regressors did occur. A new set of weights is then
calculated according to the selected linear independent rules that are used as a final rule base
and the weights belonging to those almost linear dependent rules are set to be zeros.

In the case of multiple outputs, we can modify the error reduction ratio as the sum of [err],
and define a new criterion, [ERR],, for the MIMO system. i.e.,

nb
[ERR], = [err],,

n=l

One should be aware that the above criterion of 'error reduction ratio’ for fuzzy rule selection
only considers the performance of the model, i.e., the variance of residuals, and does not take
into account the model complexity. Many possible alternatives of model subset selection
criteria can be used that compromise the performance and complexity of the model, such as
Akaike's information criterion AIC [8] , or a cross-validation based criterion [49] *. In spite of
this, we will use this error reduction ratio as a criterion for fuzzy rile selection in this chapter
to demonstrate the method.

Before proceeding, it is worthwhile to compare our present study to others. Previous works on
application of OLS in neurat networks [11] aimed at the selection of potential centers of radial
basis functions from a large set of numerical data. The procedure of fuzzy rule selection
therefore has a comparable function as the selection of centers in RBF neural networks. The
procedures outlined above are inspired by the approach in [80] . In their work, the total
number of fuzzy rules is initially equal to the number of input data, leading to a huge rule set.
This set is then reduced by application of OLS, where the final number of rules is set
arbitrarily on the basis of some subjective judgment. In contrast, our present study uses the

£ As amatter of fact, when the maximum likelihood estimation is used for the model, the criterion AIC
is asymptotically equivalent to the cross-validation criterion, see [55] .
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OLS algorithm as a ol to reduce redundant or insignificant fuzzy rules, provided the
prototype NUFZY model, i.e., the number of membership functions of the inputs, has been
determined a priori. In practice, this may be an easier task than specifying in advance the
number of required rules.

As shown in the previous chapter, a prototype of the fuzzy rule base can be constructed
whenever the number of membership functions of each input variable, N;, is chosen. N; as well
as the parameters in layer 1 (center, ¢, and bandwidth, ¢) either can be determined by the
designer based on experience, or alternatively the parameter values of ¢ and o can be
estimated from the data set. In that case N; becomes the only parameter that has to be assigned
by the user. In the present study, we adopt the latter approach. The centers of membership
functions are uniquely chosen by equal spacing in the range of x; and a suitable value is taken
as the bandwidth 1o ensure moderate overlap of the membership functions for each input x;.
During the identification procedure, parameters of layer 1, ¢ and o, are kept constant for the
specified prototype fuzzy rule base and the OLS method is solely used to estimate the
consequent weight parameter, w, of layer 3 and to delete redundant fuzzy rules. Hence, the
determination of the most effective structure and the estimation of the optimal parameters (in
the least squares sense) can be carried out at once by the OLS method. In summary, in
addition to estimating the consequent weight parameters, the OLS algorithm mainly acts as a
tool to eliminate redundant or insignificant fuzzy rules from the prototype NUZFY system.

3.4 EXAMPLES OF NONLINEAR STATIC SYSTEMS

The following subsections will present examples of the NUFZY identification for nonlinear
static systems. Without loss of generality, only the single output case is considered. A notation
marked as NUFZY (NN x XNy ; Re; Gaw/IMQ) represents a NUFZY model with x,, x,...,
Xy inputs, where each input has Ny, N, .., Ny Gaussian or IMQ membership functions,
respectively, and the number of the final identified fuzzy rules is R,. For example,
NUFZY(3x5;10;Gau) means that there are two inputs x; and x,; 3 Gaussian membership
functions are assigned to x; and 5 to x;; and the total number of identified fuzzy rules is 10.

3.4.1 Example 1 - synthetic nonlinear system
The NUFZY model is first applied to identify a nonlinear static MISO system given by
YD = exp(-x;) X sin{6x,)/2 (3.11)

A set of training data with 63 points is generated, by taking x, and x, randomly from the
input space within the range of [-1,1] x [-1,1] and calculating the desired outputs using
Eq.(3.11). These data are used to train the NUFZY model in order to get the estimated
weights. Another independent data set, named validation data set, with a total of 441 points
taken as grid points at 0.1 intervals in the range of [-1,1] x [-1,1], is used for verifying the
trained NUFZY model. In this example, 4 membership functions are assigned to input
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variable x; and 6 to x,. Both Gaussian and IMQ membership functions are investigated in this
example. The centers of these membership functions are taken as equally spaced according to
Eq.(2.38), whereas the bandwidth is assigned as the variance value of x; in the case of
Gaussian, and three times the variance of x; in the case of the IMQ membership function.

Using the training data set, the development of the sum of squared error (sse) during the OLS
identification is depicted in Figure 3.1. It is obvious that the value of sse decreases at every
addition of a newly selected rule to the fuzzy rule base. At the end of the OLS procedure,
using the IMQ membership function, a NUFZY(4x6;20;IMQ) model is found. This means
that out of 24 possible rules, there are 4 (almost) linear independent rules that have been
removed by OLS. With Gaussian membership functions, however, the result is (4x6;24;Gau),
i.e., no rules have been deleted in this case. Using the identified weights, both NUFZY models
are verified by applying them to the validation data set. Figure 3.2 and Figure 3.3 show the
performance in reconstructing the nonlinear surface expanded by x; and x, as described in
Eq.(3.11). Good interpolation is obtained by the identified NUFZY model. The squared error
plot, Figure 3.2.(d) and Figure 3.3.(d) show that NUFZY with IMQ membership functions
performs better than that with Gaussian membership functions despite less fuzzy rules.

developmert of sse of NUFZY with {476;24;Gau) and (4*6;20;IMQ}

sse of OLS identification

numbers of selected fuzzy rules; (-0)Gau mfs. (-*)IMQ mfs.
Figure 3.1: The development of SSE of the NUFZY model with
NUFZY (4x6;24;Gau) (line-circle) and NUFZY (4%6;20;,IMQ) (line-
star) during the identification process
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(a) desired output YD=exp(-x1)*sin(6"x2)/2

(b} NUFZY output(4*6;24;Gau)
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Figure 3.2: Validation of the NUFZY model with NUFZY (4x6;24;Gau). (a)

desired output (b) NUFZY model output {c} error surface (d)
squared error surface,

(a) desired output YD=exp(-x1)*sin{6*x2)/2

(b} NUFZY output(4*6;20;1IMQ)
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3.3: Validation of the NUFZY model with NUFZY (4x6;20;,IMQ). (a)

desired output (b) NUFZY model output (¢} error surface (d)
squared error surface,



38 Chapter 3 Batch learning of the NUFZY systern

In order to demonstrate the efficient performance of the NUZFY system as a function
approximating network, a comparison is made with two layered neural networks which are
trained by back-propagation algorithms. The simulations of thesc feedforward neural
networks are performed by the neural network toolbox of Matlab® [15] . Four neural
networks, denoted as 2-10-1 NN, 2-20-1 NN, 2-30-1 NN, and 2-40-1 NN , are set up, each
with two inputs and one output, and 10, 20, 30, and 40 neurons in the hidden layer,
respectively, The nonlinear functions of the neurons used in the hidden layer arc tan-sigmoid
functions and those in the output layer are linear functions, The back-propagation training is
initialized by the Nguyen-Widrow initialization. Moreover, a momentum term and an
adaptive learning rate to speed up the procedure are used. During the identification procedure,
the training is halted when the ss¢ value of the neural net is less than 0.04 or when the
training arrives at 5000 epochs (iterations). The value of 0.04 is estimated according to the
maximum ss¢ value obtained by the NUFZY model with the IMQ membership function
during the OLS training procedure. Unfortunately, despite long training times, most of these
networks are still unable to reach the requirement of a sse being less than 0.04 within 5000
cpochs. After the training , the networks are verified by the validation data set. The results are
shown in Figure 3.4,

(a) 2-10-1 NN output {b} 2-20-1 NN output
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Figure 3.4: The results of validation procedure of neural networks with
different neuwrons in the hidden layer. (a) 10 neurons, (b) 20
neurons, {(¢) 30 neurons, and (d) 40 neurons.

The numbers of the parameters required for the neurat networks with back-propagation are
32, 62, 92, and 122, respectively. In constrast, the identified parameters of the NUFZY model
are 24 for the Gaussian and 20 for the IMQ membership function. It can be seen that the pre-
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determined input parameters (centers and widihs) together with the OLS algorithm makes it
casy to identify a NUFZY network with less free parameters and yet results in better
approximation as compared to ordinary neural networks in conjunction with back-propagation
training.

3.4.2 Example 2 - tomato production

In this example, the NUFZY model is applied to an agricultural problem which concems the
dry matter production of tomato. Data were obtained from three experiments of tomato in
multispan Venlo-type greenhouses in Wageningen [2] . The temperature set-point was
maintained at 18 °C day and night and no CO; enrichment was used. Environmental factors,
such as indoor temperature, relative humidity, CO; concentration, and outdoor global
radiation were recorded hourly. During the period of 25 January to 23 November, 1988, three
experiments were done. In each experiment, six tomato plants were sampled for destructive
measurement at about weekly intervals. In this identification example, accumulated radiation
(W/m?) over time t and averaged CO, concentration (ppm) from the initial date to time ¢ are
taken as input 1 and 2, respectively, and the total dry weight (TDW) of tomatoes (kg/m?) at
time t as the output for the NUFZY model. Data of experiments 1 and 3 are used for training
in order to identity the underlying tomato production and those of experiment 2 are used for
validation of the NUFZY model. By trial and error, cight IMQ membership functions have
been assigned to input 1, and four to input 2 which together construct a prototype fuzzy rule
base with a total number of 32 rules. The centers of the membership functions are determined
as equally spaced and widths are taken equal to the value of the standard deviation of the
inputs. At the end of the OLS procedure it appears that only 10 mules are left.

The results of the TDW measurements and the NUFZY predicted output are depicted in
Figure 3.5. As shown in Figure 3.5.(a), (b) and (c), most of the NUFZY predicted outputs are
located within the 95% confidence interval of measured TDW. It demonstrates the ability of
the NUFZY approach to identify the tomato production process. Figure 3.5.(d) shows a
prediction according 10 NUFZY (8x4;10;IMQ) of how expected TDW of tomato is related to
accumulated radiation and period averaged CO, concentration. The figure suggests that TDW
increases as accumulated radiation increases, and that TDW is higher when the averaged CO;
over the growth period has been higher.

It should be noted that the model result is restricted to a limited CO, range because no CO;
dosage has been applied. Average CO; is used rather than instantaneous CO, because the
latter is influenced by the instantancous irradiation due to plant photosynthesis, and therefore
is not a truely independent variable. The CO, effect may also partly contain a temperature
effect, because in the raw data, despite temperature control, there was a slight negative
correlation between prevailing CO; and temperature. However, the NUFZY model does not
contain more than 10 rules to describe the complex process of tomato production. This
compares favorably with sophisticated models like TOMSIM and TOMGRO [2] .
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Figure 3.5: The measured TDW of tomato (circle-dotted line) with 95%
confidence interval (dotted line) and NUFZY simulated output
(star-dotted line) for experiments 1 (a), 3 (c). (identification data)
and 2 (b) (validation data). (d) The predicted TDW by
NUFZY (8x4:10;IMQ) is related to accumulated radiation (x1000
W/m?% and the CO, concentration (ppm) averaged over the period
from the first day to the measurement day.

3.5 EXAMPLES OF NONLINEAR DYNAMIC SYSTEMS -
APPLICATIONS TO AGRICULTURAL PROBLEMS

In the optimal control of greenhouse crop production, one has to deal with different time
scales: slow crop growth and fast greenhouse physics. In the work of [77] , a two-time scale
decomposition using a singular perturbation method was employed to solve the optimal
control problem. The same idea is used in examples of this section to separate the crop growth
problem and the greenhouse physics problem. For crop growth, the fast dynamics of climatic
conditions are regarded as irrelevant and one can utilize the mean climatic values for the crop
growing period. On the other hand, during the short term identification of the greenhouse
climate, the states of the crop are assumed to be constant.
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From the point of view of control applications the models should have predictive ability.
Accordingly, in the following two examples, NUFZY models are established to predict the
letiuce growth and the greenhouse temperature. In the development of models, a set of data is
first gathered from previous experiments and taken as the training set, so that the consequent
weight parameters of the NUFZY model can be identified by the above OLS method. With
these identified parameters, another independent set of data, named validation set, is used to
evaluate the prediction ability of the identified NUFZY model.

3.5.1 Identification of lettuce growth process

3.5.1.1 Problem description

In [771, a lettice growth model is described by a single state variable, namely total dry weight
X,;. The goveming differential equation is

dX
—E;"-=c:‘,(c,,tpl,',,,t ) (3.12)

where ¢ and ¢, are conversion parameters; ¢puor and Qrerp, represent gross photosynthesis gain
and maintenance respiration loss of lettuce, respectively. They are complex nonlinear
functions of the dry weight itself and several input variables, e.g., greenhouse indoor CO,
concentration {denoted as Z.), greenhouse indoor air temperature {denoted as Z,), and outdoor
radiation {denotes as V;). Parameters of ¢, and ¢p in these relationships were determined
empirically. Further details can be found in [77] . Two experiments were done to calibrate the
model parameters and (o validate the above model, The lettuce used in the experiments is
Lactuca sativa L., which was grown in an experimental greenhouse in Wageningen from
17/10/1991 - 16/12/1991 (cultivar '‘Berlo’) and from 21/1/1992 - 17/3/1992 (cultivar 'Norden').
The greenhouse was under computer control according to the rules used in normal Dutch
horticultural practice. During the two experiments, destructive measurements of the lettuce
(10 and 9 sampling dates, respectively) were performed, whereas the greenhouse climate, the
actuators and the outdoor climate conditions were recorded for further analysis.

Eq.(3.12) defines a continuous-time model of the lettuce growth rate, which is a relationship
between the biomass and the external input variables. In the set up of the NUFZY model, the
same variables are used. First, the time step is taken as one day (24 hours), using the daily
averaged measurements of V; , Z, and Z, as approximations of the input signals. Due to the
fact that the lettuce dry weight is not available every day for these experiments, linearly
interpolated values are taken as estimates of the data. Hence, a modified discrete-time model,
based on daily averaged data of V, Z and Z, and linear interpolated X,, is applied to
approximate the continuous growth of lettuce. It is represented as

AX, (k) — _ X k+1)-X,(K) 3.13
ATE) HX (], Z, (0. 2,{K),V, (k) == &) -Tk) (3.13)
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where k is the discrete time index, Xq(k) is the dry weight of lettuce at day T(k); fi(")
represents the nonlinear function to be identified. Therefore, a one-day-ahead prediction of
lettuce dry weight according to Eq.(3.13) can be obtained as

X & +1)=X, &)+ f,(X,(k), Z (k), Z,(k), V. (k) - AT(k) (3.14)

An alternative formulation of a one-day-ahead prediction of lettuce dry weight is to
incorporate the previous values of inputs in the nonlinear function directly,

X, (k+1)=f,(X, (k). Z.(k), Z,(k), V. (kD (3.15)

3.5.1.2 NUFZY model establishment

In [77] , a sensitivity analysis has been done on the lettuce growth model of Eq.(3.12)
suggesting that dry matter production of lettuce is mainly dominated by a limited number of
inputs. In particular, the CO, concentration has a stronger positive effect on dry matter
production than greenhouse indoor air temperature, Because the temperatre in the
greenhouse was controlled in order to keep it within operation bounds, the variation of the
temperature is too small to be informative. Besides, it can be seen that the indoor air
temperature strongly correlates to the outdoor radiation. Hence, on establishing the NUFZY
model, the function variables have been restricted to outdoor radiation V,, indoor CO;
concentration Z,, and the present state of crop Xy. In practice, a derived quantity, temperature-
day, is commonly used, which suggests that the summation of temperature values over the
growing periods should be taken into account. In terms of outdoor radiation Vi, this
temperature-day quantity can be replaced by another quantity, accumulated radiation, 2Vi(k)
(denoted as ACVi(k) in below), which sums up the daily averaged radiation over time T(k).
Therefore, for the NUFZY modeling, the chosen variables are X4, Z, and ACV,. Formally, the
goal of the identification of the lettuce growth is to establish the NUZFY models, fixurzy: and
Sfuurzys, such that they can approximate the unknown nonlinear functions f; and f; in Eq.(3.14)
and Eq.(3.15), respectively. Here, we call fyurzy: and fuupzy: the first kind and the second
kind of NUFZY modeling, respectively. It can be seen that in the first kind of NUFZY
modeling the one-step-ahead prediction of lettuce growth is obtained indirectly based on the
inferred growth rate, whilst the second kind of NUFZY modeling infers the one-step-ahead
prediction of lettuce growth directly, The predicted dry weight of letuce by the NUFZY
model, X, ¢k +1) . can be written as

The first kind of NUFZY modeling
}Z’d k+1D)=X K+ frprm (X &), Z (k), ACV, (k) - AT(k) (3.16)
and the second kind of NUFZY modeling

X, (K + 1)= Fraere, (X, (), Z, k), ACV, (K)) (3.17)
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When using the model in a real application, the biomass is usually not observed. Therefore,
the validation was done in such a way that no measurements of Xy were employed except for
the initial point. Thus, on validation of the NUFZY model, Eq.(3.16) and Eq.(3.17) become

X,k +1)=X,00+ fuprm (X, &), Z,(K), ACV,(K)) - AT(K) (3.18)
and
X, (k4 1= f g (X, (K), Z, (), ACV.(K)) (3.19)

where the input variable X, (k) is obtained from the prediction of the trained NUFZY model at
the previous step k-1. At the next step, the present estimate X, (k +1) is iteratively fed into the

model as input. The validation by this method therefore tests the ability of the model to
predict n-steps ahead. This procedure, sometimes called the parallel method [48] , is a much
more severe test than the serial-parallel method, as in Eq.(3.16) and Eq.(3.17), which just
takes the real value of X, into the NUFZY model. The training and validation process of
NUFZY modeling is given as follows.

3.5.1.3 Training process

The training of the NUFZY model is done with data taken from experiment 1 (17/10/1991 -
16/12/1991, in total 61 days). In this set of training data, the values of daily averaged CO,
concentration Z, (ppm) and accumulated daily averaged outdoor radiation ACV; (W/m®) as
well as the linear interpolated dry weight of lettuce X, (g) are treated as external inputs.
Hence, in total, 60 tuples [Xq(k), Z.(k), ACVi(k), AX (k}/AT(k)] or [Xu(k), Z.(k), ACV(k),
Xa(k+1)] are used to train the first and the second kind of NUFZY modeling, respectively.
From the training set, when each N; is assigned (see below), the centers of the IMQ
membership functions (¢ in Eq.(2.36)) are taken equally spaced in each input range, whilst to
the width, o, of the membership functions of each input three times the value of the standard
deviation is assigned. The consequent weight parameter w; and w; of the NUFZY models,
Sfuurzyr and fyurzys. are estimated by the OLS method such that the sum of square errors
Zk[ﬁXd(k)/AT(k) 'fNUFZYl(';Wl)]Z and Ek[Xd(k-i'l)- fNumz(';WJ_)]z are minimized, where k = 1
to 60. The number of membership functions for each input, N, (i = 1, 2, and 3, corresponding
to X4, Z., and ACV,, respectively) varies from 2 to 4. Therefore, the initial number of fuzzy
rules ranges from 2x2x2 = 8 (0 4x4x4 = 64, By taking the sum of squared errors as a criterion
function, the final structure used is the one that has the lowest sum of squared errors.

3.5.1.4 Validation process

After obtaining the consequent weight parameter w;, and w,, another set of data taken from
experiment 2 (21/1/1992 - 17/3/1992, in total 56 days) is used to validate the first and second
kind of NUFZY models. Since the values of Xy(k) is unknown at every moment except the
sample dates, the validation process is carried out according to the parallel method. The mean
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value of the measured X4 on the first sample date, 0.15 g, is used as an initial value Xq(1).
Values of the other inputs Z.(k) and ACV (k) are measurable for the whole experiment period.
So, after the first step, the estimate X,(k) is obtained from Eq.(3.18) or Eq.(3.19) with

available measurements Z.(k-1) and ACVi(k-1) and the initial value X,(1) (using the
parameter set w; or w;), whereas in the following sequence, this estimate X, (k) is iteratively

fed into Eq.(3.18) or Eq.(3.19) together with Z.(k) and ACV(k), in order to generate the next
step prediction of X,(k+1).

3.5.1.5 Results

Figure 3.6 and Figure 3.7 demonstrate the results of both models for the training and the
validation process. The results of the training process show that the first kind of NUFZY
modeling, denoted as NUFZY1(3x4x3:15;IMQ}, can achieve a good approximation, where
the notation NUFZY 1(3x4x3:15;IMQ) indicates that 3, 4, and 3 IMQ membership functions
are assigned to Xy, Z.. and ACV,, respectively. As a result of the OLS identification, only 15
fuzzy rules are chosen to be involved in the fuzzy rule base and, consequently, 21 redundant
rles have been removed from the initial 36 ( = 3x4x3) rules. The best result of the second
kind of NUFZY modeling is NUFZY2(2x2x3:10;IMQ), so that X,, Z, and ACV, have 2, 2 and
3 IMQ membership functions, respectively, and the number of identified fuzzy rules is only
10. For the purpose of comparison, in these figures the mean values of the dry weight
measurements with 95% confidence intervals are plotted as vertical bars and the simulated
results from [77] , by Eq.(3.12), are presented too. It can be seen that both results obtained
from faurrni(;w:) and faurzya(-;wa) perform as well as the mechanistic model Eq.(3.12)
during the training process and are slightly less accurate compared to the result of the
mechanistic model in the validation process. However, the number of estimated parameters
(15 and 10, respectively) in the NUFZY models compares favorably to the 19 parameters of
the mechanistic model.

Among the identified fuzzy rules, one example (Rule 6) of the generated fuzzy rules of the
first kind of NUFZY modeling is listed below, which suggests that when the crop is in the
initial stage of development (X4 is small, A;, and ACV; is low, C;), a very high CO,
concentration (Z, is By) will result in a negative effect on the growth rate. Other identified
rules are similar to it and will not be presented here.

Rule 6: IF X (k) is A; AND Z (k) is B;AND ACV (k) is C; THEN AX,(k)/AT(k} = -2.0663

The centers and widths of linguistic variables [A; A; A;] of input X4(k) (g) are [0.15 3.38
6.61] and [1.9532 1.9532 1.9532], respectively. For Z{k) (ppm) with the linguistic variables
[B; By Bs By, centers and widths are [422.65 498.05 573.46 648.86] and [61.10 61.10
61.10 61.10), respectively; whereas for the linguistic variables [C, C; Cs] of ACV (k) (W/m?),
[21.62 420.01 818.41] and [210.47 21047 210.47], respectively. Linguistic variables of [A,
Ay As] represents small, medium, and large, respectively, [B; B, B; Bs] represents low,
medium, high, and very high; [C; C; C;] represents low, medium, and high.
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Some remarks about this example are made below. In this example, we have used two
NUFZY models, fiyzevi and fuurzy:. The above results show that both of them have
comparative prediction ability as that of Eq.(3.12), a mechanistic model describing the lettuce
growth. Yet, the prediction behavior of the two forms is different. It is noticed from
Figure 3.6.(b) that the increment model fyyzey: leads to a smoother growth curve than the
direct model fyyzey: in Figure 3.7.(b). However, it should be kept in mind that if the sampling
interval becomes large (i.c., less sampling is done), the linear interpolation used for training
of both NUFZY maodels should be circumvented since it leads to a model that tries to mimic a
piecewise linear growth curve rather than the true growth curve of lettuce. In this example,
however, the sampling interval is around one week, which does not cause severe problems in
this respect.

