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VOORWOORD 

Vreemd genoeg wordt een voorwoord voor een proefschrift meestal achteraf 

geschreven. Het is dan een soort terugblik op vier jaar of soms langer onderzoek. Dat is in dit 

geval ook zo. De experimenten zijn gedaan en het manuscript ligt dukklaar naast me. 

Langzaam laat ik vier jaar promotie onderzoek bij de vakgroep Virologie van de 

Landbouwuniversiteit door mijn gedachten gaan. Allerlei leuke ervaringen en mensen 

schieten mij te binnen. Zonder iemand te willen vergeten zou ik hier graag een aantal van die 

mensen willen noemen. 

Allereerst denk ik dan aan mijn begeleiders, de beide hoogleraren van de vakgroep, 

Just Vlak en Rob Goldbach en co-promotor Douwe Zuidema. Zij hebben mij al die tijd de 

ruimte geboden om het project naar eigen inzicht richting en inhoud te geven en keken als het 

ware over mijn schouder mee. Daarnaast stimuleerden zij mij de resultaten van het onderzoek 

voor een breed internationaal publiek in artikelen en voordrachten te presenteren 

Dan waren er mijn kamergenoten. Bep van Strien en Rene Broer, ofwel het Se-

promotie team. Dit proefschrift is mede dankzij jullie discussies over proefopzetten en 

"regenachtige zaterdagmidddag" experimenten geworden tot wat het nu is. Aan onze 

wekelijkse Royal Baculovirus Beer Society meetings, om de scherpe kantjes van de week 

weg te spoelen, zal ik nog lang met veel plezier terugdenken. 

Daarnaast een woord van dank aan de vele gastmedewerkers die het baculovirus 

laboratorium in de loop der jaren hebben bezocht. In het bijzonder zou ik Peter Krell, Basil 

Arif, David Theilmann en Johannes Jehle willen bedanken voor de plezierige samenwerking, 

het lezen van manuscripten en het geven van goede adviezen als ik weer eens een wild idee 

had. 

Alle studenten die gewerkt hebben aan onderdelen van het proefschrift in het kader 

van hun afstuderen. Jan Koenderink, Henri Kester, Eric Coenen, Suzanne Luppens, Femke 

Bijlsma, Michel Kooijman, Corinne Kruiswijk en Adriënne Oomen. Een speciaal woord van 

dank aan Yi Liu (Jenny) die onder andere gezorgd heeft voor het sequencen van Xbal-C en 

met wie ik twee jaar perfect heb mogen samenwerken. 

Tenslotte, mijn familie en vrienden die steeds maar weer begrip hebben opgebracht 

voor het feit dat ik weer eens een proefje moest doen, en dus niet gezellig was. Met jullie had 

ik misschien dit voorwoord wel moeten beginnen, want zonder jullie morele ondersteuning, 

geduld en vertrouwen had ik dit niet af kunnen maken. 
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Stellingen 

behorende bij het proefschrift: 

"Molecular genetics of the Spodoptera exigua multicapsid nucleopolyhedrovirus genome" 

1. Het feit dat uit het baculovirus isolaat SeMNPV-US zo snel een deletiemutant gezuiverd kan worden, duidt 
erop dat selectiedruk op handhaving van het volledige genoom wegvalt bij passage van het virus in cellijnen. 

Dit proefschrift. 

2. De grootte van het genoom van het SeMNPV-isolaat dat Hara et al. bestudeerden en de afwezigheid van 11.5 
en 13.8 kb fragmenten in het Psü digest van dit virus doen vermoeden dat ook hier sprake is van een 
deletiemutant van SeMNPV. 

Hara et al, (1995). Acta Virologica 39, 215-222. 
Dit proefschrift. 

3. Er is onvoldoende bewijs geleverd voor de conclusie dat AcMNPV-pl43 aspecifiek aan hrs bindt. 
Laufs et al, (1997). Journal of Virology 228, 98-106. 

4. De conclusie dat de genetische organisatie van SpliNPV zeer afwijkend is van die van andere baculovirussen 
is voorbarig. 

Faktor et al, (1997). Archives of Virology 142, 1-15. 
Van Strien, (1997). Proefschrift Landbouwuniversiteit Wageningen. 

5. Het enkelstrengs DNA bindend eiwit dat tijdens het DNA-replicatieproces een wisselwerking heeft met het 
helicase is in het baculovirus replisoom het LEF3 eiwit. 

Evans et ai, (1997). Abstract 16* Annual meeting of the American Society for Virology. 
Carstens et al, (1997). Abstract 20 Annual meeting of the Society for Invertebrate Pathology. 

6. De conclusie op grond van een artikel uit 1959, dat er geen vrij manteleiwit van tymovirus kan worden 
verkregen onder fysiologische condities lijkt op het eerste gezicht voorbarig. 

Hellendoorn, (1998). Proefschrift Rijksuniversiteit Leiden. 
Kaper and Steere, (1959). Virology 7, 127. 

7. Bij een goede omschrijving van het begrip 'potency' zouden zowel de farmaceutische industrie als de 
registratieautoriteiten gebaat zijn. 

8. Pestiviridae doen hun naam eer aan. 

9. Het samenvallen van het kortstondig inzakken van de financiële markten in Hong Kong en de incidentie van 
influenza stam H5N1 aldaar duidt erop dat dit virus ook infectieus is voor beursindexen. 

10. Door de tariefsverhoging van de NS voor spitsvervoer en de invoering van het rekeningrijden, wordt het 
fileprobleem niet opgelost maar alleen in tijd en ruimte verplaatst. 

11. Het clonen van mensen en dieren maakt DNA testen onbruikbaar voor identificatiedoeleinden. 

12. Promoveren is het spelen van het spel dat wetenschap heet. 

13. "Onder professoren" (W.F. Hermans, 1975) zou verplichte startliteratuur moeten zijn voor promovendi. 

14. De vernieuwing die het paarse kabinet bij zijn aantreden beloofde zit 'm vooral in de naam. 

Wageningen, 3 april 1998 
J.G.M. Heidens 



TABLE OF CONTENTS 

Chapter 1 Introduction 1 

Chapter 2 Spodoptera exigua multicapsid nucleopoiyhedrovirus deletion 

mutants generated in cell culture lack virulence in vivo. 17 

Chapter 3 Specificity of multiple homologous genomic regions in Spodoptera 

exigua nucleopoiyhedrovirus DNA replication 31 

Chapter 4 Identification and functional analysis of a non-hr origin of DNA 

replication in the genome of Spodoptera exigua multicapsid 

nucleopoiyhedrovirus 49 

Chapter 5 Characterization of a putative Spodoptera exigua multicapsid 

nucleopoiyhedrovirus helicase gene 67 

Chapter 6 A highly conserved genomic region in baculoviruses: Sequence and 

transciptional analysis of a 11.3 kbp DNA fragment (mu 46.5-55.1) 

from the Spodoptera exigua multicapsid nucleopoiyhedrovirus 91 

Chapter 7 General discussion 107 

Chapter 8 Summary 123 

Chapter 9 Samenvatting 127 

Curriculum vitae 

Account 



Chapter 1 

INTRODUCTION 

General Introduction 

Baculoviruses are found almost exclusively in insects (Granados and Federici, 1986) 

with a few representatives able to infect Crustacea (Summers, 1977). These viruses have a 

restricted host-range of one or a few related insect species, belonging mainly to the insect 

orders Lepidoptera, Hymenoptera and Diptera (Martignoni and Iwai, 1986; Adams and 

McClintock, 1991). The members of the Baculoviridae are characterized by the presence of 

rod-shaped virions (50-200 nm), often found occluded into large cuboidal proteinaceous 

capsules also called occlusion bodies or polyhedra. The baculoviruses, can be classified into 

two large genera, nucleopolyhedroviruses (NPV) and granulovimses (GV) (Murphy et al., 

1995). Both types of viruses have a large, double-stranded, covalently closed DNA genome 

varying in size between 88-153 kilobase pairs (kbp) depending on the virus species. NPVs 

have either multiple nucleocapsids (M) or a single nucleocapsid (S), enveloped into a virion, 

which in turn is occluded into occlusion bodies. GVs occlude a single virion per occlusion 

body (here called granulum), which is more irregularly shaped than the occlusion body of 

NPVs (Blissard and Rohrmann, 1990, for review; Murphy etal., 1995). The occlusion bodies 

range in size from 0.1 to 10 um in diameter. 

Larvae of lepidopteran insect species often cause severe feeding damage on 

agriculturally important crops, in ornamental plants, and on forest trees. The resistance of 

many of these insect species to chemical insecticides and a changing public view on the use 

of those environmentally hazardous chemicals has prompted the development of alternative 

pest control strategies. Baculovirus infections, first observed in silkworms (Benz, 1986, for 

historical review), regulate the size of host insect populations in nature. As a result 

considerable attention has been paid to their development and use as biological insecticides. 

Nowadays, baculoviruses are employed world-wide as ecologically safe biological control 

agents (Cunningham, 1995, for review). Recently, a baculovirus of the beet army worm, 

Spodoptera exigua multicapsid nucleopolyhedrovirus (SeMNPV), has been registered in The 



Netherlands and the USA as biological insecticide against this pest insect (Smits and Vlak, 

1994). 

Due to some unique features of baculovirus replication and gene expression and the 

availability of suitable cell lines, baculoviruses and insect cells are also widely exploited as 

an expression system for the large scale production of recombinant proteins of 

biotechnological or pharmaceutical importance (Luckow, 1991, for review). The 

technological advancements associated with the generation of expression vectors, had a 

positive feed-back on the development of baculoviruses for improved insecticidal properties 

(Bonning and Hammock, 1996). An indepth analysis of the baculovirus genome organization, 

replication and gene expression strategy is a prerequisite for optimal exploitation of these 

economically important applications. This genetic analysis may also further lead to a better 

understanding of the principles governing baculovirus pathogenicity. 

Infection cycle 

Transmission of baculovirus in insect populations occurs either via oviposition of 

eggs contaminated with occlusion bodies or the ingestion of food or soil contaminated with 

these bodies by insect larvae. Upon ingestion, the occlusion body (polyhedron or granulum), 

predominantly composed of a 29 kDa protein called polyhedrin or granulin, dissolves in the 

alkaline environment of the larval midgut liberating numerous infectious virions. These 

virions invade the larval midgut by fusion with the microvilli of the midgut epithelial cells. 

The virions are uncoated in the cytoplasm and the nucleocapsids are transported to the 

nucleus. Here they are uncoated and the first steps of virus gene expression and genome 

replication take place. A characteristic feature of baculovirus infection is the existence of two 

infectious forms of the virus. The occlusion body-derived (ODV) form, which is infectious 

for insects and responsible for the spread of the infection in the population from insect to 

insect, and the budded virus form (B V) which is responsible for the spread of a baculovirus 

infection through a larval body (Federici, 1997; Williams et ai, 1997). Morphologically these 

two virus-types are largely different (Funk et al., 1997). (Fig. 1.1 ab) This progeny virus 

produced in the columnar cells of the midgut epithelium buds through the cytoplasmic 

membrane and basal laminae into the haemocoel of the host insect acquiring a loose fitting 

envelope. Alternatively, the virions are budded into the tracheal end cells (tracheoblasts) 

entering the tracheal system, which facilitates quick spread through the insect body (Federici, 

1997; Williams et al, 1997). The virus spreads into all tissues of the insect body, but 

predominantly targets to the fat body. 
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Figure I. la. 

Structural composition of the two baculovirus phenotypes, the budded virion, BV, and the occlusion body 
derived virion ODV (Funk et al, 1997 for review). The ODV structure represents the NPV subgroup. Proteins 
common to both virion types are indicated in the middle of the figure. Proteins specific to either BV or ODV are 
indicated on the left or right respectively. The polar nature of the baculovirus capsid is indicated in the diagram 
with the claw-like structure at the bottom and the ring-like nipple at the top of the capsid. The possible location 
of p74 is indicated by a dashed line. Lipid compositions of the BV and ODV envelopes derived from AcMNPV 
infected Sf-9 cells (Braunagel and Summers, 1994) are indicated (LPC, lysophosphophatidylcholine; SPH, 
sphingomyelin; PC, phosphatidylcholine; PI, phosphatidylinositol; PS, phosphatidylserine; PE, 
phosphatidylethonalamine). 

The virions produced in this second round of infection (>24 h) are enveloped in the nucleus 

in a de novo formed, tight-fitting membrane, followed by occlusion into occlusion bodies. 

(Fig. 1.1 ab) The fat body is the major infected tissue and as a result the main producer of new 

occlusion bodies. Eventually the infected cell disintegrates after nuclear and cellular 

membranes break down releasing the occlusion bodies in the environment. (Federici, 1997; 

Williams et ai, 1997, for review). Virus-encoded proteins such as fibrillins, chitinases and 

cathepsins, have been implicated in this process (Hawtin et al, 1995; Slack et al, 1995; Hill 

et al, 1995; van Oers and Vlak, 1997). 

As predicted by their size, baculoviral genomes encode about 150 average sized 

genes. After entrance into the celland uncoating of the virion in the nucleus, these genes are 

expressed sequentially, in a cascade-like fashion in which each successive phase is dependent 

on the previous one (Bussard and Rohrmann, 1990). Regulation of baculovirus gene 

expression occurs at the transcriptional level. Three separate phases, early, late and very late, 

are distinguished during a baculovirus infection. Genes expressed during the early phase of 

the infection are transcribed by a host-cell encoded RNA polymerase. 
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Figure 1.1b. 

Schematic representation of the baculovirus infection cycle (from van der Beek, 1980; van Strien, 1997). 
Ingested polyhedra are solubilized in the midgut and virions are released (A). The envelopes of the virions fuse 
with the plasma membrane of the insect cell (B). After traversing the cytoplasm virions enter the nucleus at a 
nuclear pore, uncoat and the viral DNA enters the nucleus (C). Progeny viral nucleocapsids are synthesized in 
the virogenic stroma (D). Following envelopment in the nucleus (E), progeny nucleocapsids are initially 
released by budding (H,I,J). Budded virions infect adjacent cells by endocytosis (K). Nucleocapsids produced in 
later stages of an infection become occluded in polyhedral protein (F). Finally, the occlusion bodies are released 
by lysis of the infected cell. 

The expression of early baculovirus genes can be blocked by typical eukaryotic RNA 

polymerase II inhibitors such as a-amanitine.Their promoters contain consensus transcription 

signals such as TATA boxes and 5'-CAGT-3' transcriptional initiation sites that are activated 

by the host cell transcriptional machinery. Among the important early genes are the 

immediate-early gene 1 (ie-1), ie-2, ie-3, HE65 andp35. The /e-7-gene product (IE1) is 

involved in the transactivation of many genes that are expressed during later phases of a 

baculovirus infection. The role of the other /e-genes is still unclear (Friesen, 1997). A specific 

role is played by P35, which has anti-apoptotic activity (Clem, et al., 1991; Clem and Miller, 

1994; Clem, 1997). 

The transcription of early genes is enhanced in cis by homologous regions or hrs, 

which are found interspersed in the genomes of many baculoviruses. These hrs contain 

repeats of imperfect palindromic sequences mostly separated by AT rich stretches or short 

direct repeats (Kool et al., 1995, for review). They increase early promoter activity and 



function irrespective of their orientation towards the enhanced gene. Maximum gene 

expression is obtained when IE1 binds the hr. The late phase is defined by viral transcription 

that occurs concurrently with or immediately after the onset of viral DNA replication. Late 

genes are transcribed by an a-amanitine resistant RNA polymerase that is possibly virus 

encoded. Among the late genes are those involved in virion structure and morphogenesis. All 

late genes are characterized by the presence of a 5'-A/GTAAG-3' promoter element that 

functions as transcriptional start site (Lu and Miller, 1997). Genes that are expressed very 

late in the infection process, such as polyhedrin or plO, are mostly associated with virus 

packaging, polyhedra formation or cell lysis (Lu and Miller, 1997). 

Application of baculoviruses as bio-insecticides and as gene expression vectors 

Many lepidopteran insect species cause severe economic losses in important 

agricultural and horticultural crops throughout the world. Since many pest insects have 

become resistant to most commonly used chemical insecticides and since the use of 

hazardous chemicals is disputed for ecological reasons for a long time (Bohmfalk, 1986), 

alternative bio-control strategies such as the use of parasites, predators and microorganisms 

are strongly promoted. Baculoviruses represent a natural component of the ecosystem and 

have been successfully applied as bio-insecticides in various biological and integrated pest 

management programs (Gilbert and Kerkut, 1985; Black et al., 1997). Unfortunately, these 

viruses are still unable to compete with classical chemicals due to their relatively slow speed 

of action, the special application technology required, their low field persistence and their 

limited host specificity. The latter, economically unattractive property however may also be 

considered as an asset from an environmental and biosafety point of view. Other 

disadvantages are related to the difficulty and cost aspects of large scale production in larvae 

or in bio-reactors. Biotechnological approaches such as the genetic modification of viruses 

and the use of cell culture offer opportunities to eliminate some of these drawbacks. 

Introduction of insect specific neurotoxin genes (Maeda et al, 1991 ; McCutchen et al., 1995 ; 

Stewart et al., 1991 ; Tomalski and Miller, 1991 ; 1992) in the genome of AcMNPV or the 

manipulation of the insect hormone levels (O'Reilly and Miller, 1989; 1990; 1991; Bonning 

and Hammock, 1996), resulted in baculoviruses with an increased speed of kill or which 

reduced feeding damage caused by the insects. Bio-assays and contained field trials carried 

out with wild-type and genetically engineered baculoviruses have addressed recombinant

virus efficacy, stability and environmental safety (Bonning and Hammock, 1996; Cory et al, 

1994; Black et al, 1997). 



Development of the baculovirus expression system opened up the possibility to 

genetically modify baculovirus genomes for biocontrol purposes (King and Possee, 1992; 

O'Reilly et al, 1992; Richardson, 1995, for reviews). The engineering procedure prescribes, 

in short, that the gene of interest is cloned in designed transfer vectors containing baculovirus 

sequences flanking the site of insertion. After co-transfection of the baculovirus genome and 

the particular transfer vector, recombination will occur between the homologous sequences of 

the transfer vector and the viral DNA resulting in the insertion of the foreign gene in the 

specific locus. Purification of the recombinant from the wild-type virus background via 

plaque purification assays is facilitated by the presence of selectable markers in the transfer 

vector such as ß-galactosidase (Vlak et al, 1990; Zuidema et al, 1990), luciferase (Oker-

Blom et al., 1993) or the green fluorescent protein from Aequorea victoria (Reiländer et al, 

1996). Strong promoters of genes that are expressed during the later stages of infection such 

as plO, polyhedrin and p6.9 have been successfully used to drive the high level expression of 

foreign genes. Most post-translational modification (phosphorylation, acetylation, amidation, 

etc.) occurs in insect cells normally as in any other animal cell system. The glycosylation of 

proteins in insect cells is slightly different from mammalian cells. Large scale production of 

the recombinant proteins has been established and optimized using cascades of bio-reactors 

(de Gooijer, 1995 ;van Lier, 1995).The baculovirus insect cell expression system is one of the 

systems od choice in order to obtain large amounts of near authentic proteins from an animal 

source. 

Baculovirus DNA replication 

The shift from host-encoded to virus-dependent transcription is a key phase of a 

baculovirus infection process. It is hypothesized that the immediate early genes transactivate 

an array of delayed genes encoding among others those proteins involved in DNA replication 

(Kool et al, 1995, for review). In general DNA replication is initiated by the formation of a 

replisome complex involving m-acting elements in the virus genome, generally known as 

origins of DNA replication (ori), and trans-acting elements (Kornberg and Baker, 1992; 

DePamphilis, 1993, for review). 

These cw-acting elements in the AcMNPV genome have been localized using a 

transient DNA replication assay (Kool et al, 1995 and Lu et al, 1997, for review). All but 

one of the replicating m-acting elements could be related to homologous regions, hrs, found 

dispersed in the baculovirus genome. Hrs contain one or more palindromic repeats, which are 

important for replication activity. The number of palindromes present in the hrs appeared to 



be independent of the replication efficiency (Leisy and Rohrmann, 1993). Mutagenesis of the 

central core sequence of the palindrome does influence its capability to replicate (Leisy et al, 

1995). The role of the putative secondary structure of Ars (hairpins) in the replication or 

transcription process remains enigmatic (Rasmussen et al, 1996). Hrs and their ability to 

prime replication have been identified in many more baculoviruses such as Choristoneura 

fumiferana MNPV (Xie et al, 1995), Orgyiapseudotsugata MNPV (Theilmann and Stewart, 

1992; Ahrens et al, 1995a) and Bombyx mori NPV (Maeda and Majima, 1990; Majima et al, 

1993). 

In addition to Zzr-like putative origins of DNA replication a non-/w-like sequence, 

active as an origin of DNA replication, has also been identified in the genomes of OpMNPV 

(Pearson et al, 1993) and AcMNPV (Kool et al, 1994b). The non-hr origins are devoid of 

any Ar-like palindromes or repeats and their complex overall organization is unrelated to hr-

sequences or to each other. The accumulation of non-hr sequences in defective interfering 

particle (DIP) genomes after multiple passaging of baculovirus in cell culture further suggests 

their putative role in baculovirus DNA replication (Lee and Krell, 1992, 1994). 

OriC 
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Figure 1.2. 
Schematic representation of phage X "rolling-circle" and Escherichia coli "theta" DNA replication mechanisms 
(Romberg and Baker, 1992). 

The role that each of the individual origins might play in baculovirus DNA 

replication, whether they are all functionally active simultaneously and whether they are 

interchangeable between the virus species, is still unknown. Deletion of a single hr from the 



AcMNPV or BmNPV genome did not influence the replication of these viruses (Majima et 

al, 1993; Rodems and Friesen, 1993). The presence of multiple replication origins dispersed 

in baculovirus genomes may ensure that DNA replication occurs. The mechanism by which 

the large baculovirus DNA genome is replicated is also unknown. Preliminary results 

revealed the occurrence of high molecular weight DNA, probably containing unit length viral 

genomes, during baculovirus infection (D. Levin, personal communication). Characterization 

of the replication mechanism of plasmids harboring baculovirus replication origins showed 

the appearance of concatameric unit length DNA molecules (Leisy and Rohrmann, 1993). 

This suggests a 'rolling circle' like DNA replication mechanism for baculoviruses. A 'theta'-

like replication mechanism, however can not yet be excluded. The acceleration of the 

expression of the replication machinery exploiting the hrs would facilitate a fast initial 

amplification of circular molecules using several origins at the same time (Kool et al, 1995, 

for review). Limitations in the concentration of replication factors would favour a 'rolling-

circle' mechanism (Fig. 1.2) at later stages in the infection process. 

DNA replication also involves trans-acting factors such as helicases, DNA 

polymerases, primases and a number of other factors (Kornberg and Baker, 1992). A set of 

trans-acting factors required for the transient replication of AcMNPV- (Kool et al., 1994a) 

and OpMNPV-Zzrs (Ahrens and Rohrmann, 1995 a,b; Ahrens et al, 1995 b) has been 

identified ;. the Late Expression Factors 1 (LEF1), LEF2, LEF3, DNA polymerase, helicase 

and IE1 pe38, p35 and IE2. The function of these LEFs during late gene expression and DNA 

replication was addressed using library-dependent transient CAT gene expression from 

baculovirus early and late promoters (Passarelli and Miller, 1993ab; Li et al, 1993; Todd et 

al, 1995), and DNA replication assays (Lu and Miller, 1995; Kool et al, 1994; Lu et al, 

1997). Biochemical evidence for the exact function of the individual factors in the replication 

process and the assembly of the replisome is limited. LEF1 could be a primase-associated 

factor based on amino acid sequence similarity with Herpes simplex virus UL8 (Kool et al, 

1994). LEF1 interacts with LEF2, which could be the baculovirus homologue of Herpes 

simplex virus UL42-like DNA polymerase processivity factor (Evans et al, 1997; Kool, 

1994). In AcMNPV, mutation of left in the AcMNPV genome resulted in a mutant deficient 

in very late gene function. LEF2 therefore may have a putative double function, in late gene 

expression and in DNA replication (Merrington et al, 1996). LEF3 has single stranded DNA 

binding properties (Hang et al, 1995; Ahrens et al, 1995b) and may be functional as a 

homotrimer in solution (Evans et al, 1997). A putative helicase or PI43 (Lu and Carstens, 

1991; 1992) binds hrs (Laufs et al, 1997) and the gene is transactivated by IE1 and pe38 (Lu 

and Carstens, 1993). Thepl43 gene product, P143 or helicase, is required for DNA 

replication as evidenced by the isolation of temperature sensitive AcMNPV mutants with a 

defectp!43 gene that prevents DNA replication and late gene transcription at the non-

8 



permissive temperature (Gordon and Carstens, 1984; Lu and Carstens, 1991). The putative 

helicase has another interesting feature since it also appears to be involved in the host range 

specificity of AcMNPV-BmNPV recombinants (Kondo and Maeda, 1991; Croizier et al., 

1994). The role of the baculovirus DNA polymerase in DNA replication is somewhat 

enigmatic. It has been localized in many baculoviruses (Tomalski et al, 1988; Bjornson et 

al, 1992; Cowan et al, 1994; Liu and Carstens, 1995; Ahrens and Rohrmann, 1996) and 

found to be essential for DNA replication (Kool et al, 1994). Lu and Miller (1995), however, 

provided evidence that its role is auxiliary and that its function can be carried out by host-cell 

DNA polymerase. Whether IE1 is an integral part of the replisome or whether it only 

functions as transactivator of the other "DNA replication genes" remains to be investigated. 

Scope of the thesis 

Crop damage caused by S. exigua larvae is a severe problem from an agricultural and 

economic point of view. Due to resistance of this insect to most commonly used chemical 

insecticides the use of wildtype SeMNPV to control this pest insect has been proposed and in 

some countries this virus is already registered as a bio-insecticide. SeMNPV is an attractive 

insecticide since it is monospecific (one host) and relatively virulent for S. exigua larvae 

(Smits, 1987). Nevertheless its speed of action is too slow to compete succesfully with 

chemical insecticides. The application of genetic methods developed for the baculovirus-

insect cell expression system and prior experience with the introduction of insect specific 

neurotoxin genes in the genome of AcMNPV, promote the idea to improve the insecticidal 

properties of SeMNPV by genetic engineering. 

With respect to virulence and host range specificity SeMNPV differs from many 

other baculoviruses, most of which are able to infect a number of related insect species and 

which need more time to cause disease in infected insect larvae. In contrast to the baculovirus 

type species, Autographa californica MNPV (AcMNPV), and to Orgyiapseudotsugata 

MNPV (OpMNPV), whose genomes are completely sequenced (Ayres et al, 1994; Ahrens et 

al, 1997), at the onset of the research described in this thesis, molecular knowledge of the 

SeMNPV genome was limited to some DNA restriction profiles of different geographical 

SeMNPV isolates (Gelernter et al, 1986; Caballero et al, 1992). Concomitant research, 

focusing on the sequence and transcriptional analysis of the genomic region between the 

polyhedrin mdplO genes (van Strien, 1997), revealed major differences in the genetic 

organization of this area between AcMNPV and OpMNPV on the one hand and SeMNPV on 

the other. Phylogenetic analysis using for instance parsimony on a number of baculovirus 



polyhedrin (Zanotto et a/.,1993), ecdysteroid-UDP-glucosyltransferase (Hu et al, 1997) and 

ribonucleotide reductase large subunit (van Strien et al, 1997) genes revealed that SeMNPV 

is a member of a different clade than AcMNPV, OpMNPV, Choristoneura fumiferana 

MNPV and BmNPV, suggesting that SeMNPV diverged rather extensively from the above 

mentioned baculoviruses (van Strien, 1997). 

Insight in to the molecular characteristics that specify the distinct biological 

properties of SeMNPV is important for the successful and biosafe genetic modification of this 

virus. Since little is known about the molecular genetics of the SeMNPV genome, the 

understanding of key steps in the infection process such as virus entrance, gene expression, 

genome replication or virion assembly, are required prior to the development and application 

of genetic engineering strategies. The present study aims at unravelling of the SeMNPV 

genome replication process and hence the identification and characterization of the 

components forming the SeMNPV DNA replication machinery. This information will 

indicate whether Baculoviridae, as a family, encode a universal set of DNA replication 

factors. 