(a) NUFZY 1(3*4*3:15,IMQ]) on training
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Figure 3.6: Prediction of lettuce dry weight by NUFZY1(3x4x3:15;IMQ)
during experiment 1, training (one-step-ahead) (a); and experiment
2, validation (seasonal prediction) (b). Solid line indicates output
from NUFZY1 and dash-dot line indicates result from the one state
variable model, Eq.(3.12), described in [77] . The vertical bars
show a 95% confidence interval around the mean value of the
measurements.
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{a) NUFZY2{2*2*3:10;IMQ} on training
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Figure 3.7: Prediciion of lettuce dry weight by NUFZY2(Zx2x3:10%;IMQ)
during experiment 1, training (one-step-ahead) {a); and experiment
2, validation (seasonal prediction) (b). Solid line indicates output
from NUFZY?2 and dash-dot line indicates result from the one state
variable model, Eq.(3.12), described in [77] . The vertical bars
shows a 95% confidence interval around the mean value of the
measurements,

Another factor of interest is that although the models are trained to yield one-day-ahead
predictions, the validation is done by running the model for the whole growing season of
experiment 2 without updating from the actoal measurements (a parallel method). In this
approach, there might exist a risk that the prediction becomes worse because of the
accumulation of model errors. In this particular example, the results remain within the
measurement uncertainty, thus indicating that, from the training data set, the NUFZY model
matches the lettuce growth dynamics sufficiently well to achieve a reasonable seasonal
prediction, which can be used, e.g., in production scheduling.
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3.5.2 Identification of greenhouse temperature dynamics

In contrast o the slow response of crop growth, the greenhouse climate shows very distinct
fast dynamics. Based on a time scale in minutes, the effect of crop growth is assumed to be
negligible. In the following example, the NUFZY model demonstrates the modeling of the
dynamics of the greenhouse temperature and performs a one-step-ahead prediction based on
the present indoor states, control inputs, and outdoor disturbances. Extensions to other
cliratic states is possible but will not be discussed here.

3.5.2.1 Problem description

For control purposes, several dynamic models of greenhouse physics have been developed.
Among them, models based on first principles such as [4] , and more recently {13] ; others are
transfer function models such as [74] [75] or intermediate [65] . In [64] based on energy and
mass balances, the dynamics of the greenhouse temperature, denoted as Z,, is described by a
first order differential equation with heat losses from natural ventilation, through the roof
cover and 1o the soil; and heat gains from heating pipes and solar radiation. The differential
equation is written as

“

= {0, + eI 2) 4~ Z) 4,2, ~ )+ 0,V (320

where ¢, is the greenhouse heat capacity, and ¢,, G, ¢, and ¢, are the effective heat transfer
coefficients of ventilation, roof cover, soil and heating pipe, respectively. Vi, Z,, and Z, stand
for outdoor air temperature, indoor greenhouse soil temperature and heating pipe temperature,
respectively. ¢; and V; are radiation efficiency factor and disturbance from outdoor radiation,
respectively. In Eq.(3.20), the control of window opening U,, and two disturbances, outdoor
wind speed V, and wind direction V,, are implicitly involved in the coefficient c,, whereas
control of the heat supply U, determines the heat pipe temperature Z,. Hence, taking these
implicit relations into account, Eq.(3.20) can be formaily written as

Z(k+1)=f,(Z,(k), Z,(k), U, (k). U,(k), V,(k), V,{k), V, (k), Vi (k}) (3.21)

where fa(-) is a complex nonlinear function describing the greenhouse temperatire dynamics
as a function of the input variables described above.

3.5.2.2 NUFZY model establishment and results

In this example, greenhouse climate data are taken from the experimental results of {63] . The
experiment of tomato production is done where one greenhouse compartment is controlled by
a receding horizon optimal control (RHOC) algorithm in order to compare it o another
compartment controlled by a current commercial greenhouse climate control computer. The
experiment was conducted from 1/8/1995 to 30/10/1995. All the input variables mentioned in
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Eq.(3.21) were measured every minute. In the following, the wraining and validation data used
for the NUFZY modeling make use of measurements and records taken from the optimal
controlled greenhouse compartment.

From Eq.(3.21), it is seen that the large number of input variables causes a large fuzzy rule
base for the NUFZY model., For ¢ase of modeling, the higher order effects induced by the state
of soil Z, are neglected. It is also observed that the windward and lee side windows are almost
fully open every day in August because of the high air temperature inside the greenhouse.
Hence, in this demonstration, the input variables, U,,, V,, and V,, can be further left out by
properly choosing those days on which the windows are open. Therefore, a NUFZY model
with restricted validity is established to give a one-step-ahead prediction of Z, with reduced
input variables as

Z K+ )= fyeges (Z, .U (K),V,(K), Vi (K)) (3.22)

where the input variables are greenhouse temperature 7, (°C), heating valve opening U, (0 -
100 %), outdoor air temperature V, (°C) and radiation V; (W/m?). The effect of the disregarded
input variables will appear as unmodeled effects in the model errors.

A set of data originating from 23/8/1995 - 25/8/1995 is taken as training data. During this
period, the windows are almost always fully open. In order to reduce the amount of data to be
processed, measurements are taken for analysis cvery five minutes. The training process,
similar to the previous example, is carried out by the OLS method. Independent data sets on
several dates in three different periods of the experiment, viz. in the beginning (21/8 - 22/8,
26/8 - 27/8, and 31/8 - 4/9), halfway (21/9 - 25/9), and toward the end (16/10 - 20/10), are
taken o validate the identified NUFZY model. In contrast to the previous example, only the
one-step-ahead prediction capability was tested, using the measured temperature as the input
for the next prediction (serial-parallel prediction).

Results of the training and validation process are shown in Figure 3.8, The identified model is
NUZFY 3(3x4x3x2:31;IMQ}, showing that, to input variables Z,, U,, V,, and V; are assigned 3,
4, 3, and 2 IMQ membership functions, respectively, and the final number of identified fuzzy
rules is 31. For the training data process, Figure 3.8.(a) shows that a fairly good fit is obtained
with this reduced set of fuzzy rules, since 41 rules are removed from the prototype rule base
(3x4x3x2 =72}. Figure 3.8.(b) illustrates that the relative error of the residuals is less than
+10% (around * 2°C). The larger discrepancies mainly occur when outdoor radiation
disturbance has large fluctuations, i.e., during day time. Other factors, such as wind speed and
direction that are not used in the modeling, may have considerable influence on the
discrepancy too. The validation results in the beginning period (Figure 3.8 (c) date 21/8 -
22/8, (d) 26/8 - 27/8, and (e) 31/8 - 4/9) possess a fair fit to the measured data. However,
larger discrepancies can be found in the other two periods. This result confirms that black-box
models are firmly data dependent and need retraining as the process slowly moves to other
operating regions.
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Figure 3.8; Simulated one-step-ahead prediction of greenhouse temperature by
NUFZY3(3%4x3x2:31;IMQ) during 23/8 - 25/8 , training process
(a) and relative residuals of training (b); validation on date 21/8 -
22/8 (c); 26/8 - 27/8 (d); 31/8 - 4/9 (e); 21/ - 25/9 (f) and 16/10 -
20/10 (g). Solid line: measured greenhouse temperature; dotied
ling: NUFZY prediction. In figures (a) and (c), it is hard to spot the
difference between the measurement and the NUFZY prediction.

It is worthwhile to make some remarks on this simplified example of identifying the
greenhouse temperature, It is the fast fluctuation (within the 5 minutes period) of outdoor



3.5 Examples of nonlinear dynamic systems - applications to agricultural problems 51

radiation during day time that results in larger model errors. Also, by neglecting the cffects of
window opening and wind speed, the NUFZY model occasionally tends to overestimate the
greenhouse temperature. For instance on 27/8 in Figure 3.8.(d) and on 24/9 in Figure 3.8.(f),
it can be verified that the wind speed increases from the range 0 - 6 m/s (used in the training
process) to 0 - 10 m/s. This creates an extra heat flux due to extra ventilation out of the real
greenhouse which, of course, does not occur in the present model. As identification is done by
off-line training, this phenomenon confirms, again, that the NUFZY model is data dependent
- just like any other black box approach - and that the model can only be expected to perform
well if it is used under similar conditions as encompassed in the training process. In order to
construct a more general model for long term prediction, further stdy is needed to involve
more climate factors into the NUFZY model. Or, alternatively, for control purposes, a
recursive identification can be used which adjusts the model to the most recent data. For
example, in [70] a recursive adaptation of the parameters of the NUFZY model has been
studied, showing the feasibility for on-line application. This recursive learning scheme will be
presented in next chapter.

3.6 DISCUSSION

On the basis of the experience with the previous examples, some aspects of application of the
NUFZY model deserve further attention. First, the construction of the antecedent part of
NUFZY is based on some a priori knowledge such that one is able to assign the number of
membership functions likely (o be needed for each input variable. The question of how many
membership functions can both partition the input space well and establish a moderate size of
the fuzzy rule base, concerns a trade-off between accuracy and complexity. As mentioned
before, several criteria can be used for compromising between performance and complexity of
the model, such as Akaike's information criterion AIC, and the generalized cross-validation
criterion. Analogous approaches are known in neural network research. It seems necessary
that a similar criterion has to be taken into account for the NUFZY model in order to decide
on the size of the fuzzy rule base. Moreover, although the NUFZY model with the OLS
algorithm does give a theoretical basis for removing truly linear dependent fuzzy rules, care is
needed in selecting the threshold value vsed to remove insignificant rules.

Second, by employing the numerical data set as guideline, the determination of centers and
widths of the membership functions of input variables is very similar to a clustering problem.
For simplicity, in this chapter equally spaced centers and equal widths of the membership
functions have been chosen. This is significant because it eliminates a considerable number of
otherwise free parameters in the antecedent part of the fuzzy rule base and allows for a very
fast estimation of the remaining parameters in the consequent part, since the model is linear
in these parameters. Yet, for certain applications, the modification of the antecedent
parameters may be desirable, which leads to a nonlinear parameter optimization problem.
This task can be facilitated by the relationship matrix RM, since it offers a coding table that
makes it easy to calculate the gradient of the output with respect to each parameter. When the
system is expected to change in time, or when the network has to be trained on-line, the
training parameters need ongoing justification. To this end, a recursive scheme of parameter
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adjustment can be employed. In chapter 4, examples of dynamic systems will show that the
implementation of a recursive scheme is straight-forward in the NUFZY system.

Third, one of the appealing properties of fuzzy logic lies in the ability to interpret fuzzy rules
linguistically. In the present NUFZY model, one hopes to deduce any interpretable fuzzy rules
that describe the system's behavior from the particular fuzzy-rule-like network structure. An
example of interpreting the fuzzy rule of the NUFZY model illustrated in section 3.5.1.5,
shows some difficulty on direct interpretation of the identified fuzzy rule from the NUFZY
model as its consequent is expressed by a crisp number, rather than a fuzzy set. In chapter 5,
we will investigate the issue of interpretation of the fuzzy rules deduced from the T-S fuzzy
model.

Another appealing feature of applying a fuzzy system is that the expert’s knowledge can be
utilized and incorporated into the framework of the fuzzy system. However, the present
approach has not used this feature. The merit gained from the present NUFZY approach is
that it only uses available experimental data to construct a specific model to carry out function
approximation, like an ordinary feedforward neural network does. Yet, compared to the
mechanistic models such as Eq.(3.12) and Eq.(3.20), the NUFZY modeling may save a lot of
work on parameter calibration and model development, provided a comparable model
accuracy is required.

With respect to the use of expert knowledge in fuzzy modeling, there are several possibilities
to incorporate qualitative information into fuzzy models. One is by collecting the expert’s
knowledge and then directly aggregating it as fuzzy rules which are suitable for fuzzy
modeling. In practice, this approach is not easy to implement since usually further refinement
of those aggregated fuzzy rules is needed to match the modeling task. More specifically,
parameters of membership functions of each fuzzy rule have to be defined by trial and error.
Another approach is to incorporate qualitative information as an initialization of parameters
in both the antecedent and the consequent part of fuzzy rules [78] . During the training
process, the parameters are trained in order to give a good match of the model to the given
data. As a result, the final rules may be quite different from original rules proposed by
experts. When this happens it reveals contradictions in the consistency of qualitative
information used in such an adaptive fuzzy system. If the qualitative information used in the
initialization does contain the key behavior of the ymknown system, this method will just
facilitate the convergence of the fuzzy sysiem; otherwise, the contradiction remains. Another
aspect that seems to interfere with the ability to insert qualitative information is the
observation that if the antecedent part of the fuzzy rule is fixed, like in the NUFZY model, a
good model accuracy can still be achieved by merely tuning the consequent weights of the
fuzzy rules [68] . It is, however, conceivable that simultaneous training of the antecedent and
the consequent parameters would allow models with fewer rules which may be easier to
interpret. In any case, more work has to be done to clarify the issue of utilizing qualitative
information. In chapter 6, we will investigate the issue of how to incorporate a priori
knowledge into a T-S fuzzy model.
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3.7 CONCLUSIONS

In this chapter, we have demonstrated the batch learning procedure for the developed NUFZY
system. Due to the pre-determination of the antecedent part of the NUFZY system, the
consequent weights become the only unknown parameters to be identified. Because the model
is linear in these parameters, they can be identified efficiently by an orthogonal least squares
algorithm based on the classical Gram-Schmidt decomposition. Moreover, the OLS
identification procedure gives a convenient way 0 remove the linear dependent or almost
linear dependent fuzzy rules from the prototype fuzzy rule base, thus solving the redundancy
problem. Some simulation results presented in this chapter show that a NUFZY model with
the fast OLS training algorithms and a reduced fuzzy rule base can perform fairly well to
mimic nonlinear systems.

The capability of the NUFZY model for real systems is demonstrated by a practical example
involving tomato plant growth. We also apply the NUFZY model to other agricultural
applications. Examples are taken from real experimental data, including a developing system,
i.e., lettuce growth, and a system with a stationary operating point, i.e., grecnhouse
temperature. In the case of lettuce growth, the established NUFZY model offers seasonal
prediction as a function of the accumulated solar radiation and actual CO; concentration. In
contrast, the greenhouse temperature model is evaluated as a one-step-ahead prediction
model. Results show that the NUFZY model can give a suitable identification of lettuce
growth and greenhouse temperature,
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4. RECURSIVE
LEARNING OF THE
NUFZY SYSTEM

Honest people use no rhetoric; Rhetoric is not honesty. Enlightened
people are not cultured; Culture is not enlightenment. Content people are
not rich; Riches are not contentment, So the sage does not serve himself;
The morte he does for others, the more he is satisfied; The more he gives,
the more he receives, Nature flourishes at the expense of no one; So the
sage benefits all men and contends with none.

- Lao Tze, TaoDeling
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4.1 INTRODUCTION®

In the identification of systems which may contain time-variant properties, on-line tuning is
required to follow the varying characteristics of the systemn. A recursive scheme for adjusting
the system parameters is considered as a potential method. The commonly used back-
propagation algorithm for neural network training, where the steepest descent gradient serves
as the scarch direction, is not suitable for recursive adaptation, because it encounters problems
of slow convergence. In contrast, a recursive prediction error algorithm based on the
alternative approximate Gauss-Newton search direction, was reported to have improved
tcarning capabilities {10} . The recursive prediction error {RPE) algorithm was shown to have
similar convergence properties as its off-line counter part in the case of linear systems [44]
[53] . More specifically, for a chosen criterion, the estimated parameters obtained by the RPE
method will converge with probability one either to a stationary point (local minimum) or get
stuck at the boundary of the domain as time approaches infinity. The asymptotic convergence
property of the estimates makes it attractive to adopt these ideas to multi-layered networks and
to extend the application to nonlinear systems [10] . Compared to on-line identification of
neural networks with back-propagation learning, the fast convergence of the RPE method is
appealing in cases where the system parameters are slowly time-variant, provided the
networks were previously trained well enough in an off-ling way in order to provide good
starting values.

Although neural networks identification has been very successful, the information
representation of the internal network structure seems rather obscure, as little information can
be extracted about the actual functioning of the system. On the other hand, fuzzy rule based
models do have content but seem difficult to wrain. Like neural networks [27] [82] , fuzzy
systems are also universal approximators that can approximate any real continuous function
on a compact set to arbitrary accuracy [6] [80] . It has been shown in the previous chapter that
the integraied neural-fuzzy system, NUFZY, based on the structural similarity and functional
equivalence between fuzzy systems and neural networks, can be used to identify nonlinear
systems with fairly satisfactory performance. Due to the resemblance of the NUFZY system
and multi-layered neural networks, it is attractive to try to adapt the recursive prediction error
algorithm to the NUFZY system. In contrast to the batch learning procedure, our goal in this
chapter is to investigate the applicability of the adapted recursive prediction error algorithm
for the NUFZY system as a recursive learning scheme. Based on this procedure, parameters
on both the antecedent and consequent parts of the NUFZY system can be tuned in an on-line
manner to achieve recursive adaptation,

When employing recursive learning we need to know the sensitivity derivatives of the NUFZY
system with respect to the tuning parameters. Hence, for completeness, in section 4.2, the

t This chapter is modified from the paper [70] , titled Recursive prediction error algorithm for the
NUFZY system to identify nonlinear systems' in Proceedings of the 9th International Conference on
Industrial & Engineering Applications of Artificial Intelligence & Expert Systems [EA/AIE-96,
Fukuoka, Japan, June 4-7, 1996, pp 569-574.
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structure of the NUFZY system as developed in chapter 2 will be restated briefly and the
sensitivity derivatives are given as well. The gist of the RPE algorithm and its implementation
arc described in section 4.3, Exampies are demonstrated in section 4.4, and conclusions are
drawn in section 4.5,

4.2 SENSITIVITY DERIVATIVES OF THE NUFZY
SYSTEM

As shown in Figure 2.2, the developed NUFZY system is characterized by a triple-layered
feedforward network. The first and second layer of NUFZY deal with the antecedent part of
the fuzzy rule base and the third layer concerns the consequent part of the fuzzy rule base.
The NUFZY model performs a Takagi-Sugeno (T-S) type of fuzzy inference [62] , i.e., the
consequent part is formed as a linear combination of the premise variables. A variant of this
T-S type of fuzzy model is that the consequent part just uses crisp real values, which is the
method adopted in the NUFZY model. Given a system with ni input variables x;,i= 1, .. , ni,
and nb output variables y,, n = 1, .. , nb, where each x; has its own N; membership functions.
Then the zero™-order T-S fuzzy rules used in the NUFZY model can be expressed in the form

Rr(TS) : IF X is A'kl(xl) AND .. X is A’ki(xi) AND .. Xui is A'h,j(x.u-)
THEN Y] =Wy ey YJI =Wm, » an = Wb (4-1)

where superscript r denotes the ** fuzzy rule and A',(x;) represents the ki linguistic label of
x; with respect to the fuzzy rule R'. It is also noted that the membership function in the
consequent part is expressed in the form of a singleton value denoted by w,, in the r** fuzzy
rule. As in chapter 2, this chapter only considers two bell shaped membership functions for
the input fuzzy sets. They are the Gaussian membership function (denoted as Gau) and
inverse multiquadratic membership function (denoted as IMQ). The AND connection in the
antecedent part of the fuzzy rule is implemented by the algebraic product, and the centroid of
gravity (COG) defuzzification is used to construct the NUFZY reasoning functions. In the
following we will briefly review the node definitions of each layer and describe their
corresponding sensitive derivatives. Detatled derivations can be found in Appendix B.

4.2.1 Nodes and derivatives in Layer 1 of the NUFZY
system

The input node, x;, only serves to distribute the input into the first layer nodes with fixed
weights of unity, The membership node, denoted as Du(x;), represents a membership function
that performs fuzzification of the input variables. Each x; has its own N; linguistic labels
associated with membership functions p(x;). The fuzzified values p(x;)'s represent node
outputs of this layer.
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(1) Gaussian (Gau) membership function

1(x;—¢.)°
Wyi(x;)= eXp(_ET:) 4.2.9)

where index ki= 1, .., N;, i =1, .. ni; ci; and a;y; are the ki center and bandwidth of ®(x;)
for the input x;, respectively.

In contrast to chapter 2, a slight modification of the Gaussian membership funciion is made in
order to avoid getting a membership value of zero when a new input is located outside the
predefined domain of x;. Hence, the shape of the membership function on the left and the
right edges are modified to make them monotonously decreasing and increasing, respectively.
These edge functions are defined as follows® :

on the left edge of the domain of x;

1
- (4.2.b)
W) =17 exp((x; — ;1) G;y)

and on the right edge of the domain of x;

1
N (4.2.c)
Mailx,) 1+exp(—(x; — ¢y} O i)

For ease of notation, the p(x;} will be reordered sequentially and is denoted by ,(x;) where
subscript m runs from 1 to M. M is the total number of membership functions of all
membership nodes, which is given by Eq.(2.37) as

4.3

M= :lNi= N +.. + N

The transformation of p(x;) to o, (X} can be done with the following expression relating the
index of m and ki,

m=m(, ki)= Zfil N, +ki 44)

1 Since with the same ¢ and ¢ the IMQ membership function at edges does not go to zero as fast as the
Gaussian membership function, this modification is only made on the Gaussian membership function.
The disadvantage of these edge functions is that the o effect is opposite to that of the membership
function. When ¢ is large, the edge functions switches from O to 1 near the centers, or vice versa.
When ¢ is small, it makes a narrow band of membership function with less overlap of each other.
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wherei=1,. .ni;ki=1,..,N; and wheni =1, N; = 0. As one can see m forms a function
of i and ki, m(i, ki), which indicates a sequence index to stack all membership functions. To
avoid complicated expression in following formulations, m(i, ki) will be simply denoted by m.
It is easy to verify that the final index number of m is equal to M when i = ni and ky; = Ny,
m-1

m=(3, N, )4k,

=(N,+N,+-+N_ )+ N,

= 2:1Ni =M

Hence, with this new subscript and notation, 0,(X;) can be expressed as

2
a,(x,) :exp(_%("a;_fm)) 4.2.9)

The center ¢, and bandwidth 6, comresponding to ¢iy; and G;y; can be obtained in the same
manner as above,

(2) Inverse multiquadratic (IMQ) membership function

1
(x3)= (4.5.a)
By (x;) J(xi_ci.ki)z +0i2.ki
or
1
o (x,)= (4.5.b)

J&x,—c ) +62

Hence, for a specific input vector x = [X X3 ..Xi...X], the corresponding membership values
can be denoted in a vector form, & = [o; O3 ... O ... Om]', which only stacks the outputs of
the membership functions for all inputs. As an example, suppose we had three inputs, x;, X3,
X3, having 2, 3 and 2 membership functions, respectively. The membership values, for input
X3 are Jy(x;) and Ma(x,); for input X, are ii(xz), Ma(Xz), and Ps(x,): for input x5 are Wy(x) and
Wz(X3). They are denoted by Wiy, Maz, Mai. P2z, P23, Ms; and Wy,, respectively, below. In this
case, M=2+3+2="7and &= [0 0 O3 O Ofs O 07]" = [Py Paz M1 Moz Mas Mar Paa]

The node parameters to be determined in this layer are ¢;;; and o;y; (or, ¢p and Oy). Initially,
the centers are chosen as equally spaced on the range of x; (from a set of training data) and the
values of the variance of x; are taken as bandwidths. By the above definitions, it is easy (0
deduce the derivatives of the outputs of membership nodes with respect to parameters, i.e.

Ii(X)/0C; ki and O(X)/00;xi (OF B0m(X;)/0Cm and d0iy(x,)/0C,); see Appendix B.
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4.2.2 Nodes and derivatives in Layer 2 of the NUFZY
system

In this layer, the rule node, denoted as R,, represents a fuzzy rule, where subscriptr=1, .. ,R
and R is the total number of all fuzzy rules given by Eq.(2.39),

R=TI: N @9

The existence of a connection between a rule node and a membership node is represented by a
value of either 1 or 0. They are recorded in a RxM relationship matrix RM, which is defined
in section 2.3.1. Bach rule node performs a two-step operation,

Step one : the transient firing strength v, is obtained by
v, = Ilo RM(ra:b)p; @.n
where notations of RM(r,a;:5;) and ; are defined in the same way as those in section 2.3.1.

Step two: the normalized firing strength ¥ is calculated as

5=l 4.8)

T 21
p=1 VP

In this layer, there is no parameter to be determined. Yet, due to the chain rule used for the
sensitivity derivatives of the NUFZY system, we need the partial derivative of v with respect
10 Oy, which forms a R by M Jacobian matrix; see Appendix B.

4.2.3 Nodes and derivatives in Layer 3 of the NUFZY
system

The node, ¥,, n = 1, .., nb, stands for the NUFZY model output. The link in this layer
represents a weight parameter wy, forr = 1, .. ,R,n = 1, .., nb, and connects nodes y, and
R.. Using the centroid of gravity defuzzification method, the model output is obtained by

R
Vo= D WP, =Wi¥ 4.9
r=1
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where w, is the consequent weight parameter vector given by w, = [wy, .. Wiy, .. Wro]” and ¥
is a normalized firing strength vector given by v=[V, .. ¥, .. ¥ ] T with element v, defined
by Eq.(4.8). The derivatives of the NUFZY output with respect 10 weight parameter and
normalized firing strength can be found in Appendix B.

4.2.4 Sensitivity derivatives of the NUFZY system

From the above derivation, we can define the parameter set 8 of the NUFZY system that needs
to be tuned as either 8 = @, or 0 = [@ ¢]”, or 8 = [© ¢ o]", where parameter vector @ just
stacks all the tuning parameter vector of @ = (w," .. w,T .. wo']', with W, = [Wyy . Wiy o
wra)', and ¢ = [C1 .. Cm .. cm)” as well as 6 = Gy .. Gn .. Oul'. Hence, the dimension of 8 can
be nbxR, or nbxR+M, or nbxR+2M where M is defined in Eq.(4.3). Hereafter, we will use d
to denote the dimension of 0, i.e., d = dim(0). In this subsection, the results will be outlined.
Details of derivation and matrix notations used are given to in Appendix B.

(1) Sensitivity derivative of the NUFZY system output with respect to w
In this case, the parameter set 8 is defined as Og = ® = [wy" .. w,' .. Wap']" (a (nb-R)x1
vector). For single output ¥, (i.¢., nb = 1), the partial derivative of ¥, with respect to 8 ,

. .. . ay
Le., the sensitivity derivative ¥e = {A] , becomes a Rx1 vector

08,
ay
D . o
@n [ae,,,]

T
e [ae™]  [eemT
Tl aw, oW, aw,,

0

=0T .77 .. 07" =|¥
0

where 0 is a R by 1 zero vector.

A

9y
30, :| , becomes

For the multi-output case, the sensitivity derivative Wy = [
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g -9 _[19% | | (9% | . |9
/]
a0 a6, 00, 90,

¥y o 0 - 0
0 - 0
=0 -« ¥
o0 - ¥ {(nb-R)xnb)

(2) Sensitivity derivative of the NUFZY system output with respect to ¢
LetO®.=c=1{c;..Cy.. cm]" (Or, B = [Cy; .. Cixi . Coi nmi]"» MX1 vector). Then, an element

of the sensitivity derivative of ¥, (= {saei} , Mxnb matrix), ¥,.(n, m) can be obtained as
[

3%, _gr 03, 07, v, day,

Y. (n,m)= = —
e(nm) dc, a3V, ov, da,, dc,,
(09, ] [a%.] [ow ] [3oy )
v av o, 0C,,

3y [ fav | | av. | |oa
= T R = | x| —= L —
RM(:,m) o | ov [0 || er
%, | |av ! | 9w | | 9w,
|3%x | [@ve | |Pom | | 9cn

\

(3) Sensitivity derivative of the NUFZY system output with respect to 6

Let85=0= [0 .. On .. Ol (0r 85 = [C1] .. Oii .- Guinmil'» M1 vector). Then, an element
3y
00,

of the sensitivity derivative of ‘¥ (=[ ] , M=nb matrix), ¥ (n, m) can be obtained as

39, _sr 33, 37, 3v, da,

¥o{n.m)=

dc, 9T, dv, da,, do,,
[23,] [25.] [2u] [28a]
8_171 v aqcm dao,,
=w(:’m)T* 9.3(_11 * 7, * v, *%

av. || av, || 9a, | | 90,
oy, | (9| | ove | |90y
_al_fR_ avR‘ _aum_ _aomd
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4.3 PREDICTION ERROR ALGORITHM

Recursive estimation by the prediction error method has been studied systematically [43] [44]
[84] . In this section we give results based on [44] , from two aspects, off-line and on-line
identification, which correspond to batch and recursive leamning, respectively.

4.3.1 Batch prediction error learning

Parameter estimation methods need some objective criteria to measure the fimess between the
real system output y{t) and the model predicted output ¥{t), where dim(y(t)} = nb, For a time-
invariant system, given an available set of data {x(t} y(t}}; = 1., wp, @ good choice of the
objective criterion is a quadratic form of the prediction error weighted by its covariance
matrix,

vnp(e)=-;-ieT(:,e)A-‘e(t.e) (4.10)

t=]

where &(,8) = y(t) - §(t), anb by 1 column vector used to evaluate the search direction, is the
discrepancy between the real system output and model predicted output. Matrix Aisad by d
covariance matrix of the prediction error, which is evaluated based on the true parameter 8, of
the systemn. Minimizing the above criterion, the estimated parameter  has minimal variance,
and asymptotically converges to the true parameter 8, when the sample number np goes to
infinity. Since a set of sampled data {x(t} y(t)}, - 1. ., o is available, @ can be updated
iteratively by estimation based on the Robbins-Monro stochastic approximation method [44]
shown in the next equation, using all np observed samples until the minimum of Eq.(4.10) is
reached.

B+ — g 4y iz 4.11)

where the superscript (i) denotes the iteration step in the minimization procedure; vy is a
positive gain, which tends to zero and modifies the step size of update as well as influences
the convergence of the iteration; =(8%)is a search direction based on information about
Vop(8) acquired in the previous iteration, The search direction =(8¥'), determined by the
negative gradient of V,,(8) with respect to 8, can be further expressed together with a search
direction modification matrix, M(6®)

2(8%) =M@Y - v, 0P 4.12)
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where V',,(8%), a dx1 column vector, is the gradient of V,, with respect to 9. If we define the
sensitivity derivative as

w(1,0%) =ﬂ| (=- ge ) (4.13)
B B a=a® a 0 a=a®

then V',,(6) can be written as

v,;P(é“’)=-i Y(1.0M)Ae(t.0) (4.14)
t=1

Hence, Eq.(4.11) becomes

A A > A np A e A e

8 =89 +yIM@P) | ) w(t.89)A e, 87) (4.15)

=]

It is interesting to note that different learning algorithms can be derived by choosing different
representations of the matrix M(9) [52] . For instance,

(1) Gradient direction, simply take
M@©) =1 (4.16)
The parameter updating method based on the gradient direction is referred to as the
gradient algorithm or steepest-descent algorithm. It is fast in the initial stage but
tends to have very slow convergence near the optimum. The commonly used back-
propagation learning in neural networks is one example employing this gradient

direction.

(2) Gaussian - Newton direction, use the inverse of Hessian matrix, H(0), of the system
as M(0),ie.,

M(0)=H'(®) (4.17)
where the Hessian matrix H(@) is
H(6 i OA YT (1,0) nzpaZ?A‘(e) 8)
@)= > PLOA™Y (1,0)+ Yy —= AT eft, “.1
t=1 t=1 332

It is notice that the second derivative term in above equation is in fact a tensor,
which makes the estimation of H(8) in the "true’ Gaussian-Newton direction more
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complex. This complex second derivative in the estimation of H(@) is, however,
often not taken into account. Hence, for simplicity, a modified Gaussian-Newton
search direction, using an approximation of the Hessian matrix, also called Fisher
information matrix R(9), can be an alternative neglecting the second derivative of
Eq.(4.18). This results in the following:

(3) modified Gaussian - Newton dircction,

M@®=R'®) and R(®)= [i‘l’(t,ﬂ)A‘l‘PT(t,ﬁ)} = H(®) 4.19)

tml

The parameter updating method based on this modified Gaussian-Newton direction
is also termed Quasi-Newton algorithm, which has better convergence performance
than the steepest-descent algorithm at the expense of increased complexity. It is
noted that, in addition to the diagonal block elements, matrix R(0) has other
elements which exist over the entire matrix, A more simplified version of matrix
R(0) can be made by merely making use of the diagonal block elements of R(@) and
let the off-diagonal block clements be zero. This is termed parallel prediction error
algorithm by [7] [10] . In contrast to the 'full' R(8) matrix, this simplified matrix
R(6) increases the computational efficiency and is a good compromise as compared
to even further simplifications as, ¢.g., Eq.(4.16).

(4) Levenberg - Marquard: direction,

np
M@ =H"0) and H(@)= 2 w(t, A W (1,0) + 61} (4.20)

t=1

where & is a small positive value and the identity matrix is with appropriate
dimension. The term 81 is introduced to avoid singularily of the Hessian matrix.

The iteration procedure starts with initial estimates of the unknown parameters, O, and
updates the parameter according to Eq.(4.15) based on Eq.(4.13) and Eq.(4,16) - Eq.(4.20),
using all the observed samples until the minimization of Vy, is reached. Since this iteration is
done off-line, it can be regarded as a baitch prediction error learning algorithm, We will

denote these off-line estimates of the parameter as énp .

4.3.2 Recursive prediction error learning

In case we deal with a time-variant system, or applications of on-line identification, the above
process of updating the parameter must be recursive, The consequence is that the recursive

methods cannot be expected to determine the off-line estimates ?)np. Instead, one has © be
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content with recursive approximations to the énp. In the following derivation, we will focus

on the modified Gauss-Newton direction where the search direction M(8) is represented by
the inverse of the approximated Hessian, R™'(0), as defined in Eq.(4.19).

Now, consider that t sampled data (k = I, .., t) are available, the objective function then
becomes

1% -
V,(B)=?2 eT(k,8)A e(k, 0) (4.21)

k=l

Let 8(t—1)be the estimate at time t-1. Our goal is to find an estimate 8(¢1) that can minimize
the objective function V() based on the previous estimation 8(¢t—1). This means that the
approximations of M(8) and V'(0) (the gradient of V,(8)) in the next update equation, similar
to Bq.(4.15), are also both evaluated based on the estimate 8(t —1) at time t-1.

B =8 — 1)+ v1)- [V, Bee- 1))]'1 v @e-1) (4.22)

where matrix M(8(1—1)) is replaced by [V"l(é(t-—l))]fland V”, (8(t-1)) means an

approximation of the second derivative of V() based on observations up to time t. If we
denote the approximation of second derivative V* l(fa(t -1)) by R(1), then the update equation
is written as

8w =8¢-D+y)- ROV G- 1))] 4.23)

From Eq.(4.21), the derivative of V,(8) with respect to 8, V'(8), can be obtained.

v, (8) = zﬁg‘eﬂ Ae(k,0) (4.24)

k=1

Similar to Eq.(4.13), if the sensitivity derivative (a dxnb Jacobian matrix) is defined as

Y{1,0) = [%} (=- [-g%]) (4.25)

then V'(8) can be represented recursively,
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V' (©)= Z% Alek,0)=— 2 W(k,0)A e(k,0)
k=]

k=]

t-1
= —2 P(t,0)A " e(k,0) — V(L 0)A'e(1,0) (4.26)

k=i
=V (0)— P(1,0)A™'e(t,0)

In order to evaluate Eq.(4.23), we have to introduce several approximations. First we assume
that the next estimate8(1)is to be found in the vicinity of 8(t—1). This assumption is
reasonable if t is large. Then we assume that estimate 8(t—1)is indeed the optimal estimate at
time t - 1, such that

V' (B-1) = 0 427)
Hence, according to the above assumptions and Eq.(4.26), the gradient V'{ ﬁ(t —1)) becomes

V' (B(-1)) = V' Bt - 1)) - POt - D)A e, 8t - 1))
= —W(t,0(t- 1)Ae(t,B(t-1)) (4.28)
=_P(OA ')

where W(t, 8(t—1)) and €(t, 8(t-1)) are denoted by ¥(t) and £(1), respectively, for short.

The approximation of the Hessian matrix R(t) at 0 = 8(t —1) based on t-1 observations can be
expressed in a recursive manner together with the gain factor, (). ..,

R(=R({t—1)+yOPOA'PT®)-R(t—1)] with initial R©O) = Ry (4.29)

As mentioned above, the covariance matrix A based on the true parameter 0, is the optimal
choice for weighting in the objection function V(0). However, this optimal covariance is
typically unknown because the true 8, cannot be obtained. Consequently, a reasonable
approximation of the covariance, A(t), has 1o be estimated recursively in a similar fashion as
in Eq.(4.29),

A = At—1)+y(O[e®e®T - A{t=1)] (4.30)

In order to avoid the inverse of R in Eq.(4.23), a more convenient algorithm can be obtained
from the recursive form of Eq.(4.29) by applying the matrix inverse lemma, ie., if we
introduce
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P(1) = 1) R™(1) 4.31)

as an approximation of the inverse of the Hessian matrix. Applying the matrix inverse lemma,
we obtain the recursive expression of P(t), together with the 'forgetting factor', A(t), as below.

P(t) = ﬁ (PGt —1) - P(t - D¥(0) [AOAWD + FTOPE - PO ¥ (0P - D) @.32)

Moreover, using this expression for P(t), we can further write,

L(t) = YOR (P ®A™ (1
=POPMOA ) (4.33)
=P({t—-DPOLOAD + FTOPEL- VYO

Hence, the recursive prediction error algorithm based on the above derivation is summarized
below [44] ,

(t) = y(t) - ¥(1)

Alty=A@-1)+7O®e®T - A®)

S(t) = MDA + PTOP( - DP®D)

L) = P - DPOS™ ©) (4.34)
a() =08(1-1) + L{e®)

1 -
=—(P(t—1)-L 1t
P A0 [P@t—1)- LSt L (1)

When employing the recursive prediction error method, one must be aware that the purpose of
real-time identification is to track time-varying parameters. However, in the presence of noise,
it is impossible to accurately follow parameters that change too fast. Obviously, a tradeoff
exists between tracking ability and noise sensitivity and only slow time variation of the
parameters can be achieved by recursive identification. If it is known beforehand which
parameters are time-variant, it has been suggested (44] that the forgetting factor, A(t), in
Eq.(4.34) could be generally chosen as a constant smaller than 1, and the gain sequence, 1),
is formed as a suitable function of A and t. In this case y(t) decreases to zero as t goes to
infinite. Usually, however, the variation property of parameters in a system is not exactly
known to us. In such a circumstance, we could start to treat it in a time-invariant or slowly
varying manner. In the following examples where the time variability is to be studied, we
have assumed that the systems have slow varying dynamics, and this is particularly obvious in
the example of plant growth in agriculture.
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Some initial values of the recursive prediction error learning are set as below. The initial
value of the estimated covariance matrix of prediction error, ]\(0) , is set as 0.1xI (nb by nb
identify matrix). Matrix P(0) is initialized as a d by d diagonal matrix with a diagonal
element of 10000; where d = dim (8), the dimension of @ depends on the choice of the
parameter set. It is desirable to set the forgetting factor A(t) < 1 at the initial stage in order to
achieve rapid adaptation and then let A(t) — 1 as t —> =. Hence the forgetting factor, A(t), and
the gain sequence, Y(1), are chosen as [44]

MY = Ao Mt-1) + (1-Aq) (4.35)

AMD

S — 4.
: AD+y(t-1) @.36)

) =

with initializations of Ay = 0.99 and A(0) = 0.95.

4.4 EXAMPLES

In this section, two examples are presented to demonstrate the implementation of the
recursive prediction error method in the NUFZY system for identification of nonlinear MISO
systems, The parameter sets of the NUFZY system that are desired to be tuned can be defmed
as cither 8=, or 0 = [@ ¢]”, or 8 = [® ¢ 6]*. Among these options, our previous studies
showed that good approximation could be achieved by the mere tuning of consequent weights
(i.c. @ = w, when only one output variable is considered) [68] . Hence, the next two examples
presented here are based on using the recursive prediction error algorithm to tune the
consequent weight parameters only. In the initialization of 6(0) = wu;), we compare two
approaches. One uses the consequent weights w,., that are first identified by orthogonal least
squares method with a batch of training data set, as w;,;. The other uses zeros as wy,, i.e., all
parameter values starting from zero.

4.4.1 Example 1 - synthetic nonlinear system

This example is equivalent to example 4 of [48] . The dynamical system is given as

XX, %%, - 1)+ x, @37
1+x2+x2

yk+1)=

where [x), x5, X3, X3, x5] = [v(k), y(k-1), y(k-2) , u(k), u(k-1}]. In this example, the NUFZY net
is employed to generate a one-step-ahead prediction $(k+1). First, 500 training data points
are generated by the plant Eq.(4.37) with a random input signal uniformly distributed in the
intervals of [-1,1]. These training data are used to train the NUFZY model with the
orthogonal least squares method in order to get a trained output weight, denoted as w,,,. These
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weights w,;, can be regarded as representing the optimal parameter values from this batch of
training data. The number of membership functions is assigned as two to each input variable.
Hence, the total number of fuzzy rules will be 32 initially. Afier the orthogonal least squares
training, it is found that only 26 rules are significant, These weights are then used as
initialization of the RPE method for the subsequent validation step (i.e., Wi = W,,) Where
1000 pairs of data are generated according to Eq.(4.37), based on an input sequence u(k)
given by

sin (%) 0<k £500
uy=y 29 2k (4.38)
0.8sin (3-5—0)+0.2 sin (E-) 500 <k <1000

Figure 4.1 shows the result of the validation. It can be seen that the NUFZY model gives
excellent prediction. Figure 4.2 presents the variation of the consequent weights of the
NUFZY model tuned by the RPE method during validation.

On the other hand, if validation is initialized with initial weights set to zero (i.e. wy; =0,ad
by 1 column vector with zeros, rather than w,,), a similar result (not shown) as Figure 4.1 by
RPE tuning is obtained but with a little less accuracy than the previous one. However, the
variation of the tuned weights is quite different from that shown in Figure 4.3. At the 500
time step, the weights are clearly readjusted as input signals with different frequency come in.
This implies that the RPE initialized with § was trapped on some local minimum and the
tuning proceeds only locally. When the frequency of the input signals changes, the RPE
readjusts these weights to another (local) minimum in order to get a good fit. This example
demonstrates that it pays to initialize the RPE tuning with parameters obtained off-line from a
good excitation signal. However, if not, the NUFZY model still fits the system well on that
local excitation signal.

In [48] a parallel model (i.e. the past model predictions are components of the input vector)
was identified which requires 100,000 steps of training. In order to compare with the
aforementioned simulation, this parallel approach is also adopted for the NUFZY model. As a
result, a very good prediction is obtained as well (see [68] ) and the NUFZY model accuracy is
far superior than that of an artificial neural network trained by back-propagation used in [48] .
In addition, the NUFZY model requires less training efforts and has a lower model
complexity, For the training phase, 500 samples are used in one step using the OLS
identification in contrast to the 100,000 steps of back-propagation adaptation used in [48] .
With respect to the model complexity. only 32 weights have to be adjusted in the NUFZY
networks while 320 weights were used by them. The key is that good performance can be
achieved by just uning the output weights of the NUFZY model. This makes it very appealing
for fast identification since the problem then is linear-in-the-parameters.
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Figure 4.1: The predicted output of the NUFZY model superimposed on the
desired output in a time-invariant case. Solid line - the desired
output ; dashed line - the predicted output of the NUFZY model.
Note, they are hardly distinguishable.

The variation of parameters during the RPE identification (time—invariant case)
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Figure 4.2: The variation of the identified weight of the NUFZY model during

the validation in the time-invariant case, when initial weighting
values are set 1o we.
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The variation of parameters during the RPE identification (time—invariant case)

parameter (weights) valuss

o] 100 200 300 400 500 600 700 800 900 1000
time index(t); (iniw=0 with RPE adjusts weights only)

Figure 4.3:The variation of the identified weight of the NUFZY model during
the validation in the time-invariant case, when initial weighting
values are set to ().

In order to study time variability, the dynamical system is forced to change its status from
Eq.(4.37) to the next status governed by

XXX, X (X ~2) + X, (4.39)
3+x2+x?

yk+)=

where, as before, [x1, X2, X3, X4, Xs] = [(k), y(k-1), v(k-2) , w(k), u(k-1)]. The following
procedure was used to test this time-variant case. The training data are generated as before
with a random input signal uniformly distributed in the intervals [-1,13, but the first 250
training points were generated by following Eq.(4.37) and the remaining 250 by following
Eq.(4.39), thus simulating a sudden change in parameters. Next, a validation data set is
created by first generating 300 points according to Eq.(4.39) and then another 700 according
to Eq.(4.37), which means that the system returns to its original status. The data are arranged
in this way so that the adaptation ability of RPE method can be examined. The validation
result of the RPE on-line tuning initialized with w,, shows that good prediction is still
attained as shown in Figure 4.4. It is also observed that the RPE nming converges fast o a
new working point when the system parameters switch to other values at the 300™ time step.
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Figure 4.4: The predicied output of the NUFZY model superimposed on the

desired output in a time-variant case. Solid line - the desired output

; dashed line - the predicted output of the NUFZY model. Note,

they are hardly distinguishable.

4.4.2 Example 2 - prediction of tomato dry weight
production

Agricultural plant growth in a conditioned environment inherently represents a system with a
nonlinear character and some undetected time-variant parameters. In this example, dry matter
production of tomatoes as a function of environmental factors, such as temperature, CO,
concentration, and radiation, is considered. Data are from the experiments in Wageningen [2]
where three experiments have been done on three different growing seasons in 1988, Every 7
- 10 days during these experiment periods, the dry matter amount of the tomato plants is
measured by destructive measurements, The total dry weights (TDW) are used for the
simulation model.

The goal of NUFZY modeling is to identify the dynamic growing process of tomato and to
predict the total dry weights of tomato at the next sampling date. In other words, a NUFZY
model was applied to describe the unknown relationships between the environmental factors
and plant growth as given below:

yk +1) =f(DK), y(k)) {4.40)

where D(k} represents the disturbances to the system. In this case they are the averaged
radiation (RAD) and averaged ambient CQO, concentration of the greenhouse between the
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sampling intervals from t(k-1) to t(k). v(k) and $(k +1) represent the measured and predicted
total dry weights (TDW) of tomato at sampling dates t(k) and t(k+1), respectively. The
function f{.) represents the unknown dynamics of the plant. The NUFZY model then
approximates Eq.(4.40) as

TDW(k + 1) = f nurzy ( RAD(k), COy(k) , TDW(K) ) (4.41)

Data of experiment 1 and experiment 3, in total 31 tuples (RAD,CO,,TDW), are used for
training and to generate initial weights for the validation and on-line prediction with the data
of experiment 2 (15 data pairs). Owing to limited data length, the RPE tuning of the NUFZY
model is done by feeding these data to the NUFZY model repeatedly up to 5 times to tune the
output weights, which are initially set to zero. At the end of the training process, it is found
that the best identified results were obtained by NUFZY(3x4x2:12;Gau), This notation means
that 3, 4, and 2 Gaussian membership functions are assigned to input variables RAD, CO,,
and TDW, respectively. The results of training and on-line prediction arc depicted in
Figure 4.5,

(a) experiment 1
1.5 T T T T T T

TDW

0 20 40 100 120 140

TDW

i A
o 20 40 60 80 100 120
day number

Figure 4.5; The measured TDW of tomatoes (circle-solid line) with 95% confidence
interval (dotted line) and NUFZY(3x4x2:24;Gau} predicted TDW (star-
solid line)
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From Figure 4.5, it can be seen that the predicted TDW by the NUFZY model is located
within 95% confidence interval of the measured TDW for both initialization and on-line
prediction, showing that a good prediction of TDW has been achieved. This example exhibits
the feasibility of RPE tuning for the NUFZY model in a real world application.

4.5 CONCLUSIONS

In this chapter, sensitivity derivatives have been derived for the NUFZY system, which
enables the employment of the recursive prediction error method for tuning of the NUFZY
model and the identification of the unknown dynamic nonlinear system in an on-line fashion.
The recursive prediction error method demonstrates that good model accuracy can be
achieved by just tuning the consequent weights of the NUFZY system. Since this problem is
linear-in-the-parameters, it is convenient to apply an orthogonal least squares method to the
first batch of data, in order to obtain a set of optimal weight parameters as initialization for
the recursive prediction error method, thus enabling a faster adjustment for on-line tuning.

Although the results of tuning the parameters of ¢ and ¢ in the antecedent part of the NUFZY
system are not presented in this chapier, it is worthwhile to mention that simultaneous tuning
of all parameters does not give much improvement on prediction, as compared to merely
tuning the consequent weights of the NUFZY system, see [68] . This is a significant point to
support us in exclusively adjusting the consequent weights, allowing fast tuning of parameters
for on-line application while achieving comparative model accuracy. Moreover, it appears that
if parameters ¢ and o are tuned at the same time, they may get values that are outside the
expected ranges, making the results difficult to interpret. To this point, an interior penalty
method used in [36] can be an altemative to tune parameters ¢ and o bounded in some
reasonable domains after tuning. However, this leads to a complicated nonlinear parameter
optimization problem that needs more computational efforts to deal with. As such, it is
conceivable that one will favor the simpler tuming process, provided the similar model
accuracy can be achieved.
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5.1 INTRODUCTION®

The commonly used Mamdani type of fuzzy rule has advantages hoth with respect to the
incorporation of a priori knowledge, as well as with respect to interpretability of the rles,
because both the antecedent and consequent of rules are expressed linguistically, so that the
Mamdani type of fuzzy rule i1s more intimate to the human's intuitive knowledge.
Nevertheless, its main disadvantage is that information representations differ from one expert
to the other. This will cause consistency problems in applications as it is difficult for the
system developer to judge which representations should be taken and how to integrate them.