To assist in these molecular genetic studies, the construction of a plasmid and 

cosmid library of SeMNPV DNA and the establishment of a detailed physical map is 

essential (Chapter 2). Studies on gene function and genetic modification of the SeMNPV 

genome, via classical homologous recombination strategies require cell lines that support 

virus replication and maintenance. Therefore, the capacity of S. exigua cell lines to replicate 

and maintain the SeMNPV genome stably during multiple passaging is investigated (Chapter 

2). 

AcMNPV and OpMNPV belonging to the same phylogenetic clade, encode a 

replication machinery, consisting of only partially specific cis- and trans-acting DNA 

replication factors. Chapters 3 and 4 focus on the localization and characterization of ex

acting elements, non-hr and hr origins of DNA replication, respectively, in the SeMNPV 

genome. Their similarity and differences to hr and non-hr elements in other baculoviruses are 

discussed. Furthermore the specificity of these elements in baculovirus DNA replication is 

investigated (Chapter 3 and 4). 

Subsequently, the identification of SeMNPV trans-acting DNA replication factors is 

initiated. As a first step the localization, sequence and transcriptional analysis of a trans

acting DNA replication factor, pl43, with a putative function as helicase and in host 

specificity is described in Chapter 5. The role of SeMNPV pi43 in the specificity of genome 

replication as well as the specificity of other trans-acting DNA replication factors in the 

process is discussed in this chapter. 

To determine the genomic environment of the SeMNPV pi 43 gene and to study the 

phylogenetic position of this virus, the flanking regions of this gene are sequenced and 
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transcriptionally analyzed. The relatedness of a genomic stretch of 11 kb of contiguous and a 

further 14 kb of partial sequence to corresponding sequences in the genomes of AcMNPV 

and OpMNPV is discussed (Chapter 6 and 7). 

To study the virus-specific interaction between the individual elements of the 

SeMNPV replisome, the identification of all other SeMNPV trans-acting DNA replication 

factors in the viral genome is essential. To identify these, sequence analysis of the complete 

SeMNPV genome is initiated and the 'state-of-the-art' is discussed (Chapter 7). The 

availability of the complete nucleotide sequence and insight in the complete genetic 

organization, would facilitate the localization and gene content of the large mutation that 

occurs after replication of SeMNPV in cell culture (Chapter 2). Sequence information also 

allows phylogenetic analysis of SeMNPV based on the comparison of conserved and 

diverged gene clusters (Chapter 7). 

Due to the inability of S. exigua cell lines to properly replicate and maintain 

SeMNPV, recombinants via homologous recombination cannot be generated and as a result 

alternative strategies have to be developed. Based on the physical and partial genetic map of 

the SeMNPV genome, the cloning and recombination of the baculovirus genome in 

Saccharomyces cerevisiae using yeast artificial chromosome (YAC) and yeast centromere 

plasmid (YCp) technology is investigated. Pilot experiments on the cloning and 

recombination of the AcMNPV and SeMNPV genomes in yeast and the recombination of the 

SeMNPV in vivo are described (Chapter 7). 
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Chapter 2 

SPODOPTERA EXIGUA MULTIPLE NUCLEOPOLYHEDROVIRUS DELETION 

MUTANTS GENERATED IN CELL CULTURE LACK VIRULENCE IN VIVO1 

Summary 

The baculovirus Spodoptera exigua multicapsid nucleopolyhedrovirus (SeMNPV) 

has high potential for development as a bio-insecticide for control of the beet army worm (S. 

exigua). It is highly infectious for S. exigua larvae and its host range is very narrow. A 

prerequisite for such application is the possibility of growing this virus in large quantities, 

e.g. in insect cell lines. It was observed, however, that polyhedra of SeMNPV plaque-purified 

in Se-UCRl cells did not cause larval mortality or morbidity when fed to S. exigua larvae. As 

this phenomenon suggested a genetic alteration in in vitro produced SeMNPV, comparative 

restriction analysis of in vitro and in vivo produced SeMNPV DNA was performed. The 

restriction patterns of various isolated plaques showed identical differences to those of the 

wildtype genome and suggested that a large, single deletion had occurred in the in vitro 

produced viral genome. In order to localize this deletion more precisely a detailed physical 

map of the wildtype SeMNPV genome was constructed, using the restriction endonucleases 

Xbal, BamUl, BgKl, Pstl, Sstl, Hindlll, and Spel. Moreover the entire SeMNPV genome was 

cloned into a library containing five overlapping cosmids and a plasmid library. About 80 

restriction sites have been located and the orientation of the map has been set according to the 

localization of the polyhedrin and pi 0 genes. The approximate size of the viral genome was 

determined to be 134 kilobase pairs. Based on this map it could be established that mutant 

SeMNPV, obtained by passage in cell culture, contained a single deletion of approximately 

25 kbp between map units 12.9 and 32.3. 

This chapter has been published as: 
J.G.M Heidens, E.A. van Strien, A.M. Feldmann, P. Kulscâr, D. Munoz, D.J. Leisy, D. Zuidema, R.W. 
Goldbach and J.M. Vlak (1996). Spodoptera exigua multicapsid nucleopolyhedrovirus deletion mutants 
generated in cell culture lack virulence in vivo. Journal of General Virology 77, 3127-3134. 
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Introduction 

The beet army worm (Spodoptera exigua; Lepidoptera, Noctuidae) is an agricultu

rally important pest insect in (sub)tropical regions of the Northern hemisphere and in green

houses. The insect is resistant to many commonly used chemical insecticides. Recently a 

baculovirus of this insect, S. exigua nucleopolyhedrovirus (SeMNPV) has been registered in 

several countries as a biological insecticide (Smits and Vlak, 1994). SeMNPV is an attractive 

bioinsecticide since the virus has a narrow host-range and is relatively virulent compared to 

other baculoviruses (Smits et al., 1988). 

It may take several days after infection until the larvae stop feeding. The insecticidal 

properties of SeMNPV, in particular the speed of action, might be improved by genetic engi

neering. Successful attempts have been reported for Autographa californica MNPV 

(AcMNPV) via the introduction of insect-specific neurotoxin genes into the genome or the 

construction of ecdysteroid-UDP-glucosyltransferase (egt) gene deletion mutants (Stewart et 

al, 1991; McCutchen et al, 1991 ; Tomalski and Miller, 1991; O'Reilly and Miller, 1991). A 

prerequisite for successful genetic modification of SeMNPV is the availability of a physical 

and genetic map. Furthermore, a cell line able to support viral replication would facilitate the 

engineering of SeMNPV and the structural and functional analysis of its genome. 

SeMNPV has a circular double stranded DNA genome of about 130 kilobase pairs 

(kbp) (Caballero et al, 1992). Restriction fragment length polymorphism in several SeMNPV 

isolates has been reported (Caballero et al, 1992), but a detailed physical map of the viral 

genome is not yet available. Three SeMNPV genes have been characterized and provisionally 

localized on genome fragments: polyhedrin (van Strien et al., 1992), pi 0 (Zuidema et al. 

1993) and ubiquitin (van Strien et al, 1996). Two insect cell lines derived from S. exigua 

have been described that support SeMNPV replication (Gelernter and Federici, 1986b; Hara 

et al, 1993; Hara et al, 1994). Preliminary experiments on the replication of SeMNPV in the 

cell line Se-UCRl indicated that the budded virus (BV) was highly infectious for these cells, 

but that the polyhedra produced lacked infectivity for insects. This phenomenon could be 

correlated with a deletion of about 25 kbp from the SeMNPV genome. In this report a 

physical map of the SeMNPV genome for seven restriction endonucleases is described 

allowing the genetic analysis of in vivo and in vitro produced SeMNPV and the localization 

of the deletion in the latter. 



Materials and methods 

Virus, insects and cells. 

Spodoptera exigua MNPV (SeMNPV/US) (Gelernter and Federici, 1986a) was 

obtained from Dr. B.A. Federici, Department of Entomology, University of California at 

Riverside, Riverside CA, USA, in the form of polyhedra. The virus was propagated in fourth 

instar larvae of S. exigua (Smits et al, 1988). Larvae were infected by contamination of 

artificial diet with polyhedra. Hemolymph from SeMNPV-infected insects was used as a 

source of budded virus (BV) for the infection of cultured Spodoptera exigua cells (Gelernter 

and Federici, 1986b). This cell line (Se-UCRl), obtained from Dr. B.A. Federici, was 

maintained in plastic cell culture flasks in TNM-FH medium (Hink, 1970) supplemented with 

10% foetal calf serum. S. exigua fourth instar larvae were infected with a dose of 10 

SeMNPV polyhedra per ml, sufficient to kill 99% of the larvae. Four days post infection (p.i.) 

hemolymph was obtained from a cut proleg and used to infect 10 Se-UCRl cells. Plaque 

purification of SeMNPV BV was carried out according to the procedures described by 

Summers and Smith (1987). 

DNA isolation, Southern blot hybridization and molecular cloning. 

Wild-type SeMNPV DNA was obtained from alkali-liberated virions purified after 

alkaline treatment of polyhedra followed by sucrose gradient centrifugation (SeMNPV PD-

DNA) (Caballero et al, 1992). Alternatively, viral DNA was isolated from SeMNPV BV 

(SeMNPV BV-DNA) according to the procedures described by Summers and Smith (1987). 

SeMNPV (BV- or PD- derived) or cosmid DNA thereof was digested with restriction 

endonucleases and electrophoresed in 0.8% agarose gels, transferred to Hybond N nylon 

membranes (Amersham) and hybridized with P-labelled DNA fragments of SeMNPV 

according to procedures described by Sambrook et al. (1989). -Y&al-digested SeMNPV 

fragments (C through R) were isolated from agarose gels by the freeze-squeeze method 

(Sambrook et al, 1989) and cloned into pUC vectors. 

SeMNPV PD-DNA was partially digested with the restriction enzyme Sau3A-I to 

generate fragments of about 35 kbp. These fragments were ligated into BamHl digested and 

dephosphorylated pWE15 (Stratagene, La Jolla, CA). Cosmid ligation mixes were packaged 

in vitro into lambda phage heads and transduced into Escherichia coli DH5cc cells according 

to the protocols of the manufacturer (Stratagene, La Jolla, CA). Ampicillin resistant colonies 

were selected and cosmid DNA was isolated by a rapid miniscreen procedure (Sambrook et 

al, 1989). Maxipreparation of cosmid DNA was carried out according to the Qiagen-tip 100 

protocol (QIAGEN Inc., USA). 
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Dot blot analysis. 

Cosmid and plasmid DNA was isolated according to the minipreparation method 

described and 1/10 of the yield of DNA was denatured in 200 ul of 200 mM NaOH for 10 

min. The dot blot apparatus (Biorad) was assembled and the wells were washed with 400 ul 2 

M NaCl before the denatured cosmid DNA was applied to the filter (Hybond N+, Amersham). 

The membrane was removed and air-dried prior to baking for 2 h at 80 °C. Hybridization was 

performed with P-labelled DNA fragments according to Sambrook et al. (1989). 

Results 

Infectivity of in vivo and in vitro produced poly he dra 

Fourth instar S. exigua larvae were orally infected with polyhedra produced in 

insects (in vivo) or derived from plaque-purified, in vitro produced SeMNPV. Larvae infected 

with in vivo produced SeMNPV polyhedra died and decayed normally. However, larvae that 

were infected with SeMNPV polyhedra derived from in vitro produced, plaque-purified 

SeMNPV pupated normally and did not die. BV from plaque-purified SeMNPV was highly 

infectious for Se-UCRl cells. When injected into the hemolymph this BV did not cause 

morbidity or mortality. Haemolymph isolated from larvae infected with in vitro produced, 

plaque-purified SeMNPV polyhedra, was highly infectious for Se-UCRl cells indicating that 

the mutant virus does pass the larval midgut cells and that it at least undergoes one round of 

replication. These results suggest that the in vitro produced SeMNPV is genetically altered 

resulting in the loss of in vivo mortality and morbidity. Therefore, the DNA of SeMNPV 

produced in vitro and in vivo was subjected to restriction enzyme analysis to futher study this 

phenomenon. 

Comparison of in vivo and in vitro produced SeMNPV DNA 

The DNA of in vivo and in vitro produced SeMNPV was analyzed with restriction 

enzymes Xba\ and Pstl (Fig. 2.1) and others (not shown). In vitro produced SeMNPV 

fragment XbahA had disappeared and a new smaller fragment between Xbal-B and C 

appeared (Fig. 2.1, lanes 3 and 4). Likewise, fragments Pstl C and D were no longer present 

in the in vitro produced SeMNPV DNA (Fig. 2.1, lanes 1 and 2). Various independently 

isolated plaques from repeated in vivo infections showed identical restriction profiles. When 

BVs were analyzed from Se-UCRl cells infected with haemolymph-derived BVs (first in 

vitro passage) and compared to in vivo produced SeMNPV, several submolar fragments were 

detected in all the restriction profiles (data not shown). When these BVs were further average 
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Figure 2.1. 

Autoradiograph of PD-DNA from in vitro (lanes 1 and 3) and in vivo (lanes 2 and 4) produced SeMNPV 
digested with Pst\ (lanes 1 and 2) and J M (lanes 3 and 4), separated in 0.8% agarose, Southern blotted to 
Hybond N membrane and hybridized with "p-labelled Xtol digested SeMNPV in vivo produced PD-DNA. 
Restriction fragments are lettered in order of size. 

size of the entire SeMNPV passaged over Se-UCRl cells for two more times and plaque-

purified, submolar bands were no longer observed even by Southern blot hybridization (Fig. 

2.1). These results suggest that a large deletion had occurred in the passaging of hemolymph-

derived BV in cell culture and that genes present in the deletion are essential for virus 

virulence in vivo but not in vitro. 
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Figure 2.2. 

Electrophoresis of SeMNPV PD-DNA produced in vivo digested with Xbct\ (lane 2), Pst\ (lane 3), BglU (lane 

4), BamHl (lane 5), Spel (lane 6), Sstl (lane 7), Hincäll (lane 8) in a 0.8% agarose gel. Digested lambda DNA 

(lane 1 ) served as size standard. Restriction fragments are lettered in order of size. 

Physical mapping of the SeMNPV genome 

To locate the deletion in the SeMNPV genome, a physical map was constructed. 

Polyhedra derived (PD) SeMNPV DNA was digested with the restriction enzymes Xbal, 
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BamHl, Bglll, Pstl, Sstl, Hindlll and Spel, and separated by agarose gel electrophoresis (Fig. 

2.2). Fragment sizes were estimated by comparison with size markers in adjacent lanes and 

ranged from approximately 36 kbp for the Xbal-A fragment to 1.1 kbp for the SM-H 

fragment (Table 2.1). Smaller fragments for these enzymes were not detected with this 

technique or by Southern blot hybridization (data not shown). By totalling the sizes of the 

fragments generated by the respective restriction enzymes thegenome was calculated to be 

134.1 kbp. This is about the size of the genome of AcMNPV (Ayres et al, 1994). 

fragment 

A 

B 

C 

C 

E 

F 

G 
H 

I 

J 

K 

L 

M 

N 

O 

P 

Q 
R 

E 

Xbal 

35.6(13.6) 

17.5 

11.5 

10.7 

8.0 

6.2 

5.8 

5.0 

4.6 

4.0 

3.9 

3.5 

3.3 

3.0 

2.6 

2.1 

2.0 

1.7 

133.6 

Pstl 

22.0 

21.0 

13.8(d) 

11.5(d) 

9.0 

8.7 

8.7 

7.6 

6.8 

4.8 

4.6 

3.9 

3.6 

3.1 

2.6 
1.4 

1.3 

134.4 

BamHl 

29.6(25.2*) 

28.6(23.0*) 

25.8 

16.4 

14.2 

14.0(d) 

4.5 

1.2(d) 

133.7 

Hindlll 

30.7 

29.2(17.0*) 

27.3(14.8*) 

26.0 

13.0 

8.5 

134.7 

Spel 

27.6(18.0*) 

22.4 

19.8 

16.5 

15.8 6.2*) 

12.5 

9.3 

5.3 (d) 
4.4 

133.6 

Bglll 

36.1(11.7) 

21.0 

19.5 

15.8 

10.5 

6.4 

6.2 

5.3 

5.0 

4.1 

3.1 
2.4 

135.4 

Sstl 

29.2 

26.3 

21.8 

20.0 

18.6 4.5*) 

12.5 2.2*) 

4.5 

1.1 

134.0 

Table 2.1. 

Fragment sizes of occlusion body derived SeMNPV-DNA generated by the restriction enzymes BamHl, Bglll, 

Pstl, Xbal, Spel, Hindlll and Sstl. Fragment sizes are indicated in kbp. Restriction fragments that are altered in 
mutant SeMNPV DNA are either deleted (d) or truncated (*). Truncated fragments and their sizes need to 
summated to obtain the actual fragment size in the deletion mutant. The truncated fragments are displayed in the 
row of the fragment from which they originate. 

SeMNPV PD-DNA was digested to completion with Xbal and fragments C through 

R (11.5 through 1.7 kbp) were cloned into plasmid pUC19. The fragments Xbal-A andXbal-

B (35.6 and 17.5 kbp, respectively) were too large to be inserted into pUC plasmid vectors. In 
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order to clone the entire viral genome, a cosmid library was constructed. A set of five cosmid 

clones from the library spanning the entire viral genome except a small region located in the 

Xbal-D fragment (Fig. 2.3b) was selected from the library by dot blotting cosmids and 

Southern hybridization with 32P-labeled Xbal fragments (A through R) of SeMNPV-DNA. 

Cross-blot hybridizations provided data about overlapping cosmid inserts. The occurrence of 

contiguous overlapping fragments in these cosmids confirmed the circularity of the SeMNPV 

genome. 

Physical maps of the five cosmid clones were constructed by single and double-

digestions using the seven restriction enzymes mentioned above and Southern hybridizations. 

By compilation of the physical maps of the five cosmid clones a complete physical map of 

the viral genome containing about 80 restriction endonuclease sites was derived (Fig. 2.3). 

This map was further validated by hybridizing individual P-labeled Xbal fragments to 

Southern blots of SeMNPV PD-DNA digested (single and double) with the seven restriction 

enzymes. The adenine residue at the translational initiation codon of the polyhedrin gene, 

upstream of the junction between the Xbal-D and R fragments (van Strien et al., 1992) was 

designated as zero point of the physical map (Fig. 2.3a and c). The orientation of the map was 

set by the location of the plO gene of SeMNPV (Zuidema et al, 1993) on the Xbal-H 

fragment at the right side of the map and is in agreement with the convention for linearized 

baculovirus maps (Vlak and Smith, 1982). 

Mapping of the deletion in DNA of SeMNPV produced in vitro 

When the sizes of the DNA fragments of SeMNPV produced in vitro were 

summated, the genome size was calculated to be about 110 kbp. This is approximately 25 kbp 

shorter than the DNA of the in vivo produced SeMNPV. The fact that only Xbal-A (35.6 kbp) 

disappeared and a new fragment of about 14 kbp was identified suggests that the deletion is 

contiguous. Based on the physical map of wild-type SeMNPV-DNA the deletion in the DNA 

of the in vitro produced SeMNPV could be approximately located. This was done by 

hybridization of the latter DNA with plasmids overlapping the deletion. Fragments Pstl-C 

and -D, BamHl-F and -H and Spel-U were absent, whereas fragments Xbal-A, BamHl-A and 

-B, Sg/II-A, Spel-A and-E, Sstl-E and -F and Hindlll-A and -D hybridized to new (junction) 

fragments (Table 2.1). Since the size of these junction fragments could be determined and 

compared, the deletion could be approximately located between map units 12.9 and 32.3 (Fig. 

2.3). 
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Discussion 

Upon serial passaging of AcMNPV in Spodopterafrugiperda cells at high 

multiplicity defective interfering viruses arise with deletions up to 50 kbp (Kool et al, 1991). 

However, a deletion of about 25 kbp of the viral genome within the first passage, as is the 

case for SeMNPV, has not been observed previously. Moreover, it is not reported that these 

early arising defective interfering particles of AcMNPV are defective in larval infection. 

Studies are currently underway using in vitro produced SeMNPV polyhedra of passage one, 

five and ten to determine virulence, LD50 and LT50 in S. exigua larvae (E.M. Colbers and J.M. 

Vlak, personal communication). 

The question is whether the SeMNPV deletion mutant is defective and needs the co-

infection of a wild type helper virus in a very low concentration to complement the functions 

of the deleted genes, or whether it is indeed a viable virus, which could be obtained by plaque 

purification. If a helper virus is involved, its concentration is below the level of detection by 

Southern hybridizations. The presence of a helper virus is unlikely since in vitro produced 

SeMNPV polyhedra do not cause any effect in vivo nor does the injection of BV into the 

hemolymph. The assumption that no helper virus is involved implies that no genes involved 

in viral encapsidation or replication are located on the deleted fragment. Plaque purification 

of wild-type virus is therefore impossible since upon multiple passaging in the Se-UCRl cell 

culture the deletion of the viral genome apparently starts immediately and processes 

continuously until the final stable deletion mutant is generated. Since plaque purified 

SeMNPV polyhedra did not cause disease in the insect anymore, it could be concluded that 

the 25 kbp deletion contains information that is important for virus virulence in vivo. 

However, it cannot be excluded that mutations elsewhere in the genome and not altering the 

restriction enzyme profiles are contributing to or causing the loss of in vivo activity of mutant 

SeMNPV. In vivo rescue of the deletion mutant virus using cosmids 24 and 17 (Fig. 2.3) 

should answer this question as this would restore virulence for insects. 

Limited nucleotide sequence analysis of the segment, deleted in the defective viral 

genome, revealed that it encodes genes which are involved in the larval decay, such as 

cathepsin (Ohkawa et al, 1994) and chitinase (Hawtin et al, 1995) or insect hormone 

regulation, such as egt (Zuidema et al, in preparation). In cell culture apparently no selection 

pressure exists on the presence of either type of the above described genes in the viral 

genome. Therefore these genes may be deleted spontaneously out of the SeMNPV genome 

when the virus is maintained in cell culture. Lack of infectivity of in vitro produced SeMNPV 
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is a major limitation towards the application of cell culture for large scale operations. 

Hara et al. (1993) reported that SeMNPV produced in the Se-301 cell line was still 

infectious to larvae. Rearrangements present in plaque-purified SeMNPV-DNA as compared 

to wild-type were not noted. This may suggest that a 'cell factor' may be involved in the 

generation of defective or mutant viruses. Alternatively the field isolate used may be less 

susceptible for large deletions under in cell culture conditions. These hypotheses will be 

further explored by the isolation and testing of novel S. exigua cell lines and detailed 

comparative restriction mapping of the genomes of SeMNPV isolates and in vivo infectivity 

studies. 

When the genetic organization of SeMNPV is compared with those of OpMNPV and 

AcMNPV with respect to the location of the polyhedrin and pi 0 genes, the SeMNPV 

polyhedrin gene (van Strien et al, 1992) is transcribed in the same direction as the AcMNPV 

polyhedrin gene (Ayres et al, 1994), but in the opposite direction of the OpMNPV 

polyhedrin gene (Leisy et al, 1986a). The distances between these two genes in the various 

viruses are also different, being 19.3 kbp for AcMNPV (Ayres et ai, 1994), 22.3 kbp for 

OpMNPV (Leisy et al, 1986ab) and 11.6 kbp for SeMNPV, respectively (van Strien et al, 

1992; Zuidema et al, 1993). This suggests that between these baculoviruses the genetic 

organization is not entirely conserved despite the similar length of their genomes (132 kbp). 

The genome size of the SeMNPV-US isolate (134 kbp) described here is in agreement with 

previously reported estimated genome sizes of SeMNPV-US and several SeMNPV Spanish 

field isolates (132 kbp) (Caballero et al, 1992), but not with the size Hara et al (1995) 

reported recently for Japanese plaque-purified and field isolates of SeMNPV (122 and 105 

kbp, respectively). 

Southern blot hybridizations with homologous fragments did not show any cross-

hybridization with any fragment in the SeMNPV genome. However, it cannot be ruled out 

that small and/or imperfect homologous regions are interspersed throughout the SeMNPV 

genome, which could not be detected with the methods that were used in this study. Recently, 

small hr-like sequences were detected by sequence analysis of SeMNPV (R. Broer et al., in 

preparation). 

The availability of a cosmid library and a physical map of SeMNPV-DNA 

constructed for several restriction enzymes now allows a detailed study of the SeMNPV 

genome, its replication mechanism, the characterization of genes located on the deleted 

segment. Furthermore, the physical map of SeMNPV-DNA facilitates the study of the genetic 

relatedness of this virus with other baculoviruses. 
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Chapter 3 

SPECIFICITY OF MULTIPLE HOMOLOGOUS GENOMIC REGIONS IN 

SPODOPTERA EXIGUA NUCLEOPOLYHEDROVIRUS DNA REPLICATION2 

Summary 

Sequence analysis of the region upstream of the Spodoptera exigua multicapsid 

nucleopolyhedrovirus (SeMNPV) ubiquitin gene (van Strien et al., 1996) revealed the 

presence of four near-identical 68 base pair (bp)-long palindromic repeats. This region, 

named SeAr6 and located at map unit (m.u.) 88 of the SeMNPV genome on pSe£coRI-2.2 

showed structural homology to previously identified homologous regions (hrs) in a number 

of other baculoviruses. Hrs function as enhancers of transcription and as putative origins 

(oris) of baculovirus DNA replication. Five additional hrs (Sehr\-Sehr5) were identified on 

the SeMNPV genome by Southern blot hybridization with an 18 bp-long oligonucleotide, 

complementary to a sequence conserved within the arms of the four palindromic repeats of 

Sehr6. Sehrl to Sehr6 were found dispersed on the SeMNPV genome at m.u. 8.0, 30.0, 38.5, 

51.0, 77.0, and 88.0, respectively. Sequence analysis of these hrs confirmed the presence of 

palindromic repeats, highly similar to those found in pSeEcoRl-2.2. The number of 

palindromes varied from one (Se/?r4) to nine (Sehrl) per hr. The Sehrs are all present in non-

coding regions of the SeMNPV genome and also contain multiple putative transcription 

recognition sequences. Plasmids containing either of the Sehrs replicated in a SeMNPV-

dependent DNA replication assay. The Se^rs were unable to replicate in an AcMNPV-

dependent DNA replication assay. This was in contrast to the previously observed SeMNPV 

non-hr type oh, which replicated in the presence of both AcMNPV and SeMNPV. These data 

suggest that the replication of SeMNPV and the role of hrs in this process is highly specific. 

This chapter will be published as: 
R. Broer, J.G.M. Heidens, E.A. van Strien, D. Zuidema and J.M. Vlak (1998). Specificity of multiple 
homologous genomic regions in Spodoptera exigua multicapsid nucleopolyhedrovirus DNA replication. 
Journal of General Virology 79, 000-000. 
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Introduction 

DNA replication is a key process in the multiplication of DNA viruses which 

involves cis- and fra/w-acting elements (Kornberg and Baker, 1992). Baculovirus DNA 

replication has been predominantly studied for Autographa californica multicapsid 

nucleopolyhedrovirus (AcMNPV) and Orgyia pseudotsugata MNPV (OpMNPV) (see Lu et 

al, 1997, for review). Within the AcMNPV genome two types of cw-acting elements have 

been identified as putative origins of DNA replication {ori). These oris were able to replicate 

transiently when transfected into insect cells in the presence of AcMNPV, which provided the 

six essential trans-acting factors, IE-1, DNA polymerase, helicase, LEF-1, LEF-2, LEF-3, 

and the anti-apoptotic factor P35 (Kool et al., 1994). 

The first type of ori is represented by the homologous regions (hrs), which are found 

dispersed over the AcMNPV genome (Cochran & Faulkner, 1983; Pearson et al., 1992; Kool 

et al., 1993). AcMNPV hrs are characterized by the presence of two to eight repeats of a 72 

bp-long sequence with an internal 28 bp-long imperfect palindrome with an EcoRl site at its 

center. Hrs have been identified in the genomes of a number of baculoviruses such as Bombyx 

mori NPV (BmNPV) (Majima et al, 1993), Orgyia pseudotsugata MNPV (OpMNPV) 

(Ahrens et al, 1995), Lymantria dispar MNPV (LdMNPV) (Pearson and Rohrmann, 1995), 

Choristoneurafumiferana MNPV (CfMNPV) (Xie etal, 1995) and Anticarsia gemmatalis 

MNPV (AgMNPV) (Garcia-Canedo et al, 1996). Therefore, the presence of hrs can be 

considered a characteristic feature of baculoviruses. 