Alternatively, the Takagi-Sugeno (denoted as T-S) type of fuzzy rule provides a means of
simple calculation in a fuzzy system as it makes use of a linear combination of the system
inputs (or a constant term) as its consequent and then the weighted average output is obtained
based on all fuzzy rules. Yet, the interpretation of the T-S fuzzy rule is troublesome since the
consequent 1s expressed by a linear function of system inputs, which does not help much to
understand the global behavior of the system, not to mention a meaningful linguistic
description of how the system works. Also, for T-S fuzzy rules the incorporation of qualitative
information is difficult because most qualitative information is neither represented in a crisp
form nor as a linear function. Hence, the fuzzy system using the T-S fuzzy rules is mainly
applied for identification and to construct the corresponding fuzzy model from experimental
data without utilizing much qualitative information. The very use of qualitative information of
the T-§ fuzzy model is merely limited 1o the determination of the number of fuzzy sets in the
antecedent part of the fuzzy rule (i.e., the partitioning of input space of a fuzzy rule base) and
the initialization of these parameters.

With interpretability in mind, we propose to associate a set of parameters, called consequent
significance level (CSL) p,. to the consequent fuzzy sets of a MISO fuzzy system with
Mamdani fuzzy rules, in order to overcome the above mentioned inconsistency problem. The
CSL parameter describes the degree of confidence of the contribution of the j* output fuzzy
set to the consequent of the r** fuzzy rule (where indices r and j will be discussed later). By
introducing the concept of the consequent significance level, some interesting results are
obtained. First, an extended Mamdani (denoted as EM) type of fuzzy rule can be established.
It is found that the ordinary Mamdani fuzzy rule becomes a special case of the EM fuzzy rule
when the CSL parameter is taken as either unity or zero. Second, under some conditions, the
output of EM fuzzy rules can be related to that of T-S fuzzy rules. This implies that the crisp
consequent of the T-S fuzzy rule can be transformed into a Mamdani like fuzzy rule - with an
interpretable set of linguistic terms - associated with a CSL parameter. More specifically, the
linear function of system inputs (or, a crisp real value) in the consequent of the T-§ fuzzy
model can be transformed to a linear function of outputs with the CSL parameters as
coefficients. Hence, the T-S fuzzy rule becomes linguistically interpretable in a similar way as

* This chapter is an extended version of the paper [71] , titled ‘On the interpretation of two types of
fuzzy rules’ in Proceedings of the Second International ICSC Symposium on Fuzzy Logic and
Applications ISFL-97, Ziirich, Switzerland, February 12-14, 1997, pp 240-246.
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the extended Mamdani fuzzy rile. The above transformation can be realized because the fuzzy
model has dual representations, i.e., the output can be represented by a linear function of
either the system inputs, or, the system outputs. This idea will be purified in this chapter.

Without loss of generality, we will confine ourselves in the following discussion to the multi-
input single-output fuzzy system. In section 5.2, a comparison will be made between the T-S
type of fuzzy mle and fuzzy model, and the ordinary Mamdani type of fuzzy rule and fuzzy
model. In section 5.3, we will introduce the newly defined parameter and the resultant
extended Mamdani type of fuzzy rules. The link of the EM fuzzy rules to the T-S fuzzy rules
is presented in section 5.4. A simple synthetic example in section 5.5 illustraics how the
identificd T-S fuzzy rule can be transformed to be interpretable as the EM fuzzy rule. Finally,
the conclusion and discussion are addressed in section 5.6.

5.2 COMPARISON OF TWO TYPES OF FUZZY RULES
AND THEIR MODELS

In this section, we will first describe the T-S fuzzy rule and model used to carry out fuzzy
reasoning. Then a more detailed description of fuzzy inference is given for the Mamdani type
of fuzzy rule in order to pave the way for the consequent significance level parameters to
construct the extended Mamdani fuzzy rule in the next section.

5.2.1 Takagi-Sugeno type of fuzzy rule and model

Consider a MISO fuzzy system, then a first-order Takagi-Sugeno type of fuzzy rule is
expressed as

R

s IF X1 i8S A'(x1) AND .. x; is A'(x) AND .. xp; is Al

m
THEN y= ay+) ax; (5.1.2)
1=l
or in short format

m
R IF {x;is A'(x)} THENY = 4} +Zaf{xi (5.1.b)

(TS)"
i=1

The consequent of an individual fuzzy rule is formed as a linear function of system inputs
together with a set of parameters, d'y, d'\, .., ', which need to be identified. In case of the
zero™-order T-S fuzzy rule, which gives (in short)

R _:IF {X‘l is Ark;(x;)} THENY = W, (52)

(T8
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the real number w, in the consequent of the T-S fuzzy rule represents a singleton membership
function, which is hardly interpretable linguistically.

Given a set of inputs x (€ R™), for all R fuzzy rules, the aggregated output, denoted as yrs,,
employing the weighted sum of the consequent part defined in Eq.(5.1), results in

R

Evr(x)-(ag +iai’xi) R

Yars) ()= = Y %, (x) (@ + Y i) 53
=1

PRAC =l i

=1

or, in the case of a zero™-order T-S rule (Eq.(5.2))

R

Zlvr(:ni)-wr R

=1

Yersy (%) ==Y F,(x)-w, (5.3.b)
2 v, (X) r=1
r=1

where v,(x) and ¥,(x) represent the firing strength and normalized firing strength of the
antecedent part of the r* fuzzy rule, respectively. This firing strength v, is obtained as a result
of a T-norm operation for the linguistic AND connection in the antecedent that uses the
system inputs as arguments of membership functions. It can be defined either by min
operation or product operation,

Vr(X) T(MA{] (xl)""’u’A:’“ (xni))

min(lJ.A;l (x])" '.’u'Alfm (xni ))

]fl_lIl-'I-AL (Xi)
i=1

G4

Once the term ¥, is obtained, Eq.(5.3.b) becomes a linear regression, so that parameters w,'s
can be identified by the least squares method. Analogously, the parameter set in the linear
function &;"s (Eq.(5.3.a)) can be found by the least squares method too. It is also noted that the
defuzzified output is obtained by taking the summation of all R fuzzy rules as an aggregation.
This method is referred o as fizzy-mean (FM) defuzzification [30] . The advantage of the T-S
type of fuzzy rule is that the defuzzified output is linear in the parameters, facilitating
mathematical analysis and calculation. Yet, the weakness is that the consequent cannot be
interpreted easily. The rest of this chapter will focus only on the case of the zero™-order T-S
fuzzy rules.



5.2 Comparison of two types of fuzzy rules and their models 81

5.2.2 Mamdani type of fuzzy rule and model

The Mamdani type of fuzzy rule mainly differs from the T-S fuzzy rule by its consequent part,
where the consequent is expressed by fuzzy sets, rather than crisp values or linear functions of
system inputs. Assuming that it has the same antecedent as that of the T-S rule, it is typically
expressed as

K : IF x; is A"l (%) AND .. x;is A'(x) AND .. AND x,, is A'i(X0)

(M)
THEN yisB(y) (5.5.2)
or in short
K o IF {x;is A'i(x)} THEN y is Bi(y) (5.5b)

where output y has N, fuzzy sets indexed by j, for j = 1, .., Ny. The notation Bi(y) indicates
that in rule r the output belongs 1o the j* linguistic set of y. Also, B (y) refers to the linguistic
set of rule r (irrespective of j), and Bi(y) refers to the linguistic set j of y (irrespective of 1}. It is
obvious that the consequent of some fuzzy rule B'(y), r € [1, R], may share the same fuzzy set
Bi(¥).j € [1, N], provided N, < R. The following definitions will be used.

(D.1) cardinal set Cy is defined as a collection of the numbers of fuzzy rules indexed by
subscript 1. Cr ={1, 2, ..,1, .., R}

(D.2) cardinal set Cg is defined as a collection of the numbers of output fuzzy sets
indexed by subscript j. Cs ={1, 2, ...}, .., Ny }

(D.3) cardinal set C;, indexed by subscript 1;* and C; ¢ Cg, is defined as a collection of
those fuzzy rules, whose consequent fuzzy sets, B'(y)'s, are identical,

C,={1* | 1* € Cypsuch that BY (y) = B(y)} ; Vj e Cp

(D.4) complement cardinal set, _(fj, defined as a set which is complementary to C;, is

given by Ej =Cg - C;

(D.5) cardinality of set C;, denoted by N.;, is defined as the total number of its elements

and is subject to
Ny

D NG =Ny + N+ Ny, =R
j=1

(D.6) indexing function, I(r), is defined as a function which returns the subindex
(subscript j) of the fuzzy output set B,(v) with respect to the " fuzzy rule, i.e.,
I(r) = j* € Cy such that B'i(y) (or, B'(¥)) = Byy(y) = B-(¥) = Bi(y)
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Using definition (D.6), the consequent fuzzy set B'(y) in Eq.(5.5) can be denoted as Bj(y) via
the indexing function 1(r)’. Since the indexing functon I(r) maps the causal relation of a
consequent fuzzy set in the r* fuzzy rule to its correct subindex in Cg, it is needed to define
both the cardinal sets Cg and Cm. Hence, in applying the Mamdani fuzzy model, it is
necessary for the designers to define the cutput fuzzy sets in advance, which is implicitly
linked to the fuzzy rules via the indexing function.

The following example explains the use of the above definitions. Suppose we have 6 rules (1 =
1, .., 6) and three output fuzzy sets ("small’, ‘'medium’, and 'large’ denoted by B (y), Bx(y) and
Bi(y), respectively, j = 1, 2, 3). Rules 1, 3, and 4 have the same consequent ‘'medium’, Bo(y),
and rules 2 and 6 correspond to consequent large’, Bs(y), and rule 5 has consequent "small’,
B;(y). Hence

G = { n* B () = Bi(y)} = {5}, C,={1,2,3.4,6), Ny =1;

G = n* |BY(y) = Ba(y)} = {1, 3,4}, C,=1{2,5,6}, Np=13;

Ci={r* IBra.(y)=Ba(y)i =1{2,6}, E;= {1,3,4,5}, Na=2;
3

) N =1+3+2=6;and

=1

I()=212)=3;13)=2, 1(4) =2, 1(5) = L, I{6) = 3.
With the indexing function Eq.(5.5.b) can be rewritten as
R IF {xiis A'(x)} THEN y is By(y) {(5.5.0)
In order to obtain the defuzzified output of the Mamdani fuzzy model, some additional

assumptions of the output fuzzy set B'(y) are made to simplify the calculation of
defuzzification.

(A.1): B'i(y) is anormal fuzzy set; i.e., max{pg'(y)} = 1 and pg"(y) € (0,1].

(A.2): B{(y) has compact support (CS) in the domain of Y, the universe of discourse of
output y; ie., CS(BY(={ye Y, CY | Hs'{(¥) > 0}. For a compact support B(y),
the argument y is only defined in a subdomain Y, a finite subset of Y. Hence, the
area of B"|(y), L My (Y 5 becomes finite integratable in the subdomain Y.

T Cy and Ca can be linked as followed,

Iy =j*e Cs

Cr (with elementr) ~  Cg{with element j)
Cj = [ rj* € CR]
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(A.3): The areas of each compact support fuzzy set Bj(y) are identical. For example, if
area(B'(y)) is defined as a =I By (y)dy (with respect to the t* fuzzy rule), then the
Y

following equality exists: a' = a° = .. = &’ = .. = a°. Analogously, the area(Bi(y)).
defined as a; = I i (¥)y (with respect to the i output fuzzy sets), has the similar
Y

equality: a; =a; = .. = a;= .. = a,

It is noted that if B'j(y) is symmetrical, then the location of the centroid of a compact support
fuzzy set Bi(y) projected onto Y, equals to the point where the membership function of pg'i(y)
reaches its maximum value. This point, will be denoted as z';, (or, Z' or z; in the following) is
a numerical representation of B'(y) and is defined by 2= {y e Y, | max(pg(y}) = 1}. When
there are several maximum values (such as trapezoidal membership function), the location of
the point which takes the mean of these maximal points is taken as z'. Due to property of
compact support in B(y), one merely has to take the mean value of Y; as its Z'j, provided
B'i(y) is symmetrical. Hence, according to (A.2) - (A.3), the first moment of B'i(y),

L Hp: (V)ydy , can be just represented by a';z';.(or, a"-z' or a;z; in the following).

When implementing Mamdani fuzzy roles, a resultant consequent fuzzy sct B'(y) shall be
calculated in order to carry out the fuzzy inference. B'(y) can be obtained in two ways. One is
that B'(y) is aggregated based on all R fuzzy rules (using fuzzy sets denoted as B'(v)); the
other is based on all the N, output fuzzy sets (using fuzzy scis denoted as Bi(y)). In the
following, we will discuss these two aggregation methods,

First, when B'(y) is aggregated based on all R fuzzy rules, using R fuzzy sets B'(y), it can be
expressed in terms of a membership function pg(y) as

Ly (Y)=UICC (e (x). B )
; (5.6}
= Sa (vr (X)O”'Bf (y))
=1

where Icc indicates a fuzzy implication based on classical conjunction performed by *=', a T-
norm operation; see Chapter 2; whereas S, is a S-norm operator for aggregation and ug'(v) is
the membership function of the consequent fuzzy set B'(y) in the r* fuzzy rule. (Note that
pe'(¥) usually has a complicated shape.)

When the sum-product inference method is used to replace S, and -, the membership function
pe'(¥) of B'(y) in Eq.(5.6) becomes (Note, in terms of R fuzzy sets B'(v))

R
Ry 0= D V(0 k0 7

=1
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Next, we define the following properties of B'(y).

(D.7) active area of B'(y), denoted as a"
a’ =_[Yuﬁ. (y)dy

(D.8) first moment of B'(y), denoted as m"
m’ =L My (Y)ydy=a'-z’

where z' is the location of centroid of B'(y) projecied on Y under the assumption (A.3). If
assumption (A.3) is dropped, (D.8) usually defines z'. From definitions (D.7), (D.8), and
Eq.(5.7), onc can derive the resultant active area, a', and the resultant first moment, m', of
B'(y) as

R
a =JY u'B' (Y)dy = -[Y (2_; Vr(x). u’B' (y))dy
- (5.8)

R R
= Y 00| by )y =Y v o
r=1 r=1

R
= 3.9

R R R
= D n 00 ([ by ) yay = 2 00m = (0-a !

r=1

Eq.(5.8) and Eq.(5.9) represent a weighted sum of active area and first moment of B'(y),
respectively. Hence, based on the above assumptions (A.1) - (A.3), the defuzzified output of
such Mamdani fuzzy rules, denoted as youy, is then obtained by

R

Zvr(x)-a’vz’ R

Yo (X) =I:' ==k =2'17*,(x)-zr (5.10)

2 v,(x)-a" r=l1

r=1

where v, is defined as in Eq.(2.41). From Eq.(5.10), it is interesting to note that the system
output of the ordinary Mamdani fuzzy model forms a linear function of z', a numerical
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representation of the output fuzzy set B'(y) under above assumptions. This linear function is
R

subject to the constraint Zvr(x) =1, as similar to the zero”-order T-S fuzzy model.

r=1

We will next derive the resultant output fuzzy set B'(y) from N, output fuzzy sets B;(y). This
will contrast with the derivation of Eq.(5.8) and Eq.(5.9), which are based on R fuzzy sets
B'(y). The membership function pp{y) of B'(y) is modified from Eq.(5.6) based on the N,
fuzzy sets By(y) together with definitions (D.3) and (D.5),

R
UB' (y): S_a (Vr (x)"l-lBr (Y))
" (5.11)

Ny NCj
= Sao[(sai V;j*(x))ﬂlsj ()]

=l n*
It can be seen that Eq.(5.11) performs two steps of aggregation through the outer and the
inner S-norm aggregations, S, and S,;. Since there exist predefined ownership relations that
map R firing strength sets into Ny, classes of output fuzzy sets (see definitions (D.3)~(D.6)),
first those firing strengths v's {in total N;) which have the same consequent part B;(y) can be
aggregated by the operation S,;, together with ug(y) to perform the fuzzy implication by a T-
norm operator 'o'; whereas S,, finally aggregates results from all Ny, output fuzzy sets. When
S. and S, are chosen as summation and the T-norm operator, ¢, as algebraic product,
Eq.(5.11) becomes (in terms of N,, fuzzy sets Bi(y))

Nb ch
Mg )= D ICY v (x)- 1 ()] (5.12.0)
=1 T *=]
Ng

where the term Zvrj,(x) indicates the sum of all v/'s which have the same output fuzzy set

=
r*=1

Bi(y). It can also be denoted by B;, with the following definition

(D.9) implicated DOF (degree of fulfillment), B;
Ngj N, Ng

N, R
Bi(x) = Zv,j,(x) with property zﬁj(x)= Z(ZVU*(X)F zvr(x)
=i r=1

=1 =1 o=t

Hence, Eq.(5.12.a) can be rewritten as

Ny
Hy )= 3 Bi(X) g, () (5.12b)
=1
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Similarly, we can also define the active area and the first moment of B(y), respectively,

(D.10) active area of Bi(y), denoted as 3;

aj=L K, (yWy =JY, KB, (Y)dY‘*'L_Y 0-dy
J

I}

= [, a0
(D.11) active first moment of By(y), denoted as m;

my=f, b, @yay=[ ua Gyay

].z.

1

Note, in definition (D.10), since Bj(y) has compact support in Y; and pgi(y) € (0,1] when y €
Y,, therefore, pig;(y) = 0 in the complementary domain of Y-Y,. In (ID.11), z; is defined as the
point where the centroid of Bi(y) projected on Y according to (D.8). Using definitions (D.9) -
{D.11) and Eq.(5.12.b), the resultant active area, a', and the resultant first moment, m', of
B'(y) are derived as below,

N, N,
=], oy = 8,001, 5y =3 B0y, 009
=l =1

Ny N, (513)
= Bi0-(|_ s, )= Bi00-a;
i=1 y =l
and
N,
Hf:jyﬂn' (y)ydy =2I3j(X)-a,--zj (5.14)
=1

Hence, the defuzzified output of such Mamdani fuzzy rules, based on the N, output fuzzy sets
and the centroid of gravity method, is obtained by

Ny
. 2B ag

m =1
¥ou (X) =? =1Nh—*——' (5.15)

Zﬂj(x)'aj

=1
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According to assumption (A.3), together with the property of B; from (D.9), the defuzzified
output can be simplified further to

N, N,
DBz YRz
j=1 j=1 B(x)

Yon (0= = 2 - (5.16.2)

Ypm  Xwo Zv(x)
j=1

r=1 r=1

if we define the term Bj as

(D.12) normatized implicated DOF, P,

Ng;
vrj.(x) N
B( )_ ﬁ ( ) =rj"':1 =2§rj*(x)

Z v (x) Z v,(x) 5"t
r=1 r=1 Nh .
b0 Zﬂ(x) PIRACS
with property 2[3 x)= 2( = X y ==t =xL =1

=1 Zv(x) Zv(x) Zv (x)

Therefore, Eq.(5.16.a) can be rewrilten as

N,
Yan ()= Y Bi(x)-z; (5.16b)

=t
From Eq.(5.16.b), it is again noted that the system output forms a linear function of z;, a
numerical representation of output fuzzy set B,(y) under the above assumptions.
Ny,
This lincar function is subject to the constraint ZE} =1. defined in (D.12).
1=1

We have the following remarks for the above definitions and assumptions.

(R.1) With respect to the assumption (A.1), most applications of fuzzy systems usually let
the fuzzy set B(y) be normal since it typically reflects the human intuition. Other
non-normal fuzzy sets, like subnormal (max{ ps'(y)} < 1) and supernormal (max {
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uz'(y)}>1}), are also possible but are rarely applied in practice since they do not
agree to the fuzzy theory,

{R.2) The finite subset Y; of Y is defined as a compact set and enables the calculation of
the area of B'i(y) in practice. In addition to the symmetry property, the assumption
that each By(y) has identical areas will simplify the calculation process as well. Asa
result, only the parameter z'; is needed, which can be easily determined based on a
priori knowledge of the designers. Although the shape factors, like the bandwidth
of pgi(y), are important in some sense, it becomes insignificant to define these
factors ‘precisely’ when one is to incorporate qualitative information because the
qualitative knowledge from human itself is essentially vague. The merit that one
can gain is a less complex fuzzy system to be processed. In any case, a numerical
representation of output fuzzy set, z';, suggests that the shape factors of the output
membership functions are insignificant under our present assumptions. As long as
z; is determined, the fuzzy reasoning of the Mamdani fuzzy model can still be
realized under the above assumptions. It is noticed that the commonly used
Gaussian type of membership function of fuzzy set B;(y) is not compact support in a
finite interval since its membership value is greater than zero for the whole
universe of Y. Instead, other types of modified membership functions can be
applied to agree with the properties of compact support, symmetry, and identical
area. For instance, the triangular shape of membership that is generated by B-
splines functions, or, by the modified compact Gaussian function [5] as defined
below.

(zj.2'zj.l)2

-1 4 .
exp (-D*exp(— ————) ;ifye Y, =(z,.2;,)
@2 -MY - 2j1) R

Mg, () = G.17)

0 ; otherwise

(R.3} In most situations, the output universe of discourse Y is defined in a "bounded” way
to agree with reality. However, at the edges of this bounded domain, a Z- and an S-
shaped membership functions may be chosen to be the most left and the right side (
us,(y) and pg, (), respectively) membership function within the bounded domain
of Y. By moderately choosing the minimal and the maximal values of Y, [Y nin,
Yuxl. the assumption (A.2) can be satisfied. Alternatively, as mentioned above the
B-splines function and modified compact Gaussian function can also be chosen as
output membership functions since they are defined in finite intervals.

(R.4) Comparing Eq.(5.10) and Eq.(5.16.b) 1o Eg.(5.3.a), it is found that the fuzzy
system has a property of dual representations; i.e., the defuzzified output of the



5.2 Comparison of two types of fuzzy rules and their models 89

fuzzy system can be represented as a linear function either of system inputs (¢.g., a
T-S fuzzy model output, see Eq.(5.3.a)), or, of system outputs (e.g., a Mamdani
fuzzy model output, which is subject to assumptions (A.1) - (A.3), see Eq.(5.10)
and Eq.(5.16.b)). This property, as will be shown later, offers a clue to enable us to
link the T-S fuzzy model and the Mamdani fuzzy model. In general, the number of
output fuzzy sets is smaller than the number of total fuzzy rules, i.e., N, < R. When
N, = R, Mamdani type of fuzzy rules become Takagi-Sugeno type of fuzzy rules,
implying that there ar¢ R linguistic descriptive levels of y, characterized by
singleton membership functions, existing in the output domain. In such a special
case, the consequent weight w, (in Eq.(5.2)) of the NUFZY system can be regarded
as a singleton membership function in the output domain Y.

(R.5) Although different aggregation methods have resulted in different representations
of the defuzzified outputs of the Mamdani fuzzy model (Eq.(5.10) and Eq.(5.16)),
they are equal to each other. The different representation of the z' (in Eq.(5.10))
and z, (in Eq.(5.16)) can be made equivalent through the indexing function. For
instance, z' can be transformed to z; using the indexing function I(r}, so that z' can
be denoted as z'j, or equivalent to z; ( because of zy,), when I(r) = j. Moreover,
comparing Eq.(5.10) to Eq.(5.16), it can be found that the calculation of defuzzified
output based on the aggregation of R fuzzy sets B'(y) is much easier and straight-
forward than that based on the N, output fuzzy sets Bj(y). It can be seen that the
DOF v, in Eq.(5.10) can be obtained directly by manipulating the inputs, whereas
the implicated DOF f; in Eq.(5.16) needs further processing with the predefined
ownership relations between v, and [;.

From the previous analysis, it has been shown that the output of 2 Mamdani fuzzy model
forms a linear function of z'; under the above assumptions, similar to the T-S fuzzy model.
Therefore, to interpret the zero”-order T-S fuzzy model when directly relating Eq.(5.3.b) to
Eq.(5.10), an inconsistency might arise that makes the direct interpretation of consequent
weight w,, in terms of z, become difficult. For instance, in the Mamdani fuzzy model,
although r, and r; indicate two different fuzzy rules, they refer to the identical consequent
B”'J-(y) (with center z"‘j), for r* = 1; or r,. From the T-S fuzzy rule, one may have two distinct
values of the consequent weight, w,, (= 2 ) # w,, (= %)), implying z"; # z"2;. But, from the
Mamdani fuzzy rule one has the equality z"; = 2. The contradiction means that if N, < R it
is not possible to interpret the T-S fuzzy rule directly by an ordinary Mamdani fuzzy rule.
Next, we will find out how to resolve it through modification of the Mamdani fuzzy rules by
the introduction of the CSL parameter.

5.3 EXTENDED MAMDANI FUZZY RULE AND MODEL

In the ordinary Mamdani type of fuzzy rule, the oulput fuzzy sets in the consequent are
defined by the designers. Though each rule accompanied by a specific fuzzy set reflects the
designer's own experience concerning the problem, it seems that the Mamdani type of fuzzy
rules without modification cannot fit well to the same problem in a different situation.
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Usually, these predefined fuzzy sets are fixed without further adjustment in the application of
ordinary Mamdani fuzzy rules. From the functional approximation point of view, it has been
shown in [30] that the Mamdani fuzzy model containing only one fuzzy set in the consequent
of each rule has restricted ability to reproduce certain functions, even if the antecedent
structure is correct. Also, it has been observed that by introducing extra parameters to each
fuzzy rule, cne can increase the flexibility of the Mamdani fuzzy models by relaxing its
dependency on the definitions of the cutput sets [5] . Yet, if one is allowed to adjust the output
fuzzy set of ordinary Mamdani fuzzy rules via some optimization methods, a conflict might
oceur where the optimized parameters of the ouiput fuzzy set become controversial o the
original knowledge. As an example, the center of the fuzzy set BIG' Bgis(y) may become
smaller than that of 'SMALL'" Bsumay (y) after optimization. Typically, it is assumed that the
essence of the expert’s rule shall be kept consistent for the same problem and, in practical
application only the level of significant contribution of these fuzzy sets might differ from one
situation to another.

Hence, in order to increase the modeling flexibility and overcome the above contlict, in this
section, a new parameter, the consequent significance level p;, is introduced. It describes the
degree of confidence of the contribution of the j** output fuzzy set to the consequent of the r*
fuzzy mle. The idea is that, for cach Mamdani fuzzy rule, the parameters of consequent
significance level py are assigned to all output fuzzy sets B'y(y)'s, j = 1, .., Ny, thus forming
multiple output fuzzy sets existing in the consequent of each fuzzy rule, in contrast to a single
output fuzzy set in the consequent of the ordinary Mamdani fuzzy rule. Therefore, we have an
'extended Mamdani fuzzy rule' (denoted as EM) whose consequent is characterized by
multiple fuzzy sets B"(y)'s. From now on, the output fuzzy set B'(y) will be denoted as Bi(y) as
they are the same for all rules and becanse of the introduction of py.

As in the ordinary Mamdani fuzzy model, all output fuzzy sets B(y)'s in the extended
Mamdani fuzzy model, as determined by the designers in advance, are assumed to remain
invariant; i.e., the shape factor and center location of B;(y) will not be adjusted after they are
assigned. Hence, the consistence of ¢ priori knowledge applied in the fuzzy system can be
retained, and so the occurrence of the previously mentioned conflict can be avoided after
tning. Accordingly, the unknown consequent significance level p; becomes the only
parameter that needs to be tuned. Another possible way to avoid such a conflict is to apply the
interior penalty method (o seek optimal parameter values with predefined constraints to the
shape and location parameters of membership functions, see [36] . However, this requires a
more complex constrained optimization process. Instead of this in the present approach we
will merely focus on tuning the consequent significance level as explained in the next section.

When associating the consequent significance level to the ordinary Mamdani fuzzy rule, an
extended Mamdani type of fuzzy rule can be constructed as below.

K IF X, is A’kl(xl) AND .. X is Arh(xi) AND .. Xui is A'.mi(xm-)

=My
THEN y is B (y) with p,1, and .., y is Bi(y) with pj, and .., y is Buu(y) with pa
(5.18.a)
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or in short

RI(EM): IF {x;is A'u(x))} THEN [y is Bi(y) with p;} (5.18.b)
The parameters py's of the above extended Mamdani type of fuzzy rule are subject to the
following constraints,

C1) pse [0.1]

N,
(C.2) Ep,jzl;Vre Cr={1,2,.,R}

=1

R
(€3) 0<) py<R;Vje Cy ={1,2,.,Ny)

r=]

One can consider that all the output fuzzy sets B(y)'s, j € [1, N,], form a class of N, fuzzy
sets, and the consequent significance level p; indicates the membership value of the r* fuzzy
rule associated with the j'* fuzzy set Bi(y). A larger value of p; means that the r* fuzzy rule is
more certain of being associated with the j* output fuzzy set Bi(y). The second constraint
(C.2) shows the sum of all membership values of any single fuzzy rule (r=1, .. , R) has o be
unity. The third constraint (C.3) indicates that there can be no empty classes and there can be
no classes which contain all R fuzzy rules, complying to the general knowledge used by
human beings. It should be noted that all rules in the rule base formed like Eq.(5.18) are
assumed to have contribution. In case any redundant rule (R*} occurs in the rule base, it shall
be removed from the rule base and its corresponding p values (py; Pz .- Pw) are not taken
into account in the following analysis.

Remark:

(R.6) it is obvious that when pj is taken as a crisp value of either O or 1, i.e. p; € {0,1},
then the extended Mamdani type of fuzzy rule (see Eq.(5.18)) is equivalent to an
ordinary Mamdani fuzzy rule (see Eq.(5.5)). This will be confirmed later with more
details. For example, suppose there are 3 output fuzzy sets Bi(y), Ba(y), and Ba(y),
in the consequent. For the ordinary Mamdani type of fuzzy rule, the ™ fuzzy rule is
merely assigned as 'y is By(y) via the index function I(r) = 2. Then, in the extended
Mamdani fuzzy rule context, this is the same as saying that the consequent of the 1"
EM fuzzy rule is 'y is B.(y) with py ( = 0), and y is By(y) with p, (= 1), and y is
Bs(y) with p,s (= 0).

Since the defuzzified output of Mamdani fuzzy rules is calculated based on the first moment
and aggregated active area of B'(y), we modify the previous definitions to associate them with
the CSL parameters,

(D.13)significant active area of Bj(y), defines the active area of the r'* rule associated with
the j"* output fuzzy set and is denoted as a'j, given by
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T —
A= Py

Using the definition (D.10}, one can further derive the following relations,

Ny Ny, Ny,
a’= A= pya; =3y (_L_usj(y)dy)
=l j=1 =1 i

Ny, N,
=2 P4 15, 099)=[ 3Pk, 00y

=1 =t

Hence, according to definition (D.7), the joint membership function of B(y) of the r* EM
fuzzy rule can be expressed in terms of py(y) associated with py

N,
Hgr ()= Py, ) (5.19)

=1
Remark:

(R.7) As mentioned above, when p; is chosen as either unity or zero, i.e. p; € {0,1},
through the indexing function I(r), there exists a j* € Cp such that

=1 = j*eCy
970 jeCy\j*

therefore, pg'(y) in Eq.(5.19) becomes

N,
Mg ()= X Py M, () =Poje M, () = Hp +(Y)
=1

=

This means that the fuzzy set B'(y) with respect to the 1" fuzzy rule of the extended
Mamdani fuzzy rule is identical to the j** output fuzzy set Bi(y) of the ordinary
Mamdani fuzzy rule according to the definition (D.6). This also shows that the
Mamdani fuzzy rule (as in Eq.(5.5)) can be regarded as a special case of the
extended Mamdani fuzzy rule (as in Eq.(5.18)), provided that the rule significance
level py is chosen as a crisp value (either unity or zero) rather than a fuzzy
membership value in [0,1] and condition (C.2) holds.

Again, as in the case of Eq.(5.6), when the sum-product inference method is used, the
resultant membership function pe(y) of B'(y) is derived by associating it with the rule
significance level p; as
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My ()= s 0 (4 () oM (9)) = Ev(x) Py )
=t (5.20.3)

= 2 v, (%) (Z Pyt )]

i=!
or, by interchanging the first and the second summation notations, we have
Ny R
My )= D 1Y, Py-v,(x)-Hp, O] (5.20b)
=1 =1
Hence, analogous to definition (D.9), we define
(D.14) extended implication DOF, n;, as

R
M= Y. py; v, (%)

r=1

N, Ny, R R
withproperty 3 1,00 =3 (Y, Py v, (xN= Y, % (x)- (an Evr(x)

j=1 =l r=1 r=1 i=1 r=1

Ny
Note, the term, Zprj =1, is from the constraint {C.2). Hence, Eq.(5.20.b) can be rewritten as

=
My 0= 211 (x)-Hg, () (5.21)
J_
The normalization of ; is defined next.

(D.15) nonmalized extended implication DOF, 7, , is given by

R
2P &
)= e =L _qu v, (x) )=zprj V(%)

Ev,(x) pIRRC I Zv,(x) =l

r=1 r=1i r=1

R
with property an(x) Z(ZPU 7,(x)= Zv(x) (Zp,, =y 50 =1

=1 r=1 =]
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Remark:
(R.8) Again, the extended Mamdani fuzzy rule can become equal to the ordinary

Mamdani fuzzy rule when p, is chosen from {0,1}. Le., if there exists a r* € C
such that

1:r=r1*eC;
Pr = 0;re”C"j

then 7y; is equal to B, since

n;(x)= an v(x)_z‘,pr, Py W(X) = Zvr*(") Bi(x)

= *=1 P
r=1 T I 1

Therefore, T; becomes Ej

A= n(x) B(x) B,

ZV,(X) XV,(X)
r=1 r=I

It is obvious that definitions {D.14) and (D.15) of the extended Mamdani fuzzy rule
are analogous to definitions (D.9) and (D.12) of the ordinary Mamdani fuzzy rule.

With Eq.(5.21) and definitions (D.10) and (D.14), the resultant active area, a', is derived as

a=[ o)y j(Zn (%)- g, ())y = 3 ner (J, us, 090

1=l

N,
-En(x) (] un, )= > ni-a; (5:222)

i=l i=1

= 2[(2%- v, (%)) 4]

=l r=1

The first moment of B'(y}, m', is then
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Nb
m'=2nj(x)-aj-zj
i=l

N, & (5.23.a)
= Y [Y, e vi (X)) 22
j=L =]

Alternatively, according to Eq.(5.20.a) and definitions (D.10), a’ and m’ can be written as
R N,
a =IY113- {(yMy =L (Z_: [v,(x).(z:‘prj My, ()] dy
R N, - "
- rzz}[v,(x)- (J_Z,prj .(Lj ks, () dy))] (5.225)

R Ny,
=3 %0 (Y. py-a))]
r=] j=1

and

R Ny
m=Y [v,(x) (Op,22)] (5.23.b)

r=1 j=1

Hence, the defuzzified output of the extended Mamdani fuzzy rules, denoted as ygwmy , can be
ohtained from Eq.(5.22) and Eq.(5.23), based on N, output fuzzy sets,

N,
DX AORIEY

m =

Y(‘E,M)(x)=?= . ]Iqb (5.24.a)
D njx)-a
=t

or, based on R fuzzy rules,
R Ny,

D0 (Ypgaez)]
Y(EM)(X)=“r:_,'= =l = (5.24.b)

R Ny
N v, (Y ps-ap]
=1 j=1
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Again, further simplification can be done according to assumption (A.3); i.e., the area of each
oulpm fuz.zy set is identical, a, = .. = & = .. = ay. Using the property of (D.14),

an Z v, »and (D.15), Eq.(5.24.a) then becomes

r=|

N, N,
PILTESRII I LRI,

» )

y(EM}(x)= F;b _J lR Hz( n (x
S Ywxm H Zvr(x) (5.25.2)
=t =1 r=1

Ny Ny, R
=2ﬁ'j(x)-zj (0r=z{(2prj'\7,(x))'zj])
=l o=l

=
Remark:

(R.9) When the rule significance level py is chosen as {0,1}, W; = Ej , from the previous

remark (R.8) means that the defuzzified output of the extended Mamdani fuzzy
rules (Eq.(5.25.3)) is identical to that of the ordinary Mamdani fuzzy rules
(Eq.(5.16.b)), y&m; = ¥y - This shows that, under the assumption (A.3),a, = .. =g
=.. = anp, the ordinary Mamdani fuzzy rule is, again, a special case of the extended
Mamdani fuzzy rule.

Ny,
Similarly, with the same assumption of a; = .. = @ =.. = any, and constraint (C.2), Zpﬂ =1,
j=1

Eq.(5.24.b) becomes

):,{v (x)- (sz 2] E[v(x) (qu 2]

r-l

Y(EM}(X)— =

R
2[" x)- (qu)] pIRALY:
r=1 r=1
= v (x)
=Y [ (Zprj-zj)] (5.25.b)
r=1 z vr(x) J=1

r=]

—Z[vr(x) (qu ;)] (orFE[(Zpr, V(x)-7;])

r=l =l r=1
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5.4 INTERPRETATION OF THE IDENTIFIED T-S FUZZY
RULES BY EM FUZZY RULES

From the previous section, one can see that the defuzzified output of the extended Mamdani
fuzzy model can be represented either by Eq.(5.25.a), or by Eq.(5.25.b), where the two
summation terms indexed by r and j are interchangeabie without affecting the results. This
allows us to make an easy comparison to that of the T-S fuzzy model, since the defuzzified
output of both models are based on R fuzzy rules. In this section, we will consider how to link
the T-S fuzzy rule and the extended Mamdani fuzzy mle, and how to solve for the consequent
significance level parameters.

5.4.1 To link the T-S fuzzy rule and the extended
Mamdani fuzzy rule

As mentioned in remark (R.4), the property of dual representation of the fuzzy system may
lead to a linkage of the T-S fuzzy rule to the extended Mamdani fuzzy rules. I.e., the resultant
output of the Mamdani fuzzy model yev, Eq.(5.25b), is comparative to the output of the
zero-order T-$ fuzzy model yrs,, Eq.(5.3.b), if the following equality relation holds.

Ny,
W, = qu—-zj vr=1,.,R (5.26)
=1

Eq.(5.26) reveals that the consequent of the zero™-order T-S fuzzy rule, w, can be
transformed into a combination of some fuzzy sets Bi(y)'s of the extended Mamdani fuzzy
rule, that are centered at z;'s and are associated with py's. If this transformation is achievable,
then the consequent part of the zero™-order T-S fuzzy rule, which is represented by rcal
numbers, can be interpreted linguistically in the same way as the extended Mamdani fuzzy
model does with the extended Mamdani type of fuzzy rule, Eq.(5.18). Hence, knowledge
interpretation of the zero™-order T-8 fuzzy rule in a linguistic way becomes feasible.

5.4.2 To solve the parameters w and p

It can be verified from Eq.(5.26) that the value of w, should be bounded on some reasonable
domain of Y that may be characterized by the minimal (z,;,,) and maximal (z,..) values in
order to obtain a meaningful transformation. Practically, these bounded domains can be
determined from the predefined zj's values either by the users or from the observation data
available. Hence, to solve the parameter values of w, and p;, a method based on constrained
optimal searching is proposed and described below.
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First, the users have to define the possible cutput domain of Y bounded on [Zmin, Zmax] and the
number of output fuzzy sets Bi(y)'s, Ny, as well as their corresponding centers z;'s. In practice,
this is not a difficult task, since they can be estimated either from experimental data, or from
the expert's experience. Second, the optimal values of w,'s, denoted by a vector w™ = [w;" w;
W, .. wg 1", are searched to minimize the squared error between the real system output and
the model output,

np N, 2
w = arg min Z[Yd(t)wzi(x(t)}“f,} (5.27)

Ve ey 3 r=l

where, £, = [Zuin, Zua), the bounded output domain; t = 1, .., np, the number of available data
sct; and yy, the desired value of the system. So, this means that in contrast to the ordinary T-S
identification, its parameters w should be constrained in order to make the two models
comparable,

Once all w,'s are obtained from Eq.(5.27}, then the optimal values of py's, @, = [pn Pr2 .- Py -

Pl T forr=1,. ,R, can be found by minimizing an objective function deduced from
Eq.(5.26),

2
Nb
p, =arg min {w:—zp,j.zi forr=1,..,R (5.28)

=

with all solutions are subject to constraints (C.1) - (C.3). Hence, when we have solved the
constrained consequent weight w™ of a zero™-order T-8 fuzzy model using Eq.(5.27), we can
further search the values of the consequent significance level that satisfy constraints (C.1) -
(C.3) by Eq.(5.28). Making use of these consequent significance level parameters, the zero™-
order T-S fuzzy model is thus transferred to the extended Mamdani fuzzy model and can be
interpreted accordingly.

5.5 EXAMPLE

This section presents a synthetic example to illustrate how to interpret the identified T-$ fuzzy
modet in the sense of the extended Mamdani fuzzy model. The example is a nonlinear single-
input-single-output system, described by

y= 1-¢2 (529)

First we generate 41 sets of data pairs [x(t) y,(t)] for training the fuzzy model, where t runs
from 1 to 41 and input x is randomly picked from the interval [-1, 1]. The desired value y,
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generated according to Eq.(5.29) is contaminated by some noise. Five triangular membership
functions with equal center distance are set for the input % and denoted by linguistic terms
'NM', 'NS', 'Z0', 'PS', and 'PM’, that stand for negative medium, negative small, zero, positive
small, and positive medium, respectively (see Figure 5.1.(a)). Accordingly these five
membership functions construct an initial fuzzy rule base with five rules,

Three fuzzy sets [Bual(¥) Bredim(Y) Bui(y)] are defined based on the training data. These
correspond to linguistic terms 'S', ‘M, and 'B' and centers at z (= [z; z» z]" = [0.0278 0.5217
1.01561%), respectively. Next, a set of bounded consequent weight w of the zero”-order T-$
fuzzy model is obtained by Eq.(5.27). They are identified as w' = [0.0278 0.7852 1.0156
0.8216 0.0454]". All weights are located in the observed output domain from the training
data [min(yy), max(ys)]. So, the five fuzzy rules of the identified zero™-order T-S fuzzy model
are read as

R'rs;  IFxisNM THEN y=w, (=0.0278)
R'1s; IFxisNS THEN y=w, (=0.7852)
Rasy IFxisZO THEN y=w; (=1.0156)
R'7s;  IFxisPS THEN v=w, (=0.8216)
Rus:  IFxisPM THEN y=ws (=0.0454)

Second, the vatues of p,'s are obtained according to Eq.(5.28), subject o the constraints (C.1)
- (C.3), giving the following values.

Z1(0.0278) Z2(0.5217) Z3(1.0156)

(rule1)  1.0000 0.0000 0.0000 (w," = 0.0278)
(rule2)  0.0028 0.4609 0.5363 (ws =0.7852)
(rule 3)  0.0000 0.0000 1.0000 (wy = 1.0156)
(rule4)  0.0983 0.1960 0.7057 (W, =0.8216)
(rule 5)  0.9646 0.0353 0.0001 (ws = 0.0454)

Hence, as an example, the second zero”-order T-S fuzzy rule can be transformed to an
extended Mamdani fuzzy rule to read as

IFxisNS THEN {yisS with pn =0,0028, and
yisM with p;; = 0.4609, and
yis B with py; = 0.5363}

The above results show that it is possible to transform the zero®-order T-S fuzzy model
(Eq.(5.3.b)) to the extended Mamdani fuzzy model (Eq.(5.18)). Figure5.1.(b) shows the result
of the extended Mamdani fuzzy model, ygu.
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An important remark should be made with respect to the transformation. The consequent
weight parameters of the T-S fuzzy model are optimal, i.c., they minimize the error between
data and model in the least squares sense. This means that the EM fuzzy model is always
somewhat less accurate. In addition, if the weights w of the unmodified T-S fuzzy model are
not contained in the interval [z, Zy.]. direct comparison is possible only by constraining the
T-S parameters according to Eq.(5.27). This again reduces the mapping accuracy. So, one
could say that the gain of transparency by transforming the T-S fuzzy model into the extended
Mamdani form goes at the expense of some loss in model accuracy.
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Figure 5.1: (a) membership function of input x. (b} The desired output y,
(circle) and extended Mamdani fuzzy model output ygw (solid
ling).
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5.6 CONCLUSION AND DISCUSSION

In this chapter we have analyzed two different types of fuzzy rules, namely the Takagi-Sugeno
type of fuzzy rule and the Mamdani type of fuzzy rule. From the interpretation point of view,
the T-S fuzzy model with T-S fuzzy rules are less interpretable than the fuzzy model with
ordinary Mamdani fuzzy rules. Although it is casy to understand the fuzzy rules of the
Mamdani fuzzy model, the modeling flexibility is limited due to the single output fuzzy set in
the rule consequent. In order to relax the dependency on the definition of the output fuzzy set
of the Mamdani fuzzy model, we introduce a new parameter, namely the consequent
significance level, that is associated to the consequent part of each Mamdani type of fuzzy
rule. As a result, an extended Mamdani fuzzy rule base can be established, which is
characterized by multiple output fuzzy sets in its consequent.

It is shown that the ordinary Mamdani fuzzy rule is a special class of the extended Mamdani
fuzzy rule with a consequent significance level parameter equals io either unity or zero.
Furthermore, we have analyzed the possibility of deducing linguistic interpretation from an
identified T-S fuzzy model. The result shows that the zero™-order T-S fuzzy rule base can be
transformed to be equivalent to an extended Mamdani fuzzy rule base under some certain not
too restrictive conditions. Therefore, a zero™-order T-S fuzzy rule can be interpreted in the
sam¢ way as an extended Mamdani fuzzy rule via the consequent significance level
parameters. As consequent significant level parameters of the extended Mamdani fuzzy model
are subject to some constraints, it takes more effort to identify these parameters than the
consequent weight parameters of the zero™-order T-S fuzzy model. However, what one can
gain is that the linguistic interpretation of the zero®-order T-$ fuzzy rules becomes possible,
yet, perhaps at the expense of some [oss in model accuracy. It should be noted, however, that
it is not necessary try to get linguistic interpretation from the T-S fuzzy model in case the
model is merely used for function approximation.

It is also worthwhile to address a possible problem which may arise in the above
transformation. Since the transformation of w to the linear combination of p and z is a one 0
many mapping, the uniqueness of the inverse relation is not always guarantced by just
complying to constraints (C.1) - (C.3). Apart from the uniqueness problem, how one can have
a reasonable interpretation of these p values is another concern. Consider the following two
situations, when

(1) all elements of the obtained p, vector, which is formed by [p, .. pg - p,Nl,]T with respect to
the " fuzzy rule, have the same mean values, i.e., 1/N,;

or

(2) any two non-consecutive elements of vector p, have identical values of p;, and pg,, where
j1 and j, indicate two indices of the corresponding fuzzy sets not consecutive to each other;
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then the interpretation of these p values becomes equivocal. Hence, further constraints shall
be taken into account to avoid the above problematic interpretation. One of the possible
solutions is that an extra constraint shall be satistied when the optimization is carried out.

(C.4) elements of p, (= [P - Py p,Nb]T) are convex in the sequence. This means that if
the relation holds for j, < j; < js and jy, ja, js € {1, 2,.., Ny }, then p > min (pyy,
Pea)-

Complying to this constraint implies that the values of sequential elements in the row vector
p- should be either monotonously increasing or decreasing, or formed as a bell-shaped
distribution. Another way to get reasonable values of p can be found in [5] ., where B-spline
functions with different orders are suggested to represent the membership functions of output
variables, because B-spline functions naturally fulfill the requirements of assumptions {A.1) -
(A.3) and consiraints (C.1) - (C.3). (Therefore, this will result in a faster and easier estimation
of the corresponding py; values, provided that the identified w; is bounded in the predefined
domain of these B-spline functions.) In constrast, the present analysis shows that any possible
general function can be used as the membership functions of the outputs; as long as they
satisfy the requirements of assumptions (A.1) - {A.3) and constraints (C.1) - (C.4). The B-
spline functions can therefore be regarded as a special of those general functions.



6. INCORPORATING

A PRIORI KNOWLEDGE
INTO T-S FUZZY
MODELING

Love is patient, love is kind. It does not envy, it does not boast, it is not
proud. It is not rude, it is not self-seeking, it is not easily angered, it
keeps no record of wrongs. Love does not delight in evil but rejoices with
the truth, It always protects, always trusts, always hopes, always
perseveres. Love never fails.

- 1 Corinthians 13, Bible
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6.1 INTRODUCTION

In this chapter, we will consider how to incorporate available a priori knowledge from
different sources into the fuzzy modeling problem.