In AcMNPV and OpMNPV, hrs also act as enhancers of early gene expression when 

placed in cis to immediate-early and delayed-early promoters. The efficiency of enhancement 

depends on the presence of the baculo virus regulatory immediate-early gene product IE1 

(Guarino and Summers, 1986; Theilmann and Stewart, 1993). AcMNPV IE1 binds as a dimer 

to the palindromic sequences of an hr (Rodems and Friesen, 1995). Interaction of IE1 with 

these sequences is essential for hrs to function as transcriptional enhancers (Leisy et al., 

1995). The 28 bp core of the palindrome acts as ori, whereas additional flanking sequences 

are required for enhancer activity (Leisy et al, 1995; Habib et al, 1996). 

The second type of putative baculovirus ori does not contain Är-related sequences 

(non-hr ori), but direct repeats and AT-rich regions resembling eukaryotic ori's (Kool et al., 

1993; De Pamphilis, 1993). Only one copy of such a non-hr ori was found in the AcMNPV 

genome (Kool et al, 1994; Lee & Krell, 1994). Non-Ar or f s have also been identified in the 

genomes of OpMNPV and Spodoptera exigua MNPV (SeMNPV) (Pearson et al, 1993; 

Heidens et al, 1997). Enhancing activity of non-hrs has not been demonstrated yet. Up to this 

point it is unclear what the role or relative contribution of either of these two types of putative 
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oris is in baculovirus DNA replication in vivo. The mechanism of baculovirus DNA 

replication is enigmatic, although a rolling circle model has been proposed (Leisy and 

Rohrmann, 1993). 

SeMNPV is a member of the Baculoviridae family and has a double stranded circular 

DNA genome of approximately 130 kb (Murphy et al, 1995; Heidens et al, 1996). SeMNPV 

infects only a single host insect, the beet army worm S. exigua, and is successfully applied as 

a biological insecticide against this pest insect (Smits and Vlak, 1994). A detailed restriction 

map and an overlapping cosmid library of SeMNPV DNA have recently become available 

(Heidens et ai, 1996). Several SeMNPV genes have been identified such as those encoding 

polyhedrin,plO, rrl (ribonucleotide reductase) and ubiquitin (Van Strien et al, 1992; 

Zuidema et al, 1993; Van Strien et al, 1996; Van Strien et al, 1997). The genetic 

organization of the SeMNPV genome appeared to be considerably different from that of 

AcMNPV and OpMNPV (Van Strien, 1997; Ayres et al., 1994; Ahrens et al., 1997). In this 

report the identification and characterization of Ars in the genome of SeMNPV is described 

and their replication competence in SeMNPV and AcMNPV-infected insect cells is 

investigated. The specificity of hrs may be one factor involved in the specificity of SeMNPV 

DNA replication. 

Materials and methods 

Cells, virus, plasmids and cosmids 

S.frugiperda (S/-AE-21) (Vaughn et al., 1977) and S. exigua (Se-IZD-2109) cells (a 

gift from B. Möckel) were cultured in TNM-FH medium (Hink, 1970) supplemented with 

10% fetal calf serum (FCS). The SeMNPV-US isolate (Gelernter and Federici, 1986) and the 

AcMNPV E2 strain (Smith and Summers, 1982) were produced using S. exigua fourth instar 

larvae. Routine cell culture maintenance and AcMNPV and SeMNPV infection procedures 

were carried out according to published procedures (Summers and Smith, 1987; van Strien et 

al, 1996; Heidens et al, 1996). The SeMNPV plasmid and cosmid libraries were described 

previously (Heidens et al, 1996). 

Southern blot hybridization 

SeMNPV DNA, which was isolated from occlusion body-derived (ODV) viral DNA 

was digested with various restriction enzymes, separated in a 0.7% agarose gel and 

transferred to Hybond-N nylon membrane (Southern, 1975). An 18 bp-long oligonucleotide, 

RB-33 (5'-TAC ACG ATC TTT GCT TTC-3'), was made based on a conserved sequence 
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within the P repeats within Sehr6 (see below, Fig. 3.6A). The membrane was hybridized 

overnight in Church buffer (0.25 M sodium phosphate, pH 7.2, 7% SDS, 1% BSA, 1 mM 

EDTA) at 50° C with R.B-33, which was end-labelled with [y-32P]dATP using T4-kinase 

(Gibco BRL). The blot was washed once at room temperature followed by an incubation step 

for 30 min at 50° C in the Church buffer to remove unbound label and primer. The blot was 

exposed to Kodak XAR film. 

Construction ofhr-containingplasmid clones 

SeMNPV DNA fragments were cloned into eitherpUC19,pTZ19 orpBluescript-

KS+, and transformed into Escherichia coli DH5a using standard techniques (Sambrook et 

al., 1989). DNA isolation, purification, digestions with restriction enzymes (Gibco BRL), 

agarose gel electrophoresis and Southern blotting were carried out according to standard 

procedures (Sambrook et al., 1989) 

Plasmid pSe£coRI-2.2 containing the SeMNPV ubiquitin gene, was described 

previously by van Strien et al. (1996). The fragments that hybridized to the RB-33 were 

cloned and analyzed. Clone pSeCHK-5.7 was obtained after digestion of SeMNPV fragment 

Xbal-C with Hindlll and Kpnl, and subsequent isolation of the 5.7 kb Hindlll-Kpnl 

restriction fragment and cloning into pUC19. Plasmids pSeXbal-H and pSeA7j>aI-N were 

taken from the Jftal-library of SeMNPV in pUC19 (Heidens et al., 1996). Clone pSeBPstl-

5.6 was obtained after digestion of cosmid 17 DNA (Heidens et al., 1996) with BamUl and 

Pstl. Plasmid pSe^ïI-M was obtained by digestion of SeMNPV ODV DNA with Pstl and 

insertion of the Pstl-M fragment into Psd-digested pUC19. Clone pSePSpeI-6.3 was obtained 

after digestion of cosmid 22 DNA (Heidens et ai, 1996) with Pstl and Spel, and insertion of 

a 6.3 kbp fragment into Pstl and Jftal-digested pUC19. Achr5 was present on pAcHindlll-L 

(Kool et al., 1993). All plasmids were amplified in E.coli DH5oc and JM101 (Dam+) strains. 

Replication assay 

The assay to test the replicative ability of the Sehr and Achr plasmids was as 

previously described by Heidens et al. (1997) for the SeMNPV non-hr. In short 106 Sf-AE-21 

cells were transfected with 1 ug SeMNPV or AcMNPV /w-containing plasmids and infected 

16 h later with the respective MNPVs with a multiplicity of infection of 1 TCID50 unit per 

cell. Plasmid pUC19 was added (1 ug) as control for the amount of plasmid DNA retrieved 

after extraction. The cells were harvested 48 h post infection (hpi) (AcMNPV) or 72 hpi 

(SeMNPV). Total DNA was isolated from 106 infected cells (Summers & Smith, 1987) and 

resuspended in 60 ul H20. One aliquot (10 ul) was digested with Hindlll to linearize the 

plasmid DNA. A second aliquot (10 ul) was digested with Hindlll and Dpnl. The use ofDpnl 

allows the discrimination of input (.DpwI-sensitive) and replicated plasmid DNA (jDpril-
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insensitive) (Kool et al, 1993). After agarose gel electrophoresis, the DNA was transferred to 

a nylon membrane filter (Hybond-N) and hyl 

plasmid sequences (Sambrook et al, 1989). 
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a nylon membrane filter (Hybond-N) and hybridized to a P-labelled pUC19 to detect 

Nucleotide sequencing 

The nucleotide sequence of the cloned fragments was obtained by sequencing 

overlapping subclones of the fragments and/or by a primer walking strategy using standard 

and custom-designed oligonucleotide sequence primers. Sequencing was carried out at the 

Core Facility for protein and DNA Chemistry at Queens University in Canada using the 

dideoxy chain termination based protocol (Sanger et al, 1977). Sequence analyses were 

carried out using UWGCG computer programs (Devereux et al, 1984) and MEGALINE for 

Windows (DNASTAR Inc., 1995). The relevant nucleotide sequence data are available in the 

Genbank nucleotide sequence database under accession number XXXXXXX. 

Results 

Sequence analysis ofpSeEcoRI-2.2 

Analysis of sequences upstream of the SeMNPV ubi gene region on fragment 

pSe£coRI-2.2 (m.u. 87.2 to 89.0) revealed the presence of four homologous repeats located in 

a non-coding region of about 900 bp (Fig. 3.1b). The four homologous repeats (P1-P4) 

contained a near-perfect palindrome of 68 bp in length, of which each of the last three repeats 

(P2 to P4) were centred around a Bglll site. The Bglll site in PI was imperfect. Further 

analysis of the region between palindromes P3 and P4 showed the presence of two direct 

repeats (DRla and DRlb) of 47 bp in length (Fig. 3.1c). The organization of this region is 

comparable to that of other baculovirus hrs (Lu et al, 1997). This suggests that the identified 

palindromic repeats might represent a SeMNPV /w-type ori (Sehr). 

Within eukaryotic oris the processes of transcription and replication are often tightly 

linked (Heintz et al, 1992). This is reflected by the presence of multiple transcription factor 

binding sites and transcription initiation sites near or within eukaryotic ons. Several such 

sequences were identified in the region encompassing the putative Sehr (Fig. 3.1c; Fig. 3.2). 

A CGTGC motif is found, which is an important early transcription initiation site in 

AcMNPV DNA polymerase (Tomalski et al, 1988) and helicase (pi43) genes (Lu and 

Carstens, 1992). This motif, or its inverse, was present four times in this Sehr. Two CGTGC 

motifs were clustered in a 50 bp segment located 350 bp upstream of the 5' end of the PI (not 

shown). One CGTGC motif was located 20 bp upstream of the 5' end of P4. Three 
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consensuspolyadenylation signals (AATAAA) were present near the 3 end of P2, P3 and P4. 

Those at the 3' end of P2 and P4 were in an antigenomic orientation. Six copies of the 

MLTF/USF motif (CANNTG) (Carthew et al, 1985) and two copies of a CCAAT-motif 

(Benoist et al, 1980) were present within the 1300 bp Sail to EcoRl region. Ten copies of a 

less well characterized motif, 5'-CGATT-3' or its inverse (Lee & Krell, 1994), were also 

present within a 800 bp region downstream of P3 (Fig. lc and Fig. 3.2, Sehr6). 

Identification and sequence analysis of additional SeMNPV hrs 

The presence and dispersed occurrence of hrs appears to be a common feature of 
baculovirus genomes. An 18 bp-long oligonucleotide fragment, RB-33, was designed based 
on a conserved region in palindromes PI to P4 in pSe£coRI-2.2 and hybridized to SeMNPV 
DNA restriction fragments to identify other hr regions on the SeMNPV genome. Several 
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Figure 3.1. 

a) Genomic location of hrs on the genome of SeMNPV with Xba\ and Pst\ restriction sites. The location and 
direction of transcription (arrows) of the SeMNPV polyhedrin (ph), helicase, ubi and pi 0 gene, and the location 
of the SeMNPV non-hr type origin, are shown. 

b) The location of the pSe£coRI-2.2 fragment between map units 87.2 and 89.0 on the Aïal-restriction map of 
SeMNPV DNA. The black boxes represent the position of the palindromic repeats PI - P4 within the hr on the 
pSe£coRI-2.2 fragment. 

c) Nucleotide sequence of the 1.3 kb Sal\-EcoK\ fragment within fragment pSe£coRJ-2.2. Restriction sites are 
indicated in italics letters. Palindromic repeats PI to P4 are underlined. An asterisk (*) represents a mutation in 
PI that disrupts the ßg/11-site. The direct repeats DRla and DRlb are doubly underlined. The CGATT-motif is 
denoted in bold and marked with a • , above or below the sequence depending on whether the motif is present 
on the forward or complementary strand. Putative poly-A signals are in bold. The CANNTG (MLTF/USF)-
motif are marked as •. The stopcodons of ORF xhl35 and xbl87 (van Strien, 1997) are boxed. 
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Figure 3.1c 
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oligonucleotide-specific hybridization signals were observed, which were subsequently 

mapped to restriction fragmentsXbal-B, Xbal-C Xbal-H, Xbal-N, Pstl-M (Fig. 3.1a), Spel-G 

and Sstl-E (not indicated). Two fragments, Xbal-B and Xbal-H, are adjacent fragments on the 

physical map of the SeMNPV genome and represent pSe£coRI-2.2. These hybridization data 

and comparison with the location of the respective fragments suggest that hr-like sequences 

occur dispersed on the SeMNPV genome as well. 

Further subcloning of fragments Xbal-C, Spel-G and Sstl-E and hybridization with 

RB-33 revealed (data not shown) that putative SeMNPV hrs are present on fragments 

pSeBPs/I-5.6, pSeCHK-5.7, pSeP^eI-6.3, derived from Pstl-C, Xbal-C and Xbal-B, 

respectively. Further hrs were found on pSeP^rt-M and pSeJf&al-N. The hrs are numbered 

Sehr I to Se^r6 according to their relative map position on the physical map of the SeMNPV 

genome (Fig. 3.1a). 

Sequence analysis of the fragments containing Sehrl to Sehr5 confirmed the 

presence of clusters of P repeats, which were highly homologous to those found in Sehr6. 

The number of P repeats present varied per hr ranging from one in SehrA to nine in Sehrl 

(Fig. 3.2, Table 3.1). The sequences of Sehrl to SehrS were examined for the presence of the 

putative transcriptional motifs and DRs found in Sehr6 (Fig. 3.1c). A size limit of 500 bp was 
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Figure 3.2. 
Organization of palindromic repeats (P), direct repeats (DR) and other motifs within Se/wl to Se-hr6. 
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set to either side of each hr in the analysis of sequence motifs. A novel direct repeat sequence 

element (DR2), 37 bp in length, was found in front of five out of the nine P repeats observed 

in Sehrl, and in front of two out of the seven P repeats in SeAr5. The DR2 motif, 

characterized by the consensus TCATcGCtAAAaATAGATTTGACgCAATacaAAACT, was 

not present in the other hrs. The DR1 motif identified in Sehr6 was not present in Sehrl to 

SeAr5. 

Alignment of Sehr repeats 

When all thirty-two P repeats in Sehrl to Sehró are aligned, a consensus sequence 

could be derived which forms a perfect hairpin (Fig. 3.3a and b). None of the individual P 

repeats contains the consensus sequence. Twenty-six nucleotides are absolutely conserved, of 

which an AAAGCAAA stretch (right arm sequence) is most notable. The SeMNPV P repeats 

are further characterized by the presence of a BgRl site at the core/loop region of the 

palindrome. The Bglil site is sometimes imperfect. Variations occur in the top and the bottom 

of the hairpin. Alignment of the consensus sequence or each of the individual SeMNPV P 

repeats failed to show sequence homology with hrs of AcMNPV, OpMNPV, LdMNPV, 

SpliNPV, CfMNPV or AgMNPV, but the arrowed G and C (Fig. 3.3b) are absolutely 

conserved at that position in all hrs (not shown). 
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a) Alignment of all 32 palindromic repeats from Sehr\ to Sehr6 and deduced Sehr consensus sequence. 
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b) Potential hairpin structure of individual P repeats of the SeMNPV hrs. *,** and *** represents sequence 

variation between 30 and 60%, 60 and 90% and > 90% respectively. The boxed sequence and the bold 

nucleotides are conserved in all repeats. 

Replicative ability of Sehr s 

The ability of all SeAr-containing fragments to replicate was tested in a SeMNPV-

dependent DNA replication assay (Fig. 3.4). All Se/ws were able to replicate in the presence 

of SeMNPV as helper-virus (Fig. 3.4, lanes 2 to 7). The replication was /zr-specific, since 

plasmid pUC19 (Fig. 3.4, lane 8) and a SeMNPV fragment without a putative ori, pSeXbal-

Fl (Fig 3.4, lane 10) (Heidens et al., 1997, did not replicate in the assay. Sf-AE-21 cells 

transfected with pSe£coRI-2.2 (Fig. 3.5, lane 1) and pUC19 (Fig. 3.5, all lanes) alone were 

included in the assay in order to identify the background of input DNA for Dp«I-digestions. 

All Är-containing SeMNPV fragments (Fig. 3.5, lanes 2 to 7) replicated at a lower level than 

the non-hr type ori (Heidens et al., 1997) present on pSeXbal-F2 (Fig. 3.5, lane 11). Based on 

the replicative ability of pSeCHK-5.7 (Se/w4; Fig. 3.5, lane 4) and of pSeXbal-H (Fig. 3.1a; 

results not shown), both containing a single P repeat, it was concluded that the replication 

assay was highly sensitive and that presence of a single palindromic sequence was sufficient 

for replication activity. 
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Figure 3.4. 

Transient replication assay of putative /»--containing SeMNPV fragments in Sf-AE-21 cells infected with 
SeMNPV. Sf-AE-21 cells (5 X 104) were transfected with 0.5 ug of SeMNPV plasmid and pUC19 as a internal 
control. Plasmid pSe£coRI-2.2 (SeA/tf) (lane 2), pSeBPstl-5.6 (Sehr2) (lane 3), pSeCHK-5.7 (Seto-4) (lane 4), 
pSeJfial-N (Sehr!) (lane 5), pSePstl-M (Sehrl) (lane 6), pSePSpel-63 (Se/w5) (lane 7), pUC19 alone (lane 8), 
pSeXial-Fl (lane 10) and pSe*M-F2 (Se non-hr) (lane 11) transfected Sf-AE-21 cells followed by SeMNPV ' 
infection. Plasmids pSe£coRI-2.2 (SeArô) (lane 1) and pUC19 (lane 9) were without SeMNPV infection. The 
arrow indicates the position of pUC19, which served as an internal control for DNA yields obtained and for the 
efficiency of DpnI-digestions. The + or - sign above the lanes indicate whether the sample was digested with 
Hindm (-) or with both Hindïïl and Dpnl (+). Southern hybridization was carried out using 32P-labelled pUC19 
as a probe. 

Specificity ofSehrs in DNA replication 

To test the specificity of the hrs for SeMNPV DNA replication factors, it was 

investigated whether AcMNPV could recognize and replicate SeMNPV hr oris and SeMNPV 

the AcMNPV hr oris. Sf-AE-21 cells were thus transfected with Sehr6 or Ac/w5 and infected 

with AcMNPV or SeMNPV, respectively. The results show that Sehr6 only replicates in the 
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presence SeMNPV (Fig. 3.5, lane 2) and not in the presence of AcMNPV (Fig. 3.5, lane 1). 

Conversely, AchrS did not replicate in the presence of SeMNPV (Fig. 3.5, lane 4) suggesting 

that the DNA replication is /zr-specific. These results contrast with the observation that the 

SeMNPV non-hr ori was able to replicate to a significant level in the presence of AcMNPV 

as helper virus (Heidens et al., 1997). 

AcMNPV 

OpMNPV 

CfMNPV 

SeMNPV 

SpliNPV 

AcMNPV-Är 

+ 
+ 

+ 

-
+ 

OpMNPV-

-
+ 

nd 

nd 

nd 

hr CfMNPV-/w 

-
nd 
+ 

nd 

nd 

SeMNPV-/w 

-
nd 

nd 
+ 

nd 

SpliMNPV-fo-

+ 

nd 

nd 

-
+ 

Table 3.1. 

Number and types of sequence motifs found within Sehrl to Sehr6. Palindromes with 
TACACGATCTTTCTTTC, DR1 with TGAACGTTAATTTC and DR2 with TAGATTTGAC consensus 
repeat. AcMNPV early transcription signal CGTGC (Tomalski et al., 1988),. MLTF/USF motif CANNTG 
(Caithewe/a/., 1985). 

Discussion 

Analysis of a 1.5 kb region flanking the SeMNPV ubiquitin gene (Van Strien et al, 

1996), revealed the presence of sequence motifs structurally reminiscent of homologous 

regions (Ars) in other baculoviruses. This region (Se/w6) contained four palindromic repeats 

(PI-4), two direct repeats (DR) and a number of other motifs which could be involved in 

regulation of transcription. Sehró also replicated in a SeMNPV-dependent DNA replication 

assay. This strongly suggests that this SeMNPV sequence is an hr (Lu et al, 1997). 

Hybridization of a conserved oligonucleotide sequence of these P repeats of Sehr6 

with the SeMNPV genome led to the identification of five additional Ar-regions in the 

genome, numbered Sehrl to Se/w5 according to their relative position on the SeMNPV 

physical map (Heidens et al, 1996). The Sehrs described here are interspersed throughout the 

genome in a similar fashion as in other baculoviruses. Even an hr with only a single P repeat 

(Sehr4) was identified by Southern hybridization making the presence of additional hrs of 

this type unlikely. The presence of multiple hrs in baculoviruses may provide redundancy of 

oris to ensure DNA replication. 
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Virus 

Origin 

Dpnl 

.«f , # # # 

SeMNPV-ftr AcMNPV-ftr 

1 2 3 4 

Figure 3.5. 

Specificity of SeMNPV hr activity in transient replication assays. Sf-AE-21 ceils were transfected with 

pAc/Zmdlll-L (AcM) followed by SeMNPV infection (lane 4), pAcffimJIII-L (AcAr5) followed by AcMNPV 

infection (lane 3), pSeÊcoRI-2.2 (Sefe-6) followed by SeMNPV infection (lane 2), pSe£coRI-2.2 (Se/w-6) 

followed by AcMNPV infection (lane 1). The + or - sign above the lanes indicate whether the sample was 

digested with ///«dill (-) or with both tf/ndlll and Dpnl (+). 

A single repeat is a minimal requirement for plasmid-dependent DNA replication 

(Leisy et al, 1995). All plasmids containing an Sehr were replication competent in transient 

replication assays (Fig. 3.4), whereas numerous SeMNPV DNA-containing plasmids were 

found to be negative in the assay with the exception of SeMNPV Xbal-F which contained a 

non-hr ori (Heidens et al, 1997). It is possible that other hr-like sequences occur, but these 

have not yet been discovered in the 70 kb sequence presently available for SeMNPV (R. 

Broer, unpublished results). Comparison of the replicative activity of the six Se/zrs did not 

reveal a positive correlation between the number of P repeats and the replicational signals 

observed. 
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Motifs DR1 and DR2 may be candidates for modulation of DNA replication and/or 

transcription since they occur in Se/wl, Sehr5 and Sehr6, but not in SeAr2 to 4. The Sehr 

regions also contained a number of other motifs and repeats which may be involved in either 

DNA replication and/or enhancement of transcription by Sehrs. Preliminary experiments 

indicate that Sehr6 acts as an enhancer of SeMNPV ie-1 expression (D.A. Theilmann and 

E.A. van Strien, personal communication). Mutational analysis of these motifs could provide 

more insight into the role that these sequences might play in DNA replication and 

enhancement of transcription. 

All Sehrs contained a near-identical 68 bp-long palindromic repeat with no sequence 

homology with other known baculovirus hrs (Fig. 3.3a). The palindrome is much larger than 

that of AcMNPV (28 base pair) and CfMNPV (36 bp), but the structure with a central core 

sequence resembling a restriction enzyme recognition site is highly similar to hrs of other 

baculoviruses. Both the length of the repeat and the unique sequence may contribute to the 

specificity in replication competence of the Se/ws for SeMNPV. Sequence alignment of all 

SeMNPV hrs indicate that there is a highly conserved octamer sequence in one of the arms of 

each repeat. Although sequence homology between baculovirus hrs is lacking, a juxtaposed 

GC bp (Fig. 3.3b) is highly conserved at a fixed position in each repeat. The functional 

significance of this putative G-C pair as well as the octamer box is unclear. 

P-repeat 

DR 1-repeat 

DR2-repeat 

CCAAT 

Early 

MTL/USF 

Poly-A 

CGATT 

hr-1 

9 

0 

5 

5(3) 

2(2) 

14 

5(3) 

6(2) 

hr-2 

5 

0 

0 

4(2) 

3(2) 

5 

3(1) 

7(4) 

hr-3 

5 

0 

0 

2 

3 

1 

5(2) 

7(3) 

hr-4 

1 

0 

0 

4(2) 

5(1) 
6 

6(5) 

5(20 

hr-5 

8 

0 

2 

2 

0 

3 

6(4) 

5(3) 

hr-6 

4 

2 

0 

2 

4(3) 
6 

3(2) 

10(5) 

Table 3.2. 

Transient replication assays of baculovirus hrs in baculovirus-infected insect cells. +, positive signal; -, negative 
signal, nd, not determined. 

Individual P repeats showed mismatches in conserved locations in the sequence (Fig. 

3.3a) and they are characterized by the presence of a (degenerated) restriction site, Bglll, at 

the putative bulge region of the stem-loop (Fig. 3.3b). A similar situation exists in AcMNPV 

where a degenerated EcoKl site is present in the hr (Cochran and Faulkner, 1983). 
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Mismatches are found in all identified palindromic repeat-containing baculovirus hrs. 

Rasmussen et al. (1996) investigated whether these mismatches allowed a palindromic repeat 

to form a cruciform structure, which could enable the binding of the baculovirus 

transactivator IE-1. However, it was found that IE-1 did not bind to a 42 bp perfect and 

imperfect hairpin structure derived from Achr\ under cruciform forming conditions 

suggesting that the cruciform formation does not have a direct role in IE-1 binding. IE-1 did 

however bind to the 42 bp perfect and imperfect oligonucleotides with equal affinity under 

normal non-cruciform forming conditions, indicating that the conserved AcMNPV 

palindromic mismatches do not affect IE-1 binding. Maybe the binding of IE-1 to the 

palindrome is insufficient to enhance transcription, but is required for replication 

underscoring the bifunctionality of baculovirus hrs (Habib et ai, 1996). 

In contrast to the SeXbal-¥2 non-hr ori (Heidens et al., 1997) the replication of 

Se/zrs is highly specific. This is unlike the situation with AcMNPV hrs when tested with 

other baculoviruses (Table 3.2). Plasmids containing AchrS, for example, replicate when 

transfected into OpMNPV-infected Ld652-Y cells (Ahrens et al., 1995) or CfMNPV-infected 

Cf-124-T cells (Xie et al., 1995). However, Cfhr\-containing plasmids could not replicate in 

the presence of AcMNPV in Sf21 cells (Xie et al, 1995) as is the case for Sehrs. Spodoptera 

litoralis MNPV hr (Faktor et al., 1997) does replicate in AcMNPV-infected cells, but not in 

SeMNPV-infected cells (J.G.M. Heidens, unpublished results). These data suggest that 

AcMNPV hrs are often more promiscuous than hrs of other viruses except when they are 

transfected into SeMNPV-infected cells. These data provide evidence that SeMNPV DNA 

replication is a highly specific process. 
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Chapter 4 

IDENTIFICATION AND FUNCTIONAL ANALYSIS OF A NON/ffl ORIGIN OF 

DNA REPLICATION IN THE GENOME OF SPODOPTERA EXIGUA 

MULTICAPSIDNUCLEOPOLYHEDROVIRUS3 

Summary 

The genome of Spodoptera exigua multicapsid nucleopolyhedrovirus (SeMNPV) 

was screened for the presence of putative origins of DNA replication (ori). Using a transient 

DNA replication assay, several fragments were identified that underwent SeMNPV-

dependent DNA replication in Spodoptera frugiperda cells (Sf-AE-21). Preliminary sequence 

data revealed the presence of multiple copies of homologous repeats (hr). Restriction 

fragment Xbal-F2 showed a distinct sequence reminiscent of Autographa californica and 

Orgyia pseudotsugata MNPV non-hr oris. Deletion analysis of this fragment indicated that 

the essential sequences of this putative non-hr ori mapped within a region of 800 bp. 

Sequence analysis of this region showed a unique distribution of six different (im)perfect 

palindromes, several poly-adenylation motifs and the occurrence of multiple direct repeats. 

No sequence homology or similarities to other reported baculovirus DNA replication origins 

were detected. The spatial and modular distribution of these motifs are similar to those of the 

non-hr oris of AcMNPV and OpMNPV. Alignment of baculovirus non-hr and consensus 

eukaryotic oris revealed no consensus baculovirus non-hr ori but indicated that each of the 

non-hrs studied sofar is unique. From the structural similarity, however, it was concluded that 

the SeMNPV Xbal-F2 ori represents a baculovirus non-hr type ori. In addition evidence is 

provided that SeMNPV renders more specificity to baculovirus DNA replication than 

AcMNPV. 

This chapter has been published as: 
J.G.M. Heidens, R. Broer, D. Zuidema, R.W. Goldbach and J.M. Vlak (1997). Identification and functional 
analysis of a non-hr origin of DNA replication in thye genome of Spodoptera exigua multicapsid 
nucleopolyhedrovirus. Journal of General Virology 78, 1497-1506. 
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Introduction 

Damage by the beet army worm, Spodoptera exigua, causes severe economic losses 

in important agricultural crops in (sub)tropical regions and in greenhouse cultivations in more 

moderate climate zones. Recently S. exigua MNPV (SeMNPV) has been registered in several 

countries as a biocontrol agent for the beet army worm (Smits and Vlak, 1994). 

Unfortunately, as for all baculoviruses, the speed of action of SeMNPV is relatively slow 

compared to chemical insecticides. It may take several days before virus infection reduces the 

feeding activity of the insects (Payne, 1988; Vlak, 1993). Nevertheless, SeMNPV is an 

attractive biocontrol agent, since it is relatively virulent for S. exigua larvae as compared to 

other baculoviruses for this insect (Gelernter and Federici, 1986a; Smits et al, 1988). 

Further improvement of the insecticidal properties of SeMNPV might be achieved by 

genetic engineering. Introduction of insect specific neurotoxin genes (McCutchen et al, 

1991; Stewart et al, 1991; Tomalski and Miller, 1991) into and the deletion of the 

ecdysteroid-UDP-glucosyltransferase gene (O'Reilly and Miller, 1991) from the genome of 

Autographa californica MNPV (AcMNPV) resulted in recombinant viruses which showed an 

increased speed of action and reduced feeding damage. In contrast to AcMNPV (Ayres et al, 

1994) little is known about the genetic organization of the SeMNPV genome. Genetic 

modification of SeMNPV requires more detailed knowledge about the molecular genetics and 

replication mechanism of the viral genome. A detailed physical map has recently been 

constructed (Heidens et al, 1996b) and a few genes e.g. coding for polyhedrin (van Strien et 

al, 1992), plO (Zuidema et al, 1993) and ubiquitin (van Strien et al, 1996) have been 

identified and characterized. Information about the identity and genetic location of cis- and 

/ra/w-acting factors involved in the replication of SeMNPV DNA is lacking. 

In AcMNPV (Pearson et al, 1992; Kool et al, 1993ab, 1994ab; Leisy and 

Rohrmann, 1993; Lee and Krell, 1994), Orgyia pseudotsugata MNPV (OpMNPV) (Pearson 

et al, 1993; Ahrens and Rohrmann, 1995a), Choristoneura fumiferana MNPV (CfMNPV) 

(Xie et al, 1995) and Lymantria dispar MNPV (LdMNPV) (Pearson and Rohrmann, 1995) 

origins of DNA replication (oris) have been identified and characterized using an infection-

dependent plasmid DNA replication assay. This assay is based on the resistance of or/ 

containing plasmids that have been able to replicate in animal cells, to digestion with the 

restriction enzyme Dpnl, in contrast to plasmids amplified in bacterial cells. Two types of 

oris have so far been recognized, designated as hr and non-Är (Kool et al, 1995). Hrs contain 

1 to 8 discrete 30 bp imperfect palindromic homologous repeats, which are interspersed along 

the genome (Cochran and Faulkner, 1983) and which also serve as enhancers of transcription 

(Guarino and Summers, 1986; Guarino et al, 1986). The non-hr oris of AcMNPV (Kool et 
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al., 1994a) and OpMNPV (Pearson et al., 1993) are more complex and unique. They contain 

AT-rich regions, direct repeats and hr unrelated palindromes. The non-hr ori of AcMNPV 

showed some distant structural homology to consensus eukaryotic origins of DNA replication 

(DePamphilis, 1993; Kool et al., 1994a). AcMNPV and OpMNPV trans-acting factors, 

required for ori activity in transient DNA replication assays have been determined (Kool et 

al., 1994c; Ahrens and Rohrmann, 1995bc; Ahrens et al., 1995). Among these factors are a 

helicase, DNA polymerase, LEF1, LEF2, LEF3 and IE-1. 

The genome of SeMNPV has been explored for the presence of origins of DNA 

replication. Two types of replicative motifs have been identified, hr and non-hr (Heidens et 

al., 1996a). The identification and analysis of the hr origins are described elsewhere (Chapter 

3). In this chapter we describe the characterization of a putative non-hr origin of DNA 

replication in the genome of SeMNPV and we discuss its relatedness to similar oris found in 

AcMNPV and OpMNPV. 

Materials ans methods 

Cells and Virus 

S.frugiperda (Sf-AE-21) cells (Vaughn et ai, 1977), S. exigua (Se-UCRl) cells 

(Gelernter and Federici, 19866) and S. exigua (Se-IZD2109) cells (B. Möckel and H.G. 

Miltenburger, unpublished results) were cultured in TNM-FH medium (Hink, 1970), 

supplemented with 10% fetal calf serum (FCS). The S. exigua multicapsid 

nucleopolyhedrovirus US-isolate (SeMNPV) (Gelernter and Federici, 1986a) was used as 

wild type (wt) virus. Routine cell culture maintenance and virus infection procedures were 

carried out according to published procedures (Summers and Smith, 1987; King and Possee, 

1992). 

Plasmid constructions 

SeMNPV subgenomic fragments were cloned into pUC 19 and transformed into 

Escherichia coli DH5a using standard techniques (Sambrook et al, 1989). DNA isolation, 

restriction enzyme digestion, agarose gel electrophoresis and Southern blotting were carried 

out according to standard protocols (Sambrook et al., 1989). 

DNA Replication assay 

The infection-dependent DNA replication assay was based on transfection of Sf-AE-

21 cells with plasmids containing SeMNPV DNA sequences, harboring putative origins of 
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DNA replication followed by infection with SeMNPV to provide the viral trans-acting 

factors necessary for plasmid replication. Plasmid DNA was subsequently isolated from the 

insect cells and assayed for resistance to Dpnl digestion. Plasmid DNA amplified in E. coli 

DH5ot (dam ), are methylated at adenine residues. Dpnl cleaves only DNA molecules that 

contain a methylated adenine residue in its recognition site (GATC). DNA that is amplified in 

insect cells does not contain methylated adenine residues and will therefore be Dpnl resistant. 

The DNA replication assay was performed essentially as described previously for 

AcMNPV replication (Kool et ai, 1993ab) with slight modifications. In brief, Sf-AE-21 cells 

were plated onto 35-mm-diameter tissue culture dishes at a density of 2*10 cells per dish 24 

h before transfection. Approximately 2 h prior to transfection the medium was removed from 

the cells and the cells were washed with TNM-FH medium without BSA and FCS. Cells were 

transfected with 1 ug of plasmid DNA using the calcium phosphate method (Graham and van 

der Eb, 1973; Summers and Smith, 1987). After 4 h of incubation at 27°C the medium was 

replaced with 2 ml TNM-FH medium supplemented with 10% FCS. Sixteen h after the 

transfection the cells were superinfected with SeMNPV (passage 1) at a multiplicity of 

infection of 2 TCID50 units per cell. 

DNA analysis 

SeMNPV-infected cells were harvested 72 h post infection (p.i.) and total DNA was 

isolated as described by Summers and Smith (1987). Half of the DNA was digested with 

restriction enzyme Hindlll to linearize the plasmid, the other half was digested with Hindlll 

plus Dpnl to determine if plasmid replication had occurred. After agarose gel electrophoresis 

the DNA was transferred to Hybond N+ nylon membrane (Southern, 1975) and hybridized 

with 32P-labeled pUC19 DNA (Sambrook et al, 1989). 

Sequencing 

Both strands of overlapping DNA fragments were sequenced using an automated DNA 

sequencer (Applied Biosystems) using the dideoxy chain-termination protocol (Sanger et al., 

1977). Sequence analyses were carried out using the UWGCG computer programs (Devereux 

et ai, 1984). 
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Results 

Insect cell line performance in virus-dependent DNA replication assay 

To identify SeMNPV DNA sequences that can function as origins of DNA 

replication recombinant plasmids containing these sequences have to be transfected 

efficiently into cell lines which support SeMNPV replication. Two S. exigua cell lines, Se-

UCR1 (Gelernter and Federici, 1986b) and Se-IZD2109 (B. Meckel and .H.G. Miltenburger, 

unpublished results) are permissive for SeMNPV replication, whereas Sf-AE-21 cells are 

semi-permissive. These cell lines were tested for their transfection efficiency using the 

plasmid pAcDZl, which contains the lacZ gene under control of a constitutive promoter 

(hsplO) as a reporter. Plasmid DNA was transfected into the insect cells using both the 

lipofectin (Life Technologies) and calcium phosphate precipitation method. The transfection 

efficiency, defined as percentage of blue cells per ug DNA in the presence of X-gal, for the S. 

exigua cell line Se-UCRl was very low (< 0.1%) compared to Sf-AE-21 cells (100%). The 

cell line &-IZD2109 could not be accurately tested since the cells clump as soon as the 

transfection reagents were added. In addition this cell type has endogenous ß-galactosidase 

activity which made assessment of the transfection difficult. The clumping of Se-IZD2109 

cells during transfection, most likely prevents the efficient infection of the cells nested in the 

interior of the clump by the virus which is applied the next day. Hence, the S. exigua cell 

lines were considered to be unsuitable for use in transient DNA replication assays. It was 

therefore decided to perform all subsequent analyses in Sf-AE-21 cells. 

Although 5. frugiperda is a non-susceptible host for SeMNPV, budded virus (BV) 

derived from heamolymph of SeMNPV-infected S. exigua larvae or generated in one of the S. 

exigua cell lines was able to infect Sf-AE-21 cells (Heidens et al., 1996b). Polyhedra were 

observed in 50% of the cells at 72 h post infection (p.i.). However, SeMNPV passaged twice 

in Sf-AE-21 cells was not able to infect new Sf-AE-21 cells (Heidens et al., 1996b). Besides 

all this the transfection of Sf-AE-21 cells is well documented (King and Possee, 1992). 

Therefore, the DNA replication assays were performed in Sf-AE-21 cells with budded virus 

(BV) derived from haemolymph of SeMNPV-infected 4th instar larvae or from SeMNPV 

passaged once in Se-IZD2109 cells. 

Identification of an SeMNPV origin of DNA replication 

To identify regions in the viral genome that can function as origins of DNA 

replication, a plasmid library harboring fragments of the SeMNPV genome was tested for the 

ability of individual plasmids to replicate in SeMNPV-infected Sf-AE-21 cells. This plasmid 

library contained 16 out of 18 possible Xba\ subclones. Fragments Xbal-A and -B were not 
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Figure 4.1. 
Physical map of SeMNPV DNA for restriction enzymes BamH\ and Xbal and a reference scale in map units 
(mu) and kilobase pairs (kbp). Subfragments Xba\-F\ and -F2 are indicated by an open and black bar, 
respectively. 

tested since they are too big, 35.6 and 17.5 kb respectively, to be cloned in pUC19 (Fig. 4.1). 

These DNA replication studies demonstrated clearly that several Xbal fragments gave rise to 

Z)pKl-resistant DNA (Heidens et ai, 1996a), indicative for DNA replication. Preliminary 

nucleotide sequence analysis (Chapter 3) suggested that all replicative fragments, except for 

Xbal-F, contained identical palindromic motifs reminiscent of AcMNPV hrs. This fragment 

(Se-^&al-F) had quite distinct sequence motifs compared to other Xbal fragments. Fragment 

Xbal-F was subcloned as two Xbal-BamHl subfragments using the single BamHl site within 

Xbal-F and these subclones were designated Xbal-F 1 and Xbal-F2 (Heidens et al., 1996b) 

(Fig. 4.1). Of these two subclones only Xbal-F2 (m.u. 60.7 to mu. 62.3) replicated in an 

infection dependent manner (data not shown). 

To further investigate and better map the on-active region in fragment Xbal-F2 (3.2 

kbp), a more detailed physical map of the fragment was constructed and several subclones 

were generated using internally located restriction enzyme sites (Fig. 4.2a). The Xbal-F2 
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Figure 4.2. 

Replication activity of several Xbal-F sublones. a) Restriction map of fragment Xbal-F2 and a schematic 

representation of the subclones tested for replication activity. The bar indicates 0.5 kbp. +/- indicative for 

replication activity of the subclones, b and c) Replication assay. Sf-AE-21 cells were transfected with 1 ug of 

Plasmid DNA (Xbal-F subclones and pUC19) and infected with SeMNPV (MOI=2 TCID50 units/cell), 24 h post 

transfection or mock infected. Cellular DNA was isolated 48 h p.i. and digested with HindUl with (+) or 

without (-) Dpnl. Southern blotting and hybridization was carried out using 32P-labeled pUC19 as probe. 
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subclone and subclones thereof were tested for their replication ability along with pUC19 as a 

negative control (Fig. 4.2b). Xbal-F2 and the subclones F22, F23, F26, F27 and F28 

replicated in SeMNPV-infected Sf-AE-21 cells, while the subclones F21, F24 and F25 did 

not replicate in the virus-dependent DNA replication assay. This suggested that the ori active 

sequences were located between the two Sspl sites around m.u. 61.4, spanning a region of 

approximately 800 bp. 

To confirm that the ori active sequence of Xbal-F2 was indeed located in the internal 

800 bp Sspl fragment, this subfragment was deleted from the Xbal-F2 fragment generating 

clone Xbal-F29. Subsequently, subclones Xba\-F22, Xbal-F27, the Xbal-F29 were tested for 

their ability to replicate (Fig. 4.2c). Plasmid Xbal-F29 was unable to replicate indicating that 

the internal 800 bp Sspl fragment harbors essential ori active sequences. These results do not 

rule out the existence of ori auxiliary sequences outside of this Sspl fragment, since 

subfragment Xbal-F22 appeared to replicate as efficiently as the entire Xbal-F2 subclone 

(Fig. 4.2bc). To prove that the ori active fragment was not only functional in Sf-AE-21 cells 

but also in cells derived from the natural host of SeMNPV, fragment Se-Xbal-F27 was tested 

for replication activity in SeMNPV-infected Se-IZD2109 cells. Fragment Se-^feaI-F27 did 

replicate in these cells although at a lower efficiency compared to its replication in Sf-AE-21 

cells (data not shown). This is probably due to the inefficient transfection and infection 

process for these cells as described above. 

Sequence analysis of the ori region of fragment Xbal-F2 

The 800 bp internal Sspl fragment from Sz-Xbal-F2 and about 200 bp up- and down

stream from this fragment was sequenced (Fig. 4.3). The Sspl fragment contains two small 

perfect palindromes (PI and P5) of 10 and 12 nt in size and 4 imperfect palindromes (P2, P3, 

P4, P6) varying in size between 11 and 33 nt (Table 4.1). Palindrome P2 appears twice in the 

sequence (P2a and P2b). Palindromes P3 and P2b are located in the left and right arm of 

palindrome P6 respectively. Several direct repeats were also observed (R1-R4), each 

appearing twice and varying in size from 9 to 19 nt. An internal fragment of repeat R2 (R2-

int) appears twice in the sequence. Repeat R3 covers also the left arm of palindrome P6 and 

repeat R4 is present once on the plus strand and once on the minus strand of the DNA. This 

complex structure of palindromes and direct repeats strongly resembles the non-hr structure 

identified in the AcMNPV Hindlll-K and OpMNPV Mndlll-N fragments (Kool et al., 1994a; 

Pearson et al., 1993). The absence of multiple palindromic repeats suggest that this ori is 

distinct from an hr-like origin. 

No open reading frame could be identified in any of the six reading frames in the 

SeMNPV non-hr. Clusters of transcription factor binding sites are, however, often associated 

with eukaryotic and viral origins of DNA replication (Heintz et al., 1992). A number of these 
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Accl 
1 TATGTCTCGA CGGGTTCGT^ L4CGTTACCG ATCCCCAGGA CAAACTCACA 

51 TACCACACGA TACAAATCGT TCCCCGCATC GATGCGTACG TGACTTTCGA 

101 CAAAAAGAAC GTGTACGTCG ATGTAATATA CAATGGTGAA ACTATTTCAA 

Sspl 

151 AAATTAGAAT CAAAACCCAA TTTGCCGGCA ACCTTTTAAT ATTGTAACÎG 

201 TGAATCAAAT GTGAATCTCC ACAAAGTCGT CGTGCTATCG AATTTAATAT 

251 AGATTTCGGC GAAAGACGCC TATAATATCG ATGAAGCGGT CCGAGTCGAA 

301 TGTTTGCGCC AAAAATTTTT CAATTTCATT TCAAGCGAAA CAAGGGCCAC 

351 TTTCGACAAC GAGTGAGGTT GGCTAAATIT TTAATAAACG TTTCATAAAG 

Rl 

401 TCGGTTTCGA CGAAAAATGC GTTATCGTCG AGTAAGTCTA AGAATCTTTG 
^ ^ P2a 

451 AGTAAACCAT TmTTTTTC AATGCGTTTT CGAAGAAACA GACGGTATTG 

501 TCGGTGAAAT TAACTTOTAA AACGAAACCA ATGACATTTC ATCGAAATGT 
R3 ; Z Z Z I Z I ^ Z ^ Z 

• ^ P3 
551 AATTTACGTT TCGACGAAAA ACATAGCCTT TTCGACAAAA TACACATATT 

• ^ ^ ^ - P6 Rl 
601 GTTTTCATCG AAATGTATCC AATTGTCGAA GAAGTGATGT AAAATCTATT 

R3 

651 GCGCAGTTAG AAAATTGCGC AGTTACAAAA TCTATTGCGC AGTTAATTTA 

R2 R2-int R2 

701 TGATGATATC ATATCACCTA TTGCATCATC TTTGTCAAAA CAATATGATA 

P4 R4 

751 TCGATGAAAG GGATGTGTAT TTCGCAGAAA CCATATGACG CAAATCATAC 

Sspl 
801 ATGTCGAAAC ATGTTAAAGA TGATGCAATA AAAACAG/)/fr ^77ÏJCGTCAT 

R4 
851 TTATTTTGAC GAAGTGTACA GTGTTTTCGA GTAAATGCAT TTTTTTAATT 

Spel 
901 TCAACGAA^C r^G7GCCAGT TTCGACGACA AAAAGTCAAT AAAAAAACAT 

951 TTAAATGTAA TACAAAATTT TATTGAAAGC CGGCCACCAA AGGAACGCAA 

P5 

1001 GGTTTAAACG CAAAAGTGTA CATTATGACT TGTTTGCATT GAGGACACTT 

Figure 4.3. 

Nucleotide sequence of the Xbal-F non-hr origin. The sequence is from left to right on the physical map of fig. 

4.1. Head-to-head arrows represent the (im)perfect palindromic sequences designated P; solid lines indicate 

direct repeats (R); dashed lines indicate putative poly-adenylation signals; restriction sites are in italics; putative 

transcription factor binding sites are indicated by an asterisk (*); the sequence designations correspond to those 

in table 4.1. 
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transcriptional motifs are present in the 800 bp Sspl segment of Xbal-F2 (Fig. 4.3). A 

CCAAT motif (Benoist et al, 1980), a modified AP-1 binding motif GTGACT(AA)C 

(Murakami et al, 1991) and several TATA boxes were also present (Table 4.1). Consensus 

Spl (Briggs et al, 1986), CRE (Montminy and Bilezkijan, 1987) or MLTF/USF (Carthew et 

al, 1985) motifs, that have been identified in the non-hr oh of OpMNPV (Pearson et al, 

1993) are absent in \htXba\-F2 fragment of SeMNPV. However, sequences which resemble 

the recognition site (-CANNTG-) for MLTF/USF and the immunoglobulin M heavy chain 

enhancer u£3 (Gregor et al., 1990) -GTCA—G- (opposite strand) are present at positions 

206, 620 and 535, 782 respectively, as was found in BmNPV hr, AcMNPV hr and non-hr 

and OpMNPV hr and non-hr sequences. All the described motifs are interspersed with 

multiple direct 5'-CGA-3' (61 times) and 5'-GTT-3' (43 times) repeats. These repeats are 

present on both DNA strands and appear at a much higher frequency than can be predicted on 

a random basis. 

Origin replication by heterologous viruses 

Baculovirus non-Är origins show low sequence homology and distant structural 

similarity. Because of the similarities in structure but differences in the primary sequence 

between the non-hr replication origins of SeMNPV and AcMNPV, the ability of the 

AcMNPV Hindlll-K (non-hr) oh (Kool et al, 1994a) to replicate in SeMNPV-infected Sf-

AE-21 cells and conversely the ability of the SeMNPV Xbal-F non-hr oh to replicate in 

AcMNPV-infected Sf-AE-21 cells (Fig. 4.4) was examined. The SeMNPV Xbal-F fragment 

showed a low level of replication when transfected into Sf-AE-21 cells infected with 

AcMNPV and high levels of replication in Sf-AE-21 cells infected with SeMNPV (Fig. 4.4). 

In contrast, the AcMNPV Hindlll-K oh replicates at high levels in Sf-AE-21 cells infected 

with AcMNPV but it does not replicate in Sf-AE-21 cells infected with SeMNPV (Fig. 4.4). 

The absence of replication of pUC19-transfected Sf-AE-21 cells infected with AcMNPV or 

SeMNPV (data not shown) confirms the specificity of the replication reaction. 

Discussion 

Data presented in this paper demonstrate that a putative origin of DNA replication 

(oh) is located on the Xbal-F fragment of SeMNPV. Deletion analysis of this fragment 

showed that essential elements of this oh are contained in an internal Sspl fragment of 800 bp 

(m.u. 61.4). This oh did not show any sequence homology to known origins of DNA 

replication of either the hr or the non-hr type identified in OpMNPV (Pearson et al, 1993; 
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Ahrens et al, 1995a), AcMNPV (Pearson et al, 1992; Kool et al, 1993ab; Kool et al, 

1994a), LdMNPV (Pearson and Rohrmann, 1995) or CfMNPV (Xie et al, 1995). However 

there is sufficient structural similarity to the non-hr oris of AcMNPV (Kool et al, 1994a) and 

OpMNPV (Pearson et al, 1993) to suggest that the SeMNPV ori identified in this paper is a 

mm-hr type oh. 

Distinct structural motifs such as perfect and imperfect palindromes, a number of 

short and long repeats, AT-rich stretches or putative polyadenylation signals and modified 

transcription factor binding sites were observed in the non-Ar oris present in the genomes of 

OpMNPV (Pearson et al, 1993) and AcMNPV (Kool et al, 1994a). The length of these 

Motif 

PI 

P2A-P2B 

P3 

P4 

P5 

P6 

A1A 

A1B 

A2A 

A2B 

Rl 

R2 

R3 

R2-int 

R4 

API 

TATA 

CTF 

Sequence 

TTCCGGCAA 

TTTCGaCGAAA 
ACATTTCatcGAAATGT 

TGATATcATATCA 

ACATTTAAATGT 

TTTCaTCGAAAtGTAAtTTACgTTTCGAc 

GAA 

AATAAA 

TTTATT 

AAATTAA 
TTAATTT 

TTTCGACAA 

AAAATCTATTGCGCAGTTA 

TTTCATCGAAATGTA 

ATTGCGCAGTTA 
TATTGCATCATCTTT 

GTGACTTTC 

TATA 

CCAAT 

Position (nt) 

171-181 

405-415; 559-569 

534-550 

704-716 

947-958 

537-569 

383-388; 827-832; 938-942 

850-855; 969-974 

507-513 

693-699 

351--359; 580-588 

641-659; 677-695 

537-551; 603-617 

664-675 

719-733; 830-816 

90-98 

19, 127,248,271 

167,528,619 

Length 

10 

11 

17 

13 
12 

33 

6 

6 

7 

7 

9 

19 

15 

12 

15 

9 
4 

5 

Table 4.1. 
Structural motifs of the non-hr ori within the SeMNPV Xba]-F2 region. 
P1-P6 represent (im)perfect palindromes; Al A/A2A and A1B/A2B represent putative poly-adenylation signals 
on the plus-strand and minus strand, respectively; repeats are indicated with R1-R4; putative transcription factor 
binding sites are indicated by TATA, CTF and API. The positions refer to the nucleotide sequence in Fig. 4.3. 

putative origins varies in size from 1300 bp in AcMNPV Hind\ll-K (Kool et al, 1994a) to 

4000 bp in OpMNPV (Pearson et al, 1993) and the complexity with respect to the number of 

different structural motifs present and the frequency with which they appear also differs 
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considerably (Fig. 4.5). In addition, the absence of an ORF in the SeMNPV Xbal-F non-hr 

further suggests that it may have a regulatory function in transcription as well. It would also 

be of interest to see whether the SeMNPV Xbal-F non-hr as well as the AcMNPV and 

OpMNPV non-hrs have enhancer activity in transcription. 

Comparison of the non-hr oris of AcMNPV (Kool et al, 1994a) and OpMNPV 

(Pearson et al, 1993) with the consensus origin of DNA replication in eukaryotes as 

proposed by DePamphilis (1993) and the ori identified in the SeMNPV-JH>aI-F fragment 

revealed some striking similarities (Fig. 4.5). The primary sequence not showing any direct 

homology, the occurrence of multiple direct repeats, AT-rich stretches and palindromic 

structures found in the non-hr ori sequences and the absence of multiple palindromic repeats 

indicative of Ars supports the conclusion that the putative ori of DNA replication located on 

SeMNPV Xbal-F is of the non-hr type. 

The complexity and size of the non-hr oris and the relative position of the various 

motifs differs considerably among the baculo virusesdescribed here (Fig. 4.5). Unlike the hrs 

A A* ^ y y y # # "̂  <#* 
Xbal-F Hindlll-K 

+ - + - + - -

Figure 4.4. 

Replication ability of non-hr oris by heterologous viruses. Sf-AE-21 cells were transfected with 1 u.g SeMNPV 

Xbal-F or 1 ug AcMNPV ffindlll-K and then infected with either SeMNPV or AcMNPV (MOI=2 TCID50 

units/cell). Lanes marked - are digested with Hindlll, and the lanes marked + are digested with Hindlll and 

Dpnl except the lanes representing AcMNPV-infected, SeMNPV Xbal-F transfected insect cells, lanes marked -

are digested with Xbal and the lanes marked + are digested with Xbal and Dpnl. Analysis was performed as 

described in the legend of fig. 4.2. 
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where a core 30-bp palindromic repeat is sufficient for replication activity (Pearson et al, 

1992; Leisy and Rohrmann, 1993), in the non-hrs the situation is much more complex (Kool 

et al, 1994b). The relative importance of the various motifs in the replicative ability of 

AcMNPV and OpMNPV non-/?/* ori is unclear and needs further refinement. It is unlikely 

though that a consensus ori with respect to essential and auxiliary motifs can easily be 

derived. Deletion mutagenesis of the AcMNPV non-hr ori (Hindlll-K) already indicated that 

none of the individual motifs found were essential for replication activity (Kool et al, 1994a). 

The variation in the non-Ars may represent differences in the specificity of the replication 

process (Fig. 4.4). 

The presence and distribution of structural motifs within on-active sequences is most 

likely more important for ori activity than the primary sequence (DePamphilis, 1993). The 

overall features of eukaryotic and viral on-containing sequences suggest that they are able to 

form multiple hairpin structures, whereas the AT-rich sequences may be involved in DNA 

unwinding, strand separation and replication initiation (Umek and Kowalski, 1988; 

DePamphilis, 1993). AcMNPV was able to replicate the SeMNPV Xbal-F2 non-hr ori (Fig. 

4.4) and similar results were reported for a non-hr ori of OpMNPV (Hindlll-N) when it was 

transfected into AcMNPV-infected Sf9 cells (Pearson et al., 1993). Possibly, AcMNPV 

recognizes any sequence with structural homology with non-hr oris. However, the ori 

sequence itself is certainly not the only factor contributing to the replication activity of non-

hr oris. It would be of interest to test for example an SV40 or herpes virus on's in AcMNPV-

infected Sf-AE-21 cells. 