Following the terminology from computer science we can distinguish two approaches, which
are 'Case-Based Reasoning’ (CBR) and 'Rule-Based Reasoning' (RBR). These approaches use
different knowledge sources to construct a 'Case-Based Model' (CBM) or a Rule-Based
Model' (RBM), respectively. It turns out that 'Case’ refers to the identification from the
observation of the input/output relation of a system, i.e., a single piece of knowledge based on
direct observation. On the other hand, Rule' implies the collection of the above mentioned
observations to form a set of rules that describe the fundamental behavior of a system in the
observed domain. These rules can be obtained by some generalization processes by human
beings or by maching leaming. The so-called & priori knowledge refers to a collection of rules
codified by experts over the years and converted as experience. The very use of a priori
knowledge in modeling results in a hybrid model in the sense that it combines both case-based
and rule-based information. Generally, the correct use of @ priori knowledge in modeling will
lead to a better model that can stand up against a deficient or incomplete data set. Hence, in
addition to the improvement of model performance, our primary motivation of merging a
priori knowledge and data-driven modeling is to see whether the extrapolation ability can be
improved in such a hybrid approach. Thus, the goal of this chapter is to combine the CBM
and RBM into a uniform representation to improve efficiency and accuracy of the hybrid
model [19] , as well as to achieve extrapolation ability.

Since a priori kmowledge is a compact representation of accumulated experience it can ofien
be presented in the following form : 'IF some conditions are met THEN the corresponding
reactions reply’. The '[F .. THEN ..' statement, that is characterized more by qualitative than
by quantitative information, is the most suitable candidate in fuzzy modeling, as qualitative
knowledge with the same foundation as the fuzzy rule base can be incorporated. Although
many successful applications of fuzzy logic control have been reported in the past decade,
there are rare studies on fuzzy modeling which address how to utilize the qualitative
information from the literature in a systematic way. The difficulty is due to the fact that the
use of qualitative information in fuzzy modeling is very problem-dependent and uwsually ad
hoc. Hence, our present attempt focuses on how to incorporate @ priori qualitative information
into data-driven fuzzy modeling; in particular, the model that is based on the zero™-order
Takagi-Sugeno fuzzy model.

Identification of a T-S fuzzy model is classified in [61] as structure identification and
parameter identification. In the issue of structure identification, one has t find the input
variables, i.e., how to select the input candidates and to determine the suitable input variables.
Onc also has to construct the input-output relation, i.c., determine the fuzzy rules and
partition of input space. The structure identification problem is deemed as the most difficult
since it takes much more effort than parameter identification. Once the structure is identified,
the identification of parameters can easily be attained. In what follows, we will only pay
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attention to the zero™-order T-S fuzzy model. It is assumed that the input candidates and the
suitable input variables are determined based on some a priori knowledge. Farthermore, the
construction of the fuzzy rules is determined from some heuristics. Beyond the piece of a
priori knowledge used for the formulation of the structure of the T-S fuzzy model, other types
of qualitative knowledge can be incorporated into the modeling. It tums out that the
identification problem then becomes a parameter estimation problem. Before we move to the
next section, it is essential to assume that, in case conflicts arise between the observation data
and the a priori knowledge in the region of interpolation, precedence will always be given o
the observation data. Moreover, one has to rely on the a priori knowledge used in the
extrapolation region where the observation data are lacking.

The chapter is organized as follows. Section 6.2 will introduce the optimization approach on
which the incorporation of a priori knowledge into a T-S fuzzy model is based. Moreover, the
formulation of the performance criterion for optimization and the estimation procedure of the
parameters will be addressed. Section 6.3 offers a simple example to demonstrate the
proposed optimization approach. Fairly convincing results are given in section 6.4. Finally,
conclusions are made in section 6.5.

6.2 OPTIMIZATION BASED APPROACH

We have seen that the zero™-order T-S model is similar to a neural network performing
nonlinear mapping of input space to output space, like the NUFZY model. It is noticed that in
the T-S fuzzy model less a priori kmowledge can be incorporated than in Mamdani fuzzy
model. If any available g priori knowledge is imposed to the T-S fuzzy modeling, the resultant
model will be regulated to comply with the required properties described by the imposed a
priori knowledge. Hence, the idea of incorporating qualitative information into the T-S fuzzy
model is to regard the different pieces of a priori qualitative information as soft constraints or
penalty terms that are imposed to a performance criterion, which is to be minimized. This
idea was inspired by [73] who discussed how to use different sources of kmowledge to
construct the model and optimization problem, followed by an unifying framework proposed
by [34] as an optimization formulation of the modeling problem.

In this section, we will refer to [34] . The author uses an optimization approach to incorporate
qualitative information into the T-S fuzzy model. For simpticity, in this work we assume the
structure of a zero”-order T-S fuzzy model is determined and fuzzy rules of this T-S fuzzy
model will not change. For identification purposes, a batch of np input-output observations for
training and nv observations for validation are available. Furthermore, we also have available
a default model that contains possibly imprecise qualitative information. In particular, we are
interested in a default model described by a Mamdani fuzzy model with a set of Mamdani type
of fuzzy rules. An optimization problem can then be formed based on the empirical data and
the @ priori qualitative information, allowing us to seck the optimal consequent weight
parameters of the T-S fuzzy model in the parameter space. The performance criterion for
optimization will be penalized by the following conditions,
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(1) Mismatch between the model prediction of the T-8 fuzzy model and the observation data.
(2) Non-smoothness of the T-S fuzzy model”.

(3) Violation of the soft constraints.

(4) Mismatch between T-S fuzzy model and the default model.

For the purpose of prediction, it is noticed that, in general, a performance criterion merely
based on condition (1) is not sufficient to achieve model performance beyond the empirical
data. A modified performance criterion based on condition (1) and (2) has been studied either
as an effect of regularizalion* by the neural networks community [17] [18] [52] [53] [54] , or
as a ridge regression problem by statisticians [14] [47] . It has been shown that the
regularization method allows a smooth interpretation of the model. In this study the zero™-
order regularization is adopted because of its simplicity.

iIf a Mamdani fuzzy model is available, one can easily get some qualitative description from
its fuzzy rule base to describe the system behavior. Some of these qualitative descriptions can
be regarded as soft constraints imposed on the T-S fuzzy model for identifying the system.
They might include steady-state description of a dynamic system, or specifically known input-
output relations around the operation points gathered from the accumulated experience of the
users. Hence, condition (3) accounts for the penalty by violating these soft constraints.
Condition (4) can be seen as a measure of discrepancy between the T-S fuzzy model and an
existing default model, This default model may contain partially imprecise information based
on some a priori knowledge. For instance, a Mamdani type of fuzzy model provides a basic
maodel that can be used in regions where no observation data are available. When the default
model is taken into account for modeling, the operation range of such a model is expected to
be as large as possible to cover all operating conditions of the identified system. Next, we will
define the performance criterion used for this optimization approach, which may include all
the above conditions as well as some inequality constraints (hard constraints) that regulate the
range of the consequent weight parameter values of the zero*-order T-S model.

“ The real system under study is, in fact, assumed to be smooth. The smoothness can be defined as the
existence and continuity of some sufficiently high-order derivatives of the system [34] .
Regularization is originally used to avoid the occurrence of an ill-condition in an information matrix
of a model. The method used here, referred to as zero™-order regularization or equivalently, ridge
regression, is to add a small positive quantity to the diagonal of the ill-conditioned matrix, so that the
maltrix remains positive definite, and the determinant of the matrix increases or the clemenis of the
inverse decrease. In other words, the added quantity introduces 2 bias term to its mean-squared-error
evaluation, which favers solutions involving small absolute parameter values. As a result the output
of a function becomes less sensitive to the varation of parameters, or is smooth. Other methods that
are perhaps more effective in achieving the smoothness property, such as second-order regulariztion
based on curvature, are more complicated.

t
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6.2.1 Formulation of the performance criterion

As stated earlier, we assume that we have established the structure of a MISO zero”-order T-S
fuzzy model containing R fuzzy rules. Following from previous chapters, the predicted output
of this specifically defined T-S fuzzy model is given by the lincar equation

Frs(x(1)) = V (x(1)) - w (6.1)

where input x(f)(or, xeR™) and normalized firing strengthV (x(t)) (or, V (x)eR'"™®) are
indexed by the sample instance, t, for t = 1, .. , np. The consequent weight vector of this T-5
fuzzy model is denoted as w (e R¥).

In addition, assume that there is a default model related to the system under study described
by a Mamdani fuzzy model. Given na sets of input x,(k)(or, x.& R") chosen from the possible
operalion range, one can obtain the corresponding output y,(k) from this default Mamdani
fuzzy model, where index k = 1, .. , na. Similarly, with this chosen input x, on hand, we can
also calculate the corresponding normalized firing strength matrix ¥, (x,) (or, V, € R"®) and
its prediction output, V, w, by the T-S fuzzy model, so that the discrepancy between the T-S
fuzzy model and the default Mamdani fuzzy model can be evaluated. Note, the chosen input x,
is different from the real observed input x. Since x, is artificially chosen and generated for the
default model, it can be regarded as excitation signals that cover the most possible operation
range of the system; especially, in regions where the observation data are not available.

Some soft constraints describing specific characteristics of the system may be available, which
come from the real additional information, like steady state points; time averages; long-term
off-sets and trends, eic. Hence, a set of ns rules is likely to be found.

R : IF xis A%x,) THEN y is B(y,)

where rule index q = 1, .., ns. Fuzzy set A®(x,) characterizes the specific input state x,, and
Bq(y,) represents the consequent output fuzzy set characterizing the specific output y,. Both
fuzzy sets correspond to the ™ specific fuzzy rule. Specifically, we can read the above special
rules as following,

R@: IF x is close to state 'x, THEN y is close to system response 'y, (6.2)

where x, represents some known operating points or steady states of a dynamic system
provided it exists, and y; is its corresponding output or system response to the specific input
X,;. Associating these ns specific fuzzy rules to constrain the T-S fuzzy model, one can expect
that it shall possess the expected behaviors complying to the imposed a priori knowledge.
With this limited number of input x,(e R™) one can calculate the corresponding normalized
firing strength matrix V., (x,) (or, V,€R"™®) by the T-S fuzzy model and its prediction output,
¥.w. Again, the discrepancy, representing the violation of soft constraints, between the T-S
fuzzy model and the specific system response, can be evaluated.
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There are different forms in which knowledge from various sources can be incorporated into a
unified optimization problem. For demonsiration, we will integrate all the above qualitative
information together with the requirement of smoothness in a performance criterion, J,
defined by

1 np _ 1 R
IwAB.o) == [ysO-V.OWF +—AY W
np t=1 np r=1
. (6.3.2)
1 13 _ 2 1 na _ 2
+P|— -v, (x w]® [+o| — ky—v (x,(k)w
B— Z,[y,,(q) (X, @)W] ] [m é[ya( )=V (x, ()W)
where row vectors ¥, ¥, and v, (all eR®) represent the t*, ¢ and K row of normalized
firing strength matrices V (x), V,(x), and V, (x,), respectively. yq(t), the desired output of the
t* training set, y,(q), the specific output of the q* constrained fuzzy rule, and y,(k), the k*
output of the default Mamdani fuzzy model, correspond to the inputs of x(t), x,(q), and x,(k),
respectively. w, is the consequent weight of the r* T-S fuzzy rule among the R fuzzy rules. np,
ns and na are the corresponding number of input patterns. Penalty weighting parameters A, B,
and o account for the above penalty conditions (2), (3) and (4), respectively. In a compact
vector-matrix format, can be expressed as
Jw; A, B, 0) = [¥a - V (w1 [ya - V (X)W)/np + A w'w /np
+ BIY. - Vo GIWT'TY, - Vo GWI/nS + ollya - Va (dw]'lya - Va (dwhna (63)
where yqy, y., and y, are R” R®, R™, respectively; information matrices of the T-$ fuzzy
model VeR™®, V,eR™®¥, and V,eR™™ are normalized firing strength matrices using
input x, x, and x, as augments. Eq.(6.3.b) can be further expanded by a quadratic form as
below™
Jow, L B, o0 = 1/2w 2V V/np + 2 Al /np + 2BV, Vi/ns+ 20V, Va/na]w
-2(V'ya/np+PBV,'y,/ns + &V, y./nal"w
+[¥a'Va/Np+ P ¥, ¥s /NS + ¢ ¥4 yq / na) 6.3.0)

If we define ratios of np to ns and np to na , we have
{=np/ns (6.4.2)

W=np/na (6.4.b)

* The purpose of this quadratic formulation is to be in line with the quadratic programming (gp) in
Matlab®, which can be used to find the minimum of the performance criterion, J, provided the values
of A, B, and « are given.
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Then, for any given values of penalty weighting parameters, A, B. and ¢, the optimal
consequent weight parameter of w, w s, can be easily solved by the least squares method,

Wis= ALV ya+ {BV. Y+ MoV, ) (6.5)

where the covariance matrix Ae R®® containing penalty weighting parameters A, B, and o, is
defined by

A=V V+AL+{BV. V, +1iaV, V, (6.6)

Note that the obtained w',s by the least squares estimation is not subject (o any constraint of
w. In cases when these w values are expected to be located in some specific interval [Zpnin, Zmax]
(for instance in chapter 3, if we want 10 have a meaningful interpretation of these w values in
the output domain; also see [71] ), then we can use the quadratic programming (for example,
the subroutine of qp from Matlab®) to find the optimal w values. These values are obtained by
minimizing the following quadratic criterion and are subject to inequality constraints

W op = {W | minimize J(w) = 1/2 w'Qw + ¢'w +Y, and Bw < b} 6.7)
where Q=2V 'V /np+2Al/np+2p¥. V,/ns+20aV, V,/na (eR™)
c=-2(VTyd/np+ﬁV,Ty,/ns+aVnTyalna) (eR")
Yo=Yd'Va/np+By.y./ns+ oy,'y,/na (eR)
B=(-L:k] (€R™%)
b = [Zuin 3 Zne] (eR™)

Matrizx B and vector b are used to restrict the searching of optimal w, in order to ensure that
the searched optimal values of w belong to the desired interval [Zuin, Zmsx].

6.2.2 Estimation of the penalty weighting parameters

It is noted that the w values obtained from either Eq.{6.5) or Eq.(6.7) above, are optimal in
the least square sense, presuming the penalty weighting parameters p = [A o) are given.
However, these penalty weighting parameters are in general unknown and need o be
estimated. It is noted that the model complexity, which is partially influenced by penalty
weighting parameters p, will depend on the set of available empirical data (training data) on
which base the T-5 fuzzy model is identifiecd. As such, one may ry to make use of the
available empirical data to estimate penalty weighting parameters in order to get the best
performance of the model. It has also been studied and suggested by [34] that the model
performance indeed depends on penalty weighting parameters p. For instance, too small
values of A, B, and o will likely vield over-fitting, and lead to poor performance when
extrapolating. In contrast, too large values of A, B, and o give too little emphasis on the
empirical data; as a result, the model may become 100 biased under the operation conditions
where the a priori knowledge is incorrect or incomplete. In this subsection, we attempt to find
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the optimal penalty weighting parameters p to minimize the performance criterion, J (in
Eq.(6.3)). In the ordinary least squares problem (i.e., there are no penalty weighting terms in
Jor,p=[AP o = [0 0 0], the optimal value of w is directly estimated from the available
training data. Yet, due to the extra introduction of penaity terms in the present situation and
with no further information available (no extra training data) to the identification problem, it
is natural to take the best of the current available training data in order to estimate the optimal
values of w associated to the presence of penalty terms. This problem implicitly relates to the
selection of model structure. Various model structure selection heuristics from statistics can be
used, such as the coefficient of determination, R*", or, residual mean square, s*!, or several
cross-validation based criteria (e.g., see [47] ), etc. In the following development, we refer to
[49] , who uses a re-estimation procedure to attain the optimal values of the penalty weighting
parameter A which is based on one of the cross-validation criteria®, generalized cross-
validation (GCV, denoted as o’gcv below) [20] [24] [25] . In order o explicitly express the
GCV criterion as a function of penalty weighting parameters p and model parameters w, the
o2 gev is formulated as

2 T

2 np
Sy ——("(V A 1VT))2( %) 6.8)

where matrix A, as defined in Eq.(6.6), is a covariance matrix which involves the given
parameters of p (=[A B o}"). These given parameters of p are used to estimate the optimal w
according to Eq.(6.5). As soon as the optimal w' is obtained based on given p, the prediction
error, ee R ', can thus be calculated by

€ =¥a- V'W‘(l,ﬂ @)

l_T

=(lp- VA V)3 - (B VAV, y,-na VA ' V. 'y, 6.9)

Hence, taking the derivative of 6°ccy with respect to penalty weighting parameters p, we have

Gy A or ele np [9¢e"e) |,
{ L ] (u(VA “T)P "('[ }v)( p) VAV | 99 |

¢=A,Pp,orccandp=[APa] (6.10)

* R2is defined as the ratio of regression sum of square to the total sum of square, i.e. SSwg/SSuu

t §? is also called estimate of error variance, defined as the residual sum of square divided by the
residual degree of freedom, i.e., SSys/df(residual).

* Other relevant cross-validation based criteria are leave-one-out (LOQO) cross-validation (or called
PRESS residuals in statistics), unbiased estimate of variance (UEV), final prediction error (FPE)
criterion (based on Akaike's information criterion AIC, as similar to Mallow's Cp in statistics), and
Schwarz's Bayesian information criterion (BIC). We will use the generalized cross-validation (GCV)
criterion to sclect the model structure because it is the most convenient method, see [49] .
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The unknown part in Eq.(6.10) consists of the derivatives of A™ and e'e with respect to p.
They are derived in Appendix C. Here we merely list the results:

aa™] [aaiaa™ iaaT
[ap}‘ ar | op | o

—_AEIA‘J +A52 - A~1A6~1 _Aal(Au _AOA-lAD)on—s 6.11)
= _,_CAEI(AO _AOA—IAU)Z F_IVSTVSF-] AO-I
“NA; Ay — A ATA P FI VIV FAY

L

where

Ag=V 'V + Al (6.12.2)
F ={BV, V. +n oV, ¥, (6.12.b)
A =A +F (6.12.c)

Note that in Eq.(6.11) we need to calculate the inverse of matrices A, Ay, and F. In general,
matrices A and A, are not singular, indicating that it is possible to take their inverses.
However, in some situations, F can be singular such that its inverse becomes problematic. To
avoid this singular problem, we modify Eq.(6.12) as follows, where we decompose the A term
into two parts, (A - Az} and Ap, and distribute them into Eq.(6.12.a) and Eq.(6.12.b),
respectively. This does not change the property of A in Eq.(6.12.c), but guarantees matrix F
being non-singular due to the small constant Ay added in its diagonals. In this study we set the
small constant value, Ag, as 107, As a result, the modified Eq.(6.12.a) and Eq.(6.12.b) become

Ao= V'V + O-hple (6.12.d)
F =(BV. V. +10V. Vat ek 6.12.)

For the derivative of e'e with respect to p, we have

de’e) _ a(eTe) | a(e e i i 3(e” e)
ap dAr | 2p ! Do

= | =1
—yd{(- [ ;‘ }V‘)TK KT(ﬁag‘p }VT)}yd

-1
2yd{(-4[“ vT). (Kbys+KJa)+KT([ ])ys+KT([aK })ya}

T
K, K JK, K
+2{ys[ 3o ] KbYs+ysT(|: apb] K, KT[ ™ ])yﬁyl{a—;] Paya}

(6.13)
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where
K =L,- VA"V’ (6.14.2)
K,={pVA'V,” (6.14.b)
K.=noaVA'V,' (6.14.c)
oK,
I . 0
[a;;,,]: a;;b =CﬂV[a;,Ap VTl (VAT (6.14.d)
K, 0
L aa A
K.
oA o 0
[maa"a].-. __,_3;% =noV ___a; V' o (6.14.¢)
"ok P v
| o |

In [49] the re-estimation procedure is achieved by letting the derivative of 6%gcv with respect
to p (Eq.(6.10)) be zero, so that the estimate of p is expressed as a function of these
parameters themselves explicitly and implicitly through the covariance matrix A. Given the
initial value of penalty weighting parameter, py, the generalized cross-validation criterion,
Eq.(6.8), can be calculated and leads to a new estimate of p. This new estimate is re-fed to
calculate the generalized cross-validation criterion which results in another new estimate of p.
This procedure is repeated until the estimated values of p converge and finally an optimal
estimate of p is obtained. Yet, due to the extra parts in { and 7 terms, it is not casy to present
the above mentioned explicit functions in our case. As an alternative, we use the routine
constr’ of Matlab® for linear searching, which makes use of Eq.(6.8) and its derivatives
[00” ey /0p] to search the optimal p. The resultant parameters A, B, and o, will be greater or
equal to zeros'. During the search procedure, we recalculate the optimal w based on the
current searched penalty weighting parameters, and then re-estimate the current prediction
error Eq.(6.9), which appears in Eq.(6.8), The re-estimation procedure is depicted in
Figure 6.1.

*

The search procedure of optimal penalty weighting parameters suggested by [34] is frminu. Since
fminu searches the optimal parameter that minimizes the cost function without any constraints to
these parameters, the results will sometimes appear to be negative, which violate the definition of
penalty weighting. Hence, we use constr to replace fminn by constraining all the parameters to be
greater ar equal to zero, but without an upper limit.

! Also note from the modified Eq.(6.12.d), as Ar is set as 10°® we'll further set A to be greater than 10°
to ensure a non-singular matrix Aq.
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6.3 EXAMPLE

We test this optimization approach to a synthetic nonlinear single-input-single-output
example,

y=1-4x"+x4 (6.15)

First we define a possible operation range of the system for input x as {-2.5 2.5], a training
range of x as [-0.9 1.1], and a validation range of x as [-2 2]. We assume some a priori
qualitative information is available within the operation range [-2.5 2.5]. Furthermore,
quantitative data are available over the training range. In order to test the exirapolation
properties of the hybrid optimization approach, we let the validation range of input x be much
broader than the training range.

A T-§ fuzzy model is initialized by seven Gaussian membership functions to its input variable
x. The widths of these Gaussian membership functions are set to be 0.5 and their centers are
equally spaced in the operation range [-2.5 2.5] in order to be in line with the default
Mamdani model (to be introduced later). The seven linguistic terms 'NB', 'NM', 'NS', 20",
‘PS', 'PM’, and 'PB’, stand for negative big, negative medium, negative small, zero, positive
small, positive medium, and positive big, respectively; see Figure 6.2.(a). Accordingly, seven
fuzzy rules are constructed for the T-S fuzzy model. The training data contain 38 pairs of
input-output observations (np = 38), where input x is randomly selected from the above
training range [-0.9 1.1] and the corresponding real system output is generated from
Eq.(6.15) and to which some noise with mean -0.0002 and variance 0.0053 is added. The
validation of the identified T-S fuzzy model will be tested by 81 inputs of x independent from
the training data (nv = 81), with intervals of 0.05 in the validation range [-2 2]. The real
system output is depicted in Figure 6.2.(d), where a solid line represents the system output
defined on the validation range and the curve marked by circles the training range.

The qualitative information is represented by a Mamdani fuzzy model and is defined on the
operation range [-2.5 2.5]. The default Mamdani fuzzy model has seven and four membership
functions for its input and output, respectively (see Figure 6.2.(b) and (c)). The symbols 'NB',
'NM', 'N§', "ZQ', 'PS', 'PM’, and 'PB' of input x denote the same linguistic terms as above, but
are characterized by seven different membership functions. The output membership function
is termed by four linguistic symbols, 'NS' - negative small, 'NM' - negative medium, 'NB' -
negative big, and 'P' - positive. The seven fuzzy rules of the default Mamdani fuzzy model are
listed below,

Rule_ al: IF xisZO THEN yisP (6.16.a)
Rule_a2:IF xisPS THEN yis NS (6.16.b)
Rule_aq 3:IF xis NS THEN yis NS (6.16.c)

Rule_a4:IF xisPM THEN yis NM (6.16.d)
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Rule_a 5:IF xis NM THEN yis NM (6.16.¢)
Rule_a 6: IF xisPB THEN yisP (6.16.1)
Rule_a7:IF xis NB THEN yisP (6.16.g)

Note that there are only 3 output membership functions are included in the default model
currently due to the operation range used. The min-max fuzzy inference and centroid of
gravity defuzzification method are used to obtain the prediction output of the default
Mamdani fuzzy model. Choosing 167 input signals (na = 167) from the interval [-2.5 2.5] as
default input x, to the default Mamdani fuzzy model, results in 167 pairs of input-output
records in the operation range. The default Mamdani fuzzy model has the approximate
nonlinearity as that of the desired system, Eq.(6.15), but is quite imprecise in the validation
range, see Figure 6.2.(d). This is allowed as the default Mamdani fuzzy model is not expected
to be very accurate. It serves as a reference model to assist the estimation of the consequent
weight parameters of the T-S fuzzy model under the present optimization approach.
Furthermore, the following speciat situations of the system are regarded as soft constraints (o
the optimization criterion”,

Rule_s I. IF xis close to zero THEN yiscloseto 1 (6.17.a)
Rule_s 2: [F xis close to positive 1 THEN yis close to -2 (6.17.b)
Rule_s 3: IF xis close to negative 1 THEN vyis closeto -2 (6.17.c)
Rule_s 4: IF xis close to positive 2 THEN yiscloseto 1 (6.17.d)
Rule_s §: IF x is close to negative 2 THEN yiscloseto 1 (6.17.e)

We may regard these rules (Eq.(6.17)) as the specific states of the system x, = [0 1 -1 2 -2]",
which yields the specific output of the system y, = [1 -2 -2 1 1 ]". So, there are five soft
constraints (ns = 5) imposed on the performance criterion J.