The AcMNPV non-hr ori (Hindlll-K) did not replicate in Sf21 cells superinfected 

with SeMNPV, whereas the SeMNPV non-hr ori in Xbal-¥2 did (Fig. 4.4). This hypothesis is 

supported by the observation that OpMNPV non-Ar ori lost 50% of its replicative ability in 

the presence of the AcMNPV helicase instead of the OpMNPV helicase. These results are 

based on the outcome of virus-independent replication assays, in which the OpMNPV trans

acting factors, DNA polymerase, helicase, LEF1, LEF2, LEF3 and IE1, involved in DNA 

replication, are supplied on plasmids (Ahrens et al, 1996). This result may be explained by 

the fact that AcMNPV and OpMNPV are more closely related to each other than to SeMNPV 

and that the trans-acting factors are mutually recognized. On this basis it can be predicted that 

the AcMNPV non-hr ori (Hindlll-K) will replicate in OpMNPV-infected L. dispar cells. If 

so, non-hr oris would therefore be specific only when the cis- and trans-acting factors match. 

This and other reports suggest that non-hrs may be wide-spread among 

baculoviruses. It remains to be seen, however, whether they actually serve as oris in vivo. The 

only evidence suggesting a functional role for the non-hr oris comes from the analysis of 

defective viruses (AcMNPV) isolated upon serial passage, where the non-hr sequences seem 

to accumulate (Lee and Krell, 1994). Detailed fine-mapping of the ori activity, mutagenesis 
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Figure 4.5. 

Comparison of the arrangement of AcMNPV (Kool et al, 1994a), OpMNPV (Pearson et ai, 1993)and 

SeMNPV (this paper) non-Ar like oris. Arrows (P1-P6) represent palindromic sequences, black boxes (AT) 

represent putative poly-adenylation signals, small triangles (R1-R4) represent repeated sequences and asterisks 

represent putative transcription factor binding sites. Open boxes indicate the ori auxilliary sequences, boxes 

marked ore and due represent origin recognition element and double stranded unwinding element respectively. 
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and DNA-protein binding studies need to be performed, to determine the function of the 

various motifs in the non-^r origins of baculovirus DNA replication. 
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Chapter 5 

CHARACTERIZATION OF A PUTATIVE SPODOPTERA EXIGUA MULTICAPSID 

NUCLEOPOLYHEDROVIRUS HELICASE GENE4 

Summary 

Putative baculovirus helicases have been implicated to play an important role in viral 

DNA replication and host specificity. The Spodoptera exigua multicapsid 

nucleopolyhedrovirus (SeMNPV) helicase is therefore of interest since the virus only infects 

the beet army worm. Sequence analysis of the SeMNPV Ief5-p39 (mu 46.5-55.1) region, 

which is colinear with the 39K-lef5 area in Autographa californica MNPV (Ayres et al, 

1994), revealed an open reading frame (ORF) of 3,666 bp potentially encoding a protein with 

a molecular weight of 143 kDa. This protein had considerable amino acid sequence similarity 

(58%) to AcMNPV pl43, including seven conserved motifs characteristic for helicases. In 

cultured insect cells this SeMNPV ORF is expressed from 4 to 12 h p.i. and its major 

transcript of 4 kb starts 11-12 nt upstream of the putative translational initiation site (ATG). 

To study their possible role in the specificity of baculovirus DNA replication, the putative 

AcMNPV and SeMNPV helicase genes were tested for their ability to replicate Ars (putative 

origins of DNA replication) in a transient DNA replication assay in insect cells. All viral cis-

and frww-acting factors were provided as plasmids using either Achr2 or Sehrl as DNA 

replication origin. SeMNPV pl43 could not subsitute AcMNPV pl43 in the transient assays 

supplemented with either hr. Similar results were obtained when the SeMNPV and AcMNPV 

iel genes were exchanged. None of the essential AcMNPV trans-acting factors could be 

complemented by SeMNPV infections to support DNA replication ofhrs. These data suggest 

a specific interaction between the baculovirus DNA replication factors to form the replisome 

and/or between the replisome and the origin of DNA replication. 

This chapter has been published as: 
J.G.M. Heidens, Y. Liu, D. Zuidema, R.W. Goldbach and J.M. Vlak (1997). Characterization of a putative 
Spodoptera exigua multicapsid nucleopolyhedrovirus helicase gene. Journal of General Virology 78, 3101-
3114. 
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Introduction 

Helicases play a key role in biological processes such as replication, repair, 

recombination, conjugation and transcription of DNA. They catalyse the unwinding of duplex 

DNA, RNA or DNA-RNA hybrids by disrupting the hydrogen bonds between the 

complementary base pairs (bp) in the double-stranded nucleotide filaments. The most 

commonly accepted mechanism for helicase functioning requires the enzyme to possess 

multiple DNA binding sites in order to bind reaction intermediates at the unwinding junction. 

This requirement seems to be met since most helicases, having one DNA binding site, appear 

to be active as oligomers (for review, Lohman and Bjornson, 1996). The unwinding reaction 

is driven by the hydrolysis of primarily ATP, although hydrolysis of other nucleotides has 

been reported as well (Lahue and Matson, 1988; Goetz et al, 1988; Morris et al, 1979). The 

processive unwinding of DNA also requires translocation of the helicase complex along the 

DNA filament, in either 3' to 5' or 5' to 3' direction, depending on the type of helicase. How 

DNA unwinding and translocation of the complex along the DNA is coupled to the 

hydrolysis of ATP is not yet understood (West, 1996). 

Helicases are a diverse group of proteins, varying in size from 37 kDa for 

Escherichia coli RuvB (West, 1996) to 143 kDa for the putative Autographa californica 

multicapsid nucleopolyhedrovirus (AcMNPV) helicase (Lu and Carstens, 1991) and 170 kDa 

for the E. coli long helicase related protein (Reuven et al, 1996). Most organisms encode 

multiple helicases. E. coli for instances encodes 12 different helicases (Matson et al 1994) 

and Saccharomyces cerevisiae at least 6 (Li et al, 1992). Viruses can encode multiple 

proteins with helicase functions as well. Both subunit UL5 of the helicase-primase complex 

(Crute et al, 1988, 1989) and the origin binding protein UL9 of herpes simplex virus 1 

(Bruckner et al, 1991) display helicase activity. 

Several common amino acid sequence motifs have been identified in helicases 

originating from organisms as diverse as E. coli, bacteriophages, herpesviruses and man 

(Linder et al, 1989; Gorbalenya and Koonin, 1988; Gorbalenya et al, 1988; Hodgman, 

1988a,b; Lu and Carstens, 1991). These sequence motifs are referred to as I, la, II through VI 

and the D-E-A-D box, a special version of motif II. Motifs I and II form the A and B loop of 

a conserved NTP binding site (Walker et al, 1988). Motif la and a conserved tyrosine residue 

in motif VI are thought to be involved in the association with presumed DNA binding 

proteins (Hodgman, 1988). No defined function has yet been assigned to common motifs III 

through VI (Matson and Kaiser-Rogers, 1990). 

The pi 43 gene of AcMNPV has been identified as an essential gene in the 

baculovirus infection and DNA replication cascade through the studies of a temperature 
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sensitive mutant with a mutation in this gene (Gordon and Carstens, 1984). Sequence analysis 

of this gene revealed a high degree of similarity within the seven motifs characteristic for 

DNA helicases (Lu and Carstens, 1991). In the genome of Orgyia pseudotsugata MNPV an 

AcMNPV pi 43 homolog has recently been identified and sequenced (Ahrens and Rohrmann, 

1995a; Ahrens and Rohrmann, 1996). The importance of the pl43 product in AcMNPV and 

OpMNPV DNA replication has also been established via transient DNA replication assays 

using origin-containing plasmids as reporters of DNA replication and a subset of a cosmid 

and plasmid library encompassing the entire viral genome (Kool et al, 1994a; Ahrens and 

Rohrmann, 1995 ab; Ahrens et al, 1995). DNA polymerase, pl43, late expression factors 1 

(LEF1), 2 (LEF2) and 3 (LEF3) and immediate early protein 1 (IE1) have been assigned as 

essential trans-acting factors required for AcMNPV and OpMNPV DNA replication (Kool et 

al, 1994b; Ahrens and Rohrmann, 1995ab; Ahrens et al, 1995). In contrast to the situation in 

herpes simplex virus 1 (Liptak et al, 1996), little is known about the assembly of the 

baculovirus DNA replication complex and the interaction between the individual proteins of 

this complex with each other and with putative origins of DNA replication (hrs). 

The pi 43 gene of baculoviruses is not only involved in DNA replication, but 

possibly also in host range specificity. The host range of the various baculoviruses differs 

considerably. AcMNPV infections have been reported in over 40 insect species, whereas 

Bombyx mori NPV and SeMNPV infect to date only one single host, the silk worm and the 

beet army worm, respectively. At the cellular level, BmNPV for instance replicates in BmN 

cells but not in Sf-AE-21 cells, whereas AcMNPV replicates in Sf-AE-21 cells but not in 

BmN cells. Mixed infections of AcMNPV and BmMNPV in the Sf-AE-21 cells followed by 

screening in BmN cells yielded an AcMNPV recombinant capable of replicating in both cells 

lines (Kondo and Maeda, 1991). Detailed analysis of the recombinant virus revealed that a 

few amino acid changes in a 140-long amino acid stretch of the AcMNPV pi 43 gene were 

responsible for this host range expansion (Croizier et al, 1994). 

The baculovirus SeMNPV has high potential for development as a bio-insecticide 

because of its host specificity, its high speed of action and virulence (Smits and Vlak, 1994). 

Phylogenetic analysis using parsimony of several SeMNPV genes suggested that this virus is 

a member of a different clade than AcMNPV, OpMNPV and BmNPV (Zanotto et al, 1993; 

Cowan et al, 1994; Hu et al, 1997). In this paper we describe the genomic location, 

sequence and transcription of the SeMNPV homolog of the AcMNPV pi 4 3 gene. The 

specificity of the baculovirus pi43 gene in helper virus-independent DNA replication assays 

has been investigated using both SeMNPV and AcMNPV homologous region (Ar-)-like 

origins of DNA replication and SeMNPV and AcMNPV pi 43 genes. Finally, the role of the 

pl43 gene products in DNA replication and host specificity is discussed. 
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Materials and methods 

Cells and Virus 

S. frugiperda (Sf-AE-21 ) cells (Vaughn et al., 1977) and S. exigua (Se-IZD2109) 

cells (B. Meckel & H.G. Miltenburger, unpublished results) were cultured in TNM-FH 

medium (Hink, 1970), supplemented with 10% fetal calf serum (FCS). The US-isolate of 

SeMNPV (Gelernter and Federici, 1986) and the E2 strain of AcMNPV (Summers and Smith, 

1987) were used as wild type (wt) viruses. Routine cell culture maintenance and virus 

infection procedures were carried out according to published procedures (Summers and 

Smith, 1987; King and Possee, 1992). Budded virus (BV) used in time course infection 

experiments was obtained from the supernatant of Se-IZD2109 cells infected with 

hemolymph obtained from SeMNPV-infected fourth instar S. exigua larvae. AcMNPV BVs 

were obtained from the supernatant of Sf-AE-21-infected cells. BV titers were determined by 

the end point dilution method (Vlak, 1979) and expressed as TCID50 units per ml. 

Plasmid constructions 

SeMNPV subgenomic fragments were cloned into pUC19, pBluescript KS+ 

(Stratagene) or pGEM7zff (Promega) and transformed into E. coli DH5a using standard 

techniques (Sambrook et al, 1989). DNA isolation, restriction enzyme digestion, agarose gel 

electrophoresis and Southern blotting were carried out according to standard protocols 

(Sambrook et al, 1989). Unidirectional deletions were performed using the £xoIII-based 

'Erase-a-Base kit' according to the protocols of the manufacturer (Promega). 

DNA replication assay 

The infection-independent DNA replication assay was based on transfection of Sf-

AE-21 cells with plasmids containing SeMNPV or AcMNPV DNA sequences, harboring the 

putative origin of DNA replication SeMNPV-Zzrl (Heidens et ai, 1995) and AcMNPV-/w2 

(Kool et al, 1993) respectively, and the viral /raws-acting factors necessary for plasmid DNA 

replication (Kool et al, 1994b). AcMNPV-/e/7 (mu 7.5-8.7) was cloned as a 1.6 kb Nrul-

EcoKl fragment in pUC19, AcMNPV-/e/2 (mu 1.9-2.6) as a 0.94 kb Mlul fragment into the 

BamUl site of pUC19 using Mlul-BgHl linkers, AcMNPV-£>M4 pol (mu 38.9-41.6) as a 2.3 

kb Sstl-EcoRV into pBluescript KS" and AcMNPV-/e/3 (mu 42.8-44.5) as a 2.3 kb £coRI-

Apal fragment into pJDHl 19 (Hoheisel, 1989). The AcMNPV helicase gene (mu 59.9-63.5) 

was cloned as a 4.8 kb EcoRl-Sspl fragment into pBluescript KS". The AcMNPV-p55 was 

provided as fragment £coRI-S. AcMNPV-/W (mu 94.7-96.9), ie2 (mu 96.9-98.9) andpe38 

(mu 98.9-100.0) were cloned as a 2.9 kb Clal-Hindlll fragment in pUC8, as an 1.3 kb Pst\-
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Pst\ and as an 1.5 kb Pstl-EcoRl fragments in pUC19, respectively. The map positions of the 

AcMNPV fragments were taken from Ayres et al. (1994). SeMNPV-/e/ (mu 92.2-95.4) was 

cloned as a 4.2 kb Xbal-BamHl fragment in pUC19, whereas SeMNPV helicase was 

provided as the entire SeMNPV-Xbal-C fragment. 

The DNA replication assay was performed essentially as described previously for 

AcMNPV and SeMNPV DNA replication (Kool et al., 1994ab; Heidens et al, 1997) with 

slight modifications. In brief, Sf-AE-21 cells were plated onto 35-mm-diameter Petri dishes 

at a density of 2X10 cells per dish 24 h before transfection. Approximately 2 h prior to 

transfection the medium was removed from the cells and the cells were washed with TNM-

FH medium without BSA and FCS. Cells were transfected with 1 ug of either SeMNPV or 

AcMNPV Ar-containing plasmid and plasmids containing the replication genes in equimolar 

amounts taking 0.5 (ig DNA of a 5 kb plasmid as standard. The DNAs were mixed with 35 ul 

H20 and 15 ul lipofectin (Gibco-BRL) in 1 ml of TMN-FH medium without BSA and FCS. 

After 4 h of incubation at 27 °C the medium was replaced with 2 ml TNM-FH medium 

supplemented with 10% FCS. 

Infection-dependent DNA replication assays were based on transfection of Sf-AE-21 

cells with plasmids containing SeMNPV or AcMNPV DNA sequences, harboring putative 

origins of DNA replication (SeMNPV-/?/-1 and AcMNPV-/w2, respectively) and/or the viral 

/raws-acting factors necessary for plasmid replication (Kool et al., 1994b) as described. 

Between 16 and 24 h post transfection the cells were infected with SeMNPV or AcMNPV 

BV at a multiplicity of infection of 2 TCID50 units per cell. 

DNA analysis 

Transfected cells were harvested 72 h post transfection (48 h p.i.) and total DNA was 

isolated from the insect cells (Kool et al., 1994a). Half of the DNA was digested with the 

restriction enzyme Hindlll to linearize the plasmid, the other halfwas digested with Hindlll 

plus Dpnl to determine if plasmid replication had occurred. After agarose gel electrophoresis 

the DNA was transferred to nylon membrane (Hybond N, Amersham; Southern, 1975) and 

hybridized with 32P-labeled pUC19 DNA (Sambrook et ai, 1989). 

Isolation of total RNA and Northern blotting 

Total RNA for Northern blot and primer extension analysis was isolated from 

SeMNPV-infected Se-IZD2109 cells at several time points p.i., as described by Xie and 

Rothblum (1991). Total RNA was denatured, electrophoresed and blotted to Hybond N nylon 

membrane (van Strien et al, 1992). To identify pl43 transcripts, the blot was hybridized for 

16 hours at 65 °C with [a32P]dCTP-labeled riboprobes. Riboprobes were generated by in 

vitro transcription (Sambrook et al., 1989) using T7 or T3 RNA polymerase (Gibco-BRL) of 
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cloned DNA fragments containing the putative SeMNPV helicase gene in pBluescript KS 

(Stratagene). After hybridization (65 °C (overnight) in Church buffer (0.25 M Sodium 

phosphate pH 7.2, 7% SDS, 1% BSA, ImM EDTA)), the filters were washed for 5 min with 

2*SSC, 0.5% SDS at room temperature, 30 min with 2*SSC, 0.1% SDS at 65 °C and 30 min 

with 0.1* SSC, 0.1% SDS at 65 °C. The filters were exposed to Kodak XAR film. 

Primer extension 

To identify the transcriptional start site(s) of the SeMNPV pi 43 gene, 15 ng of an 

oligonucleotide (5'-CATTCTTGTCCACGGCCTCG-3') complementary to nucleotides +50-

+70 relative to the translational initiation site of the pi 43 mRNA, was labeled at the 5' end 

with [y-32P]ATP by using T4 polynucleotide kinase (Gibco-BRL) in 50 mM Tris-HCl, pH 

9.5, 10 mM MgCl2, 5 mM DDT, 5% glycerol for 45 min at 65 °C followed by heat 

denaturation at 90 °C for 10 min. The labeled oligonucleotide was purified on an 1 ml 

Sephadex-G25 column and added to 10 ug of total RNA, isolated from infected cells. The 

mixture was denatured at 90 °C for 5 min and annealed at 55 °C for 15 min. Reverse 

transcription was carried out at 48 °C for 1 h in a volume of 15 (il, containing 5 mM of each 

of the dNTPs and 1 ul of Superscript reverse transcriptase (Gibco-BRL) in a buffer supplied 

by the manufacturer. The reaction was stopped by the addition of 5 ul 'stop' buffer (95% v/v 

formamide, 0.01% xylene cyanol and 0.01% bromophenol blue). Six ul of the reaction 

mixture was analyzed in a 6% Polyacrylamide sequence gel, which was then dried and 

exposed to Kodak XAR films. 

Sequencing 

Both strands of overlapping DNA fragments of the SeMNPV helicase gene and its 

flanking regions were sequenced from fragments generated with the 'Erase-a-Base' system 

(Promega) using an automated DNA sequencer (Applied Biosystems) using the dideoxy 

chain-termination protocol (Sanger et al., 1977). Sequence analyses were carried out using 

the UWGCG computer programs (Devereux et al., 1984) and deduced amino acid sequences 

were compared with the updated GenBank/EMBL, SWISSPROT and PIR data libraries using 

BLAST and FASTA programs latest releases. 
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Results 

Localization of the SeMNPVpl43 gene 

To identify the AcMNPV pi43 gene homolog in the genome of SeMNPV several 

radioactive DNA probes were constructed from different domains in the AcMNPV pi 43 

gene. These probes were hybridized at various stringencies to Southern blots with SeMNPV 

DNA isolated from polyhedra derived virions (ODV) and digested with a number of 

restriction enzymes (Heidens et al, 1996a). None of these probes showed unambiguous 

hybridization signals, that could be related to one or a few subgenomic fragments (results not 

shown). This suggested that the nucleotide sequence of the pi 43 gene of SeMNPV displayed 

limited nucleotide sequence homology to its AcMNPV counterpart. 

A partial genetic map of the SeMNPV genome was constructed based on sequence 

analysis of the termini of a Xba\ plasmid library described by Heidens et al. ( 1996a) and 

homology searches in data banks. Sequences similar to AcMNPV-/e/5 (Passarelli and Miller, 

1993) anàp39 (Thiem and Miller, 1989) were identified at the termini of fragment Xbal-C 

(Fig. 5.1a). The distance (ca 11.5 kb) between these two genes appeared to be similar in 

AcMNPV and SeMNPV. The AcMNPV pi43, a putative DNA helicase, is located in 

between the lefi andp39 gene (Lu and Carstens, 1991 ; Ayres et al, 1994). Assuming 

colinearity between the AcMNPV and SeMNPV genomes in this region, the putative helicase 

gene of SeMNPV should be found in the middle of fragment Xba\-C. 

A detailed physical map of Xbal-C was constructed using several restriction enzymes 

(Fig. 5.1b) and numerous subfragments were cloned into pGEM7zff and their termini were 

sequenced. Two subclones, pCHK and pCSK, did have a considerable degree of amino acid 

sequence similarty to AcMNPV and OpMNPV pl43 (Lu and Carstens, 1991 ; Ahrens and 

Rohrmann, 1996) and were further analyzed. 

Sequence analysis of the SeMNPV pi 43 gene 

Sequence analysis of SeMNPV fragment Xbal-C revealed a large open reading frame 

(ORF) encompassing 3,666 basepairs potentially encoding a polypeptide with a predicted 

molecular weight of 143 kDa. This putative protein showed an overall identity of about 42% 

and a similarity of about 60% to the pi 43 amino acid sequences of AcMNPV and OpMNPV 

(Fig. 5.2; Table 5.1). The size of the polypeptide was also in agreement with the sizes of the 

pi 43 polypeptides of AcMNPV and OpMNPV (1221 amino acids; 143 kDa and 1223 amino 

acids; 140 kDa respectively) (Lu and Carstens, 1991; Ahrens and Rohrmann, 1996). The 

SeMNPV pi 43 ORF was located between mu 47.0 and 49.7 of the physical map of the viral 

DNA (Heidens et al, 1996a). 
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The conserved motifs (N terminus-I-Ia-II-III-IV-V-VI-C terminus) that characterize 

pro- and eukaryotic helicases are present in the C-terminal part (amino acids 917-1221) of the 

SeMNPV pi 43 and their spatial order is identical to that found in other members of the 

helicase superfamily (Gorbalenya and Koonin, 1988; Gorbalenya et al, 1988; Hodgman, 

1988ab) (Fig. 5.2). For SeMNPV pl43 the identity within the seven conserved motifs 

differed 
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Figure 5.1. 

a) Physical map of the SeMNPV and AcMNPV genomes for the restriction enzymes Xbal and EcoRl, 

respectively, and location of various genes. 
b) Detailed physical map of the SeMNPV Xbal-C fragment for various restriction enzymes. The positions of the 
restriction sites are indicated relative to the position of the 5' Xbal site (mu 46.5). The major helicase transcript 
is represented by an arrow. The fragments subcloned for sequencing (pCSK-l and pCHK-1) and riboprobe 
(pCNB) generation are indicated by horizontal lines. 

from more than 70% identity for motif I to less than 25% identity for motif VI with the other 

baculovirus pl43s (Fig. 5.3). These data are in agreement with the identities found for the 

conserved motifs in helicases of other organisms (Fig. 5.3; general consensus). 
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Figure 5.2. 
Alignment of the deduced amino acid sequences of AcMNPV, BmNPV, OpMNPV and SeMNPV p /43 genes. 
Amino acids identical in two of the four polypeptides are shaded. The seven conserved helicase motifs are 
underlined and denoted I through VI; the nuclear localization signals are indicated by -*NLS*-; the amino acids 

involved in host range expansion are indicated by asterisks superscribed by "host range factors" and the regions 
in the four baculovirus helicases that display a higher degree of identity are underlined and denoted B1 through 

B5. 

Additional motifs that have been described for a subgroup of helicases related to 

transcription factor eIF-4a (Linder et al, 1989) including D-E-A-D, S-A-T and H-G-I-G-R 

motifs, were not present in SeMNPV pi43. One or more amino acids in the pi43 protein 

(H551, V556, S564, F577 of AcMNPV; Y552, L557, N565, L578 in BmNPV) are involved in the 

extension of the host range of AcMNPV-BmMNPV recombinants from Sf-AE-21 cells to 

BmN cells (Kondo and Maeda, 1991 ; Croizier et al, 1994) (Fig. 5.2). At the homologous 

position in SeMNPV (L530 and L551) only partial homology with BmNPV and AcMNPV is 

found (Croizier et al, 1994). SeMNPV pi43 encodes an additional 36-Iong amino acid 

aspartate-rich domain between residues 781 and 817 (Fig. 5.2). Such a domain is not present 

in the OpMNPV, AcMNPV and BmNPV pi43 polypeptides. Two putative nuclear 

localization signals, K**K/R, are present in all four baculovirus pl43s (in the AcMNPV 

sequence at position 612 and 618). The nuclear localization signal identified by Lu and 
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Carstens (1991) is not conserved in SeMNPV and OpMNPV pi43. A putative signal may be 

located in the 36 amino acid long insertion (aa 781-817), unique to SeMNPV. The SeMNPV 

p 143 contains a V -V -M -D -V1" motif that resembles the modified zipper motif of 

AcMNPV and BmNPV. In OpMNPV a similar motif can be observed in this area (F -L -
y 100 . L 107 . I l 04 ) ( F i g 5 2 ) 

helicase 

AcMNPV 

BmNPV 

OpMNPV 

BmNPV 

96.0 
97.9 

OpMNPV 

58.0 
73.2 

58.1 
72.8 

SeMNPV 

43.3 
65.8 

44.0 
65.8 

39.2 
61.9 

Table 5.1. 
Amino acid homology of pl43 polypeptides of AcMNPV, BmNPV, OpMNPV and SeMNPV. Similarity, 
normal typeface; identity, bold typeface 

Transcription analysis 

Transcriptional activity of the SeMNPV pi 43 gene in insect cells was determined by 

Northern blot analysis of total RNA, isolated at various times after infection, using a P-

labeled strand-specific probe of the pi 43 gene. Using a pi 43 mRNA-specific riboprobe 

generated from linearized plasmid pCNB (Fig. 5.1b) two transcripts were detected. A specific 

transcript of approximately 4 kb was observed between 4 and 12 h p.i. and a non-specific 

transcript of 1.9 kb was present from 0 to 48 h p.i. (Fig. 5.4a). The latter transcript is probably 

due to aspecific hybridization of the probe to rRNA. The specific 4kb transcript accumulated 

until 8 h p.i. and decreased shortly thereafter. After 12 h p.i. no pi 43 specific transcripts of 

this size could be detected (Fig. 5.4a). However, larger transcripts of 4.1 kb, 5.3 kb and 6.5 kb 

were present in RNAs isolated at 48 h p.i. (Fig. 5.4a). 

RNA primer extension analysis was performed on total infected-cell RNA isolated at 

various times p.i. to determine the transcriptional start site of the pi43 gene (Fig. 5.4b). This 

assay revealed two major starts at A residues, at position -11 and -12 relative to the putative 

translational initiation codon ATG (Fig. 5.4c). These starts could already be detected in 

RNAs isolated 4 h p.i. The presence of a specific pi43 transcript at 4 h p.i. is in accordance 

with the Northern analysis (Fig. 5.4a). The SeMNPV pi43 start site does not show any 

homology to consensus sequence of baculovirus early or late promoter elements or to the 

major transcriptional start site 5'-GCGTGC-3' that has been determined for AcMNPV pi43 
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Motif I Motif II Motif III Motif IV 

AcMNPV 915-MPGEPGSGKSSFFE-87-PLYVDDYDDGV-16-VKFAGSVYEHIK-25-LMYRRDPKT-

OpMNPV 917-LPGVPLSGKSTFFE-86-PLYVDDYDDGV-16-VRFSGSVYHHIL-2 5-VRYQREPQT-

BmNPV 916-MPGEPGSGKSSFFE-86-PLYVDDYDDGV-16-VKFAGSVYEHIK-25-LMYRRDPKT-

SeMNPV 928-LNGKPGSGKSSFFA-86-PLHISDYDKGV-16-LSFTGSIYWHIK-25-LMYKRNASD-
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Figure 5.3. 
Comparison of seven conserved helicase motifs between the four baculovirus pi 43 polypeptides 

and DNA polymerase (Lu and Carstens, 1992; Tomalski and Miller, 1988). No late 

transcriptional start site could be indentified (Fig. 5.4b), although a putuative start (ATAAG) 

is present upstream of the early start site. 

Comparison of the three baculovirus pi 43 promoters revealed that the promoter 

elements in AcMNPV and OpMNPV pi 43 genes are similar, but that the promoter of 

SeMNPV is organized differently (Fig. 5.4c). It should be noted however that detailed 

transcription analysis has only been performed on the AcMNPV pi 43 gene (Lu and Carstens, 

1992). The AcMNPV pl43 gene has a leader sequence of more than 150 nucleotides 

upstream of the putative translational start site. The OpMNPV pi 43 gene has a similar leader 

structure (Ahrens and Rohrmann, 1996). These leaders do contain a similar minicistron of 5 
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short SeMNPV leader sequence, but upstream of the transcriptional start site between 

positions -82 and -61 (6 amino acids) (Fig. 5.4c). 

A classical poly(A)signal (AATAAA) (Birnstiel et al, 1985) was found immediately 

downstream of the translational stop codon of the SeMNPV pi 43 gene (Fig. 5.4d). The 

predicted size of the helicase mRNA is therefore 4.0 kb, assuming that the pl43 mRNA (ORF 

3.7 kb) contains a poly (A) tail of approximately 300 adenine residues. This is in agreement 

with the value of 4.0 kb deduced from Northern analysis (Fig. 5.4a). Another poly(A) signal 

was found in the opposite strand of the DNA at position 3709 (Fig. 5.4d), belonging to an 

adjacent ORF (ORF p25; J.G.M. Heidens, unpublished results) located on the opposite DNA 

strand. The first deduced amino acid sequences of an ORF overlapping with the SeMNPV 

pi 43 promoter region which extended into the pi 43 coding sequence (30 nt) show high 

homology to AcMNPV p/9 (Ayres et al, 1994). 

Specificity ofSeMNPVandAcMNPVpl43 genes in DNA replication 

To study the cross-activity of the putative SeMNPV and AcMNPV pi 43 genes in 

baculovirus DNA replication, a transient DNA replication assay was performed in which the 

AcMNPV pi 43 gene was substituted by its SeMNPV homologue. In this assay all AcMNPV 

trans-acting factors were provided as plasmids (Kool et al, 1994b) (Fig. 5.5). When the 

AcMNPV pi 43 gene was replaced by the SeMNPV Xbal-C fragment, which contains the 

SeMNPV pi43 gene, no Z)pwl-resistant bands could be detected (Fig. 5.5; lane 1 and 2). As 

helicases require, by definition, DNA binding to be able to unwind the double-stranded DNA, 

it was hypothesized that the SeMNPV pi43 may be unable to recognize specifically motifs in 

the AcMNPV-Ar2 origin. However, when AcMNPV-//r2 was replaced by SeMNPV-hrl, no 

£>p«I-resistant DNA bands could be detected (Table 5.2) in any case, suggesting that the 

AcMNPV replisome or one of its components is unable to activate the SeMNPV origin. This 

could mean, firstly that the origin replisome complex interaction is very specific, and 

secondly that either the formation of the replisome is highly specific i.e. SeMNPV pl43 

cannot substitute AcMNPV pl43, or SeMNPV pl43 is not or hardly transactivated by the 

AcMNPV replication gene products, in particular by IE1. 

Preliminary data indicated that both SeMNPV and AcMNPV IE1 can transactivate 

either an AcMNPV-/w2-Ac39K promoter-CAT construct as well as a SeMNPV-foT-Ac39K 

promoter-CAT construct (D.R. Theilmann and E.A. van Strien, unpublished results), 

suggesting that AcMNPV and SeMNPV IEl's are able to transactivate heterologous genes. 

However, when the AcMNPV iel gene was replaced by the SeMNPV iel gene (plasmid 

XDB1), no Dpnl resistant DNA was detected (Fig. 5.5, lane 3 and Table 5.2) suggesting that 

either the IE1 protein can only act in homologous replication events or is not able to 

transactivate AcMNPV replication genes. 
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Complementation oj'AcMNPV'plasmid-dependent DNA replication by infection with 

SeMNPV. 

SeMNPV is able to replicate plasmids containing fragments harboring SeMNPV 

non-hr or hr oris in Sf-AE-21 cells (Heidens et al, 1997; Heidens et al, 1996b), indicating 

that all necessary SeMNPV /raws-acting DNA replication factors are expressed. To test 

whether the negative result of the substitution of AcMNPV-p745 with SeMNPV-p74i 

obtained in the described assay above was due to limited expression of SeMNPV -pi 43, a 

"complementation" assay was designed. All but one of the AcMNPV trans-acting factors 

were transfected together with AcMNPV-Är2, into Sf-AE-21 cells. One day post transfection 

the omitted factor was complemented by SeMNPV through an infection (Table 5.3). Via this 

assay it was also posible to test whether any of the other AcMNPV DNA replication genes 

could be replaced by their respective SeMNPV counterparts. However, the complementation 

assays did not show any positive DNA replication signal, suggesting a high degree of 

specificity in the formation of the replisome complex in AcMNPV and SeMNPV DNA 

replication. AcMNPV-Är2 plus the complete set of AcMNPV essential replication genes gave 

rise to a positive DNA replication signal (positive control) confirming the specificity of the 

respective replication mechanism. Sf-AE-21 cells transfected with AcMNPV-/zr2 did not 

show a DNA replication signal upon infection with wild type SeMNPV (negative control) 

(Table 5.3). 

Figure 5.4. 

Transcriptional analysis of SeMNPV helicase gene. 

a) Northern analysis of total RNA extracted from uninfected (lane 0) and SeMNPV-infected Se-IZD2109 cells 
2,4, 8, 10, 12, 24,48 h p.i. The specific helicase transcript of 4 kb, identified with the strand-specific riboprobe 
(Fig. 5.1b) is indicated by an arrow. 

b) Primer extension analysis of helicase transcripts performed with an oligonucleotide primer complementary to 
the nucleotides between +50 and +70 downstream of the translational initiation site, 32P-labeled at the 5' end. 
The oligonucleotide was annealed to total RNA from uninfected (lane 0) and SeMNPV-infected cells isolated 4, 
8,24 h p.i. and elongated by reverse transcription. The sizes of the extension products were determined by 
comparison with a sequence ladder run alongside (lanes C, T, A and G) obtained from a SeMNPV helicase 

containing plasmid and the oligonucleotide as sequence primer. 

c) Promoter sequence comparison of AcMNPV, OpMNPV and SeMNPV helicase. The translational initiation 
sites (ATG) are in bold, early (E) or late (L) transcriptional start sites are indicated with arrows. The SeMNPV 
late promoter element ATAAG from which no transcript could be detected in underlined (dashed). Putative 
minicistrons are boxed. 

d) Nucleotide sequence of the 3' end of the SeMNPV helicase gene. Canonical poly(A) signals and the stop 
codon (TAA) of the helicase gene are underlined, and dashed, respectively. 
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Origin 

AcMNPV-Ar 

SeMNPV-Ar 

AcMNPV-Ar 

SeMNPV-Ar 

helicase 

Ac 

Ac 

Se 

Se 

Ac 

Se 

Se 

AcMNPV 

SeMNPV 

SeMNPV 

AcMNPV 

iel 

Ac 

Se 

Ac 

Se 

Se 

Ac 

Se 

replication 

+ 

-
-
-
-
-
-
+ 

+ 

Table 5.2. 

Transient DNA replication assay using AcMNPV-/ir2 and SeMNPV-AH as origins of DNA replication. Trans

acting factors were provided by the virus (AcMNPV or SeMNPV) or as plasmids. Lef I, Ief2, left, leß, DNA 

pol,pe38, iel and p35 originate from AcMNPV. Helicase and iel originate either from SeMNPV, indicated by 
Se, or from AcMNPV, indicated by Ac. Positive (+) or negative (-) DNA replication signals are indicated. 

Discussion 

In this paper we describe the localization, nucleotide sequence and transcriptional 

analysis of an ORF in the SeMNPV-vWal-C fragment encoding a putative helicase. The 

deduced amino acid sequence showed a high degree of similarity to AcMNPV, OpMNPV and 

BmNPV pl43 polypeptides. The SeMNPV pl43 amino acid sequence is more distantly 

related to the other three polypeptides (Fig. 5.2 and Table 5.1), which is consistant with the 

phylogeny of other genes of these viruses (Cowan et al, 1994; Hu et al, 1997). The 

SeMNPV pi43 ORF contains seven conserved motifs that are characteristic for DNA and 

RNA-dependent eukaryotic helicases (Gorbalenya and Koonin, 1988; Gorbalenya et al, 

1988). These motifs are very well conserved both in sequence and spatial order in baculovirus 

pi43 proteins. 

Biochemical evidence for the hypothesis that pl43 is a helicase, i.e. the 

determination of in vitro helicase and NTP hydrolysis activity (Abdel-Monem et al, 1976; 

Kuhn et al, 1978), is still lacking. Overexpression of the AcMNPV pi 43 gene in baculovirus 

and bacterial expression systems has been established recently and the purified baculovirus 

pi 43 protein may allow the further study of these functions. The ability of the AcMNPV 

pl43 to bind AcMNPV hr5 showed its DNA binding properties (Laufs et al, 1997). 
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Motif I (amino acid 928-940) and II (amino acid 1025-1035) contain the common 

consensus sequences for ATP and GTP binding sites (Walker et ai, 1988; Seraste et al, 

1990). The consensus DD/E motif in the B loop of the NTP binding site (motif II, amino acid 

1025 to 1035) is altered into a SD motif in SeMNPV pi 43. This may result in the formation 

of an altered interaction between the A-loop, the magnesium ion and the aspartic acid in the 

B-loop (Walker et al, 1988; Hodgman, 1988ab; Seraste et al, 1990). A conserved tyrosine 

residue (Y1202), thought to be important for DNA binding activity, is present in motif VI 

(amino acid 1202 to 1210) of SeMNPV (Fig. 5.2). Defined functions of the motifs III (amino 

acid 1052 to 1063), IV (amino acid 1089 to 1096) and V (amino acid 1135 to 1153) have not 

yet been assigned. 

- + _ + 

4 

_ + + 

6 

_ + 

AoMNPV-/»-2 

origin 

iel 

heticase 

Ac 

Ac Se 

AcMNPV-/ir2 

Se 

Ac Se 

Ac 

-
virus 

Figure 5.5. 
Transient DNA replication assay using AcMNPV-/w2 as a DNA replication origin. 7raro-acting factors were 

provided by virus infections (AcMNPV; lane 6) or as plasmids (lanes 1 -5). Plasmids containing lefl, left, lefl, 

lefl, DNA pol,pe38, ie2 andp35, originate from AcMNPV, were provided in lanes 1-5. Helicase and iel 

originate either from SeMNPV, indicated by Se, or from AcMNPV, indicated by Ac. DNA in the lanes 

indicated + are digested with DpnVHindül, whereas DNA in the lanes indicated - is digested with HindlU only. 

Transient DNA replication gives rise to Dpn\ resistant bands of the size of AcMNPV-/w2 (indicated by an 

arrow). 
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Besides the seven conserved helicase motifs the four baculovirus pi43 polypeptides 

contain additional regions that display an even higher degree of identity. These regions are 

indicated in figure 5.2 as Bl (amino acid 135 to 148), B2 (538 to 545), B3 (826 to 866), B4 

(875 to 889) and B5 (1181 to 1193) of the AcMNPV pl43 sequence and may be specific for 

baculovirus helicases. Some of these regions e.g. Bl and B2 show almost 100% identity. The 

consensus sequence L****K*KFY*Y of motif B5 is striking since it is located in the C 

terminal part of the polypeptide which is the least conserved. The B5 motif is even better 

conserved than motif VI. 

Most helicases are biologically active as oligomers (Matson and Kaiser-Rogers, 

1990). The putative L-zipper motifs found in all four baculovirus pi43s might be involved in 

this oligomerization. In the pi 43 gene of SeMNPV, however, this putative hydrophobic 

interaction site may be affected by the presence of an aspartic acid (D ) at position 4 of the 

zipper motif (Fig. 5.2). 

Four amino acid changes in a small region (amino acids 550-578) of the AcMNPV 

pi 43 expanded the host range of this virus to B. mori cells (Kondo and Maeda, 1991; Croizier 

et al, 1994). In SeMNPV amino acids at the same position do not have any identity to the 

corresponding amino acids in OpMNPV and only partly to those in BmNPV. Specific 

mutagenesis of the pertinent amino acids in the SeMNPV helicase gene might shed some 

light on the role in host range determination. However, the generation of specific SeMNPV 

mutants is rather difficult when this process is dependent on cell culture. Upon one passage in 

cell culture this virus quickly generates defective interfering viruses (Heidens et al, 1996a). 

Analysis of SeMNPV pi43 transcription revealed one major transcript starting at a 

promoter element 11/12 nucleotides upstream relative to the translational start codon. This 

promoter element (5' ATCAATA 3') does not show any homology to consensus baculovirus 

early or late transcriptional start sites or to elements of the AcMNPV DNA polymerase and 

pl43 gene promoters (5'-GCGTGC-3'). In contrast to the transcription of AcMNPV pi43, no 

transcript originating from a late promoter element (TAAG) could be detected in SeMNPV-

infected IZD2109 cells. Compared to the length of the untranslated leader of the AcMNPV 

pi 43 gene the untranslated leader of SeMNPV pi 43 is relatively short. Such short leader 

sequences are not uncommon as they have been reported for SeMNPV ubiquitin (van Strien 

et al, 1996) and Heliothis armigera granulovirus enhancin (Roelvink et al, 1995). Unusual 

transcriptional start sites with limited homology to consensus baculovirus early or late start 

sites have also been reported for the large subunit of the SeMNPV ribonucleotide reductase 

gene (van Strien et al, 1997). Since another ORF partly overlaps with the 5' end of the 

SeMNPV pi 43 gene and since a putative poly (A) signal is located on the opposite DNA 

strand close to the 5' end of the gene, it seems that the SeMNPV genome is tightly organized 

at this locus. 
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A putative minicistron, believed to have a regulatory function in gene expression 

(Chang and Blissard, 1996) is present upstream of the translational start codons of AcMNPV, 

OpMNPV and SeMNPV p/45. In AcMNPV and OpMNPV this minicistron is present in the 

untranslated leader of early and late transcripts, whereas in SeMNPV a minicistron is located 

upstream of the transcriptional initiation site. The exact function of minicistrons in 

baculovirus gene expression remains enigmatic. 

Northern blot analysis revealed that the length of the major pl43 transcript is 4.0 kb 

and that it accumulates from 4 h p.i. until 8 h p.i. After 12 h p.i. no specific 4.0 kb transcripts 

could be detected until 48 h p.i. The size of the SeMNPV pi 43 transcript is in agreement with 

the size of the AcMNPV pl43 transcript (Lu and Carstens, 1992). Larger transcripts (5.2 and 

6.8 kb) were also detected late in the infection process of AcMNPV infected Sf-AE-21 cells 

(Lu and Carstens, 1992). These transcripts are similar in size compared to the larger 

transcripts detected in SeMNPV-infected IZD2109 cells (5.3 and 6.5 kb, respectively). The 

6.5 kb transcript in SeMNPV infected cells might therefore be the transcript to be spliced as 

has been suggested for the 6.8 kb transcript in AcMNPV-infected S. frugiperda cells (Lu and 

Carstens, 1992). The origin of the late 4.1 kb transcript (48 h p.i.) is unknown. 

Hr containing plasmids from SeMNPV or AcMNPV could not be replicated by the 

heterologous virus (Heidens et al., 1996b), indicating that the interaction between origins of 

DNA replication and trans-acting factors is virus specific. Swapping of the AcMNPV pl43 

or iel genes for the SeMNPV homologues in the transient DNA replication assay did not 

result in any DNA replication signal. Moreover, complementation of each of the essential 

AcMNPV replication genes by an SeMNPV infection did not result in transient DNA 

replication. Since SeMNPV replicates in the semi-permissive Sf-AE-21-cells, the SeMNPV 

DNA replication genes must be functionally active (Heidens et al, 1997). The negative 

results from swapping the SeMNPV and AcMNPV iel genes may suggest that IE1 is an 

integral part of the DNA replication complex and interacts specifically with (an)other trans

acting DNA replication factor(s). It is also very likely that SeMNPV-IEl is not able to 

transactivate (or shows limited transactivation of) the AcMNPV replication genes. 

Nevertheless it has been shown that SeMNPV IE1 could transactivate AcMNPV-39K-CAT 

constructs (D.R. Theilmann and E.A. van Strien, unpublished results). Characterization of 

other SeMNPV trans-acting DNA replication factors and detailed studies of their 

transactivation mechanism might shed some light on the functioning of SeMNPV and 

AcMNPV IE1 in this respect. 

SeMNPV-pl43 could not substitute its AcMNPV counterpart in the 

"complementation" assay. Since SeMNPV can replicate its own cw-acting elements in Sf-AE-

21 cells (Heidens et al, 1997; Heidens et ai, 1996b), it is likely that a functional SeMNPV 

pi43 is generated. It can therefore be hypothesized that the interaction between pi43 and the 
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other trans-acting DNA replication factors and/or the interaction between pi43 and the 

functional domains in the ori is very specific. In contrast to our results with SeMNPV and 

AcMNPV pi43 substitutions, AcMNPV pi43 could substitute for its OpMNPV homologue 

complete set 

all Ac repli genes 

- helicase 

-DNA pol 

-lefl 

- leß 

-lef3 

- iel 

SeMNPV 

-
+ 

+ 

+ 

+ 

+ 

+ 

AcMNPV 

+ 

-

-
-

-

-

-

Table 5.3. 

Transient DNA replication assay using AcMNPV-/w2 as reporter for DNA replication. 
All individual AcMNPV trans-acting DNA replication factors (lefl, le/2, left, leß, DNA pol, helicase, iel, ie2, 

pe38 and p35), provided as plasmids, were depleted one by one. The missing factors were complemented by 

SeMNPV infections. Positive (+) or negative (-) DNA replication signals are indicated. 

with a 50% loss of replication activity in L. dispar cells, whereas OpMNPV pi 43 failed to 

substitute for AcMNPV pl43 in S.frugiperda cells (Ahrens and Rohrmann, 1996). These 

observations suggest that the formation of an active baculovirus replisome depends on virus 

specific interactions between individual replication factors. Gel retardation and gel-supershift 

assays using purified protein and labeled origins of DNA replication might elucidate which 

parts of the individual proteins contribute to these specific interactions and what the nature of 

these interactions is. 
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Chapter 6 

A HIGHLY CONSERVED GENOMIC REGION IN BACULOVIRUSES: SEQUENCE 

AND TRANSCRIPTIONAL ANALYSIS OF A 11.3 KBP DNA FRAGMENT (MU 46.5-

55.1) FROM THE SPODOPTERA EXIGUA MULTICAPSID 

NUCLEOPOLYHEDROVIRUS5 

Summary 

A DNA fragment of 11.3 kilobase pairs (kbp) in size of the baculovirus Spodoptera 

exigua multicapsid nucleopolyhedrovirus (SeMNPV) genome (mu 46.5 to 55.1) was 

completely sequenced. Analysis of the sequence revealed eleven potential open reading 

frames (ORF). Ten of these ORF showed significant amino acid identity to Autographa 

califomica MNPV (AcMNPV) and Orgyia pseudotsugata MNPV (OpMNPV) p6.9, lef5, 

38kDa, pl9, pl43, p25, pl8, vp33, lef4, and vp39. One ORF (XC12) has no homolog in other 

baculoviruses and may be unique to SeMNPV. All but three of these putative genes are 

preceeded by the consensus baculovirus late promoter element (5'-ATAAG-3'). All ORFs 

were transcriptionally active, which is a novel finding for baculovirus leß, Ief4,pl8 and vp33 

genes. The genetic organization and transcriptional pattern of this fragment suggested that 

this region is highly similar to that of AcMNPV fragment EcoJU-D. Comparison of the 

genetic organization on the eleven kbp fragment in the genomes of AcMNPV, OpMNPV, 

Bombyx mori NPV and SeMNPV revealed that this region is highly conserved among 

baculovirus genomes. This is in contrast to the genetic organization of polyhedrin-p 10 region, 

which is much more diverged, but has been taken as point of reference to orient baculovirus 

physical maps. The latter region, however, would be an excellent candidate to determine 

baculovirus relatedness and phylogeny. The presence of conserved and diverged regions in 

baculovirus genomes with respect to gene order is reminiscent to the situation in other large 

DNA viruses, such as herpes- and poxviruses, where conserved central and diverged terminal 

This chapter has been submitted as: 
J.G.M. Heidens, Y. Liu, D. Zuidema, R.W. Goldbach and J.M. Vlak (1998). A highly conserved genomic 
region in baculoviruses: Sequence and transcriptional analysis of a 11.3 kbp DNA fragment (mu 46.5-55.1) 
from the Spodoptera exigua multicapsid nucleopolyhedrovirus. Virus Research 
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parts are common characteristics. The role of this feature in the genomic organization of large 

DNA viruses is discussed with particular emphasis on virus replication and evolution. 

Introduction 

The biological properties of Spodoptera exigua multicapsid nucleopolyhedrovirus 

(SeMNPV), a baculovirus of the beet army worm, are rather distinct from many other 

baculoviruses in their respective hosts. SeMNPV has a very narrow host range, it is only 

capable of infecting S. exigua larvae, and it is relatively virulent as compared to other 

baculoviruses infectious for this insect (Smits et al, 1987). In addition, the genetic stability of 

the SeMNPV genome in vitro is, in contrast to the stability of the AcMNPV genome in S. 

frugiperda cell lines rather limited. During a few passages in S. exigua cell lines about 18% 

of the SeMNPV genome is deleted (Heidens et al, 1996; E.M.M. Colbers and J.M. Vlak, 

unpublished results). The relatively high virulence and narrow host range render SeMNPV an 

attractive biological insecticide for S. exigua pests. However as is the case for all 

baculoviruses its speed of action needs to be improved to be comparable to most commonly 

used chemical insecticides. The improvement might be achieved via the genetic engineering 

of the SeMNPV genome in a similar way as has been achieved for Autographa californica 

MNPV (Bonning and Hammock, 1996). Therefore, to be able to engineer the viral genome 

succesfully and, more importantly, to elucidate the molecular basis of the distinct biological 

properties of SeMNPV with respect to other baculoviruses, detailed information about the 

genetic organization and gene regulation of the SeMNPV genome is essential. 

A detailed physical map has recently been constructed for the US-isolate of 

SeMNPV, assumed to be the SeMNPV proto-type species (Heidens et al., 1996). SeMNPV 

has a circular double stranded DNA genome of approximately 134 kb. A few genes, e.g. 

polyhedrin (van Strien et al., 1992), plO (Zuidema et al., 1993), ubiquitin (van Strien et al., 

1996), ribonucleotide reductase large subunit (van Strien et al, 1997), ecdysteroid-UDP-

glucosyltransferase (D. Zuidema, R.W. Mans, B.I.F Klassens, and J.M. Vlak, unpublished 

results) and pi43 (Heidens et al, 1997) have been identified and characterized. The majority 

of these genes is, however, located in the polyhedrin-pl 0 region. The location of these genes 

in other baculoviruses, such as AcMNPV (Ayres et al, 1994), OpMNPV (Ahrens et al, 

1997), Spodoptera litoralis NPV (SpliNPV) (Faktor et al, 1997) or Bombyx mori NPV 

(GenBank accession number L33180) e.g., varies considerably with SeMNPV, and suggests 

that the genetic organization of SeMNPV is significantly different. 
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Alignment and comparison ofpolyhedrin (van Strien et al, 1992; van Strien 

unpublished results),plO (Zuidema et al, \993),pl43 (Heidens et al, 1997) and iel (E.A. 

van Strien, 1997) genes to homologues in other baculoviruses suggested that SeMNPV is on 

the molecular level only distantly related to AcMNPV and OpMNPV. Phylogenetic analysis 

using for instance parsimony on several of those genes revealed that SeMNPV is a member of 

a different clade than AcMNPV, OpMNPV and BmNPV (Zanotto et al, 1993; Cowan et al, 

1994; Hu et al, 1997; E.A. van Strien, 1997), confirming the distinct character of SeMNPV. 

Here we report the complete nucleotide sequence and transcriptional analysis of an 

11.3 kbp fragment in the SeMNPV genome located between map units 46.5 and 55.1 (Xbal-

C). The availability of the complete nucleotide sequences of baculoviruses genomes, e.g. 

AcMNPV (Ayres et al, 1994), OpMNPV (Ahrens et al, 1997) and BmNPV, allows 

comparison of gene sequences and gene organization among these viruses and to determine 

their genetic relatedness and phylogeny. The order of genes located on fragment SeMNPV-

Xbal-C was compared to OpMNPV, AcMNPV, BmNPV and Cryptophlebia leucotreta 

granulovirus (C1GV) (Jehle and Backhaus, 1994) genomes and found to be highly conserved. 

Based on this observation and the high variability in gene organization found in the 

polyhdrin-plO region, it is hypothesized that the presence of constant and variable regions is 

characteristic for baculovirus genomes. In this respect the genetic organization of 

baculoviruses is similar to that of other large DNA viruses such as herpes and pox viruses, 

and possibly a reflection of a common mode of replication (Davison and McGeoch, 1995; 

Gompels et al, 1995; Senkevich et al, 1996). 

Materials and methods 

Cells and Virus 

S.frugiperda (Sf-AE-21) (Vaughn et al, 1977) and S. exigua (Se-IZD-2109) cells 

(B. Möckel & H.G. Miltenburger, unpublished results) were cultured in TNM-FH medium 

(Hink, 1970), supplemented with 10% fetal calf serum (FCS). The US-isolate of SeMNPV 

(Gelernter and Federici, 1986) and the E2 strain of AcMNPV (Summers and Smith, 1987) 

were used as wild type (wt) viruses. Routine cell culture maintenance and virus infection 

procedures were carried out according to published procedures (Summers and Smith, 1987; 

King and Possee, 1992). Budded virus (BV) used in time course infection experiments was 

obtained from the supernatant of Se-IZD-2109 cells infected with hemolymph from 

SeMNPV-infected fourth instar S. exigua larvae. AcMNPV BVs were obtained from the 
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supernatant of Sf-AE-21 -infected cells. BV titers were determined by the end point dilution 

method (Vlak, 1979) and expressed as TCID50 units per ml. 

Plasmid constructions 

SeMNPV subgenomic fragments were cloned into pUC19, pBluescript KS+ 

(Stratagene) or pGEM7zf* (Promega) and transformed into E. coli DH5a using standard 

techniques (Sambrook et al, 1989). DNA isolation, restriction enzyme digestion, agarose gel 

electrophoresis and Southern blotting were carried out according to standard protocols 

(Sambrook et al, 1989). Unidirectional deletion clones were generated from the cloned 

SeMNPV--Y&aI-C fragment using the ExoIII-based 'Erase-a-Base' kit according to the 

protocols of the manufacturer (Promega). 

Isolation of total RNA and Northern blotting 

Total RNA for Northern blot and primer extension analysis was isolated from 

SeMNPV-infected Se-IZD-2109 cells at several time points p.i., as described by Xie and 

Rothblum (1991). Total RNA was denatured, electrophoresed and blotted to Hybond N nylon 

membrane (van Strien et al, 1992). To identify SeMNPV-A7jaI-C derived transcripts, the blot 

was hybridized for 16 h at 65 °C with [cc-32P]dATP-labeled probes. Probes were generated by 

elongation of random primers using Klenow DNA polymerase (Gibco-BRL) annealed to 

restriction fragments containing segments of the SeMNPV-JSal-C fragment (Feinberg and 

Vogelstein, 1984). After hybridization at 65 °C (overnight) in Church buffer (0.25 M sodium 

phosphate pH 7.2, 7% SDS, 1% BSA, ImM EDTA), the filters were washed for 5 min with 

2*SSC, 0.5% SDS at room temperature, 30 min with 2*SSC, 0.1% SDS at 65 °C and 30 min 

with 0.1* SSC, 0.1% SDS at 65 °C. The filters were exposed to Kodak XAR film. 