In the optimization of w and penalty weighting parameters p, we first assign random numbers
as an initialization to penalty weighting parameters po. Then we use the least squares method
to find the optimal w based on the initial p;. Next, according to the generalized cross-
validation criterion, we re-estimate the penalty weighting parameter values, and then the
corresponding optimal w is re-estimated based on the current p values on every iteration step;
see Figure 6.1. For comparison of the performance of the identified T-S model affecied by
adding different kinds of a priori information, we consider the following cases in this
example.

* In fact, in this example, the soft constraints contain similar information as the default rules but they
have a higher a accuracy when compared to the Mamdani fuzzy rule base, although it is not necessary
to deduce the fuzzy rules as independent soft constraints from the default Mamdani fuzzy model in
this way. In many physical systems, we can gather this kind of soft constraint information based on
first principles, e.g., the averaged mass/energy balance or some initial operation settings.
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Figure 6.2: (a) The membership function of input x of the T-S fuzzy model. (b)
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Case_2:
Case_3:
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Case_5:

and (c) the membership functions of input x and output y of the
default Mamdani fuzzy model. (d) The real system response of
validation data (solid line); training data (marked by 'o");the
predicted output of the default Mamdani fuzzy model {dashed line).

no a priori knowledge is added. Le., the ordinary least squares method is used to
identify the consequent weight parameters of the T-S fuzzy model, which means that
the T-S fuzzy model merely makes use of the available training data.

only regularization is considered. Le., we request the T-S fuzzy model to be smooth
and only the penalty weighting parameter A is tuned,

smoothness is required and the default Mamdani fuzzy model (Eq.(6.16)) is included
into the identification of the T-8 fuzzy model. Le., we tune both parameteys A and o
smoothness and soft constraints (Eq.(6.17)) are required. le., we tune both
parameters A and p.

smoothness and soft constraints (Eq.(6.17)) are required and the default Mamdani
fuzzy model (Eq.(6.16)) is involved in the identification of the T-S fuzzy model. Le.,
we tune all penalty weighting parameters A, B, and o

As a result, five models (denoted as Model_1, 2, 3, 4, and 5, shown next) based on the above
different combinations of a priori qualitative information will be identified.
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6.4 RESULTS

From the simulation, we have searched the non-trivial’ optimal solutions for penalty
weighting parameter values based on several trials of different initializations. The optimal
penalty weighting parameters converge at the end of the re-estimation procedure and yield
smaller values both on the generalized cross-validation criterion and the performance
criterion. Shown below are the best values of the penalty weighting parameters of each model
that have the minimal mean squared ermror to the training data, Besides, in order to evaluate
the prediction performance of the identified T-S fuzzy models, we will compare the mean
squared error based on training data and validation data, denoted by MSE_t and MSE_v,
respectively, in the following table. If an identified T-S fuzzy model has a smaller MSE_v
value than that of Model 1 (based on Case_1), then this will indicate that a better
extrapolation ability can be obtained by incorporating the extra ¢ priori knowledge into the
modeling. Table 6.1 lists typical results of the simulation corresponding to the above five
cases. The subscript 'f’ denotes the resultant optimal value of penalty weighting parameters at
the end of the re-estimation procedure. Predicted outputs of above five models based on the
validation range of input x [-2 2] are depicted in Figure 6.3.

Table 6.1: The result of optimization of five models incorporating different a
priori knowledge, where the optimal consequent weight of the
corresponding T-S fuzzy model, w', is shown here for reference. It

is calculated from Eq.(6.5).
A B 0 MSE t MSE_v
Model _1 - - - 0.00656 7.48987
Model_2 0.00061 - - 0.00663 1.72106
Model_3 0.00001 - 0.04793 0.01274 0.18727
Model_4 0.00009 0.83666 - 0.00673 0.00805
Model_5 0.00001 0.03001 0.00244 0.00742 0.00371

0*

91 32 93 94 95 96 BT

Model_1 | -8.9789 | -5.3543 | -1.0943 | 2.1150 [ -1.0791 [ -5.0078 | -13.3197
Model 2 ] -0.1162 | -5.4556 | -1.0887 | 2.0990 | -1.019¢ | -5.5094 | -0.4563
Model 3 | 3.8351 | -34875 | -1.5665 | 2.3788 | -14252 | -4.3001 4.5412
Model 4 | 104161 [ -5.9694 | -0.9987 [ 2.0402 | -09121 | -6.1472 | 10.6412
Model 5 | 9.1615 | -5.5461 | -1.0929 § 2.1457 | -1.1047 | -5.5554 9.3180

* If the identified penalty weighting parameters p is [0 0 017, we call it a trivial solution as it does not
make sense in the present approach and, in fact, is the same solution as that of the ordinary least
squares identification,
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Figure 6.3;: The predicted output of the identified models based on validation
data. It is hard to distinguish between the output of Model_5 and
the real system response (without noise). Points marked by circle 'o
denote the training data, whilst points marked by asterisk '%' the
soft constraints, x, = [ 0 1-12 -2]" and y, = [1 -2 -2 1 1]". Note,
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From Table 6.1 we observe that Model_1, the T-S fuzzy model identified by ordinary least
squares method without adding any further a priori knowledge, has very good interpolation
performance in terms of the small MSE_t value. However, the extrapolation performance is
very poor (MSE_v = 7.48987) and this can also be seen from Figure 6.3. Adding the extra @
priori knowledge into the T-§ fuzzy modeling, we can obtain comparable interpolation
performance on the training range [-0.9 1.1] and much improved extrapolation performance
on the validation range, (See Table 6.1; compare the MSE_v values). It is obvious from
Figure 6.3 that the predicted output by the identified T-S fuzzy model, which involves any
kind of a priori knowledge such as Model_2, 3, 4, and 5, is significantly distinct from that of
Model_1. The responses of these models outside the training range, in particular, is notably
improved from that of Model_1. All approach to the real system response, showing that
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superior extrapolation ability can be obtained by adding the extra a priori knowledge into
modeling.

Simulation results show that the searched non-trivial values of the penalty weighting
parameters do have noteworthy effects on the T-S fuzzy modeling. These values may serve as
indicators on the relative correctness or relevance of the corresponding a priori knowledge o
the used empirical training data. Yet, it shall be carcful to make a direct interpretation of
these penalty weighting parameters, because their correctness or relevance to the empirical
training data is not verified. If the a priori knowledge can be proved to be correct in some
extent, and if there is a large amount of data available covering all possible operation
conditions, then the interpretations of the penalty weighting parameters may be feasible and
meaningful [34] .

In this particular example, we notice that a larger A value of each model results in smaller
consequent weight values of the T-S fuzzy model. This shows that a bias term is introduced
into the mean-squared-error evaluation. Consequently, the result favors solutions involving
small absolute parameter values and the model then becomes smoother. This can be seen from
Table 6.1 by comparing the w values of Model_2 to Model_1. Yet, Model_4 is an exception.
This is probably caused by adding the soft constraints to the model, which has resulted in
some underlying compensation effects. Furthermore, compared 1o the default Mamdani fuzzy
model and noise contaminated training data, we know that the soft constraints imposed on the
modeling is truly correct. The result of using correct a priori information is reflected by a
larger final B value. This shows that it helps to incorporate correct soft constraints, like
Eq.(6.17}, into the T-S fuzzy model. On the other hand, since we are aware that the default
Mamdani fuzzy model is not very precise (see Figure 6.2.(d}), the optimal value of o is not
expected to be greater than P, provided both soft constraints and default Mamdani fuzzy
model are imposed on the optimization criterion. As shown in Table 6.1, the ¢ value is far
smaller than the B value, certifying the difference in contribution to the fuzzy modeling.
However, one shall be aware that the above example is particularly constructed to explain the
modeling results by the optimization approach, rather than to deduce further information to
interpret these penalty weighting parameters.

6.5 CONCLUSIONS

Often a priori qualitative knowledge can be put in a form like the ordinary Mamdani type of
fuzzy rule. Thus, the Takagi-Sugeno type of fuzzy model is most suitable in using the
quantitative information for modeling. In this chapter we have studied how to incorporate a
priori knowledge into the T-S fuzzy model. It has been shown that combination of a Mamdani
fuzzy model and a T-S fuzzy model in an optimization framework provides a basis for easy
incorporation of the a priori knowledge into the fuzzy model. The resultant fuzzy model
becomes more robust in terms of generalization on the extrapolation domain. Eventally, this
approach can be extended to neural-fuzzy modeling.

An important condition in this optimization approach is that we have to presume that the
available @ priori knowledge is correct (0 some degree and relevant to the information content
used for identification, Otherwise, the incorporation of @ priori knowledge will yield
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misleading resuits. The principal idea is to regard a priori knowledge as constraints in the
fuzzy modeling and to add penaltics into the optimization performance criterion. The
corresponding penalty weighting parameters are ¢stimated in an optimal sense according (o
the generalized cross-validation criterion. With known penalty weighting parameters the
consequent weights of the T-5 fuzzy model with the extra a priori information, can be
estimated optimally in the least square sense. The final estimates are obtained by iteration.

It often appears in neural networks identification that the amount of training data is limited,
or sparsely distributed in the important regions of the input space. Hence, an overfitting
problem may arise when too many parameters are used for modeling. This situation also
occurs in the over-parameterization fuzzy model or neuro-fuzzy model. The over-
parameterization problem becomes more significant to the first-order Takagi-Sugeno fuzzy
model where the consequent part of the fuzzy rule is formed by a linear function of inputs,
such that a large amount of free parameters have to be identified. Some studies, e.g., [3] [35],
have shown that regularization can reduce the overfitting problem. We have merely used the
zero-order T-S fuzzy model as a basic model structure in our present example, and the over-
parameterization problem does not seem to be serious in this case. Still, this problem will
become more obvious when the number of fuzzy rules increases. One must try to avoid this
problem. In addition o employing the orthogonal least squares method to reduce the
redundant fuzzy rules (conscquent weight parameters), it will be an interesting topic to check
the effect of regularization on the over-parameterized T-S fuzzy model or neuro-fuzzy model.

Another pending question of this approach is the interpretation of the penalty weighting
parameters. As mentioned before, the direct interpretation of these parameter values is not
easy as the incorporated @ priori knowledge is not yet justified. Provided that the a priori
kmowledge used can be certified as correct and relevant to larger operation conditions, then
one could expect that these penalty weighting paramecters would reveals the relative
importance of the actual data vis-a-vis the a priori knowledge, from the point of view of
prediction performance. More studies are needed on the interpretation of these penalty
weighting parameters in conjunction with the a priori knowledge source used for modeling.

The example presented in this chapter shows significant effects can be achieved by adding
penalties to the optimization performance criterion, resulting in an identified T-8 fuzzy model
having a convincing improvement on extrapolation. Looking at the interpolation aspect, we
notice from the example that, even if the g priori knowledge is not completely correct, (refer
to Figure 6.2.(d)), the identified T-S model still maintains a good accuracy in the
interpolation (training) region, provided the training data really represent the underlying
characteristics of the unknown system and the T-§ fuzzy model uses a correct model structure
(fuzzy rules). This situation shows that the empirical data always dominate the identificd
result of the T-S fuzzy model, just like any other black-box identification approach that is
notably data-dependent. However, the present approach enables us to easily incorporate the a
priori knowledge into the identification process, which is advantageous especially when we
want to deal with extrapolation to regions where the training data are deficient,
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There are five essentials for victory: (1) He will win who knows when to
fight and when not to fight. (2) He will win who knows how to handle
both superior and inferior forces. (3) He will win whose army is animated
by the same spirit throughout all its ranks. (4) He will win who, prepared
himself, waits to take the enemy unprepared. (5) He will win who has

military capacity and is not interfered with by the sovereign.
- SunTzu, Art of the War
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This chapter concludes the studies presented in this thesis and provides some prospects for
further rescarch.

7.1 GENERAL CONCLUSIONS

As outlined by [88] , there is a considerable recent interest in soff computing dedicated to
exploring the tolerance for imprecision and wuncertainty, to learning from experience, and to
adapting to changes under operation conditions. Soft computing points to an artificial
intelligent system that consists of three principal compenents: fuzzy logic, neural network
theory, and probabilistic reasoning. The fuzzy logic primarily deals with imprecision, the
neural network with learning, and probabilistic reasoning with uncertainty. Although there
are ovetlaps among these components, it is important to note that they function
complementarily rather than competitively, Hence, advantages can usually be gained when
they are employed in combination rather than exclusively. In this manner, remarkable results
relating to soft computing have been achieved in recent times. The integrated neural-fuzzy
model is exactly one instance of soft computing. In our present study, the integrated neural-
fuzzy system, NUFZY, is used to deal with function approximation, where the fuzzy logic
serves as a tool for approximate reasoning, and the neural network is in charge of the learning
ability.

Although fuzzy logic theory is an extensive field that involves various concepts and principles
as well as inmumerous operators, it is limited in practice when actually being implemented in
fuzzy rcasoning, The first half of chapter 2 provides an introductory summary of both the
Mamdani and the Takagi-Sugeno fuzzy models that is sufficient to explain the essence of
fuzzy reasoning. The latter half of chapter Z explicitly provides details of constructing the
integrated neural-fuzzy system, which is functionally equivalent to a zero™-order T-S fuzzy
model, characterized by a transparent network structure and a self-ecxplanatory representation
of fuzzy mles. Two existing learning methods have been adapted and applied directly to the
NUFZY model. This is illustrated in chapters I and 4, corresponding to the batch and the
recursive learning schemes, respectively. Several practical examples with real data have been
presented to demonstrate the capability of the NUFZY model for function approximation.

Rescarch in soft computing is still ongoing and many answers are still pending. Two
questions concerning the integrated neural-fuzzy model represented by the T-S fuzzy model
were - how to obtain a linguistic interpretation from the fuzzy rules deduced by learning from
training examples, and how to incorporate a priori knowledge into the T-S fuzzy model. This
thesis has offered answers to both questions.

The first question arises since it has been often said that the T-S fuzzy rule cannot be easily
interpreted linguistically due to its crisp consequent. In chapter §, it is found that the fuzzy
model has a property of dual representations. This property makes the T-S fuzzy model with a
crisp consequent analogous to the Mamdani fuzzy model, if both models are defuzzified by
weighed sum and all their rules are aggregated individually. As such, this offers a roundabout
to transform the crisp consequent of the T-S fuzzy rule into a Mamdani - like fuzzy rule with
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an interpretable set of linguistic terms, where a new parameter set, the consequent
significance level, is associated to the consequent of each Mamdani fuzzy rule. Hence, we
have an extended Mamdani fuzzy model that has more flexible modeling ability than the
ordinary Mamdani fuzzy model, allowing it to perform function approximation as well as the
T-S fuzzy model.

Regarding the second question, it is not clearly shown in the literature how to incorporate a
priori knowledge into the T-S fuzzy model. Since ¢ priori knowledge is often qualitatively
represented by a form like the Mamdani type of fuzzy rule and the T-8 fuzzy modcl is most
suitable in wusing quantitative information, a benefit for modeling shall be gained by
combining both qualitative and quantitative information. In chapter 6, we employ an
optimization approach to incorporate of a priori knowledge into the T-S fuzzy model. It has
been shown that this approach constructs a basis for easily incorporating the a priori
knowledge into the fuzzy model. The resultant fuzzy mode] becomes more robust in terms of
generalization in the extrapolation domain. If desired, this approach can be extended to neural
-fuzzy modeling without difficulty.

In summary, this thesis has touched aspects of soft computing by constructing an integrated
neural-fuzzy model for function approximation, and by analyzing the problem of
interpretability of the T-S fuzzy model, as well as the incorporation of @ priori knowledge into
the T-8 fuzzy model.

7.2 FUTURE PERSPECTIVES

The work in this thesis is only the beginning of developing a comprehensive neural-fuzzy
modeling technique. Much work still remains to be done. The studies made in this thesis
provide a foundation for the prospective extension of the integrated neural-fuzzy modeling.
We suggest the following directions.

o  Constrained learning of membership functions: It has been pointed out in chapter 4 that
the membership functions of input variables may lose their original linguistic
interpretation after learning, due to the unawareness that the logical order on the universe
of discourse of each input must be maintained. Another problem which may arise is that
the original complete rule base on the linguistic level becomes incomplete on the
numerical level after adaptation. The sparse rule base then gives blank intervals of non-
overlapping membership functions in the input domains. As a result, the input-output
mapping hypersurface of the neural-fuzzy model behaves discontinuously and the model
may suffer from the problem of hysteresis when dealing with a dynamic system. Hence, it
seems necessary to set constraints on the tuning of input membership functions in order to
maintain a complete rule base and to obtain linguistically interpretable parameter sets of
input variables. Learning methods, which are subject to the constraint of fuzzy partitions
on the input variables, can achieve the above objectives.
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Structure identification: In the present learning process, we have only focused on
identification in the parameter space based on a given model structure which is regarded
as a reasonable representation of the unknown system, The model structure is established
according to some a priori knowledge and trial-and-error, It is, however, necessary to
carry out structure identification systematically in order to reduce the cost of trial-and-
error, or to prevent abuse of @ priori knowledge. In particular, the problem of curse of
dimensionality arises when the number of system inputs become large and lead to a rapid
increase of the fuzzy rule base. Several structure adaptation algorithms, which are based
on principles of constructive or destructive learning, have been used in artificial neural
network research for some time. In the fuzzy logic discipline, it appears that fuzzy c-mean
clustering gradually becomes a possible alternative to determine the prototype fuzzy rule
base using a set of training data. Besides, methods based on statistics and conventional
system identification are also available. We are convinced that all the above methods can
be applied successfully to improve the structure identification procedure for the integrated
neural-tuzzy model.

Long-life learning: It means that, in addition to recursive (or on-line) adaptation of the
model parameters, the model shall have the ability to create new rules and to discard some
inadequate old rules, so that the integrated system approaches the role of an expert, but is
more flexible to meet reality. This is an exireme expectation concerning the issue of
learning ability in the neural-fuzzy model.



Appendix A
OPTIMALITY OF THE
GENERALIZED TAKAGI-
SUGENO FUZZY MODEL

This appendix summarizes the results of the optimality of the generalized T-8 fuzzy model.
The details can be found in [33] . A MISO fuzzy system, the generalized T-S fuzzy rule is

given by
Ros: IF xisA(x) THEN y=g(x) (A.D

where input x € X < R™, ni is the dimension of input x and the joint universe of discourse of
x, X, can be partitioned into R fuzzy subsets, A;(x), Ax(x), .. , A(x), .., Ar(x). Each fuzzy
subset is characterized by a membership function, pa(x), for r =1, .., R, that maps X into the
bounded interval [0 1]. The grade value of membership function p,.(x), is equivalent to the
firing strength v.(x), in Eq.(2.31) and defined by Eq.(2.27.b). The local models (or consequent
functions) g,(x), g«A(x), .., g(x}, .. , gx(x) are assumed to be continuous,

Let us suppose that there exists a global model y = G(x), then G(x) can be interpreted to be
close to the local model g(x) when " x is in A(x) ". The fuzziness of A,(x), represented by
Har(X), suggests that a penalty on mismatch between G(x) and g,(x} shall be large when ps ()
is large. This means the more the degree of fulfillment of fuzzy proposition " x is in A.(x) "
(i.e., padx) is large), the more the global model G(x) shall approach the corresponding local
model g(x) under this proposition. Hence, we can define a criterion functional J(G(x)) as a
measure of the mismatch between the inferred global model G(x) and the local models, g(x)'s,
which are derived from knowledge forming the T-5 fuzzy rule base, as below,

R
JGE)=Y [ 16 - g @) -y, (x) dx (A2)
=1

where J is defined in C(X), the spacc of all continuous functions on X The optimality
theorem is then described below.

125
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Theorem:

Suppose the fuzzy partition A,(x), Ay(x), .. , A(X), .., Ar(x) of X is complete, and
the membership functions pa(X), Ha2(X), .. , Ha(X), .. ., Rar(X), and the g,(x}, g2(x),
. &%), .., gr(x) are elements of C(X). Then the fuzzy inference described by a
Takagi-Sugeno fuzzy model is optimal in the sense that the function

R
G(x) = ) ¥,(x)-g,(x) (A3)

r=1

minimizes the criterion functional J(G(x)) on C(X), where #(x) is the normalized
firing strength as defined by Eq.(2.32).

It is easy to prove the theorem, since the completeness of the fuzzy partition A(x), Ax(x), ..,
A, .., Ar(x) in X ensures that J(G(x)) is convex and there exists a unique global minimum
of J(G(x)). Hence, taking the variation of J{G(x)) with respect to any perturbation AG(x) <
C(X), we have

R
(G, AG)=2 G(x) - . -AG(x) dx
(G AG) 2 [ I6®) - g0y, (0)-AG(x)
A necessary and sufficient condition for the minimum of J{G(x)) is

R
D G(x) - g, (X)]- 1y, (x) = 0

=1

Hence,

R R
D G- pra, (0= g (&) pap (X) = 0
r=1

r=1

then

R R
Gx)- [ #a, (0= ps (x) B, (x)

=1 r=1
Therefore, replacing pa(x) by the firing strength v,(x}, we have
R
Dovix)g )
G(x) = g = > 7(x)- g (%)
Doy
p=l

This shows that the fuzzy inference mechanism by the generalized T-S fuzzy model, Eq.(A. 1),
is optimal with respect to the criterion functional J{G(x)), defined in Eq.(A.2), which implies
that it optimally mimics any continuous global mapping.



Appendix B

DERIVATION OF THE
SENSITIVITY DERIVATIVES OF
THE NUFZY SYSTEM

In this appendix we will show the derivation of the sensitivity derivatives of the NUFZY
system. First, the derivatives of the NUFZY system with respect to the node's parameters on
cach layer are given. By means of the chain rule, the sensitivity derivative of the NUFZY
system can be obtained. It is noted that p(x;) and o, (x;) are functions of x, ¢, and o. For
simplicity, Wg(x;.Cixi.Gixi) 15 denoted as ply(x;) and 04,(%;,Cix,Cixi) aS O(x;). If not particularly
mentioned, parameter indexed by m will be used in this appendix for discussion, and the
transformation of o (x,} into w;(x,) is defined by Eq.(4.2.d). In the following derivation, index
i runs from 1 to ni, m runs from 1 to M and n runs from 1 to nb. The tuning parameter set 9
can be defined as either 8 = @, or 8 = [ ¢]", or 6 = [@ ¢ 6)", where parameter vector © just
stacks all the tuning parameter vector of ® = fw¥ .ow, . wn.,T]T, with w.= [Wy, .. Wi .
Weal, and ¢ = [C; .. Cu .. Cy]" as well as 6 = [0y .. O, .. Om]". Hence, the dimension of 8 can
be nbxR, or nbxR+M, or nbxR+2M; M is defined in Eq.(4.3). Some notations of operations
follow those used in Matlab®, i, * and ./ represent array or element-by-element
multiplication and division, respectively; kron means kronecker tensor product; I'(:,m) and
T(r.:) stand for the m* column vector and the r** row vector of matrix I, respectively.

B.1 NODE DERIVATIVES IN LAYER 1 OF THE NUFZY
SYSTEM

(1) The derivative of the Gaussian membership function

(1-1) node parameter is ¢

127



128 Appendix B Derivation of the sensitivity derivatives of the NUFZY system

00, (x,) — D, = Oy (X; Cpy) O (B.1.a)
%,

on the left edge of the Gaussian membership function,
a%alc()—(-ﬁ =@y =y, (Ki})zexP((xi —C1)0,1) Oy (B.Lb)
i1

on the right edge of the Gaussian membership function ,

Bl;Nl(xi) = Qo= (U (X)) eXP(=(X; =€, )0 n) - O (B.1.c)
Ci,Ni.