Sequencing 

Both DNA strands of the Xba\-C fragment of SeMNPV and its flanking regions were 

sequenced from fragments generated with the 'Erase-a-Base' system (Promega) using an 

automated DNA sequencer (Applied Biosystems) and the dideoxy chain-termination protocol 

(Sanger et al, 1977). Sequence analyses were carried out by the UWGCG computer 

programs (Devereux et al, 1984). Deduced amino acid sequences were compared with the 

daily updated GenBank/EMBL, SWISSPROT and PIR data libraries using BLAST and 

FASTA programs. 
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Results 

Sequence analysis of the SeMNPV-Xbal-C region 

The sequence of the ends of the SeMNPV Xbal-C fragment (mu 46.5-55.1) (Fig. 6. 

lab) showed high amino acid similarity to the vp39 and p6.9 polypeptides of AcMNPV and 

OpMNPV (Heidens et al, 1997). An OpMNPV and AcMN?V-pl43 gene homolog was 

recently identified, characterized and also located on fragment Xbal-C (11.5 kbp) of 

SeMNPV (Heidens et al., 1997). The location of these genes suggested conserved colinearity 

between the pi 43 regions of SeMNPV with those of AcMNPV, OpMNPV and BmNPV. To 

verify this hypothesis complete sequence analysis of SeMNPV Xbal-C fragment was 

initiated. Firstly, a detailed physical map of Xbal-C was constructed using several restriction 

enzymes (Fig. 6.1b. Based on this map two subclones pCHK and pCSK were generated 

(Heidens et ai, 1997). Secondly, the complete sequence of the SeMNPV Xbal-C fragment 

and the 3' end of theXbal-P fragment (Fig. 6.1b), encompassing 11297 basepairs in total, was 

determined using terminal sequence data from Exolll deletion clones of pCHK and pCSK. 

Sequence analysis revealed eleven open reading frames (encoding putative proteins of at least 

50 amino acids in size), among which were the SeMNPV homologues of AcMNPV and 

OpMNPVp6.9, lefi, 38kd,pl9,pl43 (Heidens et al., 1997),p25,pl8, vp33, lef4, and vp39 

(Fig. 6.1c) (Table 6.1). Interestingly, these genes were also found clustered in a single locus 

in the genomes of AcMNPV and OpMNPV in an identical orientation. One additional ORF 

(ORF XC12) (Fig. 6.1c) (Table 6.1), not present in AcMNPV or OpMNPV, was located 

between SeMNPV-p79 and 38kd. The coding sequence of ORF XC12 did not show 

homology on the nucleotide or amino acid level to any other gene or protein from GenBank 

and is unique to SeMNPV. 

Mapping of transcripts of SeMNPV-Xbal-C 

The highly conserved genetic organization and tight clustering of the genes on 

fragment SeMNPV-AM-C compared to the EcoRi-GD region in the genome of AcMNPV, 

suggested a similar gene expression profile in SeMNPV as compared to AcMNPV. Sequence 

analysis revealed consensus baculovirus late promoter elements (A/GTAAG) in the majority 

of the 5' untranslated leaders of these putative genes. This indicated that they are expressed 

after the onset of viral DNA replication (> 8 h p.i.) (Table 6.1) and hence considered to be 

late genes. The putative SeMNPV-/e//, lef5 and pi43 genes did not contain a consensus 

baculovirus early (CAGT) or late (TAAG) promoter element as is the case in the promoters 

of the OpMNPV and AcMNPV-/e/¥ and lef5 genes (Ahrens et al, 1997; Passarelli and 

Miller, 1993). Transcriptional analysis of SeMNPW-pl43 showed an early transcript 
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(detectable at 4 h p.i.) originating from an unusual transcriptional initiation site (Heidens et 

al, 1997). To investigate the temporal expression of the remaining putative genes on 

fragment Xbal-C of SeMNPV northern blots of total infected-cell RNA were hybridized with 

seven different ORF-specific probes (Fig. 6.2). 

Probe I (Fig. 6.1d), specific forp6.9 and lefi, detected three major transcripts of 0.3, 

2.1 and 3.1 kb respectively and 1 minor transcript of approximately 1.6 kb (Fig. 6.2a). The 

transcript of 300 bp in size, present between 8 and 48 h p.i., originates probably from 

SeMNPV p6.9 expression. It is in agreement with the size of the transcript predicted from 

sequence analysis (Table 6.1), but somewhat smaller than the predicted size of the AcMNPV-

p6.9 transcript (0.5 kb) (Lu and Carstens, 1992). The transcripts of 2.1 kb and 3.1 kb in size, 

present from 10 until 48 h p.i., might originate from readthrough transcription from thep6.9 

promoter, suggesting a similar expression pattern for this gene during SeMNPV and 

AcMNPV infections (Wilson et al., 1987). The minor transcript of 1.6 kb is probably related 

to SeMNPV lef5 expression. A transcript of similar size (1.4 kb) was identified during 

AcMNPV infections using a strand-specific probe complementary top6.9 (Wilson et al., 

1987). Lu and Carstens (1992) detected a 1.4 kb transcript as well in this region using a 

double-stranded DNA probe harboring the putative AcMNPV lefi and p6.9 genes. 

Hybridizations using strand-specific riboprobes and primer extension analysis on AcMNPV, 

OpMNPV and SeMNPV mRNA may reveal a consensus transcriptional start of baculovirus 

lefi genes. A band of 1.35 kb is detected as well using this probe from 8 until 48 h p.i. (Fig. 

6.2a). A transcript of similar size was also observed during AcMNPV infections originating 

from AcMNPV-38kd transcription (Lu and Carstens, 1992). 

Probe II (Fig. 6. Id) harboring the 38kd and part of the lefi genes revealed transcripts 

of 3.1 kb, 2.1 kb 1.6 kb and 1.3 kb respectively (Results not shown) suggesting that the 1.3 kb 

transcript originated indeed from 38kdexpression. The longer 2.1 and 3.1 kb transcripts are 

most likely the same as the 2.1 and 3.1 kb transcripts detected with probe I. From sequence 

analysis it can be deduced that the SeMNPV-iSW transcript must contain a poly A tail of 

approximately 300 bases to meet the size of the 1.3 kb detected on the northern blot (Table 

6.1 ). It also suggests that lefi and 38kD have a similar temporal expression pattern and 

transcript length during SeMNPV and AcMNPV infections. 

Probe III (Fig. 6.Id) hybridized to a 3.1 kb mRNA from 10 to 48 h p.i., 1.2 kb 

mRNA from 8 to 24 h p.i. and 0.9 kb mRNAs from 8 to 48 h p.i. and with a transcript of 

approximately 150 nt (Fig. 6.2d). The 1.2 kb transcript most likely originates from SeMNPV -

pl9 expression, which is in agreement with the size that can be predicted from sequence 

analysis (Fig. 6.2b; Table 6.1). The 900 bp transcript might originate from XC12 expression 

assuming that the mRNA has a poly A tail of approximately 300 nt. The 3.1 kb transcript is 

probably the same as the 3.1 kb transcript detected by probe I and II (p6.9). The smaller 
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Figure 6.2. 

Northern analysis of the transcripts in the SeMNPV Xbal-C fragment. Figure a through f. Total RNA from-
SeMNPV infected insect cells harvested at 0 ,2,4, 8, 10, 12, 24 and 48 h p.i. was electrophoresed and blotted to 
nylon membranes. These blots were hybridized to six different 32P-labeled DNA probes. The identity of these 
probes is indicated in figure 6.Id. a) Probe I, encompassingp6.9 and lefi; b) Probe III, encompassingXC12 and 
pi 9; c) Probe IV, ecompassing p25 and pi8; d) Probe V, harboring vp33; e) Probe VI, encompassing lef4 and f) 
Probe VII, harboring p39. 
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transcripts might originate from starts located within XC12 or pi 9 genes present on either 

strand of the Se-Xbal-C fragment (Fig. 6.2b). 

To detect transcripts of the putative pi 8 and p25 genes northern blots were 

hybridized with probe IV (Fig. 6.1.d). At least four major transcripts were observed from 10 

to 24 h p.i. (Fig. 6.2c). The two larger transcripts, approximately 800 and 650 bases in size, 

are in agreement with the sizes predicted from sequence analysis for p25 and pi8 transcripts, 

respectively (Fig 6.2c; Table 6.1). The smaller transcripts, 200 and 300 bases respectively, 

might originate from start sites located within the p25 and pi 8 coding regions. These 

transcripts could not be related to any open reading frame. 

Probe V (Fig. 6. Id), hybridized to a transcript of approximately 900 bases present 

between 12 and 48 h p.i. (Fig. 6.2d), resembling the predicted size of the vp33 transcript 

(Table 6.1). Overexposure of the blot revealed that this transcript was already present at 8 h 

p.i. A highly expressed transcript of approximately 300 bases was also detected between 12 

and 48 h p.i. The origin of this transcript is unclear but vp33 internal start sites might activate 

its transcription. 

The coding sequence of the putative SeMNPV-/e/¥ gene encompasses 1397 bases 

(Table 6.1). Probe VI (Fig. 6.Id), hybridized to 2.1 kb and 1.2 kb transcripts produced 

between 8 and 48 h p.i and to several smaller transcripts (approximately 500 bases in size) 

present from 10 until 48 h p.i. (Fig. 6.2e). The large transcripts of 5.2 and 6.8 kb were only 

present very late in the infection process at 24 and 48 h p.i. and are possible readthroughs. 

The size of the major 2.1 kb transcript is in good agreement with the predicted size of lef4 

transcripts (Table 6.1). Primer extension and northern blot analysis using single stranded 

riboprobes might reveal consensus transcriptional start sites not only for SeMNPV but also 

for AcMNPV and OpMNPV-/e// expression (Passarelli and Miller, 1993; Ahrens et al, 

1997). 

Probe VII (Fig. 6.Id) hybridized to 1.0 kb, 1.2 kb, 2.5 kb and 5.0 kb transcripts (Fig. 

6.2f). During AcMNPV infection vp39 is expressed as a 2.2 kb transcript from 6 h p.i. 

onwards (Thiem and Miller, 1989). During OpMNPV infections, the vp39 gene is expressed 

as a 2.6 kb transcript from 24 to 48 h p.i. (Blissard et al, 1989). A 1.0 kb transcript is present 

from 8 h p.i. and could overlap with the SeMNPV-vp59 transcript as calculated from 

sequence analysis, but it is relatively short as compared to the OpMNPV and AcMNPV-vpi9 

transcripts. The transcript of 2.5 kb in length is in much better agreement with the length of 

the OpMNPV and AcMNPV-vp59 transcripts and is in good agreement with the OpMNPV-

vp39 time course of expression (Blissard et al, 1989). 

Since during AcMNPV infection the transcript of the cg30 gene starts within the 

coding sequence of vp39 (Thiem and Miller, 1989b) it is possible that the 1.0 kb transcript, 
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detected by our DNA probe (Probe VII), originates from an internal start site within the 

SeMNPV-cgiO gene assuming this is located downstream of SeMNPV-yp59. The AcMNPV-
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Table 6.1. 
The selected ORFs are listed according to their relative position in the SeMNPV Xbal-C sequence. The columns 
left and right define the ends of the ORF irrespective of its orientation. The direction of the transcripts (Dir) that 
could express the ORF is indicated by arrows. The number of amino acids and the predicted molecular weight 
of the protein encoded by the ORF is indicated in columns aa and MW, respectively. The nucleotide position of 
an early (E) or late (L) transcriptional start site, a consensus TATA-box or a poly adenylation signal is indicated 
in the columns Trans, TATA and Poly A, respectively. The percentage of amino acid sequence identity of the 
protein encoded by the SeMNPV ORFs to their homologs in the genomes of AcMNPV and OpMNPV is listed 
in columns %Id Ac and %ld Op, respectively. Ns and nf represent not sequenced and not found respectively. 

cg30 gene is highly-expressed from 2 h p.i. and reaches its maximum concentration around 

12 h p.i. even in the presence of aphidicolin and cycloheximide (Thiem and Miller, 1989b). 

Sequence analysis of the left hand end of SeMNPV-Jf&al-K (Fig. 6.1) revealed an ORF with 

strong homology to AcMNPV-cgiO. A putative baculovirus early promoter element (CAGT) 

was found approximately 260 bp upstream of the putative translational start site of the 

SeMNPV-cgiO gene. This CAGT motif is located at nt 11212 of the SeMNPV-Jftal-C 

sequence, suggesting that our probe had relatively short overlap of 90 nt with the cg30 leader 

sequence. The short overlap might explain why during the initial stages of the infection 

process, when only low concentrations of the transcript are present, no SeMNPV-cg30 

messengers could be detected due to limited hybridization efficiency. These observations 
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suggest that the SeMNPV-vp59 gene will be probably expressed as a 2.5 kb transcript 

between 12 and 48 h p.i. The 1.2 kb transcript might be the same as detected by probe VI. 

Based on the results from these expression studies a transcriptional map of the 

SeMNPV Xbal-C region was compiled (Fig. 6.le). It seems that all identified ORFs are 

transcriptionally active. Overall this map is highly similar to the map that can be compiled 

from the transcriptional analysis of the corresponding region in AcMNPV-£coRI-D (Lu and 

Carstens, 1992) and the AcMNPV-p6.9 gene (Wilson et al, 1987). It should be noted, 

however, that primer extension analysis, northern blot analysis using strand-specific 

riboprobes should be used to confirm the origin of the proposed transcripts and to eliminate 

the occurrence of small transcripts that cannot be related to any open reading frame. 

Discussion 

The genetic organization and transcription profile of the SeMNPV-Xba\-C fragment 

showed a considerable degree of similarity to the AcMNPV-p6.9-vp39 (Ayres et al, 1994) 

and/or OpMNPV-p<5.9-vp39 (Ahrens et al, 1997) region (Fig. 6.3). However, a number of 

unique features were noted. Firstly, the ORF encoding a hypothethical AcMNPV p24 protein 

was not identified in SeMNPV Xbal-C. ORF98 of OpMNPV (Ahrens et al, 1997), located 

between pi 9 and p38 was not present in the SeMNPV Xbal-C sequence. In AcMNPV no 

OpMNPV-ORF98 homolog was present either (Ayres et al, 1994). Secondly, the ORF 

encoding the putative AcMNPV-p7# homolog (Lu and Carstens, 1991, 1992) does, in 

contrast to the situation in AcMNPV, not overlap with the SeMNPV-p743 (Fig. 6.3). Thirdly, 

in the genome of SeMNPV a putative /w-like sequence element (R. Broer, J.G.M. Heidens, 

E.A. van Strien, D.Zuidema and J.M. Vlak, unpublished results) is located in the intergenic 

region between vp33 and lef4, the position where in the genomes of AcMNPV and OpMNPV 

the putative p24 gene is situated (Fig. 6.3). In the genomes of the latter viruses hr-\ike 

sequence could be identified about 5 kb upstream of this position (Ayres et al, 1994; Ahrens 

et al, 1997). Fourthly, all SeMNPV genes had an inverted genomic orientation with respect 

to the orientation of their homologues in the genomes of AcMNPV (Ayres et al, 1994) and 

OpMNPV (Ahrens et al, 1997). This suggested that the SeMNPV genome is colinear with 

the genomes of AcMNPV and OpMNPV in the pi 43 locus but in an inverted orientation (Fig. 

6.3). 

Terminal sequence analysis of the J3>al-fragments flanking SeMNPV-Jftal-C (Xbal-

P, Xbal-K,) revealed high similarities to p40 and p48 for Xbal-P, cg30 and ORF82 for Xbal-

K. Also the distance between these genes in the genome of SeMNPV is similar to the distance 
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between their homologues in the genomes of AcMNPV and OpMNPV. This further supports 

the notion that the genetic organization of the SeMNPV genome may be colinear with 

AcMNPV and OpMNPV over a much larger area than only the 11.3 kb of the SeMNPV-

Xbal-C fragment (Fig. 6.3). Partial nucleotide sequence data from Heliothis armigera SNPV 

(X. Chen and J.M. Vlak, unpublished results), Buzura suppressaria SNPV (Z.H. Hu and J.M. 

Vlak, unpublished results), Lymantria dispar MNPV (LdMNPV) (G.F. Rohrmann, 

unpublished data) and Cryptophlebia leucotreta GV (Jehle and Backhaus, 1994), suggest that 

the genetic organization of the vp39-leß gene cluster is not only conserved in AcMNPV, 

OpMNPV and SeMNPV but in many more if not all baculoviruses. 

The presence in baculovirus genomes of a large genetically conserved part with 

respect to gene content and gene expression strategy is in sharp contrast to the hypervariable 

polyhedrin-plO region. The latter showed a pattern of limited similarity in genetic 

organization among SeMNPV, SpliMNPV, AcMNPV, LdMNPV and OpMNPV (E.A. van 

Strien, 1997; Faktor et al, 1997; Ayres et al, 1994; Rohrmann, unpublished results; Ahrens 

et al, 1997). The orientation of this hypervariable region is however identical to the 

orientation in AcMNPV and OpMNPV. This would imply that for instancep!43 would be a 

better marker to set the orientation and zero point of baculovirus physical and genetic maps 

instead of the hypervariable polyhedrin-plO locus. It would also facilitate the localization of a 

number of genes in other less well-characterized baculoviruses as soon as one of the 

homologs of the AcMNPV genes of the p6.9-vp39 cluster has been found. As a consequence 

SeMNPV should then show an inversed polyhedrin-pl 0 orientation rather than an inverted 

p6.9-p39 region consisting of at least Xbal-C, Xbal-K and Xbal-P. 

The availablitity of the complete nucleotide sequences of the poxviruses Molluscum 

contagiosum (MCV) and Vaccinia (VV) allowed comparison of their genetic organization 

Gompels et al, 1995; Davison and McGeoch, 1995; Senkevic et al, 1996). It was observed 

that the central part of their genomes was conserved in gene order, whereas the termini 

displayed a more diverged genetic organization (Senkevich et al, 1996). Comparison of the 

genetic organization in alpha, beta and gamma herpesviruses also showed that conserved 

blocks are flanked by more diversed sequences. In general, herpesviruses contain central 

conserved areas and more diverged and rearranged termini (Gompels et al, 1995). 

The presence of a genetically conserved region and other more diverged regions in 

the baculovirus genome, is so far similar with the situation in herpes and poxvirus genomes. 

In herpesvirus genomes it seems that extensive nucleotide substitutions, gene rearrangements, 

gene duplications and gene captures occur throughout herpesviruses genomes most frequently 

at their termini. During baculovirus evolution such rearrangements, duplications and captures 

might have occurred as well. The arrangement of genes in the p6.9-lefi region may not have 
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Figure 6.3. 

Comparison of the gene organization in the p6.9-p39 gene region of SeMNPV, AcMNPV, OpMNPV and 

C1GV. The exact position of the region in the different genomes is indicated in map units. 

occured recently in baculovirus evolution, since the genetic organization and gene expression 

profile is so well conserved. The mechanisms underlaying herpes virus rearrangements 

(reviewed by Davison and McGeoch, 1995) may be similar in baculovirus genomes. Whether 

the numerous firs interspersed in the baculovirus genomes play, besides their role as 

transcriptional enhancers and as putative origins of DNA replication, a role in this process 

remains to be investigated. A theta mode of DNA replication mechanism during the first 

rounds genome amplification (bidirectional using multiple origins at the same time) as 

postulated by Kool et al. (1995) would allow a rearrangement mechanism in which genes or 
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gene clusters are readily inversed easily upon the coiling of the produced progeny DNA. The 

further this theta replication form has proceeded the more chance there is that a 

rearrangement event occurs. 

The gene organization of baculovirus genomes may provide supplementary 

phylogenetic information. Gene order has been used to determine herpesvirus phylogeny 

(Hannenhalli et al, 1995). The method relies on the presence of homologous genes 

throughout the virus species. In contrast to herpesviridae, most baculoviruses contain a 

similar set of genes with relatively high amino acid sequence indentity. If all baculoviruses 

contain a conserved part of the genome as hypothesized here, the divergence in the genetic 

organization ofihepolyhedrin-plO locus would be a measure for the evolutionary relatedness 

of baculoviruses. Complete sequence analysis of the genome of not only SeMNPV but many 

other baculoviruses and comparison of their gene organization, in especially the polyhedhn-

plO and pi 43 loci, would verify this hypothesis. 
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Chapter 7 

GENERAL DISCUSSION6 

Introduction 

Baculoviruses are widely used for the high level expression of foreign proteins in 

insect cells (Luckow and Summers, 1988). The polyhedrin and pi 0 genes are abundantly 

expressed very late in the infection process and their promoters are used to drive the 

expression of the foreign genes. The expressed proteins are normally processed as in higher 

eukaryotic cells (only glycosylation occurs slightly different) and they are often biologically 

active (Jarvis et al., 1997). Furthermore, recombinant baculoviruses with increased 

insecticidal properties have been produced for use in biological pest management programs 

(Bonning and Hammock, 1996, for review). Recombinant baculoviruses are not only 

engineered for biotechnological purposes but also for fundamental research to determine the 

role of specific viral gene products in the infection or replication process (null-mutants). 

Insight into the molecular genetic characteristics of SeMNPV that underlie the biology of a 

SeMNPV infection, is a prerequisite towards the successful improvement of its bio-

insecticidal properties by genetic engineering. The understanding of key steps in this 

infection process such as virus entry, gene expression, genome replication or virion assembly, 

is required prior to the development and application of recombination strategies. Previous 

(Smits, 1987) and concomitant (van Strien, 1997) research on SeMNPV focused on its 

application as safe bio-insecticide and on the characterization of selected parts of its genome, 

respectively. The research described in this thesis aimed at the unravelling of the SeMNPV 

DNA replication process in vitro and hence at the identification of cis- and trans-acting 

elements involved in DNA replication, and at their capability to act in the replisomes of 

heterologous baculoviruses. In this chapter the genetic organization of the SeMNPV genome, 

Parts of this chapter have been published as: 
J.G.M. Heidens, H.A. Kester, D. Zuidema and J.M. Vlak (1997). Generation of a P10-based baculovirus 
expression vector in yeast with infectivity for insect larvae and insect cells. Journal of Virological Methods 68, 
57-63. 
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SeMNPV DNA replication and future perspectives regarding genetic modification of the 

SeMNPV genome, are discussed. 

Genetic organization of the SeMNPV genome 

To date approximately 71 kb or 52% of the 134 kb SeMNPV genome have been 

sequenced and analyzed (Fig. 7.1). Within these 71 kb of nucleotide sequence, 68 open 

reading frames with considerable homology to genes from other baculoviruses have been 

identified (Fig. 7.1). Assuming that baculovirus genomes encode approximately 150 

functional genes (Ayres et al, 1994; Ahrens et al, 1997), about 45% of the genes is 

identified. The amino acid identity among the different gene products varies considerably 

between SeMNPV, AcMNPV and OpMNPV. Relative to AcMNPV and OpMNPV the most 

conserved SeMNPV gene products include v-ubiquitin (80%) (van Strien et al, 1996) and 

polyhedrin (85%) (van Strien et al, 1992). Conserved to only a (very) limited extent are, on 

the other hand, SeMNPV-xj462 (van Strien, 1997), plO (van Strien, 1997) and pl43 (Heidens 

et al, 1997). Phylogenetic analysis using parsimony on polyhedrin or EGT clustered 

SeMNPV apart from Lymantria dispar MNPV (LdMNPV), Spodoptera litoralis NPV 

(SpliNPV) and from the AcMNPV/OpMNPV clade (Zanotto et al, 1993; Cowan et al, 

1994; Hu et al, 1997), indicating that SeMNPV is distantly related to AcMNPV and 

OpMNPV. 

This distant genetic relationship between SeMNPV, AcMNPV and OpMNPV is also 

reflected by the deviate gene order and by the genetic distance between its polyhedrin (van 

Strien et al, 1992) and plO (Zuidema et al, 1993) genes (van Strien et al, 1997). The 

physical distance between these genes is in the SeMNPV genome relatively small (11 kb), 

compared to the distance between these genes in the genomes of AcMNPV (19kb) and 

OpMNPV (22 kb). The gene content of a 20 kb region containing SeMNPV-plO-polyhedrin 

gene cluster is different not only among SeMNPV, AcMNPV and OpMNPV, but also in 

many other baculoviruses such as LdMNPV (Rohrmann, personal communication) or 

SpliNPV (Faktor et al, 1997). Remarkably, the homologs of the immediate early genes ie2 

(Carson et al, 1991; Theilmann and Stewart, 1992) and ie3 (Krappa and Knebel-Mörsdorf, 

1991 ; Ahrens et al, 1997) (AcMNPV ORF 151, ORF 153 ; OpMNPV ORF 151, ORF 152) are 

absent in the 20 kb region of the SeMNPV genome whereas the ribonucleotide reductase 

large subunit gene (not in AcMNPV; in OpMNPV ORF32) is present (van Strien et al, 

1997). It has been shown that ie2 and ie3 have auxiliary functions in baculovirus DNA 

replication (Kool et al, 1995 for review; Lu et al, 1997). If IE2 and IE3 represent essential 
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Figure 7.1. 
Physical map and partial genetic organization of the SeMNPV genome. Ac-xx numbers refer to the ORF 
numbers in the AcMNPV genome. 

transactivators in the baculovirus gene expression cascade or in the DNA replication process, 

their SeMNPV homologs must be located elsewhere in the genome. Among other genes in 

the polyhedhn-p 10 locus that are absent from AcMNPV, but present in OpMNPV, are 

ribonucleotide reductase and dUTPase (Ahrens et al, 1997) (Fig. 7.2). 

The rather diverged gene order in the baculovirus plO-polyhedrin locus is in sharp 

contrast to the conserved gene order in the pi 43 locus of many baculoviruses including 

SeMNPV, AcMNPV, OpMNPV and Cryptophlebia leucotreta GV (C1GV) (Jehle and 

Backhaus, 1994; Heidens et al, 1997) (Fig. 7.2). Further sequence analysis from the pi 43 
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region suggests that the SeMNPV genome is colinear to the genomes of Ac MNP V and 

OpMNPV over a much longer stretch (Fig. 7.1). The orientation of this colinear stretch is in 

SeMNPV however antigenomic. Only the iap2-Ac-76 region containing the genes encoding 

DNA polymerase and LEF3 apparently has undergone a double inversion, suggesting that the 

Ac-63 and Ac-64 homologs are located close to the non-hr oh (Fig. 7.1). Further analysis is 

required to determine the exact position of the individual genes in this region and to locate the 

inversion sites. 

It has been suggested that the alternation of conserved and diverged gene blocks in 

baculovirus genomes is somewhat comparable to the situation in the genomes of other large 

eukaryotic DNA viruses such as herpesviruses (Chapter 6 and Heidens et al, 1998; van Strien 

et al, 1997). Complete sequence analysis of a number of baculovirus genomes including the 

SeMNPV genome to determine the full gene content and gene order of this virus is essential 

to consolidate this view. In line with the herpes and poxviruses, the alternation and actual 

content of these conserved and diverged gene blocks might serve as (phylogenetic) markers in 

the classification of baculoviruses. Gene rearrangements, however, in blocks or as individual 

genes occur more frequently throughout herpesvirus genomes than in baculovirus genomes 

(Gompels et al, 1995; Davison and McGeoch, 1995; Senkevic et al, 1996; Ayres et al, 

1994; Ahrens et al, 1997). Comparison of the gene order in SeMNPV to AcMNPV and 

OpMNPV, and a number of other baculoviruses such as LdMNPV, SpliNPV, SNPVs and 

GVs could provide more solid genetic evidence for the distant relatedness of this virus to 

other baculoviruses, than has been provided by single gene phylogenetic analyses. 

Host range determination 

Insight into the molecular principles of host range determination of baculoviruses is 

desired for environmentally safe application of these viruses as insecticides in the field. To 

date little is known about the molecular mechanisms that determine baculovirus host range. 

Single amino acid changes in AcMNPV-pl43 resulted in an expanded host range of 

AcMNPV towards BmN cells (Kondo and Maeda, 1991 ; Croizier et al, 1994). Only a few 

unique baculovirus host-range determinants have been identified. Mixed infection of Ld-

652 Y cells with AcMNPV and LdMNPV led to generation of a recombinant LdMNPV-fe/l. 

The hrf[ is a gene capable of expanding the host range of AcMNPV towards Ld-652Y cells 

(Thiem et al, 1996; Du and Thiem, 1997). Interestingly OpMNPV, which is routinely 

propagated in Ld652Y cells, does not encode an hrfi homolog with substantial nucleotide 

sequence homology to LdMNPV-/zr/l (Thiem et al, 1996). The factor promotes AcMNPV 
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replication in the non-permissive cell lines as Ld652Y cells (Du et al, 1997). A host cell 

specific factor (hcfl) from AcMNPV appeared to have a function in the DNA replication 

process of the virus in TN-368 cells and Trichoplusia ni larvae. The factor was not required 

for AcMNPV replication in S .frugiperda larvae or Sf-AE-21 cells (Lu and Miller, 1995; Lu 

and Miller, 1996). It is very likely that SeMNPV also encodes factors that direct its 

specificity for only S. exigua. Whether the host range specificity of SeMNPV for only S. 

exigua cells or insects can be correlated to functional homologs of one or a few of these genes 

remains to be investigated. 
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Figure 7.2. 

Comparison between the genetic organization of the SeMNPV, OpMNPV and AcMNPV genomes in the 
polyhedrin-plO and helicase loci. 
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DNA replication 

The baculovirus genome replication mechanism, a "rolling circle", a "theta-like" 

bipartite mechanism or a combination of both as has been suggested by Kool et al (1995) is 

another area of speculation. The AcMNPV and OpMNPV virus encoded factors involved in 

DNA replication have all been identified. Among these virus encoded factors are cis- and 

fraws-acting elements (Lu et al, 1997 for review). The involvement of cellular encoded 

factors in the replication process cannot be excluded. In AcMNPV late gene transcription 

clearly cellular encoded proteins are involved (Jain and Hasnain, 1996). It has been suggested 

in this perspective that DNA replication and gene transcription are closely related processes 

in eukaryotic cells (DePamphilis, 1993). 

Two types of cw-acting elements can be distinguished so far in baculovirus DNA 

replication, i.e. homologous region-like (hr) and non-hr. The hrs have a double function, as 

transcriptional enhancers and as origins of DNA replication. In SeMNPV (Chapter 3), but 

also in AcMNPV and OpMNPV hrs (Kool et al, 1995; Lu et al, 1997 for review) and in 

many more baculoviruses, hrs are characterized by an array of palindromic repeats 

interspersed with short direct repeats. An important feature of baculovirus hr elements is the 

presence of mismatches at conserved positions in these palindromes. These mismatches may 

mediate most likely the formation of subtle tertiary structures in the Är-motif which might be 

essential for optimal functioning as origin of DNA replication or as enhancer of transcription. 

The funtioning of hrs probably involves the acquisition of rrora-acting elements, 

transactivators or other factors involved in gene transcription. For SeMNPV and AcMNPV 

hrs one palindromic repeat was sufficient for the support of transcriptional enhancement 

and/or transient DNA replication in vitro (Leisy et al, 1993; Broer et al, 1997). Although 

little or no sequence homology between hrs exists, some can be replicated by heterologous 

viruses whereas others cannot (Broer et al, 1997). Apparently the actual sequence or tertiary 

structure of the hr is to a certain extent involved in the direction of the transcriptional 

machinery. 

Crucial in the functioning of Ars as transcriptional enhancer is their capability to bind 

IE1. SeMNPV-Zzrl is able to enhance CAT expression from AcMNPV-39K-CAT constructs 

in the presence of SeMNPV and AcMNPV-IEl (Theilmann and van Strien, unpublished 

data). In AcMNPV-Ärla and hrS the IE1 binding motif has been mapped in the central 42 bp 

region of a palindromic repeat (Rodems and Friesen, 1995; Leisy et al, 1995; Guarino and 

Dong, 1994). A putative IE1 binding motif, 5'-ACBYGTAA-3', located within these 42 bp, 

could be deduced from sequence alignment of the AcMNPV hrs (Rasmussen et al, 1996). 

Although this consensus could not be found in SeMNPV-Ärs, the motif 5'-AAACGAAA-3' 
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was present in all identified SeMNPV palindromes. DNase protection and gel mobility shift 

assays using various radioactive labelled segments from a SeMNPV-Ar related palindrome 

might reveal whether this motif is the SeMNPV-IEl binding site and furthermore whether 

AcMNPV-IEl is able to bind the same motif. 

Although the non-hr ori of SeMNPV (Chapter 4), AcMNPV (Kool et al, 1994) and 

OpMNPV (Pearson et al, 1993) resembles consensus eukaryotic origins of DNA replication 

(DePamphilis, 1993) its role in baculovirus DNA replication is still enigmatic. Besides direct 

and indirect repeats these elements contain a number of other sequence motifs, such as 

putative eukaryotic transcription factor binding sites. Whether the baculovirus trans-acting 

elements are able to bind to the non-hr elements or whether other factors able to bind the non-

hr element exist, in infected insect cells has not been established. 

The non-hr sequence of SeMNPV is, unlike AcMNPV and OpMNPV, located in a 

region which does not contain any ORF. Multiple passaging of AcMNPV in bioreactors 

rendered eventually defective interfering viruses (Dis) with large genomic deletions (Kool et 

al, 1991; Lee and Krell, 1992). Inside the nucleus of the infected insect cells even smaller 

particles were found that consist mainly of reiterated non-hr like sequences (Lee and Krell, 

1994). Serial passaging of SeMNPV-wt and non-hr deletion mutants in insect cell lines 

would reveal whether Dis arise from SeMNPV. Analysis of the de novo synthesized genomes 

would elucidate if non-hr related sequences accumulate in their genomes and whether this 

sequence itself plays a critical role in the occurrence of Dis. A SeMNPV genome which can 

be stably maintained during replication in both S. exigua cell lines, S. exigua larvae and in 

bioreactors is required for a successful, large scale production of this virus as bio-insecticide 

or expression vector. 

In the genome of SeMNPV two trans-acting DNA replication factors have been 

identified and characterized, iel (van Strien et al, 1997) and helicase (Chapter 5). The 

sequence analysis of the complete SeMNPV genome should reveal all other trans-acting 

DNA replication factors, which may include the late expression factors (LEF) 1,2 and 3, 

DNA polymerase, IE2, IE3 and possibly an inhibitor of apoptosis. The inhibitor of apoptosis 

of SeMNPV might be either a functional P35 homolog as is the case for AcMNPV or a gene 

belonging to the ictp gene family as is the case in OpMNPV and Cydia pomonella GV (Crook 

etal, 1993). 

The position of the SeMNPV DNA polymerase and leß genes has already been 

proposed (Fig. 7.1). Based on sequence alignments it has been proposed that lefl, leß and 

leß encode the baculovirus homologs of Herpes Simplex Virus 1 (HSV) UL8 a primase-

associated protein, HSV UL42 a putative DNA polymerase processivity factor, and HSV 

UL52 a putative primase, respectively (Kool, 1994). Biochemical assays would elucidate the 

exact role of the trans-acting DNA replication factors in the baculovirus DNA 
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replication process. Immunoprecipitation of AcMNPV helicase from infected insect cells 

suggested already that this protein is active as a dimer or hexamer and strongly interacts with 

a multimeric protein (Carstens et al, 1997). Circumstantial evidence for its activity as 

helicase, i.e. its capacity to bind hr-MYs sequences (oris), and the necessity of intact helicase 

motifs for efficient DNA repliation in transient DNA replication assays, has been provided 

(Laufs et al, 1997; Liu and Carstens, 1996). The construction of mutant viruses with specific 

alterations in the coding sequence of the trans-acting DNA replication genes would further 

address the functionality of specific domains of these proteins and their relative contribution 

in baculovirus DNA replication. Recent studies suggest that AcMNPV LEF1 interacts 

withLEF2 and that LEF3 is present in vivo as a homotrimer (Evans et al, 1997; Evans and 

Rohrmann, 1997), which interacts with helicase (Evans et al, 1997). Based on gel-mobility 

shift assays, Hang et al (1995) showed that leß encodes a single stranded DNA binding 

protein, rather than a UL52-like primase as sugested by Kool et al (1995). Since many 

eukaryotic DNA helicases interact directly with a ssDNA binding protein (Lohman and 

Bjornson, 1996 for review) it can be hypothesized that the protein co-precipitating with 

AcMNPV helicase is LEF3. 

Interactions between replication origins on one hand and trans-acting elements on the 

other is essential to form replisomes. In contrast to substitutions among AcMNPV/SeMNPV 

trans-acting elements, AcMNPV and OpMNPV could functionally substitute each others 

DNA polymerase in transient DNA replication assays. AcMNPV helicases could substitute 

OpMNPV helicase, but OpMNPV could not substitute AcMNPV helicase (Ahrens and 

Rohrmann, 1996). A similar incompatiblity was observed when OpMNPV-Ärs were assayed 

for DNA replication in AcMNPV infected cells and when AcMNPV-ftrs were assayed in 

OpMNPV infected cells (Chapter 3). Apparently /raws-acting DNA replication factors from 

closely related baculoviruses cannot necessarily substitute each other. These observations 

suggest once more that DNA replication is a highly virus-specific process that requires 

delicate interaction between its different components. The yeast two-hybrid system would 

allow the study whether the (in)ability of heterologous trans-acting elements to act in DNA 

replications assays is due to their (in)ability to interact with their respective heterologous 

elements to form a functional replisome or is due to other unkown factor(s). 

Genetic modification of SeMNPV 

Commonly, foreign genes or specific site directed mutations are introduced into the 

baculovirus genome by homologous recombination in insect cells between parental 
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baculovirus DNA and a transfer plasmid containing the foreign gene or a mutated gene under 

control of a baculovirus promoter flanked by baculovirus sequences. Homologous 

recombination in insect cells can not always be applied. Firstly, only genes that are non

essential for the infection process can be deleted or mutated, and secondly for many 

baculoviruses no permissive cell lines are available. Since both Se-UCRl (Gelernter and 

Federici, 1986) and Se-IZD2109 (Colbers and Vlak, unpublished results) cell lines generate 

SeMNPV-mutants that lack virulence in vivo (Heidens et al, 1996), recombinant viruses 

cannot be constructed using this conventional approach. Therefore two alternative 

recombination strategies are proposed in this chapter. 

The formation of polyhedra is pivotal for the infection and production of recombinant 

proteins in insect larvae, in particular for the production of genetically improved 

baculoviruses in insect pest control. For biological containment p70-minus baculoviruses 
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could be generated, since the release of polyhedra from the nuclei is impaired which may 
result in limited spread of the virus in the environment (Van Oers et al, 1993). The 
maintenance and replication of the baculovirus genome in the yeast Saccharomyces 

cerevisiae or in an extrachromosomal state in bacteria would allow the genetic modification 
of baculovirus genomes without the use of the insect cell lines. A general strategy would be 
the construction of a SeMNPV variant that can be stably maintained and genetically modified 
via Yeast Artificial Chromosome (YAC) or Yeast Centromere plasmid (YCp) technology 
(Guthrie and Fink, 1991). To test the feasibility of this approach the technology was first 
applied on the AcMNPV genome (Patel et al, 1992; Heidens et al, 1997b) (Fig. 7.3 and 7.4). 
In brief, a yeast autonomous replicating sequence (ARS), a centromere (CEN) and a 
selectable marker (URA3) can be inserted in the polyhedrin or pi 0 loci to maintain the 
baculovirus genome in the yeast. Recombinants can be generated via homologous 
recombination in S. cerevisiae between transfer vectors containing the gene of interest under 
control of the polyhedrin or plO promoter, respectively, the yeast ARS sequences, and the 
baculovirus DNA thereby (counter)selecting for the presence of the sup4-o gene (Patel et al, 

1992) and/or ß-galactosidase expression (Heidens et al, 1997) (Fig. 7.4). 

An alternative strategy to maintain SeMNPV in yeast aims at the exploitation of the 

single Smal restriction site present in the SeMNPV genome (Fig. 7.1). Both YAC, to 

maintain the SeMNPV genome in a linear state in the yeast cells and YCp approaches can be 

considered (Fig. 7.5). The SeMNPV 5.6 kb BamHl-Pstl fragment (mu 27.7-32.2) containing 

both this single Smal site, has been cloned and sequenced. The Smal site appeared to be 

located in an open reading frame with considerable homology to AcMNPV-ORFl 19 (Ayres 

et al, 1994). If this ORF is non-essential for replication in vivo and in vitro, the system can 

be used to introduce foreign genes to improve the insecticidal properties of the virus (Fig 7.3; 

Fig. 7.4; Fig. 7.5). Environmentally safe baculovirus based insecticides require the absence of 

heterologous eukaryotic origins of DNA replication to prevent potential spread of the virus 

into other insect species or organisms via their ability to replicate in field persistent yeasts. To 

delete the ARS-CEN-URA cassette from and to recircularize the SeMNPV-YAC or YCp a 

second, or an in vivo, recombination strategy was developed, using marker genes to monitor 

this recombination event (Fig. 7.4; Fig. 7.5). 

Epilogue 

S. exigua has a devastating effect on the yields of agriculturally important crops in 

green houses and in the tropics. The use of this virus as a potent biological insecticide is a 

safe alternative for environmentally hazardous chemicals. The application of SeMNPV for 
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Generation of ySe-YAC, the cloning strategy of pSeM09 and pSeMK2, and the in vivo recombination and 

selection procedure. 
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this purpose is attractive since the virus has a limited host range and is relatively virulent for 

S. exigua larvae as compared to other baculoviruses pathogenic for this insect. SeMNPV has 

been registered as a bio-insecticide in several countries (Smits and Vlak, 1994). However, as 

is the case for all baculoviruses, the time between a virus infection and the cessation of 

feeding is long compared to the speed of action of chemical insecticides. Improvement of the 

insecticidal properties of baculoviruses has been achieved via genetic engineering (Bonning 

and Hammock, 1996). With the information about the genetic organization and genome 

replication of SeMNPV, now available and the developed strategies to engineer the viral 

genome, the virus is amenable to further improvement of its insecticidal properties. 
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Chapter 8 

SUMMARY 

Spodoptera exigua multicapsid nucleopolyhedrovirus (SeMNPV) is an attractive 

biological control agent for the beet army worm S. exigua. This baculovirus has a narrow host 

range and is relatively, compared to other baculoviruses, virulent for beet army worm larvae. 

The molecular principles that specify the host range and virulence of SeMNPV are unknown. 

This thesis describes studies aimed at the unravelling of the molecular genetics of this 

baculovirus and the key steps in the infection and genome replication process. 

As a first step SeMNPV was multiplied in an established cell line of S. exigua to 

obtain a better understanding of the replication process. Polyhedra derived from cell culture 

were unable to infect S. exigua larvae, although the hemolymph isolated from these larvae did 

contain budded virus able to infect insect cell lines (Chapter 2). This suggested the generation 

of a genetic defect in the SeMNPV genome during replication and/or maintenance in cell 

culture. A partial plasmid library and complete cosmid library were made to construct a 

physical map of the SeMNPV genome and locate the genetic defect(s). The position of the 

polyhedrin gene and the transcriptional direction of the pi 0 gene allowed the pin-pointing of 

the zero point and orientation of the circular SeMNPV genome. A large deletion (20-25 

kilobase pairs), turned out to be the genetic defect, arising upon limited passaging of the virus 

in cell culture. This deletion was located between map unit 12.9 and 31.3 in the SeMNPV 

genome. The occurrence of this deletion implied that the construction of SeMNPV 

recombinant viruses still virulent in vivo cannot be achieved via conventional techniques, i.e. 

homologous recombination in cell culture (Chapter 2). Alternative recombinationstrategies 

involving yeast artificial chromosomes and in vivo cloning were considered and partially 

tested (Chapter 7). 

In Chapters 3 and 4 the identification and characterization of cw-acting elements in 

SeMNPV DNA replication are described. Transient DNA replication assays, sequence 

analyses and hybridization experiments identified one non-Ar (hr homologous region) and six 

hr origins of DNA replication. SeMNPV hrs contained one (hr4) up to nine (hrl) repeated, 

near-identical 68-bp long palindromes. The SeMNPV hrs, located in non-coding regions, 

were found dispersed in the viral genome as observed in the genomes of two other 

baculoviruses, Autographa californica MNPV and Orgyiapseudotsugata MNPV. Transient 
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DNA replication assays in AcMNPV-infected insect cells revealed no replication of 

SeMNPV-Ars and, in SeMNPV-infected insect cells no replication of AcMNPV-Ars could be 

observed, suggesting that these elements display specificity (Chapter 3). In the SeMNPV-

Xbal library one additional genomic fragment unrelated to hrs and reminiscent of AcMNPV 

and OpMNPV non-hr origins of DNA replication that underwent SeMNPV dependent DNA 

replication was identified. By deletion analysis the core of this non-Ar origin was mapped 

within a 800 bp region of non-coding sequence. This sequence contained also several motifs 

such as multiple palindromes, direct repeats, putative transcriptional factor binding sites and 

multiple polyadenylation signals, characteristic for baculovirus non-Ar and other eukaryotic 

origins of DNA replication. In contrast to the hrs, the SeMNPV non-hr origin could be 

replicated by the replication machinery of the heterologous AcMNPV (Chapter 4). 

The putative helicase is the most intriguing /rans-acting DNA replication factor of 

baculoviruses, since it may be involved in both DNA replication and host range 

determination. An open reading frame (ORF) potentially encoding a polypeptide of 143 kDa 

(pi 43) with considerable amino acid identity to the putative helicases of AcMNPV, BmNPV 

and OpMNPV was identified in SeMNPV. Sequence alignment of the SeMNPV pi 43 

indicated that it is somewhat diverged from its AcMNPV, BmNPV and OpMNPV homologs. 

Whether the protein is also involved in the host range of SeMNPV determination remained 

unsolved. The ORF is expressed as a 4 kb transcript between 4 and 24 h p.i., starting from an 

unusual transcriptional initiation site present eleven nucleotides upstream of the translational 

start. Transient plasmid dependent DNA replication assays showed that not only helicase 

plays a crucial role in SeMNPV and AcMNPV replication specificity, but also one or more of 

the other previously mentioned essential /raw-acting DNA replication factors. Apparently the 

interaction between the origins of DNA replication and/or the assembly of the replisome is a 

highly virus specific process (Chapter 5). 

Complete sequence and transcriptional analysis of the 11.3 kb SeMNPV-Xbal-C 

fragment containing the pi43 gene revealed twelve ORFs that all showed high amino acid 

identity to AcMNPV and OpMNPV homologs. The genetic organization of the SeMNPV-

Xbal-C fragment was identical to the AcMNPV and OpMNPV helicase region, although in an 

antigenomic orientation. In line with recent observations in herpes- and poxvirus genomes, 

which contain conserved central parts of their genomes and more diverged termini, it is 

hypothesized that baculoviruses genomes could also contain a highly conserved gene block 

centered around the pi43 gene and a more diverged region at the polyhedrin-plO loci. This 

hypothesis is further supported by partial sequence and hybridization data from other 

baculovirus genomes. The organization of the less conserved polyhedrin-plO region could be 

a marker for the genetic relatedness of baculoviruses (Chapter 6). The state of the art on the 

sequence analysis of the complete SeMNPV genome is described in Chapter 7. 
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The availability of a physical map, the insght in the genetic organization of the 

SeMNPV genome and the occurence of the spontaneous deletion mutants in cell culture 

prompted the development of alternative recombination strategies to bypass the use of the 

insect cell lines (Chapter 7). To this end a recombination strategy using yeast genetics was 

employed. Deletion of the yeast autonomous replicating sequences prior to the application of 

the recombinant baculoviruses in the field is recommended and can be achieved for SeMNPV 

using a direct in vivo recombination and selection protocol. The strategy proposed is based on 

the occurrence of homologous recombination of baculoviruses in the insect (Chapter 7). 

The research on SeMNPV described in this thesis, has created a good starting point to 

study the molecular basis of virulence and host range. The development of the recombination 

system described in chapter 7 could offer a tool for the insertion and deletion of specific 

(viral) genes for this purpose. Moreover exploiting the proposed recombination system, the 

improvement of the insecticidal properties of SeMNPV can be pursued. 
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Chapter 9 

SAMENVATTING 

Spodoptera exigua multicapsid nucleopolyhedrovirus (SeMNPV) wordt in de praktijk 

reeds toegepast als biologisch bestrijdingsmiddel tegen de floridamot (S. exigua). Het virus is 

alleen infectieus voor de larvale stadia van de mot en in vergelijking tot andere 

baculovirussen is het relatief virulent. De moleculair genetische achtergrond van de 

gastheerspecificiteit en de virulentie van SeMNPV is niet bekend. Het onderzoek beschreven 

in dit proefschrift werd gestart om meer inzicht te verkrijgen in de moleculaire genetica van 

dit baculovirus en in de cruciale stappen van het infectieproces en het genoomreplicatie 

mechanisme van dit virus. 

Om het SeMNPV infectieproces beter te kunnen bestuderen werd als eerste stap 

getracht SeMNPV te vermeerderen in een cellijn van S. exigua. Polyeders, geïsoleerd uit deze 

geïnfecteerde cellen, bleken niet meer infectieus te zijn voor S. exigua larven. De hemolymf 

van larven die geïnfecteerd waren met deze polyeders, bevatte daarentegen wel "budded 

virus", dat infectieus was voor de cellijnen. Dit suggereerde dat er een genetisch defect in het 

SeMNPV genoom ontstaat tijdens de vermenigvuldiging van het virus in cel-kweek 

(Hoofdstuk 2). Om de structuur van het virale genoom in kaart te brengen en het genetische 

defect te lokaliseren, werden plasmiden- en cosmiden bibliotheken van het SeMNPV-genoom 

geconstrueerd. De reeds bekende posities van depolyhedrineplO genen op het circulaire 

SeMNPV genoom, bepaalden het nulpunt en de oriëntatie van de kaart. Het in celkweek 

opgelopen genetsche defect bleek een grote deletie (20-25 kbp) te zijn, gelegen tussen map 

unit 12.9 en 31.3 van de kaart van het SeMNPV genoom (Hoofdstuk 2). Deze resultaten 

impliceren dat de constructie van recombinant SeMNPV, bijvoorbeeld om genfuncties te 

bestuderen of om de inzetbaarheid van het virus bij biologische bestrijding te vergroten, niet 

kan worden bereikt met behulp van conventionele methoden, waarbij gebruik gemaakt wordt 

van homologe recombinatie in cellijnen. Derhalve werden alternatieve recombinatie 

strategieën voor het SeMNPV genoom door middel van gist- en in vivo cloning overwogen en 

getest aan de hand van het prototypische Autographa californica MNPV (AcMNPV) genoom 

(Hoofdstuk 7). 

DNA replicatie is een essentiële stap in het vermenigvuldigingsproces van 

baculovirussen. In de hoofdstukken 3 en 4 is de isolatie en karakterisering van de "cw-acting" 
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elementen die bij SeMNPV DNA replicatie zijn betrokken, beschreven. Met behulp van 

transiënte DNA replicatie-assays, sequentie-analyse en hybridisatie experimenten werden zes 

startpunten van DNA replicatie van het hr-type (hr homologous region) gevonden en één van 

het non-hr type. De SeMNPV hrs bevatten één (hr4) tot negen (hrl) gerepeteerde, bijna 

identieke, 68 basenparen-lange palindromen. Deze hrs bleken verspreid over het virale 

genoom te liggen in gebieden welke niet voor eiwitten coderen en zijn verspreid over het 

genoom gevonden. Dit is ook het geval voor AcMNPV en Orgyia pseudotsugata MNPV 

(OpMNPV). Met AcMNPV geïnfecteerde insectencellen bleken niet in staat te zijn de 

SeMNPV hrs te repliceren. Omgekeerd bleken AcMNPV-Ars niet te repliceren in SeMNPV 

geïnfecteerde cellen. Hrs blijken dus slechts herkend te worden door de viruseigen 

replicatiefactoren (Hoofdstuk 3). De non-hr replicatiestartplaats werd uit de Xbal-plasmide 

bibliotheek geïsoleerd met behulp van SeMNPV-afhankelijke DNA replicatie assays 

(Hoofdstuk 4). Door middel van deletie analyse werd de "core" van dit replicatiestartpunt 

binnen een segment van 800 baseparen, dat niet voor eiwitten codeerde, gelokaliseerd. De 

nucleotidenvolgorde van dit element vertoonde noch overeenkomst met die van de hrs van 

SeMNPV, noch met de non-hr elementen van andere baculovirussen. De sequentie bevatte 

echter meerdere palindromen, "direct repeats", potentiële bindingsplaatsen voor 

transcriptiefactoren en poly-adenyleringsignalen, die allen karakteristiek lijken te zijn voor 

zowel baculovirus non-hr sequenties als eukaryotische startpunten van DNA replicatie. De 

non-hr werd wel door de replicatiemachinerie van AcMNPV herkend en is in tegenstelling tot 

de hrs niet virus specifiek (Hoofdstuk 4). Ondanks deze informatie kan over de rol van de hrs 

en non-hr tijdens virale DNA replicatie in vivo echter nog geen uitspraak worden gedaan. 

Van alle "trcms-acting" DNA replicatie factoren is het vermeende helicase het meest 

interessant. Dit eiwit heeft mogelijk een dubbele functie, in zowel DNA replicatie als in 

gastheerspecificiteit. In het genoom van SeMNPV werd een open leesraam aangetroffen dat 

voor een polypeptide van 143 kDa codeert met een aanzienlijke homologie met de helicases 

van AcMNPV, OpMNPV en Bombyx mori NPV (Hoofdstuk 5). Op belangrijke punten week 

de aminozuurvolgorde van het SeMNPV helicase echter af van die van andere baculovirus 

helicases. Gezien de geringe verwantschap van SeMNPV met AcMNPV en BmNPV valt nog 

te bezien of het SeMNPV helicase eveneens het gastheer bereik van dit virus bepaalt. Het 

SsMNPV-helicase gen wordt tussen 4 en 8 uur na infectie tot expressie gebracht als een 4 

kilobasen mRNA vanaf een ongewone transcriptie startpositie, elf nucleotiden 

stroomopwaarts van de translatie start. Transiënte DNA replicatie testen toonden aan dat niet 

alleen het helicase, maar ook de andere "trans-acting" factoren, de gevonden 

replicatiespecifïciteit van SeMNPV en AcMNPV bepalen. Klaarblijkelijk is de interactie 

tussen de startpunten van DNA replicatie en/of de assemblage van het replisoom een zeer 

virusspecifiek proces (Hoofdstuk 5). De isolatie van alle andere SeMNPV gecodeerde "trans-
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acting" elementen is vereist voor de verdere ontrafeling van het replicatiemechanisme en de 

moleculaire principes, die ten grondslag liggen aan de replicatiespecificiteit van dit virus 

(Hoofdstuk 7). 

Een gedetailleerde analyse van het 11,3 kilobasen-lange Xbal-C fragment, dat het 

helicase gen van SeMNPV bevat, toonde twaalf open leesramen aan, waarvan de 

translatieproducten een hoge aminozuur identiteit bleken te hebben met bekende Polypeptiden 

van AcMNPV en OpMNPV (Hoofdstuk 6). De genetische organisatie van het SeMNPV-

Xbal-C fragment bleek gelijk te zijn aan die van het AcMNPV en OpMNPV helicase gebied. 

In vergelijking met AcMNPV en OpMNPV is deze regio in SeMNPV op ongeveer dezelfde 

plaats gelegen, maar in een anti-genomische oriëntatie. Overeenkomstig de genetische 

organisatie van herpes- en pokkenvirussen, wijzen voorlopige analyses erop dat 

baculovirusgenomen gekenmerkt worden door een zeer sterk geconserveerde helicase regio 

en een meer gedivergeerde polyhedrine-p 10 regio (Hoofdstuk 6). De genetische organisatie 

van het polyhedrine-p 10 gebied zou derhlave een goede fylogenetische merker kunnen zijn 

voor de bepaling van intervirale verwantschappen bij baculovirussen. 

Het beschikbaar komen van de fysische kaart, het voorlopig inzicht in de genetische 

organisatie van SeMNPV en de onmogelijkheid om het virus genetisch stabiel in cellijnen te 

vermeerderen, leidde tot de ontwikkeling van alternatieve recombinatiestrategieën. 

Vooralsnog komt het baculovirus-gist recombinatiesysteem als eerste in aanmerking 

(Hoofdstuk 7). Deletie van de zogenaamde autonoom replicerende gist sequenties (ARS) uit 

artificiële chromosomen en plasmiden is daarbij aan te bevelen alvorens het recombinante 

virus toe te passen als bio-insecticide in het veld. Dit kan worden bereikt door middel van in 

vivo recombinatie, clonering en selectiemethoden. 

Het verbeterde inzicht in de genetische organisatie en het DNA replicatiemechanisme 

van SeMNPV vormt de benodigde aanzet om door midel van verder onderzoek de 

moleculaire achtergrond van zowel virulentie als gastheerbereik van SeMNPV te 

doorgronden. De verdere ontwikkeling van het voorgestelde recombinatiesysteem (Hoofstuk 

7) zou vervolgens kunnen leiden tot SeMNPV recombinanten, die enerzijds gerichte studie 

naar deze biologische eigenschappen mogelijk maken en anderzijds als verbeterd bio-

insecticide toegepast kunnen worden. 
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