(1-2) node parameter is G
a(l;m(Xi) = (I)ﬁm = Oy (XI. 'Cm) : om_E (B'z'a)
Gm

on the left edge,
(B2b)

M = (Dﬂi-l = _(ul(xg))zexp((xi _Ci])on)'(xi - Cn)
3, o

on the right edge,
al;Ni ) = Doini = (g (X ) EXP(—(X, — €50 ni) (X, — Cii) (B.2.c)
O

{2) The derivative of the IMQ membership function

(2-1) node parameter is ¢
a(z)m(xi‘) =®en = O (X ~Cu) (B.3)
Cm

(2-2) node parameter is G
900D = @, = - 0 0, (B4)
oG

m
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B.2 NODE DERIVATIVES IN LAYER 2 OF THE NUFZY
SYSTEM

(1) The partial derivative of firing strength, v, , with respect to membership function value, O

ni v, .
}JRrM@. azb)- ) |- HRM@Em)=]
a"’r =l - Y (B.5)
% O 0 ifRM(nm)=0

where RM(r,m) means the element on the r” row and m* column of the relationship
matrix RM; notations RM(r,a;:b;) and ,; are defined in the same way as those in section
2.3.1.

(2) The partial derivative of ¥, with respect to v,

A N ®9
r v]'
2 Ve Z Vp
p=1 p=1

We can also use matrix notations to denote the above two partial derivatives, Firstly, let

. . . oy .
matrix I” represent a RxM Jacobian matrix of 3 where v = [v; ..v; .. va]" is a vector of
o

firing strengths of all fuzzy rules and o = [0y o ... Oy - om]’. One element of matrix T,

I'(r,m), is equal to aav,

. Then matrix I" can be expressed by

m

v _ 9y 9v
don 0y diry
¥ Vi
oy M
= RM * D l= RM A=, .2
Yr Ve %1 Om (B.7)
. .
LU R o AV
=RM*[v - v - v/ : R
- - S
M OOy - Oy

= RM *[kron(v,T ) 1./ [kron(eeT, Tz ;) ]
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Note that the m™ colamn vector of matrix T"is given as

T
r(:,m>=[3"]=[a"l e a"RJ (B8)

do da,, dor,, oo,

m

av
Secondly, the partial derivative of ¥ with respect to v, I is a RxR Jacobian matrix. Its

element is expressed below.
(1-7, g s
— , ifi=]j
|2
a_l = ri]ﬁ (B.9)
Vi — , ifi#j
PR

Therefore, giving

FoowmI N R .
v | aw -, 1-V . : R
L I ) (B.10)
av aV_R Vg : - e
aVl " avR _FR . *’FR 1 - FR
AR
The diagonal of 3y Isgivenas
ClY _
v || |1 &
diagi—)=| _: |=| : |/
ag( av) o B va
il .5 l—vR p=1
vy (B.1H
— IR><1 -V

R
E"P

p=l
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B.3 NODE DERIVATIVES IN LAYER 3 OF THE NUFZY
SYSTEM

Node derivative of ¥, with respect to 7, is

9y

LI B.12
av, Wm (B.12)
80

- n N A T
dy, _(9¥, 9%, 9%,

v 197, oV, ony

= [Win Wog e Wy oo Wi 1 {B.13)

:Wn

In the form of a matrix notation, let ¥ ={¥,..%,..%,,]" , then the derivative of § with respect
to V is a Rxnb Jacobian matrix, V¥ , defined by

Vv?=ﬂ_
v
_[8% . & ...3%}
v v ov
9% . ¥ . O¥wm (B.14)
BREX 33, 3V
9% A7, Ay

I

The n** column of V_3,

W=[wl'“wn“'wnb]

A

b

ov

(R 3tnb)

( = w,), will be used later in Eq.(B.19).
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B.4 THE SENSITIVITY DERIVATIVE OF THE NUFZY
SYSTEM WRT TUNING PARAMETERS

(1) The consequent weight parameters w are taken as tuning parameters.
In this case, the parameter set 0 is defined as
Q=0 =[w, . W, . Wyl ((nb-R)x1 vector) (B.15)

For single output ¥, (i.e., nb = 1), the partial derivative of ¥y, with respect 1o 9g, i.e., the

sensitivity derivative Weg_ = {g;“ } , becomes a Rx1 vector
m
-89
Wy =|
On _aeJ
r T
Low, aw, Wy
r T
swn | [aem]  [aeim]
=== .. 2= .. |2=Z (B.16)
ow, ow, ow
=07.¥".. 07"
[0
=V
K
where 0 is aR by 1 zero vector,
For the multi-output case, the sensitivity derivative Wg = [%—] , becomes a {(nb-R)xnb
(0]

matrix
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_9¥%
Yo = 09,

= _Bl 9¥, CA (B.17)
| a8 L 004
(v - 0 - 0
0o - : 0

=0 - ¥ :
P O |
o -0 - v {{nb-R)xnb)

(2) ¢ and © are taken as parameters.
Where parameter set 0 is defined as
Bc=c=[C1..CnCu]' (O, Bc=€ =1 . Ciks o Cainmil ', M1 vector) (B.18)

9y
ae,

then element of the sensitivity derivative of ‘¥, (= [ }, an Mxnb matrix), Y.(n.m) (=

9%1 ) can be obtained.
dac,,

3y, wx 0¥, 9V, dv, da
\Ij N = I1=E_ n T r m
(n.m) dc, T av, av, oo, dc,
(93, ] [o7.] [av ] [20y]
% | | ow | || | B,

CEAREA RES NS

— . T s ——m
RM(:,m) a?r . a.vr . aqm . aCm

(B.19)

3y, | |9V | | 3ve | |00,
oWk | |9ve| |90 | | 9ck |

= RM(:,m)" * [wn .*diag(g—f).*l"(:,m).* kron(®,., Iz, )}

where w, follows from Eq.(B.15), representing the n” column vector of weight matrix W of
Eq.(B.14); diag(.) follows from Eq.(B.11), representing the diagonal of the derivative matrix
of ¥ with respect to v ; I'(:,m) follows from Eq.(B.8), representing the m™ column vector of
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the Jacobian matrix I'; &, follows from Eq.(B.1) or Eq.(B.3), representing the derivative of
o, with respect to c,,,.

Similarly, where parameter set @ is defined as

0;=0=[0)..On. Ouml' (0T B = [O11 .. Ciki - Oninmil'» Mx1 vector) {B.20)

oy
20,

then element of the sensitivity derivative of ¥, (={ } an Mxnb matrix), Ws(n.m) ( =

99, ), can be obtained.
do,,
3y, «p 0V, 0V, dv, du
¥ - n _ ¢ n H 1 m
e P T TN T
(33,1 [97.] [9v. ] [9ey ]
W | |av | |da,| |30,
3y, 1 law | | av. || 3a
= com)T || =2 | ] | | | ——m
RM(:,m) a5, | 2w |30, || 20 (B.21)

2y, | |ave | | ove | |90,
_aVR_ aVR aam aﬁm y

= RM(:,m)" * [W,, -*diag(%v—)-* [(:,m).* kron(‘Dm,IRxl)}
v

where $y, follows fromEq.(B.2) or Eq.(B .4).

Therefore, the sensitivity derivative of the NUFZY system, ¥, can be denoted either as ‘Pg, or
[¥a ; ¥ 1, or [Wg; ¥, ; Wl representing (nb-R)xnb, or (nb-R+M)xnb, or (nb-R+2ZM)xnb
matrix, respectively. The corresponding components of ‘¥ are obtained from Eq.(B.16),
Eq.(B.17), Eq.(B.19), and Eq.(B.21).



Appendix C
DERIVATION OF DERIVATIVES

OF c%ccv WITH RESPECT TO p

In this appendix, we will show the derivation of the derivatives of (A™") and (e'e) with respect
to penalty weighting parameters p, which is defined by p = [A p o).

-1
C.1 THE DERIVATIVE OF A~ WITH RESPECT TO
PENALTY WEIGHTING PARAMETERS p
According to Eq.(6.6) we have
—T— — T— —_— T
A=V V+AL+{PpV. V,+Ma V., V, (C.1)
where the third and the fourth terms on the right hand side of matrix A can be expressed by
symmetrical matrix products, V,"A,¥, and V,"A, V., respectively. Square matrices A, and
A, are RxR diagonal matrices with diagonal elements of {f} and no, respectively. In order to
reduce the complexity of formulation, we denote F as
F=(BV,'"V,+naV,'V, (C.2)
Hence, Eq.(C.1) becomes

A=Ay +F=A,+ L Fl, where Ag= V'V + Alx (C.3)

First we take the inversion of matrix A, following the well-known matrix inversion lemma
that

A= (A + XBY) = A- ATX(YAS'X + BYY'Y A,

Then
135
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A= (Ap+ P = Ap- Ay (g Ao I + F) ' Iz A,
=Ag'- Ag (A + FIY AT
If we denote matrix G as
G=A"+F! {C4)
Therefore, A" becomes
AT= A A'GTALT (C.5)

Premultiplying Ao and postmultiplying A, to both sides of Eq.(C.5), it is easy to obtain the
inversion of matrix G as

Gl= Ay, AA A, (C.6)

Hence, from Eq.(C.5), the derivative of A™' with respect to p is

AT | 1oAY | [ 9AT L 4| 8GT L | OAY
[ 3p ]_[ p } {[ ap JG A'+A; [—ap len +A'G [——ap ]} (C.7)

where, G is defined by Eq.(C.6) and its derivative with respect to p, together with Eq.(C.4),
is derived below.

3G | [aAg+FY ] L[aG]_ .. waaf[9A ] [oF!
[ap }_[ ap ]_ ¢ [ap} Ao+ 1) {[ op ]{ap }} 9

In Eq.(C.7), the derivative of A™" with respect to p mainly contains the derivatives of Ay and
F! with respect to p, respectively. We will derive the derivative of Ay with respect to p
foremost, and then, the derivative of F' with respect to p can be obtained accordingly. Both
derivatives will be expressed in terms of matrices Ao, F and A at the end.

Since Ag-Ay' = Iz and

Ay | (o dA;' | aly
S0 LA Ay | = [ = SR =0
[ap] 0" [ ap | 9p

therefore,

dAy o [2A -
e [
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From Eq.(6.12.a), we have
(34, ] [9(VIV +AIg) |
oA _ __3X I
A, |_[34, |_[3(VIV+Mg) | _|AVTV+Mg) | | o ©.10)
ap | | 9B ap ap 0 ‘
oA, o(VIV +2lg)
| o | oo
Similarly, we have
oF oF | .
-F F C.11
[ op } [ap} ©1b
and from Eq.(6.12.b),
[oF ] [2CBV.'Y, +naV,'V,) ]
o] [0 7%y |8 || oo onery | [
|:_F:|=|:a(q3vs vs+nava va):|= _F = (CBVS Vs+nava a) - CVSTVS (C12)
Jp Jp ap _ _aﬂ _ vV
AF | | EBVIV, +naV V) | LMY T
[da] | da
Hence, substitute Eq.(C.9) and Eq.(C.11) into Eq.(C.7), we have
dA™ 4| 0A I 7.\ et
[—ap ]:-AO'[ ap"}Anqu'[ ap"}Ao‘G ‘A
dA’ oF" .| OA
A_I -2 [1] 1 I.A 1 A —1
G {[ dp }r[ ap }}A ARG [Bp]
(C.13)

gl
oo ol

Therefore, substitute Eq.(C.6)}, Eq.(C.10) and Eq.(C.12) into Eq.(C.13), we can obtain

Eq.(6.11) as follows:
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aar]
o] faw |
[a—p]= W = —LAp (Ao—AoA_le) F_IVTV F—IA—l (C.14)
JA-] MAFNA, —AATA) F VIV, F A
TN

C.2 THE DERIVATIVE OF e'e WITH RESPECT TO
PENALTY WEIGHTING PARAMETERS p

First, we denote the following terms,

K =I,-VA'V’T (C.15.a)
K, =(B VA'Y,T (C.151)
K. =na VA'V,” (C.15¢)

Then the derivatives of these matrices K. K, and K, with respect to the penalty weighting
parameters p are expressed below,

oK dA~!

ap] -V [ 3 vT) (C.16.2)
B =177 -1

2} O | o

[aal(] [a(anA'IVT)] ~[3A‘1}> (C.16.)
P

According to Eq.(6.9) the error e is expressed by
e =(L,-VA'V)y-PB VAV, Ty, -na VAV, Ty,

= Kya - Koy, - K.y,
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and the square of error is,
ele = (Kyi- Koy, - Kuya ) (Kyq - Koy, - Koy)
= ¥a K'Kya -2 ya KT (Koy, + Koa) + (Ko, - Koo)' (Koys - Kaya)
Since matrices K, K, and K, involve the penalty weighting parameters p, the derivative of

e'e with respect to p can be derived and expressed by derivatives that are defined from
Eq.(C.16) and Eq.(C.14).

o(eTe) T oK' | 0K ||
[ p }_yd {[ dp ]K+K [ap]} Ye

T
_zyg _|:a(K (KbYS +Kaya))il (C.l7)
op
+ a((Kbys + Kaya)T '(KbYS +Kaya))
ap
where
k3
ap

(C.18.a)

a7 -1

and

a(KT ) (KbYS + Kaya))
ap

T
_|2K OKeY K¥a) | (Note. KT =K) (C.18.b)
ap dp

-1
= (-V[%}VT)T (Kyy, +K,y,)+K"- {%’;—"}ys +[aal;“ ]ya)

and

]-(Kbys+Kaya)+KT-[
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I(Kyy, +K,y) - (Kpy, +K,¥,)
op

=[6(y3KEKbys +y KoKy, + v KiKpy, + 3K Kaya)]

op

| 9K} | 9K} [9K
= K 2 18,
2ys[ ap bYs T(¥s 3p K.y, +y. K; ap Ya) (C.18¢)

r| 0K ro1] 0K, | 9KT
LK K, |—% 2y, | —~ K
+(ya[ ap bYS+y8 a ap YS)+ Ya ap a¥a

o KT ]
= +2
2ys[ ap Koy, +2(y; 3

T T
K ]Ka +y Ky [BL})L + ZYEPK—“}Ka
p op ap

Substitute Eq.(C.14), Eq.(C.16) and Eq.(C.18) into Eq.(C.17), we have the derivative of (e'e)
with respect 10 p.

B(eTe) d(eTe) : : a(eTe) i B(eTe) N
| ax i 8P | du

-1 -1
{(V[BA }VT Tmm-r(ﬁaia }VT }
A~ orir 1| 9K, | OK,
{( V|: ap }V ) (Kbys+Kaya)+K ( ap ) K ( ap )ya
T T
1| 9K, ¥ | 0K, 1] 9K, oK,
+2{ys[ ap :l KbYs+YS ([ ap il Ka+Kb|: ap ]) + [ ap :| Kaya}

From Eq.(6.10) we have the expression of the derivative of 6?gey with respect to p
(=[ AP o)) as below,

905y (¥ BA )(e e np [3Te) |
2¢ (tr(VA VT)f p TwvA VY o0 |

p=A,B.orcx (C.20)

(C.19)

Hence, substituting the corresponding components of Eq.(C.14) and Eq.(C.19) into Eq.(C.20),

. . . acéc\r acécv aoéc\;
weoblamdenvanves[ n ],[ 2p , and % |
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SUMMARY

Most real-world processes have nonlinear and complex dynamics. Conventional methods of
constructing nonlinear modeis from first principles are time consuming and require a level of
knowledge about the internal functioning of the system that is often not available,
Consequently, in such cases a nonlinear system identification procedure from observational
data is a more attractive alternative. If the model structures to be investigated are purely chosen
from a set of mathematically convenient structures, without incorporation of knowledge about
the internal functioning, this is called black-box modeling. In case that some qualitative a
priori information can be used in the above modeling procedure, it is sometimes referred to as
gray-box modeling.

Artificial neural network models and fuzzy models are typical examples of black-box and
gray-box modeling, respectively. They have the same property of parallel processing and both
serve as universal function approximators to perform nonlinear mapping. Each of them has its
own weak and strong points. The fuzzy model has a transparent knowledge representation but
has restricted learning ability. A neural network model can easily learn from new data, but it is
difficult to interpret the information contained in its internal configuration.

This thesis investigates how to construct an integrated neural-fuzzy model that can perform
approximation of an unknown system via a set of given input-output observations. The result is
the integrated neural-fuzzy model NUFZY, which combines the advantages of the above two
paradigms, and concurrently compensates for their weaknesses. Thus, it has a transparent
network structure and a self-explanatory representation of fuzzy rules.

The NUFZY system is a special type of neural network, which is characterized by partial
connections in its first and second layers. Through its network connections the NUFZY system
carries out a particular type of fuzzy reasoning. Also, the NUFZY system is functionally
equivalent to a zero”-order Takagi-Sugeno fuzzy model, so that it is an universal function
approximator as well,
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Two existing learning methods, ic., the orthogonal least squares and the prediction error
algorithms, can be applied directly to the developed NUFZY model. The former method,
referred to as batch learning, can be used to detect redundant fuzzy rules from the prototype
rule base and to find the weight parameters of the NUFZY model by one-pass estimation. The
latter, referred to as recursive learning, allows a fast adaptation of parameters of the NUFZY
model. Several practical examples with real data of agricultural problems, which address the
tomatoes growth and the greenhouse temperature, have been presented in this thesis, showing
the capability of the NUFZY system for modeling nonlinear dynamic systems.

Two questions concerning the integrated neural-fuzzy model are addressed by studying the
equivalent T-§ fuzzy model: how to obtain a linguistic interpretation of fuzzy rules deduced by
learning from training examples, and how to incorporate a priori knowledge into the T-8 fuzzy
model.

It is found out that it is possible to have linguistic interpretations of the crisp consequent of the
T-S fuzzy rules by transforming them into Mamdani - like fuzzy rules. A new parameter set,
the consequent significance level, is associated to the consequent of each Mamdani fuzzy rule
to form an extended Mamdani fuzzy model. This model has a more flexible modeling ability
than the ordinary Mamdani fuzzy model and has a comparable model accuracy as that of the
T-S fuzzy model.

Regarding the second question, an optimization approach is employed to systematically
incorporate the a priori knowledge into the T-S fuzzy model. If the knowledge about the
systemn behavior outside the identification data range is expressed in the form of a qualitative
Mamdani fuzzy model, then this model can be incorporated in the objective function of the
parameter estimation problem as an additional penalty term. Thus, the estimation of the
parameters of the T-S fuzzy model from the identification data is constrained by the
involvement of a priori knowledge. As a consequence, the resultant fuzzy model becomes
more robust in the extrapolation domain. This approach can be extended to neural -fuzzy
modeling without difficulty.

To conclude, the beauty of the integrated neural-fuzzy model, NUFZY, developed in this thesis
is that it is a neural network, enabling the implementation of efficient learning algorithms in an
easy way, and that it is a fuzzy model at the same time, allowing incorporation of priori
knowledge and transparent interpretation of its internal network structure. So, among the
various methods of nonlinear system identification, the NUFZY model can serve as an
attractive alternative.



SAMENVATTING

De meeste processen in de praktijk hebben niet-lineaire en complexe dynamica. De
conventionele methode om niet-lineaire modellen op te bouwen op basis van elementaire
beginselen is tijdrovend, en vereist een mate van kennis over het intern functioneren van het
systeemn die vaak niet aanwezig is. Daarom is het in zulke situaties vaak aantrekkelijker
modellen op te bouwen uit waarnemingsgegevens via een niet-lineaire systeem identificatie
procedure. Indien de in aanmerking komende modelstructuren worden gekozen uit een
verzameling van mathematisch handige structuren, zonder dat kennis over het intem
functioneren daarbi} wordt betrokken, dan spreekt men van 'zwarte doos' (black-box)
modellering. In het geval dat wel enige kwalitatieve a priori informatie in de modelbouw kan
worden meegenomen spreekt men van 'grijze doos' (gray-box) modellering.

Artificiéle neurale netwerk modellen en fuzzy modellen zijn typische voorbeelden van 'zwarte'
resp. 'grijze' modelbouw. Zij werken beide parallel, en van beide is aangetoond dat zij
universele functie approximators zijn, zodat zij niet-lineaire afbeeldingen kunnen verzorgen.
Elk heeft zijn eigen sterke en zwakke punten. Het fuzzy model heeft een transparante
kennisrepresentatiec, maar kent slechts een beperkte leermogelijkheid. Neurale netten
daarentegen kunnen gemakkelijk bijleren als nieuwe gegevens beschikbaar komen, maar het is
moeilijk om de informatie die in de interne structuur is opgeslagen te interpreteren.

In dit proefschrift wordt bestudeerd hoe een geintegreerd neuraal-fuzzy model kan worden
geconstrueerd waarmee een onbekend systeem uit gegeven ingangs- en uitgangswaarnemingen
kan worden benaderd, Het resultaat is het geintegreerd neuraal-fuzzy model NUFZY, dat de
voordelen van bovengenoemde paradigma's in zich verenigt, en tegelijkertijd de zwakheden
compenseert. Het NUFZY systeem heeft een transparante netwerkstructuur en een zichzelf
verklarende weergave van fuzzy regels.

Het NUFZY systeem is een speciaal type neuraal net dat wordt gekarakteriseerd door een

parti€éle verbindingsstructuur tussen de eerste en tweede laag. Door zijn netwerk structuur voert
het NUFZY systeem een bepaald soort fuzzy redeneerwijze vit. Het is functioneel equivalent
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aan een nulde orde Takagi-Sugeno fuzzy model, zo dat het eveneens een universele functie
approximator is.

Twee bestaande leermethodes, te weten het orthogonale kleinste kwadraten algoritme en het
predictiefout algoritme, kunnen direct worden toegepast op het ontwikkelde NUFZY model.
De eerste methode, die een ladingsgewijze leermethode is, kan worden gebruikt om
overbodige regels uit de verzameling fuzzy regels van het prototype te elimineren, en om op
een niet-iteratieve wijze de gewichtsparameters te vinden van het NUFZY model. De tweede
methode, die een recurrente leermethode is, maakt het mogelijk de parameters van het NUFZY
model snel aan te passen aan nieuwe omstandigheden. In het proefschrift worden enkele
praktische voorbeelden gegeven met gegevens ontleend aan agrarische problemen - met name
tomatengroei en kastemperatuur modellering - die laten zien wat het vermogen van het
NUFZY systeem is voor het modelleren van niet-lineaire dynamische systemen.

Er zijn twee vragen betreffende het geintegreerde neuraal-fuzzy model die kunnen worden
beantwoord door het equivalente Takagi-Sugeno model te bestuderen: hoe kan men een
linguistische interpretatie geven aan de fuzzy regels die ontstaan door training op beschikbare
gegevens, en hoe kan men a priori kennts in het T-8 fuzzy model verwerken.

Een belangrijke bevinding van dit proefschrift is dat het mogelijk is om een linguistische
interpretatie toe te kennen aan de getalsmatig geformuleerde consequent van de T-S fuzzy
regels door deze te transformeren in Mamdani-achtige fuzzy regels met een interpreteerbare
verzameling van linguistische termen, waar aan de consequent van elke Mamdani fuzzy regel
een nieuwe parameter is toegekend: het consequent significantie niveau. Het op deze manier
uitgebreide Mamdani fuzzy model is flexibeler dan het gewone Mamdani fuzzy model, en
heeft een vergelijkbare nauwkeurigheid als het T-8 fuzzy model.

Voor de oplossing van de tweede vraag is een optimalisatie benadering tocgepast teneinde de a
priori kennis op een systematische manier in het T-S fuzzy model op te nemen. Kennis van het
systeemgedrag buiten het gebied waarvoor directe meetgegevens beschikbaar zijn kan in een
kwalitatief Mamdani model als additionele strafterm in de optimalisatiedoelstelling van de
parameterschatting worden meegenomen. Aldus wordt beretkt dat de schatting van de
parameters van het T-S fuzzy model uit de voor identificatic beschikbare gegevens wordt
ingeperkt door de beschikbare voorkennis. Het gevolg is dat het uviteindelijke fuzzy model
robuuster is in het extrapolatiedomein. Deze werkwijze kan gemakkelijk worden wvitgebreid
naar een neuraal-fuzzy model.

Ter afsluiting: het mooie van het in dit proefschrift ontwikkelde geintegreerde neuraal-fuzzy
model NUFZY is dat het enerzijds een neuraal netwerk is, wat het pgemakkelijk maakt
efficiénte leeralgoritmen toe te passen, terwijl het tegelijkertijd een fuzzy model is, waardoor
aan de interne netwerkstructuur een interpretatie kan worden gegeven, en waardoor voorkennis
kan worden ingebracht. Het NUFZY model kan derhalve een aantrekkelijk alternatief zijn voor
andere methoden van niet-lineaire systeemidentificatie.
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